Sample records for beta precursor protein

  1. Amyloid beta precursor protein regulates male sexual behavior. (United States)

    Park, Jin Ho; Bonthius, Paul J; Tsai, Houng-Wei; Bekiranov, Stefan; Rissman, Emilie F


    Sexual behavior is variable between individuals, ranging from celibacy to sexual addictions. Within normal populations of individual men, ranging from young to middle aged, testosterone levels do not correlate with libido. To study the genetic mechanisms that contribute to individual differences in male sexual behavior, we used hybrid B6D2F1 male mice, which are a cross between two common inbred strains (C57BL/6J and DBA/2J). Unlike most laboratory rodent species in which male sexual behavior is highly dependent upon gonadal steroids, sexual behavior in a large proportion of these hybrid male mice after castration is independent of gonadal steroid hormones and their receptors; thus, we have the ability to discover novel genes involved in this behavior. Gene expression arrays, validation of gene candidates, and transgenic mice that overexpress one of the genes of interest were used to reveal genes involved in maintenance of male sexual behavior. Several genes related to neuroprotection and neurodegeneration were differentially expressed in the hypothalamus of males that continued to mate after castration. Male mice overexpressing the human form of one of these candidate genes, amyloid beta precursor protein (APP), displayed enhanced sexual behavior before castration and maintained sexual activity for a longer duration after castration compared with controls. Our results reveal a novel and unexpected relationship between APP and male sexual behavior. We speculate that declining APP during normal aging in males may contribute to the loss of sexual function.

  2. Beta-secretase-cleaved amyloid precursor protein in Alzheimer brain: a morphologic study

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Bogdanovic, N; Volkmann, Inga


    beta-amyloid (Abeta) is the main constituent of senile plaques seen in Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases beta- and gamma-secretase. In this study, we examined content and localization of beta-secretase-cleaved APP...... the beta-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal beta-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. beta-sAPP was also found surrounding senile plaques...

  3. Natural Modulators of Amyloid-Beta Precursor Protein Processing (United States)

    Zhang, Can; Tanzi, Rudolph E.


    Alzheimer’s disease (AD) is a devastating neurodegenerative disease and the primary cause of dementia, with no cure currently available. The pathogenesis of AD is believed to be primarily driven by Aβ, the principal component of senile plaques. Aβ is an ~4 kDa peptide generated from the amyloid-β precursor protein (APP) through proteolytic secretases. Natural products, particularly those utilized in traditional Chinese medicine (TCM), have a long history alleviating common clinical disorders, including dementia. However, the cell/molecular pathways mediated by these natural products are largely unknown until recently when the underlying molecular mechanisms of the disorders begin to be elucidated. Here, the mechanisms with which natural products modulate the pathogenesis of AD are discussed, in particular, by focusing on their roles in the processing of APP. PMID:22998566

  4. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. (United States)

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E


    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-beta (Abeta), the principal component of senile plaques. Abeta is an approximately 4-kDa peptide generated via cleavage of the amyloid-beta precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Abeta-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Abeta levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Abeta levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-beta pathology.

  5. A role for 12/15 lipoxygenase in the amyloid beta precursor protein metabolism. (United States)

    Succol, Francesca; Praticò, Domenico


    12/15 Lipoxygenase (12/15LO) protein levels and activity are increased in pathologically affected regions of Alzheimer's disease (AD) brains, compared with controls. Its metabolic products are elevated in cerebrospinal fluid of patients with AD and individuals with mild cognitive impairment, suggesting that this enzyme may be involved early in AD pathogenesis. Herein, we investigate the effect of pharmacologic inhibition of 12/15LO on the amyloid beta precursor protein (APP) metabolism. To this end, we used CHO and N2A cells stably expressing human APP with the Swedish mutant, and two structurally distinct and selective 12/15LO inhibitors, PD146176 and CDC. Our results demonstrated that both drugs dose-dependently reduced Abeta formation without affecting total APP levels. Interestingly, in the same cells we observed a significant reduction in secreted (s)APPbeta and beta-secretase (BACE), but not sAPPalpha and ADAM10 protein levels. Together, these data show for the first time that this enzymatic pathway influences Abeta formation whereby modulating the BACE proteolytic cascade. We conclude that specific pharmacologic inhibition of 12/15LO could represent a novel therapeutic target for treating or preventing AD pathology in humans.

  6. Loss of function of ATXN1 increases amyloid beta-protein levels by potentiating beta-secretase processing of beta-amyloid precursor protein. (United States)

    Zhang, Can; Browne, Andrew; Child, Daniel; Divito, Jason R; Stevenson, Jesse A; Tanzi, Rudolph E


    Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date approximately 80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Abeta, the proteolytic product of beta-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Abeta and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Abeta40 and Abeta42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Abeta levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Abeta levels is modulated via beta-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating beta-secretase cleavage of APP and Abeta levels.

  7. Calcium ionophore A23187 specifically decreases the secretion of beta-secretase cleaved amyloid precursor protein during apoptosis in primary rat cortical cultures

    DEFF Research Database (Denmark)

    Sennvik, K; Benedikz, Eirikur; Fastbom, J


    Alzheimer's disease (AD) is characterized by the degeneration and loss of neurons, intracellular neurofibrillary tangles and the accumulation of extracellular senile plaques consisting mainly of beta-amyloid (A beta). A beta is generated from the amyloid precursor protein (APP) by sequential beta...

  8. Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients

    DEFF Research Database (Denmark)

    Sennvik, K; Fastbom, J; Blomberg, M


    Alternative cleavage of the amyloid precursor protein (APP) results in generation and secretion of both soluble APP (sAPP) and beta-amyloid (Abeta). Abeta is the main component of the amyloid depositions in the brains of Alzheimer's disease (AD) patients. Using Western blotting, we compared...... the levels of alpha-secretase cleaved sAPP, beta-secretase cleaved sAPP and total sAPP, in cerebrospinal fluid (CSF) from 13 sporadic AD patients and 13 healthy controls. Our findings show significant amounts of beta-secretase cleaved sAPP in CSF. There was no statistically significant difference...... in the levels of beta-secretase cleaved sAPP between AD patients and controls. The levels of alpha-secretase cleaved sAPP and total sAPP were, however, found to be significantly lower in the AD patients than in the controls....

  9. Soluble beta-amyloid precursor protein is related to disease progression in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Petra Steinacker

    Full Text Available BACKGROUND: Biomarkers of disease progression in amyotrophic lateral sclerosis (ALS could support the identification of beneficial drugs in clinical trials. We aimed to test whether soluble fragments of beta-amyloid precursor protein (sAPPα and sAPPß correlated with clinical subtypes of ALS and were of prognostic value. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study including patients with ALS (N = 68 with clinical follow-up data over 6 months, Parkinson's disease (PD, N = 20, and age-matched controls (N = 40, cerebrospinal fluid (CSF levels of sAPPα a, sAPPß and neurofilaments (NfH(SMI35 were measured by multiplex assay, Progranulin by ELISA. CSF sAPPα and sAPPß levels were lower in ALS with a rapidly-progressive disease course (p = 0.03, and p = 0.02 and with longer disease duration (p = 0.01 and p = 0.01, respectively. CSF NfH(SMI35 was elevated in ALS compared to PD and controls, with highest concentrations found in patients with rapid disease progression (p<0.01. High CSF NfH(SMI3 was linked to low CSF sAPPα and sAPPß (p = 0.001, and p = 0.007, respectively. The ratios CSF NfH(SMI35/CSF sAPPα,-ß were elevated in patients with fast progression of disease (p = 0.002 each. CSF Progranulin decreased with ongoing disease (p = 0.04. CONCLUSIONS: This study provides new CSF candidate markers associated with progression of disease in ALS. The data suggest that a deficiency of cellular neuroprotective mechanisms (decrease of sAPP is linked to progressive neuro-axonal damage (increase of NfH(SMI35 and to progression of disease.

  10. Mapping of the gene encoding the. beta. -amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, D.; Gardiner, K.; Kao, F.T.; Tanzi, R.; Watkins, P.; Gusella, J.F. (Eleanor Roosevelt Institute for Cancer Research, Denver, CO (USA))


    The gene encoding the {beta}-amyloid precursor protein has been assigned to human chromosome 21, as has a gene responsible for at least some cases of familial Alzheimer disease. Linkage studies strongly suggest that the {beta}-amyloid precursor protein and the product corresponding to familial Alzheimer disease are from two genes, or at least that several million base pairs of DNA separate the markers. The precise location of the {beta}-amyloid precursor protein gene on chromosome 21 has not yet been determined. Here the authors show, by using a somatic-cell/hybrid-cell mapping panel, in situ hybridization, and transverse-alternating-field electrophoresis, that the {beta}-amyloid precursor protein gene is located on chromosome 21 very near the 21q21/21q/22 border and probably within the region of chromosome 21 that, when trisomic, results in Down syndrome.

  11. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration (United States)

    Schaefer, Patrick M.; von Einem, Bjoern; Walther, Paul; Calzia, Enrico; von Arnim, Christine A. F.


    One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases. PMID:28005987

  12. Caspase activation increases beta-amyloid generation independently of caspase cleavage of the beta-amyloid precursor protein (APP). (United States)

    Tesco, Giuseppina; Koh, Young Ho; Tanzi, Rudolph E


    The amyloid precursor protein (APP) undergoes "alternative" proteolysis mediated by caspases. Three major caspase recognition sites have been identified in the APP, i.e. one at the C terminus (Asp720) and two at the N terminus (Asp197 and Asp219). Caspase cleavage at Asp720 has been suggested as leading to increased production of Abeta. Thus, we set out to determine which putative caspase sites in APP, if any, are cleaved in Chinese hamster ovary cell lines concurrently with the increased Abeta production that occurs during apoptosis. We found that cleavage at Asp720 occurred concurrently with caspase 3 activation and the increased production of total secreted Abeta and Abeta1-42 in association with staurosporine- and etoposide-induced apoptosis. To investigate the contribution of caspase cleavage of APP to Abeta generation, we expressed an APP mutant truncated at Asp720 that mimics APP caspase cleavage at the C-terminal site. This did not increase Abeta generation but, in contrast, dramatically decreased Abeta production in Chinese hamster ovary cells. Furthermore, the ablation of caspase-dependent cleavage at Asp720, Asp197, and Asp219 (by site-directed mutagenesis) did not prevent enhanced Abeta production following etoposide-induced apoptosis. These findings indicate that the enhanced Abeta generation associated with apoptosis does not require cleavage of APP at its C-terminal (Asp720) and/or N-terminal caspase sites.

  13. Characterization of amyloid beta peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein. (United States)

    Pype, Stefan; Moechars, Dieder; Dillen, Lieve; Mercken, Marc


    Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.

  14. Familial Alzheimer's disease mutations in presenilin 1 do not alter levels of the secreted amyloid-beta protein precursor generated by beta-secretase cleavage. (United States)

    Zhang, Can; Browne, Andrew; Kim, Doo Yeon; Tanzi, Rudolph E


    Alzheimer's disease (AD) is an insidious and progressive disease with a genetically complex and heterogenous etiology. More than 200 fully penetrant mutations in the amyloid beta-protein precursor (APP), presenilin 1 (or PSEN1), and presenilin 2 (PSEN2) have been linked to early-onset familial AD (FAD). 177 PSEN1 FAD mutations have been identified so far and account for more than approximately 80% of all FAD mutations. All PSEN1 FAD mutations can increase the Abeta42:Abeta40 ratio with seemingly different and incompletely understood mechanisms. A recent study has shown that the 286 amino acid N-terminal fragment of APP (N-APP), a proteolytic product of beta-secretase-derived secreted form of APP (sAPPbeta), could bind the death receptor, DR6, and lead to neurodegeneration. Here we asked whether PSEN1 FAD mutations lead to neurodegeneration by modulating sAPPbeta levels. All four different PSEN1 FAD mutations tested (in three mammalian cell lines) did not alter sAPPbeta levels. Therefore PS1 mutations do not appear to contribute to AD pathogenesis via altered production of sAPPbeta.

  15. Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes. (United States)

    Tang, Weihao; Tam, Joshua H K; Seah, Claudia; Chiu, Justin; Tyrer, Andrea; Cregan, Sean P; Meakin, Susan O; Pasternak, Stephen H


    Alzheimer's disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β - and γ - secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer's disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production.

  16. Reduced amyloidogenic processing of the amyloid beta-protein precursor by the small-molecule Differentiation Inducing Factor-1. (United States)

    Myre, Michael A; Washicosky, Kevin; Moir, Robert D; Tesco, Giuseppina; Tanzi, Rudolph E; Wasco, Wilma


    The detection of cell cycle proteins in Alzheimer's disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Abeta properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid beta-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Abeta40 and Abeta42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Abeta42 to Abeta40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Abeta. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a gamma-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668.

  17. First demonstration of cerebrospinal fluid and plasma A beta lowering with oral administration of a beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates. (United States)

    Sankaranarayanan, Sethu; Holahan, Marie A; Colussi, Dennis; Crouthamel, Ming-Chih; Devanarayan, Viswanath; Ellis, Joan; Espeseth, Amy; Gates, Adam T; Graham, Samuel L; Gregro, Allison R; Hazuda, Daria; Hochman, Jerome H; Holloway, Katharine; Jin, Lixia; Kahana, Jason; Lai, Ming-tain; Lineberger, Janet; McGaughey, Georgia; Moore, Keith P; Nantermet, Philippe; Pietrak, Beth; Price, Eric A; Rajapakse, Hemaka; Stauffer, Shaun; Steinbeiser, Melissa A; Seabrook, Guy; Selnick, Harold G; Shi, Xiao-Ping; Stanton, Matthew G; Swestock, John; Tugusheva, Katherine; Tyler, Keala X; Vacca, Joseph P; Wong, Jacky; Wu, Guoxin; Xu, Min; Cook, Jacquelynn J; Simon, Adam J


    beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC(50) approximately 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain A beta levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma A beta levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPP beta, A beta 40, A beta 42, and plasma A beta 40 levels. CSF A beta 42 lowering showed an EC(50) of approximately 20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF A beta lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.

  18. Characterization of the beta amyloid precursor protein-like gene in the central nervous system of the crab Chasmagnathus. Expression during memory consolidation

    Directory of Open Access Journals (Sweden)

    Fustiñana Maria


    Full Text Available Abstract Background Human β-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the β-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form. During consolidation, gene expression and de novo protein synthesis are regulated in order to produce key proteins for the maintenance of plastic changes produced during the acquisition of new information. Results Here we partially cloned and sequenced the beta-amyloid precursor protein like gene homologue in the crab Chasmagnathus (cappl, showing a 37% of identity with the fruit fly Drosophila melanogaster homologue and 23% with Homo sapiens but with much higher degree of sequence similarity in certain regions. We observed a wide distribution of cappl mRNA in the nervous system as well as in muscle and gills. The protein localized in all tissues analyzed with the exception of muscle. Immunofluorescence revealed localization of cAPPL in associative and sensory brain areas. We studied gene and protein expression during long-term memory consolidation using a well characterized memory model: the context-signal associative memory in this crab species. mRNA levels varied at different time points during long-term memory consolidation and correlated with cAPPL protein levels Conclusions cAPPL mRNA and protein is widely distributed in the central nervous system of the crab and the time course of expression suggests a role of cAPPL during long-term memory formation.

  19. Characterization of the beta amyloid precursor protein-like gene in the central nervous system of the crab Chasmagnathus. Expression during memory consolidation. (United States)

    Fustiñana, Maria Sol; Ariel, Pablo; Federman, Noel; Freudenthal, Ramiro; Romano, Arturo


    Human β-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the β-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form. During consolidation, gene expression and de novo protein synthesis are regulated in order to produce key proteins for the maintenance of plastic changes produced during the acquisition of new information. Here we partially cloned and sequenced the beta-amyloid precursor protein like gene homologue in the crab Chasmagnathus (cappl), showing a 37% of identity with the fruit fly Drosophila melanogaster homologue and 23% with Homo sapiens but with much higher degree of sequence similarity in certain regions. We observed a wide distribution of cappl mRNA in the nervous system as well as in muscle and gills. The protein localized in all tissues analyzed with the exception of muscle. Immunofluorescence revealed localization of cAPPL in associative and sensory brain areas. We studied gene and protein expression during long-term memory consolidation using a well characterized memory model: the context-signal associative memory in this crab species. mRNA levels varied at different time points during long-term memory consolidation and correlated with cAPPL protein levels cAPPL mRNA and protein is widely distributed in the central nervous system of the crab and the time course of expression suggests a role of cAPPL during long-term memory formation.

  20. Generation of the beta-amyloid peptide and the amyloid precursor protein C-terminal fragment gamma are potentiated by FE65L1. (United States)

    Chang, Yang; Tesco, Giuseppina; Jeong, William J; Lindsley, Loren; Eckman, Elizabeth A; Eckman, Christopher B; Tanzi, Rudolph E; Guénette, Suzanne Y


    Members of the FE65 family of adaptor proteins, FE65, FE65L1, and FE65L2, bind the C-terminal region of the amyloid precursor protein (APP). Overexpression of FE65 and FE65L1 was previously reported to increase the levels of alpha-secretase-derived APP (APPs alpha). Increased beta-amyloid (A beta) generation was also observed in cells showing the FE65-dependent increase in APPs alpha. To understand the mechanism for the observed increase in both A beta and APPs alpha given that alpha-secretase cleavage of a single APP molecule precludes A beta generation, we examined the effects of FE65L1 overexpression on APP C-terminal fragments (APP CTFs). Our data show that FE65L1 potentiates gamma-secretase processing of APP CTFs, including the amyloidogenic CTF C99, accounting for the ability of FE65L1 to increase generation of APP C-terminal domain and A beta 40. The FE65L1 modulation of these processing events requires binding of FE65L1 to APP and APP CTFs and is not because of a direct effect on gamma-secretase activity, because Notch intracellular domain generation is not altered by FE65L1. Furthermore, enhanced APP CTF processing can be detected in early endosome vesicles but not in endoplasmic reticulum or Golgi membranes, suggesting that the effects of FE65L1 occur at or near the plasma membrane. Finally, although FE65L1 increases APP C-terminal domain production, it does not mediate the APP-dependent transcriptional activation observed with FE65.

  1. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. (United States)

    Pan, Xiaoli; Gong, Neng; Zhao, Jing; Yu, Zhe; Gu, Fenghua; Chen, Jia; Sun, Xiaojing; Zhao, Lei; Yu, Meijing; Xu, Zhiru; Dong, Wenxin; Qin, Yan; Fei, Guoqiang; Zhong, Chunjiu; Xu, Tian-Le


    Reduction of glucose metabolism in brain is one of the main features of Alzheimer's disease. Thiamine (vitamin B1)-dependent processes are critical in glucose metabolism and have been found to be impaired in brains from patients with Alzheimer's disease. However, thiamine treatment exerts little beneficial effect in these patients. Here, we tested the effect of benfotiamine, a thiamine derivative with better bioavailability than thiamine, on cognitive impairment and pathology alterations in a mouse model of Alzheimer's disease, the amyloid precursor protein/presenilin-1 transgenic mouse. We show that after a chronic 8 week treatment, benfotiamine dose-dependently enhanced the spatial memory of amyloid precursor protein/presenilin-1 mice in the Morris water maze test. Furthermore, benfotiamine effectively reduced both amyloid plaque numbers and phosphorylated tau levels in cortical areas of the transgenic mice brains. Unexpectedly, these effects were not mimicked by another lipophilic thiamine derivative, fursultiamine, although both benfotiamine and fursultiamine were effective in increasing the levels of free thiamine in the brain. Most notably, benfotiamine, but not fursultiamine, significantly elevated the phosphorylation level of glycogen synthase kinase-3alpha and -3beta, and reduced their enzymatic activities in the amyloid precursor protein/presenilin-1 transgenic brain. Therefore, in the animal Alzheimer's disease model, benfotiamine appears to improve the cognitive function and reduce amyloid deposition via thiamine-independent mechanisms, which are likely to include the suppression of glycogen synthase kinase-3 activities. These results suggest that, unlike many other thiamine-related drugs, benfotiamine may be beneficial for clinical Alzheimer's disease treatment.

  2. Neurine, an acetylcholine autolysis product, elevates secreted amyloid-beta protein precursor and amyloid-beta peptide levels, and lowers neuronal cell viability in culture: a role in Alzheimer's disease? (United States)

    Tweedie, David; Brossi, Arnold; Chen, DeMoa; Ge, Yuan-Wen; Bailey, Jason; Yu, Qian-Sheng; Kamal, Mohammad A; Sambamurti, Kumar; Lahiri, Debomoy K; Greig, Nigel H


    Classical hallmarks of Alzheimer's disease (AD) are a synaptic loss, cholinergic neuron death, and abnormal protein deposition, particularly of toxic amyloid-beta peptide (Abeta) that is derived from amyloid-beta protein precursor (AbetaPP) by the action of beta- and gamma-secretases. The trigger(s) initiating the biochemical cascades that underpin these hallmarks have yet to be fully elucidated. The typical forebrain cholinergic cell demise associated with AD brain results in a loss of presynaptic cholinergic markers and acetylcholine (ACh). Neurine (vinyl-trimethyl-ammonium hydroxide) is a breakdown product of ACh, consequent to autolysis and is an organic poison found in cadavre brain. The time- and concentration-dependent actions of neurine were assessed in human neuroblastoma (NB, SK-N-SH) cells in culture by quantifying cell viability by lactate dehydrogenase (LDH) and MTS assay, and AbetaPP and Abeta levels by Western blot and ELISA. NB cells displayed evidence of toxicity to neurine at > or = 3 mg/ml, as demonstrated by elevated LDH levels in the culture media and a reduced cell viability shown by the MTS assay. Using subtoxic concentrations of neurine, elevations in AbetaPP and Abeta1-40 peptide levels were detected in conditioned media samples.

  3. Fetzima (levomilnacipran), a drug for major depressive disorder as a dual inhibitor for human serotonin transporters and beta-site amyloid precursor protein cleaving enzyme-1. (United States)

    Rizvi, Syed Mohd Danish; Shaikh, Sibhghatulla; Khan, Mahiuddin; Biswas, Deboshree; Hameed, Nida; Shakil, Shazi


    Pharmacological management of Major Depressive Disorder includes the use of serotonin reuptake inhibitors which targets serotonin transporters (SERT) to increase the synaptic concentrations of serotonin. Beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1) is responsible for amyloid β plaque formation. Hence it is an interesting target for Alzheimer's disease (AD) therapy. This study describes molecular interactions of a new Food and Drug Administration approved antidepressant drug named 'Fetzima' with BACE-1 and SERT. Fetzima is chemically known as levomilnacipran. The study has explored a possible link between the treatment of Depression and AD. 'Autodock 4.2' was used for docking study. The free energy of binding (ΔG) values for 'levomilnacipran-SERT' interaction and 'levomilnacipran-BACE1' interaction were found to be -7.47 and -8.25 kcal/mol, respectively. Levomilnacipran was found to interact with S438, known to be the most important amino acid residue of serotonin binding site of SERT during 'levomilnacipran-SERT' interaction. In the case of 'levomilnacipran-BACE1' interaction, levomilnacipran interacted with two very crucial aspartic acid residues of BACE-1, namely, D32 and D228. These residues are accountable for the cleavage of amyloid precursor protein and the subsequent formation of amyloid β plaques in AD brain. Hence, Fetzima (levomilnacipran) might act as a potent dual inhibitor of SERT and BACE-1 and expected to form the basis of a future dual therapy against depression and AD. It is an established fact that development of AD is associated with Major Depressive Disorder. Therefore, the design of new BACE-1 inhibitors based on antidepressant drug scaffolds would be particularly beneficial.

  4. A single gene directs synthesis of a precursor protein with beta- and alpha-amylase activities in Bacillus polymyxa.


    Uozumi, N; Sakurai, K; Sasaki, T; Takekawa, S; Yamagata, H; Tsukagoshi, N; Udaka, S


    The Bacillus polymyxa amylase gene comprises 3,588 nucleotides. The mature amylase comprises 1,161 amino acids with a molecular weight of 127,314. The gene appeared to be divided into two portions by the direct-repeat sequence located at almost the middle of the gene. The 5' region upstream of the direct-repeat sequence was shown to be responsible for the synthesis of beta-amylase. The 3' region downstream of the direct-repeat sequence contained four sequences homologous with those in other a...

  5. Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation

    Czech Academy of Sciences Publication Activity Database

    Koistinaho, M.; Kettunen, M. I.; Goldsteins, G.; Keinänen, R.; Salminen, A.; Ort, Michael; Bureš, Jan; Liu, D.; Kauppinen, R. A.; Higgins, L. S.; Koistinaho, J.


    Roč. 99, č. 3 (2002), s. 1610-1615 ISSN 0027-8424 R&D Projects: GA ČR GA309/00/1656 Institutional research plan: CEZ:AV0Z5011922 Keywords : Beta-amyloid * Alzheimer disease * brain ischemia Subject RIV: FH - Neurology Impact factor: 10.701, year: 2002

  6. The Golgi-Localized γ-Ear-Containing ARF-Binding (GGA Proteins Alter Amyloid-β Precursor Protein (APP Processing through Interaction of Their GAE Domain with the Beta-Site APP Cleaving Enzyme 1 (BACE1.

    Directory of Open Access Journals (Sweden)

    Bjoern von Einem

    Full Text Available Proteolytic processing of amyloid-β precursor protein (APP by beta-site APP cleaving enzyme 1 (BACE1 is the initial step in the production of amyloid beta (Aβ, which accumulates in senile plaques in Alzheimer's disease (AD. Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aβ generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα, sAPPβ, and Aβ upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.

  7. Synthesis of beta alumina from aluminum hydroxide and oxyhydroxide precursors

    CSIR Research Space (South Africa)

    Van Zyl, A


    Full Text Available Two aluminium oxyhydroxides, boehmite and pseudoboehmite, and two aluminium hydroxides, bayerite and gibbsite, have been investigated as precursors for the synthesis of the solid electrolyte, beta alumina. Reaction pathways and products have been...

  8. Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations as a model to study clearance of beta-amyloid plaques

    Directory of Open Access Journals (Sweden)

    Christian eHumpel


    Full Text Available Alzheimer´s disease is a severe neurodegenerative disorder of the brain, pathologically characterized by extracellular beta-amyloid plaques, intraneuronal Tau inclusions, inflammation, reactive glial cells, vascular pathology and neuronal cell death. The degradation and clearance of beta-amyloid plaques is an interesting therapeutic approach, and the proteases neprilysin (NEP, insulysin and matrix metalloproteinases (MMP are of particular interest. The aim of this project was to establish and characterize a simple in vitro model to study the degrading effects of these proteases. Organoytpic brain vibrosections (120 µm thick were sectioned from adult (9 month old wildtype and transgenic mice (expressing amyloid precursor protein (APP harboring the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations; APP_SDI and cultured for 2 weeks. Plaques were stained by immunohistochemistry for beta-amyloid and Thioflavin S. Our data show that plaques were evident in 2 week old cultures from 9 month old transgenic mice. These plaques were surrounded by reactive GFAP+ astroglia and Iba1+ microglia. Incubation of fresh slices for 2 weeks with 1-0.1-0.01 µg/ml of NEP, insulysin, MMP-2 or MMP-9 showed that NEP, insulysin and MMP-9 markedly degradeded beta-amyloid plaques but only at the highest concentration. Our data provide for the first time a potent and powerful living brain vibrosection model containing a high number of plaques, which allows to rapidly and simply study the degradation and clearance of beta-amyloid plaques in vitro.

  9. A possible island of beta-delayed neutron precursors in heavy nucleus region

    International Nuclear Information System (INIS)

    Zhang Li


    The possible Beta-Delayed neutron precursors in the elements Tl, Hg, and Au were predicted following a systematic research on the known Beta-Delayed neutron precursors. The masses of the unknown nuclei and neutron emission probabilities were calculated

  10. Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including Amyloid beta Precursor Protein

    Directory of Open Access Journals (Sweden)

    Deussing Jan M


    Full Text Available Abstract Background The pivotal role of stress in the precipitation of psychiatric diseases such as depression is generally accepted. This study aims at the identification of genes that are directly or indirectly responding to stress. Inbred mouse strains that had been evidenced to differ in their stress response as well as in their response to antidepressant treatment were chosen for RNA profiling after stress exposure. Gene expression and regulation was determined by microarray analyses and further evaluated by bioinformatics tools including pathway and cluster analyses. Results Forced swimming as acute stressor was applied to C57BL/6J and DBA/2J mice and resulted in sets of regulated genes in the paraventricular nucleus of the hypothalamus (PVN, 4 h or 8 h after stress. Although the expression changes between the mouse strains were quite different, they unfolded in phases over time in both strains. Our search for connections between the regulated genes resulted in potential novel signalling pathways in stress. In particular, Guanine nucleotide binding protein, alpha inhibiting 2 (GNAi2 and Amyloid β (A4 precursor protein (APP were detected as stress-regulated genes, and together with other genes, seem to be integrated into stress-responsive pathways and gene networks in the PVN. Conclusions This search for stress-regulated genes in the PVN revealed its impact on interesting genes (GNAi2 and APP and a novel gene network. In particular the expression of APP in the PVN that is governing stress hormone balance, is of great interest. The reported neuroprotective role of this molecule in the CNS supports the idea that a short acute stress can elicit positive adaptational effects in the brain.

  11. The prion protein as a receptor for amyloid-beta

    NARCIS (Netherlands)

    Kessels, Helmut W.; Nguyen, Louis N.; Nabavi, Sadegh; Malinow, Roberto


    Increased levels of brain amyloid-beta, a secreted peptide cleavage product of amyloid precursor protein (APP), is believed to be critical in the aetiology of Alzheimer's disease. Increased amyloid-beta can cause synaptic depression, reduce the number of spine protrusions (that is, sites of synaptic

  12. T cell precursor migration towards beta 2-microglobulin is involved in thymus colonization of chicken embryos

    DEFF Research Database (Denmark)

    Dunon, D; Kaufman, J; Salomonsen, J


    beta 2-microglobulin (beta 2m) attracts hemopoietic precursors from chicken bone marrow cells in vitro. The cell population responding to beta 2m increases during the second period of thymus colonization, which takes place at days 12-14 of incubation. The precursors from 13.5 day old embryos were...... isolated after migration towards beta 2m in vitro and shown to be able to colonize a 13 day old thymus in ovo, where they subsequently acquire thymocyte markers. In contrast these beta 2m responsive precursors did not colonize embryonic bursa, i.e. differentiate into B lymphocytes. During chicken...... embryogenesis, peaks of beta 2m transcripts and of free beta 2m synthesis can only be detected in the thymus. The peak of free beta 2m synthesis in the thymus and the increase of beta 2m responding bone marrow cells both occur concomitantly with the second wave of thymus colonization in chicken embryo, facts...

  13. Ubiquilin 1 modulates amyloid precursor protein trafficking and Abeta secretion. (United States)

    Hiltunen, Mikko; Lu, Alice; Thomas, Anne V; Romano, Donna M; Kim, Minji; Jones, Phill B; Xie, Zhongcong; Kounnas, Maria Z; Wagner, Steven L; Berezovska, Oksana; Hyman, Bradley T; Tesco, Giuseppina; Bertram, Lars; Tanzi, Rudolph E


    Ubiquilin 1 (UBQLN1) is a ubiquitin-like protein, which has been shown to play a central role in regulating the proteasomal degradation of various proteins, including the presenilins. We recently reported that DNA variants in UBQLN1 increase the risk for Alzheimer disease, by influencing expression of this gene in brain. Here we present the first assessment of the effects of UBQLN1 on the metabolism of the amyloid precursor protein (APP). For this purpose, we employed RNA interference to down-regulate UBQLN1 in a variety of neuronal and non-neuronal cell lines. We demonstrate that down-regulation of UBQLN1 accelerates the maturation and intracellular trafficking of APP, while not interfering with alpha-, beta-, or gamma-secretase levels or activity. UBQLN1 knockdown increased the ratio of APP mature/immature, increased levels of full-length APP on the cell surface, and enhanced the secretion of sAPP (alpha- and beta-forms). Moreover, UBQLN1 knockdown increased levels of secreted Abeta40 and Abeta42. Finally, employing a fluorescence resonance energy transfer-based assay, we show that UBQLN1 and APP come into close proximity in intact cells, independently of the presence of the presenilins. Collectively, our findings suggest that UBQLN1 may normally serve as a cytoplasmic "gatekeeper" that may control APP trafficking from intracellular compartments to the cell surface. These findings suggest that changes in UBQLN1 steady-state levels affect APP trafficking and processing, thereby influencing the generation of Abeta.

  14. Ranking beta sheet topologies of proteins

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Helles, Glennie; Winter, Pawel


    One of the challenges of protein structure prediction is to identify long-range interactions between amino acids. To reliably predict such interactions, we enumerate, score and rank all beta-topologies (partitions of beta-strands into sheets, orderings of strands within sheets and orientations...... of paired strands) of a given protein. We show that the beta-topology corresponding to the native structure is, with high probability, among the top-ranked. Since full enumeration is very time-consuming, we also suggest a method to deal with proteins with many beta-strands. The results reported...... in this paper are highly relevant for ab initio protein structure prediction methods based on decoy generation. The top-ranked beta-topologies can be used to find initial conformations from which conformational searches can be started. They can also be used to filter decoys by removing those with poorly...

  15. Drosophila egghead encodes a beta 1,4-mannosyltransferase predicted to form the immediate precursor glycosphingolipid substrate for brainiac

    DEFF Research Database (Denmark)

    Wandall, Hans H; Pedersen, Johannes W; Park, Chaeho


    -N-acetylglucosamine:beta Man beta 1,3-N-acetylglucosaminyltransferase (beta 3GlcNAc-transferase) tentatively assigned a key role in biosynthesis of arthroseries glycosphingolipids and forming the trihexosylceramide, GlcNAc beta 1-3Man beta 1-4Glc beta 1-1Cer. In the present study we demonstrate that egghead encodes a Golgi......-located GDP-mannose:beta Glc beta 1,4-mannosyltransferase tentatively assigned a biosynthetic role to form the precursor arthroseries glycosphingolipid substrate for Brainiac, Man beta 1-4Glc beta 1-1Cer. Egghead is unique among eukaryotic glycosyltransferase genes in that homologous genes are limited...

  16. N-Benzylhydroxylamine addition to beta-aryl enoates. Enantioselective synthesis of beta-aryl-beta-amino acid precursors (United States)

    Sibi; Liu


    Chiral Lewis acid catalyzed N-benzylhydroxylamine addition to pyrrolidinone-derived enoates afforded beta-aryl-beta-amino acid derivatives in high enantiomeric purity with moderate to very good chemical efficiency.

  17. Interactions between two beta-sheets. Energetics of beta/beta packing in proteins. (United States)

    Chou, K C; Némethy, G; Rumsey, S; Tuttle, R W; Scheraga, H A


    The analysis of the interactions between regularly folded segments of the polypeptide chain contributes to an understanding of the energetics of protein folding. Conformational energy-minimization calculations have been carried out to determine the favorable ways of packing two right-twisted beta-sheets. The packing of two five-stranded beta-sheets was investigated, with the strands having the composition CH3CO-(L-Ile)6-NHCH3 in one beta-sheet and CH3CO-(L-Val)6-NHCH3 in the other. Two distinct classes of low-energy packing arrangements were found. In the class with lowest energies, the strands of the two beta-sheets are aligned nearly parallel (or antiparallel) with each other, with a preference for a negative orientation angle, because this arrangement corresponds to the best complementary packing of the two twisted saddle-shaped beta-sheets. In the second class, with higher interaction energies, the strands of the two beta-sheets are oriented nearly perpendicular to each other. While the surfaces of the two beta-sheets are not complementary in this arrangement, there is good packing between the corner of one beta-sheet and the interior part of the surface of the other, resulting in a favorable energy of packing. Both classes correspond to frequently observed orientations of beta-sheets in proteins. In proteins, the second class of packing is usually observed when the two beta-sheets are covalently linked, i.e. when a polypeptide strand passes from one beta-sheet to the other, but we have shown here that a large contribution to the stabilization of this packing arrangement arises from noncovalent interactions.

  18. Beta-structures in fibrous proteins. (United States)

    Kajava, Andrey V; Squire, John M; Parry, David A D


    The beta-form of protein folding, one of the earliest protein structures to be defined, was originally observed in studies of silks. It was then seen in early studies of synthetic polypeptides and, of course, is now known to be present in a variety of guises as an essential component of globular protein structures. However, in the last decade or so it has become clear that the beta-conformation of chains is present not only in many of the amyloid structures associated with, for example, Alzheimer's Disease, but also in the prion structures associated with the spongiform encephalopathies. Furthermore, X-ray crystallography studies have revealed the high incidence of the beta-fibrous proteins among virulence factors of pathogenic bacteria and viruses. Here we describe the basic forms of the beta-fold, summarize the many different new forms of beta-structural fibrous arrangements that have been discovered, and review advances in structural studies of amyloid and prion fibrils. These and other issues are described in detail in later chapters.

  19. Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity.

    NARCIS (Netherlands)

    Wilhelmus, M.M.M.; Boelens, W.C.; Otte-Holler, I.; Kamps, B.; Kusters, B.; Maat-Schieman, M.L.; Waal, R.M.W. de; Verbeek, M.M.


    Alzheimer's disease (AD) is characterized by pathological lesions, such as senile plaques (SPs) and cerebral amyloid angiopathy (CAA), both predominantly consisting of a proteolytic cleavage product of the amyloid-beta precursor protein (APP), the amyloid-beta peptide (Abeta). CAA is also the major

  20. Association of the macrophage activating factor (MAF) precursor activity with polymorphism in vitamin D-binding protein. (United States)

    Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Kubo, Shinichi; Hori, Hitoshi


    Serum vitamin D-binding protein (Gc protein or DBP) is a highly expressed polymorphic protein, which is a precursor of the inflammation-primed macrophage activating factor, GcMAF, by a cascade of carbohydrate processing reactions. In order to elucidate the relationship between Gc polymorphism and GcMAF precursor activity, we estimated the phagocytic ability of three homotypes of Gc protein, Gc1F-1F, Gc1S-1S and Gc2-2, through processing of their carbohydrate moiety. We performed Gc typing of human serum samples by isoelectric focusing (IEF). Gc protein from human serum was purified by affinity chromatography with 25-hydroxyvitamin D3-sepharose. A phagocytosis assay of Gc proteins, modified using beta-glycosidase and sialidase, was carried out. The Gc1F-1F phenotype was revealed to possess Galbeta1-4GalNAc linkage by the analysis of GcMAF precursor activity using beta1-4 linkage-specific galactosidase from jack bean. The GcMAF precursor activity of the Gc1F-1F phenotype was highest among three Gc homotypes. The Gc polymorphism and carbohydrate diversity of Gc protein are significant for its pleiotropic effects.

  1. AMYPdb: A database dedicated to amyloid precursor proteins

    Directory of Open Access Journals (Sweden)

    Delamarche Christian


    Full Text Available Abstract Background Misfolding and aggregation of proteins into ordered fibrillar structures is associated with a number of severe pathologies, including Alzheimer's disease, prion diseases, and type II diabetes. The rapid accumulation of knowledge about the sequences and structures of these proteins allows using of in silico methods to investigate the molecular mechanisms of their abnormal conformational changes and assembly. However, such an approach requires the collection of accurate data, which are inconveniently dispersed among several generalist databases. Results We therefore created a free online knowledge database (AMYPdb dedicated to amyloid precursor proteins and we have performed large scale sequence analysis of the included data. Currently, AMYPdb integrates data on 31 families, including 1,705 proteins from nearly 600 organisms. It displays links to more than 2,300 bibliographic references and 1,200 3D-structures. A Wiki system is available to insert data into the database, providing a sharing and collaboration environment. We generated and analyzed 3,621 amino acid sequence patterns, reporting highly specific patterns for each amyloid family, along with patterns likely to be involved in protein misfolding and aggregation. Conclusion AMYPdb is a comprehensive online database aiming at the centralization of bioinformatic data regarding all amyloid proteins and their precursors. Our sequence pattern discovery and analysis approach unveiled protein regions of significant interest. AMYPdb is freely accessible 1.

  2. Structural basis for precursor protein-directed ribosomal peptide macrocyclization (United States)

    Li, Kunhua; Condurso, Heather L.; Li, Gengnan; Ding, Yousong; Bruner, Steven D.


    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides whose members target proteases with potent reversible inhibition. The product structure is constructed by three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here, we describe the detailed structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases, MdnC and MdnB, interact with a conserved α-helix of the precursor peptide using a novel precursor peptide recognition mechanism. The results provide insight into the unique protein/protein interactions key to the chemistry, suggest an origin of the natural combinatorial synthesis of microviridin peptides and provide a framework for future engineering efforts to generate designed compounds. PMID:27669417

  3. Structural basis for precursor protein-directed ribosomal peptide macrocyclization. (United States)

    Li, Kunhua; Condurso, Heather L; Li, Gengnan; Ding, Yousong; Bruner, Steven D


    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight into the unique protein-protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.

  4. Redundancy and divergence in the amyloid precursor protein family. (United States)

    Shariati, S Ali M; De Strooper, Bart


    Gene duplication provides genetic material required for functional diversification. An interesting example is the amyloid precursor protein (APP) protein family. The APP gene family has experienced both expansion and contraction during evolution. The three mammalian members have been studied quite extensively in combined knock out models. The underlying assumption is that APP, amyloid precursor like protein 1 and 2 (APLP1, APLP2) are functionally redundant. This assumption is primarily supported by the similarities in biochemical processing of APP and APLPs and on the fact that the different APP genes appear to genetically interact at the level of the phenotype in combined knockout mice. However, unique features in each member of the APP family possibly contribute to specification of their function. In the current review, we discuss the evolution and the biology of the APP protein family with special attention to the distinct properties of each homologue. We propose that the functions of APP, APLP1 and APLP2 have diverged after duplication to contribute distinctly to different neuronal events. Our analysis reveals that APLP2 is significantly diverged from APP and APLP1. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Spore coat protein of Bacillus subtilis. Structure and precursor synthesis. (United States)

    Munoz, L; Sadaie, Y; Doi, R H


    The coat protein of Bacillus subtilis spores comprises about 10% of the total dry weight of spores and 25% of the total spore protein. One protein with a molecular weight of 13,000 to 15,000 comprises a major portion of the spore coat. This mature spore coat protein has histidine at its NH2 terminus and is relatively rich in hydrophobic amino acids. Netropsin, and antibiotic which binds to A-T-rich regions of DNA and inhibits sporulation, but not growth, decreased the synthesis of this spore coat protein by 75%. A precursor spore coat protein with a molecular weight of 25,000 is made initially at t1 of sporulation and is converted to the mature spore coat protein with a molecular weight of 13,500 at t2 - t3. These data indicate that the spore coat protein gene is expressed very early in sporulation prior to the modifications of RNA polymerase which have been noted.

  6. BetaTPred: prediction of beta-TURNS in a protein using statistical algorithms. (United States)

    Kaur, Harpreet; Raghava, G P S


    beta-turns play an important role from a structural and functional point of view. beta-turns are the most common type of non-repetitive structures in proteins and comprise on average, 25% of the residues. In the past numerous methods have been developed to predict beta-turns in a protein. Most of these prediction methods are based on statistical approaches. In order to utilize the full potential of these methods, there is a need to develop a web server. This paper describes a web server called BetaTPred, developed for predicting beta-TURNS in a protein from its amino acid sequence. BetaTPred allows the user to predict turns in a protein using existing statistical algorithms. It also allows to predict different types of beta-TURNS e.g. type I, I', II, II', VI, VIII and non-specific. This server assists the users in predicting the consensus beta-TURNS in a protein. The server is accessible from

  7. Apical Polarity Protein PrkCi Is Necessary for Maintenance of Spinal Cord Precursors in Zebrafish


    Roberts, Randolph K.; Appel, Bruce


    During development, neural precursors divide to produce new precursors and cells that differentiate as neurons and glia. In Drosophila, apicobasal polarity and orientation of the mitotic spindle play important roles in specifying the progeny of neural precursors for different fates. We examined orientation of zebrafish spinal cord precursors using time-lapse imaging and tested the function of protein kinase C, iota (PrkCi), a member of the Par complex of proteins necessary for apicobasal pola...

  8. [Study of beta-turns in globular proteins]. (United States)

    Amirova, S R; Milchevskiĭ, Iu V; Filatov, I V; Esipova, N G; Tumanian, V G


    The formation of beta-turns in globular proteins has been studied by the method of molecular mechanics. Statistical method of discriminant analysis was applied to calculate energy components and sequences of oligopeptide segments, and after this prediction of I type beta-turns has been drawn. The accuracy of true positive prediction is 65%. Components of conformational energy considerably affecting beta-turn formation were delineated. There are torsional energy, energy of hydrogen bonds, and van der Waals energy.

  9. A Drosophila gene encoding a protein resembling the human β-amyloid protein precursor

    International Nuclear Information System (INIS)

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K.


    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human β-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human β-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development

  10. Regulation of amyloid precursor protein processing by its KFERQ motif. (United States)

    Park, Ji-Seon; Kim, Dong-Hou; Yoon, Seung-Yong


    Understanding of trafficking, processing, and degradation mechanisms of amyloid precursor protein (APP) is important because APP can be processed to produce β-amyloid (Aβ), a key pathogenic molecule in Alzheimer's disease (AD). Here, we found that APP contains KFERQ motif at its C-terminus, a consensus sequence for chaperone-mediated autophagy (CMA) or microautophagy which are another types of autophagy for degradation of pathogenic molecules in neurodegenerative diseases. Deletion of KFERQ in APP increased C-terminal fragments (CTFs) and secreted N-terminal fragments of APP and kept it away from lysosomes. KFERQ deletion did not abolish the interaction of APP or its cleaved products with heat shock cognate protein 70 (Hsc70), a protein necessary for CMA or microautophagy. These findings suggest that KFERQ motif is important for normal processing and degradation of APP to preclude the accumulation of APP-CTFs although it may not be important for CMA or microautophagy. [BMB Reports 2016; 49(6): 337-342].

  11. Increasing protein stability by improving beta-turns. (United States)

    Fu, Hailong; Grimsley, Gerald R; Razvi, Abbas; Scholtz, J Martin; Pace, C Nick


    Our goal was to gain a better understanding of how protein stability can be increased by improving beta-turns. We studied 22 beta-turns in nine proteins with 66-370 residues by replacing other residues with proline and glycine and measuring the stability. These two residues are statistically preferred in some beta-turn positions. We studied: Cold shock protein B (CspB), Histidine-containing phosphocarrier protein, Ubiquitin, Ribonucleases Sa2, Sa3, T1, and HI, Tryptophan synthetase alpha-subunit, and Maltose binding protein. Of the 15 single proline mutations, 11 increased stability (Average = 0.8 +/- 0.3; Range = 0.3-1.5 kcal/mol), and the stabilizing effect of double proline mutants was additive. On the basis of this and our previous work, we conclude that proteins can generally be stabilized by replacing nonproline residues with proline residues at the i + 1 position of Type I and II beta-turns and at the i position in Type II beta-turns. Other turn positions can sometimes be used if the phi angle is near -60 degrees for the residue replaced. It is important that the side chain of the residue replaced is less than 50% buried. Identical substitutions in beta-turns in related proteins give similar results. Proline substitutions increase stability mainly by decreasing the entropy of the denatured state. In contrast, the large, diverse group of proteins considered here had almost no residues in beta-turns that could be replaced by Gly to increase protein stability. Improving beta-turns by substituting Pro residues is a generally useful way of increasing protein stability. 2009 Wiley-Liss, Inc.

  12. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity. (United States)

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi


    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  13. Determinants of RNA polymerase alpha subunit for interaction with beta, beta', and sigma subunits: hydroxyl-radical protein footprinting.


    Heyduk, T; Heyduk, E; Severinov, K; Tang, H; Ebright, R H


    Escherichia coli RNA polymerase (RNAP) alpha subunit serves as the initiator for RNAP assembly, which proceeds according to the pathway 2 alpha-->alpha 2-->alpha 2 beta-->alpha 2 beta beta'-->alpha 2 beta beta' sigma. In this work, we have used hydroxyl-radical protein footprinting to define determinants of alpha for interaction with beta, beta', and sigma. Our results indicate that amino acids 30-75 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta ...

  14. Quantification of beta A4 protein deposition in the medial temporal lobe: a comparison of Alzheimer's disease and senile dementia of the Lewy body type. (United States)

    Gentleman, S M; Williams, B; Royston, M C; Jagoe, R; Clinton, J; Perry, R H; Ince, P G; Allsop, D; Polak, J M; Roberts, G W


    The distribution of beta-amyloid protein (beta A4) was examined in the medial temporal lobes from cases of Alzheimer's disease (AD) (n = 13), senile dementia of Lewy body type (SDLT) (n = 12) and age matched controls (n = 9). Using a previously described image analysis technique the extent of beta A4 pathology was determined in ten distinct anatomical sites within the medial temporal lobe. AD and SDLT cases contained very similar amounts of beta A4 in the areas sampled and both contained significantly more beta A4 than the age matched controls, particularly in the dentate and parahippocampal gyri. The similarity of the beta A4 load in the two conditions is in contrast to reported differences in the number of neurofibrillary tangles which can be observed. It is suggested that AD and SDLT represent a spectrum of pathology which centres around the aberrant processing of the beta A4 precursor protein.

  15. Altered β-Amyloid Precursor Protein Isoforms in Mexican Alzheimer’s Disease Patients

    Directory of Open Access Journals (Sweden)

    V. J. Sánchez-González


    Full Text Available Objective: To determine the β-amyloid precursor protein (βAPP isoforms ratio as a risk factor for Alzheimer’s Disease and to assess its relationship with demographic and genetic variables of the disease.

  16. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains. (United States)

    Beilin, Orit; Karussis, Dimitrios M; Korczyn, Amos D; Gurwitz, David; Aronovich, Ramona; Mizrachi-Kol, Rachel; Chapman, Joab


    Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.

  17. Antimicrobial actions of the human epididymis 2 (HE2 protein isoforms, HE2alpha, HE2beta1 and HE2beta2

    Directory of Open Access Journals (Sweden)

    French Frank S


    Full Text Available Abstract Background The HE2 gene encodes a group of isoforms with similarities to the antimicrobial beta-defensins. We demonstrated earlier that the antimicrobial activity of HE2 proteins and peptides is salt resistant and structure dependent and involves permeabilization of bacterial membranes. In this study, we further characterize the antimicrobial properties of HE2 peptides in terms of the structural changes induced in E. coli and the inhibition of macromolecular synthesis. Methods E. coli treated with 50 micro g/ml of HE2alpha, HE2beta1 or HE2beta2 peptides for 30 and 60 min were visualized using transmission and scanning electron microscopy to investigate the impact of these peptides on bacterial internal and external structure. The effects of HE2alpha, HE2beta1 and HE2beta2 on E. coli macromolecular synthesis was assayed by incubating the bacteria with 2, 10 and 25 micro g/ml of the individual peptides for 0–60 min and measuring the incorporation of the radioactive precursors [methyl-3H]thymidine, [5-3H]uridine and L-[4,5-3H(N]leucine into DNA, RNA and protein. Statistical analyses using Student's t-test were performed using Sigma Plot software. Values shown are Mean ± S.D. Results E. coli treated with HE2alpha, HE2beta1 and HE2beta2 peptides as visualized by transmission electron microscopy showed extensive damage characterized by membrane blebbing, thickening of the membrane, highly granulated cytoplasm and appearance of vacuoles in contrast to the smooth and continuous membrane structure of the untreated bacteria. Similarly, bacteria observed by scanning electron microscopy after treating with HE2alpha, HE2beta1 or HE2beta2 peptides exhibited membrane blebbing and wrinkling, leakage of cellular contents, especially at the dividing septa, and external accumulation of fibrous materials. In addition, HE2alpha, HE2beta1 and HE2beta2 peptides inhibited E. coli DNA, RNA and protein synthesis. Conclusions The morphological changes observed

  18. Intracellular trafficking of the β-secretase and processing of amyloid precursor protein. (United States)

    Zhi, Pei; Chia, Pei Zhi Cheryl; Chia, Cheryl; Gleeson, Paul A


    The main component of the amyloid plaques found in the brains of those with Alzheimer's disease (AD) is a polymerized form of the β-amyloid peptide (Aβ) and is considered to play a central role in the pathogenesis of this neurodegenerative disorder. Aβ is derived from the proteolytic processing of the amyloid precursor protein (APP). Beta site APP-cleaving enzyme, BACE1 (also known as β-secretase) is a membrane-bound aspartyl protease responsible for the initial step in the generation of Aβ peptide and is thus a prime target for therapeutic intervention. Substantive evidence now indicates that the processing of APP by BACE1 is regulated by the intracellular sorting of the enzyme and, moreover, perturbations in these intracellular trafficking pathways have been linked to late-onset AD. In this review, we highlight the recent advances in the understanding of the regulation of the intracellular sorting of BACE1 and APP and illustrate why the trafficking of these cargos represent a key issue for understanding the membrane-mediated events associated with the generation of the neurotoxic Aβ products in AD. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  19. Positive evolutionary selection of an HD motif on Alzheimer precursor protein orthologues suggests a functional role. (United States)

    Miklós, István; Zádori, Zoltán


    HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (pHD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the "transcription binding site turnover." CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs.

  20. The amyloid precursor-like protein (APLP) gene maps to the long arm of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Wasco, W.; Tanzi, R.E. (Harvard Medical School, Boston, MA (United States)); Brook, J.D. (Center for Medical Genetics, Nottingham (United Kingdom))


    We have recently isolated a cDNA from a mouse brain library that encodes a protein whose predicted amino acid sequence is 42% identical and 64% similar to that of the amyloid [beta] protein precursor (APP; 16). This 653-amino-acid amyloid precursor-like protein (APLP) is similar to APP in overall structure as well as amino acid sequence. The amino acid homologies are particularly strong in three distinct regions of the proteins where the identities are 47, 54, and 56% (16). All three of these regions are also conserved in the Drosophila APP-like gene, APPL (11). Notably, 12 cysteine residues and a N -glyco-sylation site are conserved in the extracellular portion of APLP and APP, and a clathrin-binding domain is conserved in the cytoplasmic domain. The cytoplasmic domain is also conserved in a partial CDNA reported to encode an APP-like gene in rat testes (17), These data suggest that APLP and APP are members of a highly conserved gene family. A panel of DNAs from 31 human-rodent somatic cell lines of known karyotype was digested with EcoR1. These DNAs were then probed with the human APLP cDNA clone and the hybridization pattern was consistent with the assignment of the APLP locus to chromosome 19. 17 refs., 1 fig.

  1. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F


    While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insulin......-like growth factors (IGFs) and IGF-binding proteins (IGFBPs). Thus, we studied the effects of TGF-beta1 on IGFs and IGFBPs in human marrow stromal (hMS) osteoblast precursor cells. TGF-beta1 increased the steady-state mRNA level of IGF-I up to 8.5+/-0.6-fold (P...

  2. Rare earth [beta]-diketonate and carboxylate metal complexes as precursors for MOCVD of oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmina, N.P. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Martynenko, L.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Tu, Z.A. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Kaul, A.R. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Girichev, G.V. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Giricheva, N.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Rykov, A.N. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Korenev, Y.M. (Dept. of Chemistry, Moscow State Univ. (Russian Federation))


    Volatile and thermostable complexes of lanthanide acetylacetonates and pivalates were obtained and investigated by different methods. These compounds were used for lanthanide oxide containing film producing and for fabrication of silica optical fibers doped by lanthanide oxide. The properties of these and already known volatile precursors are compared. (orig.).

  3. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of Beta-hydroxy-Beta-methylbutyrate (United States)

    Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite Beta-hydroxy-Beta-methylbutyrate (HMB). To determine the effects of HMB on protein synthesi...

  4. Amyloid Precursor Proteins Are Dynamically Trafficked and Processed During Neuronal Development

    Directory of Open Access Journals (Sweden)

    Jenna M. Ramaker


    Full Text Available Proteolytic processing of the Amyloid Precursor Protein (APP produces beta-amyloid (Aβ peptide fragments that accumulate in Alzheimer’s Disease (AD, but APP may also regulate multiple aspects of neuronal development, albeit via mechanisms that are not well understood. APP is a member of a family of transmembrane glycoproteins expressed by all higher organisms, including two mammalian orthologs (APLP1 and APLP2 that have complicated investigations into the specific activities of APP. By comparison, insects express only a single APP-related protein (APP-Like, or APPL that contains the same protein interaction domains identified in APP. However, unlike its mammalian orthologs, APPL is only expressed by neurons, greatly simplifying an analysis of its functions in vivo. Like APP, APPL is processed by secretases to generate a similar array of extracellular and intracellular cleavage fragments, as well as an Aβ-like fragment that can induce neurotoxic responses in the brain. Exploiting the complementary advantages of two insect models (Drosophila melanogaster and Manduca sexta, we have investigated the regulation of APPL trafficking and processing with respect to different aspects of neuronal development. By comparing the behavior of endogenously expressed APPL with fluorescently tagged versions of APPL and APP, we have shown that some full-length protein is consistently trafficked into the most motile regions of developing neurons both in vitro and in vivo. Concurrently, much of the holoprotein is rapidly processed into N- and C-terminal fragments that undergo bi-directional transport within distinct vesicle populations. Unexpectedly, we also discovered that APPL can be transiently sequestered into an amphisome-like compartment in developing neurons, while manipulations targeting APPL cleavage altered their motile behavior in cultured embryos. These data suggest that multiple mechanisms restrict the bioavailability of the holoprotein to regulate

  5. Structural and optical characterization of Eu3+ doped beta-Ga2O3 nanoparticles using a liquid-phase precursor method. (United States)

    Kim, Moung-O; Kang, Bongkyun; Yoon, Daeho


    Eu3+ doped beta-Ga2O3 and non-doped beta-Ga2O3 nanoparticles were synthesized at 800 degrees C using a liquid-phase precursor (LPP) method, with different annealing times and Eu3+ ion concentrations. Eu3+ doped beta-Ga2O3 nanoparticles showed broad XRD peaks, revealing a second phase compared with the non-doped beta-Ga2O3 nanoparticles. The cathode luminescence (CL) spectra of beta-Ga2O3 and Eu3+ doped beta-Ga2O3 nanoparticles showed a broad band emission (300-500 nm) of imperfection and two component emissions. The luminescence quenching properties of Eu3+ dopant ion concentration appeared gradually beyond 5 mol% in our investigation.

