Sample records for beta maneuvering reentry

  1. Maneuver Analysis and Targeting Strategy for the Stardust Re-Entry Capsule

    Helfrich, Cliff; Bhat, Ramachand S.; Kangas, Julie A.; Wilson, Roby S.; Wong, Mau C.; Potts, Christopher L.; Williams, Kenneth E.


    The Stardust Sample Return Capsule (SRC) returned to Earth on January 15, 2006 after seven years of collecting interstellar and comet particles over three heliocentric revolutions, as shown in Figure 1. The SRC was carried on board the Stardust spacecraft, as shown in Figure 2. Because the spacecraft was built with unbalanced thrusters, turns and attitude control maintenance resulted in undesirable delta-v being imparted to the trajectory. As a result, a carefully planned maneuver strategy was devised to accurately target the Stardust capsule to the Utah Test and Training Range (UTTR). This paper provides an overview of the Stardust spacecraft and mission and describes the maneuver strategy that was employed to achieve the stringent targeting requirements for landing in Utah. In addition, an overview of Stardust maneuver analysis tools and techniques will also be presented.

  2. Reentry response of the lightweight radioisotope heater unit resulting from a Cassini Venus-Venus-Earth-Jupiter gravity assist maneuver accident


    Reentry analyses consisting of ablation response, thermal response and thermal stress response have been conducted on the Lightweight Radioisotope Heater Unit (LWRHU) for Cassini/Venus-Venus-Earth-Jupiter-Gravity-Assist (VVEJGA) reentry conditions. Sequential ablation analyses of the LWRHU aeroshell, and the fuel pellet have been conducted in reentry regimes where the aeroshell has been deemed to fail. The failure criterion for ablation is generally assumed to be recession corresponding to 75% and 100% of the wall thickness. The 75% recession failure criteria allows for uncertainties that result mainly because of the high energies involved in the VVEJGA reentries compared to orbital decay reentries. Risk evaluations should consider the fact that for shallow flight paths the unit may disassemble at high-altitude as a result of ablation or may remain intact with a clad that had been molten. Within the limitations of the methodologies and assumptions of the analyses, the results indicate that: (1) For a side-on stable LWRHU reentry, aeroshell ablation failures occur for all reentry angles. (2)For a side-on spinning LWRHU reentry, aeroshell ablation failures are minimal. (3) For the tumbling LWRHU reentry, the aeroshell survives for most angles. (4) For the thermostructural analyses, using both a 1% and 5% allowable strain, all reentry angles and orientations examined resulted in small localized failures, but aeroshell breach is not predicted for any case. The analyses included in this report concentrate on VVEJGA reentry scenarios. Analyses reported previously have demonstrated that the LWRHU has adequate design margin to survive reentry from orbital decay scenarios and most injection scenarios at speeds up to escape speeds. The exception is a narrow range of flight path angles that produce multiple skip trajectories which may have excessive ablation

  3. Reentry analysis

    Biehl, F.A.


    This paper presents the criteria, previous nuclear experience in space, analysis techniques, and possible breakup enhancement devices applicable to an acceptable SP-100 reentry from space. Reactor operation in nuclear-safe orbit will minimize the radiological risk; the remaining safeguards criteria need to be defined. A simple analytical point mass reentry technique and a more comprehensive analysis method that considers vehicle dynamics and orbit insertion malfunctions are presented. Vehicle trajectory, attitude, and possible breakup enhancement devices will be integrated in the simulation as required to ensure an adequate representation of the reentry process

  4. Maneuver Automation Software

    Uffelman, Hal; Goodson, Troy; Pellegrin, Michael; Stavert, Lynn; Burk, Thomas; Beach, David; Signorelli, Joel; Jones, Jeremy; Hahn, Yungsun; Attiyah, Ahlam; hide


    The Maneuver Automation Software (MAS) automates the process of generating commands for maneuvers to keep the spacecraft of the Cassini-Huygens mission on a predetermined prime mission trajectory. Before MAS became available, a team of approximately 10 members had to work about two weeks to design, test, and implement each maneuver in a process that involved running many maneuver-related application programs and then serially handing off data products to other parts of the team. MAS enables a three-member team to design, test, and implement a maneuver in about one-half hour after Navigation has process-tracking data. MAS accepts more than 60 parameters and 22 files as input directly from users. MAS consists of Practical Extraction and Reporting Language (PERL) scripts that link, sequence, and execute the maneuver- related application programs: "Pushing a single button" on a graphical user interface causes MAS to run navigation programs that design a maneuver; programs that create sequences of commands to execute the maneuver on the spacecraft; and a program that generates predictions about maneuver performance and generates reports and other files that enable users to quickly review and verify the maneuver design. MAS can also generate presentation materials, initiate electronic command request forms, and archive all data products for future reference.

  5. Maneuver from the Air Domain


    Overload From the previous discussion, cognitive maneuver seeks to degrade the enemy’s capacity all domains, the ability to maneuver from the air domain in the cognitive sense, comes primarily from air power’s unique ability to overload the... cognitive maneuver mechanisms developed in the 1980s as part of broader maneuver warfare theory. The result is a proposed definition of maneuver from

  6. Pico Reentry Probes: Affordable Options for Reentry Measurements and Testing

    Ailor, William H.; Kapoor, Vinod B.; Allen, Gay A., Jr.; Venkatapathy, Ethiraj; Arnold, James O.; Rasky, Daniel J.


    It is generally very costly to perform in-space and atmospheric entry experiments. This paper presents a new platform - the Pico Reentry Probe (PREP) - that we believe will make targeted flight-tests and planetary atmospheric probe science missions considerably more affordable. Small, lightweight, self-contained, it is designed as a "launch and forget" system, suitable for experiments that require no ongoing communication with the ground. It contains a data recorder, battery, transmitter, and user-customized instrumentation. Data recorded during reentry or space operations is returned at end-of-mission via transmission to Iridium satellites (in the case of earth-based operations) or a similar orbiting communication system for planetary missions. This paper discusses possible applications of this concept for Earth and Martian atmospheric entry science. Two well-known heritage aerodynamic shapes are considered as candidates for PREP: the shape developed for the Planetary Atmospheric Experiment Test (PAET) and that for the Deep Space II Mars Probe.

  7. Phase 2 reentry in man

    Thomsen, P.E.B.; Jørgensen, R.M.; Kanters, J.K.


    -wave changes documented in the last sinus beat prior to ventricular extrasystoles are in agreement with phase 2 reentry, suggesting that this may be the responsible mechanism for ventricular extrasystoles and ventricular tachycardia/fibrillation. The phenomenon has been demonstrated in only animal experiments...... phase 2 reentry, demonstrated in animal experiments to initiate ventricular extrasystoles, ventricular tachycardia, and ventricular fibrillation, also plays a role in humans. METHODS We examined 18 patients with ventricular extrasystoles and/or ventricular tachycardia by signal averaging of the ECG...... patients undergoing radiofrequency ablation. Eight of the 11 patients had right ventricular outflow tract extrasystoles. RESULTS In six of the seven patients in group A, we demonstrated significant ST-elevation and/or T-wave changes in the sinus beat preceding ventricular extrasystoles compared...

  8. IXV re-entry demonstrator: Mission overview, system challenges and flight reward

    Angelini, Roberto; Denaro, Angelo


    The Intermediate eXperimental Vehicle (IXV) is an advanced re-entry demonstrator vehicle aimed to perform in-flight experimentation of atmospheric re-entry enabling systems and technologies. The IXV integrates key technologies at the system level, with significant advancements on Europe's previous flying test-beds. The project builds on previous achievements at system and technology levels, and provides a unique and concrete way of establishing and consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention is paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight. Following the extensive detailed design, manufacturing, qualification, integration and testing of the flight segment and ground segment elements, IXV has performed a full successful flight on February 11th 2015. After the launch with the VEGA launcher form the CSG spaceport in French Guyana, IXV has performed a full nominal mission ending with a successful splashdown in the Pacific Ocean. During Flight Phase, the IXV space and ground segments worked perfectly, implementing the whole flight program in line with the commanded maneuvers and trajectory prediction, performing an overall flight of 34.400 km including 7.600 km with hot atmospheric re-entry in automatic guidance, concluding with successful precision landing at a distance of ~1

  9. Correctional Practitioners on Reentry: A Missed Perspective

    Elaine Gunnison


    Full Text Available Much of the literature on reentry of formerly incarcerated individuals revolves around discussions of failures they incur during reintegration or the identification of needs and challenges that they have during reentry from the perspective of community corrections officers. The present research fills a gap in the reentry literature by examining the needs and challenges of formerly incarcerated individuals and what makes for reentry success from the perspective of correctional practitioners (i.e., wardens and non-wardens. The views of correctional practitioners are important to understand the level of organizational commitment to reentry and the ways in which social distance between correctional professionals and their clients may impact reentry success. This research reports on the results from an email survey distributed to a national sample of correctional officials listed in the American Correctional Association, 2012 Directory. Specifically, correctional officials were asked to report on needs and challenges facing formerly incarcerated individuals, define success, identify factors related to successful reentry, recount success stories, and report what could be done to assist them in successful outcomes. Housing and employment were raised by wardens and corrections officials as important needs for successful reentry. Corrections officials adopted organizational and systems perspectives in their responses and had differing opinions about social distance. Policy implications are presented.

  10. Support and maneuvering device

    Wood, R.L.


    A support and maneuvering device includes an elongated flexible inflatable enclosure having a fixed end and a movable end. The movable end is collapsible toward the fixed end to a contracted position when the enclosure is in a noninflated condition. Upon inflation, the movable end is movable away from the fixed end to an extended position. The movable end includes means for mounting an article such as a solar reflector thereon. The device also includes a plurality of position controlling means disposed about the movable end to effect adjusting movement of portions thereof by predetermined amounts and for controlling an angle at which the article disposed at the movable end is oriented. The plurality of position controlling means limits a suitable number degrees of freedom of the movable end for transmitting a steering motion thereto and for controlling the position thereof. 9 figs.

  11. Orbital maneuvering end effectors

    Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)


    This invention relates to an end effector device for grasping and maneuvering objects such as berthing handles of a space telescope. The device includes a V-shaped capture window defined as inclined surfaces in parallel face plates which converge toward a retainer recess in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess where latches lock handle in the recess. To align the capture window, plates may be cocked plus or minus five degrees on base. Drive means is included in the form of a motor coupled with a harmonic drive speed reducer, which provides for slow movement of the fingers at a high torque so that large articles may be handled. Novelty of the invention is believed to reside in the combined intermeshing finger structure, drive means and the harmonic drive speed reducer, which features provide the required maneuverability and strength.

  12. 75 FR 75621 - Office of Commercial Space Transportation; Waiver of Autonomous Reentry Restriction for a Reentry...


    ... Dragon's reentry to Earth is in the public interest and will not jeopardize public health and safety... proposes that the FAA permit the autonomous reentry of a healthy Dragon at the nominal landing location in...; (2) the vehicle has the ability to autonomously guide itself to the same pre-determined landing site...


    Boris Djindjic


    Full Text Available Until recent advances in pharmacology and clinical cardiology regarding farmacodynamics of antiarrhythmic drugs and their efficiency in patients with refractory paroxysmal supraventricular tachycardia, chronic prophylactic therapy was the only treatment option for patients refusing catheter ablation. Another treatment option, also known by eponym “pill in pocket” have been shown to be equally useful and efficacious.The aim of our study was prospective examination of children with refractory atrioventricular nodal reentry tachycardia (AVNRT who were withdrawn from chronic antiarrhythmic prophylactic therapy and started with intermittent oral beta blocker treatment (propranolol at dosage 1 mg/kg - max 80 mg.Twelve children (8 boys and 4 girls with AVNRT were included in the study. Four children did not have arrhythmia during first six months after withdrawal and 7 were successfully treated without complication.Intermittent antiarrhythmic therapy in children with AVNRT could be very efficacious and useful treatment option which significantly improves their quality of life.