  6. Human amyloid beta protein gene locus: HaeIII RFLP

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J E; Gonzalez-DeWhitt, P A; Fuller, F; Cordell, B; Frossard, P M [California Biotechnology Inc., Mountain View (USA); Tinklenberg, J R; Davies, H D; Eng, L F; Yesavage, J A [Stanford Univ. School of Medicine, Palo Alto, CA (USA)


    A 2.2 kb EcoRI-EcoRI fragment from the 5{prime} end of the human amyloid beta protein cDNA was isolated from a human fibroblast cDNA library and subcloned into pGEM3. HaeIII (GGCC) detects 6 invariant bands at 0.5 kb, 1.0 kb, 1.1 kb, 1.3 kb, 1.4 kb and 1.6 kb and a two-allele polymorphism with bands at either 1.9 kb or 2.1 kb. Its frequency was studied in 50 North Americans. Human amyloid beta protein gene mapped to the long arm of chromosome 21 (21q11.2-21q21) by Southern blot analysis of human-rodent somatic cell hybrids. Co-dominant segregation was observed in two families (15 individuals).

  7. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA

    DEFF Research Database (Denmark)

    Nielsen, Morten S; Gustafsen, Camilla; Madsen, Peder


    -formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that its...

  8. A single amino acid difference between the intracellular domains of amyloid precursor protein and amyloid-like precursor protein 2 enables induction of synaptic depression and block of long-term potentiation. (United States)

    Trillaud-Doppia, Emilie; Paradis-Isler, Nicolas; Boehm, Jannic


    Alzheimer disease (AD) is initially characterized as a disease of the synapse that affects synaptic transmission and synaptic plasticity. While amyloid-beta and tau have been traditionally implicated in causing AD, recent studies suggest that other factors, such as the intracellular domain of the amyloid-precursor protein (APP-ICD), can also play a role in the development of AD. Here, we show that the expression of APP-ICD induces synaptic depression, while the intracellular domain of its homolog amyloid-like precursor protein 2 (APLP2-ICD) does not. We are able to show that this effect by APP-ICD is due to a single alanine vs. proline difference between APP-ICD and APLP2-ICD. The alanine in APP-ICD and the proline in APLP2-ICD lie directly behind a conserved caspase cleavage site. Inhibition of caspase cleavage of APP-ICD prevents the induction of synaptic depression. Finally, we show that the expression of APP-ICD increases and facilitates long-term depression and blocks induction of long-term potentiation. The block in long-term potentiation can be overcome by mutating the aforementioned alanine in APP-ICD to the proline of APLP2. Based on our results, we propose the emergence of a new APP critical domain for the regulation of synaptic plasticity and in consequence for the development of AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene

    DEFF Research Database (Denmark)

    Hu, Yating; Zhou, Yongjin J.; Bao, Jichen


    inefficient and suffers from limited natural resources. Here, we engineered a yeast cell factory for the sustainable production of germacrene A, which can be transformed to beta-elemene by a one-step chemical reaction in vitro. Two heterologous germacrene A synthases (GASs) converting farnesyl pyrophosphate...... (FPP) to germacrene A were evaluated in yeast for their ability to produce germacrene A. Thereafter, several metabolic engineering strategies were used to improve the production level. Overexpression of truncated 3-hydroxyl-3-methylglutaryl-CoA reductase and fusion of FPP synthase with GAS, led...

  10. The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer's disease

    DEFF Research Database (Denmark)

    Hoglund, K; Thelen, K M; Syversen, S


    During the last years, several clinical studies have been published trying to elucidate the effect of statin treatment on amyloid precursor protein (APP) processing and metabolism of brain cholesterol in Alzheimer's disease (AD) in humans. We present an open biochemical study where 19 patients...... with AD have been treated with simvastatin (20 mg/day) for 12 months. The aim was to further investigate the effect of simvastatin treatment on cerebrospinal fluid (CSF) biomarkers of APP processing, AD biomarkers as total tau and tau phosphorylated at threonine 181, brain cholesterol metabolism as well...... as on cognitive decline in patients with AD. Despite biochemical data suggesting that treatment with 20 mg/day of simvastatin for 12 months does affect the brain cholesterol metabolism, we did not find any change in CSF or plasma levels of beta-amyloid (Abeta)(1-42). However, by analysis of APP isoforms, we found...

  11. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★ (United States)

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping


    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  12. beta-Scission of C-3 (beta-carbon) alkoxyl radicals on peptides and proteins

    DEFF Research Database (Denmark)

    Headlam, H A; Mortimer, A; Easton, C J


    Exposure of proteins to radicals in the presence of O(2) brings about multiple changes in the target molecules. These alterations include oxidation of side chains, fragmentation, cross-linking, changes in hydrophobicity and conformation, altered susceptibility to proteolytic enzymes, and formation...... of methanal (formaldehyde). This product has been quantified with a number of oxidized peptides and proteins, and can account for up to 64% of the initial attacking radicals with some Ala peptides. When quantified together with the hydroperoxide precursors, these species account for up to 80% of the initial...... radicals, confirming that this is a major process. Methanal causes cell toxicity and DNA damage and is an animal carcinogen and a genotoxic agent in human cells. Thus, the formation and subsequent reaction of alkoxyl radicals formed at the C-3 position on aliphatic amino acid side chains on peptides...

  13. Cleavage sites within the poliovirus capsid protein precursors

    International Nuclear Information System (INIS)

    Larsen, G.R.; Anderson, C.W.; Dorner, A.J.; Semler, B.L.; Wimmer, E.


    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein

  14. F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing. (United States)

    Atkin, Graham; Hunt, Jack; Minakawa, Eiko; Sharkey, Lisa; Tipper, Nathan; Tennant, William; Paulson, Henry L


    The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.

  15. The use of radioactive precursors for the labeling of ribosomal proteins in Euglena

    International Nuclear Information System (INIS)

    Freyssinet, Georges


    The metabolism of three radioactive compounds has been studied in Euglena gracilis, either in the dark during the non-growing phase, or during light-induced greening, in the presence or absence of inhibitors of protein synthesis. The results can be summarized as follows: the fixation of 14 CO 2 and its incorporation into proteins occurs rapidly. Their intensities depend on the time of incubation and the physiological state of cells. Radioactive amino acids penetrate the cells within 2-4 hours and incorporation into proteins follows the uptake. In a few cases, amino acid uptake is low or even nonexistent. The rates of uptake and incorporation of radioactive sodium sulfate depend on the sulfur deficiency induced during growth in the dark, and on the time of incubation. Protein synthesis inhibitors act either on uptake or on incorporation or on both. The rate of inhibition depends on the inhibitor and precursor used. The radioactive precursors can be used for the labeling of cytoplasmic and chloroplast ribosomal proteins. The most favourable conditions for this labeling are mostly related to the uptake and incorporation measured on whole cells. All these results allow criteria to be determined which facilitate the choice of inhibitors, precursors and conditions of incubation depending on the protein studied

  16. In silico modeling and experimental evidence of coagulant protein interaction with precursors for nanoparticle functionalization. (United States)

    Okoli, Chuka; Sengottaiyan, Selvaraj; Arul Murugan, N; Pavankumar, Asalapuram R; Agren, Hans; Kuttuva Rajarao, Gunaratna


    The design of novel protein-nanoparticle hybrid systems has applications in many fields of science ranging from biomedicine, catalysis, water treatment, etc. The main barrier in devising such tool is lack of adequate information or poor understanding of protein-ligand chemistry. Here, we establish a new strategy based on computational modeling for protein and precursor linkers that can decorate the nanoparticles. Moringa oleifera (MO2.1) seed protein that has coagulation and antimicrobial properties was used. Superparamagnetic nanoparticles (SPION) with precursor ligands were used for the protein-ligand interaction studies. The molecular docking studies reveal that there are two binding sites, one is located at the core binding site; tetraethoxysilane (TEOS) or 3-aminopropyl trimethoxysilane (APTES) binds to this site while the other one is located at the side chain residues where trisodium citrate (TSC) or Si60 binds to this site. The protein-ligand distance profile analysis explains the differences in functional activity of the decorated SPION. Experimentally, TSC-coated nanoparticles showed higher coagulation activity as compared to TEOS- and APTES-coated SPION. To our knowledge, this is the first report on in vitro experimental data, which endorses the computational modeling studies as a powerful tool to design novel precursors for functionalization of nanomaterials; and develop interface hybrid systems for various applications.

  17. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  18. Truncated presequences of mitochondrial F1-ATPase beta subunit from Nicotiana plumbaginifolia transport CAT and GUS proteins into mitochondria of transgenic tobacco. (United States)

    Chaumont, F; Silva Filho, M de C; Thomas, D; Leterme, S; Boutry, M


    The mitochondrial F1-ATPase beta subunit (ATPase-beta) of Nicotiana plumbaginifolia is nucleus-encoded as a precursor containing an NH2-terminal extension. By sequencing the mature N. tabacum ATPase-beta, we determined the length of the presequence, viz. 54 residues. To define the essential regions of this presequence, we produced a series of 3' deletions in the sequence coding for the 90 NH2-terminal residues of ATPase-beta. The truncated sequences were fused with the chloramphenicol acetyl transferase (cat) and beta-glucuronidase (gus) genes and introduced into tobacco plants. From the observed distribution of CAT and GUS activity in the plant cells, we conclude that the first 23 amino-acid residues of ATPase-beta remain capable of specifically targeting reporter proteins into mitochondria. Immunodetection in transgenic plants and in vitro import experiments with various CAT fusion proteins show that the precursors are processed at the expected cleavage site but also at a cryptic site located in the linker region between the presequence and the first methionine of native CAT.

  19. Viral precursor protein P3 and its processed products perform discrete and essential functions in the poliovirus RNA replication complex (United States)

    The differential use of protein precursors and their products is a key strategy used during poliovirus replication. To characterize the role of protein precursors during replication, we examined the complementation profiles of mutants that inhibited 3D polymerase or 3C-RNA binding activity. We showe...

  20. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Issinger, O G


    In a search for protein kinase CK2 beta subunit binding proteins using the two-hybrid system, more than 1000 positive clones were isolated. Beside clones for the alpha' and beta subunit of CK2, there were clones coding for a so far unknown protein, whose partial cDNA sequence was already deposited...

  1. Interactions between an alpha-helix and a beta-sheet. Energetics of alpha/beta packing in proteins. (United States)

    Chou, K C; Némethy, G; Rumsey, S; Tuttle, R W; Scheraga, H A


    Conformational energy computations have been carried out to determine the favorable ways of packing a right-handed alpha-helix on a right-twisted antiparallel or parallel beta-sheet. Co-ordinate transformations have been developed to relate the position and orientation of the alpha-helix to the beta-sheet. The packing was investigated for a CH3CO-(L-Ala)16-NHCH3 alpha-helix interacting with five-stranded beta-sheets composed of CH3CO-(L-Val)6-NHCH3 chains. All internal and external variables for both the alpha-helix and the beta-sheet were allowed to change during energy minimization. Four distinct classes of low-energy packing arrangements were found for the alpha-helix interacting with both the parallel and the anti-parallel beta-sheet. The classes differ in the orientation of the axis of the alpha-helix relative to the direction of the strands of the right-twisted beta-sheet. In the class with the most favorable arrangement, the alpha-helix is oriented along the strands of the beta-sheet, as a result of attractive non-bonded side-chain-side-chain interactions along the entire length of the alpha-helix. A class with nearly perpendicular orientation of the helix axis to the strands is also of low energy, because it allows similarly extensive attractive interactions. In the other two classes, the helix is oriented diagonally relative to the strands of the beta-sheet. In one of them, it interacts with the convex surface near the middle of the saddle-shaped twisted beta-sheet. In the other, it is oriented along the concave diagonal of the beta-sheet and, therefore, it interacts only with the corner regions of the sheet, so that this packing is energetically less favorable. The packing arrangements involving an antiparallel and a parallel beta-sheet are generally similar, although the antiparallel beta-sheet has been found to be more flexible. The major features of 163 observed alpha/beta packing arrangements in 37 proteins are accounted for in terms of the computed

  2. Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.


    Ping, P; Gelzer-Bell, R; Roth, D A; Kiel, D; Insel, P A; Hammond, H K


    To determine whether beta-adrenergic receptor agonist activation influences guanosine 5'-triphosphate-binding protein (G-protein) expression and beta-adrenergic receptor kinase activity in the heart, we examined the effects of chronic beta 1-adrenergic receptor antagonist treatment (bisoprolol, 0.2 mg/kg per d i.v., 35 d) on components of the myocardial beta-adrenergic receptor-G-protein-adenylyl cyclase pathway in porcine myocardium. Three novel alterations in cardiac adrenergic signaling as...

  3. Herpes simplex virus dances with amyloid precursor protein while exiting the cell.

    Directory of Open Access Journals (Sweden)

    Shi-Bin Cheng


    Full Text Available Herpes simplex type 1 (HSV1 replicates in epithelial cells and secondarily enters local sensory neuronal processes, traveling retrograde to the neuronal nucleus to enter latency. Upon reawakening newly synthesized viral particles travel anterograde back to the epithelial cells of the lip, causing the recurrent cold sore. HSV1 co-purifies with amyloid precursor protein (APP, a cellular transmembrane glycoprotein and receptor for anterograde transport machinery that when proteolyzed produces A-beta, the major component of senile plaques. Here we focus on transport inside epithelial cells of newly synthesized virus during its transit to the cell surface. We hypothesize that HSV1 recruits cellular APP during transport. We explore this with quantitative immuno-fluorescence, immuno-gold electron-microscopy and live cell confocal imaging. After synchronous infection most nascent VP26-GFP-labeled viral particles in the cytoplasm co-localize with APP (72.8+/-6.7% and travel together with APP inside living cells (81.1+/-28.9%. This interaction has functional consequences: HSV1 infection decreases the average velocity of APP particles (from 1.1+/-0.2 to 0.3+/-0.1 µm/s and results in APP mal-distribution in infected cells, while interplay with APP-particles increases the frequency (from 10% to 81% motile and velocity (from 0.3+/-0.1 to 0.4+/-0.1 µm/s of VP26-GFP transport. In cells infected with HSV1 lacking the viral Fc receptor, gE, an envelope glycoprotein also involved in viral axonal transport, APP-capsid interactions are preserved while the distribution and dynamics of dual-label particles differ from wild-type by both immuno-fluorescence and live imaging. Knock-down of APP with siRNA eliminates APP staining, confirming specificity. Our results indicate that most intracellular HSV1 particles undergo frequent dynamic interplay with APP in a manner that facilitates viral transport and interferes with normal APP transport and distribution. Such dynamic

  4. Beta 3 and PDI proteins isolated from human platelets bind with ECwt rotavirus in vitro

    International Nuclear Information System (INIS)

    Mayorga, Diana; Rubio, Linda; Guerrero-Fonseca, Carlos A; Acosta-Losada, Orlando


    Commercial integrin Beta 3 is currently not available and commercial PDI is too expensive, which is making access difficult to these proteins needed for conducting experiments aimed at the establishment of possible interactions between integrin Beta 3 and PDI and wild type rotavirus strains. Objective. To explore a methodology allowing isolation of proteins Beta 3 and PDI from human platelets to be used as antigens in the generation of rabbit polyclonal antibodies useful in the assessment of interactions between these proteins and rotavirus ECwt. Materials and methods. Proteins Beta 3 and PDI from human platelet lysates were separated using preparative electrophoresis under reducing conditions and then eluted. Interactions of these proteins with rotavirus ECwt were analyzed using co-immunoprecipitation, Western blotting and capture ELISA. Results. Proteins from human platelet lysates were separated by preparative electrophoresis under reducing conditions. The identification of proteins Beta 3 and PDI present in a gel slice was performed through their reaction with commercial antibodies in a Western blotting analysis. Protein purity was established after electro elution from a gel slice. Polyclonal antibodies against protein Beta 3 were generated in rabbit. Incubation of eluted proteins Beta 3 and PDI with rotavirus ECwt showed in co-immunoprecipitation and ELISA assays that these proteins bound virus in vitro. The same binding was showed to occur when rotavirus was incubated with isolated small intestinal villi from suckling mice. Conclusions. Relatively high amounts of proteins Beta 3 and PDI were partially purified from human platelets by preparative electrophoresis. The isolation of these proteins allowed the generation of polyclonal antibodies against Beta 3 in addition to the establishment of the in vitro interaction of proteins Beta 3 and PDI with rotavirus ECwt. This interaction was also demonstrated in vivo after incubating the virus with isolated small

  5. Complement activation by the amyloid proteins A beta peptide and beta 2-microglobulin

    DEFF Research Database (Denmark)

    Nybo, Mads; Nielsen, E H; Svehag, S E


    component nor heparan sulfate did significantly alter the A beta-induced CA. The results indicate that not only fibrillar A beta but also oligomers of, in particular, beta 2M from patients with dialysis-associated amyloidosis are capable of inducing CA at supra-physiological concentrations....

  6. Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms


    Ting, Jonathan T.; Kelley, Brooke G.; Lambert, Talley J.; Cook, David G.; Sullivan, Jane M.


    Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transm...

  7. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury


    Loane, David J; Pocivavsek, Ana; Moussa, Charbel E-H; Thompson, Rachel; Matsuoka, Yasuji; Faden, Alan I; Rebeck, G William; Burns, Mark P


    Amyloid-β (Aβ) peptides, found in Alzheimer’s disease brain, accumulate rapidly after traumatic brain injury (TBI) in both humans and animals. Here we show that blocking either β- or γ-secretase, enzymes required for production of Aβ from amyloid precursor protein (APP), can ameliorate motor and cognitive deficits and reduce cell loss after experimental TBI in mice. Thus, APP secretases are promising targets for treatment of TBI.

  8. Numb endocytic adapter proteins regulate the transport and processing of the amyloid precursor protein in an isoform-dependent manner: implications for Alzheimer disease pathogenesis. (United States)

    Kyriazis, George A; Wei, Zelan; Vandermey, Miriam; Jo, Dong-Gyu; Xin, Ouyang; Mattson, Mark P; Chan, Sic L


    Central to the pathogenesis of Alzheimer disease is the aberrant processing of the amyloid precursor protein (APP) to generate amyloid beta-peptide (Abeta), the principle component of amyloid plaques. The cell fate determinant Numb is a phosphotyrosine binding domain (PTB)-containing endocytic adapter protein that interacts with the carboxyl-terminal domain of APP. The physiological relevance of this interaction is unknown. Mammals produce four alternatively spliced variants of Numb that differ in the length of their PTB and proline-rich region. In the current study, we determined the influence of the four human Numb isoforms on the intracellular trafficking and processing of APP. Stable expression of Numb isoforms that differ in the PTB but not in the proline-rich region results in marked differences in the sorting of APP to the recycling and degradative pathways. Neural cells expressing Numb isoforms that lack the insert in the PTB (short PTB (SPTB)) exhibited marked accumulation of APP in Rab5A-labeled early endosomal and recycling compartments, whereas those expressing isoforms with the insertion in the PTB (long PTB (LPTB)) exhibited reduced amounts of cellular APP and its proteolytic derivatives relative to parental control cells. Neither the activities of the beta- and gamma-secretases nor the expression of APP mRNA were significantly different in the stably transfected cells, suggesting that the differential effects of the Numb proteins on APP metabolism is likely to be secondary to altered APP trafficking. In addition, the expression of SPTB-Numb increases at the expense of LPTB-Numb in neuronal cultures subjected to stress, suggesting a role for Numb in stress-induced Abeta production. Taken together, these results suggest distinct roles for the human Numb isoforms in APP metabolism and may provide a novel potential link between altered Numb isoform expression and increased Abeta generation.

  9. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Sasnauskas Kęstutis


    Full Text Available Abstract Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN and measles hemagglutinin (MeH in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A and is closely associated with small heat shock proteins (sHsps that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of

  10. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F


    The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES...... were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response....... Treatment of rats with anti-MIP-1 beta Ab significantly decreased vascular permeability by 37% (p = 0.012), reduced neutrophil recruitment into lung by 65% (p = 0.047), and suppressed levels of TNF-alpha in bronchoalveolar lavage fluids by 61% (p = 0.008). Treatment of rats with anti-rat MCP-1 or anti...

  11. Neurodegeneration in Alzheimer Disease: Role of Amyloid Precursor Protein and Presenilin 1 Intracellular Signaling

    Directory of Open Access Journals (Sweden)

    Mario Nizzari


    Full Text Available Alzheimer disease (AD is a heterogeneous neurodegenerative disorder characterized by (1 progressive loss of synapses and neurons, (2 intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3 amyloid plaques. Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP and presenilin 1 and 2 (PS1 and PS2. The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known. A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of neurodegeneration.

  12. Molecular simulations of beta-amyloid protein near hydrated lipids (PECASE).

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Han, Kunwoo (Texas A& M University, College Station, TX); Ford, David M. (Texas A& M University, College Station, TX)


    We performed molecular dynamics simulations of beta-amyloid (A{beta}) protein and A{beta} fragment(31-42) in bulk water and near hydrated lipids to study the mechanism of neurotoxicity associated with the aggregation of the protein. We constructed full atomistic models using Cerius2 and ran simulations using LAMMPS. MD simulations with different conformations and positions of the protein fragment were performed. Thermodynamic properties were compared with previous literature and the results were analyzed. Longer simulations and data analyses based on the free energy profiles along the distance between the protein and the interface are ongoing.

  13. Blood-brain barrier dysfunction and amyloid precursor protein accumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival. (United States)

    Pluta, R


    This study examined the late microvascular consequences of brain ischemia due to cardiac arrest in rats. In reacted vibratome sections scattered foci of extravasated horseradish peroxidase were noted throughout the brain and did not appear to be restricted to any specific area of brain. Ultrastructural investigation of leaky sites frequently presented platelets adhering to the endothelium of venules and capillaries. Endothelial cells demonstrated pathological changes with evidence of perivascular astrocytic swelling. At the same time, we noted C-terminal of amyloid precursor protein/beta-amyloid peptide (CAPP/betaA) deposits in cerebral blood vessels, with a halo of CAPP/betaA immunoreactivity in the surrounding parenchyma suggested diffusion of CAPP/betaA out of the vascular compartment. Changes predominated in the hippocampus, cerebral and entorhinal cortex, corpus callosum, thalamus, basal ganglia and around the lateral ventricles. These data implicate delayed abnormal endothelial function of vessels following ischemia-reperfusion brain injury as a primary event in the pathogenesis of the recurrent cerebral infarction.

  14. Do post-translational beta cell protein modifications trigger type 1 diabetes?

    DEFF Research Database (Denmark)

    Størling, Joachim; Overgaard, Anne Julie; Brorsson, Caroline Anna


    beta cell-specific neo-epitopes. We suggest that the current paradigm of type 1 diabetes as a classical autoimmune disease should be reconsidered since the immune response may not be directed against native beta cell proteins. A modified model for the pathogenetic events taking place in islets leading...... diabetes exists in the published literature. Furthermore, we report that cytokines change the expression levels of several genes encoding proteins involved in PTM processes in human islets, and that there are type 1 diabetes-associated polymorphisms in a number of these. In conclusion, data from...... the literature and presented experimental data support the notion that PTM of beta cell proteins may be involved in triggering beta cell destruction in type 1 diabetes. If the beta cell antigens recognised by the immune system foremost come from modified proteins rather than native ones, the concept of type 1...

  15. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues. (United States)

    Holecek, M; Muthny, T; Kovarik, M; Sispera, L


    Beta-hydroxy-beta-methylbutyrate (HMB) is a leucine metabolite with protein anabolic effect. The aim of the study was to examine the role of exogenous HMB on leucine and protein metabolism in whole body and selected tissues. Rats were administered by HMB (0.1 g/kg b.w.) or by saline. The parameters of whole-body protein metabolism were evaluated 24 h later using L-[1-14C]leucine and L-[3,4,5-3H]phenylalanine. Changes in proteasome dependent proteolysis and protein synthesis were determined according the "chymotrypsin-like" enzyme activity and labeled leucine and phenylalanine incorporation into the protein. A decrease in leucine clearance and whole-body protein turnover (i.e., a decrease in whole-body proteolysis and protein synthesis) was observed in HMB treated rats. Proteasome-dependent proteolysis decreased significantly in skeletal muscle, changes in heart, liver, jejunum, colon, kidney, and spleen were insignificant. Decrease in protein synthesis was observed in the heart, colon, kidney, and spleen, while an increase was observed in the liver. There were no significant changes in leucine oxidation. We conclude that protein anabolic effect of HMB in skeletal muscle is related to inhibition of proteolysis in proteasome. Alterations in protein synthesis in visceral tissues may affect several important functions and the metabolic status of the whole body.

  16. Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Philip W. Brownjohn


    Full Text Available Summary: Human stem cell models have the potential to provide platforms for phenotypic screens to identify candidate treatments and cellular pathways involved in the pathogenesis of neurodegenerative disorders. Amyloid precursor protein (APP processing and the accumulation of APP-derived amyloid β (Aβ peptides are key processes in Alzheimer's disease (AD. We designed a phenotypic small-molecule screen to identify modulators of APP processing in trisomy 21/Down syndrome neurons, a complex genetic model of AD. We identified the avermectins, commonly used as anthelmintics, as compounds that increase the relative production of short Aβ peptides at the expense of longer, potentially more toxic peptides. Further studies demonstrated that this effect is not due to an interaction with the core γ-secretase responsible for Aβ production. This study demonstrates the feasibility of phenotypic drug screening in human stem cell models of Alzheimer-type dementia, and points to possibilities for indirectly modulating APP processing, independently of γ-secretase modulation. : In this article, Livesey and colleagues perform a phenotypic drug screen in a human stem cell model of Alzheimer's disease. The anthelminthic avermectins are identified as a family of compounds that increase the production of short Aβ peptides over longer more toxic Aβ forms. The effect is analogous to existing γ-secretase modulators, but is independent of the core γ-secretase complex. Keywords: neural stem cells, Alzheimer's disease, phenotypic screening, iPSCs, human neurons, dementia, Down syndrome, amyloid beta, ivermectin, selamectin

  17. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    Directory of Open Access Journals (Sweden)

    Gábor Lovas


    Full Text Available Transforming growth factor beta (TGF-β proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed.

  18. The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space

    NARCIS (Netherlands)

    Stuart, Rosemary A.; Gruhler, Albrecht; Klei, Ida van der; Guiard, Bernard; Koll, Hans; Neupert, Walter


    The role of ATP in the matrix for the import of precursor proteins into the various mitochondrial subcompartments was investigated by studying protein translocation at experimentally defined ATP levels. Proteins targeted to the matrix were neither imported or processed when matrix ATP was depleted.

  19. Prediction of the location and type of beta-turns in proteins using neural networks.


    Shepherd, A. J.; Gorse, D.; Thornton, J. M.


    A neural network has been used to predict both the location and the type of beta-turns in a set of 300 nonhomologous protein domains. A substantial improvement in prediction accuracy compared with previous methods has been achieved by incorporating secondary structure information in the input data. The total percentage of residues correctly classified as beta-turn or not-beta-turn is around 75% with predicted secondary structure information. More significantly, the method gives a Matthews cor...

  20. Split2 Protein-Ligation Generates Active IL-6-Type Hyper-Cytokines from Inactive Precursors. (United States)

    Moll, Jens M; Wehmöller, Melanie; Frank, Nils C; Homey, Lisa; Baran, Paul; Garbers, Christoph; Lamertz, Larissa; Axelrod, Jonathan H; Galun, Eithan; Mootz, Henning D; Scheller, Jürgen


    Trans-signaling of the major pro- and anti-inflammatory cytokines Interleukin (IL)-6 and IL-11 has the unique feature to virtually activate all cells of the body and is critically involved in chronic inflammation and regeneration. Hyper-IL-6 and Hyper-IL-11 are single chain designer trans-signaling cytokines, in which the cytokine and soluble receptor units are trapped in one complex via a flexible peptide linker. Albeit, Hyper-cytokines are essential tools to study trans-signaling in vitro and in vivo, the superior potency of these designer cytokines are accompanied by undesirable stress responses. To enable tailor-made generation of Hyper-cytokines, we developed inactive split-cytokine-precursors adapted for posttranslational reassembly by split-intein mediated protein trans-splicing (PTS). We identified cutting sites within IL-6 (E 134 /S 135 ) and IL-11 (G 116 /S 117 ) and obtained inactive split-Hyper-IL-6 and split-Hyper-IL-11 cytokine precursors. After fusion with split-inteins, PTS resulted in reconstitution of active Hyper-cytokines, which were efficiently secreted from transfected cells. Our strategy comprises the development of a background-free cytokine signaling system from reversibly inactivated precursor cytokines.

  1. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Rasmussen, Søren Gøgsig Faarup; Choi, Hee-Jung; Rosenbaum, Daniel M


    Structural analysis of G-protein-coupled receptors (GPCRs) for hormones and neurotransmitters has been hindered by their low natural abundance, inherent structural flexibility, and instability in detergent solutions. Here we report a structure of the human beta2 adrenoceptor (beta2AR), which was ...

  2. Quantitative protein and fat metabolism in bull calves treated with beta-adrenergic agonist

    DEFF Research Database (Denmark)

    Chwalibog, André; Jensen, K; Thorbek, G


    Protein and energy utilization and quantitative retention of protein, fat and energy was investigated with 12 Red Danish bulls during two subsequent 6 weeks trials (Sections A and B) at a mean live weight of 195 and 335 kg respectively. Treatments were control (Group 1) and beta-agonist (L-644...... matter, metabolizable energy and digestible protein was of the same magnitude for all groups. The beta-agonist had no significant effect on protein digestibility and metabolizability of energy, but daily live weight gain was significantly higher in the treated bulls. The utilization of digested protein...

  3. Using support vector machine to predict beta- and gamma-turns in proteins. (United States)

    Hu, Xiuzhen; Li, Qianzhong


    By using the composite vector with increment of diversity, position conservation scoring function, and predictive secondary structures to express the information of sequence, a support vector machine (SVM) algorithm for predicting beta- and gamma-turns in the proteins is proposed. The 426 and 320 nonhomologous protein chains described by Guruprasad and Rajkumar (Guruprasad and Rajkumar J. Biosci 2000, 25,143) are used for training and testing the predictive model of the beta- and gamma-turns, respectively. The overall prediction accuracy and the Matthews correlation coefficient in 7-fold cross-validation are 79.8% and 0.47, respectively, for the beta-turns. The overall prediction accuracy in 5-fold cross-validation is 61.0% for the gamma-turns. These results are significantly higher than the other algorithms in the prediction of beta- and gamma-turns using the same datasets. In addition, the 547 and 823 nonhomologous protein chains described by Fuchs and Alix (Fuchs and Alix Proteins: Struct Funct Bioinform 2005, 59, 828) are used for training and testing the predictive model of the beta- and gamma-turns, and better results are obtained. This algorithm may be helpful to improve the performance of protein turns' prediction. To ensure the ability of the SVM method to correctly classify beta-turn and non-beta-turn (gamma-turn and non-gamma-turn), the receiver operating characteristic threshold independent measure curves are provided. (c) 2008 Wiley Periodicals, Inc.

  4. Structure of Alzheimer’s disease amyloid precursor protein copper-binding domain at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Geoffrey Kwai-Wai; Adams, Julian J. [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Cappai, Roberto [Department of Pathology and Centre for Neuroscience, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia); Parker, Michael W., E-mail: [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia)


    An atomic resolution structure of the copper-binding domain of the Alzheimer’s disease amyloid precursor protein is presented. Amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer’s disease, as its cleavage generates the Aβ peptide that is toxic to cells. APP is able to bind Cu{sup 2+} and reduce it to Cu{sup +} through its copper-binding domain (CuBD). The interaction between Cu{sup 2+} and APP leads to a decrease in Aβ production and to alleviation of the symptoms of the disease in mouse models. Structural studies of CuBD have been undertaken in order to better understand the mechanism behind the process. Here, the crystal structure of CuBD in the metal-free form determined to ultrahigh resolution (0.85 Å) is reported. The structure shows that the copper-binding residues of CuBD are rather rigid but that Met170, which is thought to be the electron source for Cu{sup 2+} reduction, adopts two different side-chain conformations. These observations shed light on the copper-binding and redox mechanisms of CuBD. The structure of CuBD at atomic resolution provides an accurate framework for structure-based design of molecules that will deplete Aβ production.

  5. Isolation and characterization of BetaM protein encoded by ATP1B4 - a unique member of the Na,K-ATPase {beta}-subunit gene family

    Energy Technology Data Exchange (ETDEWEB)

    Pestov, Nikolay B. [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997 (Russian Federation); Zhao, Hao [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Basrur, Venkatesha [Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States); Modyanov, Nikolai N., E-mail: [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States)


    Highlights: {yields} Structural properties of BetaM and Na,K-ATPase {beta}-subunits are sharply different. {yields} BetaM protein is concentrated in nuclear membrane of skeletal myocytes. {yields} BetaM does not associate with a Na,K-ATPase {alpha}-subunit in skeletal muscle. {yields} Polypeptide chain of the native BetaM is highly sensitive to endogenous proteases. {yields} BetaM in neonatal muscle is a product of alternative splice mRNA variant B. -- Abstract: ATP1B4 genes represent a rare instance of the orthologous gene co-option that radically changed functions of encoded BetaM proteins during vertebrate evolution. In lower vertebrates, this protein is a {beta}-subunit of Na,K-ATPase located in the cell membrane. In placental mammals, BetaM completely lost its ancestral role and through acquisition of two extended Glu-rich clusters into the N-terminal domain gained entirely new properties as a muscle-specific protein of the inner nuclear membrane possessing the ability to regulate gene expression. Strict temporal regulation of BetaM expression, which is the highest in late fetal and early postnatal myocytes, indicates that it plays an essential role in perinatal development. Here we report the first structural characterization of the native eutherian BetaM protein. It should be noted that, in contrast to structurally related Na,K-ATPase {beta}-subunits, the polypeptide chain of BetaM is highly sensitive to endogenous proteases that greatly complicated its isolation. Nevertheless, using a complex of protease inhibitors, a sample of authentic BetaM was isolated from pig neonatal skeletal muscle by a combination of ion-exchange and lectin-affinity chromatography followed by SDS-PAGE. Results of the analysis of the BetaM tryptic digest using MALDI-TOF and ESI-MS/MS mass spectrometry have demonstrated that native BetaM in neonatal skeletal muscle is a product of alternative splice mRNA variant B and comprised of 351 amino acid residues. Isolated BetaM protein was

  6. Interaction of the sliding clamp beta-subunit and Hda, a DnaA-related protein. (United States)

    Kurz, Mareike; Dalrymple, Brian; Wijffels, Gene; Kongsuwan, Kritaya


    In Escherichia coli, interactions between the replication initiation protein DnaA, the beta subunit of DNA polymerase III (the sliding clamp protein), and Hda, the recently identified DnaA-related protein, are required to convert the active ATP-bound form of DnaA to an inactive ADP-bound form through the accelerated hydrolysis of ATP. This rapid hydrolysis of ATP is proposed to be the main mechanism that blocks multiple initiations during cell cycle and acts as a molecular switch from initiation to replication. However, the biochemical mechanism for this crucial step in DNA synthesis has not been resolved. Using purified Hda and beta proteins in a plate binding assay and Ni-nitrilotriacetic acid pulldown analysis, we show for the first time that Hda directly interacts with beta in vitro. A new beta-binding motif, a hexapeptide with the consensus sequence QL[SP]LPL, related to the previously identified beta-binding pentapeptide motif (QL[SD]LF) was found in the amino terminus of the Hda protein. Mutants of Hda with amino acid changes in the hexapeptide motif are severely defective in their ability to bind beta. A 10-amino-acid peptide containing the E. coli Hda beta-binding motif was shown to compete with Hda for binding to beta in an Hda-beta interaction assay. These results establish that the interaction of Hda with beta is mediated through the hexapeptide sequence. We propose that this interaction may be crucial to the events that lead to the inactivation of DnaA and the prevention of excess initiation of rounds of replication.

  7. Interleukin-1beta induced changes in the protein expression of rat islets: a computerized database

    DEFF Research Database (Denmark)

    Andersen, H U; Fey, S J; Larsen, Peter Mose


    as well as the intracellular mechanisms of action of interleukin 1-mediated beta-cell cytotoxicity are unknown. However, previous studies have found an association of beta-cell destruction with alterations in protein synthesis. Thus, two-dimensional (2-D) gel electrophoresis of pancreatic islet proteins...... may be an important tool facilitating studies of the molecular pathogenesis of insulin-dependent diabetes mellitus. 2-D gel electrophoresis of islet proteins may lead to (i) the determination of qualitative and quantitative changes in specific islet proteins induced by cytokines, (ii......) the determination of the effects of agents modulating cytokine action, and (iii) the identification of primary islet protein antigen(s) initiating the immune destruction of the beta-cells. Therefore, the aim of this study was to create databases (DB) of all reproducibly detectable protein spots on 10% and 15...

  8. Prediction and analysis of beta-turns in proteins by support vector machine. (United States)

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao


    Tight turn has long been recognized as one of the three important features of proteins after the alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns. Analysis and prediction of beta-turns in particular and tight turns in general are very useful for the design of new molecules such as drugs, pesticides, and antigens. In this paper, we introduce a support vector machine (SVM) approach to prediction and analysis of beta-turns. We have investigated two aspects of applying SVM to the prediction and analysis of beta-turns. First, we developed a new SVM method, called BTSVM, which predicts beta-turns of a protein from its sequence. The prediction results on the dataset of 426 non-homologous protein chains by sevenfold cross-validation technique showed that our method is superior to the other previous methods. Second, we analyzed how amino acid positions support (or prevent) the formation of beta-turns based on the "multivariable" classification model of a linear SVM. This model is more general than the other ones of previous statistical methods. Our analysis results are more comprehensive and easier to use than previously published analysis results.

  9. Ellipsometric Immunosensor for Detection of Amyloid Precursor Protein with a View of Alzheimer's Disease Diagnostics

    Directory of Open Access Journals (Sweden)

    Alexei Nabok


    Full Text Available The detection of amyloid precursor protein isoform 770 (APP770 was achieved with the use of total internal reflection ellipsometry (TIRE in a direct immunoassay format with DE2 monoclonal antibodies raised against the β amyloid peptide 1-16 (Aβ 1-16 which is a part of APP770. DE2 antibodies were immobilised on the surface of gold by electrostatic binding to a layer of (polyallylamine hydrochloride (PAH via an intermediate layer of Protein G molecules. TIRE spectra were recorded after adsorption (binding of every molecular layer in a sequence of PAH, Protein G, DE2, and APP770. A noticeable increase in the adsorbed layer thickness was obtained upon binding of APP770 molecules from its solution of unknown concentration in Complete Medium, a complex mixture containing other proteins. For a purpose of TIRE biosensor calibration, complementary quartz crystal microbalance (QCM measurements were utilised and allowed the evaluation of surface concentrations of DE2 and APP770 of 1.08.1011 cm-2 and 4.73.1012 cm-2, respectively.

  10. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels. (United States)

    van Tiel, Claudia M; Westerman, Jan; Paasman, Marten A; Hoebens, Martha M; Wirtz, Karel W A; Snoek, Gerry T


    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165) as a minor phosphorylation site. The phospholipid transfer activities of wild-type PI-TP beta and PI-TP beta(S262A) were identical, whereas PI-TP beta(S165A) was completely inactive. PKC-dependent phosphorylation of Ser(262) also had no effect on the transfer activity of PI-TP beta. To investigate the role of Ser(262) in the functioning of PI-TP beta, wtPI-TP beta and PI-TP beta(S262A) were overexpressed in NIH3T3 fibroblast cells. Two-dimensional PAGE analysis of cell lysates was used to separate PI-TP beta from its phosphorylated form. After Western blotting, wtPI-TP beta was found to be 85% phosphorylated, whereas PI-TP beta(S262A) was not phosphorylated. In the presence of the PKC inhibitor GF 109203X, the phosphorylated form of wtPI-TP beta was strongly reduced. Immunolocalization showed that wtPI-TP beta was predominantly associated with the Golgi membranes. In the presence of the PKC inhibitor, wtPI-TP beta was distributed throughout the cell similar to what was observed for PI-TP beta(S262A). In contrast to wtPI-TP beta overexpressors, cells overexpressing PI-TP beta(S262A) were unable to rapidly replenish sphingomyelin in the plasma membrane upon degradation by sphingomyelinase. This implies that PKC-dependent association with the Golgi complex is a prerequisite for PI-TP beta to express its effect on sphingomyelin metabolism.

  11. The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo. (United States)

    Xie, Zhongcong; Culley, Deborah J; Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D; Frosch, Matthew P; Crosby, Gregory; Tanzi, Rudolph E


    An estimated 200 million patients worldwide have surgery each year. Anesthesia and surgery have been reported to facilitate emergence of Alzheimer's disease. The commonly used inhalation anesthetic isoflurane has previously been reported to induce apoptosis, and to increase levels and aggregation of Alzheimer's disease-associated amyloid beta-protein (Abeta) in cultured cells. However, the in vivo relevance has not been addressed. We therefore set out to determine effects of isoflurane on caspase activation and levels of beta-site amyloid precursor protein-cleaving enzyme (BACE) and Abeta in naive mice, using Western blot, immunohistochemistry, and reverse transcriptase polymerase chain reaction. Here we show for the first time that a clinically relevant isoflurane anesthesia (1.4% isoflurane for 2 hours) leads to caspase activation and modest increases in levels of BACE 6 hours after anesthesia in mouse brain. Isoflurane anesthesia induces caspase activation, and increases levels of BACE and Abeta up to 24 hours after anesthesia. Isoflurane may increase BACE levels by reducing BACE degradation. Moreover, the Abeta aggregation inhibitor, clioquinol, was able to attenuate isoflurane-induced caspase-3 activation in vivo. Given that transient insults to brain may lead to long-term brain damage, these findings suggest that isoflurane may promote Alzheimer's disease neuropathogenesis and, as such, have implications for use of isoflurane in humans, pending human study confirmation.

  12. Support vector machines for prediction and analysis of beta and gamma-turns in proteins. (United States)

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao


    Tight turns have long been recognized as one of the three important features of proteins, together with alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns and most of the rest are gamma-turns. Analysis and prediction of beta-turns and gamma-turns is very useful for design of new molecules such as drugs, pesticides, and antigens. In this paper we investigated two aspects of applying support vector machine (SVM), a promising machine learning method for bioinformatics, to prediction and analysis of beta-turns and gamma-turns. First, we developed two SVM-based methods, called BTSVM and GTSVM, which predict beta-turns and gamma-turns in a protein from its sequence. When compared with other methods, BTSVM has a superior performance and GTSVM is competitive. Second, we used SVMs with a linear kernel to estimate the support of amino acids for the formation of beta-turns and gamma-turns depending on their position in a protein. Our analysis results are more comprehensive and easier to use than the previous results in designing turns in proteins.

  13. C-reactive protein bearing cells are a subpopulation of natural killer cell precursors

    International Nuclear Information System (INIS)

    Baum, L.L.; Krueger, N.X.


    Cell surface C-reactive protein (S-CRP) is expressed on the surface membrane of a small percentage of lymphocytes. Anti-CRP inhibits natural killer (NK) function. Since NK effectors are heterogeneous, they suspected that the cells expressing S-CRP (CRP + ) might respond differently to stimulation than the NK effectors lacking S-CRP (CRP - ). Methods were developed to separate CRP + and CRP - lymphocytes and their functional responses were examined and compared. These techniques are dependent upon the binding of CRP to its ligands, C-polysaccharide (CPS) or Phosphocholine (PC). The first method involves rosette formation with CPS coupled autologous red blood cells; the second method utilizes the binding of CRP + lymphocytes to PC-sepharose. Lymphocytes separated using either of these techniques yield similar results. CRP - lymphocytes respond to 3 day incubation with PHA or Il-2 by producing effectors which kill 51 Cr labeled K562 tumor cells, CRP + precursors do not. CRP + lymphocytes respond to a 5 day incubation with inactivated K562 by producing effectors which kill K562; CRP - precursors do not. NK functional activity of both is increased by incubation with interferon. This ability to respond differently to stimulation suggests that CRP + and CRP - cells are functionally distinct

  14. The Drosophila melanogaster DmCK2beta transcription unit encodes for functionally non-redundant protein isoforms. (United States)

    Jauch, Eike; Wecklein, Heike; Stark, Felix; Jauch, Mandy; Raabe, Thomas


    Genes encoding for the two evolutionary highly conserved subunits of a heterotetrameric protein kinase CK2 holoenzyme are present in all examined eukaryotic genomes. Depending on the organism, multiple transcription units encoding for a catalytically active CK2alpha subunit and/or a regulatory CK2beta subunit may exist. The phosphotransferase activity of members of the protein kinase CK2alpha family is thought to be independent of second messengers but is modulated by interaction with CK2beta-like proteins. In the genome of Drosophila melanogaster, one gene encoding for a CK2alpha subunit and three genes encoding for CK2beta-like proteins are present. The X-linked DmCK2beta transcription unit encodes for several CK2beta protein isoforms due to alternative splicing of its primary transcript. We addressed the question whether CK2beta-like proteins are redundant in function. Our in vivo experiments show that variations of the very C-terminal tail of CK2beta isoforms encoded by the X-linked DmCK2beta transcription unit influence their functional properties. In addition, we find that CK2beta-like proteins encoded by the autosomal D. melanogaster genes CK2betates and CK2beta' cannot fully substitute for a loss of CK2beta isoforms encoded by DmCK2beta.

  15. Tetrahydroxystilbene glucoside modulates amyloid precursor protein processing via activation of AKT-GSK3β pathway in cells and in APP/PS1 transgenic mice. (United States)

    Yin, Xiaomin; Chen, Chen; Xu, Ting; Li, Lin; Zhang, Lan


    Alternative splicing of amyloid precursor protein (APP) exon 7 generates the isoforms containing a Kunitz protease inhibitor (KPI) domain. APP-KPI levels in the brain are correlated with amyloid beta (Aβ) production. Here, we determined the effect of Tetrahydroxystilbene glucoside (TSG) on the AKT-GSK3β pathway. We found GSK3β increased APP-KPI inclusion level and interacted with the splicing factor ASF. TSG was intragastrically administered to 5-month-old APP/PS1 transgenic mice for 12 months. We found that the activated the AKT-GSK3β signaling pathway suppressed APP-KPI inclusion. Moreover, TSG treatment attenuated amyloid deposition in APP/PS1 mice. This study demonstrates the neuroprotective effect of TSG on APP expression, suggesting that TSG may be beneficial for AD prevention and treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Oxidative Modification of Blood Serum Proteins in Multiple Sclerosis after Interferon Beta and Melatonin Treatment

    Directory of Open Access Journals (Sweden)

    Monika Adamczyk-Sowa


    Full Text Available Multiple sclerosis (MS is a disease involving oxidative stress (OS. This study was aimed at examination of the effect of melatonin supplementation on OS parameters, especially oxidative protein modifications of blood serum proteins, in MS patients. The study included 11 control subjects, 14 de novo diagnosed MS patients with the relapsing-remitting form of MS (RRMS, 36 patients with RRMS receiving interferon beta-1b (250 μg every other day, and 25 RRMS patients receiving interferon beta-1b plus melatonin (5 mg daily. The levels of N′-formylkynurenine, kynurenine, dityrosine, carbonyl groups, advanced glycation products (AGEs, advanced oxidation protein products (AOPP, and malondialdehyde were elevated in nontreated RRSM patients. N′-Formylkynurenine, kynurenine, AGEs, and carbonyl contents were decreased only in the group treated with interferon beta plus melatonin, while dityrosine and AOPP contents were decreased both in the group of patients treated with interferon beta and in the group treated with interferon beta-1b plus melatonin. These results demonstrate that melatonin ameliorates OS in MS patients supporting the view that combined administration of interferon beta-1b and melatonin can be more effective in reducing OS in MS patients than interferon beta-1b alone.

  17. The short-term prognostic value of thrombus precursor protein in patients with unstable angina

    International Nuclear Information System (INIS)

    Shen Yanbo; Yu Yan; Tang Jianzhong; Yuan Dingshan; Cai Danlei


    Objective: To investigate the short-term prognostic value of thrombus precursor protein (TpP) in patients with unstable angina (UA). Methods: One hundred and ten cases of UA were selected. The TpP was measured by enzyme linked immunosorbent assay (ELISA). The cardiovascular events were observed in 6 months. Results: In the 100 cases of UA, the cardiovascular events were observed in 17 cases. There was an significant difference in three levels of TpP (P<0.05). The risk level was increasing as the increasing of the plasma level of TpP. Conclusion: The level of TpP has certain reference value and plays a role in forecasting of the short-term prognosis of the patients with UA. When the plasma level of TpP increases there is also an increase in OR. (authors)

  18. Synthesis of beta zeolite with mesopores from a milk containing precursor and its performance in naphthalene isopropylation

    Czech Academy of Sciences Publication Activity Database

    Tokarová, V.; Šťávová, G.; Nováková, J.; Stiborová, S.; Kašpárek, A.; Zukal, Arnošt


    Roč. 222, č. 1 (2017), s. 343-356 ISSN 1878-5190 Institutional support: RVO:61388955 Keywords : Beta zeolite * Mesopores * Naphthalene isopropylation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.264, year: 2016

  19. Two forms of Vibrio cholerae O1 El Tor hemolysin derived from identical precursor protein. (United States)

    Ikigai, H; Ono, T; Nakae, T; Otsuru, H; Shimamura, T


    Vibrio cholerae O1 grown in heart infusion broth produces two forms of El Tor hemolysin (ETH) monomers of 65 and 50 kDa. These monomers form several different sizes of mixed oligomers ranging from 180 to 280 kDa in the liposomal membranes. We found that the N-terminal amino acid sequences, NH2-Trp-Pro-Ala-Pro-Ala-Asn-Ser-Glu, of both the 65- and 50-kDa toxins were identical. We assumed, therefore, that the 65- and 50-kDa toxins were derivatives of the identical precursor protein and the 50-kDa protein was a truncated derivative of 65-kDa ETH. To substantiate this assumption, we treated the 260-kDa oligomer with trypsin and obtained a 190-kDa oligomer. This 190-kDa oligomer consisted of only the 50-kDa subunits. Both 260- and 190-kDa oligomers formed ion channels indistinguishable from each other in planar lipid bilayers. These results suggest that the essential part of the ETH in forming the membrane-damaging aggregate is a 50-kDa protein.

  20. Trehalose Alters Subcellular Trafficking and the Metabolism of the Alzheimer-associated Amyloid Precursor Protein. (United States)

    Tien, Nguyen T; Karaca, Ilker; Tamboli, Irfan Y; Walter, Jochen


    The disaccharide trehalose is commonly considered to stimulate autophagy. Cell treatment with trehalose could decrease cytosolic aggregates of potentially pathogenic proteins, including mutant huntingtin, α-synuclein, and phosphorylated tau that are associated with neurodegenerative diseases. Here, we demonstrate that trehalose also alters the metabolism of the Alzheimer disease-related amyloid precursor protein (APP). Cell treatment with trehalose decreased the degradation of full-length APP and its C-terminal fragments. Trehalose also reduced the secretion of the amyloid-β peptide. Biochemical and cell biological experiments revealed that trehalose alters the subcellular distribution and decreases the degradation of APP C-terminal fragments in endolysosomal compartments. Trehalose also led to strong accumulation of the autophagic marker proteins LC3-II and p62, and decreased the proteolytic activation of the lysosomal hydrolase cathepsin D. The combined data indicate that trehalose decreases the lysosomal metabolism of APP by altering its endocytic vesicular transport. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin. (United States)

    Dursun, Erdinç; Gezen-Ak, Duygu


    Our recent study indicated that vitamin D and its receptors are important parts of the amyloid processing pathway in neurons. Yet the role of vitamin D receptor (VDR) in amyloid pathogenesis is complex and all regulations over the production of amyloid beta cannot be explained solely with the transcriptional regulatory properties of VDR. Given that we hypothesized that VDR might exist on the neuronal plasma membrane in close proximity with amyloid precursor protein (APP) and secretase complexes. The present study primarily focused on the localization of VDR in neurons and its interaction with amyloid pathology-related proteins. The localization of VDR on neuronal membranes and its co-localization with target proteins were investigated with cell surface staining followed by immunofluorescence labelling. The FpClass was used for protein-protein interaction prediction. Our results demonstrated the localization of VDR on the neuronal plasma membrane and the co-localization of VDR and APP or ADAM10 or Nicastrin and limited co-localization of VDR and PS1. E-cadherin interaction with APP or the γ-secretase complex may involve NOTCH1, NUMB, or FHL2, according to FpClass. This suggested complex might also include VDR, which greatly contributes to Ca+2 hemostasis with its ligand vitamin D. Consequently, we suggested that VDR might be a member of this complex also with its own non-genomic action and that it can regulate the APP processing pathway in this way in neurons.

  2. The PDZ protein tax-interacting protein-1 inhibits beta-catenin transcriptional activity and growth of colorectal cancer cells. (United States)

    Kanamori, Mutsumi; Sandy, Peter; Marzinotto, Stefania; Benetti, Roberta; Kai, Chikatoshi; Hayashizaki, Yoshihide; Schneider, Claudio; Suzuki, Harukazu


    Wnt signaling is essential during development while deregulation of this pathway frequently leads to the formation of various tumors including colorectal carcinomas. A key component of the pathway is beta-catenin that, in association with TCF-4, directly regulates the expression of Wnt-responsive genes. To identify novel binding partners of beta-catenin that may control its transcriptional activity, we performed a mammalian two-hybrid screen and isolated the Tax-interacting protein (TIP-1). The in vivo complex formation between beta-catenin and TIP-1 was verified by coimmunoprecipitation, and a direct physical association was revealed by glutathione S-transferase pull-down experiments in vitro. By using a panel of deletion mutants of both proteins, we demonstrate that the interaction is mediated by the PDZ (PSD-95/DLG/ZO-1 homology) domain of TIP-1 and requires primarily the last four amino acids of beta-catenin. TIP-1 overexpression resulted in a dose-dependent decrease in the transcriptional activity of beta-catenin when tested on the TOP/FOPFLASH reporter system. Conversely, siRNA-mediated knock-down of endogenous TIP-1 slightly increased endogenous beta-catenin transactivation function. Moreover, we show that overexpression of TIP-1 reduced the proliferation and anchorage-independent growth of colorectal cancer cells. These data suggest that TIP-1 may represent a novel regulatory element in the Wnt/beta-catenin signaling pathway.

  3. IL-1beta induced protein changes in diabetes prone BB rat islets of Langerhans identified by proteome analysis

    DEFF Research Database (Denmark)

    Sparre, T; Bjerre-Christensen, Ulla; Mose Larsen, P


    of 82 out of 1 815 protein spots detected by two dimensional gel electrophoresis in IL-1beta exposed diabetes prone Bio Breeding (BB-DP) rat islets of Langerhans in vitro. The aim of this study was to identify the proteins in these 82 spots by mass spectrometry and compare these changes with those seen......Type I (insulin-dependent) diabetes mellitus is characterized by selective destruction of the insulin producing beta cells. Interleukin-1beta (IL-1beta) modulates the beta-cell function, protein synthesis, energy production and causes apoptosis. We have previously shown changes in the expression...

  4. Nonlinear analysis of sequence symmetry of beta-trefoil family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingfeng [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Huang Yanzhao [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xu Ruizhen [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiao Yi [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)]. E-mail:


    The tertiary structures of proteins of beta-trefoil family have three-fold quasi-symmetry while their amino acid sequences appear almost at random. In the present paper we show that these amino acid sequences have hidden symmetries in fact and furthermore the degrees of these hidden symmetries are the same as those of their tertiary structures. We shall present a modified recurrence plot to reveal hidden symmetries in protein sequences. Our results can explain the contradiction in sequence-structure relations of proteins of beta-trefoil family.

  5. Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells (United States)

    Beta-carotene (BC) was encapsulated by sodium caseinate (SC), whey protein isolate (WPI), and soybean protein isolate (SPI) by the homogenization-evaporation method forming nanoparticles of 78, 90 and 370 nm diameter. Indices of the chemical antioxidant assays, the reducing power, DPPH radical scave...

  6. Analysis of the influence of two different milling processes in the properties of precursor powder and [Beta]-TCP cement

    International Nuclear Information System (INIS)

    Cardoso, H.A.I.; Pereira, C.H.R.; Zavaglia, C.A.C.; Motisuke, M.


    There are several characteristics that put calcium phosphate cements in evidence, like its bioactivity and in vivo resorption. The influence of two milling processes in the morphological properties of the [beta]-tricalcium phosphate powder, [beta]-TCP, and in the mechanical properties of the cement were analyzed. The powder was obtained by solid state reaction of CaCO_3 and CaHPO_4 at 1050 ° C. It showed high phase purity and absence of toxic elements. The powder was processed in ball mill (A) and high-energy vibratory mill (B), with posterior analyze by SEM and particle size distribution. The powders showed different average and distribution of grain size. Finally, the cement obtained by the process (B) showed values of axial tensile strength significantly greater than that obtained by the process (A). The milling process (B) is much more efficient than the process (A). (author)


    Directory of Open Access Journals (Sweden)

    Vijendra K. SINGH


    Full Text Available Amyloid beta-protein1-40 (AP40 is a low molecu­lar weight peptide produced throughout life during normal cell metabolism and neurodegenerative diseases. Owing to its neurotrophic and neurotoxic effects, the present study was conducted to evalu­ate serum levels of AP40 in healthy subjects, au­tistic children and Alzheimer’s disease patients. Serum AP40 was measured by enzyme-linked im­munosorbent assay (ELISA. AP40 was signifi­cantly higher in normal children compared to nor­mal older controls, in normal children compared to autistic children, and in autistic children compared to Alzheimer’s patients (p value was less than 0.05 for all groups. This finding suggests an age-re­lated decline of serum AP40 in normal aging, as well as in autism and Alzheimer’s disease. This decline may result from abnormal processing of amyloid beta-protein precursor (APP during nor­mal aging and age-related diseases such as autism in children and Alzheimer’s disease in elderly. Possible explanations for this decline may include age-related increased interactions of AP40 with cytoskeletal proteins for brain tissue deposition, increased serine proteases for APP metabolism or hyperimmune reaction (antibodies to AP40 for removal of circulating AP40. To conclude, the AP40 metabolism declines with normal aging and in addition to its role in Alzheimer’s disease this protein might also be a contributing factor in au­tism.

  8. Turnover of amyloid precursor protein family members determines their nuclear signaling capability. (United States)

    Gersbacher, Manuel T; Goodger, Zoë V; Trutzel, Annette; Bundschuh, Diana; Nitsch, Roger M; Konietzko, Uwe


    The amyloid precursor protein (APP) as well as its homologues, APP-like protein 1 and 2 (APLP1 and APLP2), are cleaved by α-, β-, and γ-secretases, resulting in the release of their intracellular domains (ICDs). We have shown that the APP intracellular domain (AICD) is transported to the nucleus by Fe65 where they jointly bind the histone acetyltransferase Tip60 and localize to spherical nuclear complexes (AFT complexes), which are thought to be sites of transcription. We have now analyzed the subcellular localization and turnover of the APP family members. Similarly to AICD, the ICD of APLP2 localizes to spherical nuclear complexes together with Fe65 and Tip60. In contrast, the ICD of APLP1, despite binding to Fe65, does not translocate to the nucleus. In addition, APLP1 predominantly localizes to the plasma membrane, whereas APP and APLP2 are detected in vesicular structures. APLP1 also demonstrates a much slower turnover of the full-length protein compared to APP and APLP2. We further show that the ICDs of all APP family members are degraded by the proteasome and that the N-terminal amino acids of ICDs determine ICD degradation rate. Together, our results suggest that different nuclear signaling capabilities of APP family members are due to different rates of full-length protein processing and ICD proteasomal degradation. Our results provide evidence in support of a common nuclear signaling function for APP and APLP2 that is absent in APLP1, but suggest that APLP1 has a regulatory role in the nuclear translocation of APP family ICDs due to the sequestration of Fe65.

  9. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber. (United States)

    Papanikolopoulou, Katerina; Schoehn, Guy; Forge, Vincent; Forsyth, V Trevor; Riekel, Christian; Hernandez, Jean-François; Ruigrok, Rob W H; Mitraki, Anna


    Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.

  10. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor

    Directory of Open Access Journals (Sweden)

    Rian de Laat


    Full Text Available Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP by β-secretase and γ-secretase generate amyloid β (Aβ peptides, which are thought to contribute to Alzheimer's disease (AD. Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  11. Spider silk MASP1 and MASP2 proteins as carbon fiber precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Randolph V [Utah State Univ., Logan, UT (United States)


    The objective of this project is to develop an unconventional non-petroleum based carbon fiber precursor which has the potential to be produced in high yield and quantities. Methods will be developed to produce pilot-scale quantities of fibers from spider silk proteins with mechanical properties at least 75% that of the natural dragline silk fibers in tensile strength and elongations of less than 5%. The precursor fibers will be converted to carbon fibers, with a goal of >250Ksi strength and 1-2% elongation. Cost analysis will be performed and the process optimized. Task 1: Subtask 1. Protein production: We exceeded the go/ no go milestone of 1.0g/L of one of the spider silk protein (MSp2) purified last FY and have now increased from 5L to 500L fermentations. We have made a series of changes to the purification protocol from the initial report last FY. These led to a reduction in the time needed for the purification and reduced the purification costs by nearly 90%. Subtask 2. Fiber spinning: The major focus has been to produce more material to send 24 fiber thread to ONRL. We are still developing the methodology to successfully spin 24 fiber yarns. This involves both the spinning dope solutions as well as the methods to keep the fibers from fusing during the post spin stretch. The second area of focus has been to standardize the spin dopes for making the fibers. We now know that the conductivity (indicative of salt remaining with the protein after purification) is an important factor in successful spinning as is the pH. We now know that we need to be below 600 uS conductivity and that the most effective pH is protein dependent. Subtask 3. Silkworm silk: We have found the transgenic silkworms made using gene replacement at the fibroin light chain instead of heavy chain as we did previously have a higher tensile strength. See figures below showing the curve for the top end of the cocoon fibers. This tensile strength is the same as the average for spider dragline silk

  12. Expression of feline immunodeficiency virus gag and env precursor proteins in Spodoptera frugiperda cells and their use in immunodiagnosis

    NARCIS (Netherlands)

    Horzinek, M.C.; Verschoor, E.J.; Vliet, A.L.W. van; Egberink, H.F.; Hesselink, W.; Ronde, A. de


    The gag and env genes of the feline immunodeficiency virus strain UT113 were cloned into a baculovirus transfer vector. The recombinant plasmids were used to create recombinant baculoviruses that expressed either the gag or the env precursor protein in insect cells (Sf9 cells). Leader sequence

  13. Demonstration of synthesis of beta-trace protein in different tissues of squirrel monkey

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, J E; Sandberg, M [Department of Neurology, University Hospital, S-221 85 Lund, Sweden


    The sites of synthesis of the low molwculat weight beta-trace protein, present in a seven times higher concentration in normal human CSF than in normal human serum, have been studied by means of a radioactive immunoprecipitation method. Adult squirrel monkey tissue were cultured in Eagle's minium essential medium in the presence of /sup 14/C-labelled valine, threonine and leucine for 24 hours. Synthesis could be demonstrated in cultures of white CNS matter, whereas cultures of grey CNS matter, peripheral nerve, skeletal muscle, kidney and ovary did not show any signs of synthesis. Some cultures of spinal cord, basal ganglia, genital organs except ovary, and liver showed a probable synthesis of beta-trace protein. By means of autoradiography, the synthesis of beta-trace protein in white CNS matter could be confirmed.

  14. Demonstration of synthesis of beta-trace protein in different tissues of squirrel monkey

    International Nuclear Information System (INIS)

    Olsson, J.-E.; Sandberg, M.


    The sites of synthesis of the low molwculat weight beta-trace protein, present in a seven times higher concentration in normal human CSF than in normal human serum, have been studied by means of a radioactive immunoprecipitation method. Adult squirrel monkey tissue were cultured in Eagle's minium essential medium in the presence of 14 C-labelled valine, threonine and leucine for 24 hours. Synthesis could be demonstrated in cultures of white CNS matter, whereas cultures of grey CNS matter, peripheral nerve, skeletal muscle, kidney and ovary did not show any signs of synthesis. Some cultures of spinal cord, basal ganglia, genital organs except ovary, and liver showed a probable synthesis of beta-trace protein. By means of autoradiography, the synthesis of beta-trace protein in white CNS matter could be confirmed. (author)

  15. Identification of group specific motifs in Beta-lactamase family of proteins

    Directory of Open Access Journals (Sweden)

    Saxena Akansha


    Full Text Available Abstract Background Beta-lactamases are one of the most serious threats to public health. In order to combat this threat we need to study the molecular and functional diversity of these enzymes and identify signatures specific to these enzymes. These signatures will enable us to develop inhibitors and diagnostic probes specific to lactamases. The existing classification of beta-lactamases was developed nearly 30 years ago when few lactamases were available. DLact database contain more than 2000 beta-lactamase, which can be used to study the molecular diversity and to identify signatures specific to this family. Methods A set of 2020 beta-lactamase proteins available in the DLact database were classified using graph-based clustering of Best Bi-Directional Hits. Non-redundant (> 90 percent identical protein sequences from each group were aligned using T-Coffee and annotated using information available in literature. Motifs specific to each group were predicted using PRATT program. Results The graph-based classification of beta-lactamase proteins resulted in the formation of six groups (Four major groups containing 191, 726, 774 and 73 proteins while two minor groups containing 50 and 8 proteins. Based on the information available in literature, we found that each of the four major groups correspond to the four classes proposed by Ambler. The two minor groups were novel and do not contain molecular signatures of beta-lactamase proteins reported in literature. The group-specific motifs showed high sensitivity (> 70% and very high specificity (> 90%. The motifs from three groups (corresponding to class A, C and D had a high level of conservation at DNA as well as protein level whereas the motifs from the fourth group (corresponding to class B showed conservation at only protein level. Conclusion The graph-based classification of beta-lactamase proteins corresponds with the classification proposed by Ambler, thus there is

  16. Atualizações sobre beta-hidroxi-beta-metilbutirato: suplementação e efeitos sobre o catabolismo de proteínas New findings on beta-hydroxy-beta-methylbutyirate: supplementation and effects on the protein catabolism

    Directory of Open Access Journals (Sweden)

    Everson Araújo Nunes


    Full Text Available O beta-hidroxi-beta-metilbutirato, metabólito do aminoácido leucina, vem sendo utilizado como suplemento alimentar, em situações específicas, com o intuito de aumentar ou manter a massa isenta de gordura. Os relatos dos efeitos do beta-hidroxi-beta-metilbutirato em estudos recentes fizeram crescer as expectativas sobre sua utilização em casos patológicos. Também foram demonstrados melhores resultados, quando da sua ingestão, no treinamento de força em indivíduos iniciantes e em idosos. Em humanos o beta-hidroxi-beta-metilbutirato tem sido usado como agente anti-catabólico, e em modelos animais foi demonstrado ser eficaz em inibir a atividade de vias proteolíticas em células musculares de indivíduos caquéticos in vitro e in vivo. Os mecanismos participantes desses processos envolvem: a inibição da atividade do sistema ubiquitina proteossoma ATP-dependente, a inibição de vias de sinalização com participação da proteína quinase C-alfa e a diminuição da concentração citoplasmática do fator nuclear - kappa B livre, eventos relacionados ao decréscimo da proteólise em células musculares.The leucine metabolite beta-hydroxy-beta-methylbutyrate has been used as a nutritional supplement in specific situations to prevent losing or to increase lean mass. Recent studies showed interesting results of beta-hydroxy-beta-methylbutyrate supplementation in certain disease states. Better results have also been demonstrated when it is taken by starters or old individuals doing strength training. In humans, beta-hydroxy-beta-methylbutyrate has been used as an anticatabolic agent and in animal models it has been demonstrated to be effective in inhibiting the activity of the proteolytic pathways in muscle cells of extremely weak individuals in vivo and in vitro. The mechanisms that participate in this process involve: inhibition of the ATP-ubiquitin-proteasome pathway, inhibition of the signalization pathways involving protein kinase C

  17. Lactic acid induces aberrant amyloid precursor protein processing by promoting its interaction with endoplasmic reticulum chaperone proteins.

    Directory of Open Access Journals (Sweden)

    Yiwen Xiang

    Full Text Available BACKGROUND: Lactic acid, a natural by-product of glycolysis, is produced at excess levels in response to impaired mitochondrial function, high-energy demand, and low oxygen availability. The enzyme involved in the production of β-amyloid peptide (Aβ of Alzheimer's disease, BACE1, functions optimally at lower pH, which led us to investigate a potential role of lactic acid in the processing of amyloid precursor protein (APP. METHODOLOGY/PRINCIPAL FINDINGS: Lactic acid increased levels of Aβ40 and 42, as measured by ELISA, in culture medium of human neuroblastoma cells (SH-SY5Y, whereas it decreased APP metabolites, such as sAPPα. In cell lysates, APP levels were increased and APP was found to interact with ER-chaperones in a perinuclear region, as determined by co-immunoprecipitation and fluorescence microscopy studies. Lactic acid had only a very modest effect on cellular pH, did increase the levels of ER chaperones Grp78 and Grp94 and led to APP aggregate formation reminiscent of aggresomes. CONCLUSIONS/SIGNIFICANCE: These findings suggest that sustained elevations in lactic acid levels could be a risk factor in amyloidogenesis related to Alzheimer's disease through enhanced APP interaction with ER chaperone proteins and aberrant APP processing leading to increased generation of amyloid peptides and APP aggregates.

  18. Distribution of precursor amyloid-β-protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques

    International Nuclear Information System (INIS)

    Lewis, D.A.; Higgins, G.A.; Young, W.G.; Goldgaber, D.; Gajdusek, D.C.; Wilson, M.C.; Morrison, J.H.


    Neurofibrillary tangles (NFT) and neuritic plaques (NP), two neuropathological markers of Alzheimer disease, may both contain peptide fragments derived from the human amyloid β protein. However, the nature of the relationship between NFT and NP and the source of the amyloid β proteins found in each have remained unclear. The authors used in situ hybridization techniques to map the anatomical distribution of precursor amyloid-β-protein mRNA in the neocortex of brains from three subjects with no known neurologic disease and from five patients with Alzheimer disease. In brains from control subjects, positively hybridizing neurons were present in cortical regions and layers that contain a high density of neuropathological markers in Alzheimer disease, as well as in those loci that contain NP but few NFT. Quantitative analyses of in situ hybridization patterns within layers III and V of the superior frontal cortex revealed that the presence of high numbers of NFT in Alzheimer-diseased brains was associated with a decrease in the number of positively hybridizing neurons compared to controls and Alzheimer-diseased brains with few NFT. These findings suggest that the expression of precursor amyloid-β-protein mRNA may be a necessary but is clearly not a sufficient prerequisite for NFT formation. In addition, these results may indicate that the amyloid β protein, present in NP in a given region or layer of cortex, is not derived from the resident neuronal cell bodies that express the mRNA for the precursor protein

  19. Urinary beta 2-microglobulin and retinol binding protein: individual fluctuations in cadmium-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Ormos, G.; Cseh, J.; Groszmann, M.; Timar, M.


    Urinary retinol binding protein (RBP) and beta 2-microglobulin (beta 2-m) were compared in apparently healthy population groups with and without occupational exposure to cadmium (Cd). The relationship observed in neutral urine was: RBP (micrograms/mmol creatinine) = 0.786 + 0.814 beta 2-m (micrograms/mmol creatinine). This relationship was similar to that reported for patients with various renal diseases. Analysis of urine samples collected weekly from workers exposed occupationally to Cd revealed marked fluctuations, not only in the concentration of the acid-labile beta 2-m but also in the level of the pre-analytically more stable RBP. Therefore, repeated sampling and urine analyses are suggested as means to obtain more reliable data when monitoring Cd-exposed personnel.

  20. Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer's β-secretase (United States)

    Scholefield, Zoe; Yates, Edwin A.; Wayne, Gareth; Amour, Augustin; McDowell, William; Turnbull, Jeremy E.


    Cleavage of amyloid precursor protein (APP) by the Alzheimer's β-secretase (BACE1) is a key step in generating amyloid β-peptide, the main component of amyloid plaques. Here we report evidence that heparan sulfate (HS) interacts with β-site APP-cleaving enzyme (BACE) 1 and regulates its cleavage of APP. We show that HS and heparin interact directly with BACE1 and inhibit in vitro processing of peptide and APP substrates. Inhibitory activity is dependent on saccharide size and specific structural characteristics, and the mechanism of action involves blocking access of substrate to the active site. In cellular assays, HS specifically inhibits BACE1 cleavage of APP but not alternative cleavage by α-secretase. Endogenous HS immunoprecipitates with BACE1 and colocalizes with BACE1 in the Golgi complex and at the cell surface, two of its putative sites of action. Furthermore, inhibition of cellular HS synthesis results in enhanced BACE1 activity. Our findings identify HS as a natural regulator of BACE1 and suggest a novel mechanism for control of APP processing. PMID:14530380

  1. An intracellular threonine of amyloid-β precursor protein mediates synaptic plasticity deficits and memory loss.

    Directory of Open Access Journals (Sweden)

    Franco Lombino

    Full Text Available Mutations in Amyloid-ß Precursor Protein (APP and BRI2/ITM2b genes cause Familial Alzheimer and Danish Dementias (FAD/FDD, respectively. APP processing by BACE1, which is inhibited by BRI2, yields sAPPß and ß-CTF. ß-CTF is cleaved by gamma-secretase to produce Aß. A knock-in mouse model of FDD, called FDDKI, shows deficits in memory and synaptic plasticity, which can be attributed to sAPPß/ß-CTF but not Aß. We have investigated further the pathogenic function of ß-CTF focusing on Thr(668 of ß-CTF because phosphorylation of Thr(668 is increased in AD cases. We created a knock-in mouse bearing a Thr(668Ala mutation (APP(TA mice that prevents phosphorylation at this site. This mutation prevents the development of memory and synaptic plasticity deficits in FDDKI mice. These data are consistent with a role for the carboxyl-terminal APP domain in the pathogenesis of dementia and suggest that averting the noxious role of Thr(668 is a viable therapeutic strategy for human dementias.

  2. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    International Nuclear Information System (INIS)

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos; Cerpa, Waldo; Cambiazo, Veronica; Inestrosa, Nibaldo C.; Gonzalez, Mauricio


    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu 2+ binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu 2+ reduction and 64 Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu 2+ reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu 2+ ions. Moreover, wild-type cells exposed to both Cu 2+ ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu 2+ reductase activity and increased 64 Cu uptake. We conclude that Cu 2+ reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  3. Localization of the N-terminal domain of cauliflower mosaic virus coat protein precursor

    International Nuclear Information System (INIS)

    Champagne, Julie; Benhamou, Nicole; Leclerc, Denis


    Cauliflower mosaic virus (CaMV) open reading frame (ORF) IV encodes a coat protein precursor (pre-CP) harboring an N-terminal extension that is cleaved off by the CaMV-encoded protease. In transfected cells, pre-CP is present in the cytoplasm, while the processed form (p44) of CP is targeted to the nucleus, suggesting that the N-terminal extension might be involved in keeping the pre-CP in the cytoplasm for viral assembly. This study reports for the first time the intracellular localization of the N-terminal extension during CaMV infection in Brassica rapa. Immunogold-labeling electron microscopy using polyclonal antibodies directed to the N-terminal extension of the pre-CP revealed that this region is closely associated with viral particles present in small aggregates, which we called small bodies, adjacent to the main inclusion bodies typical of CaMV infection. Based on these results, we propose a model for viral assembly of CaMV

  4. Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology. (United States)

    Wang, Yajie; Wu, Fengyi; Pan, Haining; Zheng, Wenzhong; Feng, Chi; Wang, Yunfu; Deng, Zixin; Wang, Lianrong; Luo, Jie; Chen, Shi


    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain. Aβ plaques are produced through sequential β/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription activator-like (TAL) effector nucleases (TALENs) induce mutations with high efficiency at specific genomic loci, and it is thus possible to knock out specific regions using TALENs. In this study, we designed and expressed TALENs specific for the C-terminus of APP in HeLa cells, in which KPI-APPs are predominantly expressed. The KPI-APP mutants lack a 12-aa region that encompasses a 5-aa trans-membrane (TM) region and 7-aa juxta-membrane (JM) region. The mutated KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial morphology was altered, resulting in an increase in spherical mitochondria in the mutant cells through the disruption of the balance between fission and fusion. Mitochondrial dysfunction, including decreased ATP levels, disrupted mitochondrial membrane potential, increased ROS generation and impaired mitochondrial dehydrogenase activity, was also found. These results suggest that specific regions of KPI-APPs are important for mitochondrial localization and function.

  5. Contribution of Kunitz protease inhibitor and transmembrane domains to amyloid precursor protein homodimerization. (United States)

    Ben Khalifa, N; Tyteca, D; Courtoy, P J; Renauld, J C; Constantinescu, S N; Octave, J N; Kienlen-Campard, P


    The two major isoforms of the human amyloid precursor protein (APP) are APP695 and APP751. They differ by the insertion of a Kunitz-type protease inhibitor (KPI) sequence in the extracellular domain of APP751. APP-KPI isoforms are increased in Alzheimer's disease brains, and they could be associated with disease progression. Recent studies have shown that APP processing to Aβ is regulated by homodimerization, which involves both extracellular and juxtamembrane/transmembrane (JM/TM) regions. Our aim is to understand the mechanisms controlling APP dimerization and the contribution of the ectodomain and JM/TM regions to this process. We used bimolecular fluorescence complementation approaches coupled to fluorescence-activated cell sorting analysis to measure the dimerization level of different APP isoforms and APP C-terminal fragments (C99) mutated in their JM/TM region. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain of APP or C99 did not significantly affect fluorescence complementation. These findings indicate that the KPI domain plays a major role in APP dimerization. They set the basis for further investigation of the relation between dimerization, metabolism and function of APP. Copyright © 2012 S. Karger AG, Basel.

  6. Amyloid Precursor Protein Translation Is Regulated by a 3'UTR Guanine Quadruplex.

    Directory of Open Access Journals (Sweden)

    Ezekiel Crenshaw

    Full Text Available A central event in Alzheimer's disease is the accumulation of amyloid β (Aβ peptides generated by the proteolytic cleavage of the amyloid precursor protein (APP. APP overexpression leads to increased Aβ generation and Alzheimer's disease in humans and altered neuronal migration and increased long term depression in mice. Conversely, reduction of APP expression results in decreased Aβ levels in mice as well as impaired learning and memory and decreased numbers of dendritic spines. Together these findings indicate that therapeutic interventions that aim to restore APP and Aβ levels must do so within an ideal range. To better understand the effects of modulating APP levels, we explored the mechanisms regulating APP expression focusing on post-transcriptional regulation. Such regulation can be mediated by RNA regulatory elements such as guanine quadruplexes (G-quadruplexes, non-canonical structured RNA motifs that affect RNA stability and translation. Via a bioinformatics approach, we identified a candidate G-quadruplex within the APP mRNA in its 3'UTR (untranslated region at residues 3008-3027 (NM_201414.2. This sequence exhibited characteristics of a parallel G-quadruplex structure as revealed by circular dichroism spectrophotometry. Further, as with other G-quadruplexes, the formation of this structure was dependent on the presence of potassium ions. This G-quadruplex has no apparent role in regulating transcription or mRNA stability as wild type and mutant constructs exhibited equivalent mRNA levels as determined by real time PCR. Instead, we demonstrate that this G-quadruplex negatively regulates APP protein expression using dual luciferase reporter and Western blot analysis. Taken together, our studies reveal post-transcriptional regulation by a 3'UTR G-quadruplex as a novel mechanism regulating APP expression.

  7. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)


    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  8. Cartilage acidic protein 1, a new member of the beta-propeller protein family with amyloid propensity. (United States)

    Anjos, Liliana; Morgado, Isabel; Guerreiro, Marta; Cardoso, João C R; Melo, Eduardo P; Power, Deborah M


    Cartilage acidic protein1 (CRTAC1) is an extracellular matrix protein of chondrogenic tissue in humans and its presence in bacteria indicate it is of ancient origin. Structural modeling of piscine CRTAC1 reveals it belongs to the large family of beta-propeller proteins that in mammals have been associated with diseases, including amyloid diseases such as Alzheimer's. In order to characterize the structure/function evolution of this new member of the beta-propeller family we exploited the unique characteristics of piscine duplicate genes Crtac1a and Crtac1b and compared their structural and biochemical modifications with human recombinant CRTAC1. We demonstrate that CRTAC1 has a beta-propeller structure that has been conserved during evolution and easily forms high molecular weight thermo-stable aggregates. We reveal for the first time the propensity of CRTAC1 to form amyloid-like structures, and hypothesize that the aggregating property of CRTAC1 may be related to its disease-association. We further contribute to the general understating of CRTAC1's and beta-propeller family evolution and function. Proteins 2017; 85:242-255. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Ranking beta sheet topologies with applications to protein structure prediction

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Helles, Glennie; Winter, Pawel


    One reason why ab initio protein structure predictors do not perform very well is their inability to reliably identify long-range interactions between amino acids. To achieve reliable long-range interactions, all potential pairings of ß-strands (ß-topologies) of a given protein are enumerated......, including the native ß-topology. Two very different ß-topology scoring methods from the literature are then used to rank all potential ß-topologies. This has not previously been attempted for any scoring method. The main result of this paper is a justification that one of the scoring methods, in particular......, consistently top-ranks native ß-topologies. Since the number of potential ß-topologies grows exponentially with the number of ß-strands, it is unrealistic to expect that all potential ß-topologies can be enumerated for large proteins. The second result of this paper is an enumeration scheme of a subset of ß-topologies...

  10. Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein.

    Directory of Open Access Journals (Sweden)

    Mahua Maulik

    Full Text Available Niemann-Pick type C (NPC disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP-derived β-amyloid (Aβ peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet, Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and

  11. COPS5 (Jab1) protein increases β site processing of amyloid precursor protein and amyloid β peptide generation by stabilizing RanBP9 protein levels. (United States)

    Wang, Hongjie; Dey, Debleena; Carrera, Ivan; Minond, Dmitriy; Bianchi, Elisabetta; Xu, Shaohua; Lakshmana, Madepalli K


    Increased processing of amyloid precursor protein (APP) and accumulation of neurotoxic amyloid β peptide (Aβ) in the brain is central to the pathogenesis of Alzheimer's disease (AD). Therefore, the identification of molecules that regulate Aβ generation is crucial for future therapeutic approaches for AD. We demonstrated previously that RanBP9 regulates Aβ generation in a number of cell lines and primary neuronal cultures by forming tripartite protein complexes with APP, low-density lipoprotein-related protein, and BACE1, consequently leading to increased amyloid plaque burden in the brain. RanBP9 is a scaffold protein that exists and functions in multiprotein complexes. To identify other proteins that may bind RanBP9 and regulate Aβ levels, we used a two-hybrid analysis against a human brain cDNA library and identified COPS5 as a novel RanBP9-interacting protein. This interaction was confirmed by coimmunoprecipitation experiments in both neuronal and non-neuronal cells and mouse brain. Colocalization of COPS5 and RanBP9 in the same subcellular compartments further supported the interaction of both proteins. Furthermore, like RanBP9, COPS5 robustly increased Aβ generation, followed by increased soluble APP-β (sAPP-β) and decreased soluble-APP-α (sAPP-α) levels. Most importantly, down-regulation of COPS5 by siRNAs reduced Aβ generation, implying that endogenous COPS5 regulates Aβ generation. Finally, COPS5 levels were increased significantly in AD brains and APΔE9 transgenic mice, and overexpression of COPS5 strongly increased RanBP9 protein levels by increasing its half-life. Taken together, these results suggest that COPS5 increases Aβ generation by increasing RanBP9 levels. Thus, COPS5 is a novel RanBP9-binding protein that increases APP processing and Aβ generation by stabilizing RanBP9 protein levels.

  12. Beyond the neurotransmitter-focused approach in treating Alzheimer's disease: drugs targeting beta-amyloid and tau protein. (United States)

    Panza, Francesco; Solfrizzi, Vincenzo; Frisardi, Vincenza; Imbimbo, Bruno P; Capurso, Cristiano; D'Introno, Alessia; Colacicco, Anna M; Seripa, Davide; Vendemiale, Gianluigi; Capurso, Antonio; Pilotto, Alberto


    Drugs currently used to treat Alzheimer's Disease (AD) have limited therapeutic value and do not affect the main neuropathological hallmarks of the disease, i.e., senile plaques and neurofibrillar tangles. Senile plaques are mainly formed of beta-amyloid (Abeta), a 42-aminoacid peptide. Neurofibrillar tangles are composed of paired helical filaments of hyperphosphorylated tau protein. New, potentially disease-modifying, therapeutic approaches are targeting Abeta and tau protein. Drugs directed against Abeta include active and passive immunization, that have been found to accelerate Abeta clearance from the brain. The most developmentally advanced monoclonal antibody directly targeting Abeta is bapineuzumab, now being studied in a large Phase III clinical trial. Compounds that interfere with proteases regulating Abeta formation from amyloid precursor protein (APP) are also actively pursued. The discovery of inhibitors of beta-secretase, the enzyme that regulates the first step of the amyloidogenic metabolism of APP, has been revealed to be particularly difficult due to inherent medicinal chemistry problems, and only one compound (CTS-21166) has reached clinical testing. Conversely, several compounds that inhibit gamma-secretase, the pivotal enzyme that generates Abeta, have been identified, the most advanced being LY-450139 (semagacestat), now in Phase III clinical development. Compounds that stimulate alpha-secretase, the enzyme responsible for the non-amyloidogenic metabolism of APP, are also being developed, and one of them, EHT-0202, has recently entered Phase II testing. Potent inhibitors of Abeta aggregation have also been identified, and one of such compounds, PBT-2, has provided encouraging neuropsychological results in a recently completed Phase II study. Therapeutic approaches directed against tau protein include inhibitors of glycogen synthase kinase- 3 (GSK-3), the enzyme responsible for tau phosphorylation and tau protein aggregation inhibitors. NP-12

  13. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. (United States)

    Nhan, Hoang S; Chiang, Karen; Koo, Edward H


    The amyloid precursor protein (APP) has occupied a central position in Alzheimer's disease (AD) pathophysiology, in large part due to the seminal role of amyloid-β peptide (Aβ), a proteolytic fragment derived from APP. Although the contribution of Aβ to AD pathogenesis is accepted by many in the research community, recent studies have unveiled a more complicated picture of APP's involvement in neurodegeneration in that other APP-derived fragments have been shown to exert pathological influences on neuronal function. However, not all APP-derived peptides are neurotoxic, and some even harbor neuroprotective effects. In this review, we will explore this complex picture by first discussing the pleiotropic effects of the major APP-derived peptides cleaved by multiple proteases, including soluble APP peptides (sAPPα, sAPPβ), various C- and N-terminal fragments, p3, and APP intracellular domain fragments. In addition, we will highlight two interesting sequences within APP that likely contribute to this duality in APP function. First, it has been found that caspase-mediated cleavage of APP in the cytosolic region may release a cytotoxic peptide, C31, which plays a role in synapse loss and neuronal death. Second, recent studies have implicated the -YENPTY- motif in the cytoplasmic region as a domain that modulates several APP activities through phosphorylation and dephosphorylation of the first tyrosine residue. Thus, this review summarizes the current understanding of various APP proteolytic products and the interplay among them to gain deeper insights into the possible mechanisms underlying neurodegeneration and AD pathophysiology.

  14. Platelet amyloid precursor protein isoform expression in Alzheimer's disease: evidence for peripheral marker. (United States)

    Vignini, A; Sartini, D; Morganti, S; Nanetti, L; Luzzi, S; Provinciali, L; Mazzanti, L; Emanuelli, M


    Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by a progressive cognitive and memory decline. Among peripheral markers of AD, great interest has been focused on the amyloid precursor protein (APP). In this regard, platelets represent an important peripheral source of APP since it has been demonstrated that the three major isoforms, that are constituted of 770, 751 and 695 aa residues, are inserted in the membrane of resting platelets. APP 751 and APP 770 contain a Kunitz-type serine protease inhibitor domain (APP KPI) and APP 695 lacks this domain. To address this issue, we first examined the platelet APP isoform mRNAs prospectively as biomarker for the diagnosis of AD by means of real-time quantitative PCR, and then evaluated the correlation between APP mRNA expression levels and cognitive impairment of enrolled subjects. Differential gene expression measurements in the AD patient group (n=18) revealed a significant up-regulation of APP TOT (1.52-fold), APP KPI (1.32-fold), APP 770 (1.33-fold) and APP 751 (1.26-fold) compared to controls (n=22). Moreover, a statistically significant positive correlation was found between APP mRNA levels (TOT, KPI, 770 and 751) and cognitive impairment. Since AD definitive diagnosis still relies on pathological evaluation at autopsy, the present results are consistent with the hypothesis that platelet APP could be considered a potential reliable peripheral marker for studying AD and could contribute to define a signature for the presence of AD pathology.

  15. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in pad lamellae of geckos suggest that glycine-cysteine-rich proteins contribute to their flexibility and adhesiveness. (United States)

    Alibardi, Lorenzo


    The epidermis of digital pads in geckos comprises superficial microornamentation from the oberhautchen layer that form long setae allowing these lizards to climb vertical surfaces. The beta-layer is reduced in pad lamellae but persists up to the apical free margin. Setae are made of different proteins including keratin-associated beta-proteins, formerly indicated as beta-keratins. In order to identify specific setal proteins the present ultrastructural study on geckos pad lamellae analyzes the immunolocalization of three beta-proteins previously found in the epidermis and adhesive setae of the green anolis. A protein rich in glycine but poor in cysteine (HgG5-like) is absent or masked in gecko pad lamellae. Another protein rich in glycine and cysteine (HgGC3-like) is weakly present in setae, oberhautchen and beta-layer. A glycine and cysteine medium rich beta-protein (HgGC10-like) is present in the lower part of the beta-layer but is absent in the oberhautchen, setae, and mesos layer. The latter two proteins may form intermolecular bonds that contribute to the flexibility of the corneous material sustaining the setae. The pliable alpha-layer present beneath the thin beta-layer and in the hinge region of the pad lamellae also contains HgGC10-like proteins. Based on the possibility that some HgGC3-like or other cys-rich beta-proteins are charged in the setae it is suggested that their charges influence the mechanism of adhesion increasing the induction of dipoles on the substrate and enhancing attractive van der Waals forces. Copyright © 2013 Wiley Periodicals, Inc.

  16. AMP-activated protein kinase (AMPK mediates nutrient regulation of thioredoxin-interacting protein (TXNIP in pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Maayan Shaked

    Full Text Available Thioredoxin-interacting protein (TXNIP regulates critical biological processes including inflammation, stress and apoptosis. TXNIP is upregulated by glucose and is a critical mediator of hyperglycemia-induced beta-cell apoptosis in diabetes. In contrast, the saturated long-chain fatty acid palmitate, although toxic to the beta-cell, inhibits TXNIP expression. The mechanisms involved in the opposing effects of glucose and fatty acids on TXNIP expression are unknown. We found that both palmitate and oleate inhibited TXNIP in a rat beta-cell line and islets. Palmitate inhibition of TXNIP was independent of fatty acid beta-oxidation or esterification. AMP-activated protein kinase (AMPK has an important role in cellular energy sensing and control of metabolic homeostasis; therefore we investigated its involvement in nutrient regulation of TXNIP. As expected, glucose inhibited whereas palmitate stimulated AMPK. Pharmacologic activators of AMPK mimicked fatty acids by inhibiting TXNIP. AMPK knockdown increased TXNIP expression in presence of high glucose with and without palmitate, indicating that nutrient (glucose and fatty acids effects on TXNIP are mediated in part via modulation of AMPK activity. TXNIP is transcriptionally regulated by carbohydrate response element-binding protein (ChREBP. Palmitate inhibited glucose-stimulated ChREBP nuclear entry and recruitment to the Txnip promoter, thereby inhibiting Txnip transcription. We conclude that AMPK is an important regulator of Txnip transcription via modulation of ChREBP activity. The divergent effects of glucose and fatty acids on TXNIP expression result in part from their opposing effects on AMPK activity. In light of the important role of TXNIP in beta-cell apoptosis, its inhibition by fatty acids can be regarded as an adaptive/protective response to glucolipotoxicity. The finding that AMPK mediates nutrient regulation of TXNIP may have important implications for the pathophysiology and treatment

  17. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A


    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  18. Potential of beta-adrenergic agonists for increasing protein deposition in ruminants in developing countries

    International Nuclear Information System (INIS)

    Berschauer, F.


    Various substituted phenylethanolamines, acting on the sympathetic nervous system, have been shown to increase protein retention (via decreased proteolysis) and reduce fat deposition (via increased lipolysis and reduced lipogenesis) in ruminants and monogastrics. Research with finishing lambs in developed countries show various beta-adrenergic agonists to improve growth rate (by 18%), feed conversion (by 12%) and carcass quality (28% increase in area of longissimus dorsi and 33% reduction in subcutaneous fat). Similar effects of beta-agonists on carcass composition of well fed cattle have been reported. The effects of beta-agonists on livestock in developing countries of the tropics have not yet been investigated, but their effects in increasing metabolic rate suggest that treated ruminants would be more vulnerable to hot environments. Beta-agonists appear to improve nitrogen retention to a greater extent in breeds with a lower potential for muscle growth. In view of this, they might be particularly effective in improving nitrogen retention in tropical breeds which have a low growth potential. This aspect, together with the response of undernourished animals in the developing countries, needs investigation. Beta-adrenergic agonists are not yet registered for use in animal production, but product licenses for some of them are expected to be granted soon. (author). 31 refs, 1 fig., 12 tabs

  19. Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α. (United States)

    Ocaña, Gail J; Pérez, Liliana; Guindon, Lynette; Deffit, Sarah N; Evans-Molina, Carmella; Thurmond, Debbie C; Blum, Janice S


    A major obstacle in predicting and preventing the development of autoimmune type 1 diabetes (T1D) in at-risk individuals is the lack of well-established early biomarkers indicative of ongoing beta cell stress during the pre-clinical phase of disease. Recently, serum levels of the α cytoplasmic isoform of heat-shock protein 90 (hsp90) were shown to be elevated in individuals with new-onset T1D. We therefore hypothesized that hsp90α could be released from beta cells in response to cellular stress and inflammation associated with the earliest stages of T1D. Here, human beta cell lines and cadaveric islets released hsp90α in response to stress induced by treatment with a combination of pro-inflammatory cytokines including interleukin-1β, tumour necrosis factor-α and interferon-γ. Mechanistically, hsp90α release was found to be driven by cytokine-induced endoplasmic reticulum stress mediated by c-Jun N-terminal kinase (JNK), a pathway that can eventually lead to beta cell apoptosis. Cytokine-induced beta cell hsp90α release and JNK activation were significantly reduced by pre-treating cells with the endoplasmic reticulum stress-mitigating chemical chaperone tauroursodeoxycholic acid. The hsp90α release by cells may therefore be a sensitive indicator of stress during inflammation and a useful tool in assessing therapeutic mitigation of cytokine-induced cell damage linked to autoimmunity. © 2017 John Wiley & Sons Ltd.

  20. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A


    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to t...

  1. Effects of cerebrovascular disease on amyloid precursor protein metabolites in cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Rosengren Lars


    Full Text Available Abstract Background Alzheimer's disease (AD and cerebrovascular disease (CVD including chronic small vessel disease of the brain (SVD are the most frequent causes of dementia. AD is associated with metabolism of amyloid precursor protein (APP and low levels of amyloid-β peptide (Aβ X-42 in the cerebrospinal fluid (CSF. CVD and SVD are established risk factors for AD, brain white matter lesions (WML are established surrogate markers for SVD and are also associated with reduced CSF AβX-42. A cohort survey was performed to examine whether SVD or acute CVD affects APP metabolism and to explore a potential association between WML and APP metabolism in two groups; cognitively impaired patients, subjective and mild (SCI and MCI and stroke patients. Through measurements of CSF APP metabolite levels in patients with a wide range of WML volumes, this study aimed to determine how SVD influences APP metabolism. Methods Sixty-three patients were included: 37 with subjective cognitive impairment (SCI or mild cognitive impairment (MCI without stroke, and 26 after acute stroke. Chronic and acute WML volume and infarct volume were determined by magnetic resonance imaging (MRI post-scan processing, and CSF levels of α- and β-cleaved soluble APP (sAPP-α and sAPP-β, AβX-38, AβX-40 and AβX-42 were determined. The Mann-Whitney test was used to compare the patient groups. Chronic and acute WML volumes, infarct volume, age, and sex were used as predictors for CSF biomarker levels in linear regression analysis. Results CSF levels of sAPP-α and sAPP-β were strongly correlated (r = 0.95, p p p p ≤ 0.005; p ≤ 0.01; p ≤ 0.01; p ≤ 0.05; p ≤ 0.05 respectively, but not with acute WML or infarct volumes. Conclusions Lower CSF levels of sAPP-α and sAPP-β in the stroke group than in the SCI/MCI group and an inverse correlation with chronic WML indicate that ischemia lowers the levels of CSF sAPP metabolites and suggests that APP axonal transport or

  2. Complete deficiency of mitochondrial trifunctional protein due to a novel mutation within the beta-subunit of the mitochondrial trifunctional protein gene leads to failure of long-chain fatty acid beta-oxidation with fatal outcome

    NARCIS (Netherlands)

    Schwab, Karl Otfried; Ensenauer, Regina; Matern, Dietrich; Uyanik, Gökhan; Schnieders, Birgit; Wanders, Ronald A.; Lehnert, Willy


    The mitochondrial trifunctional protein (MTP) is a multienzyme complex which catalyses three of the four chain-shortening reactions in the beta-oxidation of long-chain fatty acids. Clinically, failure of long-chain fatty acid beta-oxidation leads to hypoketotic hypoglycaemia associated with coma,

  3. Coevolving residues of (beta/alpha)(8)-barrel proteins play roles in stabilizing active site architecture and coordinating protein dynamics. (United States)

    Shen, Hongbo; Xu, Feng; Hu, Hairong; Wang, Feifei; Wu, Qi; Huang, Qiang; Wang, Honghai


    Indole-3-glycerol phosphate synthase (IGPS) is a representative of (beta/alpha)(8)-barrel proteins-the most common enzyme fold in nature. To better understand how the constituent amino-acids work together to define the structure and to facilitate the function, we investigated the evolutionary and dynamical coupling of IGPS residues by combining statistical coupling analysis (SCA) and molecular dynamics (MD) simulations. The coevolving residues identified by the SCA were found to form a network which encloses the active site completely. The MD simulations showed that these coevolving residues are involved in the correlated and anti-correlated motions. The correlated residues are within van der Waals contact and appear to maintain the active site architecture; the anti-correlated residues are mainly distributed on opposite sides of the catalytic cavity and coordinate the motions likely required for the substrate entry and product release. Our findings might have broad implications for proteins with the highly conserved (betaalpha)(8)-barrel in assessing the roles of amino-acids that are moderately conserved and not directly involved in the active site of the (beta/alpha)(8)-barrel. The results of this study could also provide useful information for further exploring the specific residue motions for the catalysis and protein design based on the (beta/alpha)(8)-barrel scaffold.

  4. In vivo neuronal synthesis and axonal transport of Kunitz protease inhibitor (KPI)-containing forms of the amyloid precursor protein. (United States)

    Moya, K L; Confaloni, A M; Allinquant, B


    We have shown previously that the amyloid precursor protein (APP) is synthesized in retinal ganglion cells and is rapidly transported down the axons, and that different molecular weight forms of the precursor have different developmental time courses. Some APP isoforms contain a Kunitz protease inhibitor (KPI) domain, and APP that lacks the KPI domain is considered the predominant isoform in neurons. We now show that, among the various rapidly transported APPs, a 140-kDa isoform contains the KPI domain. This APP isoform is highly expressed in rapidly growing retinal axons, and it is also prominent in adult axon endings. This 140-kDa KPI-containing APP is highly sulfated compared with other axonally transported isoforms. These results show that APP with the KPI domain is a prominent isoform synthesized in neurons in vivo, and they suggest that the regulation of protease activity may be an important factor during the establishment of neuronal connections.

  5. Cerebral amyloid-beta protein accumulation with aging in cotton-top tamarins: a model of early Alzheimer's disease? (United States)

    Lemere, Cynthia A; Oh, Jiwon; Stanish, Heather A; Peng, Ying; Pepivani, Imelda; Fagan, Anne M; Yamaguchi, Haruyasu; Westmoreland, Susan V; Mansfield, Keith G


    Alzheimer's disease (AD) is the most common progressive form of dementia in the elderly. Two major neuropathological hallmarks of AD include cerebral deposition of amyloid-beta protein (Abeta) into plaques and blood vessels, and the presence of neurofibrillary tangles in brain. In addition, activated microglia and reactive astrocytes are often associated with plaques and tangles. Numerous other proteins are associated with plaques in human AD brain, including Apo E and ubiquitin. The amyloid precursor protein and its shorter fragment, Abeta, are homologous between humans and non-human primates. Cerebral Abeta deposition has been reported previously for rhesus monkeys, vervets, squirrel monkeys, marmosets, lemurs, cynomologous monkeys, chimpanzees, and orangutans. Here we report, for the first time, age-related neuropathological changes in cotton-top tamarins (CTT, Saguinus oedipus), an endangered non-human primate native to the rainforests of Colombia and Costa Rica. Typical lifespan is 13-14 years of age in the wild and 15-20+ years in captivity. We performed detailed immunohistochemical analyses of Abeta deposition and associated pathogenesis in archived brain sections from 36 tamarins ranging in age from 6-21 years. Abeta plaque deposition was observed in 16 of the 20 oldest tamarins (>12 years). Plaques contained mainly Abeta42, and in the oldest animals, were associated with reactive astrocytes, activated microglia, Apo E, and ubiquitin-positive dystrophic neurites, similar to human plaques. Vascular Abeta was detected in 14 of the 20 aged tamarins; Abeta42 preceded Abeta40 deposition. Phospho-tau labeled dystrophic neurites and tangles, typically present in human AD, were absent in the tamarins. In conclusion, tamarins may represent a model of early AD pathology.

  6. Effect of catalpol on senile plaques and spatial learning and memory ability in amyloid-β protein precursor/presenilin 1 double transgenic mice

    Institute of Scientific and Technical Information of China (English)



    Objective To investigate whether catalpol affects senile plaque formation and spatial learning and memory ability in the amyloid-βprotein precursor/presenilin 1(APP/PS1)double transgenic mice.Methods

  7. Amyloid precursor protein expression is enhanced in human platelets from subjects with Alzheimer's disease and frontotemporal lobar degeneration: a real-time PCR study. (United States)

    Vignini, Arianna; Morganti, Stefano; Salvolini, Eleonora; Sartini, Davide; Luzzi, Simona; Fiorini, Rosamaria; Provinciali, Leandro; Di Primio, Roberto; Mazzanti, Laura; Emanuelli, Monica


    Frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD) represent the most frequent causes of early-onset and late-onset degenerative dementia, respectively. A correct diagnosis entails the choice of appropriate therapies. In this view the present study aimed to identify biomarkers that could improve the differential diagnosis. We recently found an overexpression of platelet amyloid precursor protein (APP) in AD; furthermore, recent studies have suggested the presence of changes in APP processing in FTLD. In this context, we analyzed the mRNA expression level of Total APP (TOT) and APP containing a Kunitz-type serine protease inhibitor domain (KPI) in platelets obtained from AD patients, subjects with FTLD, and healthy subjects. In addition, we evaluated the correlation between platelet APP mRNA expression levels and cognitive impairment.Differential gene expression measurements revealed a significant up-regulation of APP TOT and APP KPI in both AD and FTLD patients compared to the controls (being AD/Controls: 1.67 for APP TOT and 1.47 for APP KPI; FTLD/Controls: 1.62 for APP TOT and 1.51 for APP KPI; p < 0.05), although it is interesting to note that in FTLD patients this expression did not correlate with the severity of cognitive impairment.This could be related to a reduced beta-amyloid (Aβ) formation, caused by an alteration of secretase enzymatic activity, even though a post-transcriptional regulation of APP mRNAs in FTLD cannot be excluded.

  8. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase. (United States)

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R


    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  9. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Bani-Yaghoub, Mahmud [Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Taylor, Rod [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Johnston, Linda J., E-mail: [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Pezacki, John Paul, E-mail: [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada)


    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline, the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.

  10. The antibacterial activity of peptides derived from human beta-2 glycoprotein I is inhibited by protein H and M1 protein from Streptococcus pyogenes

    NARCIS (Netherlands)

    Nilsson, Maria; Wasylik, Sylwia; Mörgelin, Matthias; Olin, Anders I.; Meijers, Joost C. M.; Derksen, Ronald H. W. M.; de Groot, Philip G.; Herwald, Heiko


    During the last years, the importance of antibacterial peptides has attracted considerable attention. We report here that peptides derived from the fifth domain of beta-2 glycoprotein I (beta(2)GPI), a human heparin binding plasma protein, have antibacterial activities against Gram-positive and

  11. Detergent-associated solution conformations of helical and beta-barrel membrane proteins. (United States)

    Mo, Yiming; Lee, Byung-Kwon; Ankner, John F; Becker, Jeffrey M; Heller, William T


    Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), the Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the beta-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.

  12. Spatial and Temporal Resolution of Global Protein Synthesis during HSV Infection Using Bioorthogonal Precursors and Click Chemistry (United States)

    Serwa, Remigiusz A.; O’Hare, Peter


    We used pulse-labeling with the methionine analogue homopropargylglycine (HPG) to investigate spatiotemporal aspects of protein synthesis during herpes simplex virus (HSV) infection. In vivo incorporation of HPG enables subsequent selective coupling of fluorochrome-capture reagents to newly synthesised proteins. We demonstrate that HPG labeling had no effect on cell viability, on accumulation of test early or late viral proteins, or on overall virus yields. HPG pulse-labeling followed by SDS-PAGE analysis confirmed incorporation into newly synthesised proteins, while parallel processing by in situ cycloaddition revealed new insight into spatiotemporal aspects of protein localisation during infection. A striking feature was the rapid accumulation of newly synthesised proteins not only in a general nuclear pattern but additionally in newly forming sub-compartments represented by small discrete foci. These newly synthesised protein domains (NPDs) were similar in size and morphology to PML domains but were more numerous, and whereas PML domains were progressively disrupted, NPDs were progressively induced and persisted. Immediate-early proteins ICP4 and ICP0 were excluded from NPDs, but using an ICP0 mutant defective in PML disruption, we show a clear spatial relationship between NPDs and PML domains with NPDs frequently forming immediately adjacent and co-joining persisting PML domains. Further analysis of location of the chaperone Hsc70 demonstrated that while NPDs formed early in infection without overt Hsc70 recruitment, later in infection Hsc70 showed pronounced recruitment frequently in a coat-like fashion around NPDs. Moreover, while ICP4 and ICP0 were excluded from NPDs, ICP22 showed selective recruitment. Our data indicate that NPDs represent early recruitment of host and viral de novo translated protein to distinct structural entities which are precursors to the previously described VICE domains involved in protein quality control in the nucleus, and reveal

  13. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    Energy Technology Data Exchange (ETDEWEB)



    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S

  14. Characterization of the ectodomain of the envelope protein of dengue virus type 4: expression, membrane association, secretion and particle formation in the absence of precursor membrane protein.

    Directory of Open Access Journals (Sweden)

    Szu-Chia Hsieh

    Full Text Available The envelope (E of dengue virus (DENV is the major target of neutralizing antibodies and vaccine development. After biosynthesis E protein forms a heterodimer with precursor membrane (prM protein. Recent reports of infection enhancement by anti-prM monoclonal antibodies (mAbs suggest anti-prM responses could be potentially harmful. Previously, we studied a series of C-terminal truncation constructs expressing DENV type 4 prM/E or E proteins and found the ectodomain of E protein alone could be recognized by all 12 mAbs tested, suggesting E protein ectodomain as a potential subunit immunogen without inducing anti-prM response. The characteristics of DENV E protein ectodomain in the absence of prM protein remains largely unknown.In this study, we investigated the expression, membrane association, glycosylation pattern, secretion and particle formation of E protein ectodomain of DENV4 in the presence or absence of prM protein. E protein ectodomain associated with membrane in or beyond trans-Golgi and contained primarily complex glycans, whereas full-length E protein associated with ER membrane and contained high mannose glycans. In the absence of prM protein, E protein ectodomain can secrete as well as form particles of approximately 49 nm in diameter, as revealed by sucrose gradient ultracentrifugation with or without detergent and electron microscopy. Mutational analysis revealed that the secretion of E protein ectodomain was affected by N-linked glycosylation and could be restored by treatment with ammonia chloride.Considering the enhancement of DENV infectivity by anti-prM antibodies, our findings provide new insights into the expression and secretion of E protein ectodomain in the absence of prM protein and contribute to future subunit vaccine design.

  15. Binding of radioiodinated human. beta. -endorphin to serum proteins from rats and humans, determined by several methods

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Hanano, M.


    Binding of immunoreactive radioiodinated human ..beta..-endorphin (/sup 125/I-..beta..-EP) to rat serum was demonstrated by gel filtration of /sup 125/I-..beta..-EP in pooled rat serum on Sephadex G-200. Two radioactive peaks associated with proteins eluted from the column. The first peak eluted at the void volume containing lipoproteins, ..cap alpha../sub 2/- and ..beta../sub 2/-macroglobulins, and the second peak at the fraction of albumin. Binding of /sup 125/I-..beta..-EP to albumin was directly proved by gel filtration of /sup 125/I-..beta..-EP in buffer containing 4% human serum albumin on Sephadex G-200. Equilibrium dialysis was not applicable to investigating the interaction of /sup 125/I-..beta..-EP with serum proteins, because of the intense nonspecific adsorption to the semi-permeable membrane and the degradation of the peptide during dialysis. Therefore, in order to quantitatively evaluate the binding of /sup 125/I-..beta..-EP in sera from rats and humans, the authors utilized four other methods (ultrafiltration, charcoal adsorption, polyethylene glycol precipitation and equilibrium gel filtration). These methods corresponded well with each other and indicated 35-44% binding of /sup 125/I-..beta..-EP in rat serum. Binding of /sup 125/I-..beta..-EP in normal human serum was 36%, determined by ultrafiltration. Serum protein binding of /sup 125/I-..beta..-EP was concentration independent over the concentration range studied (1-1000 nM). 23 references, 4 figures, 1 table.

  16. Elaboration of thorium uranium phosphate-diphosphate({beta}-TUPD) and {beta}-TUPD/monazite composite materials from crystallized precursors: sintering and study of the long term behavior of the ceramics; Elaboration de phosphate-diphosphate de thorium et d'uranium ({beta}-PDTU) et de materiaux composites {beta}-PDTU/Monazite a partir de precurseurs cristallises. Etudes du frittage et de la durabilite chimique

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, N


    Thorium Phosphate-Diphosphate ({beta}-TPD) is actually considered as potential host matrix for the immobilization of radionuclides, and especially actinides, in the field of an underground repository. The studies reported in this work are based on the precipitation of the Thorium Phosphate Hydrogen-Phosphate Hydrate (TPHPH) as a precursor of {beta}-TPD. The crystal structure of TPHPH was solved then the reactions involved during its transformation into {beta}-TPD were established. It allows us to put in evidence a new monoclinic variety of TPD, called {alpha}-TPD, acting as intermediate of reaction. Moreover, the existence of a complete solid solution between TPHPH and UPHPH was demonstrated.The experimental conditions of sintering leading to an optimal densification of the pellets were determined. The relative density of the samples was always between 95 and 100% of the calculated value while a significant improvement of the homogeneity of the samples was noted. By this way, the process based on the precipitation of low-temperature crystallized precursors followed by their heat treatment at high temperature was applied to the preparation of {beta}-TUPD/Monazite based composites in the aim to incorporate simultaneously tri- and tetravalent actinides. The chemical durability of {beta}-TUPD sintered samples was evaluated. The normalized leaching rates determined in several experimental conditions revealed the good resistance of the solids to aqueous alteration. Moreover, the normalized dissolution rates exhibited a low dependence to temperature, pH as well as to several ions present in the leachate. For all the samples, thorium was quickly precipitated as a neo-formed phosphate phase identified to TPHPH. (author)

  17. Differential regulation of amyloid precursor protein sorting with pathological mutations results in a distinct effect on amyloid-β production. (United States)

    Lin, Yen-Chen; Wang, Jia-Yi; Wang, Kai-Chen; Liao, Jhih-Ying; Cheng, Irene H


    The deposition of amyloid-β (Aβ) peptide, which is generated from amyloid precursor protein (APP), is the pathological hallmark of Alzheimer's disease (AD). Three APP familial AD mutations (D678H, D678N, and H677R) located at the sixth and seventh amino acid of Aβ have distinct effect on Aβ aggregation, but their influence on the physiological and pathological roles of APP remain unclear. We found that the D678H mutation strongly enhances amyloidogenic cleavage of APP, thus increasing the production of Aβ. This enhancement of amyloidogenic cleavage is likely because of the acceleration of APPD678H sorting into the endosomal-lysosomal pathway. In contrast, the APPD678N and APPH677R mutants do not cause the same effects. Therefore, this study indicates a regulatory role of D678H in APP sorting and processing, and provides genetic evidence for the importance of APP sorting in AD pathogenesis. The internalization of amyloid precursor protein (APP) increases its opportunity to be processed by β-secretase and to produce Amyloid-β (Aβ) that causes Alzheimer's disease (AD). We report a pathogenic APPD678H mutant that enhances APP internalization into the endosomal-lysosomal pathway and thus promotes the β-secretase cleavage and Aβ production. This study provides genetic evidence for the importance of APP sorting in AD pathogenesis. © 2014 International Society for Neurochemistry.

  18. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Gye Won [Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711 (Korea, Republic of); Yun, Mi-Young [Department of Beauty Health Care, Daejeon University, Daejeon 305-764 (Korea, Republic of); Cuong, Nguyen Manh [Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Gyu-Yong, E-mail: [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Oh, Sangtaek, E-mail: [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)


    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  19. Suitability of macrophage inflammatory protein-1beta production by THP-1 cells in differentiating skin sensitizers from irritant chemicals. (United States)

    Lim, Yeon-Mi; Moon, Seong-Joon; An, Su-Sun; Lee, Soo-Jin; Kim, Seo-Young; Chang, Ih-Seop; Park, Kui-Lea; Kim, Hyoung-Ah; Heo, Yong


    Worldwide restrictions in animal use for research have driven efforts to develop alternative methods. The study aimed to test the efficacy of the macrophage inflammatory protein-1beta (MIP-1beta) assay for testing chemicals' skin-sensitizing capacity. The assay was performed using 9 chemicals judged to be sensitizing and 7 non-sensitizing by the standard in vivo assays. THP-1 cells were cultured in the presence or absence of 4 doses, 0.01x, 0.1x, 0.5x, or 1x IC(50) (50% inhibitory concentration for THP-1 cell proliferation) of these chemicals for 24 hr, and the MIP-1beta level in the supernatants was determined. Skin sensitization by the test chemicals was determined by MIP-1beta production rates. The MIP-1beta production rate was expressed as the relative increase in MIP-1beta production in response to chemical treatment compared with vehicle treatment. When the threshold MIP-1beta production rate used was 100% or 105% of dimethyl sulfoxide, all the sensitizing chemicals tested (dinitrochlorobenzene, hexyl cinnamic aldehyde, eugenol, hydroquinone, dinitrofluorobenzene, benzocaine, nickel, chromium, and 5-chloro-2-methyl-4-isothiazolin-3-one) were positive, and all the non-sensitizing chemicals (methyl salicylate, benzalkonium chloride, lactic acid, isopropanol, and salicylic acid), with the exception of sodium lauryl sulfate, were negative for MIP-1beta production. These results indicate that MIP-1beta could be a biomarker for classification of chemicals as sensitizers or non-sensitizers.

  20. Identification of a key structural element for protein folding within beta-hairpin turns. (United States)

    Kim, Jaewon; Brych, Stephen R; Lee, Jihun; Logan, Timothy M; Blaber, Michael


    Specific residues in a polypeptide may be key contributors to the stability and foldability of the unique native structure. Identification and prediction of such residues is, therefore, an important area of investigation in solving the protein folding problem. Atypical main-chain conformations can help identify strains within a folded protein, and by inference, positions where unique amino acids may have a naturally high frequency of occurrence due to favorable contributions to stability and folding. Non-Gly residues located near the left-handed alpha-helical region (L-alpha) of the Ramachandran plot are a potential indicator of structural strain. Although many investigators have studied mutations at such positions, no consistent energetic or kinetic contributions to stability or folding have been elucidated. Here we report a study of the effects of Gly, Ala and Asn substitutions found within the L-alpha region at a characteristic position in defined beta-hairpin turns within human acidic fibroblast growth factor, and demonstrate consistent effects upon stability and folding kinetics. The thermodynamic and kinetic data are compared to available data for similar mutations in other proteins, with excellent agreement. The results have identified that Gly at the i+3 position within a subset of beta-hairpin turns is a key contributor towards increasing the rate of folding to the native state of the polypeptide while leaving the rate of unfolding largely unchanged.