  14. Improved Maneuver Criteria Evaluation Program


    If the rotor rpm breakpoint (OMGBL2) is le :-s than the mininum rotor rpm (OMEGMN), then the rpm bleed :ate (OMGBDI) will be the only bleed rate used...VCP =60 PSU 1 EEF = 1 OMGBD1=2 OMGBD3=0 OMGRC2=0 VERR = 2 MPRINT= 1 OMEGMN=300 OMGBL.2=4 OMGBL4=0 OMGRD2=0 MUF = 1 BINERT:2860 TRPMMN= 0 OMGBD2=0 OMGBD4...height is within 2 feet of the measured height. These comparisons show that the MCEP maneuvers are accurate for simulating these types of maneuvers

  15. Development and Validation of Reentry Simulation Using MATLAB

    Jameson, Jr, Robert E


    This research effort develops a program using MATLAB to solve the equations of motion for atmospheric reentry and analyzes the validity of the program for use as a tool to expeditiously predict reentry profiles...

  16. A Novel Fenestration Technique for Abdominal Aortic Dissection Membranes Using a Combination of a Needle Re-entry Catheter and the “Cheese-wire” Technique

    Kos, Sebastian; Gürke, Lorenz; Jacob, Augustinus L.


    Purpose: This study was designed to demonstrate the applicability of a combined needle-based re-entry catheter and “cheese-wire” technique for fenestration of abdominal aortic dissection membranes. Methods: Four male patients (mean age: 65 years) with acute complicated aortic type B dissections were treated at our institution by fenestrating the abdominal aortic dissection membrane using a hybrid technique. This technique combined an initial membrane puncture with a needle-based re-entry catheter using a transfemoral approach. A guidewire was passed through the re-entry catheter and across the membrane. Using a contralateral transfemoral access, this guidewire was then snared, creating a through-and-through wire access. The membrane was then fenestrated using the cheese-wire maneuver. Results: We successfully performed: (a) membrane puncture; (b) guidewire passage; (c) guidewire snaring; and (d) cheese-wire maneuver in all four cases. After this maneuver, decompression of the false lumen and acceptable arterial inflow into the true lumen was observed in all cases. The dependent visceral arteries were reperfused. In one case, portions of the fenestrated membrane occluded the common iliac artery, which was immediately and successfully stented. In another case, long-standing intestinal hypoperfusion before the fenestration resulted in reperfusion-related shock and intraoperative death of the patient. Conclusions: The described hybrid approach for fenestration of dissection membranes is technically feasible and may be established as a therapeutic method in cases with a complicated type B dissection.

  17. Rendezvous maneuvers using Genetic Algorithm

    Dos Santos, Denílson Paulo Souza; De Almeida Prado, Antônio F Bertachini; Teodoro, Anderson Rodrigo Barretto


    The present paper has the goal of studying orbital maneuvers of Rendezvous, that is an orbital transfer where a spacecraft has to change its orbit to meet with another spacecraft that is travelling in another orbit. This transfer will be accomplished by using a multi-impulsive control. A genetic algorithm is used to find the transfers that have minimum fuel consumption

  18. The reentry catheter: a second chance for endoluminal reentry at difficult lower extremity subintimal arterial recanalizations.

    Etezadi, Vahid; Benenati, James F; Patel, Parag J; Patel, Rahul S; Powell, Alex; Katzen, Barry T


    From January 2005 to July 2008, a retrospective study was conducted at a single institution to investigate technical success of the use of a reentry device (Outback LTD reentry catheter) in aortoiliac and femoropopliteal artery recanalization in 34 patients (18 men; mean age +/- SD, 72 years +/- 11) in whom the conventional guide wires and catheters failed to reenter the true lumen. True lumen reentry was achieved in 87% (n = 23) and 91% (n = 11) of patients with femoropopliteal and aortoiliac occlusions, respectively. The overall technical success rate with the device was 88% (n = 34). The device success rate in Transatlantic Inter-Society Consensus II class D lesions was significantly lower than in lower lesion classes (71.4% vs 100%; P < .05). No procedure-related complications were encountered. In conclusion, the use of the reentry catheter enhances the likelihood of successful subintimal recanalization of chronic occlusions in femoropopliteal and aortoiliac arteries.

  19. 33 CFR 84.23 - Maneuvering light.


    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maneuvering light. 84.23 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.23 Maneuvering light. Notwithstanding the provisions of § 84.03(f), the maneuvering light described in Rule 34(b) shall be placed...

  20. Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design

    Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter


    On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where

  1. Intelligent Prediction of Ship Maneuvering

    Miroslaw Lacki


    Full Text Available In this paper the author presents an idea of the intelligent ship maneuvering prediction system with the usage of neuroevolution. This may be also be seen as the ship handling system that simulates a learning process of an autonomous control unit, created with artificial neural network. The control unit observes input signals and calculates the values of required parameters of the vessel maneuvering in confined waters. In neuroevolution such units are treated as individuals in population of artificial neural networks, which through environmental sensing and evolutionary algorithms learn to perform given task efficiently. The main task of the system is to learn continuously and predict the values of a navigational parameters of the vessel after certain amount of time, regarding an influence of its environment. The result of a prediction may occur as a warning to navigator to aware him about incoming threat.

  2. Rio Blanco: nuclear operations and chimney reentry

    Woodruff, W.R.; Guido, R.S.


    Rio Blanco was the third experiment in the U.S. Atomic Energy Commission's Plowshare Program to develop technology to stimulate gas production from geologic formations not conducive to production by conventional means. The project was sponsored by CER Geonuclear Corporation, with the Lawrence Livermore Laboratory providing the explosives and several technical programs, such as spall measurement. Three nuclear explosives specifically designed for this application were detonated simultaneously in a minimum-diameter emplacement well using many commercially available but established-reliability components. The explosive system performed properly under extreme temperature and pressure conditions. Emplacement and stemming operations were designed with the aim of simplifying both the emplacement and reentry and fully containing the detonation products. An integrated command and control system was used with communication to all three explosives through a single coaxial cable. Reentry and the initial production testing are completed. To date 98 million standard ft 3 of chimney gas have been produced. (auth)

  3. Conjugate gradient optimization programs for shuttle reentry

    Powers, W. F.; Jacobson, R. A.; Leonard, D. A.


    Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase 1 Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.

  4. Cassini-Huygens maneuver automation for navigation

    Goodson, Troy; Attiyah, Amy; Buffington, Brent; Hahn, Yungsun; Pojman, Joan; Stavert, Bob; Strange, Nathan; Stumpf, Paul; Wagner, Sean; Wolff, Peter; hide


    Many times during the Cassini-Huygens mission to Saturn, propulsive maneuvers must be spaced so closely together that there isn't enough time or workforce to execute the maneuver-related software manually, one subsystem at a time. Automation is required. Automating the maneuver design process has involved close cooperation between teams. We present the contribution from the Navigation system. In scope, this includes trajectory propagation and search, generation of ephemerides, general tasks such as email notification and file transfer, and presentation materials. The software has been used to help understand maneuver optimization results, Huygens probe delivery statistics, and Saturn ring-plane crossing geometry. The Maneuver Automation Software (MAS), developed for the Cassini-Huygens program enables frequent maneuvers by handling mundane tasks such as creation of deliverable files, file delivery, generation and transmission of email announcements, generation of presentation material and other supporting documentation. By hand, these tasks took up hours, if not days, of work for each maneuver. Automated, these tasks may be completed in under an hour. During the cruise trajectory the spacing of maneuvers was such that development of a maneuver design could span about a month, involving several other processes in addition to that described, above. Often, about the last five days of this process covered the generation of a final design using an updated orbit-determination estimate. To support the tour trajectory, the orbit determination data cut-off of five days before the maneuver needed to be reduced to approximately one day and the whole maneuver development process needed to be reduced to less than a week..

  5. Reentry Works: The Implementation and Effectiveness of a Serious and Violent Offender Reentry Initiative

    Bouffard, Jeffrey A.; Bergeron, Lindsey E.


    Spurred by large increases in prison populations and other recent sentencing and correctional trends, the federal government has supported the development and implementation of Serious and Violent Offender Reentry Initiatives (SVORI) nationwide. While existing research demonstrates the effectiveness of the separate components of these programs…

  6. Direct Simulation of Reentry Flows with Ionization

    Carlson, Ann B.; Hassan, H. A.


    The Direct Simulation Monte Carlo (DSMC) method is applied in this paper to the study of rarefied, hypersonic, reentry flows. The assumptions and simplifications involved with the treatment of ionization, free electrons and the electric field are investigated. A new method is presented for the calculation of the electric field and handling of charged particles with DSMC. In addition, a two-step model for electron impact ionization is implemented. The flow field representing a 10 km/sec shock at an altitude of 65 km is calculated. The effects of the new modeling techniques on the calculation results are presented and discussed.

  7. Automated Re-Entry System using FNPEG

    Johnson, Wyatt R.; Lu, Ping; Stachowiak, Susan J.


    This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.

  8. Neonatal morbidity associated with shoulder dystocia maneuvers.

    Spain, Janine E; Frey, Heather A; Tuuli, Methodius G; Colvin, Ryan; Macones, George A; Cahill, Alison G


    We sought to examine neonatal morbidity associated with different maneuvers used among term patients who experience a shoulder dystocia. We conducted a retrospective cohort study of all women who experienced a clinically diagnosed shoulder dystocia at term requiring obstetric maneuvers at a single tertiary care hospital from 2005 through 2008. We excluded women with major fetal anomaly, intrauterine death, multiple gestation, and preterm. Women exposed to Rubin maneuver, Wood's screw maneuver, or delivery of the posterior arm were compared to women delivered by McRoberts/suprapubic pressure only, which served as the reference group. The primary outcome was a composite morbidity of neonatal injury (defined as clavicular or humeral fracture or brachial plexus injury) and neonatal depression (defined as Apgar dystocia, defined as time from delivery of fetal head to delivery of shoulders. Among the 231 women who met inclusion criteria, 135 were delivered by McRoberts/suprapubic pressure alone (57.9%), 83 women were exposed to Rubin maneuver, 53 women were exposed to Wood's screw, and 36 women were exposed to delivery of posterior arm. Individual maneuvers were not associated with composite morbidity, neonatal injury, or neonatal depression after adjusting for nulliparity and duration of shoulder dystocia. We found no association between shoulder dystocia maneuvers and neonatal morbidity after adjusting for duration, a surrogate for severity. Our results demonstrate that clinicians should utilize the maneuver most likely to result in successful delivery. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. 46 CFR 109.564 - Maneuvering characteristics.


    ... 46 Shipping 4 2010-10-01 2010-10-01 false Maneuvering characteristics. 109.564 Section 109.564 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.564 Maneuvering characteristics. (a) The master or person in charge of each...

  10. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Morelli, Eugene A.


    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  11. Experimental visualization of rapid maneuvering fish

    Daigh, S.; Techet, A. H.


    A freshwater tropical fish, Danio aequippinatus, is studied undergoing rapid turning and fast starting maneuvers. This agile species of fish is ideal for this study as it is capable of quick turning and darting motions up to 5g's. The fgish studied are 4-5 cm in length. The speed and kinematics of the maneuvering is determined by video analysis. Planar and stereo Particle Image Velocimetry (PIV) is used to map the vortical patterns in the wake of the maneuvering fish. PIV visualizations reveal that during C-shaped maneuvers a ring shaped jet vortex is formed. Fast starting behavior is also presented. PIV data is used to approixmate the thrust vectoring force produced during each maneuver.

  12. Canadarm2 Maneuvers Quest Airlock


    At the control of Expedition Two Flight Engineer Susan B. Helms, the newly-installed Canadian-built Canadarm2, Space Station Remote Manipulator System (SSRMS) maneuvers the Quest Airlock into the proper position to be mated onto the starboard side of the Unity Node I during the first of three extravehicular activities (EVA) of the STS-104 mission. The Quest Airlock makes it easier to perform space walks, and allows both Russian and American spacesuits to be worn when the Shuttle is not docked with the International Space Station (ISS). American suits will not fit through Russion airlocks at the Station. The Boeing Company, the space station prime contractor, built the 6.5-ton (5.8 metric ton) airlock and several other key components at the Marshall Space Flight Center (MSFC), in the same building where the Saturn V rocket was built. Installation activities were supported by the development team from the Payload Operations Control Center (POCC) located at the MSFC and the Mission Control Center at NASA's Johnson Space Flight Center in Houston, Texas.