  1. Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta. (United States)

    Abbass, Jad; Nebel, Jean-Christophe


    Protein structure prediction is considered a main challenge in computational biology. The biannual international competition, Critical Assessment of protein Structure Prediction (CASP), has shown in its eleventh experiment that free modelling target predictions are still beyond reliable accuracy, therefore, much effort should be made to improve ab initio methods. Arguably, Rosetta is considered as the most competitive method when it comes to targets with no homologues. Relying on fragments of length 9 and 3 from known structures, Rosetta creates putative structures by assembling candidate fragments. Generally, the structure with the lowest energy score, also known as first model, is chosen to be the "predicted one". A thorough study has been conducted on the role and diversity of 3-mers involved in Rosetta's model "refinement" phase. Usage of the standard number of 3-mers - i.e. 200 - has been shown to degrade alpha and alpha-beta protein conformations initially achieved by assembling 9-mers. Therefore, a new prediction pipeline is proposed for Rosetta where the "refinement" phase is customised according to a target's structural class prediction. Over 8% improvement in terms of first model structure accuracy is reported for alpha and alpha-beta classes when decreasing the number of 3- mers. Copyright© Bentham Science Publishers; For any queries, please email at

  2. Antioxidant and regulatory role of mitochondrial uncoupling protein UCP2 in pancreatic beta-cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Olejár, Tomáš; Smolková, Katarína; Ježek, Jan; Dlasková, Andrea; Plecitá-Hlavatá, Lydie; Zelenka, Jaroslav; Špaček, Tomáš; Engstová, Hana; Reguera Pajuelo, David; Jabůrek, Martin


    Roč. 63, Suppl.1 (2014), S73-S91 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GAP305/12/1247; GA ČR(CZ) GPP304/10/P204; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : mitochondria * uncoupling protein UCP2 * pancreatic beta-cells * reactive oxygen species * glucose-stimulated insulin secretion Subject RIV: EA - Cell Biology Impact factor: 1.293, year: 2014

  3. A Patient with Beta-Propeller Protein-Associated Neurodegeneration: Treatment with Iron Chelation Therapy

    Directory of Open Access Journals (Sweden)

    Shen-Yang Lim


    Full Text Available We present a case of beta-propeller protein-associated neurodegeneration, a form of neurodegeneration with brain iron accumulation. The patient harbored a novel mutation in the WDR45 gene. A detailed video and description of her clinical condition are provided. Her movement disorder phenomenology was characterized primarily by limb stereotypies and gait dyspraxia. The patient’s disability was advanced by the time iron-chelating therapy with deferiprone was initiated, and no clinical response in terms of cognitive function, behavior, speech, or movements were observed after one year of treatment.

  4. GIT1/beta PIX signaling proteins and PAK1 kinase regulate microtubule nucleation

    Czech Academy of Sciences Publication Activity Database

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel


    Roč. 1863, č. 6 (2016), s. 1282-1297 ISSN 0167-4889 R&D Projects: GA ČR GAP302/12/1673; GA ČR GA15-22194S; GA MŠk LH12050; GA MZd NT14467; GA ČR GA16-23702S Institutional support: RVO:68378050 Keywords : Centrosome * Microtubule nucleation * gamma-tubulin * GIT1/beta PIX signaling proteins * PAK1 kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.521, year: 2016

  5. Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. (United States)

    Cobb, Nathan J; Sönnichsen, Frank D; McHaourab, Hassane; Surewicz, Witold K


    Transmissible spongiform encephalopathies (TSEs) represent a group of fatal neurodegenerative diseases that are associated with conformational conversion of the normally monomeric and alpha-helical prion protein, PrP(C), to the beta-sheet-rich PrP(Sc). This latter conformer is believed to constitute the main component of the infectious TSE agent. In contrast to high-resolution data for the PrP(C) monomer, structures of the pathogenic PrP(Sc) or synthetic PrP(Sc)-like aggregates remain elusive. Here we have used site-directed spin labeling and EPR spectroscopy to probe the molecular architecture of the recombinant PrP amyloid, a misfolded form recently reported to induce transmissible disease in mice overexpressing an N-terminally truncated form of PrP(C). Our data show that, in contrast to earlier, largely theoretical models, the con formational conversion of PrP(C) involves major refolding of the C-terminal alpha-helical region. The core of the amyloid maps to C-terminal residues from approximately 160-220, and these residues form single-molecule layers that stack on top of one another with parallel, in-register alignment of beta-strands. This structural insight has important implications for understanding the molecular basis of prion propagation, as well as hereditary prion diseases, most of which are associated with point mutations in the region found to undergo a refolding to beta-structure.

  6. Animal and Plant Proteins as Precursors of Peptides with ACE Inhibitory Activity – An in silico Strategy of Protein Evaluation

    Directory of Open Access Journals (Sweden)

    Anna Iwaniak


    Full Text Available This paper presents a modern in silico approach useful in the evaluation of proteins as a source of ACE inhibitors. All protein sequences analyzed were derived from the BIOPEP database. To determine the protein value, the following criteria of evaluation were applied: the profile of potential biological (ACE inhibitory activity of a protein, the frequency of the occurrence of fragments with ACE inhibitory activity (A and the potential biological activity of a protein (B. The results, based on a statistical analysis, indicate that milk proteins can be a better source of ACE inhibitors than wheat gliadins. Moreover, all analyzed gliadins possessed more potent ACE inhibitors than chicken meat proteins. No significant differences were observed when comparing A values between soy globulins and β-lactoglobulins. Although criteria such as the profile of potential biological activity of protein, as well as parameters A and B, can be suitable tools in protein evaluation, the proteolytic digestion of protein needs to be considered. Moreover, computerised methods of classifying proteins according to different algorithms are often subjective due to discretion in interpretation of the results.

  7. Plasma Membrane Protein Profiling in Beta-Amyloid-Treated Microglia Cell Line. (United States)

    Correani, Virginia; Di Francesco, Laura; Mignogna, Giuseppina; Fabrizi, Cinzia; Leone, Stefano; Giorgi, Alessandra; Passeri, Alessia; Casata, Roberto; Fumagalli, Lorenzo; Maras, Bruno; Schininà, M Eugenia


    In the responsiveness of microglia to toxic stimuli, plasma membrane proteins play a key role. In this study we treated with a synthetic beta amyloid peptide murine microglial cells metabolically differently labelled with stable isotope amino acids (SILAC). The plasma membrane was selectively enriched by a multi-stage aqueous two-phase partition system. We were able to identify by 1D-LC-MS/MS analyses 1577 proteins, most of them are plasma membrane proteins according to the Gene Ontology annotation. An unchanged level of amyloid receptors in this data set suggests that microglia preserve their responsiveness capability to the environment even after 24-h challenge with amyloid peptides. On the other hand, 14 proteins were observed to change their plasma membrane abundance to a statistically significant extent. Among these, we proposed as reliable biomarkers of the inflammatory microglia phenotype in AD damaged tissues MAP/microtubule affinity-regulating kinase 3 (MARK3), Interferon-induced transmembrane protein 3 (IFITM3), Annexins A5 and A7 (ANXA5, ANXA7) and Neuropilin-1 (NRP1), all proteins known to be involved in the inflammation processes and in microtubule network assembly rate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1beta. (United States)

    Engelke, Michael; Friedrich, Olaf; Budde, Petra; Schäfer, Christina; Niemann, Ursula; Zitt, Christof; Jüngling, Eberhard; Rocks, Oliver; Lückhoff, Andreas; Frey, Jürgen


    Transient receptor potential proteins (TRP) are supposed to participate in the formation of store-operated Ca(2+) influx channels by co-assembly. However, little is known which domains facilitate the interaction of subunits. Contribution of the N-terminal coiled-coil domain and ankyrin-like repeats and the putative pore region of the mouse TRP1beta (mTRP1beta) variant to the formation of functional cation channels were analyzed following overexpression in HEK293 (human embryonic kidney) cells. MTRP1beta expressing cells exhibited enhanced Ca(2+) influx and enhanced whole-cell membrane currents compared to mTRP1beta deletion mutants. Using a yeast two-hybrid assay only the coiled-coil domain facilitated homodimerization of the N-terminus. These results suggest that the N-terminus of mTRP1beta is required for structural organization thus forming functional channels.

  9. Genus beta human papillomavirus E6 proteins vary in their effects on the transactivation of p53 target genes. (United States)

    White, Elizabeth A; Walther, Johanna; Javanbakht, Hassan; Howley, Peter M


    The genus beta human papillomaviruses (beta HPVs) cause cutaneous lesions and are thought to be involved in the initiation of some nonmelanoma skin cancers (NMSCs), particularly in patients with the genetic disorder epidermodysplasia verruciformis (EV). We have previously reported that at least two of the genus beta HPV E6 proteins bind to and/or increase the steady-state levels of p53 in squamous epithelial cells. This is in contrast to a well-characterized ability of the E6 proteins of cancer-associated HPVs of genus alpha HPV, which inactivate p53 by targeting its ubiquitin-mediated proteolysis. In this study, we have investigated the ability of genus beta E6 proteins from eight different HPV types to block the transactivation of p53 target genes following DNA damage. We find that the E6 proteins from diverse beta HPV species and types vary in their capacity to block the induction of MDM2, p21, and proapoptotic genes after genotoxic stress. We conclude that some genus beta HPV E6 proteins inhibit at least some p53 target genes, although perhaps not by the same mechanism or to the same degree as the high-risk genus alpha HPV E6 proteins. This study addresses the ability of various human papillomavirus E6 proteins to block the activation of p53-responsive cellular genes following DNA damage in human keratinocytes, the normal host cell for HPVs. The E6 proteins encoded by the high-risk, cancer-associated HPV types of genus alpha HPV have a well-established activity to target p53 degradation and thereby inhibit the response to DNA damage. In this study, we have investigated the ability of genus beta HPV E6 proteins from eight different HPV types to block the ability of p53 to transactivate downstream genes following DNA damage. We find that some, but not all, genus beta HPV E6 proteins can block the transactivation of some p53 target genes. This differential response to DNA damage furthers the understanding of cutaneous HPV biology and may help to explain the

  10. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. (United States)

    Nixon, Ralph A


    Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. © FASEB.

  11. Prediction of beta-turns in proteins using the first-order Markov models. (United States)

    Lin, Thy-Hou; Wang, Ging-Ming; Wang, Yen-Tseng


    We present a method based on the first-order Markov models for predicting simple beta-turns and loops containing multiple turns in proteins. Sequences of 338 proteins in a database are divided using the published turn criteria into the following three regions, namely, the turn, the boundary, and the nonturn ones. A transition probability matrix is constructed for either the turn or the nonturn region using the weighted transition probabilities computed for dipeptides identified from each region. There are two such matrices constructed for the boundary region since the transition probabilities for dipeptides immediately preceding or following a turn are different. The window used for scanning a protein sequence from amino (N-) to carboxyl (C-) terminal is a hexapeptide since the transition probability computed for a turn tetrapeptide is capped at both the N- and C- termini with a boundary transition probability indexed respectively from the two boundary transition matrices. A sum of the averaged product of the transition probabilities of all the hexapeptides involving each residue is computed. This is then weighted with a probability computed from assuming that all the hexapeptides are from the nonturn region to give the final prediction quantity. Both simple beta-turns and loops containing multiple turns in a protein are then identified by the rising of the prediction quantity computed. The performance of the prediction scheme or the percentage (%) of correct prediction is evaluated through computation of Matthews correlation coefficients for each protein predicted. It is found that the prediction method is capable of giving prediction results with better correlation between the percent of correct prediction and the Matthews correlation coefficients for a group of test proteins as compared with those predicted using some secondary structural prediction methods. The prediction accuracy for about 40% of proteins in the database or 50% of proteins in the test set is

  12. Cellular uptake of beta-carotene from protein stabilized solid lipid nano-particles prepared by homogenization-evaporation method (United States)

    Using a homogenization-evaporation method, beta-carotene (BC) loaded nano-particles were prepared with different ratios of food-grade sodium caseinate (SC), whey protein isolate (WPI), or soy protein isolate (SPI) to BC and evaluated for their physiochemical stability, in vitro cytotoxicity, and cel...

  13. Roles of beta-turns in protein folding: from peptide models to protein engineering. (United States)

    Marcelino, Anna Marie C; Gierasch, Lila M


    Reverse turns are a major class of protein secondary structure; they represent sites of chain reversal and thus sites where the globular character of a protein is created. It has been speculated for many years that turns may nucleate the formation of structure in protein folding, as their propensity to occur will favor the approximation of their flanking regions and their general tendency to be hydrophilic will favor their disposition at the solvent-accessible surface. Reverse turns are local features, and it is therefore not surprising that their structural properties have been extensively studied using peptide models. In this article, we review research on peptide models of turns to test the hypothesis that the propensities of turns to form in short peptides will relate to the roles of corresponding sequences in protein folding. Turns with significant stability as isolated entities should actively promote the folding of a protein, and by contrast, turn sequences that merely allow the chain to adopt conformations required for chain reversal are predicted to be passive in the folding mechanism. We discuss results of protein engineering studies of the roles of turn residues in folding mechanisms. Factors that correlate with the importance of turns in folding indeed include their intrinsic stability, as well as their topological context and their participation in hydrophobic networks within the protein's structure.

  14. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamprianou, Smaragda; Chatzopoulou, Elli; Thomas, Jean-Léon; Bouyain, Samuel; Harroch, Sheila (IP-Korea); (UPMC); (UMKC)


    The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.

  15. Role of Tim50 in the transfer of precursor proteins from the outer to the inner membrane of mitochondria. (United States)

    Mokranjac, Dejana; Sichting, Martin; Popov-Celeketić, Dusan; Mapa, Koyeli; Gevorkyan-Airapetov, Lada; Zohary, Keren; Hell, Kai; Azem, Abdussalam; Neupert, Walter


    Transport of essentially all matrix and a number of inner membrane proteins is governed, entirely or in part, by N-terminal presequences and requires a coordinated action of the translocases of outer and inner mitochondrial membranes (TOM and TIM23 complexes). Here, we have analyzed Tim50, a subunit of the TIM23 complex that is implicated in transfer of precursors from TOM to TIM23. Tim50 is recruited to the TIM23 complex via Tim23 in an interaction that is essentially independent of the rest of the translocase. We find Tim50 in close proximity to the intermembrane space side of the TOM complex where it recognizes both types of TIM23 substrates, those that are to be transported into the matrix and those destined to the inner membrane, suggesting that Tim50 recognizes presequences. This function of Tim50 depends on its association with TIM23. We conclude that the efficient transfer of precursors between TOM and TIM23 complexes requires the concerted action of Tim50 with Tim23.

  16. Effect of blood serum from irradiated mice on the incorporation of DNA, RNA and protein precursor in L929 cells

    International Nuclear Information System (INIS)

    Muehlensiepen, H.; Porschen, W.; Feinendegen, L.E.


    Serum from whole-body irradiated mice inhibits incorporation of DNA precursors into DNA of L929 cells in culture in a dose-dependent way. The humoral factor interfering with the incorporation of 3 H-thymidine and 125 I-iododeoxyuridine is identical to thymidine. The degree of depression of 125 I-iododeoxyuridine-uptake is more sensitive than that of 3 H-thymidine. Irradiation of donor mice does not confer a toxic effect of blood serum on cell growth in culture. Incorporation of 3 H-leucine into protein and 3 H-cytidine into DNA and RNA is not affected by the serum of irradiated mice; there is no effect on the incorporation of 3 H-cytidine from the intracellular precursor pool into DNA or RNA either. The present findings demonstrate the specificity and high sensitivity of the assay system for measuring thymidine concentration in mouse blood serum and point to possible applications of analysing abnormalities in DNA metabolism resulting in, or from, disturbances of the thymidine reutilization pathway. (orig.) [de

  17. CCAAT/enhancer binding protein {beta} deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shaikh M., E-mail: [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Miyazaki, Makoto [Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Friedman, Jacob E. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States)


    Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to prevent LXR

  18. Markov analysis of alpha-helical, beta-sheet and random coil regions of proteins

    International Nuclear Information System (INIS)

    Macchiato, M.; Tramontano, A.


    The rules up to now used to predict the spatial configuration of proteins from their primary structure are mostly based on the recurrence analysis of some doublets, triplets and so on of contiguous amino acids, but they do not take into account the correlation characteristics of the whole amino acid sequence. A statistical analysis of amino acid sequences for the alpha-helical, beta-sheet and random coil regions of about twenty proteins with known secondary structure by considering correlations effects has been carried out. The obtained results demonstrate that these sequences are at least a second-order Markov chain, i.e. they appear as if they were generated by a source that remembers at least the two aminoacids before the one being generated and that these two previous symbols influence the present choice

  19. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Robert Y.L., E-mail: [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Kuo, Rei-Lin [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Ma, Wei-Chieh [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Hsing-I [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yu, Jau-Song [Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yen, Sih-Min [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Chi-Ruei [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Shih, Shin-Ru [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China)


    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.

  20. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    International Nuclear Information System (INIS)

    Wang, Robert Y.L.; Kuo, Rei-Lin; Ma, Wei-Chieh; Huang, Hsing-I; Yu, Jau-Song; Yen, Sih-Min; Huang, Chi-Ruei; Shih, Shin-Ru


    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells

  1. The calcium-sensing receptor changes cell shape via a beta-arrestin-1 ARNO ARF6 ELMO protein network. (United States)

    Bouschet, Tristan; Martin, Stéphane; Kanamarlapudi, Venkateswarlu; Mundell, Stuart; Henley, Jeremy M


    G-protein-coupled receptors (GPCRs) transduce the binding of extracellular stimuli into intracellular signalling cascades that can lead to morphological changes. Here, we demonstrate that stimulation of the calcium-sensing receptor (CaSR), a GPCR that promotes chemotaxis by detecting increases in extracellular calcium, triggers plasma membrane (PM) ruffling via a pathway that involves beta-arrestin 1, Arf nucleotide binding site opener (ARNO), ADP-ribosylating factor 6 (ARF6) and engulfment and cell motility protein (ELMO). Expression of dominant negative beta-arrestin 1 or its knockdown with siRNA impaired the CaSR-induced PM ruffling response. Expression of a catalytically inactive ARNO also reduced CaSR-induced PM ruffling. Furthermore, beta-arrestin 1 co-immunoprecipitated with the CaSR and ARNO under resting conditions. Agonist treatment did not markedly alter beta-arrestin 1 binding to the CaSR or to ARNO but it did elicit the translocation and colocalisation of the CaSR, beta-arrestin 1 and ARNO to membrane protrusions. Furthermore, ARF6 and ELMO, two proteins known to couple ARNO to the cytoskeleton, were required for CaSR-dependent morphological changes and translocated to the PM ruffles. These data suggest that cells ruffle upon CaSR stimulation via a mechanism that involves translocation of beta-arrestin 1 pre-assembled with the CaSR or ARNO, and that ELMO plays an essential role in this CaSR-signalling-induced cytoskeletal reorganisation.

  2. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M


    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the V H promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  3. Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes. (United States)

    Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P


    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people

  4. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels

    NARCIS (Netherlands)

    van Tiel, Claudia M.; Westerman, Jan; Paasman, Marten A.; Hoebens, Martha M.; Wirtz, Karel W. A.; Snoek, Gerry T.


    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165)

  5. Transcriptional regulation of human FE65, a ligand of Alzheimer's disease amyloid precursor protein, by Sp1.

    LENUS (Irish Health Repository)

    Yu, Hoi-Tin


    FE65 is a neuronal-enriched adaptor protein that binds to the Alzheimer\\'s disease amyloid precursor protein (APP). FE65 forms a transcriptionally active complex with the APP intracellular domain (AICD). The precise gene targets for this complex are unclear but several Alzheimer\\'s disease-linked genes have been proposed. Additionally, evidence suggests that FE65 influences APP metabolism. The mechanism by which FE65 expression is regulated is as yet unknown. To gain insight into the regulatory mechanism, we cloned a 1.6 kb fragment upstream of the human FE65 gene and found that it possesses particularly strong promoter activity in neurones. To delineate essential regions in the human FE65 promoter, a series of deletion mutants were generated. The minimal FE65 promoter was located between -100 and +5, which contains a functional Sp1 site. Overexpression of the transcription factor Sp1 potentiates the FE65 promoter activity. Conversely, suppression of the FE65 promoter was observed in cells either treated with an Sp1 inhibitor or in which Sp1 was knocked down. Furthermore, reduced levels of Sp1 resulted in downregulation of endogenous FE65 mRNA and protein. These findings reveal that Sp1 plays a crucial role in transcriptional control of the human FE65 gene.

  6. Levels of ABA, its precursors and dehydrin-like proteins during ...

    African Journals Online (AJOL)

    2Department of Molecular Biology and Biotechnology, University of Dar es Salaam,. P.O Box 35179, Dar ... to combat stress. Levels of ABA and proteins that cross reacted with an anti – dehydrin ...... Cambridge, Melbourne). Wang, X.-Q., Ullah ...

  7. Levels of ABA, its precursors and dehydrin-like proteins during ...

    African Journals Online (AJOL)

    Abstract—Abscisic acid (ABA) and dehydrin proteins are thought to confer tolerance to plant tissue under physiological stress and drought. Rhizophora mucronata, a true mangrove species, is subjected to physiological drought from fluctuating high saline conditions where leaf loss or senescence is considered a possible ...

  8. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate. (United States)

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun


    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  9. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells. (United States)

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François


    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Plasma pre beta-HDL formation is decreased by atorvastatin treatment in type 2 diabetes mellitus : Role of phospholipid transfer protein

    NARCIS (Netherlands)

    Dallinga-Thie, G. M.; van Tol, A.; Dullaart, R. P. F.

    Atorvastatin lowers plasma phospholipid transfer protein (PLTP) activity, which stimulates pre-beta-HDL, generation in vitro. We determined the effect of atorvastatin on pre-beta-HDL formation and its relation with PLTP activity in type 2 diabetes. Methods: Plasma pre-beta-HDL formation as well as

  11. Interconverting conformations of variants of the human amyloidogenic protein beta2-microglobulin quantitatively characterized by dynamic capillary electrophoresis and computer simulation

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Jørgensen, Thomas J D; Cheng, Lei


    Capillary electrophoretic separation profiles of cleaved variants of beta2-microglobulin (beta2m) reflect the conformational equilibria existing in solutions of these proteins. The characterization of these equilibria is of interest since beta2m is responsible for amyloid formation in dialysis-re...

  12. Protein degradation in skeletal muscle during experimental hyperthyroidism in rats and the effect of beta-blocking agents. (United States)

    Angerås, U; Hasselgren, P O


    beta-Blocking agents are increasingly used in the management of hyperthyroid patients. The effect of this treatment on increased muscle protein breakdown in the hyperthyroid state is not known. In the present study, experimental hyperthyroidism was induced in rats by daily ip injections of T3 (100 micrograms/100 g BW) during a 10-day period. Control animals received corresponding volumes of solvent. In groups of rats the selective beta-1-blocking agent metoprolol or the nonselective beta-blocker propranolol was infused by miniosmotic pumps implanted sc on the backs of the animals. Protein degradation was measured in incubated intact soleus and extensor digitorum longus muscles by determining tyrosine release into the incubation medium. The protein degradation rate in incubated extensor digitorum longus and soleus muscles was increased by 50-60% during T3 treatment. Metoprolol or propranolol did not influence muscle protein breakdown in either T3-treated or control animals. The results suggest that T3-induced increased muscle proteolysis is not mediated by beta-receptors, and muscle weakness and wasting in hyperthyroidism might not be affected by beta-blockers.

  13. Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners

    Directory of Open Access Journals (Sweden)

    Haft Daniel H


    Full Text Available Abstract Background Enzymes in the radical SAM (rSAM domain family serve in a wide variety of biological processes, including RNA modification, enzyme activation, bacteriocin core peptide maturation, and cofactor biosynthesis. Evolutionary pressures and relationships to other cellular constituents impose recognizable grammars on each class of rSAM-containing system, shaping patterns in results obtained through various comparative genomics analyses. Results An uncharacterized gene cluster found in many Actinobacteria and sporadically in Firmicutes, Chloroflexi, Deltaproteobacteria, and one Archaeal plasmid contains a PqqE-like rSAM protein family that includes Rv0693 from Mycobacterium tuberculosis. Members occur clustered with a strikingly well-conserved small polypeptide we designate "mycofactocin," similar in size to bacteriocins and PqqA, precursor of pyrroloquinoline quinone (PQQ. Partial Phylogenetic Profiling (PPP based on the distribution of these markers identifies the mycofactocin cluster, but also a second tier of high-scoring proteins. This tier, strikingly, is filled with up to thirty-one members per genome from three variant subfamilies that occur, one each, in three unrelated classes of nicotinoproteins. The pattern suggests these variant enzymes require not only NAD(P, but also the novel gene cluster. Further study was conducted using SIMBAL, a PPP-like tool, to search these nicotinoproteins for subsequences best correlated across multiple genomes to the presence of mycofactocin. For both the short chain dehydrogenase/reductase (SDR and iron-containing dehydrogenase families, aligning SIMBAL's top-scoring sequences to homologous solved crystal structures shows signals centered over NAD(P-binding sites rather than over substrate-binding or active site residues. Previous studies on some of these proteins have revealed a non-exchangeable NAD cofactor, such that enzymatic activity in vitro requires an artificial electron acceptor such

  14. Variants of beta-microglobulin cleaved at lysine-58 retain the main conformational features of the native protein but are more conformationally heterogeneous and unstable at physiological temperature

    DEFF Research Database (Denmark)

    Mimmi, Maria C; Jørgensen, Thomas J D; Pettirossi, Fabio


    -58 is removed. We find that the solution stability of both variants, especially of beta2-microglobulin from which lysine-58 is removed, is much reduced compared to wild-type beta2-microglobulin and is strongly dependent on temperature and protein concentration. 1H-NMR spectroscopy and amide hydrogen......Cleavage of the small amyloidogenic protein beta2-microglobulin after lysine-58 renders it more prone to unfolding and aggregation. This is important for dialysis-related beta2-microglobulin amyloidosis, since elevated levels of cleaved beta2-microglobulin may be found in the circulation...

  15. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Sven O., E-mail: [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Mayer, Magnus C. [Freie Universität Berlin, Thielallee 63, 14195 Berlin (Germany); Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow (Germany); Roeser, Dirk [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Multhaup, Gerd [McGill University Montreal, Montreal, Quebec H3G 1Y6 (Canada); Than, Manuel E., E-mail: [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)


    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  16. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells. (United States)

    Pavlikova, Nela; Smetana, Pavel; Halada, Petr; Kovar, Jan


    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Two memory associated genes regulated by amyloid precursor protein intracellular domain ovel insights into the pathogenesis of learning and memory impairment in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Chuandong Zheng; Xi Gu; Zhimei Zhong; Rui Zhu; Tianming Gao; Fang Wang


    In this study, we employed chromatin immunoprecipitation, a useful method for studying the locations of transcription factors bound to specific DNA regions in specific cells, to investigate amyloid precursor protein intracellular domain binding sites in chromatin DNA from hippocampal neurons of rats, and to screen out five putative genes associated with the learning and memory functions. The promoter regions of the calcium/calmodulin-dependent protein kinase II alpha and glutamate receptor-2 genes were amplified by PCR from DNA products immunoprecipitated by amyloid precursor protein intracellular domain. An electrophoretic mobility shift assay and western blot analysis suggested that the promoter regions of these two genes associated with learning and memory were bound by amyloid precursor protein intracellular domain (in complex form). Our experimental findings indicate that the amyloid precursor protein intracellular domain is involved in the transcriptional regulation of learning- and memory-associated genes in hippocampal neurons. These data may provide new insights into the molecular mechanism underlying the symptoms of progressive memory loss in Alzheimer's disease.

  18. Green-fluorescent protein+ Astrocytes Attach to beta-Amyloid Plaques in an Alzheimer Mouse Model and GFPare Sensitive for Clasmatodendrosis

    Directory of Open Access Journals (Sweden)

    Christian eHumpel


    Full Text Available Alzheimer’s disease (AD is pathologically characterized by beta-amyloid (Aβ plaques and Tau pathology. It is well-established that Aβ plaques are surrounded by reactive astrocytes, highly expressing glial fibrillary acidic protein (GFAP. In order to study the cellular interaction of reactive astrocytes with Aβ plaques, we crossbred mice overexpressing amyloid precursor protein (APP with the Swedish-Dutch-Iowa mutations (APP-SweDI with mice expressing green fluorescent protein (GFP under the GFAP-promotor. Three-dimensional confocal microscopy revealed a tight association and intense sprouting of astrocytic fine branched processes towards Aβ plaques in 12 month old mice. In order to study phagocytosis, 110 µm thick brain slices from 12 month old crossbred mice were cultured overnight, however, we found that the GFP fluorescence faded away, distal processes degenerated and a complete loss of astrocytic morphology was seen (clasmatodendrosis. In summary, our data show that GFP+ reactive astrocytes make intense contact with Aβ plaques but these cells are highly vulnerable for degeneration.

  19. Interactions of the integrin subunit beta1A with protein kinase B/Akt, p130Cas and paxillin contribute to regulation of radiation survival

    DEFF Research Database (Denmark)

    Seidler, Julia; Durzok, Rita; Brakebusch, Cord


    25beta1B cells, which express mutant beta1B-integrins, were compared in terms of radiation survival and beta1-integrin signaling. MATERIALS AND METHODS: Cells grown on fibronectin, collagen-III, laminin, vitronectin, anti-beta1-integrin-IgG (beta1-IgG) or poly-l-lysine were irradiated with 0-6Gy...... and phosphorylation were analyzed by Western blot technique. RESULTS: Adhesion of GD25beta1A cells to extracellular matrix proteins or beta1-IgG resulted in growth factor-independent radiation survival. In contrast, serum starved GD25beta1B cells showed a significant (Pradiation survival on all...... phosphorylation. Phosphorylated p130Cas and paxillin subsequently prevented activation of cell death-regulating JNK. CONCLUSIONS: The data show that beta1-integrin-mediated signaling through the cytoplasmic integrin domains is critical for efficient pro-survival regulation after irradiation. Profound knowledge...

  20. Precursor binding to an 880-kDa Toc complex as an early step during active import of protein into chloroplasts. (United States)

    Chen, Kuan-Yu; Li, Hsou-min


    The import of protein into chloroplasts is mediated by translocon components located in the chloroplast outer (the Toc proteins) and inner (the Tic proteins) envelope membranes. To identify intermediate steps during active import, we used sucrose density gradient centrifugation and blue-native polyacrylamide gel electrophoresis (BN-PAGE) to identify complexes of translocon components associated with precursor proteins under active import conditions instead of arrested binding conditions. Importing precursor proteins in solubilized chloroplast membranes formed a two-peak distribution in the sucrose density gradient. The heavier peak was in a similar position as the previously reported Tic/Toc supercomplex and was too large to be analyzed by BN-PAGE. The BN-PAGE analyses of the lighter peak revealed that precursors accumulated in at least two complexes. The first complex migrated at a position close to the ferritin dimer (approximately 880 kDa) and contained only the Toc components. Kinetic analyses suggested that this Toc complex represented an earlier step in the import process than the Tic/Toc supercomplex. The second complex in the lighter peak migrated at the position of the ferritin trimer (approximately 1320 kDa). It contained, in addition to the Toc components, Tic110, Hsp93, and an hsp70 homolog, but not Tic40. Two different precursor proteins were shown to associate with the same complexes. Processed mature proteins first appeared in the membranes at the same fractions as the Tic/Toc supercomplex, suggesting that processing of transit peptides occurs while precursors are still associated with the supercomplex.

  1. A new perspective on beta-sheet structures using vibrational Raman optical activity: From poly(L-lysine) to the prion protein

    DEFF Research Database (Denmark)

    McColl, L.H.; Blanch, E.W.; Gill, A.C.


    -sheet poly(L-lysine) contains up-and-down antiparallel beta-sheets based on the hairpin motif. The ROA spectrum of beta-sheet poly(L-lysine) was compared with ROA data on a number of native proteins containing different types of beta-sheet. Amide I and amide II ROA band patterns observed in beta-sheet poly(L-ly...

  2. Curcumin Decreases Amyloid-β Peptide Levels by Attenuating the Maturation of Amyloid-β Precursor Protein* (United States)

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E.


    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-β (Aβ), the principal component of senile plaques. Aβ is an ∼4-kDa peptide generated via cleavage of the amyloid-β precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Aβ-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Aβ levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Aβ levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-β pathology. PMID:20622013

  3. [Association between serum aluminium level and methylation of amyloid precursor protein gene in workers engaged in aluminium electrolysis]. (United States)

    Yang, X J; Yuan, Y Z; Niu, Q


    To investigate the association between serum aluminium level and methylation of the promoter region of amyloid precursor protein (APP)gene in workers engaged in aluminium electrolysis. In 2012, 366 electrolysis workers in an aluminium factory were enrolled as exposure group (working years >10 and age >40 years)and divided into low-exposure group and high-exposure group based on the median serum aluminium level. Meanwhile, 102 workers in a cement plant not exposed to aluminium were enrolled as control group. Graphite furnace atomic absorption spectrometry was used to measure serum aluminium level, methylation specific PCR was used to measure the methylation rate of the promoter region of APP gene, and ELI-SA was used to measure the protein expression of APP in lymphocytes in peripheral blood. The exposure group had a significantly higher serum aluminium level than the control group (45.07 μg/L vs 30.51 μg/L, P0.05). The multivariate logistic regression analysis showed that with reference to the control group, low aluminium exposure (OR=1.86, 95% CI 1.67~3.52)and high aluminium exposure (OR=2.98, 95% CI 1.97~4.15)were risk factors for a reduced methylation rate of the promoter region of APP gene. Reduced methylation of the promoter region of APP gene may be associated with increased serum aluminium level, and downregulated methylation of the promoter region of APP gene may accelerate APP gene transcription.

  4. Plasma protein profiling of patients with intraductal papillary mucinous neoplasm of the pancreas as potential precursor lesions of pancreatic cancer. (United States)

    Ilies, Maria; Sappa, Praveen Kumar; Iuga, Cristina Adela; Loghin, Felicia; Gesell Salazar, Manuela; Weiss, Frank Ulrich; Beyer, Georg; Lerch, Markus M; Völker, Uwe; Mayerle, Julia; Hammer, Elke


    Efforts for the early diagnosis of the pancreatic ductal adenocarcinoma (PDAC) have recently been driven to one of the precursor lesions, namely intraductal papillary mucinous neoplasm of the pancreas (IPMN). Only a few studies have focused on IPMN molecular biology and its overall progression to cancer. Therefore, IPMN lacks comprehensive characterization which makes its clinical management controversial. In this study, we characterized plasma proteins in the presence of IPMNs in comparison to healthy controls, chronic pancreatitis, and PDAC by a proteomics approach using data-independent acquisition based mass spectrometry. We describe several protein sets that could aid IPMN diagnosis, but also differentiation of IPMN from healthy controls, as well as from benign and malignant diseases. Among all, high levels of carbonic anhydrases and hemoglobins were characteristic for the IPMN group. By employing ELISA based quantification we validated our results for human tissue inhibitor of metalloproteinase inhibitor 1 (TIMP-1). We consider IPMN management directed towards an early potential cancer development a crucial opportunity before PDAC initiation and thus its early detection and cure. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The AMP-activated protein kinase beta 1 subunit modulates erythrocyte integrity. (United States)

    Cambridge, Emma L; McIntyre, Zoe; Clare, Simon; Arends, Mark J; Goulding, David; Isherwood, Christopher; Caetano, Susana S; Reviriego, Carmen Ballesteros; Swiatkowska, Agnieszka; Kane, Leanne; Harcourt, Katherine; Adams, David J; White, Jacqueline K; Speak, Anneliese O


    Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that acts as a critical regulator of cellular energy balance. Previous roles for the alpha 1 and gamma 1 subunits in the control of erythrocyte survival have been reported. In the work described here, we studied the role of the beta 1 subunit in erythrocytes and observed microcytic anemia with compensatory extramedullary hematopoiesis together with splenomegaly and increased osmotic resistance. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  6. A study of membrane protein defects and alpha hemoglobin chains of red blood cells in human beta thalassemia

    International Nuclear Information System (INIS)

    Rouyer-Fessard, P.; Garel, M.C.; Domenget, C.; Guetarni, D.; Bachir, D.; Colonna, P.; Beuzard, Y.


    The soluble pool of alpha hemoglobin chains present in blood or bone marrow cells was measured with a new affinity method using a specific probe, beta A hemoglobin chain labeled with [ 3 H]N-ethylmaleimide. This pool of soluble alpha chains was 0.067 ± 0.017% of hemoglobin in blood of normal adult, 0.11 ± 0.03% in heterozygous beta thalassemia and ranged from 0.26 to 1.30% in homozygous beta thalassemia intermedia. This elevated pool of soluble alpha chains observed in human beta thalassemia intermedia decreased 33-fold from a value of 10% of total hemoglobin in bone marrow cells to 0.3% in the most dense red blood cells. The amount of insoluble alpha chains was measured by using the polyacrylamide gel electrophoresis in urea and Triton X-100. In beta thalassemia intermedia the amount of insoluble alpha chains was correlated with the decreased spectrin content of red cell membrane and was associated with a decrease in ankyrin and with other abnormalities of the electrophoretic pattern of membrane proteins. The loss and topology of the reactive thiol groups of membrane proteins was determined by using [ 3 H]N-ethylmaleimide added to membrane ghosts prior to urea and Triton X-100 electrophoresis. Spectrin and ankyrin were the major proteins with the most important decrease of thiol groups

  7. Transforming growth factor-beta messenger RNA and protein in murine colitis

    DEFF Research Database (Denmark)

    Whiting, C V; Williams, A M; Claesson, Mogens Helweg


    Using a CD4+ T-cell-transplanted SCID mouse model of colitis, we have analyzed TGF-beta transcription and translation in advanced disease. By in situ hybridization, the epithelium of both control and inflamed tissues transcribed TGF-beta1 and TGF-beta3 mRNAs, but both were expressed significantly...... farther along the crypt axis in disease. Control lamina propria cells transcribed little TGF-beta1 or TGF-beta3 mRNA, but in inflamed tissues many cells expressed mRNA for both isoforms. No TGF-beta2 message was detected in either control or inflamed tissues. Immunohistochemistry for latent and active TGF...

  8. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  9. Seventeen copies of the human 37 kDa laminin receptor precursor/p40 ribosome-associated protein gene are processed pseudogenes arisen from retropositional events

    DEFF Research Database (Denmark)

    Jackers, P; Clausse, N; Fernandez, M


    A cDNA coding for a 37 kDa polypeptide has been identified in several species as both the potential precursor of the 67 kDa laminin receptor (37LRP) and a putative ribosome-associated protein (p40). Interestingly, increased expression of this polypeptide (37LRP/p40) is consistently observed...

  10. Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer's disease: Transgene and endogenous APP genes are regulated tissue-specifically

    Directory of Open Access Journals (Sweden)

    Chan Anthony WS


    Full Text Available Abstract Background Alzheimer's disease (AD is a devastating neurodegenerative disorder that affects a large and growing number of elderly individuals. In addition to idiopathic disease, AD is also associated with autosomal dominant inheritance, which causes a familial form of AD (FAD. Some instances of FAD have been linked to mutations in the β-amyloid protein precursor (APP. Although there are numerous mouse AD models available, few rat AD models, which have several advantages over mice, have been generated. Results Fischer 344 rats expressing human APP driven by the ubiquitin-C promoter were generated via lentiviral vector infection of Fischer 344 zygotes. We generated two separate APP-transgenic rat lines, APP21 and APP31. Serum levels of human amyloid-beta (Aβ40 were 298 pg/ml for hemizygous and 486 pg/ml for homozygous APP21 animals. Serum Aβ42 levels in APP21 homozygous rats were 135 pg/ml. Immunohistochemistry in brain showed that the human APP transgene was expressed in neurons, but not in glial cells. These findings were consistent with independent examination of enhanced green fluorescent protein (eGFP in the brains of eGFP-transgenic rats. APP21 and APP31 rats expressed 7.5- and 3-times more APP mRNA, respectively, than did wild-type rats. Northern blots showed that the human APP transgene, driven by the ubiquitin-C promoter, is expressed significantly more in brain, kidney and lung compared to heart and liver. A similar expression pattern was also seen for the endogenous rat APP. The unexpected similarity in the tissue-specific expression patterns of endogenous rat APP and transgenic human APP mRNAs suggests regulatory elements within the cDNA sequence of APP. Conclusion This manuscript describes the generation of APP-transgenic inbred Fischer 344 rats. These are the first human AD model rat lines generated by lentiviral infection. The APP21 rat line expresses high levels of human APP and could be a useful model for AD. Tissue

  11. In silico sequence analysis and homology modeling of predicted beta-amylase 7-like protein in Brachypodium distachyon L.

    Directory of Open Access Journals (Sweden)



    Full Text Available Beta-amylase (β-amylase, EC is an enzyme that catalyses hydrolysis of glucosidic bonds in polysaccharides. In this study, we analyzed protein sequence of predicted beta-amylase 7-like protein in Brachypodium distachyon. pI (isoelectric point value was found as 5.23 in acidic character, while the instability index (II was found as 50.28 with accepted unstable protein. The prediction of subcellular localization was revealed that the protein may reside in chloroplast by using CELLO v.2.5. The 3D structure of protein was performed using comparative homology modeling with SWISS-MODEL. The accuracy of the predicted 3D structure was checked using Ramachandran plot analysis showed that 95.4% in favored region. The results of our study contribute to understanding of β-amylase protein structure in grass species and will be scientific base for 3D modeling of beta-amylase proteins in further studies.

  12. Conformational Stability of the NH2-Terminal Propeptide of the Precursor of Pulmonary Surfactant Protein SP-B.

    Directory of Open Access Journals (Sweden)

    Ángeles Bañares-Hidalgo

    Full Text Available Assembly of pulmonary surfactant lipid-protein complexes depends on conformational changes coupled with proteolytic maturation of proSP-B, the precursor of pulmonary surfactant protein B (SP-B, along the surfactant biogenesis pathway in pneumocytes. Conformational destabilization of the N-terminal propeptide of proSP-B (SP-BN triggers exposure of the mature SP-B domain for insertion into surfactant lipids. We have studied the conformational stability during GdmCl- or urea-promoted unfolding of SP-BN with trp fluorescence and circular dichroism spectroscopies. Binding of the intermediate states to bis-ANS suggests their molten globule-like character. ΔG0H2O was ~ 12.7 kJ·mol-1 either with urea or GdmCl. None of the thermal transitions of SP-BN detected by CD correspond to protein unfolding. Differential scanning calorimetry of SP-BN evidenced two endothermic peaks involved in oligomer dissociation as confirmed with 2 M urea. Ionic strength was relevant since at 150 mM NaCl, the process originating the endotherm at the highest temperature was irreversible (Tm2 = 108.5°C with an activation energy of 703.8 kJ·mol-1. At 500 mM NaCl the process became reversible (Tm2 = 114.4°C and data were fitted to the Non-two States model with two subpeaks. No free thiols in the propeptide could be titrated by DTNB with or without 5.7 M GdmCl, indicating disulfide bonds establishment.

  13. Reduced amyloidogenic processing of the amyloid β-protein precursor by the small-molecule Differentiation Inducing Factor-1 (United States)

    Myre, Michael A.; Washicosky, Kevin; Moir, Robert D.; Tesco, Giuseppina; Tanzi, Rudolph E.; Wasco, Wilma


    The detection of cell cycle proteins in Alzheimer’s disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Aβ properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid β-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Aβ40 and Aβ42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Aβ42 to Aβ40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Aβ. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a γ-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668. PMID:19154786

  14. Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies. (United States)

    Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela


    Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.

  15. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. (United States)

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; De Mey, Marjan; Ajikumar, Parayil Kumaran


    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.

  16. The regulatory beta-subunit of protein kinase CK2 regulates cell-cycle progression at the onset of mitosis

    DEFF Research Database (Denmark)

    Yde, C W; Olsen, B B; Meek, D


    25 dual-specificity phosphatase family members. In somatic cells, Wee1 is downregulated by phosphorylation and ubiquitin-mediated degradation to ensure rapid activation of CDK1 at the beginning of M phase. Here, we show that downregulation of the regulatory beta-subunit of protein kinase CK2 by RNA...

  17. Nucleotide sequence of cloned cDNA for human sphingolipid activator protein 1 precursor

    International Nuclear Information System (INIS)

    Dewji, N.N.; Wenger, D.A.; O'Brien, J.S.


    Two cDNA clones encoding prepro-sphingolipid activator protein 1 (SAP-1) were isolated from a λ gt11 human hepatoma expression library using polyclonal antibodies. These had inserts of ≅ 2 kilobases (λ-S-1.2 and λ-S-1.3) and both were both homologous with a previously isolated clone (λ-S-1.1) for mature SAP-1. The authors report here the nucleotide sequence of the longer two EcoRI fragments of S-1.2 and S-1.3 that were not the same and the derived amino acid sequences of mature SAP-1 and its prepro form. The open reading frame encodes 19 amino acids, which are colinear with the amino-terminal sequence of mature SAP-1, and extends far beyond the predicted carboxyl terminus of mature SAP-1, indicating extensive carboxyl-terminal processing. The nucleotide sequence of cDNA encoding prepro-SAP-1 includes 1449 bases from the assigned initiation codon ATG at base-pair 472 to the stop codon TGA at base-pair 1921. The first 23 amino acids coded after the initiation ATG are characteristic of a signal peptide. The calculated molecular mass for a polypeptide encoded by 1449 bases is ≅ 53 kDa, in keeping with the reported value for pro-SAP-1. The data indicate that after removal of the signal peptide mature SAP-1 is generated by removing an additional 7 amino acids from the amino terminus and ≅ 373 amino acids from the carboxyl terminus. One potential glycosylation site was previously found in mature SAP-1. Three additional potential glycosylation sites are present in the processed carboxyl-terminal polypeptide, which they designate as P-2

  18. Heat-Treatment-Responsive Proteins in Different Developmental Stages of Tomato Pollen Detected by Targeted Mass Accuracy Precursor Alignment (tMAPA). (United States)

    Chaturvedi, Palak; Doerfler, Hannes; Jegadeesan, Sridharan; Ghatak, Arindam; Pressman, Etan; Castillejo, Maria Angeles; Wienkoop, Stefanie; Egelhofer, Volker; Firon, Nurit; Weckwerth, Wolfram


    Recently, we have developed a quantitative shotgun proteomics strategy called mass accuracy precursor alignment (MAPA). The MAPA algorithm uses high mass accuracy to bin mass-to-charge (m/z) ratios of precursor ions from LC-MS analyses, determines their intensities, and extracts a quantitative sample versus m/z ratio data alignment matrix from a multitude of samples. Here, we introduce a novel feature of this algorithm that allows the extraction and alignment of proteotypic peptide precursor ions or any other target peptide from complex shotgun proteomics data for accurate quantification of unique proteins. This strategy circumvents the problem of confusing the quantification of proteins due to indistinguishable protein isoforms by a typical shotgun proteomics approach. We applied this strategy to a comparison of control and heat-treated tomato pollen grains at two developmental stages, post-meiotic and mature. Pollen is a temperature-sensitive tissue involved in the reproductive cycle of plants and plays a major role in fruit setting and yield. By LC-MS-based shotgun proteomics, we identified more than 2000 proteins in total for all different tissues. By applying the targeted MAPA data-processing strategy, 51 unique proteins were identified as heat-treatment-responsive protein candidates. The potential function of the identified candidates in a specific developmental stage is discussed.

  19. Recombinant DNA specifying the human amyloid. beta. precursor protein (ABPP) encodes a 95-kDa polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Mita, S; Sadlock, J; Herbert, J; Schon, E A


    Although the ABPP gene give rise to multiple mRNAs, the primary translation product of this gene is unknown. The longest published cDNA sequences predict a 770-aa polypeptide of 87 kDa. However, in immunoblots, ABPP migrated as a single species of >92 kDa in rat brain, and in human, as a species of 95-100 kDa in non-membrane bound form, as multiple species of 110-135 kDa in membrane-associated form and as a 130-kDa species in fibroblasts. The sizes of these larger species relative to the MW of ABPP predicted from the cDNA sequences have been attributed to postranslational modification. However, the authors have isolated a cDNA (lambdaHAP2) from a human fetal muscle lambdagt11 cDNA library encoding an 843-aa polypeptide with a deduced MW of 94,642. This cDNA contains both exons encoding an 843-aa polypeptide with a deduced MW of 94.642. This cDNA contains both exons encoding the protease inhibitor domains. Primer extension analysis indicates that the 5' terminus of this cDNA is 14 nt from a transcriptional start site. This cDNA, encoding the longest ABPP described to date, may explain some of the observations on the sizes of tissue-derived ABPP.

  20. Phosphatidic acid regulates signal output by G protein coupled receptors through direct interaction with phospholipase C-beta(1). (United States)

    Litosch, Irene; Pujari, Rajeshree; Lee, Shawn J


    Phosphatidic acid (PA), generated downstream of monomeric Rho GTPases via phospholipase D (PLD) and additionally by diacylglycerol kinases (DGK), both stimulates phospholipase C-beta(1) (PLC-beta(1)) and potentiates stimulation of PLC-beta(1) activity by Galpha(q) in vitro. PA is a potential candidate for integrating signaling by monomeric and heterotrimeric G proteins to regulate signal output by G protein coupled receptors (GPCR), and we have sought to understand the mechanisms involved. We previously identified the region spanning residues 944-957, lying within the PLC-beta(1) C-terminus alphaA helix and flexible loop of the Galpha(q) binding domain, as required for stimulation of lipase activity by PA in vitro. Regulation by PA does not require residues essential for stimulation by Galpha(q) or GTPase activating activity. The present studies evaluated shorter alanine/glycine replacement mutants and finally point mutations to identify Tyr(952) and Ile(955) as key determinants for regulation by PA, assessed by both in vitro enzymatic and cell-based co-transfection assays. Replacement of Tyr(952) and Ile(955), PLC-beta(1) (Y952G/I955G), results in an 85% loss in stimulation by PA relative to WT-PLC-beta(1) in vitro. COS 7 cells co-transfected with PLC-beta(1) (Y952G/I955G) demonstrate a 10-fold increase in the EC(50) for stimulation and a 60% decrease in maximum stimulation by carbachol via Galpha(q) linked m1 muscarinic receptors, relative to cells co-transfected with WT-PLC-beta(1) but otherwise similar conditions. Residues required for regulation by PA are not essential for stimulation by G protein subunits. WT-PLC-beta(1) and PLC-beta(1) (Y952G/I955G) activity is increased comparably by co-transfection with Galpha(q) and neither is markedly affected by co-transfection with Gbeta(1)gamma(2). Inhibiting PLD-generated PA production by 1-butanol has little effect on maximum stimulation, but shifts the EC(50) for agonist stimulation of WT-PLC-beta(1) by 10-fold

  1. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Pavlikova, Nela, E-mail: [Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic); Smetana, Pavel [Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic); Halada, Petr [Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague (Czech Republic); Kovar, Jan [Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic)


    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE. - Highlights: • Epidemiologic studies connect pollution with incidence of diabetes mellitus. • We explored the effect of DDT and DDE on protein expression in the NES2Y pancreatic beta cell line. • One month exposure to three sublethal concentrations of DDT and DDE was employed. • Expression of alpha-enolase, actin

  2. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells

    International Nuclear Information System (INIS)

    Pavlikova, Nela; Smetana, Pavel; Halada, Petr; Kovar, Jan


    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE. - Highlights: • Epidemiologic studies connect pollution with incidence of diabetes mellitus. • We explored the effect of DDT and DDE on protein expression in the NES2Y pancreatic beta cell line. • One month exposure to three sublethal concentrations of DDT and DDE was employed. • Expression of alpha-enolase, actin

  3. Lead induces chondrogenesis and alters transforming growth factor-beta and bone morphogenetic protein signaling in mesenchymal cell populations. (United States)

    Zuscik, Michael J; Ma, Lin; Buckley, Taylor; Puzas, J Edward; Drissi, Hicham; Schwarz, Edward M; O'Keefe, Regis J


    It has been established that skeletal growth is stunted in lead-exposed children. Because chondrogenesis is a seminal step during skeletal development, elucidating the impact of Pb on this process is the first step toward understanding the mechanism of Pb toxicity in the skeleton. The aim of this study was to test the hypothesis that Pb alters chondrogenic commitment of mesenchymal cells and to assess the effects of Pb on various signaling pathways. We assessed the influence of Pb on chondrogenesis in murine limb bud mesenchymal cells (MSCs) using nodule formation assays and gene analyses. The effects of Pb on transforming growth factor-beta (TGF-beta) and bone morphogenetic protein (BMP) signaling was studied using luciferase-based reporters and Western analyses, and luciferase-based assays were used to study cyclic adenosine monophosphate response element binding protein (CREB), beta-catenin, AP-1, and nuclear factor-kappa B (NF-kappaB) signaling. We also used an ectopic bone formation assay to determine how Pb affects chondrogenesis in vivo. Pb-exposed MSCs showed enhanced basal and TGF-beta/BMP induction of chondrogenesis, evidenced by enhanced nodule formation and up-regulation of Sox-9, type 2 collagen, and aggrecan, all key markers of chondrogenesis. We observed enhanced chondrogenesis during ectopic bone formation in mice preexposed to Pb via drinking water. In MSCs, Pb enhanced TGF-beta but inhibited BMP-2 signaling, as measured by luciferase reporter assays and Western analyses of Smad phosphorylation. Although Pb had no effect on basal CREB or Wnt/beta-catenin pathway activity, it induced NFkappaB signaling and inhibited AP-1 signaling. The in vitro and in vivo induction of chondrogenesis by Pb likely involves modulation and integration of multiple signaling pathways including TGF-beta, BMP, AP-1, and NFkappaB.

  4. Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density. (United States)

    Zhang, Can; Browne, Andrew; Divito, Jason R; Stevenson, Jesse A; Romano, Donna; Dong, Yuanlin; Xie, Zhongcong; Tanzi, Rudolph E


    Mounting evidence suggests that Alzheimer's disease (AD) is caused by the accumulation of the small peptide, amyloid-β (Aβ), a proteolytic cleavage product of amyloid-β protein precursor (AβPP). Aβ is generated through a serial cleavage of AβPP by β- and γ-secretase. Aβ40 and Aβ42 are the two main components of amyloid plaques in AD brains, with Aβ42 being more prone to aggregation. AβPP can also be processed by α-secretase, which cleaves AβPP within the Aβ sequence, thereby preventing the generation of Aβ. Little is currently known regarding the effects of cell density on AβPP processing and Aβ generation. Here we assessed the effects of cell density on AβPP processing in neuronal and non-neuronal cell lines, as well as mouse primary cortical neurons. We found that decreased cell density significantly increases levels of Aβ40, Aβ42, total Aβ, and the ratio of Aβ42: Aβ40. These results also indicate that cell density is a significant modulator of AβPP processing. Overall, these findings carry profound implications for both previous and forthcoming studies aiming to assess the effects of various conditions and genetic/chemical factors, e.g., novel drugs on AβPP processing and Aβ generation in cell-based systems. Moreover, it is interesting to speculate whether cell density changes in vivo may also affect AβPP processing and Aβ levels in the AD brain.

  5. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein

    Directory of Open Access Journals (Sweden)

    Hongyu Pan


    Full Text Available Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP. However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG of adult mice overexpressing wild-type hAPP (hAPP-I5 compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice.

  6. Y682 mutation of amyloid precursor protein promotes endo-lysosomal dysfunction by disrupting APP-SorLA interaction

    Directory of Open Access Journals (Sweden)

    Luca Rosario La Rosa


    Full Text Available The intracellular transport and localization of amyloid precursor protein (APP are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer’s disease (AD. Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to glycine (Y682G leads to altered APP sorting in hippocampal neurons that favors its accumulation in intracellular compartments and the release of soluble APPα. Such alterations induce premature aging and learning and cognitive deficits in APP Y682G mutant mice (APPYG/YG. Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA, resulting in endo-lysosomal dysfunctions and neuronal degeneration. Moreover, disruption of the APP/SorLA complex changes the trafficking pathway of SorLA, with its consequent increase in secretion outside neurons. Mutations in the SorLA gene are a prognostic factor in AD, and increases in SorLA levels in cerebrospinal fluid are predictive of AD in humans. These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration. In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

  7. Amyloid precursor protein is required for normal function of the rod and cone pathways in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Tracy Ho

    Full Text Available Amyloid precursor protein (APP is a transmembrane glycoprotein frequently studied for its role in Alzheimer's disease. Our recent study in APP knockout (KO mice identified an important role for APP in modulating normal neuronal development in the retina. However the role APP plays in the adult retina and whether it is required for vision is unknown. In this study we evaluated the role of APP in retinal function and morphology comparing adult wildtype (WT and APP-KO mice. APP was expressed on neuronal cells of the inner retina, including horizontal, cone bipolar, amacrine and ganglion cells in WT mice. The function of the retina was assessed using the electroretinogram and although the rod photoreceptor responses were similar in APP-KO and WT mice, the post-photoreceptor, inner retinal responses of both the rod and cone pathways were reduced in APP-KO mice. These changes in inner retinal function did not translate to a substantial change in visual acuity as assessed using the optokinetic response or to changes in the gross cellular structure of the retina. These findings indicate that APP is not required for basic visual function, but that it is involved in modulating inner retinal circuitry.

  8. Overexpression of Amyloid Precursor Protein Promotes the Onset of Seborrhoeic Keratosis and is Related to Skin Ageing. (United States)

    Li, Yuanying; Wang, Yu; Zhang, Wei; Jiang, Leiwei; Zhou, Wenming; Liu, Zhi; Li, Shijun; Lu, Hongguang


    Seborrhoeic keratosis is an age-related skin disease. Amyloid precursor protein (APP) plays an important role in the pathogenesis of age-related Alzheimer's disease. The aim of this study was to elucidate the expression characteristics of APP in seborrhoeic keratosis tissues (n = 50), and explore whether the production of APP is related to the onset of seborrhoeic keratosis and skin ageing, including ultraviolet (UV)-induced ageing, as observed in normal skin (n = 79). The results of immunohistochemistry, Western blotting and quantitative real-time PCR showed that APP and its downstream products (i.e. amyloid-β42) were more highly expressed in seborrhoeic keratosis than in paired adjacent normal skin tissues. In contrast, the expression of its key secretase (i.e. β-secretase1) was generally low. Furthermore, APP expression was higher in UV-exposed than non-exposed skin sites, and expression in the older age group (61-85 years) was greater than that in the younger age group (41-60 years) in seborrhoeic keratosis tissues (pkeratosis and is a marker of skin ageing and UV damage. Further research will elucidate whether therapeutic mitigation of increased levels of APP in the skin might delay the onset of seborrhoeic keratosis and skin ageing.

  9. The Kunitz-protease inhibitor domain in amyloid precursor protein reduces cellular mitochondrial enzymes expression and function. (United States)

    Chua, Li-Min; Lim, Mei-Li; Wong, Boon-Seng


    Mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD(+)/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Bidirectional Regulation of Amyloid Precursor Protein-Induced Memory Defects by Nebula/DSCR1: A Protein Upregulated in Alzheimer's Disease and Down Syndrome. (United States)

    Shaw, Jillian L; Zhang, Shixing; Chang, Karen T


    Aging individuals with Down syndrome (DS) have an increased risk of developing Alzheimer's disease (AD), a neurodegenerative disorder characterized by impaired memory. Memory problems in both DS and AD individuals usually develop slowly and progressively get worse with age, but the cause of this age-dependent memory impairment is not well understood. This study examines the functional interactions between Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. Using Drosophila as a model, we find that overexpression of nebula (fly homolog of DSCR1) initially protects against APP-induced memory defects by correcting calcineurin and cAMP signaling pathways but accelerates the rate of memory loss and exacerbates mitochondrial dysfunction in older animals. We report that transient upregulation of Nebula/DSCR1 or acute pharmacological inhibition of calcineurin in aged flies protected against APP-induced memory loss. Our data suggest that calcineurin dyshomeostasis underlies age-dependent memory impairments and further imply that chronic Nebula/DSCR1 upregulation may contribute to age-dependent memory impairments in AD in DS. Most Down syndrome (DS) individuals eventually develop Alzheimer's disease (AD)-like dementia, but mechanisms underlying this age-dependent memory impairment remain poorly understood. This study examines Nebula/Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. We uncover a previously unidentified role for Nebula/DSCR1 in modulating APP-induced memory defects during aging. We show that upregulation of Nebula/DSCR1, an inhibitor of calcineurin, rescues APP-induced memory defects in young flies but enhances memory loss of older flies. Excitingly, transient Nebula/DSCR1 overexpression or calcineurin inhibition in aged flies ameliorates APP-mediated memory problems. These results

  11. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells. (United States)

    Gajewska, Małgorzata; Motyl, Tomasz


    TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway.

  12. Elevated Hippocampal Cholinergic Neurostimulating Peptide precursor protein (HCNP-pp) mRNA in the amygdala in major depression. (United States)

    Bassi, Sabrina; Seney, Marianne L; Argibay, Pablo; Sibille, Etienne


    The amygdala is innervated by the cholinergic system and is involved in major depressive disorder (MDD). Evidence suggests a hyper-activate cholinergic system in MDD. Hippocampal Cholinergic Neurostimulating Peptide (HCNP) regulates acetylcholine synthesis. The aim of the present work was to investigate expression levels of HCNP-precursor protein (HCNP-pp) mRNA and other cholinergic-related genes in the postmortem amygdala of MDD patients and matched controls (females: N = 16 pairs; males: N = 12 pairs), and in the mouse unpredictable chronic mild stress (UCMS) model that induced elevated anxiety-/depressive-like behaviors (females: N = 6 pairs; males: N = 6 pairs). Results indicate an up-regulation of HCNP-pp mRNA in the amygdala of women with MDD (p < 0.0001), but not males, and of UCMS-exposed mice (males and females; p = 0.037). HCNP-pp protein levels were investigated in the human female cohort, but no difference was found. There were no differences in gene expression of acetylcholinesterase (AChE), muscarinic (mAChRs) or nicotinic receptors (nAChRs) between MDD subjects and controls or UCMS and control mice, except for an up-regulation of AChE in UCMS-exposed mice (males and females; p = 0.044). Exploratory analyses revealed a baseline expression difference of cholinergic signaling-related genes between women and men (p < 0.0001). In conclusion, elevated amygdala HCNP-pp expression may contribute to mechanisms of MDD in women, potentially independently from regulating the cholinergic system. The differential expression of genes between women and men could also contribute to the increased vulnerability of females to develop MDD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production. (United States)

    Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain


    Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.

  14. Density functional calculations of backbone 15N shielding tensors in beta-sheet and turn residues of protein G

    International Nuclear Information System (INIS)

    Cai Ling; Kosov, Daniel S.; Fushman, David


    We performed density functional calculations of backbone 15 N shielding tensors in the regions of beta-sheet and turns of protein G. The calculations were carried out for all twenty-four beta-sheet residues and eight beta-turn residues in the protein GB3 and the results were compared with the available experimental data from solid-state and solution NMR measurements. Together with the alpha-helix data, our calculations cover 39 out of the 55 residues (or 71%) in GB3. The applicability of several computational models developed previously (Cai et al. in J Biomol NMR 45:245–253, 2009) to compute 15 N shielding tensors of alpha-helical residues is assessed. We show that the proposed quantum chemical computational model is capable of predicting isotropic 15 N chemical shifts for an entire protein that are in good correlation with experimental data. However, the individual components of the predicted 15 N shielding tensor agree with experiment less well: the computed values show much larger spread than the experimental data, and there is a profound difference in the behavior of the tensor components for alpha-helix/turns and beta-sheet residues. We discuss possible reasons for this.

  15. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)


    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  16. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein

    Directory of Open Access Journals (Sweden)

    Yang Ting


    Full Text Available Abstract Background Deposition of amyloid-β protein (Aβ is a major pathological hallmark of Alzheimer's disease (AD. Aβ is generated from γ-secretase cleavage of amyloid precursor protein (APP. In addition to APP, γ-secretase also cleaves other type I integral membrane proteins, including the Notch receptor, a key molecule involved in embryonic development. Results To explore selective γ-secretase inhibitors, a combination of five methods was used to systematically determine these inhibitors' profiles on the γ-secretase cleavage of APP and Notch. When two potent γ-secretase inhibitors, compound E (cpd E and DAPT, were used in a conventional in vitro γ-secretase activity assay, cpd E completely blocked Aβ generation from the cleavage of substrate APP C100, but only had a minor effect on Notch cleavage and NICD generation. Next, cpd E and DAPT were applied to HEK293 cells expressing a truncated Notch substrate NotchΔE. Both cpd E and DAPT were more potent in blocking Aβ generation than NICD generation. Third, a reporter construct was created that carried the NICD targeting promoter with three Su(H binding sequences followed by the luciferase gene. We found that the inhibition of NICD generation by cpd E and DAPT was consistent with the reduced expression of luciferase gene driven by this Notch targeting promoter. Fourth, levels of "Notch-Aβ-like" (Nβ* peptide derived from two previously reported chimeric APP with its transmembrane domain or the juxtamembrane portion replaced by the Notch sequence were quantified. Measurement of Nβ* peptides by ELISA confirmed that EC50's of cpd E were much higher for Nβ* than Aβ. Finally, the expression levels of Notch target gene her6 in cpd E or DAPT-treated zebrafish were correlated with the degree of tail curvature due to defective somitogenesis, a well characterized Notch phenotype in zebrafish. Conclusion Our ELISA-based quantification of Aβ and Nβ* in combination with the test in

  17. Specific spatial learning deficits become severe with age in beta -amyloid precursor protein transgenic mice that harbor diffuse beta -amyloid deposits but do not form plaques

    Czech Academy of Sciences Publication Activity Database

    Koistinaho, M.; Ort, Michael; Cimadevilla, Jose Maria; Vondrous, R.; Cordell, B.; Koistinaho, J.; Bureš, Jan; Higgins, L.


    Roč. 98, č. 4 (2001), s. 14675-14680 ISSN 0027-8424 R&D Projects: GA ČR GA309/00/1656 Institutional research plan: CEZ:AV0Z5011922 Keywords : spatial memory * transgenic mice * alzheimer Subject RIV: FH - Neurology Impact factor: 10.890, year: 2001

  18. The Cellular Chaperone Heat Shock Protein 90 Is Required for Foot-and-Mouth Disease Virus Capsid Precursor Processing and Assembly of Capsid Pentamers. (United States)

    Newman, Joseph; Asfor, Amin S; Berryman, Stephen; Jackson, Terry; Curry, Stephen; Tuthill, Tobias J


    Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity

  19. Isolation and characterization of BetaM protein encoded by ATP1B4 - a unique member of the Na,K-ATPase β-subunit gene family

    International Nuclear Information System (INIS)

    Pestov, Nikolay B.; Zhao, Hao; Basrur, Venkatesha; Modyanov, Nikolai N.


    Highlights: → Structural properties of BetaM and Na,K-ATPase β-subunits are sharply different. → BetaM protein is concentrated in nuclear membrane of skeletal myocytes. → BetaM does not associate with a Na,K-ATPase α-subunit in skeletal muscle. → Polypeptide chain of the native BetaM is highly sensitive to endogenous proteases. → BetaM in neonatal muscle is a product of alternative splice mRNA variant B. -- Abstract: ATP1B4 genes represent a rare instance of the orthologous gene co-option that radically changed functions of encoded BetaM proteins during vertebrate evolution. In lower vertebrates, this protein is a β-subunit of Na,K-ATPase located in the cell membrane. In placental mammals, BetaM completely lost its ancestral role and through acquisition of two extended Glu-rich clusters into the N-terminal domain gained entirely new properties as a muscle-specific protein of the inner nuclear membrane possessing the ability to regulate gene expression. Strict temporal regulation of BetaM expression, which is the highest in late fetal and early postnatal myocytes, indicates that it plays an essential role in perinatal development. Here we report the first structural characterization of the native eutherian BetaM protein. It should be noted that, in contrast to structurally related Na,K-ATPase β-subunits, the polypeptide chain of BetaM is highly sensitive to endogenous proteases that greatly complicated its isolation. Nevertheless, using a complex of protease inhibitors, a sample of authentic BetaM was isolated from pig neonatal skeletal muscle by a combination of ion-exchange and lectin-affinity chromatography followed by SDS-PAGE. Results of the analysis of the BetaM tryptic digest using MALDI-TOF and ESI-MS/MS mass spectrometry have demonstrated that native BetaM in neonatal skeletal muscle is a product of alternative splice mRNA variant B and comprised of 351 amino acid residues. Isolated BetaM protein was also characterized by SELDI-TOF mass

  20. Mimicry by asx- and ST-turns of the four main types of beta-turn in proteins. (United States)

    Duddy, William J; Nissink, J Willem M; Allen, Frank H; Milner-White, E James


    Hydrogen-bonded beta-turns in proteins occur in four categories: type I (the most common), type II, type II', and type I'. Asx-turns resemble beta-turns, in that both have an NH. . .OC hydrogen bond forming a ring of 10 atoms. Serine and threonine side chains also commonly form hydrogen-bonded turns, here called ST-turns. Asx-turns and ST-turns can be categorized into four classes, based on side chain rotamers and the conformation of the central turn residue, which are geometrically equivalent to the four types of beta-turns. We propose asx- and ST-turns be named using the type I, II, I', and II' beta-turn nomenclature. Using this, the frequency of occurrence of both asx- and ST-turns is: type II' > type I > type II > type I', whereas for beta-turns it is type I > type II > type I' > type II'. Almost all type II asx-turns occur as a recently described three residue feature named an asx-nest.

  1. Aluminum complexing enhances amyloid beta protein penetration of blood-brain barrier. (United States)

    Banks, William A; Niehoff, Michael L; Drago, Denise; Zatta, Paolo


    A significant co-morbidity of Alzheimer's disease and cerebrovascular impairment suggests that cerebrovascular dysregulation is an important feature of dementia. Amyloid beta protein (Abeta), a relevant risk factor in Alzheimer's disease, has neurotoxic properties and is thought to play a critical role in the cognitive impairments. Previously, we demonstrated that the 42mer of Abeta (Abeta42) complexed with aluminum (Al-Abeta42) is much more cytotoxic than non-complexed Abeta42. The level of Abeta in the brain is a balance between synthesis, degradation, and fluxes across the blood-brain barrier (BBB). In the present paper, we determined whether complexing with aluminum affected the ability of radioactively iodinated Abeta to cross the in vivo BBB. We found that the rates of uptake of Al-Abeta42 and Abeta42 were similar, but that Al-Abeta42 was sequestered by brain endothelial cells much less than Abeta42 and so more readily entered the parenchymal space of the brain. Al-Abeta42 also had a longer half-life in blood and had increased permeation at the striatum and thalamus. Brain-to-blood transport was similar for Al-Abeta42 and Abeta42. In conclusion, complexing with aluminum affects some aspects of blood-to-brain permeability so that Al-Abeta42 would have more ready access to brain cells than Abeta42.

  2. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide.

    Directory of Open Access Journals (Sweden)

    Stephanie J Soscia


    Full Text Available The amyloid beta-protein (Abeta is believed to be the key mediator of Alzheimer's disease (AD pathology. Abeta is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Abeta has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities.Here, we provide data supporting an in vivo function for Abeta as an antimicrobial peptide (AMP. Experiments used established in vitro assays to compare antimicrobial activities of Abeta and LL-37, an archetypical human AMP. Findings reveal that Abeta exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Abeta levels. Consistent with Abeta-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Abeta antibodies.Our findings suggest Abeta is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Abeta-mediated pathology and has important implications for ongoing and future AD treatment strategies.

  3. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer's beta-amyloid proteins. (United States)

    Fujiwara, Hironori; Iwasaki, Koh; Furukawa, Katsutoshi; Seki, Takashi; He, Mei; Maruyama, Masahiro; Tomita, Naoki; Kudo, Yukitsuka; Higuchi, Makoto; Saido, Takaomi C; Maeda, Sumihiro; Takashima, Akihiko; Hara, Masahiko; Ohizumi, Yasushi; Arai, Hiroyuki


    Because the deposition of beta-amyloid protein (Abeta) is a consistent pathological hallmark of Alzheimer's disease (AD) brains, inhibition of Abeta generation, prevention of Abeta fibril formation, or destabilization of preformed Abeta fibrils would be attractive therapeutic strategies for the treatment of AD. We examined the effects of several medicinal herbs used in traditional Chinese medical formulae on the formation and destabilization of Abeta fibrils by using the thioflavin T binding assay, atomic force microscopic imaging, and electrophoresis. Our study demonstrates that several of these herbs have potent inhibitory effects on fibril formation of both Abeta(1-40) and Abeta(1-42) in concentration-dependent manners; in particular, Uncaria rhynchophylla inhibited Abeta aggregation most intensively. Significant destabilization of preformed Abeta(1-40) and Abeta(1-42) fibrils was also induced by Uncaria rhynchophylla as well as some other herb extracts. Three-dimensional HPLC analysis indicated that the water extract of this herb contains several different chemical compounds, including oxindole and indol alkaloids, which have been regarded as neuroprotective. Our results suggest that Uncaria rhynchophylla has remarkably inhibitory effects on the regulation of Abeta fibrils, and we conclude that this medicinal herb could have the potency to be a novel therapeutic agent to prevent and/or cure AD.

  4. Elucidation of amyloid beta-protein oligomerization mechanisms: discrete molecular dynamics study. (United States)

    Urbanc, B; Betnel, M; Cruz, L; Bitan, G; Teplow, D B


    Oligomers of amyloid beta-protein (Abeta) play a central role in the pathology of Alzheimer's disease. Of the two predominant Abeta alloforms, Abeta(1-40) and Abeta(1-42), Abeta(1-42) is more strongly implicated in the disease. We elucidated the structural characteristics of oligomers of Abeta(1-40) and Abeta(1-42) and their Arctic mutants, [E22G]Abeta(1-40) and [E22G]Abeta(1-42). We simulated oligomer formation using discrete molecular dynamics (DMD) with a four-bead protein model, backbone hydrogen bonding, and residue-specific interactions due to effective hydropathy and charge. For all four peptides under study, we derived the characteristic oligomer size distributions that were in agreement with prior experimental findings. Unlike Abeta(1-40), Abeta(1-42) had a high propensity to form paranuclei (pentameric or hexameric) structures that could self-associate into higher-order oligomers. Neither of the Arctic mutants formed higher-order oligomers, but [E22G]Abeta(1-40) formed paranuclei with a similar propensity to that of Abeta(1-42). Whereas the best agreement with the experimental data was obtained when the charged residues were modeled as solely hydrophilic, further assembly from spherical oligomers into elongated protofibrils was induced by nonzero electrostatic interactions among the charged residues. Structural analysis revealed that the C-terminal region played a dominant role in Abeta(1-42) oligomer formation whereas Abeta(1-40) oligomerization was primarily driven by intermolecular interactions among the central hydrophobic regions. The N-terminal region A2-F4 played a prominent role in Abeta(1-40) oligomerization but did not contribute to the oligomerization of Abeta(1-42) or the Arctic mutants. The oligomer structure of both Arctic peptides resembled Abeta(1-42) more than Abeta(1-40), consistent with their potentially more toxic nature.

  5. Beta-trace protein in ascites and pleural effusions: limits of CSF leakage detection. (United States)

    Dietzel, Joanna; Krebs, Alexander; Böttcher, Dominique; Sieb, Manuela; Glocker, Michael O; Lüdemann, Jan; Roser, Markus; Dressel, Alexander


    Rhino- and/or otoliquorrhea can be diagnosed by detecting beta-trace protein (β-TP) in nasal or ear secretions, as β-TP is found in high concentrations in cerebrospinal fluid (CSF) but not in serum. CSF fistulae following trauma or surgery can also occur at other anatomical sites, resulting in CSF leakage into the thoracic and abdominal cavities. By analogy, determination of ß-TP has also been used to diagnose CSF admixture in pleural effusions and ascites. However, no systematic study has yet evaluated the concentrations of β-TP in such fluids in the absence of CSF. To determine the validity of β-TP determination as a marker for the presence of CSF, we investigated β-TP concentrations in pleural effusions and ascites without CSF admixture. Patients from whom samples of ascites or pleural effusion and a paired plasma sample were available were investigated. One hundred sixty-four patients were prospectively recruited. ß-TP concentrations were determined by nephelometry. Mass spectrometric proteome analysis confirmed the presence of ß-TP in the samples. Median β-TP concentrations detected in ascites and pleural effusions (range, 0.014-26.5 mg/L, median 2.29 mg/L) exceeded the corresponding plasma concentrations 2.6-fold. According to cutoffs published to diagnose rhino- and otoliquorrhea, between 6.1% and 95.7% of the specimens would have been erroneously rated CSF-positive. Protein analysis confirmed the presence of β-TP in pleural effusion and ascites. Ascites and pleural effusion contain high concentrations of β-TP that exceed the levels in corresponding plasma. Therefore, β-TP is not a specific marker for the presence of CSF in these fluids.

  6. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Precursor Protein Transgenic Mice (United States)

    Liu, Peng; Reichl, John H.; Rao, Eshaan R.; McNellis, Brittany M.; Huang, Eric S.; Hemmy, Laura S.; Forster, Colleen L.; Kuskowski, Michael A.; Borchelt, David R.; Vassar, Robert; Ashe, Karen H.; Zahs, Kathleen R.


    There exist several dozen lines of transgenic mice that express human amyloid-β precursor protein (AβPP) with Alzheimer’s disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ~4.5 times that of 21-month Tg2576 mice and ~15 times that of 21–24-month rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort. PMID:28059792

  7. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Protein Precursor Transgenic Mice. (United States)

    Liu, Peng; Reichl, John H; Rao, Eshaan R; McNellis, Brittany M; Huang, Eric S; Hemmy, Laura S; Forster, Colleen L; Kuskowski, Michael A; Borchelt, David R; Vassar, Robert; Ashe, Karen H; Zahs, Kathleen R


    There exist several dozen lines of transgenic mice that express human amyloid-β protein precursor (AβPP) with Alzheimer's disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ∼4.5 times that of 21-month-old Tg2576 mice and ∼15 times that of 21-24-month-old rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort.

  8. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  9. Local sequence information in cellular retinoic acid-binding protein I: specific residue roles in beta-turns. (United States)

    Rotondi, Kenneth S; Gierasch, Lila M


    We have recently shown that two of the beta-turns (III and IV) in the ten-stranded, beta-clam protein, cellular retinoic acid-binding protein I (CRABP I), are favored in short peptide fragments, arguing that they are encoded by local interactions (K. S. Rotondi and L. M. Gierasch, Biochemistry, 2003, Vol. 42, pp. 7976-7985). In this paper we examine these turns in greater detail to dissect the specific local interactions responsible for their observed native conformational biases. Conformations of peptides corresponding to the turn III and IV fragments were examined under conditions designed to selectively disrupt stabilizing interactions, using pH variation, chaotrope addition, or mutagenesis to probe specific side-chain influences. We find that steric constraints imposed by excluded volume effects between near neighbor residues (i,i+2), favorable polar (i,i+2) interactions, and steric permissiveness of glycines are the principal factors accounting for the observed native bias in these turns. Longer-range stabilizing interactions across the beta-turns do not appear to play a significant role in turn stability in these short peptides, in contrast to their importance in hairpins. Additionally, our data add to a growing number of examples of the 3:5 type I turn with a beta-bulge as a class of turns with high propensity to form locally defined structure. Current work is directed at the interplay between the local sequence information in the turns and more long-range influences in the mechanism of folding of this predominantly beta-sheet protein. Copyright 2004 Wiley Periodicals, Inc.

  10. Dynamic fluorescence studies of beta-glycosidase mutants from Sulfolobus solfataricus: effects of single mutations on protein thermostability. (United States)

    Bismuto, Ettore; Febbraio, Ferdinando; Limongelli, Simona; Briante, Raffaella; Nucci, Roberto


    Multiple sequence alignment on 73 proteins belonging to glycosyl hydrolase family 1 reveals the occurrence of a segment (83-124) in the enzyme sequences from hyperthermophilic archaea bacteria, which is absent in all the mesophilic members of the family. The alignment of the known three-dimensional structures of hyperthermophilic glycosidases with the known ones from mesophilic organisms shows a similar spatial organizations of beta-glycosidases except for this sequence segment whose structure is located on the external surface of each of four identical subunits, where it overlaps two alpha-helices. Site-directed mutagenesis substituting N97 or S101 with a cysteine residue in the sequence of beta-glycosidase from hyperthermophilic archaeon Sulfolobus solfataricus caused some changes in the structural and dynamic properties as observed by circular dichroism in far- and near-UV light, as well as by frequency domain fluorometry, with a simultaneous loss of thermostability. The results led us to hypothesize an important role of the sequence segment present only in hyperthermophilic beta-glycosidases, in the thermal adaptation of archaea beta-glycosidases. The thermostabilization mechanism could occur as a consequence of numerous favorable ionic interactions of the 83-124 sequence with the other part of protein matrix that becomes more rigid and less accessible to the insult of thermal-activated solvent molecules. Copyright 2003 Wiley-Liss, Inc.

  11. The protein precursors of peptides that affect the mechanics of connective tissue and/or muscle in the echinoderm Apostichopus japonicus.

    Directory of Open Access Journals (Sweden)

    Maurice R Elphick

    Full Text Available Peptides that cause muscle relaxation or contraction or that modulate electrically-induced muscle contraction have been discovered in the sea cucumber Apostichopus japonicus (Phylum Echinodermata; Class Holothuroidea. By analysing transcriptome sequence data, here the protein precursors of six of these myoactive peptides (the SALMFamides Sticho-MFamide-1 and -2, NGIWYamide, stichopin, GN-19 and GLRFA have been identified, providing novel insights on neuropeptide and endocrine-type signalling systems in echinoderms. The A. japonicus SALMFamide precursor comprises eight putative neuropeptides including both L-type and F-type SALMFamides, which contrasts with previous findings from the sea urchin Strongylocentrotus purpuratus where L-type and F-type SALMFamides are encoded by different genes. The NGIWYamide precursor contains five copies of NGIWYamide but, unlike other NG peptide-type neuropeptide precursors in deuterostomian invertebrates, the NGIWYamide precursor does not have a C-terminal neurophysin domain, indicating loss of this character in holothurians. NGIWYamide was originally discovered as a muscle contractant, but it also causes stiffening of mutable connective tissue in the body wall of A. japonicus, whilst holokinins (PLGYMFR and derivative peptides cause softening of the body wall. However, the mechanisms by which these peptides affect the stiffness of body wall connective tissue are unknown. Interestingly, analysis of the A. japonicus transcriptome reveals that the only protein containing the holokinin sequence PLGYMFR is an alpha-5 type collagen. This suggests that proteolysis of collagen may generate peptides (holokinins that affect body wall stiffness in sea cucumbers, providing a novel perspective on mechanisms of mutable connective tissue in echinoderms.

  12. Ferrous Iron Up-regulation in Fibroblasts of Patients with Beta Propeller Protein-Associated Neurodegeneration (BPAN).


    Ingrassia, Rosaria; Memo, Maurizio; Garavaglia, Barbara


    Mutations in WDR45 gene, coding for a beta-propeller protein, have been found in patients affected by Neurodegeneration with Brain Iron Accumulation, NBIA5 (also known as BPAN). BPAN is a movement disorder with Non Transferrin Bound Iron (NTBI) accumulation in the basal ganglia as common hallmark between NBIA classes (Hayflick et al., 2013). WDR45 has been predicted to have a role in autophagy, while the impairment of iron metabolism in the different NBIA subclasses has not currently been cla...

  13. Guanine nucleotide-binding protein subunit beta-2-like 1, a new Annexin A7 interacting protein

    International Nuclear Information System (INIS)

    Du, Yue; Meng, Jinyi; Huang, Yuhong; Wu, Jun; Wang, Bo; Ibrahim, Mohammed M.; Tang, Jianwu


    Highlights: • RACK1 formed a complex with Annexin A7. • Depletion of RACK1 inhibited the proliferation, migration and invasion. • RACK1 RNAi abolished RACK1-Annexin A7 interaction. • RACK1-Annexin A7 may play a role in regulating the metastatic potentials. - Abstract: We report for the first time that Guanine nucleotide-binding protein subunit beta-2-like 1 (RACK1) formed a complex with Annexin A7. Hca-F and Hca-P are a pair of syngeneic mouse hepatocarcinoma cell lines established and maintained in our laboratory. Our previous study showed that both Annexin A7 and RACK1 were expressed higher in Hca-F (lymph node metastasis >70%) than Hca-P (lymph node metastasis <30%). Suppression of Annexin A7 expression in Hca-F cells induced decreased migration and invasion ability. In this study, knockdown of RACK1 by RNA interference (RNAi) had the same impact on metastasis potential of Hca-F cells as Annexin A7 down-regulation. Furthermore, by co-immunoprecipitation and double immunofluorescence confocal imaging, we found that RACK1 was in complex with Annexin A7 in control cells, but not in the RACK1-down-regulated cells, indicating the abolishment of RACK1-Annexin A7 interaction in Hca-F cells by RACK1 RNAi. Taken together, these results suggest that RACK1-Annexin A7 interaction may be one of the means by which RACK1 and Annexin A7 influence the metastasis potential of mouse hepatocarcinoma cells in vitro

  14. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins. (United States)

    Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung


    We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.

  15. Enzymic and structural studies on processed proteins from the vacuolar (lutoid-body) fraction of latex of Hevea brasiliensis

    NARCIS (Netherlands)

    Subroto, T; de Vries, H; Schuringa, JJ; Soedjanaatmadja, UMS; Hofsteenge, J; Jekel, PA; Beintema, JJ


    The lutoid-body (bottom) fraction of latex from the rubber tree (Hevea brasiliensis) contains a limited number of major proteins. These are the chitin-binding protein hevein, its precursor and C-terminal fragment of the precursor, a basic chitinase/lysozyme, and a beta-1,3-glucanase. The content and

  16. Identification of snake bradykinin-potentiating peptides (BPPs)-simile sequences in rat brain--Potential BPP-like precursor protein? (United States)

    Campeiro, Joana D'Arc; Neshich, Izabella P; Sant'Anna, Osvaldo A; Lopes, Robson; Ianzer, Danielle; Assakura, Marina T; Neshich, Goran; Hayashi, Mirian A F


    Bradykinin-potentiating peptides (BPPs) from the South American pit viper snake venom were the first natural inhibitors of the human angiotensin I-converting enzyme (ACE) described. The pioneer characterization of the BPPs precursor from the snake venom glands by our group showed for the first time the presence of the C-type natriuretic peptide (CNP) in this same viper precursor protein. The confirmation of the BPP/CNP expression in snake brain regions correlated with neuroendocrine functions stimulated us to pursue the physiological correlates of these vasoactive peptides in mammals. Notably, several snake toxins were shown to have endogenous physiological correlates in mammals. In the present work, we expressed in bacteria the BPPs domain of the snake venom gland precursor protein, and this purified recombinant protein was used to raise specific polyclonal anti-BPPs antibodies. The correspondent single protein band immune-recognized in adult rat brain cytosol was isolated by 2D-SDS/PAGE and/or HPLC, before characterization by MS fingerprint analysis, which identified this protein as superoxide dismutase (SOD, EC, a classically known enzyme with antioxidant activity and important roles in the blood pressure modulation. In silico analysis showed the exposition of the BPP-like peptide sequences on the surface of the 3D structure of rat SOD. These peptides were chemically synthesized to show the BPP-like biological activities in ex vivo and in vivo pharmacological bioassays. Taken together, our data suggest that SOD protein have the potential to be a source for putative BPP-like bioactive peptides, which once released may contribute to the blood pressure control in mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Bone morphogenetic protein 4 inhibits insulin secretion from rodent beta cells through regulation of calbindin1 expression and reduced voltage-dependent calcium currents

    DEFF Research Database (Denmark)

    Christensen, Gitte L.; Jacobsen, Maria L. B.; Wendt, Anna


    AIMS/HYPOTHESIS: Type 2 diabetes is characterised by progressive loss of pancreatic beta cell mass and function. Therefore, it is of therapeutic interest to identify factors with the potential to improve beta cell proliferation and insulin secretion. Bone morphogenetic protein 4 (BMP4) expression...

  18. Liver cancer-derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Serena Battaglia

    Full Text Available BACKGROUND: Chronic hepatitis C virus (HCV infection and associated liver cirrhosis represent a major risk factor for hepatocellular carcinoma (HCC development. TGF-beta is an important driver of liver fibrogenesis and cancer; however, its actual impact in human cancer progression is still poorly known. The aim of this study was to investigate the role of HCC-derived HCV core natural variants on cancer progression through their impact on TGF-beta signaling. PRINCIPAL FINDINGS: We provide evidence that HCC-derived core protein expression in primary human or mouse hepatocyte alleviates TGF-beta responses in terms or growth inhibition or apoptosis. Instead, in these hepatocytes TGF-beta was still able to induce an epithelial to mesenchymal transition (EMT, a process that contributes to the promotion of cell invasion and metastasis. Moreover, we demonstrate that different thresholds of Smad3 activation dictate the TGF-beta responses in hepatic cells and that HCV core protein, by decreasing Smad3 activation, may switch TGF-beta growth inhibitory effects to tumor promoting responses. CONCLUSION/SIGNIFICANCE: Our data illustrate the capacity of hepatocytes to develop EMT and plasticity under TGF-beta, emphasize the role of HCV core protein in the dynamic of these effects and provide evidence for a paradigm whereby a viral protein implicated in oncogenesis is capable to shift TGF-beta responses from cytostatic effects to EMT development.

  19. Proteomic analysis of osteogenic differentiation of dental follicle precursor cells

    DEFF Research Database (Denmark)

    Morsczeck, Christian; Petersen, Jørgen; Völlner, Florian


    of differentiation. In the present study we applied 2-DE combined with capillary-LC-MS/MS analysis to profile differentially regulated proteins upon differentiation of dental follicle precursor cells (DFPCs). Out of 115 differentially regulated proteins, glutamine synthetase, lysosomal proteinase cathepsin B....... The bioinformatic analyses suggest that proteins associated with cell cycle progression and protein metabolism were down-regulated and proteins involved in catabolism, cell motility and biological quality were up-regulated. These results display the general physiological state of DFPCs before and after osteogenic...... proteins, plastin 3 T-isoform, beta-actin, superoxide dismutases, and transgelin were found to be highly up-regulated, whereas cofilin-1, pro-alpha 1 collagen, destrin, prolyl 4-hydrolase and dihydrolipoamide dehydrogenase were found to be highly down-regulated. The group of up-regulated proteins...

  20. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma. (United States)

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias


    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. Copyright © 2015 Federation of European Biochemical Societies

  1. Overproduction, purification, crystallization and preliminary X-ray analysis of human Fe65-PTB2 in complex with the amyloid precursor protein intracellular domain

    Energy Technology Data Exchange (ETDEWEB)

    Radzimanowski, Jens [Heidelberg University Biochemistry Center, INF328, D-69120 Heidelberg (Germany); Beyreuther, Konrad [Center for Molecular Biology, University Heidelberg, INF282, D-69120 Heidelberg (Germany); Sinning, Irmgard; Wild, Klemens, E-mail: [Heidelberg University Biochemistry Center, INF328, D-69120 Heidelberg (Germany)


    Alzheimer’s disease is characterized by proteolytic processing of the amyloid precursor protein (APP), which releases the aggregation-prone amyloid-β (Aβ) peptide and liberates the intracellular domain (AICD) that interacts with various adaptor proteins. The crystallized AICD–Fe65-PTB2 complex is of central importance for APP translocation, nuclear signalling, processing and Aβ generation. Alzheimer’s disease is associated with typical brain deposits (senile plaques) that mainly contain the neurotoxic amyloid β peptide. This peptide results from proteolytic processing of the type I transmembrane protein amyloid precursor protein (APP). During this proteolytic pathway the APP intracellular domain (AICD) is released into the cytosol, where it associates with various adaptor proteins. The interaction of the AICD with the C-terminal phosphotyrosine-binding domain of Fe65 (Fe65-PTB2) regulates APP translocation, signalling and processing. Human AICD and Fe65-PTB2 have been cloned, overproduced and purified in large amounts in Escherichia coli. A complex of Fe65-PTB2 with the C-terminal 32 amino acids of the AICD gave well diffracting hexagonal crystals and data have been collected to 2.1 Å resolution. Initial phases obtained by the molecular-replacement method are of good quality and revealed well defined electron density for the substrate peptide.

  2. Conformational interconversions in peptide beta-turns: analysis of turns in proteins and computational estimates of barriers. (United States)

    Gunasekaran, K; Gomathi, L; Ramakrishnan, C; Chandrasekhar, J; Balaram, P


    The two most important beta-turn features in peptides and proteins are the type I and type II turns, which differ mainly in the orientation of the central peptide unit. Facile conformational interconversion is possible, in principle, by a flip of the central peptide unit. Homologous crystal structures afford an opportunity to structurally characterize both possible conformational states, thus allowing identification of sites that are potentially stereochemically mobile. A representative data set of 250 high-resolution (turns that are assigned different conformational types (type I/type II) in related structures. A total of 55 examples of beta-turns were identified as possible candidates for a stereochemically mobile site. Of the 55 examples, 45 could be classified as a potential site for interconversion between type I and type II beta-turns, while ten correspond to flips from type I' to type II' structures. As a further check, the temperature factors of the central peptide unit carbonyl oxygen atom of the 55 examples were examined. The analysis reveals that the turn assignments are indeed reliable. Examination of the secondary structures at the flanking positions of the flippable beta-turns reveals that seven examples occur in the loop region of beta-hairpins, indicating that the formation of ordered secondary structures on either side of the beta-turn does not preclude local conformational variations. In these beta-turns, Pro (11 examples), Lys (nine examples) and Ser (seven examples) were most often found at the i+1 position. Glycine was found to occur overwhelmingly at position i+2 (28 examples), while Ser (seven examples) and Asn (six examples) were amongst the most frequent residues. Activation energy barriers for the interconversion between type I and type II beta-turns were computed using the peptide models Ac-Pro-Aib-NHMe and Ac-Pro-Gly-NHMe within the framework of the AM1 semi-empirical molecular orbital procedure. In order to have a uniform basis for

  3. On the calculation of {sup 3}J{sub {alpha}{beta}}-coupling constants for side chains in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Denise [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland); Allison, Jane R. [Massey University Albany, Centre for Theoretical Chemistry and Physics, Institute for Natural Sciences (New Zealand); Eichenberger, Andreas P.; Gunsteren, Wilfred F. van, E-mail: [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland)


    Structural knowledge about proteins is mainly derived from values of observables, measurable in NMR spectroscopic or X-ray diffraction experiments, i.e. absorbed or scattered intensities, through theoretically derived relationships between structural quantities such as atom positions or torsional angles on the one hand and observable quantities such as squared structure factor amplitudes, NOE intensities or {sup 3}J-coupling constants on the other. The standardly used relation connecting {sup 3}J-couplings to torsional angles is the Karplus relation, which is used in protein structure refinement as well as in the evaluation of simulated properties of proteins. The accuracy of the simple and generalised Karplus relations is investigated using side-chain structural and {sup 3}J{sub {alpha}{beta}}-coupling data for three different proteins, Plastocyanin, Lysozyme, and FKBP, for which such data are available. The results show that the widely used Karplus relations are only a rough estimate for the relation between {sup 3}J{sub {alpha}{beta}}-couplings and the corresponding {chi}{sub 1}-angle in proteins.

  4. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli

    Directory of Open Access Journals (Sweden)

    Barth Sandra


    Full Text Available Abstract Background In screening of libraries derived by expression cloning, expression of active proteins in E. coli can be limited by formation of inclusion bodies. In these cases it would be desirable to enrich gene libraries for coding sequences with soluble gene products in E. coli and thus to improve the efficiency of screening. Previously Wilkinson and Harrison showed that solubility can be predicted from amino acid composition (Biotechnology 1991, 9(5:443–448. We have applied this analysis to members of the alpha/beta hydrolase fold family to predict their solubility in E. coli. alpha/beta hydrolases are a highly diverse family with more than 1800 proteins which have been grouped into homologous families and superfamilies. Results The predicted solubility in E. coli depends on hydrolase size, phylogenetic origin of the host organism, the homologous family and the superfamily, to which the hydrolase belongs. In general small hydrolases are predicted to be more soluble than large hydrolases, and eukaryotic hydrolases are predicted to be less soluble in E. coli than prokaryotic ones. However, combining phylogenetic origin and size leads to more complex conclusions. Hydrolases from prokaryotic, fungal and metazoan origin are predicted to be most soluble if they are of small, medium and large size, respectively. We observed large variations of predicted solubility between hydrolases from different homologous families and from different taxa. Conclusion A comprehensive analysis of all alpha/beta hydrolase sequences allows more efficient screenings for new soluble alpha/beta hydrolases by the use of libraries which contain more soluble gene products. Screening of hydrolases from families whose members are hard to express as soluble proteins in E. coli should first be done in coding sequences of organisms from phylogenetic groups with the highest average of predicted solubility for proteins of this family. The tools developed here can be used

  5. Implementation of Freeman-Wimley prediction algorithm in a web-based application for in silico identification of beta-barrel membrane proteins


    José Antonio Agüero-Fernández; Lisandra Aguilar-Bultet; Yandy Abreu-Jorge; Agustín Lage-Castellanos; Yannier Estévez-Dieppa


    Beta-barrel type proteins play an important role in both, human and veterinary medicine. In particular, their localization on the bacterial surface, and their involvement in virulence mechanisms of pathogens, have turned them into an interesting target in studies to search for vaccine candidates. Recently, Freeman and Wimley developed a prediction algorithm based on the physicochemical properties of transmembrane beta-barrels proteins (TMBBs). Based on that algorithm, and using Grails, a web-...

  6. Glycogen synthase kinase-3beta (GSK3beta) negatively regulates PTTG1/human securin protein stability, and GSK3beta inactivation correlates with securin accumulation in breast tumors. (United States)

    Mora-Santos, Mar; Limón-Mortés, M Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco


    PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.

  7. Role of TGF-beta1-independent changes in protein neosynthesis, p38alphaMAPK, and cdc42 in hydrogen peroxide-induced senescence-like morphogenesis

    DEFF Research Database (Denmark)

    Chrétien, Aline; Dierick, Jean-François; Delaive, Edouard


    for p38(MAPK) activation, in turn triggering phosphorylation of L-caldesmon and HSP27. Cdc42 was also shown to be mainly responsible for the increase in TGF-beta1 mRNA level observed at 24 h after treatment with H(2)O(2) and onward. This study further clarified the mechanisms of senescence......The role of TGF-beta1 in hydrogen peroxide-induced senescence-like morphogenesis has been described. The aim of this work was to investigate whether TGF-beta1-independent changes in protein synthesis are involved in this morphogenesis and to study possible mechanisms occurring earlier than TGF-beta......1 overexpression. Among the multiple TGF-beta1-independent changes in protein neosynthesis, followed or not by posttranslational modifications, identified by proteomic analysis herein, those of ezrin, L-caldesmon, and HSP27 were particularly studied. Rho-GTPase cdc42 was shown to be responsible...

  8. Structural analysis of alanine tripeptide with antiparallel and parallel beta-sheet structures in relation to the analysis of mixed beta-sheet structures in Samia cynthia ricini silk protein fiber using solid-state NMR spectroscopy. (United States)

    Asakura, Tetsuo; Okonogi, Michi; Nakazawa, Yasumoto; Yamauchi, Kazuo


    The structural analysis of natural protein fibers with mixed parallel and antiparallel beta-sheet structures by solid-state NMR is reported. To obtain NMR parameters that can characterize these beta-sheet structures, (13)C solid-state NMR experiments were performed on two alanine tripeptide samples: one with 100% parallel beta-sheet structure and the other with 100% antiparallel beta-sheet structure. All (13)C resonances of the tripeptides could be assigned by a comparison of the methyl (13)C resonances of Ala(3) with different [3-(13)C]Ala labeling schemes and also by a series of RFDR (radio frequency driven recoupling) spectra observed by changing mixing times. Two (13)C resonances observed for each Ala residue could be assigned to two nonequivalent molecules per unit cell. Differences in the (13)C chemical shifts and (13)C spin-lattice relaxation times (T(1)) were observed between the two beta-sheet structures. Especially, about 3 times longer T(1) values were obtained for parallel beta-sheet structure as compared to those of antiparallel beta-sheet structure, which could be explicable by the difference in the hydrogen-bond networks of both structures. This very large difference in T(1) becomes a good measure to differentiate between parallel or antiparallel beta-sheet structures. These differences in the NMR parameters found for the tripeptides may be applied to assign the parallel and antiparallel beta-sheet (13)C resonances in the asymmetric and broad methyl spectra of [3-(13)C]Ala silk protein fiber of a wild silkworm, Samia cynthia ricini.

  9. Loss of Function of ATXN1 Increases Amyloid β-Protein Levels by Potentiating β-Secretase Processing of β-Amyloid Precursor Protein* (United States)

    Zhang, Can; Browne, Andrew; Child, Daniel; DiVito, Jason R.; Stevenson, Jesse A.; Tanzi, Rudolph E.


    Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date ∼80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Aβ, the proteolytic product of β-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Aβ and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Aβ40 and Aβ42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Aβ levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Aβ levels is modulated via β-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating β-secretase cleavage of APP and Aβ levels. PMID:20097758

  10. Tubulin Beta-3 Chain as a New Candidate Protein Biomarker of Human Skin Aging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Sylvia G. Lehmann


    Full Text Available Skin aging is a complex process, and a lot of efforts have been made to identify new and specific targets that could help to diagnose, prevent, and treat skin aging. Several studies concerning skin aging have analyzed the changes in gene expression, and very few investigations have been performed at the protein level. Moreover, none of these proteomic studies has used a global quantitative labeled proteomic offgel approach that allows a more accurate description of aging phenotype. We applied such an approach on human primary keratinocytes obtained from sun-nonexposed skin biopsies of young and elderly women. A total of 517 unique proteins were identified, and 58 proteins were significantly differentially expressed with 40 that were downregulated and 18 upregulated with aging. Gene ontology and pathway analysis performed on these 58 putative biomarkers of skin aging evidenced that these dysregulated proteins were mostly involved in metabolism and cellular processes such as cell cycle and signaling pathways. Change of expression of tubulin beta-3 chain was confirmed by western blot on samples originated from several donors. Thus, this study suggested the tubulin beta-3 chain has a promising biomarker in skin aging.

  11. Chaperone-Mediated Sec61 Channel Gating during ER Import of Small Precursor Proteins Overcomes Sec61 Inhibitor-Reinforced Energy Barrier

    Directory of Open Access Journals (Sweden)

    Sarah Haßdenteufel


    Full Text Available Summary: Protein transport into the mammalian endoplasmic reticulum (ER is mediated by the heterotrimeric Sec61 channel. The signal recognition particle (SRP and TRC systems and Sec62 have all been characterized as membrane-targeting components for small presecretory proteins, whereas Sec63 and the lumenal chaperone BiP act as auxiliary translocation components. Here, we report the transport requirements of two natural, small presecretory proteins and engineered variants using semipermeabilized human cells after the depletion of specific ER components. Our results suggest that hSnd2, Sec62, and SRP and TRC receptor each provide alternative targeting pathways for short secretory proteins and define rules of engagement for the actions of Sec63 and BiP during their membrane translocation. We find that the Sec62/Sec63 complex plus BiP can facilitate Sec61 channel opening, thereby allowing precursors that have weak signal peptides or other inhibitory features to translocate. A Sec61 inhibitor can mimic the effect of BiP depletion on Sec61 gating, suggesting that they both act at the same essential membrane translocation step. : Protein transport into the human endoplasmic reticulum (ER is mediated by the heterotrimeric Sec61 channel. Haßdenteufel et al. map the determinants for requirement of different targeting pathways and different auxiliary components of the Sec61 channel in ER import of short presecretory proteins. Different characteristics of precursor polypeptides dictate the engagement of each component. Keywords: endoplasmic reticulum, protein targeting and translocation, Sec61 channel gating, Sec62, Sec63, BiP, CAM741, signal peptide, mature region, cluster of positive charges

  12. Association of coatomer proteins with the beta-receptor for platelet-derived growth factor

    DEFF Research Database (Denmark)

    Hansen, Klaus; Rönnstrand, L; Rorsman, C


    The nonreceptor tyrosine kinase Src binds to and is activated by the beta-receptor for platelet-derived growth factor (PDGF). The interaction leads to Src phosphorylation of Tyr934 in the kinase domain of the receptor. In the course of the functional characterization of this phosphorylation, we...... of intracellular vesicle transport. In order to explore the functional significance of the interaction between alpha- and beta'-COP and the PDGF receptor, a receptor mutant was made in which the conserved histidine residue 928 was mutated to an alanine residue. The mutant receptor, which was unable to bind alpha...

  13. One precursor, three apolipoproteins: the relationship between two crustacean lipoproteins, the large discoidal lipoprotein and the high density lipoprotein/β-glucan binding protein. (United States)

    Stieb, Stefanie; Roth, Ziv; Dal Magro, Christina; Fischer, Sabine; Butz, Eric; Sagi, Amir; Khalaila, Isam; Lieb, Bernhard; Schenk, Sven; Hoeger, Ulrich


    The novel discoidal lipoprotein (dLp) recently detected in the crayfish, differs from other crustacean lipoproteins in its large size, apoprotein composition and high lipid binding capacity, We identified the dLp sequence by transcriptome analyses of the hepatopancreas and mass spectrometry. Further de novo assembly of the NGS data followed by BLAST searches using the sequence of the high density lipoprotein/1-glucan binding protein (HDL-BGBP) of Astacus leptodactylus as query revealed a putative precursor molecule with an open reading frame of 14.7 kb and a deduced primary structure of 4889 amino acids. The presence of an N-terminal lipid bind- ing domain and a DUF 1943 domain suggests the relationship with the large lipid transfer proteins. Two-putative dibasic furin cleavage sites were identified bordering the sequence of the HDL-BGBP. When subjected to mass spectroscopic analyses, tryptic peptides of the large apoprotein of dLp matched the N-terminal part of the precursor, while the peptides obtained for its small apoprotein matched the C-terminal part. Repeating the analysis in the prawn Macrobrachium rosenbergii revealed a similar protein with identical domain architecture suggesting that our findings do not represent an isolated instance. Our results indicate that the above three apolipoproteins (i.e HDL-BGBP and both the large and the small subunit of dLp) are translated as a large precursor. Cleavage at the furin type sites releases two subunits forming a heterodimeric dLP particle, while the remaining part forms an HDL-BGBP whose relationship with other lipoproteins as well as specific functions are yet to be elucidated.

  14. The Impact of the ‘Austrian’ Mutation of the Amyloid Precursor Protein Transmembrane Helix is Communicated to the Hinge Region

    DEFF Research Database (Denmark)

    Stelzer, Walter; Scharnagl, Christina; Leurs, Ulrike


    The transmembrane helix of the amyloid precursor protein is subject to proteolytic cleavages by γ-secretase at different sites resulting in Aβ peptides of different length and toxicity. A number of point mutations within this transmembrane helix alter the cleavage pattern thus enhancing production...... destabilizes amide hydrogen bonds in the hinge which connects dimerization and cleavage regions. Weaker intrahelical hydrogen bonds at the hinge may enhance helix bending and thereby affect recognition of the transmembrane substrate by the enzyme and/or presentation of its cleavage sites to the catalytic cleft....

  15. Conformational intermediate of the amyloidogenic protein beta 2-microglobulin at neutral pH

    DEFF Research Database (Denmark)

    Heegaard, N H; Sen, J W; Kaarsholm, N C


    electrophoresis that two conformers spontaneously exist in aqueous buffers at neutral pH. Upon treatment of wild-type beta(2)-microglobulin with acetonitrile or trifluoroethanol, two conformations were also observed. These conformations were in equilibrium dependent on the sample temperature and the percentage...

  16. Stabilization of the beta-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity

    Czech Academy of Sciences Publication Activity Database

    Obr, M.; Hadravová, Romana; Doležal, Michal; Křížová, Ivana; Papoušková, V.; Žídek, L.; Hrabal, R.; Ruml, T.; Rumlová, Michaela


    Roč. 11, Oct 30 (2014), 94/1-94/14 ISSN 1742-4690 R&D Projects: GA ČR(CZ) GA14-15326S; GA MŠk LO1302 Grant - others:GA MŠk(CZ) ED1.1.00/02.0068; Seventh Framework Programme of the European Union(XE) FP7-261863 Program:ED Institutional support: RVO:61388963 Keywords : retrovirus * assembly * M-PMV * capsid protein * maturation * beta-hairpin Subject RIV: EE - Microbiology, Virology Impact factor: 4.185, year: 2014

  17. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons. (United States)

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui


    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Beta-and gamma-turns in proteins revisited: a new set of amino acid turn-type dependent positional preferences and potentials. (United States)

    Guruprasad, K; Rajkumar, S


    The number of beta-turns in a representative set of 426 protein three-dimensional crystal structures selected from the recent Protein Data Bank has nearly doubled and the number of gamma-turns in a representative set of 320 proteins has increased over seven times since the previous analysis. Beta-turns (7153) and gamma-turns (911) extracted from these proteins were used to derive a revised set of type-dependent amino acid positional preferences and potentials. Compared with previous results, the preference for proline, methionine and tryptophan has increased and the preference for glutamine, valine, glutamic acid and alanine has decreased for beta-turns. Certain new amino acid preferences were observed for both turn types and individual amino acids showed turn-type dependent positional preferences. The rationale for new amino acid preferences are discussed in the light of hydrogen bonds and other interactions involving the turns. Where main-chain hydrogen bonds of the type NH(i + 3) --> CO(i) were not observed for some beta-turns, other main-chain hydrogen bonds or solvent interactions were observed that possibly stabilize such beta-turns. A number of unexpected isolated beta-turns with proline at i + 2 position were also observed. The NH(i + 2) --> CO(i) hydrogen bond was observed for almost all gamma-turns. Nearly 20% classic gamma-turns and 43% inverse gamma-turns are isolated turns.

  19. From the test tube to the cell: exploring the folding and aggregation of a beta-clam protein. (United States)

    Ignatova, Zoya; Krishnan, Beena; Bombardier, Jeffrey P; Marcelino, Anna Marie C; Hong, Jiang; Gierasch, Lila M


    A crucial challenge in present biomedical research is the elucidation of how fundamental processes like protein folding and aggregation occur in the complex environment of the cell. Many new physico-chemical factors like crowding and confinement must be considered, and immense technical hurdles must be overcome in order to explore these processes in vivo. Understanding protein misfolding and aggregation diseases and developing therapeutic strategies to these diseases demand that we gain mechanistic insight into behaviors and misbehaviors of proteins as they fold in vivo. We have developed a fluorescence approach using FlAsH labeling to study the thermodynamics of folding of a model beta-rich protein, cellular retinoic acid binding protein (CRABP) in Escherichia coli cells. The labeling approach has also enabled us to follow aggregation of a modified version of CRABP and chimeras between CRABP and huntingtin exon 1 with its glutamine repeat tract. In this article, we review our recent results using FlAsH labeling to study in-vivo folding and present new observations that hint at fundamental differences between the thermodynamics and kinetics of protein folding in vivo and in vitro.

  20. Expression of transforming growth factor beta 1-related signaling proteins in irradiated vessels

    Energy Technology Data Exchange (ETDEWEB)

    Preidl, Raimund H.M.; Moebius, Patrick; Weber, Manuel; Neukam, Friedrich W.; Schlegel, Andreas; Wehrhan, Falk [University of Erlangen- Nuernberg, Department of Oral and Maxillofacial Surgery, Erlangen (Germany); University of Erlangen- Nuernberg, Erlangen (Germany); Amann, Kerstin [University of Erlangen- Nuernberg, Erlangen (Germany)


    Microvascular free tissue transfer is a standard method in head and neck reconstructive surgery. However, previous radiotherapy of the operative region is associated with an increased incidence in postoperative flap-related complications and complete flap loss. As transforming growth factor beta (TGF-β) 1 and galectin-3 are well known markers in the context of fibrosis and lectin-like oxidized low-density lipoprotein 1 (LOX-1) supports vascular atherosclerosis, the aim of this study was to evaluate the expression of TGF-β1 and related markers as well as LOX-1 in irradiated vessels. To evaluate the expression of galectin-3, Smad 2/3, TGF-β1, and LOX-1, 20 irradiated and 20 nonirradiated arterial vessels were used for immunohistochemical staining. We semiquantitatively assessed the ratio of stained cells/total number of cells (labeling index). Expression of galectin-3, Smad 2/3, and TGF-β1 was significantly increased in previously irradiated vessels compared with nonirradiated controls. Furthermore, LOX-1 was expressed significantly higher in irradiated compared with nonirradiated vessels. Fibrosis-related proteins like galectin-3, Smad 2/3, and TGF-β1 are upregulated after radiotherapy and support histopathological changes leading to vasculopathy of the irradiated vessels. Furthermore, postoperative complications in irradiated patients can be explained by increased endothelial dysfunction caused by LOX-1 in previously irradiated patients. Consequently, not only TGF-β1 but also galectin-3inhibitors may decrease complications after microsurgical tissue transfer. (orig.) [German] Der freie mikrovaskulaere Gewebetransfer gilt heute als fester Standard in der rekonstruktiven Kopf-Hals-Chirurgie. Es zeigte sich jedoch, dass im Falle einer stattgehabten Bestrahlung im Operationsgebiet mit einer erhoehten Rate an transplantatbezogenen Komplikationen gerechnet werden muss. Sowohl TGF-β1 als auch Galektin-3 sind bekannte Mediatoren in Bezug auf die Fibroseentstehung

  1. Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Wrzesinski, Krzysztof; Larsen, Peter Mose


    quantitate a large number of proteins and their post-translational modifications simultaneously and is a powerful tool to study polygenic diseases like type 2 diabetes. Using this approach on human skeletal muscle biopsies, we have identified eight potential protein markers for type 2 diabetes in the fasting...... synthase beta-subunit phosphoisoform in diabetic muscle correlated inversely with fasting plasma glucose levels. These data suggest a role for phosphorylation of ATP synthase beta-subunit in the regulation of ATP synthesis and that alterations in the regulation of ATP synthesis and cellular stress proteins...

  2. CD73 Protein as a Source of Extracellular Precursors for Sustained NAD+ Biosynthesis in FK866-treated Tumor Cells* (United States)

    Grozio, Alessia; Sociali, Giovanna; Sturla, Laura; Caffa, Irene; Soncini, Debora; Salis, Annalisa; Raffaelli, Nadia; De Flora, Antonio; Nencioni, Alessio; Bruzzone, Santina


    NAD+ is mainly synthesized in human cells via the “salvage” pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the “salvage” pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD+ or NAD+ precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD+ precursors for NAD+ biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD+ biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors. PMID:23880765

  3. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched alpha-lactalbumin and beta-lactoglobulin food ingredients (United States)

    A potentially economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (SCO2) as an acid to produce enriched fractions of alpha-lactalbumin (a-LA) and beta-lactoglobulin (b-LG) from whey protein isolate. To prepare the fractions, so...

  4. Crystallization and preliminary crystallographic studies of the copper-binding domain of the amyloid precursor protein of Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Geoffrey K.-W. [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); Galatis, Denise; Barnham, Kevin J. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Polekhina, Galina; Adams, Julian J. [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Masters, Colin L. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Cappai, Roberto [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Centre for Neuroscience, The University of Melbourne, Victoria 3010 (Australia); Parker, Michael W.; McKinstry, William J., E-mail: [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia)


    The binding of Cu{sup 2+} ions to the copper-binding domain of the amyloid precursor protein of Alzheimer’s disease reduces the production of the amyloid β peptide, which is centrally involved in Alzheimer’s disease. Structural studies of the copper-binding domain will provide a basis for structure-based drug design that might prove useful in treating this devastating disease. Alzheimer’s disease is thought to be triggered by production of the amyloid β (Aβ) peptide through proteolytic cleavage of the amyloid precursor protein (APP). The binding of Cu{sup 2+} to the copper-binding domain (CuBD) of APP reduces the production of Aβ in cell-culture and animal studies. It is expected that structural studies of the CuBD will lead to a better understanding of how copper binding causes Aβ depletion and will define a potential drug target. The crystallization of CuBD in two different forms suitable for structure determination is reported here.