  13. Automated Robust Maneuver Design and Optimization

    National Aeronautics and Space Administration — NASA is seeking improvements to the current technologies related to Position, Navigation and Timing. In particular, it is desired to automate precise maneuver...

  14. Review about hiperventilation test and Valsalva Maneuver

    Eduardo Antonio MENA-DOMÍNGUEZ


    Full Text Available Introduction and objective: With this paper, we pretend to explain the characteristics and the field of application of two clinical explorations used in the patient with suspected vestibular pathology, the hyperventilation maneuver and the Valsalva maneuver. Methodology: Narrative review. Results: Through different neurophysiological mechanisms, hyperventilation can induce nystagmus in cases of vestibular asymmetry, both peripheral and central. The Valsalva maneuver may also trigger nystagmus and vertigo because of direct transmission of internal ear pressure in cases of perilymphatic fistula, anomalies of the cranio-cervical junction (Arnold-Chiari malformation, and other ossicles, oval window and saccule pathologies. Discussion and conclusions: Both the hyperventilation test and the Valsalva maneuver should be included in the battery of tests for patients with vestibular pathology to, depending on the results obtained, anatomically locate the site of the lesion and justify the use of imaging techniques.

  15. BETA digital beta radiometer

    Borovikov, N.V.; Kosinov, G.A.; Fedorov, Yu.N.


    Portable transportable digital beta radiometer providing for measuring beta-decay radionuclide specific activity in the range from 5x10 -9 up to 10 -6 Cu/kg (Cu/l) with error of ±25% is designed and introduced into commercial production for determination of volume and specific water and food radioactivity. The device specifications are given. Experience in the BETA radiometer application under conditions of the Chernobyl' NPP 30-km zone has shown that it is convenient for measuring specific activity of the order of 10 -8 Cu/kg, and application of a set of different beta detectors gives an opportunity to use it for surface contamination measurement in wide range of the measured value

  16. Simulation of the ATV Re-Entry Obsrvations

    Bastida Virgili, B.; Krag, H.; Lips, T.; De Pasquale, E.


    The first ATV was launched on 9th March 2008 and, after a successful mission, the last phase was a controlled destructive re-entry on 29th September 2008, shortly after 13:30 UTC, in which the remains of the ATV and its load fell into the South Pacific Ocean. In order to better understand the re-entry processes, an insitu optical observation campaign was launched to record and analyze the ATV controlled re-entry with several instruments on board of two airplanes and also from the ISS. This observation campaign was successful and triggered several different still-ongoing studies on the extraction and analysis of data to draw conclusions on the adequacy of the re-entry break-up and explosion models used for the safety analysis of the ATV re-entry. This paper addresses the validation process for ESA’s model for re-entry survivability and on-ground risk assessment for explosive re-entry events using the observation data. The underlying rationale is to improve the models for the benefit of planning and execution of future controlled re-entries and in risk calculation in case of uncontrolled ones. The re-entry trajectory of the ATV, the explosive event and the trajectories of the fragments are simulated with the existing ESA tools and the EVOLVE explosion model. Additional software has been developed to simulate airborne sensor field of view(FOV) crossings based on the aircraft trajectories, attitude profile, sensor mounts and FOVs. Sensor performance and object radiation are modeled in order to generate synthetic images for the different sensors in the ISS and the two airplanes. These synthetic images and synthetic videos are compared with the available reentry observations of the ATV. This paper will present the software and techniques to generate synthetic imagery. It will give results of the comparison between the simulated and the real trajectories and fragmentation and explain the subsequent validation process of the ESA re-entry tools and the potential

  17. 14 CFR 27.337 - Limit maneuvering load factor.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 27.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5 for...

  18. 14 CFR 29.337 - Limit maneuvering load factor.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 29.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5 for...

  19. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics


    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  20. Flight Performance of the Inflatable Reentry Vehicle Experiment 3

    Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter


    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.

  1. Neural Dynamic Trajectory Design for Reentry Vehicles (Preprint)

    Verma, Ajay; Xu, Peng; Vadakkeveedu, Kalyan; Mayer, Rick


    The next generation of reentry vehicles is envisioned to have onboard autonomous capability of real-time trajectory planning to provide capability of responsive launch and delivering payload anywhere...

  2. Reentry Women and Feminist Therapy: A Career Counseling Model.

    Christian, Connie; Wilson, Jean


    Using the tenets of feminist therapy, presents a career counseling model for reentry women. Describes goals, intervention strategies, and feminist tenets for each of three stages: stabilization; personal growth; and action. (MCF)


    A selected list of references in the fields of astronautics and re-entry mechanics is classified and discussed, and a comprehensive subject and author index is included for ease in locating the references. (Author)

  4. Drag De-Orbit Device: A New Standard Re-Entry Actuator for CubeSats

    Guglielmo, David; Omar, Sanny R.; Bevilacqua, Riccardo


    With the advent of CubeSats, research in Low Earth Orbit (LEO) becomes possible for universities and small research groups. Only a handful of launch sites can be used, due to geographical and political restrictions. As a result, common orbits in LEO are becoming crowded due to the additional launches made possible by low-cost access to space. CubeSat design principles require a maximum of a 25-year orbital lifetime in an effort to reduce the total number of spacecraft in orbit at any time. Additionally, since debris may survive re-entry, it is ideal to de-orbit spacecraft over unpopulated areas to prevent casualties. The Drag Deorbit Device (D3) is a self-contained targeted re-entry subsystem intended for CubeSats. By varying the cross-wind area, the atmospheric drag can be varied in such a way as to produce desired maneuvers. The D3 is intended to be used to remove spacecraft from orbit to reach a desired target interface point. Additionally, attitude stabilization is performed by the D3 prior to deployment and can replace a traditional ADACS on many missions.This paper presents the hardware used in the D3 and operation details. Four stepper-driven, repeatedly retractable booms are used to modify the cross-wind area of the D3 and attached spacecraft. Five magnetorquers (solenoids) over three axes are used to damp rotational velocity. This system is expected to be used to improve mission flexibility and allow additional launches by reducing the orbital lifetime of spacecraft.The D3 can be used to effect a re-entry to any target interface point, with the orbital inclination limiting the maximum latitude. In the chance that the main spacecraft fails, a timer will automatically deploy the booms fully, ensuring the spacecraft will at the minimum reenter the atmosphere in the minimum possible time, although not necessarily at the desired target interface point. Although this does not reduce the risk of casualties, the 25-year lifetime limit is still respected, allowing

  5. The Art and Science of Operational Maneuver,


    Classification) The Art and Science of Operational Maneuver (U) 12. PERSONAL AUTHOR(S) MAJ Joseph Schroedel 13a. TYPE OF REPORT 13b. TIME COVERED 14...CLASSIFICATION OF THIS PAGE VA) CL LA S F1 EP {fJE ART ANQ SCIENCE OlF OPERAIl NAL MANUVER By6 Mal or Josepi~ Schroeci, L U. S. Arm~y H Aciv -darILC Ced M ili t...Studies ,nIgz’raph ApprovwA. Name of Student: Major Jonevh Schroedel. U.S. Army Title ot Monograph: The Art and Science of Operational Maneuver Approved By

  6. Cassini Solstice Mission Maneuver Experience: Year Two

    Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun


    The Cassini Spacecraft was launched in October 1997 on a mission to observe Saturn and its moons; it entered orbit around Saturn in July 2004 for a nominal four-year Prime Mission, later augmented by two extensions: the Equinox Mission, from July 2008 through September 2010, and the Solstice Mission, from October 2010 through September 2017. This paper provides an overview of the maneuver activities from August 2011 through June 2012 which include the design of 38 Orbit Trim Maneuvers--OTM-288 through OTM-326-- for attaining 14 natural satellite encounters: seven with Titan, six with Enceladus, and one with Dione.

  7. Demonstrator of atmospheric reentry system with hyperbolic velocity—DASH

    Morita, Yasuhiro; Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Abe, Takashi


    Among a wide variety of challenging projects planned for the coming decade is the MUSES-C mission designed by the ISAS of Japan. Despite huge amount of data collected by the previous interplanetary spacecraft and probes, the origin and evolution of the solar system still remains unveiled due to their limited information. Thus, our concern has been directed toward a sample return to carry sample from an asteroid back to the earth, which will contribute to better understanding of the system. One of the keys to success is considered the reentry technology with hyperbolic velocity, which has not been demonstrated yet. With this as background, the demonstrator of atmospheric reentry system with hyperbolic velocity, DASH, has been given a commitment to demonstrate the high-speed reentry technology, which will be launched in summer of next year by Japan's H-IIA rocket in a piggyback configuration. The spaceship, composed of a reentry capsule and its carrier, will be injected into a geostationary transfer orbit (GTO) and after several revolutions it will deorbit by burn of a solid propellant deorbit motor. The capsule, identical to that of the sample return mission, can experience the targeted level of thermal environment even from the GTO by tracing a specially designed reentry trajectory.

  8. 32 CFR 644.137 - Maneuver agreements.


    ... planning and acquires rights to use land and other facilities for Department of the Army exercises. The... and, after the maneuver is completed, will be responsible for negotiating restoration settlements and... director at field level whereby the command will assume responsibility for settlement of real estate...

  9. Optimizing interplanetary trajectories with deep space maneuvers

    Navagh, John


    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  10. Helicopter noise footprint prediction in unsteady maneuvers

    Gennaretti, Massimo; Bernardini, Giovanni; Serafini, Jacopo; Anobile, A.; Hartjes, S.


    This paper investigates different methodologies for the evaluation of the acoustic disturbance emitted by helicopter’s main rotors during unsteady maneuvers. Nowadays, the simulation of noise emitted by helicopters is of great interest to designers, both for the assessment of the acoustic impact

  11. About avatars and maneuvering in virtual environments

    Delleman, N.


    This paper is about the use of avatars and maneuvering in virtual environments for simulation-based design ergonomics. An avatar is a digital human model driven by an instrumented human who is immersed in a virtual environment. A presentation on locomotion devices is followed by descriptions of

  12. Demonstrative Maneuvers for Aircraft Agility Predictions


    AIAA Paper 1996-3741. 19. Raymer , Daniel P. Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics, Inc., 3rd...Shaw, Robert L. Fighter Combat: Tactics and Maneuvering. Naval Institute Press, Annapolis, MD, 1985. 25. Smith, Steven W. The Scientist and

  13. Can Social Capital Networks Assist Re-entry Felons to Overcome Barriers to Re-entry and Reduce Recidivism?

    Earl Smith


    Full Text Available Based on interviews with 25 reentry felons, this article examines the impact that social capital plays in successful reentry; specifically with securing stable housing and employment. We found that access to social capital allowed those with the lowest probability for success—African American men with felony convictions—to secure both stable employment and housing and thus avoid engaging in illegitimate behavior that leads to recidivism. The findings suggest that even for those individuals reentering society with the most strikes against them (as noted by researchers such as Pager and Travis, access to the resource rich social capital networks provided by reentry programs can allow these individuals to overcome the barriers to reentry and find stable jobs and secure housing. Our findings suggest that more research be done on the impact of social capital embedded in reentry programs and that referrals be made to these types of programs and funding be provided for those that demonstrate the ability to significantly reduce recidivism. As Putman has noted, "Just as a screwdriver (physical capital or a college education (human capital can increase productivity (both individual and collective, so do social contacts affect the productivity of individuals and groups."

  14. Reentry Tachycardia in Children: Adenosine Can Make It Worse.

    Hien, Maximilian D; Benito Castro, Fernando; Fournier, Philippe; Filleron, Anne; Tran, Tu-Anh


    We report on a rare but severe complication of adenosine use in a child with reentry tachycardia. Treatment with adenosine, which is the standard medical therapy of atrioventricular reentry tachycardia, led to the development of an irregular wide complex tachycardia, caused by rapid ventricular response to atrial fibrillation. The girl was finally stabilized with electrical cardioversion. We analyze the pathomechanism and discuss possible treatment options. Atrial fibrillation, as well as its conduction to the ventricles, can be caused by adenosine. Rapid ventricular response in children with Wolff-Parkinson-White syndrome is more frequent than previously believed. A patient history of atrial fibrillation is a contraindication for cardioversion with adenosine and needs to be assessed in children with reentry tachycardia. High-risk patients may potentially profit from prophylactic comedication with antiarrhythmic agents, such as flecainide, ibutilide, or vernakalant, before adenosine administration.