  5. Differentiating the Influences of Aging and Adiposity on Brain Weights, Levels of Serum and Brain Cytokines, Gastrointestinal Hormones, and Amyloid Precursor Protein. (United States)

    Banks, William A; Abrass, Christine K; Hansen, Kim M


    Aging and obesity exert important effects on disease. Differentiating these effects is difficult, however, because weight gain often accompanies aging. Here, we used a nested design of aged, calorically restricted, and refed rats to measure changes in brain and blood levels of cytokines and gastrointestinal hormones, brain amyloid precursor protein levels, and brain and body weights. By comparing groups and using path analysis, we found divergent influences of chronological aging versus body weight, our main findings being (i) changes in whole brain weight and serum macrophage colony-stimulating factor levels correlated better with body weight than with chronological aging, (ii) a decrease in brain cytokines and brain plasminogen activator inhibitor levels correlated better with chronological aging than with body weight, (iii) serum erythropoietin levels were influenced by both body weight and aging, (iv) serum plasminogen activator inhibitor, serum cytokines, and brain tumor necrosis factor were not influenced by aging or body weight, and (v) brain amyloid precursor protein more closely related to body weight and serum levels of gastrointestinal hormones than to brain weight, chronological aging, or cytokines. These findings show that although aging and body weight interact, their influences are distinct not only among various cytokines and hormones but also between the central nervous system and the peripheral tissue compartments. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  6. Effects of Amyloid Precursor Protein 17 Peptide on the Protection of Diabetic Encephalopathy and Improvement of Glycol Metabolism in the Diabetic Rat

    Directory of Open Access Journals (Sweden)

    Heng Meng


    Full Text Available Researchers have proposed that amyloid precursor protein 17 peptide (APP17 peptide, an active fragment of amyloid precursor protein (APP in the nervous system, has therapeutic effects on neurodegeneration. Diabetic encephalopathy (DE is a neurological disease caused by diabetes. Here we use multiple experimental approaches to investigate the effect of APP17 peptide on changes in learning behavior and glycol metabolism in rats. It was found that rats with DE treated by APP17 peptide showed reversed behavioral alternation. The [18F]-FDG-PET images and other results all showed that the APP17 peptide could promote glucose metabolism in the brain of the DE rat model. Meanwhile, the insulin signaling was markedly increased as shown by increased phosphorylation of Akt and enhanced GLUT4 activation. Compared with the DE group, the activities of SOD, GSH-Px, and CAT in the rat hippocampal gyrus were increased, while MDA decreased markedly in the DE + APP17 peptide group. No amyloid plaques in the cortex and the hippocampus were detected in either group, indicating that the experimental animals in the current study were not suffering from Alzheimer’s disease. These results indicate that APP17 peptide could be used to treat DE effectively.

  7. Mitogen-Activated Protein Kinases Promote WNT/beta-Catenin Signaling via Phosphorylation of LRP6

    Czech Academy of Sciences Publication Activity Database

    Červenka, I.; Wolf, J.; Mašek, J.; Krejčí, Pavel; Wilcox, W. R.; Kozubík, Alois; Schulte, G.; Gutkind, J.S.; Bryja, Vítězslav


    Roč. 31, č. 1 (2011), s. 179-189 ISSN 0270-7306 R&D Projects: GA ČR(CZ) GC204/09/J030 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : WNT RECEPTOR ACTIVATION * BETA-CATENIN * CORECEPTOR LRP6 Subject RIV: BO - Biophysics Impact factor: 5.527, year: 2011

  8. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation.

    Directory of Open Access Journals (Sweden)

    Nils Paulmann


    Full Text Available While serotonin (5-HT co-localization with insulin in granules of pancreatic beta-cells was demonstrated more than three decades ago, its physiological role in the etiology of diabetes is still unclear. We combined biochemical and electrophysiological analyses of mice selectively deficient in peripheral tryptophan hydroxylase (Tph1-/- and 5-HT to show that intracellular 5-HT regulates insulin secretion. We found that these mice are diabetic and have an impaired insulin secretion due to the lack of 5-HT in the pancreas. The pharmacological restoration of peripheral 5-HT levels rescued the impaired insulin secretion in vivo. These findings were further evidenced by patch clamp experiments with isolated Tph1-/- beta-cells, which clearly showed that the secretory defect is downstream of Ca(2+-signaling and can be rescued by direct intracellular application of 5-HT via the clamp pipette. In elucidating the underlying mechanism further, we demonstrate the covalent coupling of 5-HT by transglutaminases during insulin exocytosis to two key players in insulin secretion, the small GTPases Rab3a and Rab27a. This renders them constitutively active in a receptor-independent signaling mechanism we have recently termed serotonylation. Concordantly, an inhibition of such activating serotonylation in beta-cells abates insulin secretion. We also observed inactivation of serotonylated Rab3a by enhanced proteasomal degradation, which is in line with the inactivation of other serotonylated GTPases. Our results demonstrate that 5-HT regulates insulin secretion by serotonylation of GTPases within pancreatic beta-cells and suggest that intracellular 5-HT functions in various microenvironments via this mechanism in concert with the known receptor-mediated signaling.

  9. The Outer Membrane Protein OmpW Forms an Eight-Stranded beta-Barrel with a Hydrophobic Channel

    International Nuclear Information System (INIS)

    Hong, H.; Patel, D.; Tamm, L.; van den Berg, B.


    Escherichia coli OmpW belongs to a family of small outer membrane (OM) proteins that are widespread in Gram-negative bacteria. Their functions are unknown, but recent data suggest that they may be involved in the protection of bacteria against various forms of environmental stress. In order to gain insight into the function of these proteins we have determined the crystal structure of Escherichia coli OmpW to 2.7 Angstroms resolution. The structure shows that OmpW forms an eight-stranded beta-barrel with a long and narrow hydrophobic channel that contains a bound LDAO detergent molecule. Single channel conductance experiments show that OmpW functions as an ion channel in planar lipid bilayers. The channel activity can be blocked by the addition of LDAO. Taken together, the data suggest that members of the OmpW family could be involved in the transport of small hydrophobic molecules across the bacterial OM

  10. Human interleukin 1. beta. stimulates islet insulin release by a mechanism not dependent on changes in phospholipase C and protein kinase C activities or Ca sup 2+ handling

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, N.; Nilsson, T.; Hallberg, A.; Arkhammar, P.; Berggren, P.-O.; Sandler, S.


    Isolated islets from adult rats or obese hyperglycemic (ob/ob) mice were incubated with human recombinant interleukin 1{beta} in order to study whether the acute effects of the cytokine on islet insulin release are associated with changes in islet phospholipase C activity, Ca{sup 2+} handling or protein phosphorylation. The cytokine stimulated insulin release both at low and high glucose concentrations during one hour incubations. In shortterm incubations (<1 min) interleukin 1{beta} did not affect the production of inositoltrisphosphate. Addition of interleukin 1{beta} affected neither the cytoplasmic free Ca{sup 2+} concentration at rest nor that observed subsequent to stimulation with a high concentration of glucose. Furthermore, the endogenous protein kinase C activity, as visualized by immunoprecipitation of a {sup 32}P-labelled substrate for this enzyme, was not altered by interleukin 1{beta}. Separation of {sup 32}P-labelled proteins by means of 2-dimensional gel electrophoresis failed to reveal any specific effects of the cytokine on the total protein phosphorylation activity. These results suggest that the stimulatory effects on insulin release exerted by interleukin 1{beta} are not caused by acute activation of phospholipase C and protein kinase C or by an alternation of islet Ca{sup 2+} handling of the B-cells. (author).

  11. Specific interaction of capsid protein and importin-{alpha}/{beta} influences West Nile virus production

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvanakantham, Raghavan; Chong, Mun-Keat [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore); Ng, Mah-Lee, E-mail: [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore)


    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-{alpha}. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-{alpha}/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-{alpha}/C protein interaction in the context of flavivirus life-cycle.

  12. Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: A challenging correlation. (United States)

    Krawczenko, Agnieszka; Bielawska-Pohl, Aleksandra; Wojtowicz, Karolina; Jura, Roksana; Paprocka, Maria; Wojdat, Elżbieta; Kozłowska, Urszula; Klimczak, Aleksandra; Grillon, Catherine; Kieda, Claudine; Duś, Danuta


    Active cellular transporters of harmful agents-multidrug resistance (mdr) proteins-are present in tumor, stem and endothelial cells, among others. While mdr proteins are broadly studied in tumor cells, their role in non-tumor cells and the significance of their action not connected with removal of harmful xenobiotics is less extensively documented. Proper assessment of mdr proteins expression is difficult. Mdr mRNA presence is most often evaluated but that does not necessarily correlate with the protein level. The protein expression itself is difficult to determine; usually cells with mdr overexpression are studied, not cells under physiological conditions, in which a low expression level of mdr protein is often insufficient for detection in vitro. Various methods are used to identify mdr mRNA and protein expression, together with functional tests demonstrating their biological drug transporting activities. Data comparing different methods of investigating expression of mdr mRNAs and their corresponding proteins are still scarce. In this article we present the results of a study concerning mdr mRNA and protein expression. Our goal was to search for the best method to investigate the expression level and functional activity of five selected mdr proteins-MDR1, BCRP, MRP1, MRP4 and MRP5-in established in vitro cell lines of human endothelial cells (ECs) and their progenitors. Endothelial cells demonstrated mdr presence at the mRNA level, which was not always confirmed at the protein level or in functional tests. Therefore, several different assays had to be applied for evaluation of mdr proteins expression and functions in endothelial cells. Among them functional tests seemed to be the most conclusive, although not very specific.

  13. Why do alpha-beta parallel proteins, like flavodoxins, form misfolded off-pathway intermediates?

    NARCIS (Netherlands)

    Nabuurs, S.M.


    The question: “Why do α-β parallel proteins, like flavodoxins, form misfolded off-pathway
    intermediates?" is the main subject of this thesis. A. vinelandii apoflavodoxin is chosen as protein
    of interest as it is a representative of α-β parallel proteins, which are widely prevalent in

  14. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    Energy Technology Data Exchange (ETDEWEB)

    Cline, Gary W., E-mail: [Yale University School of Medicine (United States); Zhao, Xiaojian [Yale University School of Medicine (United States); Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L. [Pfizer Global Research and Development, Pfizer Inc., Groton CT (United States)


    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  15. The interaction of CK2alpha and CK2beta, the subunits of protein kinase CK2, requires CK2beta in a preformed conformation and is enthalpically driven

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Brunstein, Elena; Issinger, Olaf-Georg


    . In contrast to the cyclins in the case of the cyclin-dependent kinases CK2beta is no on-switch of CK2alpha; rather the formation of the CK2 holoenzyme is accompanied with an overall change of the enzyme's profile including a modulation of the substrate specificity, an increase of the thermostability......, and an allocation of docking sites for membranes and other proteins. In this study we used C-terminal deletion variants of human CK2alpha and CK2beta that were enzymologically fully competent and in particular able to form a heterotetrameric holoenzyme. With differential scanning calorimetry (DSC) we confirmed...

  16. Crystallization and preliminary X-ray diffraction studies of the precursor protein of a thermostable variant of papain

    International Nuclear Information System (INIS)

    Roy, Sumana; Choudhury, Debi; Chakrabarti, Chandana; Biswas, Sampa; Dattagupta, J. K.


    The crystallization of the precursor of a thermostable variant of papain and the collection of diffraction data to 2.6 Å resolution are reported. The crystallization of a recombinant thermostable variant of pro-papain has been carried out. The mutant pro-enzyme was expressed in Escherichia coli as inclusion bodies, refolded, purified and crystallized. The crystals belonged to space group P2 1 , with unit-cell parameters a = 42.9, b = 74.8, c = 116.5 Å, β = 93.0°, and diffracted to 2.6 Å resolution using synchrotron radiation. Assuming the presence of two molecules in the asymmetric unit, the calculated Matthews coefficient is 2.28 Å 3 Da −1 , corresponding to a solvent content of 46%. Initial attempts to solve the structure using molecular-replacement techniques were successful

  17. Multisite tyrosine phosphorylation of the N-terminus of Mint1/X11α by Src kinase regulates the trafficking of amyloid precursor protein. (United States)

    Dunning, Christopher J R; Black, Hannah L; Andrews, Katie L; Davenport, Elizabeth C; Conboy, Michael; Chawla, Sangeeta; Dowle, Adam A; Ashford, David; Thomas, Jerry R; Evans, Gareth J O


    Mint/X11 is one of the four neuronal trafficking adaptors that interact with amyloid precursor protein (APP) and are linked with its cleavage to generate β-amyloid peptide, a key player in the pathology of Alzheimer's disease. How APP switches between adaptors at different stages of the secretory pathway is poorly understood. Here, we show that tyrosine phosphorylation of Mint1 regulates the destination of APP. A canonical SH2-binding motif ((202) YEEI) was identified in the N-terminus of Mint1 that is phosphorylated on tyrosine by C-Src and recruits the active kinase for sequential phosphorylation of further tyrosines (Y191 and Y187). A single Y202F mutation in the Mint1 N-terminus inhibits C-Src binding and tyrosine phosphorylation. Previous studies observed that co-expression of wild-type Mint1 and APP causes accumulation of APP in the trans-Golgi. Unphosphorylatable Mint1 (Y202F) or pharmacological inhibition of Src reduced the accumulation of APP in the trans-Golgi of heterologous cells. A similar result was observed in cultured rat hippocampal neurons where Mint1(Y202F) permitted the trafficking of APP to more distal neurites than the wild-type protein. These data underline the importance of the tyrosine phosphorylation of Mint1 as a critical switch for determining the destination of APP. The regulation of amyloid precursor protein (APP) trafficking is poorly understood. We have discovered that the APP adapter, Mint1, is phosphorylated by C-Src kinase. Mint1 causes APP accumulation in the trans-Golgi network, whereas inhibition of Src or mutation of Mint1-Y202 permits APP recycling. The phosphorylation status of Mint1 could impact on the pathological trafficking of APP in Alzheimer's disease. © 2016 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  18. Digestibilidade de alimentos protéicos e energéticos para fêmeas de beta Digestibility of protein feedstuffs and energetic feedstuffs for female beta

    Directory of Open Access Journals (Sweden)

    Jener Alexandre Sampaio Zuanon


    Full Text Available Foram avaliados os coeficientes de digestibilidade aparente de MS, PB, energia bruta (EB e EE de alimentos protéicos (farelo de soja e farinha de peixe e energéticos (fubá de milho e farelo de trigo para beta (Betta splendens. Fêmeas adultas foram alojadas em gaiolas e mantidas em dois aquários de fibra de vidro (30 peixes/aquário para alimentação e dois para coleta de fezes, ambos de formato cônico e com capacidade para 30 L. Os resultados dos coeficientes de digestibilidade aparente de MS, PB, EB e EE foram, respectivamente, de 69,43; 72,52; 67,91 e 55,50% para farelo de soja; 60,67; 51,15; 75,55 e 58,26% para farinha de peixe; 63,88; 87,16; 77,61 e 50,40% para fubá de milho; e 61,06; 93,37; 58,17 e 65,51% para farelo de trigo. Os resultados obtidos neste estudo permitem otimizar a formulação de dietas práticas balanceadas, economicamente viáveis para a espécie.Apparent digestibility coefficients of dry matter, crude protein, gross energy and ether extract from protein feeds: soybean meal and fish meal and from energy feeds: corn and wheat middlings were evaluated for Siamese fighting fish (Betta splendens. Adult female fish were stocked in cages and held in two fiberglass aquaria (30 fish/aquarium for feeding and two aquaria for collect fecal samples, both with conic shape with 30L. The results of apparent digestibility coefficients for DM, CP, GE and EE were respectively 69.43, 72.52, 67.91 and 55.50% for soybean meal; 60.67, 51.15, 75.55 and 58.26% for fish meal; 63.88, 87.16, 77.61 and 50.40% for corn and 61.06, 93.37, 58.17 and 65.51% for wheat middlings. The determined digestibility values are essential to economically viable practical diet formulation for Siamese fish fighting.

  19. PKC signaling is involved in the regulation of progranulin (acrogranin/PC-cell-derived growth factor/granulin-epithelin precursor) protein expression in human ovarian cancer cell lines. (United States)

    Diaz-Cueto, Laura; Arechavaleta-Velasco, Fabian; Diaz-Arizaga, Adriana; Dominguez-Lopez, Pablo; Robles-Flores, Martha


    Overexpression of progranulin (also named acrogranin, PC-cell-derived growth factor, or granulin-epithelin precursor) is associated with ovarian cancer, specifically with cell proliferation, malignancy, chemoresistance, and shortened overall survival. The objective of the current study is to identify the signaling pathways involved in the regulation of progranulin expression in ovarian cancer cell lines. We studied the relation of protein kinase C (PKC), phosphatidylinositol 3-kinase, protein kinase A, P38, extracellular signal-regulated kinase, and Akt pathways on the modulation of progranulin expression levels in NIH-OVCAR-3 and SK-OV-3 ovarian cancer cell lines. The different pathways were examined using pharmacological inhibitors (calphostin C, LY294002, H89, SB203580, PD98059, and Akt Inhibitor), and mRNA and protein progranulin expression were analyzed by reverse transcriptase polymerase chain reaction and Western blot techniques, respectively. Inhibition of PKC signal transduction pathway by calphostin C decreased in a dose-dependent manner protein but not mRNA levels of progranulin in both ovarian cancer cell lines. LY294002 but not wortmannin, which are phosphatidylinositol 3-kinase inhibitors, also diminished the expression of progranulin in both cell lines. In addition, LY294002 treatment produced a significant reduction in cell viability. Inhibition of protein kinase A, P38, extracellular signal-regulated kinase, and Akt did not affect progranulin protein expression. These results suggest that the PKC signaling is involved in the regulation of progranulin protein expression in 2 different ovarian cancer cell lines. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the cellular proliferation and invasion in ovarian cancer produced by progranulin.

  20. Potential Natural Products for Alzheimer’s Disease: Targeted Search Using the Internal Ribosome Entry Site of Tau and Amyloid-β Precursor Protein

    Directory of Open Access Journals (Sweden)

    Yun-Chieh Tasi


    Full Text Available Overexpression of the amyloid precursor protein (APP and the hyperphosphorylation of the tau protein are vital in the understanding of the cause of Alzheimer’s disease (AD. As a consequence, regulation of the expression of both APP and tau proteins is one important approach in combating AD. The APP and tau proteins can be targeted at the levels of transcription, translation and protein structural integrity. This paper reports the utilization of a bi-cistronic vector containing either APP or tau internal ribosome entry site (IRES elements flanked by β-galactosidase gene (cap-dependent and secreted alkaline phosphatase (SEAP (cap-independent to discern the mechanism of action of memantine, an N-methyl-d-aspartate (NMDA receptor antagonist. Results indicate that memantine could reduce the activity of both the APP and tau IRES at a concentration of ~10 μM (monitored by SEAP activity without interfering with the cap-dependent translation as monitored by the β-galactosidase assay. Western blot analysis of the tau protein in neuroblastoma (N2A and rat hippocampal cells confirmed the halting of the expression of the tau proteins. We also employed this approach to identify a preparation named NB34, extracts of Boussingaultia baselloides (madeira-vine fermented with Lactobacillus spp., which can function similarly to memantine in both IRES of APP and Tau. The water maze test demonstrated that NB34 could improve the spatial memory of a high fat diet induced neurodegeneration in apolipoprotein E-knockout (ApoE−/− mice. These results revealed that the bi-cistronic vector provided a simple, and effective platform in screening and establishing the mechanistic action of potential compounds for the treatment and management of AD.

  1. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. (United States)

    Guillermet-Guibert, Julie; Bjorklof, Katja; Salpekar, Ashreena; Gonella, Cristiano; Ramadani, Faruk; Bilancio, Antonio; Meek, Stephen; Smith, Andrew J H; Okkenhaug, Klaus; Vanhaesebroeck, Bart


    The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.

  2. Methods to uncover an antibody epitope in the KPI domain of Alzheimer's amyloid precursor protein for immunohistochemistry in human brain. (United States)

    Campbell, E; Pearson, R C; Parkinson, D


    A novel polyclonal antibody (Ab993), specific for a KPI domain epitope of APP, was characterised for use in immunoprecipitation, Western blotting and immunohistochemistry. Conditioned medium from NTera2/D1 cells was used for immunoprecipitation and Western blots. Paraffin-embedded human brain sections were used for immunohistochemistry. The antibody recognised KPI-containing APP on Western blots after standard solubilisation but immunoprecipitation of soluble APP required reduction with 2-mercaptoethanol followed by alkylation of reduced sulphydryl bonds with sodium iodoacetate. Immunohistochemical staining of human brain sections was significantly enhanced by this pre-treatment. Microwaving of sections also increased immunolabelling, by a mechanism that was additive to reduction and alkylation. Incubation in 80% formic acid did not confer any enhancement of immunoreactivity. Ab993, applied with the methods reported here, is expected to be valuable in investigations of the pathogenesis of Alzheimer's disease to determine the source of the beta-amyloid peptide.

  3. Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic beta cell. (United States)

    Kowluru, Anjaneyulu


    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.

  4. An Alzheimer Disease-linked Rare Mutation Potentiates Netrin Receptor Uncoordinated-5C-induced Signaling That Merges with Amyloid β Precursor Protein Signaling. (United States)

    Hashimoto, Yuichi; Toyama, Yuka; Kusakari, Shinya; Nawa, Mikiro; Matsuoka, Masaaki


    A missense mutation (T835M) in the uncoordinated-5C (UNC5C) netrin receptor gene increases the risk of late-onset Alzheimer disease (AD) and also the vulnerability of neurons harboring the mutation to various insults. The molecular mechanisms underlying T835M-UNC5C-induced death remain to be elucidated. In this study, we show that overexpression of wild-type UNC5C causes low-grade death, which is intensified by an AD-linked mutation T835M. An AD-linked survival factor, calmodulin-like skin protein (CLSP), and a natural ligand of UNC5C, netrin1, inhibit this death. T835M-UNC5C-induced neuronal cell death is mediated by an intracellular death-signaling cascade, consisting of death-associated protein kinase 1/protein kinase D/apoptosis signal-regulating kinase 1 (ASK1)/JNK/NADPH oxidase/caspases, which merges at ASK1 with a death-signaling cascade, mediated by amyloid β precursor protein (APP). Notably, netrin1 also binds to APP and partially inhibits the death-signaling cascade, induced by APP. These results may provide new insight into the amyloid β-independent pathomechanism of AD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Interaction of Protease-Activated Receptor 2 with G Proteins and Beta-Arrestin 1 Studied by Bioluminescence Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Mohammed Akli eAyoub


    Full Text Available G protein-coupled receptors (GPCRs are well recognized as being able to activate several signaling pathways through the activation of different G proteins as well as other signaling proteins such as beta-arrestins. Therefore, understanding how such multiple GPCR-mediated signaling can be integrated constitute an important aspect. Here, we applied bioluminescence resonance energy transfer (BRET to shed more light on the G protein coupling profile of trypsin receptor, or protease-activated receptor 2 (PAR2, and its interaction with beta-arrestin1. Using YFP and Rluc fusion constructs expressed in COS-7 cells, BRET data revealed a pre-assembly of PAR2 with both Galphai1 and Galphao and a rapid and transient activation of these G proteins upon receptor activation. In contrast, no preassembly of PAR2 with Galpha12 could be detected and their physical association can be measured with a very slow and sustained kinetics similar to that of beta-arrestin1 recruitment. These data demonstrate the coupling of PAR2 with Galphai1, Galphao and Galpha12 in COS-7 cells with differences in the kinetics of GPCR-G protein coupling, a parameter that very likely influences the cellular response. Moreover, this further illustrates that preassembly or agonist-induced G protein interaction depends on receptor-G protein pairs indicating another level of complexity and regulation of the signaling of GPCR-G protein complexes and its multiplicity.

  6. Ectopic bone formation cannot occur by hydroxyapatite/{beta}-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lijia [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Duan Xin [Department of Orthopaedics, Chengdu Second People' s Hospital, Chengdu (China); Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Xiang Zhou [Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Shi Yujun; Lu Xiaofeng; Ye Feng [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Bu Hong, E-mail: [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu (China)


    Highlights: Black-Right-Pointing-Pointer Firstly, chimeric mouse model could be established successfully by bone marrow transplantation after irradiation. Black-Right-Pointing-Pointer Secondly, bone induction can occur in wild-type mice 90 days after implantation, but not occur in chimeric mice. Black-Right-Pointing-Pointer Thirdly, destruction of immune function will block osteoinduction by calcium phosphate ceramics. - Abstract: Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/{beta}-tricalcium phosphate (HA/{beta}-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/{beta}-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede

  7. New Insights in the Amyloid-Beta Interaction with Mitochondria

    Directory of Open Access Journals (Sweden)

    Carlos Spuch


    Full Text Available Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD. Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both proteins are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species production, cause mitochondrial damage, and prevent neurons from functioning normally. In this paper, we will outline current knowledge of the intracellular localization of amyloid-beta. Moreover, we summarize evidence from AD postmortem brain as well as animal AD models showing that amyloid-beta triggers mitochondrial dysfunction through a number of pathways such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. Thus, this paper supports the Alzheimer cascade mitochondrial hypothesis such as the most important early events in this disease, and probably one of the future strategies on the therapy of this neurodegenerative disease.

  8. The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed beta-propeller fold in plant proteins. (United States)

    Ma, Xueyan; Panjikar, Santosh; Koepke, Juergen; Loris, Elke; Stöckigt, Joachim


    The enzyme strictosidine synthase (STR1) from the Indian medicinal plant Rauvolfia serpentina is of primary importance for the biosynthetic pathway of the indole alkaloid ajmaline. Moreover, STR1 initiates all biosynthetic pathways leading to the entire monoterpenoid indole alkaloid family representing an enormous structural variety of approximately 2000 compounds in higher plants. The crystal structures of STR1 in complex with its natural substrates tryptamine and secologanin provide structural understanding of the observed substrate preference and identify residues lining the active site surface that contact the substrates. STR1 catalyzes a Pictet-Spengler-type reaction and represents a novel six-bladed beta-propeller fold in plant proteins. Structure-based sequence alignment revealed a common repetitive sequence motif (three hydrophobic residues are followed by a small residue and a hydrophilic residue), indicating a possible evolutionary relationship between STR1 and several sequence-unrelated six-bladed beta-propeller structures. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-309 in catalysis. The data will aid in deciphering the details of the reaction mechanism of STR1 as well as other members of this enzyme family.

  9. Different small, acid-soluble proteins of the alpha/beta type have interchangeable roles in the heat and UV radiation resistance of Bacillus subtilis spores

    International Nuclear Information System (INIS)

    Mason, J.M.; Setlow, P.


    Spores of Bacillus subtilis strains which carry deletion mutations in one gene (sspA) or two genes (sspA and sspB) which code for major alpha/beta-type small, acid-soluble spore proteins (SASP) are known to be much more sensitive to heat and UV radiation than wild-type spores. This heat- and UV-sensitive phenotype was cured completely or in part by introduction into these mutant strains of one or more copies of the sspA or sspB genes themselves; multiple copies of the B. subtilis sspD gene, which codes for a minor alpha/beta-type SASP; or multiple copies of the SASP-C gene, which codes for a major alpha/beta-type SASP of Bacillus megaterium. These findings suggest that alpha/beta-type SASP play interchangeable roles in the heat and UV radiation resistance of bacterial spores

  10. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors. (United States)

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H


    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  11. Microphase Separation Controlled beta-Sheet Crystallization Kinetics in Fibrous Proteins

    International Nuclear Information System (INIS)

    Hu, X.; Lu, Q.; Kaplan, D.; Cebe, P.


    Silk is a naturally occurring fibrous protein with a multiblock chain architecture. As such, it has many similarities with synthetic block copolymers, including the possibility for e-sheet crystallization restricted within the crystallizable blocks. The mechanism of isothermal crystallization kinetics of e-sheet crystals in silk multiblock fibrous proteins is reported in this study. Kinetics theories, such as Avrami analysis which was established for studies of synthetic polymer crystal growth, are for the first time extended to investigate protein self-assembly in e-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and synchrotron real-time wide-angle X-ray scattering (WAXS). The Avrami exponent, n, was close to 2 for all methods and crystallization temperatures, indicating formation of e-sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic polymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to block copolymers: crystallization of e-sheets occurs under conditions of geometrical restriction caused by phase separation of the crystallizable and uncrystallizable blocks. This crystallization model could be widely applicable in other proteins with multiblock (i.e., crystallizable and noncrystallizable) domains.

  12. The Distinction of Amyloid-β Protein Precursor (AβPP) Ratio in Platelet Between Alzheimer's Disease Patients and Controls: A Systematic Review and Meta-Analysis. (United States)

    Shi, Yachen; Gu, Lihua; Alsharif, Abdul Azeez; Zhang, Zhijun


    To systematically assess the clinical significance of platelet amyloid-β protein precursor (AβPP) ratio between Alzheimer's disease (AD) patients and controls. 14 articles were selected in this analysis by search of databases including PubMed and Web of Science up to December 2016. Random effects models were used to calculate the standardized mean difference (SMD). Subgroup analyses were used to detect the cause of heterogeneity. The result showed a significant drop in platelet AβPP ratio in AD patients compared to controls [SMD: -1.871; 95% CI: (-2.33, -1.41); p analysis revealed races or the quality of studies may be the cause of high heterogeneity. This meta-analysis concluded that there is a close association between platelet AβPP ratio and AD. It is necessary to design a sizable sample study to further support that platelet AβPP ratio can be a biomarker of AD.

  13. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2beta).

    NARCIS (Netherlands)

    Drake, P.G.; Peters, G.H.; Andersen, H.S.; Hendriks, W.J.A.J.; Moller, N.P.


    Islet-cell antigen 512 (IA-2) and phogrin (IA-2beta) are atypical members of the receptor protein tyrosine phosphatase (PTP) family that are characterized by a lack of activity against conventional PTP substrates. The physiological role(s) of these proteins remain poorly defined, although recent

  14. The making of the minibody: an engineered beta-protein for the display of conformationally constrained peptides. (United States)

    Tramontano, A; Bianchi, E; Venturini, S; Martin, F; Pessi, A; Sollazzo, M


    Conformationally constraining selectable peptides onto a suitable scaffold that enables their conformation to be predicted or readily determined by experimental techniques would considerably boost the drug discovery process by reducing the gap between the discovery of a peptide lead and the design of a peptidomimetic with a more desirable pharmacological profile. With this in mind, we designed the minibody, a 61-residue beta-protein aimed at retaining some desirable features of immunoglobulin variable domains, such as tolerance to sequence variability in selected regions of the protein and predictability of the main chain conformation of the same regions, based on the 'canonical structures' model. To test the ability of the minibody scaffold to support functional sites we also designed a metal binding version of the protein by suitably choosing the sequences of its loops. The minibody was produced both by chemical synthesis and expression in E. coli and characterized by size exclusion chromatography, UV CD (circular dichroism) spectroscopy and metal binding activity. All our data supported the model, but a more detailed structural characterization of the molecule was impaired by its low solubility. We were able to overcome this problem both by further mutagenesis of the framework and by addition of a solubilizing motif. The minibody is being used to select constrained human IL-6 peptidic ligands from a library displayed on the surface of the f1 bacteriophage.

  15. Study of the levels of beta hydroxy butyrate, glucose, protein and albumin in Holstein cows with subclinical ketosis

    Directory of Open Access Journals (Sweden)

    B Amouoghli Tabrizi


    Full Text Available The objective of this study was to comparatively evaluate the levels of beta hydroxy butyrate (BHB, glucose, protein and albumin in serum of healthy Holstein cows and those with subclinical ketosis. In this survey, blood samples were collected at two stages from cows selected at 7 dairy farms in Shahriar province of Tehran. Five to 7 ml of blood were taken from the coccygeal vein of 100 cows during the last week of pregnancy when the animals were dry and once again 2 months after parturition from the same cows, their sera separated and the amounts of BHB, glucose, protein and albumin determined by enzymatic techniques and commercially available kits. With the cut point of BHB at 1.2, 1.4 and 1.7 mmol/lit, the percentage of cows affected with subclinical ketosis were 18, 14 and 4 percent, respectively. Mean levels of BHB in ketotic cows was significantly higher than healthy cows before and after parturition while mean levels of glucose, protein and albumin was significantly lower during the same periods (P

  16. Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice. (United States)

    Chan, Elizabeth S; Chen, Christopher; Cole, Gregory M; Wong, Boon-Seng


    It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.

  17. Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models.

    Directory of Open Access Journals (Sweden)

    Hakime Öztürk

    Full Text Available β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics, rendering them ineffective, Penicillin-Binding Proteins (PBPs, which share high structural similarity with β-lactamases, also confer antibiotic resistance to their host organism by acquiring mutations that allow them to continue their participation in cell wall biosynthesis. In this paper, we propose a novel approach to include ligand sharing information for classifying and clustering β-lactamases and PBPs in an effort to elucidate the ligand induced evolution of these β-lactam binding proteins. We first present a detailed summary of the β-lactamase and PBP families in the Protein Data Bank, as well as the compounds they bind to. Then, we build two different types of networks in which the proteins are represented as nodes, and two proteins are connected by an edge with a weight that depends on the number of shared identical or similar ligands. These models are analyzed under three different edge weight settings, namely unweighted, weighted, and normalized weighted. A detailed comparison of these six networks showed that the use of ligand sharing information to cluster proteins resulted in modules comprising proteins with not only sequence similarity but also functional similarity. Consideration of ligand similarity highlighted some interactions that were not detected in the identical ligand network. Analysing the β-lactamases and PBPs using ligand-centric network models enabled the identification of novel relationships, suggesting that these models can be used to examine other protein families to obtain information on their ligand induced evolutionary paths.

  18. Intron-exon organization of the active human protein S gene PS. alpha. and its pseudogene PS. beta. : Duplication and silencing during primate evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.; Bertina, R.M. (University Hospital, Leiden (Netherlands))


    The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing of an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.

  19. Efficient generation of dopamine neuron-like cells from skin-derived precursors with a synthetic peptide derived from von Hippel-Lindau protein. (United States)

    Kubo, Atsuhiko; Yoshida, Tetsuhiko; Kobayashi, Nahoko; Yokoyama, Takaakira; Mimura, Toshiro; Nishiguchi, Takao; Higashida, Tetsuhiro; Yamamoto, Isao; Kanno, Hiroshi


    Skin-derived precursors (SKPs) from mammalian dermis represent neural crest-related stem cells capable of differentiating into both neural and mesodermal progency. SKPs are of clinical interest because they serve as accessible autologous donor cells for neuronal repair for neuronal intractable diseases. However, little is known about the efficient generation of neurons from SKPs, and phenotypes of neurons generated from SKPs have been restricted. In addition, the neuronal repair using their generated neurons as donor cells has not been achieved. The von Hippel-Lindau protein (pVHL) is one of the proteins that play an important role during neuronal differentiation, and recently neuronal differentiation of neural progenitor cells by intracellular delivery of a synthetic VHL peptide derived from elongin BC-binding site has been demonstrated. In the present study, a synthetic VHL peptide derived from elongin BC-binding site was conjugated to the protein transduction domain (PTD) of HIV-TAT protein (TATVHL peptide) to facilitate entry into cells, and we demonstrate the efficient generation of cells with dopaminergic phenotype from SKPs with the intracellular delivery of TATVHL peptide, and characterized the generated cells. The TATVHL peptide-treated SKPs expressed neuronal marker proteins, particularly dopamine neuron markers, and also up-regulated mRNA levels of proneural basic helix-loop-helix factors. After the TATVHL peptide treatment, transplanted SKPs into Parkinson's disease (PD) model rats sufficiently differentiated into dopamine neuron-like cells in PD model rats, and partially but significantly corrected behavior of PD model rats. The generated dopamine neuron-like cells are expected to serve as donor cells for neuronal repair for PD.

  20. The cleavage product of amyloid-β protein precursor sAβPPα modulates BAG3-dependent aggresome formation and enhances cellular proteasomal activity. (United States)

    Renziehausen, Jana; Hiebel, Christof; Nagel, Heike; Kundu, Arpita; Kins, Stefan; Kögel, Donat; Behl, Christian; Hajieva, Parvana


    Alzheimer's disease (AD) is the major age-associated form of dementia characterized by gradual cognitive decline. Aberrant cleavage of the amyloid-β protein precursor (AβPP) is thought to play an important role in the pathology of this disease. Two principal AβPP processing pathways exist: amyloidogenic cleavage of AβPP resulting in production of the soluble N-terminal fragment sAβPPβ, amyloid-β (Aβ), which accumulates in AD brain, and the AβPP intracellular domain (AICD) sAβPPα, p3 and AICD are generated in the non-amyloidogenic pathway. Prevalence of amyloidogenic versus non-amyloidogenic processing leads to depletion of sAβPPα and an increase in Aβ. Although sAβPPα is a well-accepted neurotrophic protein, molecular effects of this fragment remains unknown. Different studies reported impaired protein degradation pathways in AD brain, pointing to a role of disturbed proteasomal activity in the pathogenesis of this disease. Here we studied the possible role of sAβPPα in Bag3-mediated selective macroautophagy and proteasomal degradation. Employing human IMR90 cells, HEK 293 cells, and primary neurons, we demonstrate that sAβPPα prevents the proteotoxic stress-induced increase of Bag3 at the protein and at the mRNA level indicating a transcriptional regulation. Intriguingly, p62 and LC3, two other key players of autophagy, were not affected. Moreover, the formation and the accumulation of disease-related protein aggregates were significantly reduced by sAβPPα. Interestingly, there was a significant increase of proteasomal activity by sAβPPα as demonstrated by using various proteasome substrates. Our findings demonstrate that sAβPPα modulates Bag3 expression, aggresome formation, and proteasomal activity, thereby providing first evidence for a function of sAβPPα in the regulation of proteostasis.

  1. Thermoset precursor

    International Nuclear Information System (INIS)

    Yamamoto, Y.


    This invention pertains to a distinctive thermoset precursor which is prepared by mixing a resin composition (A) which can be hardened by ionizing radiation, and a resin composition (B) which can be hardened by heat but cannot be hardened by, or is resistant to, ionizing radiation, and by coating or impregnating a molding or other substrate with a sheet or film of this mixture and irradiating this with an ionizing radiation. The principal components of composition (A) and (B) can be the following: (1) an acrylate or methacrylate and an epoxy resin and an epoxy resin hardener; (2) an unsaturated polyester resin and epoxy resin and an epoxy resin hardener; (3) a diacrylate or dimethacrylate or polyethylene glycol and an epoxy resin; (4) an epoxy acrylates or epoxy methacrylate obtained by the addition reaction of epoxy resin and acrylic or methacrylic acid

  2. beta2-adaptin is constitutively de-phosphorylated by serine/threonine protein phosphatase PP2A and phosphorylated by a staurosporine-sensitive kinase

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter Holst; Menné, C; Kastrup, J


    Clathrin-mediated endocytosis includes cycles of assembly and disassembly of the clathrin-coated vesicle constituents. How these cycles are regulated is still not fully known but previous studies have indicated that phosphorylation of coat subunits may play a role. Here we describe that beta2-ada...... the hypothesis that phosphorylation/de-phosphorylation of coat proteins plays a regulatory role in the assembly/disassembly cycle of clathrin-coated vesicles.......Clathrin-mediated endocytosis includes cycles of assembly and disassembly of the clathrin-coated vesicle constituents. How these cycles are regulated is still not fully known but previous studies have indicated that phosphorylation of coat subunits may play a role. Here we describe that beta2......-adaptin undergoes cycles of phosphorylation/de-phosphorylation in intact cells. Thus, beta2-adaptin was constitutively de-phosphorylated by serine/threonine protein phosphatase 2A and phosphorylated by a staurosporine-sensitive kinase in vivo. Confocal laser scanning microscopy demonstrated...

  3. Characterization of the GXXXG motif in the first transmembrane segment of Japanese encephalitis virus precursor membrane (prM protein

    Directory of Open Access Journals (Sweden)

    Wu Suh-Chin


    Full Text Available Abstract The interaction between prM and E proteins in flavivirus-infected cells is a major driving force for the assembly of flavivirus particles. We used site-directed mutagenesis to study the potential role of the transmembrane domains of the prM proteins of Japanese encephalitis virus (JEV in prM-E heterodimerization as well as subviral particle formation. Alanine insertion scanning mutagenesis within the GXXXG motif in the first transmembrane segment of JEV prM protein affected the prM-E heterodimerization; its specificity was confirmed by replacing the two glycines of the GXXXG motif with alanine, leucine and valine. The GXXXG motif was found to be conserved in the JEV serocomplex viruses but not other flavivirus groups. These mutants with alanine inserted in the two prM transmembrane segments all impaired subviral particle formation in cell cultures. The prM transmembrane domains of JEV may play importation roles in prM-E heterodimerization and viral particle assembly.

  4. ADAM12/syndecan-4 signaling promotes beta 1 integrin-dependent cell spreading through protein kinase Calpha and RhoA

    DEFF Research Database (Denmark)

    Thodeti, Charles Kumar; Albrechtsen, Reidar; Grauslund, Morten


    The ADAMs (a disintegrin and metalloprotease) comprise a large family of multidomain proteins with cell-binding and metalloprotease activities. The ADAM12 cysteine-rich domain (rADAM12-cys) supports cell attachment using syndecan-4 as a primary cell surface receptor that subsequently triggers beta...

  5. Effect of inhibitory avoidance trainning, ACTH, beta-endorphin and adrenaline on the incorporation of 14C-leucine into synaptosomal proteins of rat hypothalamus, amygdala and hippocampus

    International Nuclear Information System (INIS)

    Dalmaz, C.; Maia, H.M.M.; Izquierdo, I.


    'In vitro' incorporation of leucine to protein was studied in synaptosomes isolated from the hypothalamus, amygdala and hippocampus of rats submitted to inhibitory avoidance training or to the i.p. injection of ACTH, beta-endorphin or adrenaline; or in synaptosomes incubated with these substances. (M.A.C.) [pt

  6. Molecular basis of the apolipoprotein H (beta 2-glycoprotein I) protein polymorphism

    DEFF Research Database (Denmark)

    Sanghera, Dharambir K; Kristensen, Torsten; Hamman, Richard F


    Apolipoprotein H (apoH, protein; APOH, gene) is considered to be an essential cofactor for the binding of certain antiphospholipid autoantibodies to anionic phospholipids. APOH exhibits a genetically determined structural polymorphism due to the presence of three common alleles (APOH*1, APOH*2...... was observed sporadically in blacks (0.008), it was present at a polymorphic frequency in Hispanics (0.027) and non-Hispanic whites (0.059). The identification of the molecular basis of the APOH protein polymorphism will help to elucidate the structural – functional relationship of apoH in the production...

  7. A multi-domain protein for beta1 integrin-targeted DNA delivery.

    NARCIS (Netherlands)

    E. Fortunati (Elisabetta); E.M.E. Ehlert (Ehrich); N.D. van Loo; C. Wyman (Claire); J.A. Eble; F.G. Grosveld (Frank); B.J. Scholte (Bob)


    textabstractThe development of effective receptor-targeted nonviral vectors for use in vivo is complicated by a number of technical problems. One of these is the low efficiency of the conjugation procedures used to couple protein ligands to the DNA condensing carrier molecules. We have made and

  8. Mild oxidative stress induces redistribution of BACE1 in non-apoptotic conditions and promotes the amyloidogenic processing of Alzheimer's disease amyloid precursor protein.

    Directory of Open Access Journals (Sweden)

    Jiang-Li Tan

    Full Text Available BACE1 is responsible for β-secretase cleavage of the amyloid precursor protein (APP, which represents the first step in the production of amyloid β (Aβ peptides. Previous reports, by us and others, have indicated that the levels of BACE1 protein and activity are increased in the brain cortex of patients with Alzheimer's disease (AD. The association between oxidative stress (OS and AD has prompted investigations that support the potentiation of BACE1 expression and enzymatic activity by OS. Here, we have established conditions to analyse the effects of mild, non-lethal OS on BACE1 in primary neuronal cultures, independently from apoptotic mechanisms that were shown to impair BACE1 turnover. Six-hour treatment of mouse primary cortical cells with 10-40 µM hydrogen peroxide did not significantly compromise cell viability but it did produce mild oxidative stress (mOS, as shown by the increased levels of reactive radical species and activation of p38 stress kinase. The endogenous levels of BACE1 mRNA and protein were not significantly altered in these conditions, whereas a toxic H2O2 concentration (100 µM caused an increase in BACE1 protein levels. Notably, mOS conditions resulted in increased levels of the BACE1 C-terminal cleavage product of APP, β-CTF. Subcellular fractionation techniques showed that mOS caused a major rearrangement of BACE1 localization from light to denser fractions, resulting in an increased distribution of BACE1 in fractions containing APP and markers for trans-Golgi network and early endosomes. Collectively, these data demonstrate that mOS does not modify BACE1 expression but alters BACE1 subcellular compartmentalization to favour the amyloidogenic processing of APP, and thus offer new insight in the early molecular events of AD pathogenesis.

  9. An adaptive bin framework search method for a beta-sheet protein homopolymer model

    Directory of Open Access Journals (Sweden)

    Hoos Holger H


    Full Text Available Abstract Background The problem of protein structure prediction consists of predicting the functional or native structure of a protein given its linear sequence of amino acids. This problem has played a prominent role in the fields of biomolecular physics and algorithm design for over 50 years. Additionally, its importance increases continually as a result of an exponential growth over time in the number of known protein sequences in contrast to a linear increase in the number of determined structures. Our work focuses on the problem of searching an exponentially large space of possible conformations as efficiently as possible, with the goal of finding a global optimum with respect to a given energy function. This problem plays an important role in the analysis of systems with complex search landscapes, and particularly in the context of ab initio protein structure prediction. Results In this work, we introduce a novel approach for solving this conformation search problem based on the use of a bin framework for adaptively storing and retrieving promising locally optimal solutions. Our approach provides a rich and general framework within which a broad range of adaptive or reactive search strategies can be realized. Here, we introduce adaptive mechanisms for choosing which conformations should be stored, based on the set of conformations already stored in memory, and for biasing choices when retrieving conformations from memory in order to overcome search stagnation. Conclusion We show that our bin framework combined with a widely used optimization method, Monte Carlo search, achieves significantly better performance than state-of-the-art generalized ensemble methods for a well-known protein-like homopolymer model on the face-centered cubic lattice.

  10. Finishing broiler toms using an estradiol 17 beta implant together with a high energy-low protein final feed. (United States)

    Moran, E T; Etches, R J


    Wrolstad Small White toms were implanted with 10 mg of estradiol 17 beta monopalmitate (EMP) at 8 weeks of age. Common corn-soybean meal feeds were given through to 12 weeks, then one-half the birds from control and EMP groups received either an adequate (16% protein, 3166 kcal ME/kg) or high energy-low protein (HE-LP, 12%, 3373 kcal) feed to 14 weeks. No differences in weight gain and feed conversion occurred between EMP and control treatments at 12 weeks but at 14 weeks when the HE-LP diet had been fed the implanted birds performed better than controls. The HE-LP feed led to body weights and feed efficiencies below that of toms given adequate diet. In all cases, EMP elicited male secondary sex characteristics rather than feminization. Processing losses were increased with EMP and when the HE-LP feed had been given. Both treatments also improved finish assessment and were additive to the extent that a substantial increase in grade occurred. Effects on carcass composition, yield of commercial cuts, and cooking loss were small. Implantation, reduced meat yield percentage of breast and thigh. The increase in grade advantage from combining EMP with a feed that forced fat deposition more than compensated for the adverse effects.

  11. Protein cross-linking, peroxidase and beta-1,3-endoglucanase involved in resistance of pea against Orobanche crenata. (United States)

    Pérez-de-Luque, Alejandro; González-Verdejo, Clara I; Lozano, M Dolores; Dita, Miguel A; Cubero, José I; González-Melendi, Pablo; Risueño, María C; Rubiales, Diego


    Root holoparasitic angiosperms, like Orobanche spp, completely lack chlorophyll and totally depend on their host for their supply of nutrients. O. crenata is a severe constraint to the cultivation of legumes and breeding for resistance remains the most economical, feasible, and environmentally friendly method of control. Due to the lack of resistance in commercial pea cultivars, the use of wild relatives for breeding is necessary, and an understanding of the mechanisms underlying host resistance is needed in order to improve screening for resistance in breeding programmes. Compatible and incompatible interactions between O. crenata and pea have been studied using cytochemical procedures. The parasite was stopped in the host cortex before reaching the central cylinder, and accumulation of H2O2, peroxidases, and callose were detected in neighbouring cells. Protein cross-linking in the host cell walls appears as the mechanism of defence, halting penetration of the parasite. In situ hybridization studies have also shown that a peroxidase and a beta-glucanase are differently expressed in cells of the resistant host (Pf651) near the penetration point. The role of these proteins in the resistance to O. crenata is discussed.

  12. Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants. (United States)

    Quaedvlieg, N E; Schlaman, H R; Admiraal, P C; Wijting, S E; Stougaard, J; Spaink, H P


    By fusing the genes encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.


    Directory of Open Access Journals (Sweden)

    Sudip Ghosh


    Full Text Available Leaf is a source organ that serves dual function in photosynthesis and transpiration. As a primary interface between plant and ecosystem, it performs a range of biological processes from carbon assimilation and metabolite partitioning to plant productivity. Basic features of the leaf functionality are conserved in angiosperms exhibiting common and unique characteristics. Spinach has been the model crop for studying leaf function, primarily photosynthesis. It is a reservoir of several hundreds of primary and secondary biomolecules. To better understand the molecular basis for photochemical reaction and metabolic partitioning, we developed leaf proteome of Indian spinach (Beta vulgaris var. all green. LC-ESI-MS/MS analysis identified 639 proteins exhibiting discrete molecular features and functions, including photosynthesis, transpiration, gaseous exchange, transport, redox status, cell defense, and floral induction besides the presence of proteins with unknown function. This represents the first comprehensive foliage proteome of green leafy vegetable. Together, this work provides important insights into the molecular networks underlying spinach leaf biological processes.

  14. Resveratrol and Amyloid-Beta: Mechanistic Insights

    Directory of Open Access Journals (Sweden)

    Yongming Jia


    Full Text Available The amyloid-beta (Aβ hypothesis that dyshomeostasis between Aβ production and clearance is a very early, key molecular factor in the etiology of Alzheimer’s disease (AD has been proposed and examined in the AD research field. Scientists have focused on seeking natural products or drugs to influence the dynamic equilibrium of Aβ, targeting production and clearance of Aβ. There is emerging evidence that resveratrol (Res, a naturally occurring polyphenol mainly found in grapes and red wine, acts on AD in numerous in vivo and in vitro models. Res decreases the amyloidogenic cleavage of the amyloid precursor protein (APP, enhances clearance of amyloid beta-peptides, and reduces Aβ aggregation. Moreover, Res also protects neuronal functions through its antioxidant properties. This review discusses the action of Res on Aβ production, clearance and aggregation and multiple potential mechanisms, providing evidence of the useful of Res for AD treatment.

  15. Baculoviral expression and characterization of human recombinant PGCP in the form of an active mature dimer and an inactive precursor protein. (United States)

    Zajc, Tajana; Suban, Dejan; Rajković, Jelena; Dolenc, Iztok


    The human-blood plasma glutamate carboxypeptidase (PGCP) is a proteinase that acts on the unsubstituted N- and C-termini of dipeptides. It has been suggested that this PGCP is involved in the release of thyroxine. Furthermore, research has suggested that its activity is up-regulated in hepatitis-C-virus-infected patients with hepatocellular carcinoma. In this study expressed human PGCP in the baculovirus expression system was produced by a Sf9 insect cell line with aim to prepare sufficient amounts of active recombinant enzyme for a subsequent biological characterization. Recombinant PGCP was expressed and secreted into the medium in the form of an inactive proenzyme. It was gradually converted into an active form in the medium after three days, with the highest expression of the active form on day six. The protein was sequentially purified by a combination of various liquid chromatographies, such as hydroxyapatite, ion exchange, and gel chromatography, and as final step with affinity chromatography on Phe-Leu-Sepharose. The human PGCP was purified as an active enzyme in the dimer form and as inactive precursor protein. The dipeptidase activity was confirmed by measuring the hydrolysis of the Ser-Met dipeptide at a slightly acidic pH. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Molecular mechanism of the intramembrane cleavage of the β-carboxyl terminal fragment of amyloid precursor protein by γ-secretase

    Directory of Open Access Journals (Sweden)

    Maho eMorishima-Kawashima


    Full Text Available Amyloid β-protein (Aβ plays a central role in the pathogenesis of Alzheimer’s disease, the most common age-associated neurodegenerative disorder. Aβ is generated through intramembrane proteolysis of the β-carboxyl terminal fragment (βCTF of β-amyloid precursor protein (APP by γ-secretase. The initial cleavage by γ-secretase occurs in the membrane/cytoplasm boundary of the βCTF, liberating the APP intracellular domain (AICD. The remaining βCTFs, which are truncated at the C-terminus (longer Aβs, are then cropped sequentially in a stepwise manner, predominantly at three residue intervals, to generate Aβ. There are two major Aβ product lines which generate Aβ40 and Aβ42 with concomitant release of three and two tripeptides, respectively. Additionally, many alternative cleavages occur, releasing peptides with three to six residues. These modulate the Aβ product lines and define the species and quantity of Aβ generated. Here, we review our current understanding of the intramembrane cleavage of the βCTF by γ-secretase, which may contribute to the future goal of developing an efficient therapeutic strategy for Alzheimer’s disease.

  17. A new method to measure muscle protein synthesis in humans by endogenously introduced d9-leucine and using blood for precursor enrichment determination (United States)

    Tran, Lee; Masters, Haley; Roust, Lori R; Katsanos, Christos S


    Enrichment from the easily accessible blood amino acid pool is commonly used as precursor enrichment to calculate rates of muscle protein fractional synthesis in relevant human studies in lieu of the less accessible muscle fluid amino acid pool. However, the accuracy of this approach depends largely on the extent to which there is low discrepancy in free amino acid enrichment between blood and muscle. Steady-state gradient (i.e., ratio) of amino acid enrichment between blood and muscle fluid in the basal state and in response to amino acid infusion were determined in five healthy subjects, and in association with two separate tracers: d9-leucine, introduced endogenously by the metabolism of d10-leucine (i.e., l-[2,3,3,4,5,5,5,6,6,6-2H10]leucine) infused in blood, and 13C6-phenylalanine introduced/infused in blood. The blood-to-muscle fluid amino acid enrichment ratio was lower (P enrichment introduced endogenously by intravenous infusion of d10-leucine provides a closer estimate of the muscle fluid amino acid enrichment, and its associated changes, than blood phenylalanine enrichment to calculate rates of muscle protein synthesis in humans. PMID:26243214

  18. Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. (United States)

    Wang, Yaping; Cheng, Xiaoxin; He, Qian; Zheng, Yiyan; Kim, Dong H; Whittemore, Scott R; Cao, Qilin L


    Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.

  19. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits. (United States)

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Tanaka, Takashi; Jung, Hyun Ah; Choi, Jae Sue


    Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer's disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-D-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.

  20. Uncoupling of M1 muscarinic receptor/G-protein interaction by amyloid beta(1-42)

    Czech Academy of Sciences Publication Activity Database

    Janíčková, Helena; Rudajev, Vladimír; Zimčík, Pavel; Jakubík, Jan; Tanila, H.; El-Fakahany, E. E.; Doležal, Vladimír


    Roč. 67, April (2013), s. 272-283 ISSN 0028-3908 R&D Projects: GA ČR(CZ) GA305/09/0681; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) 7E10060 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : Alzheimer ´s Disease * muscarinic receptors * G-proteins Subject RIV: ED - Physiology Impact factor: 4.819, year: 2013

  1. Predicting beta-turns in proteins using support vector machines with fractional polynomials. (United States)

    Elbashir, Murtada; Wang, Jianxin; Wu, Fang-Xiang; Wang, Lusheng


    β-turns are secondary structure type that have essential role in molecular recognition, protein folding, and stability. They are found to be the most common type of non-repetitive structures since 25% of amino acids in protein structures are situated on them. Their prediction is considered to be one of the crucial problems in bioinformatics and molecular biology, which can provide valuable insights and inputs for the fold recognition and drug design. We propose an approach that combines support vector machines (SVMs) and logistic regression (LR) in a hybrid prediction method, which we call (H-SVM-LR) to predict β-turns in proteins. Fractional polynomials are used for LR modeling. We utilize position specific scoring matrices (PSSMs) and predicted secondary structure (PSS) as features. Our simulation studies show that H-SVM-LR achieves Qtotal of 82.87%, 82.84%, and 82.32% on the BT426, BT547, and BT823 datasets respectively. These values are the highest among other β-turns prediction methods that are based on PSSMs and secondary structure information. H-SVM-LR also achieves favorable performance in predicting β-turns as measured by the Matthew's correlation coefficient (MCC) on these datasets. Furthermore, H-SVM-LR shows good performance when considering shape strings as additional features. In this paper, we present a comprehensive approach for β-turns prediction. Experiments show that our proposed approach achieves better performance compared to other competing prediction methods.

  2. Implementation of Freeman-Wimley prediction algorithm in a web-based application for in silico identification of beta-barrel membrane proteins

    Directory of Open Access Journals (Sweden)

    José Antonio Agüero-Fernández


    Full Text Available Beta-barrel type proteins play an important role in both, human and veterinary medicine. In particular, their localization on the bacterial surface, and their involvement in virulence mechanisms of pathogens, have turned them into an interesting target in studies to search for vaccine candidates. Recently, Freeman and Wimley developed a prediction algorithm based on the physicochemical properties of transmembrane beta-barrels proteins (TMBBs. Based on that algorithm, and using Grails, a web-based application was implemented. This system, named Beta Predictor, is capable of processing from one protein sequence to complete predicted proteomes up to 10000 proteins with a runtime of about 0.019 seconds per 500-residue protein, and it allows graphical analyses for each protein. The application was evaluated with a validation set of 535 non-redundant proteins, 102 TMBBs and 433 non-TMBBs. The sensitivity, specificity, Matthews correlation coefficient, positive predictive value and accuracy were calculated, being 85.29%, 95.15%, 78.72%, 80.56% and 93.27%, respectively. The performance of this system was compared with TMBBs predictors, BOMP and TMBHunt, using the same validation set. Taking into account the order mentioned above, the following results were obtained: 76.47%, 99.31%, 83.05%, 96.30% and 94.95% for BOMP, and 78.43%, 92.38%, 67.90%, 70.17% and 89.78% for TMBHunt. Beta Predictor was outperformed by BOMP but the latter showed better behavior than TMBHunt

  3. The effect of beta-interferon therapy on myelin basic protein-elicited CD4+ T cell proliferation and cytokine production in multiple sclerosis

    DEFF Research Database (Denmark)

    Hedegaard, Chris J; Krakauer, Martin; Bendtzen, Klaus


    Interferon (IFN)-beta therapy has well-established clinical benefits in multiple sclerosis (MS), but the underlying modulation of cytokine responses to myelin self-antigens remains poorly understood. We analysed the CD4+ T cell proliferation and cytokine responses elicited by myelin basic protein...... (MBP) and a foreign recall antigen, tetanus toxoid (TT), in mononuclear cell cultures from fourteen MS patients undergoing IFN-beta therapy. The MBP-elicited IFN-gamma-, TNF-alpha- and IL-10 production decreased during therapy (p...