  15. Parachute systems for the atmospheric reentry of launcher upper stages

    Bogdan DOBRESCU


    Full Text Available Parachute systems can be used to control the reentry trajectory of launcher upper stages, in order to lower the risks to the population or facilitate the retrieval of the stage. Several types of parachutes deployed at subsonic, supersonic and hypersonic speeds are analyzed, modeled as single and multistage systems. The performance of deceleration parachutes depends on their drag area and deployment conditions, while gliding parachutes are configured to achieve stable flight with a high glide ratio. Gliding parachutes can be autonomously guided to a low risk landing area. Sizing the canopy is shown to be an effective method to reduce parachute sensitivity to wind. The reentry trajectory of a launcher upper stage is simulated for each parachute system configuration and the results are compared to the nominal reentry case.

  16. 23 CFR 660.517 - Maneuver area roads.


    ... 23 Highways 1 2010-04-01 2010-04-01 false Maneuver area roads. 660.517 Section 660.517 Highways... PROGRAMS (DIRECT FEDERAL) Defense Access Roads § 660.517 Maneuver area roads. (a) Claims by a highway agency for costs incurred to restore, to their former condition, roads damaged by maneuvers involving a...

  17. 75 FR 22813 - Guidance for Industry: Requalification Method for Reentry of Blood Donors Deferred Because of...


    ...] Guidance for Industry: Requalification Method for Reentry of Blood Donors Deferred Because of Reactive Test... availability of a document entitled ``Guidance for Industry: Requalification Method for Reentry of Blood Donors... document entitled ``Guidance for Industry: Requalification Method for Reentry of Blood Donors Deferred...

  18. Speculative Betas

    Harrison Hong; David Sraer


    We provide a model for why high beta assets are more prone to speculative overpricing than low beta ones. When investors disagree about the common factor of cash-flows, high beta assets are more sensitive to this macro-disagreement and experience a greater divergence-of-opinion about their payoffs. Short-sales constraints for some investors such as retail mutual funds result in high beta assets being over-priced. When aggregate disagreement is low, expected return increases with beta due to r...

  19. Estimating maneuvers for precise relative orbit determination using GPS

    Allende-Alba, Gerardo; Montenbruck, Oliver; Ardaens, Jean-Sébastien; Wermuth, Martin; Hugentobler, Urs


    Precise relative orbit determination is an essential element for the generation of science products from distributed instrumentation of formation flying satellites in low Earth orbit. According to the mission profile, the required formation is typically maintained and/or controlled by executing maneuvers. In order to generate consistent and precise orbit products, a strategy for maneuver handling is mandatory in order to avoid discontinuities or precision degradation before, after and during maneuver execution. Precise orbit determination offers the possibility of maneuver estimation in an adjustment of single-satellite trajectories using GPS measurements. However, a consistent formulation of a precise relative orbit determination scheme requires the implementation of a maneuver estimation strategy which can be used, in addition, to improve the precision of maneuver estimates by drawing upon the use of differential GPS measurements. The present study introduces a method for precise relative orbit determination based on a reduced-dynamic batch processing of differential GPS pseudorange and carrier phase measurements, which includes maneuver estimation as part of the relative orbit adjustment. The proposed method has been validated using flight data from space missions with different rates of maneuvering activity, including the GRACE, TanDEM-X and PRISMA missions. The results show the feasibility of obtaining precise relative orbits without degradation in the vicinity of maneuvers as well as improved maneuver estimates that can be used for better maneuver planning in flight dynamics operations.

  20. Childhood cancer survivors' school (re)entry: Australian parents' perceptions.

    McLoone, J K; Wakefield, C E; Cohn, R J


    Starting or returning to school after intense medical treatment can be academically and socially challenging for childhood cancer survivors. This study aimed to evaluate the school (re)entry experience of children who had recently completed cancer treatment. Forty-two semi-structured telephone interviews were conducted to explore parents' perceptions of their child's (re)entry to school after completing treatment (23 mothers, 19 fathers, parent mean age 39.5 years; child mean age 7.76 years). Interviews were analysed using the framework of Miles and Huberman and emergent themes were organised using QSR NVivo8. Parents closely monitored their child's school (re)entry and fostered close relationships with their child's teacher to ensure swift communication of concerns should they arise. The most commonly reported difficulty related to aspects of peer socialisation; survivors either displayed a limited understanding of social rules such as turn taking, or related more to older children or teachers relative to their peers. Additionally, parents placed a strong emphasis on their child's overall personal development, above academic achievement alone. Improved parent, clinician and teacher awareness of the importance of continued peer socialisation during the treatment period is recommended in order to limit the ongoing ramifications this may have on school (re)entry post-treatment completion. © 2013 John Wiley & Sons Ltd.

  1. 40 CFR 161.390 - Reentry protection data requirements.


    ... could cause adverse effects on persons entering treated sites. In the last situation, reentry intervals... crop Nonfood Greenhouse Food crop Nonfood Forestry Domestic outdoor Indoor Test substance Data to... oncogenic effects or other adverse effects as evidenced by subchronic, chronic, and reproduction studies...

  2. School Reentry for Children with Acquired Central Nervous Systems Injuries

    Carney, Joan; Porter, Patricia


    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  3. A School Reentry Program for Chronically Ill Children.

    Worchel-Prevatt, Frances F.; Heffer, Robert W.; Prevatt, Bruce C.; Miner, Jennifer; Young-Saleme, Tammi; Horgan, Daniel; Lopez, Molly A.; Frankel, Lawrence; Rae, William A.


    Describes a school reintegration program aimed at overcoming the numerous psychological, physical, environmental, and family-based deterrents to school reentry for chronically ill children. The program uses a systems approach to children's mental health with an emphasis on multiple aspects of the child's environment (i.e., family, medical…

  4. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion

    Ito, Daigoro; Georgie, Jennifer; Valasek, John; Ward, Donald T.


    This report addresses issues in developing a flight control design for vehicles operating across a broad flight regime and with highly nonlinear physical descriptions of motion. Specifically it addresses the need for reentry vehicles that could operate through reentry from space to controlled touchdown on Earth. The latter part of controlled descent is achieved by parachute or paraglider - or by all automatic or a human-controlled landing similar to that of the Orbiter. Since this report addresses the specific needs of human-carrying (not necessarily piloted) reentry vehicles, it deals with highly nonlinear equations of motion, and then-generated control systems must be robust across a very wide range of physics. Thus, this report deals almost exclusively with some form of dynamic inversion (DI). Two vital aspects of control theory - noninteracting control laws and the transformation of nonlinear systems into equivalent linear systems - are embodied in DI. Though there is no doubt that the mathematical tools and underlying theory are widely available, there are open issues as to the practicality of using DI as the only or primary design approach for reentry articles. This report provides a set of guidelines that can be used to determine the practical usefulness of the technique.

  5. Astronauts McNair and Stewart prepare for reentry


    Astronauts Ronald E. McNair and Robert L. Stewart prepare for the re-entry phase of the shuttle Challenger near the end of the 41-B mission. The are stationed behind the crew commander and pilot. Stewart is already wearing his helmet. McNair is stowing some of his gear.

  6. Colisional Cloud Debris and Propelled Evasive Maneuvers

    Ferreira, L. S.; Jesus, A. D. C.; Carvalho, T. C. F.; Sousa, R. R.


    Space debris clouds exist at various altitudes in the environment outside the Earth. Fragmentation of debris and/or collision between the debris of a cloud increases the amount of debris, producing smaller debris. This event also increases significantly the chances of collision with operational vehicles in orbit. In this work we study clouds of debris that are close to a spacecraft in relation to its distance from the center of the Earth. The results show several layers of colliding debris depending on their size over time of evasive maneuvers of the vehicle. In addition, we have tested such maneuvers for propulsion systems with a linear and exponential mass variation model. The results show that the linear propulsion system is more efficient.

  7. Review of Tracktable for Satellite Maneuver Detection

    Acquesta, Erin C.S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Valicka, Christopher G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinga, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ehn, Carollan Beret [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    As a tool developed to translate geospatial data into geometrical descriptors, Tracktable offers a highly efficient means to detect anomalous flight and maritime behavior. Following the success of using geometrical descriptors for detecting anomalous trajectory behavior, the question of whether Tracktable could be used to detect satellite maneuvers arose. In answering this question, this re- port will introduce a brief description of how Tracktable has been used in the past, along with an introduction to the fundamental properties of astrodynamics for satellite trajectories. This will then allow us to compare the two problem spaces, addressing how easily the methods used by Tracktable will translate to orbital mechanics. Based on these results, we will then be able to out- line the current limitations as well as possible path forward for using Tracktable to detect satellite maneuvers.

  8. Identifying tacit strategies in aircraft maneuvers

    Lewis, Charles M.; Heidorn, P. B.


    Two machine-learning methods are presently used to characterize the avoidance strategies used by skilled pilots in simulated aircraft encounters, and a general framework for the characterization of the strategic components of skilled behavior via qualitative representation of situations and responses is presented. Descriptions of pilot maneuvers that were 'conceptually equivalent' were ascertained by a concept-learning algorithm in conjunction with a classifier system that employed a generic algorithm; satisficing and 'buggy' strategies were thereby revealed.

  9. Decisive Army Strategic and Expeditionary Maneuver


    emerging changes will impact strategic maneuver by 2025. For example, a rapid transition is occurring in the commercial air cargo market where 777...more readily available in the international defense market and in the inventories of potential adversaries. In short, the study team believes HPMs... Cisco Visual Networking Index (VNI), available at: vni

  10. Mars Exploration Rovers Propulsive Maneuver Design

    Potts, Christopher L.; Raofi, Behzad; Kangas, Julie A.


    The Mars Exploration Rovers Spirit and Opportunity successfully landed respectively at Gusev Crater and Meridiani Planum in January 2004. The rovers are essentially robotic geologists, sent on a mission to search for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. In order to conduct NASA's 'follow the water' strategy on opposite sides of the planet Mars, an interplanetary journey of over 300 million miles culminated with historic navigation precision. Rigorous trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites. The propulsive maneuver design challenge was to meet or exceed these requirements while preserving the necessary design margin to accommodate additional project concerns. Landing site flexibility was maintained for both missions after launch, and even after the first trajectory correction maneuver for Spirit. The final targeting strategy was modified to improve delivery performance and reduce risk after revealing constraining trajectory control characteristics. Flight results are examined and summarized for the six trajectory correction maneuvers that were planned for each mission.

  11. A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness

    Choi, Eun-Jung; Cho, Sungki; Lee, Deok-Jin; Kim, Siwoo; Jo, Jung Hyun


    The key risk analysis technologies for the re-entry of space objects into Earth’s atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on re- entry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d’Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth’s atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.

  12. Aqua/Aura Updated Inclination Adjust Maneuver Performance Prediction Model

    Boone, Spencer


    This presentation will discuss the updated Inclination Adjust Maneuver (IAM) performance prediction model that was developed for Aqua and Aura following the 2017 IAM series. This updated model uses statistical regression methods to identify potential long-term trends in maneuver parameters, yielding improved predictions when re-planning past maneuvers. The presentation has been reviewed and approved by Eric Moyer, ESMO Deputy Project Manager.

  13. Marine Corps Maneuver Squad Leader Mastery Model


    H. L., & Dreyfus, S. E. (1986). Mind over machine: The power of human intuitive expertise in the  era of the computer. New York: The  Free them then  squat  down to begin playing a dice game. The  maneuver squad leader judged this behavior as an anomaly, because  the boys didn’t begin

  14. Coordination Logic for Repulsive Resolution Maneuvers

    Narkawicz, Anthony J.; Munoz, Cesar A.; Dutle, Aaron M.