  4. Maltose-binding protein enhances secretion of recombinant human granzyme B accompanied by in vivo processing of a precursor MBP fusion protein.

    Directory of Open Access Journals (Sweden)

    Benjamin Dälken

    Full Text Available BACKGROUND: The apoptosis-inducing serine protease granzyme B (GrB is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. METHODS AND FINDINGS: We investigated the influence of bacterial maltose-binding protein (MBP fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. CONCLUSIONS: Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins.

  5. Maltose-Binding Protein Enhances Secretion of Recombinant Human Granzyme B Accompanied by In Vivo Processing of a Precursor MBP Fusion Protein (United States)

    Dälken, Benjamin; Jabulowsky, Robert A.; Oberoi, Pranav; Benhar, Itai; Wels, Winfried S.


    Background The apoptosis-inducing serine protease granzyme B (GrB) is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. Methods and Findings We investigated the influence of bacterial maltose-binding protein (MBP) fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. Conclusions Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins. PMID:21203542

  6. Steady-state levels of G-protein beta-subunit expression are regulated by treatment of cells with bacterial toxins

    International Nuclear Information System (INIS)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.


    Cultures of 3T3-L1 cells were incubated with either 10 ng/ml cholera toxin or 10 ng/ml pertussis toxin from 4 days prior to the initiation of differentiation and throughout the subsequent incubation. Toxin concentrations were sufficient to completely prevent the labelling of alpha-subunits with [ 32 P]NAD + and pertussis toxin and to prevent by more than 90% the labelling with [ 32 P]NAD + and cholera toxin in membranes prepared from these cells. Neither toxin prevented the differentiation to the adipocyte phenotype. Neither toxin prevented the increases in the relative amounts of G-proteins which occur upon differentiation. Both toxins dramatically decreased the amount of beta-subunits. As measured by quantitative immunoblotting with antisera specific for both the 35 kDa and 36 kDa beta-subunits, levels of beta-subunit were decreased by more than 50% of steady-state level of control cells. Thus, bacterial toxins which modifies G-protein alpha-subunits are capable of modulating the levels of beta-subunits in vivo. The basis for the regulation of G-protein subunit expression by bacterial toxins is under study

  7. Common variants in the G protein beta3 subunit gene and thyroid disorders in a formerly iodine-deficient population. (United States)

    Völzke, Henry; Bornhorst, Alexa; Rimmbach, Christian; Petersenn, Holger; Geissler, Ingrid; Nauck, Matthias; Wallaschofski, Henri; Kroemer, Heyo K; Rosskopf, Dieter


    Heterotrimeric G proteins are key mediators of signals from membrane receptors-including the thyroid-stimulating hormone (TSH) receptor-to cellular effectors. Gain-of-function mutations in the TSH receptor and the Galpha(S) subunit occur frequently in hyperfunctioning thyroid nodules and differentiated thyroid carcinomas, whereby the T allele of a common polymorphism (825C>T, rs5443) in the G protein beta3 subunit gene (GNB3) is associated with increased G protein-mediated signal transduction and a complex phenotype. The aim of this study was to investigate whether this common polymorphism affects key parameters of thyroid function and morphology and influences the pathogenesis of thyroid diseases in the general population. The population-based cross-sectional Study of Health in Pomerania is a general health survey with focus on thyroid diseases in northeast Germany, a formerly iodine-deficient area. Data from 3428 subjects (1800 men and 1628 women) were analyzed for an association of the GNB3 genotype with TSH, free triiodothyronine and thyroxine levels, urine iodine and thiocyanate excretion, and thyroid ultrasound morphology including thyroid volume, presence of goiter, and thyroid nodules. There was no association between GNB3 genotype status and the functional or morphological thyroid parameters investigated, neither in crude analyses nor upon multivariable analyses including known confounders of thyroid disorders. Based on the data from this large population-based survey, we conclude that the GNB3 825C>T polymorphism does not affect key parameters of thyroid function and morphology in the general population of a formerly iodine-deficient area.

  8. beta-Arrestin Interacts with the Beta/Gamma Subunits of Trimeric G-Proteins and Dishevelled in the Wnt/Ca2+ Pathway in Xenopus Gastrulation

    Czech Academy of Sciences Publication Activity Database

    Seitz, K.; Dursch, V.; Harnoš, J.; Bryja, Vítězslav; Gentzel, M.; Schambony, A.


    Roč. 9, č. 1 (2014) E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GC204/09/J030 Grant - others:GA ČR(CZ) GA204/09/0498 Institutional support: RVO:68081707 Keywords : CONVERGENT EXTENSION MOVEMENTS * WNT SIGNALING PATHWAYS * WNT/BETA-CATENIN Subject RIV: BO - Biophysics Impact factor: 3.234, year: 2014

  9. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    International Nuclear Information System (INIS)

    Eddy, Matthew T.; Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay; Wagner, Gerhard; Pintacuda, Guido; Emsley, Lyndon; Griffin, Robert G.


    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13 C line widths and <0.5 ppm 15 N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  10. The spinal muscular atrophy with pontocerebellar hypoplasia gene VRK1 regulates neuronal migration through an amyloid-β precursor protein-dependent mechanism. (United States)

    Vinograd-Byk, Hadar; Sapir, Tamar; Cantarero, Lara; Lazo, Pedro A; Zeligson, Sharon; Lev, Dorit; Lerman-Sagie, Tally; Renbaum, Paul; Reiner, Orly; Levy-Lahad, Ephrat


    Spinal muscular atrophy with pontocerebellar hypoplasia (SMA-PCH) is an infantile SMA variant with additional manifestations, particularly severe microcephaly. We previously identified a nonsense mutation in Vaccinia-related kinase 1 (VRK1), R358X, as a cause of SMA-PCH. VRK1-R358X is a rare founder mutation in Ashkenazi Jews, and additional mutations in patients of different origins have recently been identified. VRK1 is a nuclear serine/threonine protein kinase known to play multiple roles in cellular proliferation, cell cycle regulation, and carcinogenesis. However, VRK1 was not known to have neuronal functions before its identification as a gene mutated in SMA-PCH. Here we show that VRK1-R358X homozygosity results in lack of VRK1 protein, and demonstrate a role for VRK1 in neuronal migration and neuronal stem cell proliferation. Using shRNA in utero electroporation in mice, we show that Vrk1 knockdown significantly impairs cortical neuronal migration, and affects the cell cycle of neuronal progenitors. Expression of wild-type human VRK1 rescues both proliferation and migration phenotypes. However, kinase-dead human VRK1 rescues only the migration impairment, suggesting the role of VRK1 in neuronal migration is partly noncatalytic. Furthermore, we found that VRK1 deficiency in human and mouse leads to downregulation of amyloid-β precursor protein (APP), a known neuronal migration gene. APP overexpression rescues the phenotype caused by Vrk1 knockdown, suggesting that VRK1 affects neuronal migration through an APP-dependent mechanism. Copyright © 2015 the authors 0270-6474/15/350936-08$15.00/0.

  11. Amyloid Precursor Protein and Proinflammatory Changes Are Regulated in Brain and Adipose Tissue in a Murine Model of High Fat Diet-Induced Obesity (United States)

    Puig, Kendra L.; Floden, Angela M.; Adhikari, Ramchandra; Golovko, Mikhail Y.; Combs, Colin K.


    Background Middle age obesity is recognized as a risk factor for Alzheimer's disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur. PMID:22276186

  12. Effect of colchicine on the transport of precursor enamel protein in secretory ameloblasts studied by 3H-proline radioautography in vitro

    International Nuclear Information System (INIS)

    Matsuo, S.; Takano, Y.; Wakisaka, S.; Ichikawa, H.; Nishikawa, S.; Akai, M.


    The incorporation of 3H-proline into the secretory ameloblasts of rat molar tooth germs cultured with or without colchicine was studied by light and electron microscope radioautography to determine the function of microtubules in the transport of precursor enamel protein from the rough-surfaced endoplasmic reticulum (rER) to the Golgi cisternae. The grain counts over the transitional vesicles, which accumulated in various cellular regions with colchicine treatment, continued to increase with chase time, unlike in controls. At 30 and 90 min chase, these counts were significantly higher than in controls. Moreover, the total grain count over the organelles (rER, pale granules, and transitional vesicles), which are positioned before the Golgi cisternae in the synthetic pathway, maintained a significantly higher level at 90 min chase in colchicine-treated tooth germs than in controls. The transport of synthesized protein to the Golgi cisternae via transitional vesicles was suppressed in colchicine-treated tooth germs. Some grains appeared with time over pale granular materials that appeared in the intercellular spaces of secretory ameloblasts with colchicine treatment. However, at each chase period, the grain count over pale granular materials was not so high as the count over the enamel in control. The present results indicate that colchicine affects the transport of newly synthesized protein from the rER to the Golgi cisterna via transitional vesicles, probably by interfering with the oriented transport related to microtubular function. It is suggested that the microtubular system may be concerned with the movement of the transitional vesicles

  13. The binding affinity of a soluble TCR-Fc fusion protein is significantly improved by crosslinkage with an anti-C{beta} antibody

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Tatsuhiko; Horii, Masae; Kobayashi, Eiji [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Jin, Aishun [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Department of Immunology, College of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin 150081 (China); Kishi, Hiroyuki, E-mail: [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Muraguchi, Atsushi [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)


    Highlights: Black-Right-Pointing-Pointer A novel soluble TCR composed of TCR V and C regions with Ig Fc region is generated. Black-Right-Pointing-Pointer TCR-Fc protein immobilized by an anti-C{beta} antibody bound to a p/MHC tetramer. Black-Right-Pointing-Pointer Binding affinity of TCR-Fc was markedly increased by binding with anti-C{beta} antibody. -- Abstract: The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a very low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100-200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-C{beta} antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 Multiplication-Sign 10{sup -5} M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-C{beta} antibody, its binding affinity for p/MHC increased by 5-fold (2.2 Multiplication-Sign 10{sup -6} M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-C{beta} antibody, which is probably due to the stabilization of the V{alpha}/V{beta

  14. Data supporting beta-amyloid dimer structural transitions and protein–lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures

    Directory of Open Access Journals (Sweden)

    Sara Y. Cheng


    Full Text Available This data article supports the research article entitled “Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface” [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes.

  15. Enzastaurin (LY317615), a Protein Kinase C Beta Selective Inhibitor, Enhances Antiangiogenic Effect of Radiation

    International Nuclear Information System (INIS)

    Willey, Christopher D.; Xiao Dakai; Tu Tianxiang; Kim, Kwang Woon; Moretti, Luigi; Niermann, Kenneth J.; Tawtawy, Mohammed N.; Quarles, Chad C. Ph.D.; Lu Bo


    Purpose: Angiogenesis has generated interest in oncology because of its important role in cancer growth and progression, particularly when combined with cytotoxic therapies, such as radiotherapy. Among the numerous pathways influencing vascular growth and stability, inhibition of protein kinase B(Akt) or protein kinase C(PKC) can influence tumor blood vessels within tumor microvasculature. Therefore, we wanted to determine whether PKC inhibition could sensitize lung tumors to radiation. Methods and Materials: The combination of the selective PKCβ inhibitor Enzastaurin (ENZ, LY317615) and ionizing radiation were used in cell culture and a mouse model of lung cancer. Lung cancer cell lines and human umbilical vascular endothelial cells (HUVEC) were examined using immunoblotting, cytotoxic assays including cell proliferation and clonogenic assays, and Matrigel endothelial tubule formation. In vivo, H460 lung cancer xenografts were examined for tumor vasculature and proliferation using immunohistochemistry. Results: ENZ effectively radiosensitizes HUVEC within in vitro models. Furthermore, concurrent ENZ treatment of lung cancer xenografts enhanced radiation-induced destruction of tumor vasculature and proliferation by IHC. However, tumor growth delay was not enhanced with combination treatment compared with either treatment alone. Analysis of downstream effectors revealed that HUVEC and the lung cancer cell lines differed in their response to ENZ and radiation such that only HUVEC demonstrate phosphorylated S6 suppression, which is downstream of mTOR. When ENZ was combined with the mTOR inhibitor, rapamycin, in H460 lung cancer cells, radiosensitization was observed. Conclusion: PKC appears to be crucial for angiogenesis, and its inhibition by ENZ has potential to enhance radiotherapy in vivo.

  16. Protein Kinase-C Beta Contributes to Impaired Endothelial Insulin Signaling in Humans with Diabetes Mellitus (United States)

    Tabit, Corey E; Shenouda, Sherene M; Holbrook, Monica; Fetterman, Jessica L; Kiani, Soroosh; Frame, Alissa A; Kluge, Matthew A; Held, Aaron; Dohadwala, Mustali; Gokce, Noyan; Farb, Melissa; Rosenzweig, James; Ruderman, Neil; Vita, Joseph A; Hamburg, Naomi M


    Background Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling through the activity of protein kinase C-β (PKCβ) and nuclear factor κB (NFκB) reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. Methods and Results We measured protein expression and insulin response in freshly isolated endothelial cells from patients with Type 2 diabetes mellitus (n=40) and non-diabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes (P=0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in non-diabetic subjects but not in diabetic patients (P=0.003) consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=−0.541, P=0.02) Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes. Endothelial NFκB activation was higher in diabetes and was reduced with PKCβ inhibition. Conclusions We provide evidence for the presence of altered eNOS activation, reduced insulin action and inflammatory activation in the endothelium of patients with diabetes. Our findings implicate PKCβ activity in endothelial insulin resistance. PMID:23204109

  17. Threading structural model of the manganese-stabilizing protein PsbO reveals presence of two possible beta-sandwich domains. (United States)

    Pazos, F; Heredia, P; Valencia, A; de las Rivas, J


    The manganese-stabilizing protein (PsbO) is an essential component of photosystem II (PSII) and is present in all oxyphotosynthetic organisms. PsbO allows correct water splitting and oxygen evolution by stabilizing the reactions driven by the manganese cluster. Despite its important role, its structure and detailed functional mechanism are still unknown. In this article we propose a structural model based on fold recognition and molecular modeling. This model has additional support from a study of the distribution of characteristics of the PsbO sequence family, such as the distribution of conserved, apolar, tree-determinants, and correlated positions. Our threading results consistently showed PsbO as an all-beta (beta) protein, with two homologous beta domains of approximately 120 amino acids linked by a flexible Proline-Glycine-Glycine (PGG) motif. These features are compatible with a general elongated and flexible architecture, in which the two domains form a sandwich-type structure with Greek key topology. The first domain is predicted to include 8 to 9 beta-strands, the second domain 6 to 7 beta-strands. An Ig-like beta-sandwich structure was selected as a template to build the 3-D model. The second domain has, between the strands, long-loops rich in Pro and Gly that are difficult to model. One of these long loops includes a highly conserved region (between P148 and P174) and a short alpha-helix (between E181 and N188)). These regions are characteristic parts of PsbO and show that the second domain is not so similar to the template. Overall, the model was able to account for much of the experimental data reported by several authors, and it would allow the detection of key residues and regions that are proposed in this article as essential for the structure and function of PsbO. Copyright 2001 Wiley-Liss, Inc.

  18. BETA digital beta radiometer

    International Nuclear Information System (INIS)

    Borovikov, N.V.; Kosinov, G.A.; Fedorov, Yu.N.


    Portable transportable digital beta radiometer providing for measuring beta-decay radionuclide specific activity in the range from 5x10 -9 up to 10 -6 Cu/kg (Cu/l) with error of ±25% is designed and introduced into commercial production for determination of volume and specific water and food radioactivity. The device specifications are given. Experience in the BETA radiometer application under conditions of the Chernobyl' NPP 30-km zone has shown that it is convenient for measuring specific activity of the order of 10 -8 Cu/kg, and application of a set of different beta detectors gives an opportunity to use it for surface contamination measurement in wide range of the measured value

  19. Mechanical unloading of the failing human heart fails to activate the protein kinase B/Akt/glycogen synthase kinase-3beta survival pathway. (United States)

    Razeghi, Peter; Bruckner, Brian A; Sharma, Saumya; Youker, Keith A; Frazier, O H; Taegtmeyer, Heinrich


    Left ventricular assist device (LVAD) support of the failing human heart improves myocyte function and increases cell survival. One potential mechanism underlying this phenomenon is activation of the protein kinase B (PKB)/Akt/glycogen synthase kinase-3beta (GSK-3beta) survival pathway. Left ventricular tissue was obtained both at the time of implantation and explantation of the LVAD (n = 11). Six patients were diagnosed with idiopathic dilated cardiomyopathy, 4 patients with ischemic cardiomyopathy and 1 patient with peripartum cardiomyopathy. The mean duration of LVAD support was 205 +/- 35 days. Myocyte diameter and phosphorylation of ERK were used as indices for reverse remodeling. Transcript levels of genes required for the activation of PKB/Akt (insulin-like growth factor-1, insulin receptor substrate-1) were measured by quantitative RT-PCR. In addition, we measured the relative activity of PKB/Akt and GSK-3beta, and assayed for molecular and histological indices of PKB/Akt activation (cyclooxygenase mRNA levels and glycogen levels). Myocyte diameter and phosphorylation of ERK decreased with LVAD support. In contrast, none of the components of the PKB/Akt/GSK-3beta pathway changed significantly with mechanical unloading. The PKB/Akt/GSK-3beta pathway is not activated during LVAD support. Other signaling pathways must be responsible for the improvement of cellular function and cell survival during LVAD support. Copyright 2003 S. Karger AG, Basel

  20. Patient Affected by Beta-Propeller Protein-Associated Neurodegeneration: A Therapeutic Attempt with Iron Chelation Therapy

    Directory of Open Access Journals (Sweden)

    Mattia Fonderico


    Full Text Available Here, we report the case of a 36-year-old patient with a diagnosis of de novo mutation of the WDR45 gene, responsible for beta-propeller protein-associated neurodegeneration, a phenotypically distinct, X-linked dominant form of Neurodegeneration with Brain Iron Accumulation. The clinical history is characterized by a relatively stable intellectual disability and a hypo-bradykinetic and hypertonic syndrome with juvenile onset. Genetic investigations and T1 and T2-weighted MR images align with what is described in literature. The patient was also subjected to PET with 18-FDG investigation and DaT-Scan study. In reporting relevant clinical data, we want to emphasize the fact that the patient received a chelation therapy with deferiprone (treatment already used in other forms of NBIA with encouraging results, which, however, had to be interrupted because the parkinsonian symptoms worsened. Conversely, the patient has benefited from non-drug therapies and, in particular, from an adapted motor activity with assisted pedaling (method in the process of validation in treatments of parkinsonian syndromes, which started before the treatment with deferiprone and still continues.

  1. Haplotypes in the gene encoding protein kinase c-beta (PRKCB1) on chromosome 16 are associated with autism. (United States)

    Philippi, A; Roschmann, E; Tores, F; Lindenbaum, P; Benajou, A; Germain-Leclerc, L; Marcaillou, C; Fontaine, K; Vanpeene, M; Roy, S; Maillard, S; Decaulne, V; Saraiva, J P; Brooks, P; Rousseau, F; Hager, J


    Autism is a developmental disorder characterized by impairments in social interaction and communication associated with repetitive patterns of interest or behavior. Autism is highly influenced by genetic factors. Genome-wide linkage and candidate gene association approaches have been used to try and identify autism genes. A few loci have repeatedly been reported linked to autism. Several groups reported evidence for linkage to a region on chromosome 16p. We have applied a direct physical identity-by-descent (IBD) mapping approach to perform a high-density (0.85 megabases) genome-wide linkage scan in 116 families from the AGRE collection. Our results confirm linkage to a region on chromosome 16p with autism. High-resolution single-nucleotide polymorphism (SNP) genotyping and analysis of this region show that haplotypes in the protein kinase c-beta gene are strongly associated with autism. An independent replication of the association in a second set of 167 trio families with autism confirmed our initial findings. Overall, our data provide evidence that the PRKCB1 gene on chromosome 16p may be involved in the etiology of autism.

  2. Ferrous Iron Up-regulation in Fibroblasts of Patients with Beta Propeller Protein-Associated Neurodegeneration (BPAN). (United States)

    Ingrassia, Rosaria; Memo, Maurizio; Garavaglia, Barbara


    Mutations in WDR45 gene, coding for a beta-propeller protein, have been found in patients affected by Neurodegeneration with Brain Iron Accumulation, NBIA5 (also known as BPAN). BPAN is a movement disorder with Non Transferrin Bound Iron (NTBI) accumulation in the basal ganglia as common hallmark between NBIA classes (Hayflick et al., 2013). WDR45 has been predicted to have a role in autophagy, while the impairment of iron metabolism in the different NBIA subclasses has not currently been clarified. We found the up-regulation of the ferrous iron transporter (-)IRE/Divalent Metal Transporter1 and down-regulation of Transferrin receptor in the fibroblasts of two BPAN affected patients with splicing mutations 235+1G>A (BPAN1) and 517_519ΔVal 173 (BPAN2). The BPAN patients showed a concomitant increase of intracellular ferrous iron after starvation. An altered pattern of iron transporters with iron overload is highlighted in BPAN human fibroblasts, supporting for a role of DMT1 in NBIA. We here present a novel element, about iron accumulation, to the existing knowledge in field of NBIA. Attention is focused to a starvation-dependent iron overload, possibly accounting for iron accumulation in the basal ganglia. Further investigation could clarify iron regulation in BPAN.

  3. Factors Affecting Pro- and Anti-Oxidant Properties of Fragments of the b-Protein Precursor (bPP): Implication for Alzheimer's Disease. (United States)

    Andorn, Anne C.; Kalaria, Rajesh N.


    Oxidative stress may have a key pathogenetic role in neurodegenerative diseases including Alzheimer's disease (AD). While there is evidence that some amyloid-b (Ab) peptides can initiate oxidative stress at micromolar doses, there is also some evidence that oxidative stress increases the concentration of the b-protein precursor (bPP) and the potential for increased formation of the Ab peptides. The following studies were performed to test the hypothesis that fragments of bPP could be antioxidants and hence that oxidative stress might be an early event in AD. We found that several fragments of bPP, including the Ab peptides, inhibit ascorbate-stimulated lipid peroxidation (ASLP) in membrane fragment preparations of postmortem human brain. In contrast, other fragments of bPP enhance ASLP. These data indicate that bPP or fragments of bPP could play a key role in the redox status of cells and that alterations in bPP processing could have profound effects on the cellular response to oxidative stress.

  4. Data on amyloid precursor protein accumulation, spontaneous physical activity, and motor learning after traumatic brain injury in the triple-transgenic mouse model of Alzheimer׳s disease

    Directory of Open Access Journals (Sweden)

    Yasushi Kishimoto


    Full Text Available This data article contains supporting information regarding the research article entitled “Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease” (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016 [1]. Triple-transgenic (3×Tg-Alzheimer׳s disease (AD model mice exhibited significantly poorer spatial learning than sham-treated 3×Tg-AD mice 28 days after traumatic brain injury (TBI. Correspondingly, amyloid-β (Aβ deposition within the hippocampus was significantly greater in 3×Tg-AD mice 28 days after TBI. However, data regarding the short-term and long-term influences of TBI on amyloid precursor protein (APP accumulation in AD model mice remain limited. Furthermore, there is little data showing whether physical activity and motor learning are affected by TBI in AD model mice. Here, we provide immunocytochemistry data confirming that TBI induces significant increases in APP accumulation in 3×Tg-AD mice at both 7 days and 28 days after TBI. Furthermore, 3×Tg-AD model mice exhibit a reduced ability to acquire conditioned responses (CRs during delay eyeblink conditioning compared to sham-treated 3×Tg-AD model mice 28 days after TBI. However, physical activity and motor performance are not significantly changed in TBI-treated 3×Tg-AD model mice.

  5. Stability of encapsulated beef-like flavourings prepared from enzymatically hydrolysed mushroom proteins with other precursors under conventional and microwave heating. (United States)

    Lotfy, Shereen N; Fadel, Hoda H M; El-Ghorab, Ahmed H; Shaheen, Mohamed S


    A comparative study was carried out between two beef-like flavourings prepared by conventional and microwave heating (CBF and MBF) of enzymatic hydrolysate of mushroom protein with other flavour precursors. GC-MS analysis of the isolated volatiles revealed that the thiol containing compounds were the predominate in both samples. However, MBF comprised higher concentration of these compounds (13.84 ± 0.06%) than CBF (10.74 ± 0.06%). The effect of microencapsulation with gum Arabic by using spray drying on the odour profile and volatile compounds of the two encapsulated samples (E-CBF and E-MBF) was investigated. The results revealed significant qualitative and quantitative variations in the volatiles of both samples. The highly volatile compounds decreased remarkably in concentration with encapsulation, while the pyrazines, thiazoles and disulphides showed opposite trend. The significant decrease in the thiol containing compounds in E-CBF and E-MBF were attributed to their oxidation to other compounds such as disulphide compounds which showed significant increase in the encapsulated samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Generation and characterization of recombinant bivalent fusion protein r-Cpib for immunotherapy against Clostridium perfringens beta and iota toxemia. (United States)

    Das, Shreya; Majumder, Saugata; Kingston, Joseph J; Batra, Harsh V


    Clostridium perfringens beta (CPB) and iota (CPI) toxaemias result in some of the most lethal forms of haemorrhagic and necrotic enteritis and sudden death syndrome affecting especially neonates. While CPB enterotoxemia is one of the most common forms of clostridial enterotoxemia, CPI enterotoxemia though putatively considered to be rare is an emerging cause of concern. The similarities in clinical manifestation, gross and histopathology findings of both types of toxaemias coupled to the infrequency of CPI toxaemia might lead to symptomatic misidentification with Type C resulting in therapeutic failure due to habitual administration of CPB anti-toxin which is ineffective against CPI. Therefore in the present study, to generate a composite anti-toxin capable of neutralizing both toxaemias, a novel bivalent chimera r-Cpib was constructed by splicing the non-toxic C terminal binding regions of CPB and CPI, via a flexible glycine linker (G4S) by overlap-extension PCR. The fusion protein was characterized for its therapeutic abilities toward CPI and CPB toxin neutralizations. The r-Cpib was found to be non-toxic and could competitively inhibit binding of CPB to host cell receptors thereby reducing its cytotoxicity. Immunization of mice with r-Cpib generated specific antibodies capable of neutralizing the above toxaemias both in vitro and in vivo. Caco-2 cells exposed to a mixture of anti-r-Cpib sera and native CPI or CPB, displayed significantly superior protection against the respective toxins while passive challenge of mice with a similar mixture resulted in 83 and 91% protection against CPI and CPB respectively. Alternatively, mice exposed to a mixture of sham sera and native toxins died within 2-3 days. This work thus demonstrates r-Cpib as a novel bivalent fusion protein capable of efficient immunotherapy against C. perfringens CPI and CPB toxaemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The E1 mechanism in photo-induced beta-elimination reactions for green-to-red conversion of fluorescent proteins. (United States)

    Tsutsui, Hidekazu; Shimizu, Hideaki; Mizuno, Hideaki; Nukina, Nobuyuki; Furuta, Toshiaki; Miyawaki, Atsushi


    KikGR is a fluorescent protein engineered to display green-to-red photoconvertibility that is induced by irradiation with ultraviolet or violet light. Similar to Kaede and EosFP, two naturally occurring photoconvertible proteins, KikGR contains a His(62)-Tyr(63)-Gly(64) tripeptide sequence, which forms a green chromophore that can be photoconverted to a red one via formal beta-elimination and subsequent extension of a pi-conjugated system. Using a crystallizable variant of KikGR, we determined the structures of both the green and red state at 1.55 A resolution. The double bond between His(62)-C(alpha) and His(62)-C(beta) in the red chromophore is in a cis configuration, indicating that rotation along the His(62) C(alpha)-C(beta) bond occurs following cleavage of the His(62) N(alpha)-C(alpha) bond. This structural rearrangement provides evidence that the beta-elimination reaction governing the green-to-red photoconversion of KikGR follows an E1 (elimination, unimolecular) mechanism.

  8. Peptides of presenilin-1 bind the amyloid precursor protein ectodomain and offer a novel and specific therapeutic approach to reduce ß-amyloid in Alzheimer's disease. (United States)

    Dewji, Nazneen N; Singer, S Jonathan; Masliah, Eliezer; Rockenstein, Edward; Kim, Mihyun; Harber, Martha; Horwood, Taylor


    β-Amyloid (Aβ) accumulation in the brain is widely accepted to be critical to the development of Alzheimer's disease (AD). Current efforts at reducing toxic Aβ40 or 42 have largely focused on modulating γ-secretase activity to produce shorter, less toxic Aβ, while attempting to spare other secretase functions. In this paper we provide data that offer the potential for a new approach for the treatment of AD. The method is based on our previous findings that the production of Aβ from the interaction between the β-amyloid precursor protein (APP) and Presenilin (PS), as part of the γ-secretase complex, in cell culture is largely inhibited if the entire water-soluble NH2-terminal domain of PS is first added to the culture. Here we demonstrate that two small, non-overlapping water-soluble peptides from the PS-1 NH2-terminal domain can substantially and specifically inhibit the production of total Aβ as well as Aβ40 and 42 in vitro and in vivo in the brains of APP transgenic mice. These results suggest that the inhibitory activity of the entire amino terminal domain of PS-1 on Aβ production is largely focused in a few smaller sequences within that domain. Using biolayer interferometry and confocal microscopy we provide evidence that peptides effective in reducing Aβ give a strong, specific and biologically relevant binding with the purified ectodomain of APP 695. Finally, we demonstrate that the reduction of Aβ by the peptides does not affect the catalytic activities of β- or γ-secretase, or the level of APP. P4 and P8 are the first reported protein site-specific small peptides to reduce Aβ production in model systems of AD. These peptides and their derivatives offer new potential drug candidates for the treatment of AD.

  9. Central and peripheral administration of antisense oligonucleotide targeting amyloid-β protein precursor improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (AβPPswe) mice. (United States)

    Farr, Susan A; Erickson, Michelle A; Niehoff, Michael L; Banks, William A; Morley, John E


    Alzheimer's disease (AD) is a progressive neurodegenerative disease. Currently, there are no therapies to stop or reverse the symptoms of AD. We have developed an antisense oligonucleotide (OL-1) against the amyloid-β protein precursor (AβPP) that can decrease AβPP expression and amyloid-β protein (Aβ) production. This antisense rapidly crosses the blood-brain barrier, reverses learning and memory impairments, reduces oxidative stress, and restores brain-to-blood efflux of Aβ in SAMP8 mice. Here, we examined the effects of this AβPP antisense in the Tg2576 mouse model of AD. We administered the OL-1 antisense into the lateral ventricle 3 times at 2week intervals. Seventy-two hours after the third injection, we tested learning and memory in T-maze foot shock avoidance. In the second study, we injected the mice with OL-1 antisense 3 times at 2-week intervals via the tail vein. Seventy-two hours later, we tested learning and memory T-maze, novel object recognition, and elevated plus maze. At the end of behavioral testing, brain tissue was collected. OL-1 antisense administered centrally improved acquisition and retention of T-maze foot shock avoidance. OL-1 antisense administered via tail vein improved learning and memory in both T-maze foot shock avoidance and novel object-place recognition. In the elevated plus maze, the mice which received OL-1 antisense spent less time in the open arms and had fewer entries into the open arms indicating reduced disinhibitation. Biochemical analyses reveal significant reduction of AβPP signal and a reduction of measures of neuroinflammation. The current findings support the therapeutic potential of OL-1 AβPP antisense.

  10. Altered cell cycle-related gene expression in brain and lymphocytes from a transgenic mouse model of Alzheimer's disease [amyloid precursor protein/presenilin 1 (PS1)]. (United States)

    Esteras, Noemí; Bartolomé, Fernando; Alquézar, Carolina; Antequera, Desireé; Muñoz, Úrsula; Carro, Eva; Martín-Requero, Ángeles


    Cumulative evidence indicates that aberrant re-expression of many cell cycle-related proteins and inappropriate neuronal cell cycle control are critical events in Alzheimer's disease (AD) pathogenesis. Evidence of cell cycle activation in post-mitotic neurons has also been observed in murine models of AD, despite the fact that most of these mice do not show massive loss of neuronal bodies. Dysfunction of the cell cycle appears to affect cells other than neurons, as peripheral cells, such as lymphocytes and fibroblasts from patients with AD, show an altered response to mitogenic stimulation. We sought to determine whether cell cycle disturbances are present simultaneously in both brain and peripheral cells from the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD, in order to validate the use of peripheral cells from patients not only to study cell cycle abnormalities as a pathogenic feature of AD, but also as a means to test novel therapeutic approaches. By using cell cycle pathway-specific RT(2)Profiler™ PCR Arrays, we detected changes in a number of cell cycle-related genes in brain as well as in lymphocytes from APP/PS1 mice. Moreover, we found enhanced 5'-bromo-2'-deoxyuridine incorporation into DNA in lymphocytes from APP/PS1 mice, and increased expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA), and the cyclin-dependent kinase (CDK) inhibitor Cdkn2a, as detected by immunohistochemistry in cortical neurons of the APP/PS1 mice. Taken together, the cell cycle-related changes in brain and blood cells reported here support the mitosis failure hypothesis in AD and validate the use of peripheral cells as surrogate tissue to study the molecular basis of AD pathogenesis. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  11. Cross-linking of cell surface amyloid precursor protein leads to increased β-amyloid peptide production in hippocampal neurons: implications for Alzheimer's disease. (United States)

    Lefort, Roger; Pozueta, Julio; Shelanski, Michael


    The accumulation of the β-amyloid peptide (Aβ) in Alzheimer's disease (AD) is thought to play a causative role in triggering synaptic dysfunction in neurons, leading to their eventual demise through apoptosis. Aβ is produced and secreted upon sequential cleavage of the amyloid precursor protein (APP) by β-secretases and γ-secretases. However, while Aβ levels have been shown to be increased in the brains of AD patients, little is known about how the cleavage of APP and the subsequent generation of Aβ is influenced, or whether the cleavage process changes over time. It has been proposed that Aβ can bind APP and promote amyloidogenic processing of APP, further enhancing Aβ production. Proof of this idea has remained elusive because a clear mechanism has not been identified, and the promiscuous nature of Aβ binding complicates the task of demonstrating the idea. To work around these problems, we used an antibody-mediated approach to bind and cross-link cell-surface APP in cultured rat primary hippocampal neurons. Here we show that cross-linking of APP is sufficient to raise the levels of Aβ in viable neurons with a concomitant increase in the levels of the β-secretase BACE1. This appears to occur as a result of a sorting defect that stems from the caspase-3-mediated inactivation of a key sorting adaptor protein, namely GGA3, which prevents the lysosomal degradation of BACE1. Together, our data suggest the occurrence of a positive pathogenic feedback loop involving Aβ and APP in affected neurons possibly allowing Aβ to spread to nearby healthy neurons.

  12. Peptides of presenilin-1 bind the amyloid precursor protein ectodomain and offer a novel and specific therapeutic approach to reduce ß-amyloid in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Nazneen N Dewji

    Full Text Available β-Amyloid (Aβ accumulation in the brain is widely accepted to be critical to the development of Alzheimer's disease (AD. Current efforts at reducing toxic Aβ40 or 42 have largely focused on modulating γ-secretase activity to produce shorter, less toxic Aβ, while attempting to spare other secretase functions. In this paper we provide data that offer the potential for a new approach for the treatment of AD. The method is based on our previous findings that the production of Aβ from the interaction between the β-amyloid precursor protein (APP and Presenilin (PS, as part of the γ-secretase complex, in cell culture is largely inhibited if the entire water-soluble NH2-terminal domain of PS is first added to the culture. Here we demonstrate that two small, non-overlapping water-soluble peptides from the PS-1 NH2-terminal domain can substantially and specifically inhibit the production of total Aβ as well as Aβ40 and 42 in vitro and in vivo in the brains of APP transgenic mice. These results suggest that the inhibitory activity of the entire amino terminal domain of PS-1 on Aβ production is largely focused in a few smaller sequences within that domain. Using biolayer interferometry and confocal microscopy we provide evidence that peptides effective in reducing Aβ give a strong, specific and biologically relevant binding with the purified ectodomain of APP 695. Finally, we demonstrate that the reduction of Aβ by the peptides does not affect the catalytic activities of β- or γ-secretase, or the level of APP. P4 and P8 are the first reported protein site-specific small peptides to reduce Aβ production in model systems of AD. These peptides and their derivatives offer new potential drug candidates for the treatment of AD.

  13. Peripheral administration of antisense oligonucleotides targeting the amyloid-β protein precursor reverses AβPP and LRP-1 overexpression in the aged SAMP8 mouse brain. (United States)

    Erickson, Michelle A; Niehoff, Michael L; Farr, Susan A; Morley, John E; Dillman, Lucy A; Lynch, Kristin M; Banks, William A


    The senescence accelerated mouse-prone 8 (SAMP8) mouse model of Alzheimer's disease has a natural mutation leading to age-related increases in the amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) in the brain, memory impairment, and deficits in Aβ removal from the brain. Previous studies show that centrally administered antisense oligonucleotide directed against AβPP can decrease AβPP expression and Aβ production in the brains of aged SAMP8 mice, and improve memory. The same antisense crosses the blood-brain barrier and reverses memory deficits when injected intravenously. Here, we give 6 μg of AβPP or control antisense 3 times over 2 week intervals to 12 month old SAMP8 mice. Object recognition test was done 48 hours later, followed by removal of whole brains for immunoblot analysis of AβPP, low-density lipoprotein-related protein-1 (LRP-1), p-glycoprotein (Pgp), receptor for advanced glycation endproducts (RAGE), or ELISA of soluble Aβ(40). Our results show that AβPP antisense completely reverses a 30% age-associated increase in AβPP signal (p < 0.05 versus untreated 4 month old SAMP8). Soluble Aβ(40) increased with age, but was not reversed by antisense. LRP-1 large and small subunits increased significantly with age (147.7%, p < 0.01 and 123.7%, p < 0.05 respectively), and AβPP antisense completely reversed these increases (p < 0.05). Pgp and RAGE were not significantly altered with age or antisense. Antisense also caused improvements in memory (p < 0.001). Together, these data support the therapeutic potential of AβPP antisense and show a unique association between AβPP and LRP-1 expression in the SAMP8 mouse.

  14. Mutation of the Kunitz-type proteinase inhibitor domain in the amyloid β-protein precursor abolishes its anti-thrombotic properties in vivo. (United States)

    Xu, Feng; Davis, Judianne; Hoos, Michael; Van Nostrand, William E


    Kunitz proteinase inhibitor (KPI) domain-containing forms of the amyloid β-protein precursor (AβPP) inhibit cerebral thrombosis. KPI domain-lacking forms of AβPP are abundant in brain. Regions of AβPP other than the KPI domain may also be involved with regulating cerebral thrombosis. To determine the contribution of the KPI domain to the overall function of AβPP in regulating cerebral thrombosis we generated a reactive center mutant that was devoid of anti-thrombotic activity and studied its anti-thrombotic function in vitro and in vivo. To determine the extent of KPI function of AβPP in regulating cerebral thrombosis we generated a recombinant reactive center KPI R13I mutant devoid of anti-thrombotic activity. The anti-proteolytic and anti-coagulant properties of wild-type and R13I mutant KPI were investigated in vitro. Cerebral thrombosis of wild-type, AβPP knock out and AβPP/KPI R13I mutant mice was evaluated in experimental models of carotid artery thrombosis and intracerebral hemorrhage. Recombinant mutant KPI R13I domain was ineffective in the inhibition of pro-thrombotic proteinases and did not inhibit the clotting of plasma in vitro. AβPP/KPI R13I mutant mice were similarly deficient as AβPP knock out mice in regulating cerebral thrombosis in experimental models of carotid artery thrombosis and intracerebral hemorrhage. We demonstrate that the anti-thrombotic function of AβPP primarily resides in the KPI activity of the protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin

    DEFF Research Database (Denmark)

    Sasaki, T; Brakebusch, C; Engel, J


    Human Mac-2 binding protein (M2BP) was prepared in recombinant form from the culture medium of 293 kidney cells and consisted of a 92 kDa subunit. The protein was obtained in a native state as indicated by CD spectroscopy, demonstrating alpha-helical and beta-type structure, and by protease resis...... in the extracellular matrix of several mouse tissues....... in solid-phase assays to collagens IV, V and VI, fibronectin and nidogen, but not to fibrillar collagens I and III or other basement membrane proteins. The protein also mediated adhesion of cell lines at comparable strength with laminin. Adhesion to M2BP was inhibited by antibodies to integrin beta1...

  16. PuF, an antimetastatic and developmental signaling protein, interacts with the Alzheimer’s amyloid-β precursor protein via a tissue-specific proximal regulatory element (PRE

    Directory of Open Access Journals (Sweden)

    Lahiri Debomoy K


    Full Text Available Abstract Background Alzheimer’s disease (AD is intimately tied to amyloid-β (Aβ peptide. Extraneuronal brain plaques consisting primarily of Aβ aggregates are a hallmark of AD. Intraneuronal Aβ subunits are strongly implicated in disease progression. Protein sequence mutations of the Aβ precursor protein (APP account for a small proportion of AD cases, suggesting that regulation of the associated gene (APP may play a more important role in AD etiology. The APP promoter possesses a novel 30 nucleotide sequence, or “proximal regulatory element” (PRE, at −76/−47, from the +1 transcription start site that confers cell type specificity. This PRE contains sequences that make it vulnerable to epigenetic modification and may present a viable target for drug studies. We examined PRE-nuclear protein interaction by gel electrophoretic mobility shift assay (EMSA and PRE mutant EMSA. This was followed by functional studies of PRE mutant/reporter gene fusion clones. Results EMSA probed with the PRE showed DNA-protein interaction in multiple nuclear extracts and in human brain tissue nuclear extract in a tissue-type specific manner. We identified transcription factors that are likely to bind the PRE, using competition gel shift and gel supershift: Activator protein 2 (AP2, nm23 nucleoside diphosphate kinase/metastatic inhibitory protein (PuF, and specificity protein 1 (SP1. These sites crossed a known single nucleotide polymorphism (SNP. EMSA with PRE mutants and promoter/reporter clone transfection analysis further implicated PuF in cells and extracts. Functional assays of mutant/reporter clone transfections were evaluated by ELISA of reporter protein levels. EMSA and ELISA results correlated by meta-analysis. Conclusions We propose that PuF may regulate the APP gene promoter and that AD risk may be increased by interference with PuF regulation at the PRE. PuF is targeted by calcium/calmodulin-dependent protein kinase II inhibitor 1, which also

  17. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E


    The signaling pathways whereby glucose and hormonal secretagogues regulate insulin-secretory function, gene transcription, and proliferation of pancreatic beta-cells are not well defined. We show that in the glucose-responsive beta-cell line INS-1, major secretagogue-stimulated signaling pathways...... converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  18. Chronic treatment with amyloid beta(1-42) inhibits non-cholinergic high-affinity choline transport in NG108-15 cells through protein kinase C signaling

    Czech Academy of Sciences Publication Activity Database

    Nováková, Jana; Mikasová, Lenka; Machová, Eva; Lisá, Věra; Doležal, Vladimír


    Roč. 1062, č. 1-2 (2005), s. 101-110 ISSN 0006-8993 R&D Projects: GA AV ČR(CZ) IAA5011206; GA MŠk(CZ) LC554 Grant - others:Lipidiet(XE) QLK1-CT-2002-00172 Institutional research plan: CEZ:AV0Z50110509 Keywords : choline transporter * beta-amyloid * protein kinase C Subject RIV: ED - Physiology Impact factor: 2.296, year: 2005

  19. A lentiviral sponge for miR-101 regulates RanBP9 expression and amyloid precursor protein metabolism in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Christian eBarbato


    Full Text Available Neurodegeneration associated with amyloid β (Aβ peptide accumulation, synaptic loss, and memory impairment are pathophysiological features of Alzheimer's disease (AD. Numerous microRNAs regulate amyloid precursor protein (APP expression and metabolism. We previously reported that miR-101 is a negative regulator of APP expression in cultured hippocampal neurons. In this study, a search for predicted APP metabolism-associated miR-101 targets led to the identification of a conserved miR-101 binding site within the 3’ untranslated region (UTR of the mRNA encoding Ran-binding protein 9 (RanBP9. RanBP9 increases APP processing by β-amyloid converting enzyme 1 (BACE1, secretion of soluble APPβ (sAPPβ, and generation of Aβ. MiR-101 significantly reduced reporter gene expression when co-transfected with a RanBP9 3'-UTR reporter construct, while site-directed mutagenesis of the predicted miR-101 target site eliminated the reporter response. To investigate the effect of stable inhibition of miR-101 both in vitro and in vivo, a microRNA sponge was developed to bind miR-101 and derepress its targets. Four tandem bulged miR-101 responsive elements (REs, located downstream of the enhanced green fluorescence protein (EGFP open reading frame and driven by the synapsin promoter, were placed in a lentiviral vector to create the pLSyn-miR-101 sponge. Delivery of the sponge to primary hippocampal neurons significantly increased both APP and RanBP9 expression, as well as sAPPβ levels in the conditioned medium. Importantly, silencing of endogenous RanBP9 reduced sAPPβ levels in miR-101 sponge-containing hippocampal cultures, indicating that miR-101 inhibition may increase amyloidogenic processing of APP by RanBP9. Lastly, the impact of miR-101 on its targets was demonstrated in vivo by intrahippocampal injection of the pLSyn-miR-101 sponge into C57BL6 mice. This study thus provides the basis for studying the consequences of long-term miR-101 inhibition on

  20. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on the expression of ubiquitin ligases, protein synthesis pathways and contractile function in extensor digitorum longus (EDL) of fed and fasting rats. (United States)

    Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; Yonamine, Caio Yogi; Salgueiro, Rafael Barrera; Nunes, Maria Tereza


    Beta-hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, enhances the gain of skeletal muscle mass by increasing protein synthesis or attenuating protein degradation or both. The aims of this study were to investigate the effect of HMB on molecular factors controlling skeletal muscle protein synthesis and degradation, as well as muscle contractile function, in fed and fasted conditions. Wistar rats were supplied daily with HMB (320 mg/kg body weight diluted in NaCl-0.9%) or vehicle only (control) by gavage for 28 days. After this period, some of the animals were subjected to a 24-h fasting, while others remained in the fed condition. The EDL muscle was then removed, weighed and used to evaluate the genes and proteins involved in protein synthesis (AKT/4E-BP1/S6) and degradation (Fbxo32 and Trim63). A sub-set of rats were used to measure in vivo muscle contractile function. HMB supplementation increased AKT phosphorylation during fasting (three-fold). In the fed condition, no differences were detected in atrogenes expression between control and HMB supplemented group; however, HMB supplementation did attenuate the fasting-induced increase in their expression levels. Fasting animals receiving HMB showed improved sustained tetanic contraction times (one-fold) and an increased muscle to tibia length ratio (1.3-fold), without any cross-sectional area changes. These results suggest that HMB supplementation under fasting conditions increases AKT phosphorylation and attenuates the increased of atrogenes expression, followed by a functional improvement and gain of skeletal muscle weight, suggesting that HMB protects skeletal muscle against the deleterious effects of fasting.

  1. Year-long changes in protein metabolism in elderly men and women supplemented with a nutrition cocktail of beta-hydroxy-beta-methylbutyrate (HMB), L-arginine, and L-lysine. (United States)

    Baier, Shawn; Johannsen, Darcy; Abumrad, Naji; Rathmacher, John A; Nissen, Steven; Flakoll, Paul


    A major contributing factor to the loss of mobility in elderly people is the gradual and continuous loss of lean body mass. To determine whether supplementation of an amino acid cocktail daily for 1 year could improve the age-associated changes in protein turnover and lean body mass in elderly people. Elderly (76+/-1.6 years) women (n=39) and men (n=38) were recruited for a double-blinded controlled study. Study participants were randomly assigned to either an isonitrogenous control-supplement (n=37) or a treatment-supplement (HMB/Arg/Lys) consisting of beta-hydroxy-beta-methylbutyrate, L-arginine, and L-lysine (n=40) for the 1-year study. Lean tissue mass was measured using both bioelectrical-impedance analysis (BIA) and dual energy x-ray absorptiometry (DXA). Rates of whole-body protein turnover were estimated using primed/intermittent oral doses of 15N-glycine. In subjects taking the HMB/Arg/Lys supplement, lean tissue increased over the year of study while in the control group, lean tissue did not change. Compared with control, HMB/Arg/Lys increased body cell mass (BIA) by 1.6% (P=.002) and lean mass (DXA) by 1.2% (P=.05). The rates of protein turnover were significantly increased 8% and 12% in the HMB/Arg/Lys-supplemented group while rates of protein turnover decreased 11% and 9% in the control-supplemented subjects (P<.01), at 3 and 12 months, respectively. Consumption of a simple amino acid-related cocktail increased protein turnover and lean tissue in elderly individuals in a year-long study.

  2. The blood level of transforming growth factor-beta rises in the early stages of acute protein and energy deficit in the weanling mouse. (United States)

    Monk, Jennifer M; Woodward, Bill


    Plasma transforming growth factor (TGF)-beta levels are high in the advanced stages of acute (wasting) pre-pubescent deficits of protein and energy. Consequently, this potently anti-inflammatory cytokine may help to sustain the depression of inflammatory immune competence in acute malnutrition. Our objective was to determine if plasma TGF-beta levels rise during the early stages of acute malnutrition and, secondarily, to confirm the elevation reported previously in advanced weight loss. In two experiments, male and female C57BL/6J mice, initially 19 d old, consumed ad libitum a complete purified diet (group C), or in restricted daily quantities (group R) or had free access to an isoenergetic low-protein diet (group LP). TGF-beta bioactivity in platelet-poor plasma was determined via inhibition of Mv1Lu mink lung cell proliferation after 3 d (Expt 1, early stage) or 14 d (Expt 2, advanced stage) of dietary intervention. At 3 d, mean plasma TGF-beta bioactivities were 802 (C), 2952 (R) and 4678 (LP) pg/ml, and after 14 d mean bioactivities were 1786 (C), 5360 (R) and 5735 (LP) pg/ml. At both time points, the malnourished groups differed from age-matched controls (P beta concentration, and this cytokine joins corticosterone and IL-10 as a third anti-inflammatory hormone temporally positioned to contribute to the initiation (and maintenance) of malnutrition-associated immune depression. This investigation contributes new insight into the active anti-inflammatory form of immune competence that appears to prevail in acute pre-pubescent malnutrition.

  3. Assessment and association of two useful tumour markers: alpha feto protein and human chornionic gonodotropin (beta hCG) hormone

    International Nuclear Information System (INIS)

    Subhan, F.; Tahir, F.; Sultan, S.; Subhan, K.


    This study was designed to determine serum Alpha-fetoprotein (AFP) and beta-h Chornionic Gonodotropin hormone (beta-hCG) levels among adult Pakistani population, and to observe their correlation. Serum AFP and beta-hCG levels were evaluated, using Micro-particle Enzyme Immuno Assay (MEIA) technology of M/s Abbott Laboratories. Data were compared using students t-test and correlation was computed. In the patients advised serum AFP assessment, 52% had normal AFP levels. comprising 37% male and 63% female subjects. For patients having a non-pathological picture, AFP levels varied non-significantly (p>0.05) between the Genders however, age varied highly significantly (p 0.05) and highly significant (p 0.05). Comparison of the population in the same age groups of both genders revealed significant (p 0.05), due to a large standard error. Although the differences in beta-hCG levels were highly significant (p 0.05). Among the studied cases, 67% patients had normal and 33% patients had raised beta-hCG levels. Beta-hCG levels show a decreasing trend with increasing age and beta-hCG levels were statistically significant (p<0.05) when patients under 50 years of age were compared with patients above 50 years. The coefficient of correlation between serum AFP and beta- hCG levels was 0.996454, which indicated a very strong. Significant positive correlation between the two tumour markers. The study showed that both serum AFP and beta-hCG are useful tumour markers and had a very strong positive correlation. (author)

  4. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients. (United States)

    Yamamoto, N; Naraparaju, V R; Asbell, S O


    Serum vitamin D3-binding protein (Gc protein) can be converted by beta-galactosidase of B cells and sialidase of T cells to a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is the precursor of the macrophage activating factor (MAF). Treatment of Gc protein with immobilized beta-galactosidase and sialidase generates an extremely high titered MAF, Gc-MAF. When peripheral blood monocytes/macrophages of 52 patients bearing various types of cancer were incubated with 100 pg/ml of GcMAF, the monocytes/macrophages of all patients were efficiently activated. However, the MAF precursor activity of patient plasma Gc protein was found to be severely reduced in about 25% of this patient population. About 45% of the patients had moderately reduced MAF precursor activities. Loss of the precursor activity was found to be due to deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase detected in the patient's bloodstream. The source of the enzyme appeared to be cancerous cells. Radiation therapy decreased plasma alpha-N-acetylgalactosaminidase activity with concomitant increase of precursor activity. This implies that radiation therapy decreases the number of cancerous cells capable of secreting alpha-N-acetylgalactosaminidase. Both alpha-N-acetylgalactosaminidase activity and MAF precursor activity of Gc protein in patient bloodstream can serve as diagnostic and prognostic indices.

  5. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice (United States)

    Nakao, Akito; Miki, Takafumi; Shoji, Hirotaka; Nishi, Miyuki; Takeshima, Hiroshi; Miyakawa, Tsuyoshi; Mori, Yasuo


    Calcium (Ca2+) influx through voltage-gated Ca2+ channels (VGCCs) induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca2+ signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP) was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO) mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached “study-wide significance.” Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions. PMID:26136667

  6. Pertussis toxin substrate is a guanosine 5'-[beta-thio]diphosphate-, N-ethylmaleimide-, Mg2+- and temperature-sensitive GTP-binding protein.


    Wong, S K; Martin, B R; Tolkovsky, A M


    We compared the effects of guanine nucleotides and Mg2+ on ADP-ribosylation of rat brain and liver membrane proteins catalysed by Bordetella pertussis toxin (IAP) and cholera toxin (CT). Labelling of proteins in the presence of [alpha-32P]NAD+, ATP and CT required GTP or guanosine 5'-[gamma-thio]triphosphate (GTP [S]). In contrast, labelling of one (liver) or two (brain) polypeptides by IAP was enhanced by guanosine 5'-[beta-thio]diphosphate (GDP[S]) or GTP, but was blocked by GTP[S] or guano...

  7. Isolation and characterization of a monoclonal anti-protein kinase CK2 beta-subunit antibody of the IgG class for the direct detection of CK2 beta-subunit in tissue cultures of various mammalian species and human tumors

    DEFF Research Database (Denmark)

    Nastainczyk, W; Schmidt-Spaniol, I; Boldyreff, B


    A murine monoclonal anti-protein kinase CK2 beta antibody was isolated and characterized. The antibody detects 1 pmol of purified recombinant CK2 beta-subunit after analysis on SDS-PAGE. Alternatively undenatured CK2 beta-subunit was detected by an ELISA assay either as recombinant CK2 beta......-subunit or in the CK2 holoenzyme (alpha 2 beta 2). Here, concentrations of the first antibody of 1 ng/ml still allowed the detection of the subunit. Immunoblotting of crude cellular extracts from various tissue cultures (man, mouse, and hamster), from human tumors, and the nonneoplastic tissue allowed the detection...... of the CK2 beta-subunit. The detected epitope of this antibody was, as determined by the epitope analysis technique, 123GLSDI127....

  8. Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells. (United States)

    Cheng, Xiaoxin; Wang, Yaping; He, Qian; Qiu, Mengsheng; Whittemore, Scott R; Cao, Qilin


    Promotion of remyelination is an important therapeutic strategy for the treatment of the demyelinating neurological disorders. Adult oligodendrocyte precursor cells (OPCs), which normally reside quiescently in the adult central nervous system (CNS), become activated and proliferative after demyelinating lesions. However, the extent of endogenous remyelination is limited because of the failure of adult OPCs to mature into myelinating oligodendrocytes (OLs) in the demyelinated CNS. Understanding the molecular mechanisms that regulate the differentiation of adult OPCs could lead to new therapeutic strategies to treat these disorders. In this study, we established a stable culture of adult spinal cord OPCs and developed a reliable in vitro protocol to induce their sequential differentiation. Adult OPCs expressed bone morphogenetic protein (BMP) type Ia, Ib, and II receptor subunits, which are required for BMP signal transduction. BMP2 and 4 promoted dose-dependent astrocyte differentiation of adult OPCs with concurrent suppression of OL differentiation. Treatment of OPCs with BMP2 and 4 increased ID4 expression and decreased the expression of olig1 and olig2. Overexpression of olig1 or olig2 blocked the astrocyte differentiation of adult OPCs induced by BMP2 and 4. Furthermore, overexpression of both olig1 and olig2, but not olig1 or olig2 alone, rescued OL differentiation from inhibition by BMP2 and 4. Our results demonstrated that downregulation of olig1 and olig2 is an important mechanism by which BMP2 and 4 inhibit OL differentiation of adult OPCs. These data suggest that blocking BMP signaling combined with olig1/2 overexpression could be a useful therapeutic strategy to enhance endogenous remyelination and facilitate functional recovery in CNS demyelinated disorders. Disclosure of potential conflicts of interest is found at the end of this article.

  9. Overcoming antigen masking of anti-amyloidbeta antibodies reveals breaking of B cell tolerance by virus-like particles in amyloidbeta immunized amyloid precursor protein transgenic mice

    Directory of Open Access Journals (Sweden)

    Ugen Kenneth E


    Full Text Available Abstract Background In prior work we detected reduced anti-Aβ antibody titers in Aβ-vaccinated transgenic mice expressing the human amyloid precursor protein (APP compared to nontransgenic littermates. We investigated this observation further by vaccinating APP and nontransgenic mice with either the wild-type human Aβ peptide, an Aβ peptide containing the "Dutch Mutation", E22Q, or a wild-type Aβ peptide conjugated to papillomavirus virus-like particles (VLPs. Results Anti-Aβ antibody titers were lower in vaccinated APP than nontransgenic mice even when vaccinated with the highly immunogenic Aβ E22Q. One concern was that human Aβ derived from the APP transgene might mask anti-Aβ antibodies in APP mice. To test this possibility, we dissociated antigen-antibody complexes by incubation at low pH. The low pH incubation increased the anti-Aβ antibody titers 20–40 fold in APP mice but had no effect in sera from nontransgenic mice. However, even after dissociation, the anti-Aβ titers were still lower in transgenic mice vaccinated with wild-type Aβ or E22Q Aβ relative to non-transgenic mice. Importantly, the dissociated anti-Aβ titers were equivalent in nontransgenic and APP mice after VLP-based vaccination. Control experiments demonstrated that after acid-dissociation, the increased antibody titer did not cross react with bovine serum albumin nor alpha-synuclein, and addition of Aβ back to the dissociated serum blocked the increase in antibody titers. Conclusions Circulating human Aβ can interfere with ELISA assay measurements of anti-Aβ titers. The E22Q Aβ peptide vaccine is more immunogenic than the wild-type peptide. Unlike peptide vaccines, VLP-based vaccines against Aβ abrogate the effects of Aβ self-tolerance.