    This paper presents an algorithm for determining the direction an aircraft should maneuver in the event of a potential conflict with another aircraft. The algorithm is implicitly coordinated, meaning that with perfectly reliable computations and information, it will in- dependently provide directional information that is guaranteed to be coordinated without any additional information exchange or direct communication. The logic is inspired by the logic of TCAS II, the airborne system designed to reduce the risk of mid-air collisions between aircraft. TCAS II provides pilots with only vertical resolution advice, while the proposed algorithm, using a similar logic, provides implicitly coordinated vertical and horizontal directional advice.

  15. Ischemic stroke associated with radio frequency ablation for nodal reentry

    Diaz M, Juan C; Duran R, Carlos E; Perafan B, Pablo; Pava M, Luis F


    Atrioventricular nodal reentry tachycardia is the most common type of paroxysmal supraventricular tachycardia. In those patients in whom drug therapy is not effective or not desired, radio frequency ablation is an excellent therapeutic method. Although overall these procedures are fast and safe, several complications among which ischemic stroke stands out, have been reported. We present the case of a 41 year old female patient with repetitive episodes of tachycardia due to nodal reentry who was treated with radiofrequency ablation. Immediately after the procedure she presented focal neurologic deficit consistent with ischemic stroke in the right medial cerebral artery territory. Angiography with angioplastia and abxicimab was performed and then tissue plasminogen activator (rtPA) was locally infused, with appropriate clinical and angiographic outcome.

  16. Workforce re-entry for Japanese unemployed dental hygienists.

    Usui, Y; Miura, H


    The aim of this study was to define the profile of unemployed dental hygienists who could be enticed to re-enter the workforce and the factors that could facilitate their re-entry into the dental field in Japan. The questionnaire was mailed with a postage-paid return envelope to a sample of 3095 licensed dental hygienists. A 50.4% response rate (S = 1477) was observed. The rate of working dental hygienists was 60.3% (n = 891), and of unemployed dental hygienists was 39.7% (n = 586). Of the latter, 31.9% (n = 187) stated intentions of returning to the workplace. The unemployed dental hygienists seeking employment were more often married and had more children, compared with working dental hygienists currently. This group also had significantly fewer total service years. Moreover, only 11.96% of them belonged to the Japan Dental Hygienists' Association, and 41.3% of those attended training workshops. According to their response, they perceived their top three major barriers to re-entry as 'lack sufficient dental hygiene skill', 'child rearing' and 'poor working atmosphere'. 'Flexibility in the work schedule' and 'location' were the most important factors for re-entry from their perspective. There were not many dental hygienists hoping to return to the dental field. The findings suggested that strategies to encourage non-practicing dental hygienists to re-entry should be emphasized in the areas of a flexible working atmosphere, easy access to information on how to return to practice and guidance on how to maintain professionalism during inactivity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Aerodynamics of the EXPERT Re-Entry Ballistic Vehicle

    Kharitonov, A. M.; Adamov, N. P.; Mazhul, I. I.; Vasenyov, L. G.; Zvegintsev, V. I.; Muylaert, J. M.


    Since 2002 till now, experimental studies of the EXPERT reentry capsule have been performed in ITAM SB RAS wind tunnels. These studies have been performed in consecutive ISTC project No. 2109, 3151, and currently ongoing project No. 3550. The results of earlier studies in ITAM wind tunnels can be found in [1-4]. The present paper describes new data obtained for the EXPERT model.

  18. RITD - Re-entry: Inflatable Technology Development in Russian Collaboration

    Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Haukka, H.; Finchenko, V.; Martynov, M.; Ostresko, B.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.; Siili, T.


    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses on the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry.

  19. High performance modeling of atmospheric re-entry vehicles

    Martin, Alexandre; Scalabrin, Leonardo C; Boyd, Iain D


    Re-entry vehicles designed for space exploration are usually equipped with thermal protection systems made of ablative material. In order to properly model and predict the aerothermal environment of the vehicle, it is imperative to account for the gases produced by ablation processes. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled into the boundary layer is complex and may lead to thermal chemical reactions that cannot be captured with simple flow chemistry models. In order to obtain better predictions, an appropriate gas flow chemistry model needs to be included in the CFD calculations. Using a recently developed chemistry model for ablating carbon-phenolic-in-air species, a CFD calculation of the Stardust re-entry at 71 km is presented. The code used for that purpose has been designed to take advantage of the nature of the problem and therefore remains very efficient when a high number of chemical species are involved. The CFD result demonstrates the need for such chemistry model when modeling the flow field around an ablative material. Modeling of the nonequilibrium radiation spectra is also presented, and compared to the experimental data obtained during Stardust re-entry by the Echelle instrument. The predicted emission from the CN lines compares quite well with the experimental results, demonstrating the validity of the current approach.

  20. Displacements of Metallic Thermal Protection System Panels During Reentry

    Daryabeigi, Kamran; Blosser, Max L.; Wurster, Kathryn E.


    Bowing of metallic thermal protection systems for reentry of a previously proposed single-stage-to-orbit reusable launch vehicle was studied. The outer layer of current metallic thermal protection system concepts typically consists of a honeycomb panel made of a high temperature nickel alloy. During portions of reentry when the thermal protection system is exposed to rapidly varying heating rates, a significant temperature gradient develops across the honeycomb panel thickness, resulting in bowing of the honeycomb panel. The deformations of the honeycomb panel increase the roughness of the outer mold line of the vehicle, which could possibly result in premature boundary layer transition, resulting in significantly higher downstream heating rates. The aerothermal loads and parameters for three locations on the centerline of the windward side of this vehicle were calculated using an engineering code. The transient temperature distributions through a metallic thermal protection system were obtained using 1-D finite volume thermal analysis, and the resulting displacements of the thermal protection system were calculated. The maximum deflection of the thermal protection system throughout the reentry trajectory was 6.4 mm. The maximum ratio of deflection to boundary layer thickness was 0.032. Based on previously developed distributed roughness correlations, it was concluded that these defections will not result in tripping the hypersonic boundary layer.

  1. ESBWR power maneuvering via feedwater temperature control

    Saha, P.; Marquino, W.; Tucker, L. J.


    The ESBWR is a Generation III+ Boiling Water Reactor (BWR) driven by natural circulation. For a given geometry/hardware, system pressure, downcomer water level and feedwater temperature, the core flow rate in the ESBWR is only a function of reactor power, controlled through the control blade movement. In order to provide operational flexibility, another method of core-wide or global power maneuvering via feedwater temperature control has been developed. This is independent of power maneuvering via control blade movement, and it lowers the linear heat generation rate (LHGR) changes near the tip of control blades, which improves fuel reliability. All required stability, anticipated operational occurrences (AOOs), infrequent events, special events including anticipated transients without scram (ATWS), and loss-of-coolant accident (LOCA) analyses have been performed for the 4500 MWt ESBWR. Based on the results of these analyses at 'high', nominal and 'low' feedwater temperatures, a safe Power - Feedwater Temperature operating domain has been developed. This paper summarizes the results of these analyses and presents the ESBWR Power - Feedwater Temperature operating domain or map. (authors)

  2. Anatomical basis of the liver hanging maneuver.

    Trotovsek, Blaz; Belghiti, Jacques; Gadzijev, Eldar M; Ravnik, Dean; Hribernik, Marija


    The anterior approach to right hepatectomy using the liver hanging maneuver without liver mobilization claims to be anatomically evaluated. During this procedure a 4 to 6-cm blind dissection between the inferior vena cava and the liver is performed. Short subhepatic veins, entering the inferior vena cava could be torn and a hemorrhage, difficult to control, could occur. On 100 corrosive casts of livers the anterior surface of the inferior vena cava was studied to evaluate the position, diameter and draining area of short subhepatic veins and inferior right hepatic vein. The width of the narrowest point on the planned route of blind dissection was determined. The average value of the narrowest point on the planned route of blind dissection was 8.7+/-2.3mm (range 2-15mm). The ideal angle of dissection being 0 degrees was found in 93% of cases. In 7% we found the angle of 5 degrees toward the right border of inferior vena cava to be the better choice. Our results show that liver hanging maneuver is a safe procedure. With the dissection in the proposed route the risk of disrupting short subhepatic veins is low (7%).

  3. General and Specific Strategies Used to Facilitate Locomotor Maneuvers.

    Mengnan Wu

    Full Text Available People make anticipatory changes in gait patterns prior to initiating a rapid change of direction. How they prepare will change based on their knowledge of the maneuver. To investigate specific and general strategies used to facilitate locomotor maneuvers, we manipulated subjects' ability to anticipate the direction of an upcoming lateral "lane-change" maneuver. To examine specific anticipatory adjustments, we observed the four steps immediately preceding a maneuver that subjects were instructed to perform at a known time in a known direction. We hypothesized that to facilitate a specific change of direction, subjects would proactively decrease margin of stability in the future direction of travel. Our results support this hypothesis: subjects significantly decreased lateral margin of stability by 69% on the side ipsilateral to the maneuver during only the step immediately preceding the maneuver. This gait adaptation may have improved energetic efficiency and simplified the control of the maneuver. To examine general anticipatory adjustments, we observed the two steps immediately preceding the instant when subjects received information about the direction of the maneuver. When the maneuver direction was unknown, we hypothesized that subjects would make general anticipatory adjustments that would improve their ability to actively initiate a maneuver in multiple directions. This second hypothesis was partially supported as subjects increased step width and stance phase hip flexion during these anticipatory steps. These modifications may have improved subjects' ability to generate forces in multiple directions and maintain equilibrium during the onset and execution of the rapid maneuver. However, adapting these general anticipatory strategies likely incurred an additional energetic cost.

  4. ELECTRA © Launch and Re-Entry Safety Analysis Tool

    Lazare, B.; Arnal, M. H.; Aussilhou, C.; Blazquez, A.; Chemama, F.


    French Space Operation Act gives as prime objective to National Technical Regulations to protect people, properties, public health and environment. In this frame, an independent technical assessment of French space operation is delegated to CNES. To perform this task and also for his owns operations CNES needs efficient state-of-the-art tools for evaluating risks. The development of the ELECTRA© tool, undertaken in 2007, meets the requirement for precise quantification of the risks involved in launching and re-entry of spacecraft. The ELECTRA© project draws on the proven expertise of CNES technical centers in the field of flight analysis and safety, spaceflight dynamics and the design of spacecraft. The ELECTRA© tool was specifically designed to evaluate the risks involved in the re-entry and return to Earth of all or part of a spacecraft. It will also be used for locating and visualizing nominal or accidental re-entry zones while comparing them with suitable geographic data such as population density, urban areas, and shipping lines, among others. The method chosen for ELECTRA© consists of two main steps: calculating the possible reentry trajectories for each fragment after the spacecraft breaks up; calculating the risks while taking into account the energy of the fragments, the population density and protection afforded by buildings. For launch operations and active re-entry, the risk calculation will be weighted by the probability of instantaneous failure of the spacecraft and integrated for the whole trajectory. ELECTRA©’s development is today at the end of the validation phase, last step before delivery to users. Validation process has been performed in different ways: numerical application way for the risk formulation; benchmarking process for casualty area, level of energy of the fragments entries and level of protection housing module; best practices in space transportation industries concerning dependability evaluation; benchmarking process for

  5. Beta spectrometry

    Dryak, P.; Zderadicka, J.; Plch, J.; Kokta, L.; Novotna, P.


    For the purpose of beta spectrometry, a semiconductor spectrometer with one Si(Li) detector cooled with liquid nitrogen was designed. Geometrical detection efficiency is about 10% 4 sr. The achieved resolution for 624 keV conversion electrons of sup(137m)Ba is 2.6 keV (FWHM). A program was written in the FORTRAN language for the correction of the deformation of the measured spectra by backscattering in the analysis of continuous beta spectra. The method permits the determination of the maximum energy of the beta spectrum with an accuracy of +-5 keV. (author)

  6. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    Connell, L.W.; Trost, L.C.


    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents

  7. Beta Blockers

    ... may not work as effectively for people of African heritage and older people, especially when taken without ... conditions/high-blood-pressure/in-depth/beta-blockers/ART-20044522 . Mayo Clinic Footer Legal Conditions and Terms ...