  10. Functional cross-talk between the cellular prion protein and the neural cell adhesion molecule is critical for neuronal differentiation of neural stem/precursor cells. (United States)

    Prodromidou, Kanella; Papastefanaki, Florentia; Sklaviadis, Theodoros; Matsas, Rebecca


    Cellular prion protein (PrP) is prominently expressed in brain, in differentiated neurons but also in neural stem/precursor cells (NPCs). The misfolding of PrP is a central event in prion diseases, yet the physiological function of PrP is insufficiently understood. Although PrP has been reported to associate with the neural cell adhesion molecule (NCAM), the consequences of concerted PrP-NCAM action in NPC physiology are unknown. Here, we generated NPCs from the subventricular zone (SVZ) of postnatal day 5 wild-type and PrP null (-/-) mice and observed that PrP is essential for proper NPC proliferation and neuronal differentiation. Moreover, we found that PrP is required for the NPC response to NCAM-induced neuronal differentiation. In the absence of PrP, NCAM not only fails to promote neuronal differentiation but also induces an accumulation of doublecortin-positive neuronal progenitors at the proliferation stage. In agreement, we noted an increase in cycling neuronal progenitors in the SVZ of PrP-/- mice compared with PrP+/+ mice, as evidenced by double labeling for the proliferation marker Ki67 and doublecortin as well as by 5-bromo-2'-deoxyuridine incorporation experiments. Additionally, fewer newly born neurons were detected in the rostral migratory stream of PrP-/- mice. Analysis of the migration of SVZ cells in microexplant cultures from wild-type and PrP-/- mice revealed no differences between genotypes or a role for NCAM in this process. Our data demonstrate that PrP plays a critical role in neuronal differentiation of NPCs and suggest that this function is, at least in part, NCAM-dependent. © 2014 AlphaMed Press.

  11. Evaluation of the amyloid beta-GFP fusion protein as a model of amyloid beta peptides-mediated aggregation: A study of DNAJB6 chaperone

    Directory of Open Access Journals (Sweden)

    Rasha Mohamed Hussein


    Full Text Available Alzheimer’s disease is a progressive neurodegenerative disease characterized by the accumulation and aggregation of extracellular amyloid β (Aβ peptides and intracellular aggregation of hyper-phosphorylated tau protein. Recent evidence indicates that accumulation and aggregation of intracellular amyloid β peptides may also play a role in disease pathogenesis. This would suggest that intracellular Heat Shock Proteins (HSP that maintain cellular protein homeostasis might be candidates for disease amelioration. We recently found that DNAJB6, a member of DNAJ family of heat shock proteins, effectively prevented the aggregation of short aggregation-prone peptides containing large poly glutamines (associated with CAG repeat diseases both in vitro and in cells. Moreover, recent in vitro data showed that DNAJB6 can delay the aggregation of Aβ42 peptides. In this study, we investigated the ability of DNAJB6 to prevent the aggregation of extracellular and intracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP fusion construct and performing western blotting and immunofluorescence techniques. We found that DNAJB6 indeed suppresses Aβ-GFP aggregation, but not seeded aggregation initiated by extracellular Aβ peptides. Unexpectedly and unlike what we found for peptide-mediated aggregation, DNAJB6 required interaction with HSP70 to prevent the aggregation of the Aβ-GFP fusion protein and its J-domain was crucial for its anti-aggregation effect. In addition, other DNAJ proteins as well as HSPA1a overexpression also suppressed Aβ-GFP aggregation efficiently. Our findings suggest that Aβ aggregation differs from poly Q peptide induced aggregation in terms of chaperone handling and sheds doubt on the usage of Aβ-GFP fusion construct for studying Aβ peptide aggregation in cells.

  12. The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells. (United States)

    Bolduc, Gilles R; Madoff, Lawrence C


    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.

  13. Activation of the transcription factor carbohydrate-responsive element-binding protein by glucose leads to increased pancreatic beta cell differentiation in rats. (United States)

    Soggia, A; Flosseau, K; Ravassard, P; Szinnai, G; Scharfmann, R; Guillemain, G


    Pancreatic cell development is a tightly controlled process. Although information is available regarding the mesodermal signals that control pancreatic development, little is known about the role of environmental factors such as nutrients, including glucose, on pancreatic development. We previously showed that glucose and its metabolism through the hexosamine biosynthesis pathway (HBP) promote pancreatic endocrine cell differentiation. Here, we analysed the role of the transcription factor carbohydrate-responsive element-binding protein (ChREBP) in this process. This transcription factor is activated by glucose, and has been recently described as a target of the HBP. We used an in vitro bioassay in which pancreatic endocrine and exocrine cells develop from rat embryonic pancreas in a way that mimics in vivo pancreatic development. Using this model, gain-of-function and loss-of-function experiments were undertaken. ChREBP was produced in the endocrine lineage during pancreatic development, its abundance increasing with differentiation. When rat embryonic pancreases were cultured in the presence of glucose or xylitol, the production of ChREBP targets was induced. Concomitantly, beta cell differentiation was enhanced. On the other hand, when embryonic pancreases were cultured with inhibitors decreasing ChREBP activity or an adenovirus producing a dominant-negative ChREBP, beta cell differentiation was reduced, indicating that ChREBP activity was necessary for proper beta cell differentiation. Interestingly, adenovirus producing a dominant-negative ChREBP also reduced the positive effect of N-acetylglucosamine, a substrate of the HBP acting on beta cell differentiation. Our work supports the idea that glucose, through the transcription factor ChREBP, controls beta cell differentiation from pancreatic progenitors.

  14. Beta-defensin-2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically relevant concentrations in lesional skin.

    Directory of Open Access Journals (Sweden)

    Patrick A M Jansen

    Full Text Available BACKGROUND: Previous studies have extensively documented antimicrobial and chemotactic activities of beta-defensins. Human beta-defensin-2 (hBD-2 is strongly expressed in lesional psoriatic epidermis, and recently we have shown that high beta-defensin genomic copy number is associated with psoriasis susceptibility. It is not known, however, if biologically and pathophysiologically relevant concentrations of hBD-2 protein are present in vivo, which could support an antimicrobial and proinflammatory role of beta-defensins in lesional psoriatic epidermis. METHODOLOGY/PRINCIPAL FINDINGS: We found that systemic levels of hBD-2 showed a weak but significant correlation with beta defensin copy number in healthy controls but not in psoriasis patients with active disease. In psoriasis patients but not in atopic dermatitis patients, we found high systemic hBD-2 levels that strongly correlated with disease activity as assessed by the PASI score. Our findings suggest that systemic levels in psoriasis are largely determined by secretion from involved skin and not by genomic copy number. Modelling of the in vivo epidermal hBD-2 concentration based on the secretion rate in a reconstructed skin model for psoriatic epidermis provides evidence that epidermal hBD-2 levels in vivo are probably well above the concentrations required for in vitro antimicrobial and chemokine-like effects. CONCLUSIONS/SIGNIFICANCE: Serum hBD-2 appears to be a useful surrogate marker for disease activity in psoriasis. The discrepancy between hBD-2 levels in psoriasis and atopic dermatitis could explain the well known differences in infection rate between these two diseases.

  15. A putative low-molecular-mass penicillin-binding protein (PBP) of Mycobacterium smegmatis exhibits prominent physiological characteristics of DD-carboxypeptidase and beta-lactamase. (United States)

    Bansal, Ankita; Kar, Debasish; Murugan, Rajagopal A; Mallick, Sathi; Dutta, Mouparna; Pandey, Satya Deo; Chowdhury, Chiranjit; Ghosh, Anindya S


    DD-carboxypeptidases (DD-CPases) are low-molecular-mass (LMM) penicillin-binding proteins (PBPs) that are mainly involved in peptidoglycan remodelling, but little is known about the dd-CPases of mycobacteria. In this study, a putative DD-CPase of Mycobacterium smegmatis, MSMEG_2433 is characterized. The gene for the membrane-bound form of MSMEG_2433 was cloned and expressed in Escherichia coli in its active form, as revealed by its ability to bind to the Bocillin-FL (fluorescent penicillin). Interestingly, in vivo expression of MSMEG_2433 could restore the cell shape oddities of the septuple PBP mutant of E. coli, which was a prominent physiological characteristic of DD-CPases. Moreover, expression of MSMEG_2433 in trans elevated beta-lactam resistance in PBP deletion mutants (ΔdacAdacC) of E. coli, strengthening its physiology as a dd-CPase. To confirm the biochemical reason behind such physiological behaviours, a soluble form of MSMEG_2433 (sMSMEG_2433) was created, expressed and purified. In agreement with the observed physiological phenomena, sMSMEG_2433 exhibited DD-CPase activity against artificial and peptidoglycan-mimetic DD-CPase substrates. To our surprise, enzymic analyses of MSMEG_2433 revealed efficient deacylation for beta-lactam substrates at physiological pH, which is a unique characteristic of beta-lactamases. In addition to the MSMEG_2433 active site that favours dd-CPase activity, in silico analyses also predicted the presence of an omega-loop-like region in MSMEG_2433, which is an important determinant of its beta-lactamase activity. Based on the in vitro, in vivo and in silico studies, we conclude that MSMEG_2433 is a dual enzyme, possessing both DD-CPase and beta-lactamase activities. © 2015 The Authors.

  16. Heterologous activation of protein kinase C stimulates phosphorylation of delta-opioid receptor at serine 344, resulting in beta-arrestin- and clathrin-mediated receptor internalization

    DEFF Research Database (Denmark)

    Xiang, B; Yu, G H; Guo, J


    The purpose of the current study is to investigate the effect of opioid-independent, heterologous activation of protein kinase C (PKC) on the responsiveness of opioid receptor and the underlying molecular mechanisms. Our result showed that removing the C terminus of delta opioid receptor (DOR......) containing six Ser/Thr residues abolished both DPDPE- and phorbol 12-myristate 13-acetate (PMA)-induced DOR phosphorylation. The phosphorylation levels of DOR mutants T352A, T353A, and T358A/T361A/S363S were comparable to that of the wild-type DOR, whereas S344G substitution blocked PMA-induced receptor......, and ionomycin resulted in DOR internalization that required phosphorylation of Ser-344. Expression of dominant negative beta-arrestin and hypertonic sucrose treatment blocked PMA-induced DOR internalization, suggesting that PKC mediates DOR internalization via a beta-arrestin- and clathrin-dependent mechanism...

  17. Impact of rs361072 in the phosphoinositide 3-kinase p110beta gene on whole-body glucose metabolism and subunit protein expression in skeletal muscle

    DEFF Research Database (Denmark)

    Ribel-Madsen, Rasmus; Poulsen, Pernille; Holmkvist, Johan


    OBJECTIVE: Phosphoinositide 3-kinase (PI3K) is a major effector in insulin signaling. rs361072, located in the promoter of the gene (PIK3CB) for the p110beta subunit, has previously been found to be associated with homeostasis model assessment for insulin resistance (HOMA-IR) in obese subjects...... infusion. rs361072 did not associate with insulin-stimulated peripheral glucose disposal despite a decreased muscle p85alpha:p110beta protein ratio (P(add) = 0.03) in G allele carriers. No association with HOMA-IR or type 2 diabetes (odds ratio 1.07, P = 0.5) was identified, and obesity did not interact...

  18. Structural modification of serum vitamin D3-binding protein and immunosuppression in AIDS patients. (United States)

    Yamamoto, N; Naraparaju, V R; Srinivasula, S M


    A serum glycoprotein, vitamin D3-binding protein (Gc protein), can be converted by beta-galactosidase of stimulated B lymphocytes and sialidase of T lymphocytes to a potent macrophage-activating factor (MAF), a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is a precursor for MAF. Treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generates an extremely high-titered MAF (GcMAF). When peripheral blood monocytes/macrophages of 46 HIV-infected patients were treated with GcMAF (100 pg/ml), the monocytes/macrophages of all patients were efficiently activated. However, the MAF precursor activity of plasma Gc protein was low in 16 (35%) of of these patients. Loss of the MAF precursor activity appeared to be due to deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase found in the patient blood stream. Levels of plasma alpha-N-acetylgalactosaminidase activity in individual patients had an inverse correlation with the MAF precursor activity of their plasma Gc protein. Thus, precursor activity of Gc protein and alpha-N-acetylgalactosaminidase activity in patient blood can serve as diagnostic and prognostic indices.

  19. Neuronal Store-Operated Calcium Entry and Mushroom Spine Loss in Amyloid Precursor Protein Knock-In Mouse Model of Alzheimer's Disease. (United States)

    Zhang, Hua; Wu, Lili; Pchitskaya, Ekaterina; Zakharova, Olga; Saito, Takashi; Saido, Takaomi; Bezprozvanny, Ilya


    Alzheimer's disease (AD) is the most common reason for elderly dementia in the world. We proposed that memory loss in AD is related to destabilization of mushroom postsynaptic spines involved in long-term memory storage. We demonstrated previously that stromal interaction molecule 2 (STIM2)-regulated neuronal store-operated calcium entry (nSOC) in postsynaptic spines play a key role in stability of mushroom spines by maintaining activity of synaptic Ca(2+)/calmodulin kinase II (CaMKII). Furthermore, we demonstrated previously that the STIM2-nSOC-CaMKII pathway is downregulated in presenilin 1 M146V knock-in (PS1-M146V KI) mouse model of AD, leading to loss of hippocampal mushroom spines in this model. In the present study, we demonstrate that hippocampal mushroom postsynaptic spines are also lost in amyloid precursor protein knock-in (APPKI) mouse model of AD. We demonstrated that loss of mushroom spines occurs as a result of accumulation of extracellular β-amyloid 42 in APPKI culture media. Our results indicate that extracellular Aβ42 acts by overactivating mGluR5 receptor in APPKI neurons, leading to elevated Ca(2+) levels in endoplasmic reticulum, compensatory downregulation of STIM2 expression, impaired synaptic nSOC, and reduced CaMKII activity. Pharmacological inhibition of mGluR5 or overexpression of STIM2 rescued synaptic nSOC and prevented mushroom spine loss in APPKI hippocampal neurons. Our results indicate that downregulation of synaptic STIM2-nSOC-CaMKII pathway causes loss of mushroom synaptic spines in both presenilin and APPKI mouse models of AD. We propose that modulators/activators of this pathway may have a potential therapeutic value for treatment of memory loss in AD. Significance statement: A direct connection between amyloid-induced synaptic mushroom spine loss and neuronal store-operated calcium entry pathway is shown. These results provide strong support for the calcium hypothesis of neurodegeneration and further validate the synaptic

  20. Inactivation of Nitric Oxide Synthesis Exacerbates the Development of Alzheimer Disease Pathology in APPPS1 Mice (Amyloid Precursor Protein/Presenilin-1). (United States)

    Cifuentes, Diana; Poittevin, Marine; Bonnin, Philippe; Ngkelo, Anta; Kubis, Nathalie; Merkulova-Rainon, Tatyana; Lévy, Bernard I


    The epidemiological link between hypertension and Alzheimer disease is established. We previously reported that hypertension aggravates the Alzheimer-like pathology in APPPS1 mice (amyloid precursor protein/presenilin-1, mouse model of Alzheimer disease) with angiotensin II-induced hypertension, in relation with hypertension and nitric oxide deficiency. To provide further insights into the role of nitric oxide in the hypertension-Alzheimer disease cross-talk, we studied the effects of nitric oxide blockade in APPPS1 mice using N (ω)-nitro-l-arginine methyl ester (l-NAME) alone or in combination with hydralazine, to normalize blood pressure. Compared with normotensive APPPS1 mice, those with l-NAME-induced hypertension had greater amyloid burden ( P <0.05), increased cortical amyloid angiopathy ( P <0.01), decreased regional microvascular density ( P <0.05), and deficient long-term spatial reference memory ( P <0.001). Blood pressure normalization with hydralazine did not protect APPPS1 mice from l-NAME-induced deterioration except for cortical amyloid angiopathy, linked to hypertension-induced arterial wall remodeling. By testing the cerebrovascular response to hypercapnic breathing, we evidenced early functional impairment of cerebral vasomotor activity in APPPS1 mice. Whereas in control wild-type normotensive mice, carbon dioxide breathing resulted in 15±1.3% increase in the mean blood flow velocity ( P <0.001), paradoxical mild decrease (1.5±0.4%) was recorded in normotensive APPPS1 mice ( P <0.001). Carbon dioxide-induced decrease in mean blood flow velocity was not significantly modified in l-NAME-treated hypertensive APPPS1 mice (2.5±1.2%) and partly reversed to mild vasodilation by hydralazine (3.2±1.5%, P <0.01). These results suggest that impaired nitric oxide bioavailability exacerbates the pathophysiology of Alzheimer disease, essentially impacting amyloid load and cognitive impairment, independently of l-NAME-induced hypertension. Only cerebral

  1. Fibrates upregulate TRB3 in lymphocytes independent of PPAR alpha by augmenting CCAAT/enhancer-binding protein beta (C/EBP beta) expression. (United States)

    Selim, Erin; Frkanec, Julie T; Cunard, Robyn


    Fibrates, which function by binding and activating peroxisome proliferator-activated receptor alpha (PPARalpha), have been used successfully to treat hyperlipidemia and atherosclerosis. Increasing evidence suggests that in addition to their lipid lowering activities these medications also function as immunosuppressive agents. Tribbles is a Drosophila protein that slows cell cycle progression, and its mammalian homolog, TRB3 interferes with insulin-induced activation of AKT. In these studies we demonstrate that fibrates upregulate TRB3 expression in mitogen-activated lymphocytes. Interestingly, in lymphocytes fibrates augment TRB3 expression in both PPARalpha wildtype and knockout mice, suggesting that upregulation of this protein occurs in a PPARalpha-independent manner. Fibrates activate a proximal TRB3 promoter construct and mutation or partial deletion of a potential PPAR response element does not alter the ability of fibrates to drive TRB3 expression. Subsequent studies reveal that fibrates upregulate C/EBPbeta and CHOP in lymphocytes and mutation of potential C/EBPbeta and CHOP consensus sequences abrogates the ability of fibrates to upregulate TRB3 promoter activity. Accordingly, fibrates enhance the recruitment of C/EBPbeta and CHOP to the proximal TRB3 promoter. Finally, TRB3 expression in lymphocytes induces G2 cell cycle delay and cellular depletion. These studies outline a novel PPARalpha-independent mechanism of action of fibrates and document for the first time the expression of TRB3 in activated lymphocytes.

  2. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.


    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  3. Localization of Alpha-Keratin and Beta-Keratin (Corneous Beta Protein) in the Epithelium on the Ventral Surface of the Lingual Apex and Its Lingual Nail in the Domestic Goose (Anser Anser f. domestica) by Using Immunohistochemistry and Raman Microspectroscopy Analysis. (United States)

    Skieresz-Szewczyk, Kinga; Jackowiak, Hanna; Buchwald, Tomasz; Szybowicz, Mirosław


    The epithelium of the ventral surface of the apex of the tongue in most birds is specified by the presence of the special superficial layer called lingual nail. The aim of the present study is to determine the localization of the alpha-keratin and beta-keratin (corneous beta protein) in this special epithelium in the domestic goose by using immunohistochemistry staining and the Raman spectroscopy analysis. Due to lack of commercially available antibodies to detect beta-keratin (corneous beta protein), the Raman spectroscopy was used as a specific tool to detect and describe the secondary structure of proteins. The immunohistochemical (IHC) detections reveal the presence of alpha-keratin in all layers of the epithelium, but significant differences in the distribution of the alpha-keratin in the epithelial layers appear. The staining reaction is stronger from the basal layer to the upper zone of the intermediate layer. The unique result is weak staining for the alpha-keratin in the lingual nail. Applications of the Raman spectroscopy as a complementary method not only confirmed results of IHC staining for alpha-keratin, but showed that this technique could be used to demonstrate the presence of beta-keratin (corneous beta protein). Functionally, the localization of alpha-keratin in the epithelium of the ventral surface of the lingual apex provides a proper scaffold for epithelial cells and promotes structural integrity, whereas the presence of beta-keratin (corneous beta protein) in the lingual nail, described also as exoskeleton of the ventral surface of the apex, endures mechanical stress. Anat Rec, 300:1361-1368, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. An X11alpha/FSBP complex represses transcription of the GSK3beta gene promoter.

    LENUS (Irish Health Repository)

    Lau, Kwok-Fai


    X11alpha is a neuronal adaptor protein that interacts with the amyloid precursor protein (APP) through a centrally located phosphotyrosine binding domain to inhibit the production of Abeta peptide that is deposited in Alzheimer\\'s disease brains. X11alpha also contains two C-terminal postsynaptic density-95, large discs, zona occludens 1 (PDZ) domains, and we show here that through its PDZ domains, X11alpha interacts with a novel transcription factor, fibrinogen silencer binding protein. Moreover, we show that an X11alpha\\/fibrinogen silencer binding protein complex signals to the nucleus to repress glycogen synthase kinase-3beta promoter activity. Glycogen synthase kinase-3beta is a favoured candidate kinase for phosphorylating tau in Alzheimer\\'s disease. Our findings show a new function for X11alpha that may impact on Alzheimer\\'s disease pathogenesis.

  5. Effects of beetroot (Beta vulgaris) preparations on the Maillard reaction products in milk and meat-protein model systems

    NARCIS (Netherlands)

    Rackauskienea, I.; Pukalskas, A.; Rimantas Venskutonis, P.; Fiore, A.M.; Troise, A.D.; Fogliano, V.


    The effects of beetroots (Beta vulgaris) on the formation of Maillard reaction (MR) products possessing health, nutritional and sensory implications were studied. The effect of dried beetroot juice on the formation of Ne-(carboxymethyl)lysine (CML) and Ne-(2-furoylmethyl)-L-lysine (furosine) was

  6. X11beta rescues memory and long-term potentiation deficits in Alzheimer's disease APPswe Tg2576 mice.

    LENUS (Irish Health Repository)

    Mitchell, Jacqueline C


    Increased production and deposition of amyloid beta-protein (Abeta) are believed to be key pathogenic events in Alzheimer\\'s disease. As such, routes for lowering cerebral Abeta levels represent potential therapeutic targets for Alzheimer\\'s disease. X11beta is a neuronal adaptor protein that binds to the intracellular domain of the amyloid precursor protein (APP). Overexpression of X11beta inhibits Abeta production in a number of experimental systems. However, whether these changes to APP processing and Abeta production induced by X11beta overexpression also induce beneficial effects to memory and synaptic plasticity are not known. We report here that X11beta-mediated reduction in cerebral Abeta is associated with normalization of both cognition and in vivo long-term potentiation in aged APPswe Tg2576 transgenic mice that model the amyloid pathology of Alzheimer\\'s disease. Overexpression of X11beta itself has no detectable adverse effects upon mouse behaviour. These findings support the notion that modulation of X11beta function represents a therapeutic target for Abeta-mediated neuronal dysfunction in Alzheimer\\'s disease.

  7. β-Arrestin interacts with the beta/gamma subunits of trimeric G-proteins and dishevelled in the Wnt/Ca(2+ pathway in xenopus gastrulation.

    Directory of Open Access Journals (Sweden)

    Katharina Seitz

    Full Text Available β-Catenin independent, non-canonical Wnt signaling pathways play a major role in the regulation of morphogenetic movements in vertebrates. The term non-canonical Wnt signaling comprises multiple, intracellularly divergent, Wnt-activated and β-Catenin independent signaling cascades including the Wnt/Planar Cell Polarity and the Wnt/Ca(2+ cascades. Wnt/Planar Cell Polarity and Wnt/Ca(2+ pathways share common effector proteins, including the Wnt ligand, Frizzled receptors and Dishevelled, with each other and with additional branches of Wnt signaling. Along with the aforementioned proteins, β-Arrestin has been identified as an essential effector protein in the Wnt/β-Catenin and the Wnt/Planar Cell Polarity pathway. Our results demonstrate that β-Arrestin is required in the Wnt/Ca(2+ signaling cascade upstream of Protein Kinase C (PKC and Ca(2+/Calmodulin-dependent Protein Kinase II (CamKII. We have further characterized the role of β-Arrestin in this branch of non-canonical Wnt signaling by knock-down and rescue experiments in Xenopus embryo explants and analyzed protein-protein interactions in 293T cells. Functional interaction of β-Arrestin, the β subunit of trimeric G-proteins and Dishevelled is required to induce PKC activation and membrane translocation. In Xenopus gastrulation, β-Arrestin function in Wnt/Ca(2+ signaling is essential for convergent extension movements. We further show that β-Arrestin physically interacts with the β subunit of trimeric G-proteins and Dishevelled, and that the interaction between β-Arrestin and Dishevelled is promoted by the beta/gamma subunits of trimeric G-proteins, indicating the formation of a multiprotein signaling complex.

  8. Lithium chloride increases the production of amyloid-beta peptide independently from its inhibition of glycogen synthase kinase 3. (United States)

    Feyt, Christine; Kienlen-Campard, Pascal; Leroy, Karelle; N'Kuli, Francisca; Courtoy, Pierre J; Brion, Jean-Pierre; Octave, Jean-Noël


    Glycogen synthase kinase 3 (GSK3) is able to phosphorylate tau at many sites that are found to be phosphorylated in paired helical filaments in Alzheimer disease. Lithium chloride (LiCl) efficiently inhibits GSK3 and was recently reported to also decrease the production of amyloid-beta peptide (Abeta) from its precursor, the amyloid precursor protein. Therefore, lithium has been proposed as a combined therapeutic agent, inhibiting both the hyperphosphorylation of tau and the production of Abeta. Here, we demonstrate that the inhibition of GSK3 by LiCl induced the nuclear translocation of beta-catenin in Chinese hamster ovary cells and rat cultured neurons, in which a decrease in tau phosphorylation was observed. In both cellular models, a nontoxic concentration of LiCl increased the production of Abeta by increasing the beta-cleavage of amyloid precursor protein, generating more substrate for an unmodified gamma-secretase activity. SB415286, another GSK3 inhibitor, induced the nuclear translocation of beta-catenin and slightly decreased Abeta production. It is concluded that the LiCl-mediated increase in Abeta production is not related to GSK3 inhibition.

  9. Speculative Betas


    Harrison Hong; David Sraer


    We provide a model for why high beta assets are more prone to speculative overpricing than low beta ones. When investors disagree about the common factor of cash-flows, high beta assets are more sensitive to this macro-disagreement and experience a greater divergence-of-opinion about their payoffs. Short-sales constraints for some investors such as retail mutual funds result in high beta assets being over-priced. When aggregate disagreement is low, expected return increases with beta due to r...

  10. Differential expression and processing of transforming growth factor beta induced protein (TGFBIp) in the normal human cornea during postnatal development and aging

    DEFF Research Database (Denmark)

    Karring, Henrik; Runager, Kasper; Valnickova, Zuzana


    Transforming growth factor beta induced protein (TGFBIp, also named keratoepithelin) is an extracellular matrix protein abundant in the cornea. The purpose of this study was to determine the expression and processing of TGFBIp in the normal human cornea during postnatal development and aging...... trimming events from the N-terminus of mature TGFBIp generate TGFBIp isoforms which form a similar "zig-zag" pattern when separated by 2-D polyacrylamide gel electrophoresis (PAGE). This study shows that in humans TGFBIp is more abundant in mature corneas than in the developing cornea...... and that the processing of TGFBIp changes during postnatal development of the cornea. In addition, TGFBIp appears to be degraded in a highly orchestrated manner in the normal human cornea with the resulting C-terminal fragments being retained in the cornea. The age-related changes in the expression and processing...

  11. Molecular characterization of cDNAs encoding G protein alpha and beta subunits and study of their temporal and spatial expression patterns in Nicotiana plumbaginifolia Viv. (United States)

    Kaydamov, C; Tewes, A; Adler, K; Manteuffel, R


    We have isolated cDNA sequences encoding alpha and beta subunits of potential G proteins from a cDNA library prepared from somatic embryos of Nicotiana plumbaginifolia Viv. at early developmental stages. The predicted NPGPA1 and NPGPB1 gene products are 75-98% identical to the known respective plant alpha and beta subunits. Southern hybridizations indicate that NPGPA1 is probably a single-copy gene, whereas at least two copies of NPGPB1 exist in the N. plumbaginifolia genome. Northern analyses reveal that both NPGPA1 and NPGPB1 mRNA are expressed in all embryogenic stages and plant tissues examined and their expression is obviously regulated by the plant hormone auxin. Immunohistological localization of NPGPalpha1 and NPGPbeta1 preferentially on plasma and endoplasmic reticulum membranes and their immunochemical detection exclusively in microsomal cell fractions implicate membrane association of both proteins. The temporal and spatial expression patterns of NPGPA1 and NPGPB1 show conformity as well as differences. This could account for not only cooperative, but also individual activities of both subunits during embryogenesis and plant development.

  12. Astrocytes from the Contused Spinal Cord Inhibit Oligodendrocyte Differentiation of Adult Oligodendrocyte Precursor Cells by Increasing the Expression of Bone Morphogenetic Proteins


    Wang, Yaping; Cheng, Xiaoxin; He, Qian; Zheng, Yiyan; Kim, Dong H.; Whittemore, Scott R.; Cao, Qilin L.


    Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cor...

  13. Bone Morphogenetic Protein Signaling and Olig1/2 Interact to Regulate the Differentiation and Maturation of Adult Oligodendrocyte Precursor Cells


    Cheng, Xiaoxin; Wang, Yaping; He, Qian; Qiu, Mengsheng; Whittemore, Scott R.; Cao, Qilin


    Promotion of remyelination is an important therapeutic strategy for the treatment of the demyelinating neurological disorders. Adult oligodendrocyte precursor cells (OPCs), which normally reside quiescently in the adult central nervous system (CNS), become activated and proliferative after demyelinating lesions. However, the extent of endogenous remyelination is limited because of the failure of adult OPCs to mature into myelinating oligodendrocytes (OLs) in the demyelinated CNS. Understandin...

  14. Synthesis, characterization and inhibitory activities of (4-N3[3,5-3H]Phe10)PKI(6-22)amide and its precursors: photoaffinity labeling peptides for the active site of cyclic AMP-dependent protein kinase. (United States)

    Katz, B M; Lundquist, L J; Walsh, D A; Glass, D B


    PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.

  15. Identification of a 170-kDa protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris.


    Barkla, B J; Blumwald, E


    The effect of the addition of amiloride to the growth medium was tested on the Na+/H+ antiport activity of tonoplast vesicles isolated from sugar beet (beta vulgaris L.) cell suspensions. Cells grown in the presence of NaCl and amiloride displayed an increased antiport activity. Analysis of the kinetic data showed that while the affinity of the antiport for Na+ ions did not change, the maximal velocity of the Na+/H+ exchange increased markedly. These results suggest the addition of more antip...

  16. Production of Recombinant Antimicrobial Polymeric Protein Beta Casein-E 50-52 and Its Antimicrobial Synergistic Effects Assessment with Thymol

    Directory of Open Access Journals (Sweden)

    Shohreh Fahimirad


    Full Text Available Accelerating emergence of antimicrobial resistance among food pathogens and consumers’ increasing demands for preservative-free foods are two contemporary challenging aspects within the food industry. Antimicrobial packaging and the use of natural preservatives are promising solutions. In the present study, we used beta-casein—one of the primary self-assembly proteins in milk with a high polymeric film production capability—as a fusion partner for the recombinant expression of E 50-52 antimicrobial peptide in Escherichia coli. The pET21a-BCN-E 50-52 construct was transformed to E. coli BL21 (DE3, and protein expression was induced under optimized conditions. Purified protein obtained from nickel affinity chromatography was refolded under optimized dialysis circumstances and concentrated to 1600 µg/mL fusion protein by ultrafiltration. Antimicrobial activities of recombinant BCN-E 50-52 performed against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Aspergillus flavus, and Candida albicans. Subsequently, the synergistic effects of BCN-E 50-52 and thymol were assayed. Results of checkerboard tests showed strong synergistic activity between two compounds. Time–kill and growth kinetic studies indicated a sharp reduction of cell viability during the first period of exposure, and SEM (scanning electron microscope results validated the severe destructive effects of BCN E 50-52 and thymol in combination on bacterial cells.

  17. Specific recognition of the C-terminal end of A beta 42 by a high affinity monoclonal antibody

    DEFF Research Database (Denmark)

    Axelsen, Trine Veje; Holm, Arne; Birkelund, Svend


    The neurotoxic peptide A beta(42) is derived from the amyloid precursor protein by proteolytic cleavage and is deposited in the brain of patients suffering from Alzheimer's disease (AD). In this study we generate a high affinity monoclonal antibody that targets the C-terminal end of A beta(42......) with high specificity. By this is meant that the paratope of the antibody must enclose the C-terminal end of A beta(42) including the carboxy-group of amino acid 42, and not just recognize a linear epitope in the C-terminal part of A beta. This has been accomplished by using a unique antigen construct made...... by the Ligand Presenting Assembly technology (LPA technology). This strategy results in dimeric presentation of the free C-terminal end of A beta(42). The generated Mab A beta1.1 is indeed specific for the C-terminal end of A beta(42) to which it binds with high affinity. Mab A beta1.1 recognizes the epitope...

  18. Effects of 12-O-tetradecanoylphorbol-13-acetate on the incorporation of labelled precursors into RNA, DNA and protein in epidermis, dermis and subcutis from precancerous mouse skin with reference to enhanced tumorigenesis

    International Nuclear Information System (INIS)

    Bhisey, R.A.; Ramchandani, A.G.; Sirsat, S.M.


    The effects of a single application of 1.8 nmol 12-O-tetradecanoylphorbol-13-acetate (TPA) on precursor incorporation into RNA, DNA and protein in the epidermis, dermis and subcutis from 3-methylcholanthrene (MCA) injected precancerous mouse skin were studied at various time points between 3 and 96 h. In the precancerous tissues, the rates of incorporation of [ 3 H]uridine into RNA did not alter appreciably from those in the control tissues; while the rates of [ 3 H]methylthymidine incorporation into DNA were elevated with peaks appearing between 6 and 12 h, at 24 h and at 72 h in epidermis, dermis and subcutis. The rate of incorporation of [ 14 C]leucine into protein was markedly elevated in all the three tissues which showed 3-4 sharp peaks. The maximum stimulation ranged between 14 and 20 times that of the control. A single application of TPA to the precancerous mouse skin induced early stimulation of precursor incorporation into all the three macromolecules in epidermis, dermis and subcutis. The increased stimulation was maintained for 36-72 h. The patterns of incorporation of [ 3 H]methylthymidine into DNA gave rise to 2-3 peaks of elevated uptake in each tissue up to 36-48 h. A lowered rate of DNA synthesis between 48 and 60 h was followed by a peak at 72 h. In each group, epidermal mitotic activity correlated well with spurts of precursor incorporation into cellular DNA. The observations indicate that TPA recruits more cells into the DNA synthetic phase and accelerates selective growth of preneoplastic cells during tumor progression

  19. Sawtooth crashes at high beta on JET

    Energy Technology Data Exchange (ETDEWEB)

    Alper, B; Huysmans, G T.A.; Sips, A C.C. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Nave, M F.F. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior Tecnico


    The sawtooth crashes on JET display features which depend on beta. The main observation is a transient bulging of flux surfaces (duration inferior to 30 microsec.), which is predominantly on the low field side and extends to larger radii as beta increases. This phenomenon reaches the plasma boundary when beta{sub N} exceeds 0.5 and in these cases is followed by an ELM within 50 microsec. These sawtooth/ELM events limit plasma performance. Modelling of mode coupling shows qualitative agreement between observations of the structure of the sawtooth precursor and the calculated internal kink mode at high beta. (authors). 6 refs., 5 figs.

  20. PB1-F2 influenza A virus protein adopts a beta-sheet conformation and forms amyloid fibers in membrane environments. (United States)

    Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard


    The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an alpha-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display beta-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a beta-sheet structure. Dynamic light scattering revealed that the presence of beta-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.

  1. Effects of glucose, insulin, and supernatant from pancreatic beta-cells on brain-pancreas relative protein in rat hippocampus

    NARCIS (Netherlands)

    Lin, Yan-Hua; Westenbroek, Christel; Tie, Lu; Liu, Ai-Hua; Yu, He-Ming; Ter Horst, Gert J.; Li, Xue-Jun


    Brain-pancreas relative protein (BPRP) is a novel protein that mainly expresses in brain and pancreas. In our previous study, we found that various stressors significantly decreased the expression of BPRP in pancreas in vivo, accompanied by changes in insulin and glucose levels, and that expression

  2. Protein profile of Beta vulgaris leaf apoplastic fluid and changes induced by Fe deficiency and Fe resupply

    Directory of Open Access Journals (Sweden)

    Laura eCeballos-Laita


    Full Text Available The fluid collected by direct leaf centrifugation has been used to study the proteome of the sugar beet apoplastic fluid as well as the changes induced by Fe deficiency and Fe resupply to Fe-deficient plants in the protein profile. Plants were grown in Fe-sufficient and Fe-deficient conditions, and Fe resupply was carried out with 45 μM Fe(III-EDTA for 24 h. Protein extracts of leaf apoplastic fluid were analyzed by two-dimensional isoelectric focusing-SDS-PAGE electrophoresis. Gel image analysis revealed 203 consistent spots, and proteins in 81% of them (164 were identified by nLC-MS/MS using a custom made reference repository of beet protein sequences. When redundant UniProt entries were deleted, a non-redundant leaf apoplastic proteome consisting of 109 proteins was obtained. TargetP and SecretomeP algorithms predicted that 63% of them were secretory proteins. Functional classification of the non-redundant proteins indicated that stress and defense, protein metabolism, cell wall and C metabolism accounted for approximately 75% of the identified proteome. The effects of Fe-deficiency on the leaf apoplast proteome were limited, with only five spots (2.5% changing in relative abundance, thus suggesting that protein homeostasis in the leaf apoplast fluid is well maintained upon Fe shortage. The identification of three chitinase isoforms among proteins increasing in relative abundance with Fe-deficiency suggests that one of the few effects of Fe deficiency in the leaf apoplast proteome includes cell wall modifications. Iron resupply to Fe deficient plants changed the relative abundance of 16 spots when compared to either Fe-sufficient or Fe-deficient samples. Proteins identified in these spots can be broadly classified as those responding to Fe-resupply, which included defense and cell wall related proteins, and non-responsive, which are mainly protein metabolism related proteins and whose changes in relative abundance followed the same trend as

  3. Deglycosylation of serum vitamin D3-binding protein by alpha-N-acetylgalactosaminidase detected in the plasma of patients with systemic lupus erythematosus. (United States)

    Yamamoto, N; Naraparaju, V R; Moore, M; Brent, L H


    A serum glycoprotein, Gc protein (vitamin D3-binding protein), can be converted by beta-galactosidase of B cells and sialidase of T cells to a potent macrophage-activating factor (MAF), a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is the precursor for MAF. Treatment of Gc protein with immobilized beta-galactosidase and sialidase generates a remarkably high titered macrophage-activating factor (GcMAF). When peripheral blood monocytes/ macrophages (designated macrophages) of 33 systemic lupus erythematosus patients were incubated with GcMAF (100 pg/ml), the macrophages of all patients were activated as determined by superoxide generation. However, the precursor activity of patient plasma Gc protein was lost or reduced in these patients. Loss of the precursor activity was the result of deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase activity found in the patient plasma. Levels of plasma alpha-N-acetylgalactosaminidase activity in individual patients had an inverse correlation with the MAF precursor activity of their plasma Gc protein. Deglycosylated Gc protein cannot be converted to macro-phage-activating factor. The resulting defect in macro-phage activation may lead to an inability to clear pathogenic immune complexes. Thus, elevated plasma alpha-N-acetylgalactosaminidase activity resulting in the loss of MAF precursor activity and reduced macro-phage activity may play a role in the pathogenesis of systemic lupus erythematosus.

  4. Effect of beta blockers (metoprolol or propranolol) on effect of simvastatin in lowering C-reactive protein in acute myocardial infarction. (United States)

    Quinaglia e Silva, Jose C; Munhoz, Daniel B; Morato, Tiago N; Gurgel, Augusto; Macedo, Antonio C T; Sever, Peter; Sposito, Andrei C


    Recent data indicated that statin therapy may fail to reduce the incidence of coronary events in patients concomitantly using beta blockers. The aim of the present study was to examine whether the concomitant use of beta blockers would modify the anti-inflammatory action of statins. Changes in C-reactive protein (CRP) between days 1 and 5 after myocardial infarction were evaluated in 189 patients treated with simvastatin alone (S), beta blockers alone (B; propranolol or metoprolol), S + B, or neither of these 2 medications (N) in a prospective observational cohort. At baseline, median CRP was lower in the S group (0.40 mg/dl, interquartile range 0.1 to 0.6) than the other groups (B: 0.6 mg/dl, interquartile range 0.4 to 1.6; S + B: 0.5 mg/dl, interquartile range 0.3 to 1.2; and N: 0.6 mg/dl, interquartile range 0.2 to 1.5). By day 5, median CRP was 1.3 mg/dl (interquartile range 0.7 to 2.6), 4.3 (interquartile range 1.6 to 8.8), 4.6 (interquartile range 2.8 to 9.5), and 4.4 (interquartile range 1.9 to 9.9) for the S, B, S + B, and N groups, respectively. After adjusting for log(e) baseline CRP, the difference in log(e) CRP between days 1 and 5 was significantly lower in the S group compared with the B (-0.74 +/- 0.23 [SE], p = 0.001) or S + B group (-0.99 +/- 0.20 [SE], p <0.0001). The significance remained after adjustment for age, gender, and baseline CRP. There was no significant difference in change in CRP between the SB and B groups. In conclusion, the present study confirmed the anti-inflammatory action of statins and showed that concomitant use of beta blockers may significantly attenuate this effect.

  5. Protein kinase C involvement in the acetylcholine release reduction induced by amyloid-beta(25-35) aggregates on neuromuscular synapses. (United States)

    Tomàs, Marta; Garcia, Neus; Santafé, Manuel M; Lanuza, Maria; Tomàs, Josep


    Using intracellular recording of the diaphragm muscle of adult rats, we have investigated the short-term functional effects of amyloid-beta (Abeta(25-35) peptide aggregates on the modulation of acetylcholine (ACh) release and the involvement of protein kinase C (PKC). The non-aggregated form of this peptide does not change the evoked and spontaneous transmitter release parameters on the neuromuscular synapse. However, the aggregated form of Abeta(25-35) acutely interferes with evoked quantal ACh release (approximately 40% reduction) when synaptic activity in the ex vivo neuromuscular preparation is maintained by low frequency (1 Hz) electrical stimulation. This effect is partially dependent on the activity of PKC that may have a permissive action. The end result of Abeta(25-35) is in opposition to the PKC-dependent maintenance effect on ACh release manifested in active synapses.

  6. Production of macrophage inflammatory protein (MIP)-1alpha and MIP-1beta by human polymorphonuclear neutrophils stimulated with Porphyromonas endodontalis lipopolysaccharide. (United States)

    Ko, Hyun Jung; Lim, Sung Sam


    This study was undertaken to investigate the capacity of polymorphonuclear neutrophils (PMNs) to secrete Macrophage Inflammatory Protein (MIP)-1alpha and MIP-1beta after stimulation with Porphyromonas endodontalis lipopolysaccharide (LPS). Escherichia coli LPS was used as a positive control. Venous blood was collected and PMNs were isolated from healthy volunteers. Cells were cultured with various concentrations of LPS for different periods of time. Cell supernatants were assayed by enzyme-linked immunosorbent assay. The levels of chemokine secretion in PMNs stimulated with each LPS were found to be significantly higher than in the unstimulated control cells (p endodontalis LPS. These findings demonstrated that P. endodontalis LPS is capable of stimulating PMNs to produce chemotactic cytokines and suggested that PMNs stimulated with P. endodontalis LPS may play a crucial role in the inflammatory and immunopathological reactions of pulpal and periapical diseases.

  7. Quantifying the pattern of beta/A4 amyloid protein distribution in Alzheimer's disease by image analysis. (United States)

    Bruce, C V; Clinton, J; Gentleman, S M; Roberts, G W; Royston, M C


    We have undertaken a study of the distribution of the beta/A4 amyloid deposited in the cerebral cortex in Alzheimer's disease. Previous studies which have examined the differential distribution of amyloid in the cortex in order to determine the laminar pattern of cortical pathology have not proved to be conclusive. We have developed an alternative method for the solution of this problem. It involves the immunostaining of sections followed by computer-enhanced image analysis. A mathematical model is then used to describe both the amount and the pattern of amyloid across the cortex. This method is both accurate and reliable and also removes many of the problems concerning inter and intra-rater variability in measurement. This method will provide the basis for further quantitative studies on the differential distribution of amyloid in Alzheimer's disease and other cases of dementia where cerebral amyloidosis occurs.

  8. Trichoderma .beta.-glucosidase (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian


    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  9. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels

    International Nuclear Information System (INIS)

    Zhong, Linlin; Liu, Ziwen; Yan, Ruilan; Johnson, Stephen; Zhao, Yupei; Fang, Xiubin; Cao, Deliang


    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 μM, 4-hydroxynonenal (HNE) at 0.10 μM, trans-2-hexanal at 0.10 μM, and trans-2,4-hexadienal at 0.05 μM, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 μM (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  10. Formation of thermally induced aggregates of the soya globulin beta-conglycinin. (United States)

    Mills, E N; Huang, L; Noel, T R; Gunning, A P; Morris, V J


    The effect of ionic strength (I) on the formation of thermally induced aggregates by the 7S globular storage protein of soya, beta-conglycinin, has been studied using atomic force microscopy. Aggregates were only apparent when I> or =0.1, and had a fibrous appearance, with a height (diameter) of 8-11 nm. At high ionic strength (I=1.0) the aggregates appeared to associate into clumps. When aggregate formation was studied at I=0.2, it was clear that aggregation only began at temperatures above the main thermal transition for the protein at 75 degrees C, as determined by differential scanning calorimetry. This coincided with a small change in secondary structure, as indicated by circular dichroism spectroscopy, suggesting that a degree of unfolding was necessary for aggregation to proceed. Despite prolonged heating the size of the aggregates did not increase indefinitely, suggesting that certain beta-conglycinin isoforms were able to act as chain terminators. At higher protein concentrations (1% w/v) the linear aggregates appeared to form large macroaggregates, which may be the precursors of protein gel formation. The ability of beta-conglycinin to form such distinctive aggregates is discussed in relation to the presence of acidic inserts in certain of the beta-conglycinin subunits, which may play an important role in limiting aggregate length.

  11. Delayed internalization and lack of recycling in a beta2-adrenergic receptor fused to the G protein alpha-subunit

    Directory of Open Access Journals (Sweden)

    Floridi Aristide


    Full Text Available Abstract Background Chimeric proteins obtained by the fusion of a G protein-coupled receptor (GPCR sequence to the N-terminus of the G protein α-subunit have been extensively used to investigate several aspects of GPCR signalling. Although both the receptor and the G protein generally maintain a fully functional state in such polypeptides, original observations made using a chimera between the β2-adrenergic receptor (β2AR and Gαs indicated that the fusion to the α-subunit resulted in a marked reduction of receptor desensitization and down-regulation. To further investigate this phenomenon, we have compared the rates of internalization and recycling between wild-type and Gαs-fused β2AR. Results The rate of agonist-induced internalization, measured as the disappearance of cell surface immunofluorescence in HEK293 cells permanently expressing N-terminus tagged receptors, was reduced three-fold by receptor-G protein fusion. However, both fused and non-fused receptors translocated to the same endocytic compartment, as determined by dual-label confocal analysis of cells co-expressing both proteins and transferrin co-localization. Receptor recycling, determined as the reversion of surface immunofluorescence following the addition of antagonist to cells that were previously exposed to agonist, markedly differed between wild-type and fused receptors. While most of the internalized β2AR returned rapidly to the plasma membrane, β2AR-Gαs did not recycle, and the observed slow recovery for the fusion protein immunofluorescence was entirely accounted for by protein synthesis. Conclusion The covalent linkage between β2AR and Gαs does not appear to alter the initial endocytic translocation of the two proteins, although there is reduced efficiency. It does, however, completely disrupt the process of receptor and G protein recycling. We conclude that the physical separation between receptor and Gα is not necessary for the transit to early endosomes

  12. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, Sebastian; Metzke, Elisabeth [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Bonin, Michael [Department of Medical Genetics, University of Tuebingen (Germany); Petersen, Cordula [Clinic of Radiotherapy and Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Dikomey, Ekkehard, E-mail: [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Raabe, Annette [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)


    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  13. In cellulo examination of a beta-alpha hybrid construct of beta-hexosaminidase A subunits, reported to interact with the GM2 activator protein and hydrolyze GM2 ganglioside.

    Directory of Open Access Journals (Sweden)

    Incilay Sinici

    Full Text Available The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # (encoded by the HEXA and HEXB genes, respectively, and the GM2-activator protein (GM2AP, encoded by the GM2A gene. Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750. Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1 and a new more extensive hybrid (H2, with our documented in cellulo (live cell- based assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.

  14. Stage-dependent and temperature-controlled expression of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm, Bombyx mori. (United States)

    Xu, W H; Sato, Y; Ikeda, M; Yamashita, O


    Embryonic diapause and sex pheromone biosynthesis in the silkworm, Bombyx mori, are, respectively, induced by diapause hormone (DH) and pheromone biosynthesis activating neuropeptide (PBAN), which are produced in the subesophageal ganglion from a common polyprotein precursor (DH-PBAN precursor) encoded by a single gene (DH-PBAN gene). Using DH-PBAN cDNA as a probe, we quantitatively measured DH-PBAN mRNA content throughout embryonic and postembryonic development and observed the effects of incubation temperature, which is a key factor for determination of diapause, on DH-PBAN gene expression. The silkworm, which is programmed to lay diapause eggs by being incubated at 25 degrees C, showed peaks of DH-PBAN mRNA content at five different stages throughout the life cycle: at the late embryonic stage, at the middle of the fourth and the fifth larval instars, and at early and late stages of pupal-adult development. In the non-diapause type silkworms programmed by a 15 degrees C incubation, only the last peak of DH-PBAN mRNA in pupal-adult development was found, and the other peaks were absent. Furthermore, interruption of the incubation period at 25 degrees C by incubation at 15 degrees C decreased both DH-PBAN mRNA content in mature embryos and in subesophageal ganglia of day 3 pupae and the incidence of diapause eggs. Thus, there were two types of regulatory mechanisms for DH-PBAN gene expression. One is a temperature-controlled expression that is responsible for diapause induction, and the other is a temperature-independent, stage-dependent expression related to pheromone production.

  15. Heterotrimeric G protein beta1gamma2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane. (United States)

    Boughton, Andrew P; Yang, Pei; Tesmer, Valerie M; Ding, Bei; Tesmer, John J G; Chen, Zhan


    Few experimental techniques can assess the orientation of peripheral membrane proteins in their native environment. Sum Frequency Generation (SFG) vibrational spectroscopy was applied to study the formation of the complex between G protein-coupled receptor (GPCR) kinase 2 (GRK2) and heterotrimeric G protein β(1)γ(2) subunits (Gβγ) at a lipid bilayer, without any exogenous labels. The most likely membrane orientation of the GRK2-Gβγ complex differs from that predicted from the known protein crystal structure, and positions the predicted receptor docking site of GRK2 such that it would more optimally interact with GPCRs. Gβγ also appears to change its orientation after binding to GRK2. The developed methodology is widely applicable for the study of other membrane proteins in situ.

  16. Beta-Catenin Stability in Breast Cancer

    National Research Council Canada - National Science Library

    Baswaran, Vijay


    .... beta-catenin also binds the adenomatous polyposis coli protein (APC). The tumor suppressor function of APC is suggested to depend in part on its ability to bind beta-catenin and to facilitate beta-catenin degradation by an unknown mechanism...

  17. Earthquakes: hydrogeochemical precursors (United States)

    Ingebritsen, Steven E.; Manga, Michael


    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  18. Beta spectrometry

    International Nuclear Information System (INIS)

    Dryak, P.; Zderadicka, J.; Plch, J.; Kokta, L.; Novotna, P.


    For the purpose of beta spectrometry, a semiconductor spectrometer with one Si(Li) detector cooled with liquid nitrogen was designed. Geometrical detection efficiency is about 10% 4 sr. The achieved resolution for 624 keV conversion electrons of sup(137m)Ba is 2.6 keV (FWHM). A program was written in the FORTRAN language for the correction of the deformation of the measured spectra by backscattering in the analysis of continuous beta spectra. The method permits the determination of the maximum energy of the beta spectrum with an accuracy of +-5 keV. (author)

  19. Identification of a 170-kDa protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris. (United States)

    Barkla, B J; Blumwald, E


    The effect of the addition of amiloride to the growth medium was tested on the Na+/H+ antiport activity of tonoplast vesicles isolated from sugar beet (beta vulgaris L.) cell suspensions. Cells grown in the presence of NaCl and amiloride displayed an increased antiport activity. Analysis of the kinetic data showed that while the affinity of the antiport for Na+ ions did not change, the maximal velocity of the Na+/H+ exchange increased markedly. These results suggest the addition of more antiport molecules to the tonoplast and/or an increase in the turnover rate of the Na+/H+ exchange. The increase in activity of the antiport by the presence of amiloride was correlated with the enhanced synthesis of a tonoplast 170-kDa polypeptide. The increased synthesis of this polypeptide was detected not only upon exposure of the cells to amiloride but also when the cells were exposed to high NaCl concentrations. Polyclonal antibodies against the 170-kDa polypeptide almost completely inhibited the antiport activity. These results suggest the association of the 170-kDa polypeptide with the vacuolar Na+/H+ antiport.

  20. SOT1, a pentatricopeptide repeat protein with a small MutS-related domain, is required for correct processing of plastid 23S-4.5S rRNA precursors in Arabidopsis thaliana. (United States)

    Wu, Wenjuan; Liu, Sheng; Ruwe, Hannes; Zhang, Delin; Melonek, Joanna; Zhu, Yajuan; Hu, Xupeng; Gusewski, Sandra; Yin, Ping; Small, Ian D; Howell, Katharine A; Huang, Jirong


    Ribosomal RNA processing is essential for plastid ribosome biogenesis, but is still poorly understood in higher plants. Here, we show that SUPPRESSOR OF THYLAKOID FORMATION1 (SOT1), a plastid-localized pentatricopeptide repeat (PPR) protein with a small MutS-related domain, is required for maturation of the 23S-4.5S rRNA dicistron. Loss of SOT1 function leads to slower chloroplast development, suppression of leaf variegation, and abnormal 23S and 4.5S processing. Predictions based on the PPR motif sequences identified the 5' end of the 23S-4.5S rRNA dicistronic precursor as a putative SOT1 binding site. This was confirmed by electrophoretic mobility shift assay, and by loss of the abundant small RNA 'footprint' associated with this site in sot1 mutants. We found that more than half of the 23S-4.5S rRNA dicistrons in sot1 mutants contain eroded and/or unprocessed 5' and 3' ends, and that the endonucleolytic cleavage product normally released from the 5' end of the precursor is absent in a sot1 null mutant. We postulate that SOT1 binding protects the 5' extremity of the 23S-4.5S rRNA dicistron from exonucleolytic attack, and favours formation of the RNA structure that allows endonucleolytic processing of its 5' and 3' ends. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. Effect of Plant Age on the Quantity and Quality of Proteins Extracted from Sugar Beet (Beta vulgaris L.) Leaves

    NARCIS (Netherlands)

    Kiskini, Alexandra; Vissers, Anne; Vincken, Jean Paul; Gruppen, Harry; Wierenga, Peter Alexander


    Effects of the developmental stage (e.g., young, mature, or senescent) of leaves on their chemical composition have been described in the literature. This study focuses on the variation in chemical composition and quantity and quality of proteins extracted from leaves due to variation in plant

  2. A novel hybrid method of beta-turn identification in protein using binary logistic regression and neural network. (United States)

    Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz


    From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins.

  3. Beta Blockers (United States)

    ... may not work as effectively for people of African heritage and older people, especially when taken without ... conditions/high-blood-pressure/in-depth/beta-blockers/ART-20044522 . Mayo Clinic Footer Legal Conditions and Terms ...

  4. FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its beta1 subunit. (United States)

    Bibert, Stéphanie; Liu, Chia-Chi; Figtree, Gemma A; Garcia, Alvaro; Hamilton, Elisha J; Marassi, Francesca M; Sweadner, Kathleen J; Cornelius, Flemming; Geering, Käthi; Rasmussen, Helge H


    The seven members of the FXYD protein family associate with the Na(+)-K(+) pump and modulate its activity. We investigated whether conserved cysteines in FXYD proteins are susceptible to glutathionylation and whether such reactivity affects Na(+)-K(+) pump function in cardiac myocytes and Xenopus oocytes. Glutathionylation was detected by immunoblotting streptavidin precipitate from biotin-GSH loaded cells or by a GSH antibody. Incubation of myocytes with recombinant FXYD proteins resulted in competitive displacement of native FXYD1. Myocyte and Xenopus oocyte pump currents were measured with whole-cell and two-electrode voltage clamp techniques, respectively. Native FXYD1 in myocytes and FXYD1 expressed in oocytes were susceptible to glutathionylation. Mutagenesis identified the specific cysteine in the cytoplasmic terminal that was reactive. Its reactivity was dependent on flanking basic amino acids. We have reported that Na(+)-K(+) pump β(1) subunit glutathionylation induced by oxidative signals causes pump inhibition in a previous study. In the present study, we found that β(1) subunit glutathionylation and pump inhibition could be reversed by exposing myocytes to exogenous wild-type FXYD3. A cysteine-free FXYD3 derivative had no effect. Similar results were obtained with wild-type and mutant FXYD proteins expressed in oocytes. Glutathionylation of the β(1) subunit was increased in myocardium from FXYD1(-/-) mice. In conclusion, there is a dependence of Na(+)-K(+) pump regulation on reactivity of two specifically identified cysteines on separate components of the multimeric Na(+)-K(+) pump complex. By facilitating deglutathionylation of the β(1) subunit, FXYD proteins reverse oxidative inhibition of the Na(+)-K(+) pump and play a dynamic role in its regulation.

  5. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β. (United States)

    Wang, Shuxin; Li, Zheyi; Shen, Hongyan; Zhang, Zhong; Yin, Yuxin; Wang, Qingsong; Zhao, Xuyang; Ji, Jianguo


    Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affe