  8. Linking spatial and dynamic models for traffic maneuvers

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter; Wisniewski, Rafal


    For traffic maneuvers of multiple vehicles on highways we build an abstract spatial and a concrete dynamic model. In the spatial model we show the safety (collision freedom) of lane-change maneuvers. By linking the spatial and dynamic model via suitable refinements of the spatial atoms to distance...

  9. 14 CFR 23.155 - Elevator control force in maneuvers.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Elevator control force in maneuvers. 23.155 Section 23.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Controllability and Maneuverability § 23.155 Elevator control force in maneuvers. (a) The elevator control force...

  10. Safety analysis of passing maneuvers using extreme value theory

    Haneen Farah


    The results indicate that this is a promising approach for safety evaluation. On-going work of the authors will attempt to generalize this method to other safety measures related to passing maneuvers, test it for the detailed analysis of the effect of demographic factors on passing maneuvers' crash probability and for its usefulness in a traffic simulation environment.

  11. High Fidelity Airborne Imaging System for Remote Observation of Space Launch/Reentry Systems, Phase I

    National Aeronautics and Space Administration — The utility of airborne remote observation of hypersonic reentry vehicles was demonstrated by the NASA Hypersonic Thermodynamic Infrared Measurement (HYTHIRM)...

  12. Adaptive Maneuvering Frequency Method of Current Statistical Model

    Wei Sun; Yongjian Yang


    Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.

  13. Planar reorientation maneuvers of space multibody systems using internal controls

    Reyhanoglu, Mahmut; Mcclamroch, N. H.


    In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum. We demonstrate that large-angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver, and the corresponding control strategies, are described.

  14. The efficacy of family reunification practices: reentry rates and correlates of reentry for abused and neglected children reunited with their families.

    Terling, T


    Since the 1980s Child Protective Services has increasingly relied on family reunification for abused/neglected children rather than long term foster care or adoption. While family reunification practices are controversial, little research is available to inform the debate. This research explores the efficacy of these practices. This study utilizes two CPS data sources and both quantitative and qualitative methodologies to identify reentry rates and correlates of reentry for abused and neglected children returned to their families by CPS. System reentry due to additional maltreatment is considerable. Thirty-seven percent of the children reunited with their families reenter the system within 3 1/2 years. Correlates of reentry are identified as; abuse type, CPS history, parental competency, race, criminal history, substance abuse, and social support. Notably, assessments of risk made by caseworkers are found to be unrelated to reentry. The high reentry rate and the limitations of current risk assessment procedures suggest that CPS family reunification practices have not been entirely successful. The identification of specific risks of reentry, such as those revealed in this study, will be helpful in assessing risk on cases. In addition, future studies should explore the systemic deficiencies that contribute to the additional maltreatment that occurs for a sizable proportion of the children served by the system.


    В. Харченко


    Full Text Available Enhancement of requirements for air traffic efficiency at increasing of flights intensity determines the necessity of development of new optimization methods for aircraft conflict resolutions. The statement of problem of optimal conflict resolutions at Cooperative Air Traffic Management was done. The method for optimal aircraft conflict  resolution by course maneuvering has been  developed. The method using dynamic programming provides planning of aircraft conflict-free trajectory with minimum length. The decomposition of conflict resolution process on phases and stages, definition of states, controls and recursive  equations for generation of optimal course control program were done. Computer modeling of aircraft conflict resolution by developed method was done

  16. Analysis of ship maneuvering data from simulators

    Frette, V.; Kleppe, G.; Christensen, K.


    We analyze complex manuevering histories of ships obtained from training sessions on bridge simulators. Advanced ships are used in fields like offshore oil exploration: dive support vessels, supply vessels, anchor handling vessels, tugs, cable layers, and multi-purpose vessels. Due to high demands from the operations carried out, these ships need to have very high maneuverability. This is achieved through a propulsion system with several thrusters, water jets, and rudders in addition to standard propellers. For some operations, like subsea maintenance, it is crucial that the ship accurately keeps a fixed position. Therefore, bridge systems usually incorporate equipment for Dynamic Positioning (DP). DP is a method to keep ships and semi submersible rigs in a fixed position using the propulsion systems instead of anchors. It may also be used for sailing a vessel from one position to another along a predefined route. Like an autopilot on an airplane, DP may operate without human involvement. The method relies on accurate determination of position from external reference systems like GPS, as well as a continuously adjusted mathematical model of the ship and external forces from wind, waves and currents. In a specific simulator exercise for offshore crews, a ship is to be taken up to an installation consisting of three nearby oil platforms connected by bridges (Frigg field, North Sea), where a subsea inspection is to be carried out. Due to the many degrees of freedom during maneuvering, including partly or full use of DP, the chosen routes vary significantly. In this poster we report preliminary results on representations of the complex maneuvering histories; representations that allow comparison between crew groups, and, possibly, sorting of the different strategic choices behind.

  17. The Secret of Guided Missile Re-Entry,


    I RD-PAI169 598 THE SECRET OF GUIDED MISSILE RE-ENTRY(U) FOREIGN / I TECHNOLOGY DIV NRIGHT-PATTERSON RFB OH J CHEN ET AL. I 25 JUN 96 FTD-ID(RS)T...TECHNOLOGY DIVISION THE SECRET OF GUIDED MISSILE RE-ENTRY by Chen Jingzhong, An Sehua J L 0 7 ’:;85’ ’ 0 *Approved for public release; Distribution...unlimite t d. :. 86 7 034.. FTD- ID(RS)T-0459-86 HUMAN TRANSLATION FTD-ID(RS)T-0459-86 25 June 1986 MICROFICHE NR: F - - 0Q 9? THE SECRET OF GUIDED

  18. Ship maneuvering digital simulator; Simulador digital de manobras de navios

    Souza Junior, Jesse Rebello; Tannuri, Eduardo Aoun; Oshiro, Anderson Takehiro [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Naval e Oceanica


    This paper reports on two case studies making use of a digital simulator to investigate the maneuvering motions of ships in canals with shallow and restricted waters. The first case study corresponds to a maneuvering analysis conducted for the Port of Rio Grande (RS - Brazil), whose aim was to assess the potential impact upon maneuvers of the presence of a large offshore platform (the PETROBRAS P-53) which is to remain docked for several months at the Port to complete its construction. The second study made use of the simulator to evaluate the maneuvering conditions along the approach route and maneuvering basin of the Port of Ponta do Felix (PR - Brazil). The simulator includes a complete mathematical model of the ship dynamics in the horizontal plane when subjected to wind and current forces. It also comprises detailed models for the action of thrusters and propellers, both fixed and azimuth, employed to control maneuvers and dynamically position ships, as well as rudders and tugboats. He models used by the simulator allow for the effects of shallow and restricted waters, including the increase in resistance and lateral forces, increase in additional mass and the appearance of lateral and vertical suction (squatting). The simulator is implemented via an interactive interface through which the user is able to apply control actions (rudder angle, main engine, thrusters and tugboats) in real time during maneuvers, thereby reproducing to some extent the action of a pilot. (author)

  19. Social Support, Motivation, and the Process of Juvenile Reentry: An Exploratory Analysis of Desistance

    Panuccio, Elizabeth A.; Christian, Johnna; Martinez, Damian J.; Sullivan, Mercer L.


    Many scholarly works and studies have explored the experience of reentry and desistance for adult offenders, but fewer studies have focused on these processes among juvenile offenders. Using qualitative case studies of juveniles released from secure confinement, this study explores the desistance process during juvenile reentry by examining how…

  20. Socio-Economic status of parents as a correlate of re-entry of girls ...

    economic status (SES) and re-entry of girls into school in Edo State, Nigeria. One research question and one hypothesis were formulated for the study. Two research instruments, the “Socio-Economic Status of Parents” and the “Reentry into ...

  1. Helicopter Pilot Performance for Discrete-maneuver Flight Tasks

    Heffley, R. K.; Bourne, S. M.; Hindson, W. S.


    This paper describes a current study of several basic helicopter flight maneuvers. The data base consists of in-flight measurements from instrumented helicopters using experienced pilots. The analysis technique is simple enough to apply without automatic data processing, and the results can be used to build quantitative matah models of the flight task and some aspects of the pilot control strategy. In addition to describing the performance measurement technqiue, some results are presented which define the aggressiveness and amplitude of maneuvering for several lateral maneuvers including turns and sidesteps.

  2. Constellation Mission Operation Working Group: ESMO Maneuver Planning Process Review

    Moyer, Eric


    The Earth Science Mission Operation (ESMO) Project created an Independent Review Board to review our Conjunction Risk evaluation process and Maneuver Planning Process to identify improvements that safely manages mission conjunction risks, maintains ground track science requirements, and minimizes overall hours expended on High Interest Events (HIE). The Review Board is evaluating the current maneuver process which requires support by multiple groups. In the past year, there have been several changes to the processes although many prior and new concerns exist. This presentation will discuss maneuver process reviews and Board comments, ESMO assessment and path foward, ESMO future plans, recent changes and concerns.

  3. Mitigating reentry radio blackout by using a traveling magnetic field

    Hui Zhou


    Full Text Available A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  4. Mitigating reentry radio blackout by using a traveling magnetic field

    Zhou, Hui; Li, Xiaoping; Xie, Kai; Liu, Yanming; Yu, Yuanyuan


    A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF) is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS) and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  5. Optimal Earth's reentry disposal of the Galileo constellation

    Armellin, Roberto; San-Juan, Juan F.


    Nowadays there is international consensus that space activities must be managed to minimize debris generation and risk. The paper presents a method for the end-of-life (EoL) disposal of spacecraft in Medium Earth Orbit (MEO). The problem is formulated as a multiobjective optimisation one, which is solved with an evolutionary algorithm. An impulsive manoeuvre is optimised to reenter the spacecraft in Earth's atmosphere within 100 years. Pareto optimal solutions are obtained using the manoeuvre Δv and the time-to-reentry as objective functions to be minimised. To explore at the best the search space a semi-analytical orbit propagator, which can propagate an orbit for 100 years in few seconds, is adopted. An in-depth analysis of the results is carried out to understand the conditions leading to a fast reentry with minimum propellant. For this aim a new way of representing the disposal solutions is introduced. With a single 2D plot we are able to fully describe the time evolution of all the relevant orbital parameters as well as identify the conditions that enables the eccentricity build-up. The EoL disposal of the Galileo constellation is used as test case.

  6. Reentry challenges facing women with mental health problems.

    Visher, Christy A; Bakken, Nicholas W


    Women entering the correctional system represent a population at high risk for mental health and the body of research on the mental health needs of women offenders is growing. These mental health problems pose challenges for women at every stage of the criminal justice process, from arrest to incarceration to community reentry and reintegration. In this article, we examined mental health status among a sample of 142 women leaving confinement and the role that mental health problems played in shaping their reentry outcomes using data collected between 2002 and 2005 in Houston, Texas. In the year after leaving prison, women with mental health problems reported poorer health, more hospitalizations, more suicidal thoughts, greater difficulties securing housing and employment, more involvement in criminal behavior, and less financial support from family than women with no indication of mental health problems. However, mental health status did not increase the likelihood of substance use relapse or reincarceration. The article concludes with a discussion of recommendations for improved policy and practice.

  7. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property

    L. Zhao


    Full Text Available A plasma sheath enveloping a reentry vehicle would affect performances of on-board antenna greatly, especially the navigation antennas. This paper studies the effects of reentry plasma sheath on a GPS right-hand circularly polarized (RHCP patch antenna polarization property during a typical reentry process. Utilizing the algorithm of finite integration technique, the polarization characteristic of a GPS antenna coated by a plasma sheath is obtained. Results show that the GPS RHCP patch antenna radiation pattern distortions as well as polarization deteriorations exist during the entire reentry process, and the worst polarization mismatch loss between a GPS antenna and RHCP GPS signal is nearly 3 dB. This paper also indicates that measures should be taken to alleviate the plasma sheath for maintaining the GPS communication during the reentry process.

  8. Comparison of ORSAT and SCARAB Reentry Analysis Tools for a Generic Satellite Test Case

    Kelley, Robert L.; Hill, Nicole M.; Rochelle, W. C.; Johnson, Nicholas L.; Lips, T.


    Reentry analysis is essential to understanding the consequences of the full life cycle of a spacecraft. Since reentry is a key factor in spacecraft development, NASA and ESA have separately developed tools to assess the survivability of objects during reentry. Criteria such as debris casualty area and impact energy are particularly important to understanding the risks posed to people on Earth. Therefore, NASA and ESA have undertaken a series of comparison studies of their respective reentry codes for verification and improvements in accuracy. The NASA Object Reentry Survival Analysis Tool (ORSAT) and the ESA Spacecraft Atmospheric Reentry and Aerothermal Breakup (SCARAB) reentry analysis tools serve as standard codes for reentry survivability assessment of satellites. These programs predict whether an object will demise during reentry and calculate the debris casualty area of objects determined to survive, establishing the reentry risk posed to the Earth's population by surviving debris. A series of test cases have been studied for comparison and the most recent uses "Testsat," a conceptual satellite composed of generic parts, defined to use numerous simple shapes and various materials for a better comparison of the predictions of these two codes. This study is an improvement on the others in this series because of increased consistency in modeling techniques and variables. The overall comparison demonstrated that the two codes arrive at similar results. Either most objects modeled resulted in close agreement between the two codes, or if the difference was significant, the variance could be explained as a case of semantics in the model definitions. This paper presents the main results of ORSAT and SCARAB for the Testsat case and discusses the sources of any discovered differences. Discussion of the results of previous comparisons is made for a summary of differences between the codes and lessons learned from this series of tests.

  9. Improvements to the adaptive maneuvering logic program

    Burgin, George H.


    The Adaptive Maneuvering Logic (AML) computer program simulates close-in, one-on-one air-to-air combat between two fighter aircraft. Three important improvements are described. First, the previously available versions of AML were examined for their suitability as a baseline program. The selected program was then revised to eliminate some programming bugs which were uncovered over the years. A listing of this baseline program is included. Second, the equations governing the motion of the aircraft were completely revised. This resulted in a model with substantially higher fidelity than the original equations of motion provided. It also completely eliminated the over-the-top problem, which occurred in the older versions when the AML-driven aircraft attempted a vertical or near vertical loop. Third, the requirements for a versatile generic, yet realistic, aircraft model were studied and implemented in the program. The report contains detailed tables which make the generic aircraft to be either a modern, high performance aircraft, an older high performance aircraft, or a previous generation jet fighter.

  10. Effects-Based Operations: The End of Dominant Maneuver?

    Cheek, Gary


    ... without dominant ground maneuver. The paper concludes that such thinking misreads a historical warfare lethality trend in a potentially dangerous effort to vindicate the Air Force doctrine of strategic attack...

  11. Close Proximity Robotic Maneuvering through Flux Pinning Manipulation

    National Aeronautics and Space Administration — Non-contacting actuation technology like flux pinning has never been demonstrated in space. The development of a nonphysical joint is critical for maneuvers such as...

  12. Automated Precision Maneuvering and Landing in Extreme and Constrained Environments

    National Aeronautics and Space Administration — Autonomous, precise maneuvering and landing in extreme and constrained environments is a key enabler for future NASA missions. Missions to map the interior of a...

  13. Tongue-Driven Wheelchair Out-Maneuvers the Competition

    ... 2, 2014 Tongue-Driven Wheelchair Out-Maneuvers the Competition Researchers funded by the National Institute of Biomedical ... significant step towards vastly improving the independence and quality of life of individuals with tetraplegia, and is ...


    Petr Váňa


    Full Text Available In this paper, we introduce a variant of the Dubins traveling salesman problem (DTSP that is called the Dubins traveling salesman problem with constrained collecting maneuvers (DTSP-CM. In contrast to the ordinary formulation of the DTSP, in the proposed DTSP-CM, the vehicle is requested to visit each target by specified collecting maneuver to accomplish the mission. The proposed problem formulation is motivated by scenarios with unmanned aerial vehicles where particular maneuvers are necessary for accomplishing the mission, such as object dropping or data collection with sensor sensitive to changes in vehicle heading. We consider existing methods for the DTSP and propose its modifications to use these methods to address a variant of the introduced DTSP-CM, where the collecting maneuvers are constrained to straight line segments.

  15. Mitigating vestibular disturbances during space flight using virtual reality training and reentry vehicle design guidelines

    Stroud, Kenneth Joshua

    Seventy to eighty percent of astronauts reportedly exhibit undesirable vestibular disturbances during the first few days of weightlessness, including space motion sickness (SMS) and spatial disorientation (SD). SMS presents a potentially dangerous situation, both because critical piloted tasks such as docking maneuvers and emergency reentry may be compromised, and because of the potential for asphyxiation should an astronaut vomit while wearing a space suit. SD can be provocative for SMS as well as become dangerous during an emergency in which it is critical for an astronaut to move quickly through the vehicle. In the U.S. space program, medication is currently used both for prevention and treatment of SMS. However, this approach has had only moderate success, and the side effects of drowsiness and lack of concentration are undesirable. Research suggests that preflight training in virtual reality devices can simulate certain aspects of microgravity and may prove to be an effective countermeasure for SMS and SD. It was hypothesized that exposing subjects preflight to variable virtual orientations, similar to those encountered during space flight, will reduce the incidence and/or severity of SMS and SD. Results from a study conducted at the NASA Johnson Space Center as part of this research demonstrated that this type of training is effective for reducing motion sickness and improving task performance in potentially disorienting visual surroundings, thus suggesting the possibility that such training may prove an effective countermeasure for SMS, SD and related performance decrements that occur in space flight. In addition to the effects associated with weightlessness, almost all astronauts experience vestibular disturbances associated with gravity-transitions incurred during the return to Earth, which could be exacerbated if traveling in a spacecraft that is designed differently than a conventional aircraft. Therefore, for piloted descent and landing operations

  16. HIAD on ULA (HULA) Orbital Reentry Flight Experiment Concept

    Dinonno, J. M.; Cheatwood, F. M.; Hughes, S. J.; Ragab, M. M.; Dillman, R. A.; Bodkin, R. J.; Zumwalt, C. H.; Johnson, R. K.


    This paper describes a proposed orbital velocity reentry flight test of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). The flight test builds upon ground development activities that continue to advance the materials, design, and manufacturing techniques for the inflatable structure and flexible thermal protection system (F-TPS) that comprise the inflatable heat shield. While certain aspects of material and system performance can be assessed using a variety of ground testing capabilities, only orbital velocity energy on a trajectory through the gradient density of the atmosphere can impart the combined aerodynamic and aeroheating design environments in real time. To achieve this at limited cost, the HIAD would be delivered to a spin-stabilized entry trajectory as a secondary payload on the Centaur stage of a United Launch Alliance (ULA) Atlas V launch vehicle. Initial trajectory studies indicate that the combination of launch vehicle capability and achievable reentry vehicle ballistic numbers make this a strategic opportunity for technology development. This 4 to 6 meter diameter scale aeroshell flight, referred to as HIAD on ULA (HULA), would also contribute to ULA asset recovery development. ULA has proposed that a HIAD be utilized as part of the Sensible, Modular, Autonomous Return Technology (SMART) initiative to enable recovery of the Vulcan launch vehicle booster main engines [1], including a Mid-Air Recovery (MAR) to gently return these assets for reuse. Whereas HULA will attain valuable aerothermal and structural response data toward advancing HIAD technology, it may also provide a largest-to-date scaled flight test of the MAR operation, which in turn would allow the examination of a nearly pristine post-entry aeroshell. By utilizing infrared camera imaging, HULA will also attain aft-side thermal response data, enhancing understanding of the aft side aerothermal environment, an area of high uncertainty. The aeroshell inflation will utilize a

  17. A robust direct-integration method for rotorcraft maneuver and periodic response

    Panda, Brahmananda


    The Newmark-Beta method and the Newton-Raphson iteration scheme are combined to develop a direct-integration method for evaluating the maneuver and periodic-response expressions for rotorcraft. The method requires the generation of Jacobians and includes higher derivatives in the formulation of the geometric stiffness matrix to enhance the convergence of the system. The method leads to effective convergence with nonlinear structural dynamics and aerodynamic terms. Singularities in the matrices can be addressed with the method as they arise from a Lagrange multiplier approach for coupling equations with nonlinear constraints. The method is also shown to be general enough to handle singularities from quasisteady control-system models. The method is shown to be more general and robust than the similar 2GCHAS method for analyzing rotorcraft dynamics.

  18. Input shaping control with reentry commands of prescribed duration

    Valášek M.


    Full Text Available Control of flexible mechanical structures often deals with the problem of unwanted vibration. The input shaping is a feedforward method based on modification of the input signal so that the output performs the demanded behaviour. The presented approach is based on a finite-time Laplace transform. It leads to no-vibration control signal without any limitations on its time duration because it is not strictly connected to the system resonant frequency. This idea used for synthesis of control input is extended to design of dynamical shaper with reentry property that transform an arbitrary input signal to the signal that cause no vibration. All these theoretical tasks are supported by the results of simulation experiments.

  19. Reusable Reentry Satellite (RRS): Propulsion system trade study


    The purpose of the Reusable Reentry Satellite (RRS) Propulsion System Trade Study described in this summary report was to investigate various propulsion options available for incorporation on the RRS and to select the option best suited for RRS application. The design requirements for the RRS propulsion system were driven by the total impulse requirements necessary to operate within the performance envelope specified in the RRS System Requirements Documents. These requirements were incorporated within the Design Reference Missions (DRM's) identified for use in this and other subsystem trade studies. This study investigated the following propulsion systems: solid rocket, monopropellant, bipropellant (monomethyl hydrazine and nitrogen tetroxide or MMH/NTO), dual-mode bipropellant (hydrazine and nitrogen tetroxide or N2H4/NTO), liquid oxygen and liquid hydrogen (LO2/LH2), and an advanced design propulsion system using SDI-developed components. A liquid monopropellant blowdown propulsion system was found to be best suited for meeting the RRS requirements and is recommended as the baseline system. This system was chosen because it is the simplest of all investigated, has the fewest components, and is the most cost effective. The monopropellant system meets all RRS performance requirements and has the capability to provide a very accurate deorbit burn which minimizes reentry dispersions. In addition, no new hardware qualification is required for a monopropellant system. Although the bipropellant systems offered some weight savings capability for missions requiring large deorbit velocities, the advantage of a lower mass system only applies if the total vehicle design can be reduced to allow a cheaper launch vehicle to be used. At the time of this trade study, the overall RRS weight budget and launch vehicle selection were not being driven by the propulsion system selection. Thus, the added cost and complexity of more advanced systems did not warrant application.

  20. An overview of Suomi NPP VIIRS calibration maneuvers

    Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu


    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). Onorbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multiorbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper provides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow

  1. Exploring precrash maneuvers using classification trees and random forests.

    Harb, Rami; Yan, Xuedong; Radwan, Essam; Su, Xiaogang


    Taking evasive actions vis-à-vis critical traffic situations impending to motor vehicle crashes endows drivers an opportunity to avoid the crash occurrence or at least diminish its severity. This study explores the drivers, vehicles, and environments' characteristics associated with crash avoidance maneuvers (i.e., evasive actions or no evasive actions). Rear-end collisions, head-on collisions, and angle collisions are analyzed separately using decision trees and the significance of the variables on the binary response variable (evasive actions or no evasive actions) is determined. Moreover, the random forests method is employed to rank the importance of the drivers/vehicles/environments characteristics on crash avoidance maneuvers. According to the exploratory analyses' results, drivers' visibility obstruction, drivers' physical impairment, drivers' distraction are associated with crash avoidance maneuvers in all three types of accidents. Moreover, speed limit is associated with rear-end collisions' avoidance maneuvers and vehicle type is correlated with head-on collisions and angle collisions' avoidance maneuvers. It is recommended that future research investigates further the explored trends (e.g., physically impaired drivers, visibility obstruction) using driving simulators which may help in legislative initiatives and in-vehicle technology recommendations.

  2. Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver.

    Ricardo C Nogueira

    Full Text Available PURPOSE: We investigated the effect of handgrip (HG maneuver on time-varying estimates of dynamic cerebral autoregulation (CA using the autoregressive moving average technique. METHODS: Twelve healthy subjects were recruited to perform HG maneuver during 3 minutes with 30% of maximum contraction force. Cerebral blood flow velocity, end-tidal CO₂ pressure (PETCO₂, and noninvasive arterial blood pressure (ABP were continuously recorded during baseline, HG and recovery. Critical closing pressure (CrCP, resistance area-product (RAP, and time-varying autoregulation index (ARI were obtained. RESULTS: PETCO₂ did not show significant changes during HG maneuver. Whilst ABP increased continuously during the maneuver, to 27% above its baseline value, CBFV raised to a plateau approximately 15% above baseline. This was sustained by a parallel increase in RAP, suggestive of myogenic vasoconstriction, and a reduction in CrCP that could be associated with metabolic vasodilation. The time-varying ARI index dropped at the beginning and end of the maneuver (p<0.005, which could be related to corresponding alert reactions or to different time constants of the myogenic, metabolic and/or neurogenic mechanisms. CONCLUSION: Changes in dynamic CA during HG suggest a complex interplay of regulatory mechanisms during static exercise that should be considered when assessing the determinants of cerebral blood flow and metabolism.

  3. Dynamic Cerebral Autoregulation Changes during Sub-Maximal Handgrip Maneuver

    Nogueira, Ricardo C.; Bor-Seng-Shu, Edson; Santos, Marcelo R.; Negrão, Carlos E.; Teixeira, Manoel J.; Panerai, Ronney B.


    Purpose We investigated the effect of handgrip (HG) maneuver on time-varying estimates of dynamic cerebral autoregulation (CA) using the autoregressive moving average technique. Methods Twelve healthy subjects were recruited to perform HG maneuver during 3 minutes with 30% of maximum contraction force. Cerebral blood flow velocity, end-tidal CO2 pressure (PETCO2), and noninvasive arterial blood pressure (ABP) were continuously recorded during baseline, HG and recovery. Critical closing pressure (CrCP), resistance area-product (RAP), and time-varying autoregulation index (ARI) were obtained. Results PETCO2 did not show significant changes during HG maneuver. Whilst ABP increased continuously during the maneuver, to 27% above its baseline value, CBFV raised to a plateau approximately 15% above baseline. This was sustained by a parallel increase in RAP, suggestive of myogenic vasoconstriction, and a reduction in CrCP that could be associated with metabolic vasodilation. The time-varying ARI index dropped at the beginning and end of the maneuver (p<0.005), which could be related to corresponding alert reactions or to different time constants of the myogenic, metabolic and/or neurogenic mechanisms. Conclusion Changes in dynamic CA during HG suggest a complex interplay of regulatory mechanisms during static exercise that should be considered when assessing the determinants of cerebral blood flow and metabolism. PMID:23967113

  4. Investigation of piloting aids for manual control of hypersonic maneuvers

    Raney, David L.; Phillips, Michael R.; Person, Lee H., Jr.


    An investigation of piloting aids designed to provide precise maneuver control for an air-breathing hypersonic vehicle is described. Stringent constraints and nonintuitive high-speed flight effects associated with maneuvering in the hypersonic regime raise the question of whether manual control of such a vehicle should even be considered. The objectives of this research were to determine the extent of manual control that is desirable for a vehicle maneuvering in this regime and to identify the form of aids that must be supplied to the pilot to make such control feasible. A piloted real-time motion-based simulation of a hypersonic vehicle concept was used for this study, and the investigation focused on a single representative cruise turn maneuver. Piloting aids, which consisted of an auto throttle, throttle director, autopilot, flight director, and two head-up display configurations, were developed and evaluated. Two longitudinal control response types consisting of a rate-command/attitude-hold system and a load factor-rate/load-factor-hold system were also compared. The complete set of piloting aids, which consisted of the autothrottle, throttle director, and flight director, improved the average Cooper-Harper flying qualities ratings from 8 to 2.6, even though identical inner-loop stability and control augmentation was provided in all cases. The flight director was determined to be the most critical of these aids, and the cruise turn maneuver was unachievable to adequate performance specifications in the absence of this flight director.

  5. Re-entry Adjustment and Job Embeddedness: The Mediating Role of Professional Identity in Indonesian Returnees.

    Andrianto, Sonny; Jianhong, Ma; Hommey, Confidence; Damayanti, Devi; Wahyuni, Honey


    The present study examined the relationship between difficulty in re-entry adjustment and job embeddedness, considering the mediating role of sense of professional identity. The online data on demographic characteristics, difficulty on re-entry adjustment, sense of professional identity, and job embeddedness were collected from 178 Indonesian returnees from multiple organizations. The results showed that difficulty in re-entry adjustment was a significant predictor of a sense of professional identity; a sense of professional identity was a significant predictor of job embeddedness. Furthermore, sense of professional identity is an effective mediating variable, bridging the relationship between post-return conditions to the home country and work atmosphere. Finally, the key finding of this study was that sense of professional identity mediated the effect of difficulty in re-entry adjustment on job embeddedness. The theoretical and practical implications, study limitations, and future research needs of our findings are noted.

  6. Hypersonic Cruise and Re-Entry Radio Frequency Blackout Mitigation: Alleviating the Communications Blackout Problem

    Manning, Robert M.


    The work presented here will be a review of a NASA effort to provide a method to transmit and receive RF communications and telemetry through a re-entry plasma thus alleviating the classical RF blackout phenomenon.

  7. In-Flight Imaging Systems for Hypervelocity and Re-Entry Vehicles, Phase I

    National Aeronautics and Space Administration — It is proposed to create a rugged, reliable, compact, standardized imaging system for hypervelocity and re-entry vehicles using sapphire windows, small imagers, and...

  8. Research on the Frequency Aliasing of Resistance Acceleration Guidance for Reentry Flight

    Han Pengxin


    Full Text Available According to the special response of resistance acceleration during hypersonic reentry flight, different guidance frequency will result to very different flight and control response. The analysis model for the response of resistance acceleration to the attack angle and dynamic press is put forward respectively in this paper. And the frequency aliasing phenomenon of guidance is revealed. The simulation results to the same vehicle sufficiently substantiate the frequency aliasing of resistance acceleration during reentry guidance.

  9. Utilizing Weather RADAR for Rapid Location of Meteorite Falls and Space Debris Re-Entry

    Fries, Marc D.


    This activity utilizes existing NOAA weather RADAR imagery to locate meteorite falls and space debris falls. The near-real-time availability and spatial accuracy of these data allow rapid recovery of material from both meteorite falls and space debris re-entry events. To date, at least 22 meteorite fall recoveries have benefitted from RADAR detection and fall modeling, and multiple debris re-entry events over the United States have been observed in unprecedented detail.

  10. Right Atrial Dual-loop Reentry Tachycardia after Cardiac Surgery: Prevalence, Electrophysiologic Characteristics and Ablation Outcomes.

    Yang, Jian-du; Sun, Qi; Guo, Xiao-Gang; Zhou, Gong-Bu; Liu, Xu; Luo, Bin; Wei, Hui-Qiang; Santangeli, Pasquale; Liang, Jackson J; Ma, Jian


    Right atrial dual-loop reentry tachycardia has been described in patients with open-heart surgery. However, the prevalence, electrophysiologic substrate and ablation outcomes have been poorly characterized. We aimed to investigate the prevalence, electrophysiologic substrate and ablation outcomes for RA dual-loop reentry tachycardia following cardiac surgery. We identified all patients with atrial tachycardia after cardiac surgery. We compared electrophysiologic findings and outcomes of those with RA dual-loop reentry tachycardia versus a control group of patients with RA macro-reentrant arrhythmias in the setting of linear RA free wall (FW) scar. Out of 127 patients with 152 post-surgical atrial tachycardias (ATs), 28 (18.4%) had diagnosis of RA dual-loop reentry and 24/28 (85.7%) had tricuspid annular (TA) reentry combined with FW incisional reentry. An incision length > 51.5mm along the FW predicted the substrate for a second loop. In 22/23 patients (95.7%) with initial ablation in the cavo-tricuspid isthmus, a change in the interval between Halo d to CS p could be recorded, while 15/23 patients (65.2%) had CS activation pattern change. Complete success was achieved in 25/28 (89.3%) and 64/69 (92.8%) in the dual-loop reentry and control groups, respectively. After mean follow-up of 33.9±24.2 months, 24/28 (85.7%) and 60/69 (86.95%) were free of arrhythmias after initial procedure in two groups. The prevalence of RA dual-loop reentry is 18.4% among ATs with prior atriotomy scar. A long incision should alert physician the possibility of the second loop at the FW. Halo and CS activation pattern are important clues for circuit transformation. Copyright © 2018. Published by Elsevier Inc.

  11. On spacecraft maneuvers control subject to propellant engine modes.

    Mazinan, A H


    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher


    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  13. Morphology, muscle capacity, skill, and maneuvering ability in hummingbirds.

    Dakin, Roslyn; Segre, Paolo S; Straw, Andrew D; Altshuler, Douglas L


    How does agility evolve? This question is challenging because natural movement has many degrees of freedom and can be influenced by multiple traits. We used computer vision to record thousands of translations, rotations, and turns from more than 200 hummingbirds from 25 species, revealing that distinct performance metrics are correlated and that species diverge in their maneuvering style. Our analysis demonstrates that the enhanced maneuverability of larger species is explained by their proportionately greater muscle capacity and lower wing loading. Fast acceleration maneuvers evolve by recruiting changes in muscle capacity, whereas fast rotations and sharp turns evolve by recruiting changes in wing morphology. Both species and individuals use turns that play to their strengths. These results demonstrate how both skill and biomechanical traits shape maneuvering behavior. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Maneuver Planning for Conjunction Risk Mitigation with Ground-track Control Requirements

    McKinley, David


    The planning of conjunction Risk Mitigation Maneuvers (RMM) in the presence of ground-track control requirements is analyzed. Past RMM planning efforts on the Aqua, Aura, and Terra spacecraft have demonstrated that only small maneuvers are available when ground-track control requirements are maintained. Assuming small maneuvers, analytical expressions for the effect of a given maneuver on conjunction geometry are derived. The analytical expressions are used to generate a large trade space for initial RMM design. This trade space represents a significant improvement in initial maneuver planning over existing methods that employ high fidelity maneuver models and propagation.

  15. An adaptive reentry guidance method considering the influence of blackout zone

    Wu, Yu; Yao, Jianyao; Qu, Xiangju


    Reentry guidance has been researched as a popular topic because it is critical for a successful flight. In view that the existing guidance methods do not take into account the accumulated navigation error of Inertial Navigation System (INS) in the blackout zone, in this paper, an adaptive reentry guidance method is proposed to obtain the optimal reentry trajectory quickly with the target of minimum aerodynamic heating rate. The terminal error in position and attitude can be also reduced with the proposed method. In this method, the whole reentry guidance task is divided into two phases, i.e., the trajectory updating phase and the trajectory planning phase. In the first phase, the idea of model predictive control (MPC) is used, and the receding optimization procedure ensures the optimal trajectory in the next few seconds. In the trajectory planning phase, after the vehicle has flown out of the blackout zone, the optimal reentry trajectory is obtained by online planning to adapt to the navigation information. An effective swarm intelligence algorithm, i.e. pigeon inspired optimization (PIO) algorithm, is applied to obtain the optimal reentry trajectory in both of the two phases. Compared to the trajectory updating method, the proposed method can reduce the terminal error by about 30% considering both the position and attitude, especially, the terminal error of height has almost been eliminated. Besides, the PIO algorithm performs better than the particle swarm optimization (PSO) algorithm both in the trajectory updating phase and the trajectory planning phases.

  16. Maneuver Acoustic Flight Test of the Bell 430 Helicopter

    Watts, Michael E.; Snider, Royce; Greenwood, Eric; Baden, Joel


    A cooperative flight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July, 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 data points over 10 test days and compiled an extensive data base of dynamic maneuver measurements. Three microphone configurations with up to 31 microphones in each configuration were used to acquire acoustic data. Aircraft data included DGPS, aircraft state and rotor state information. This paper provides an overview of the test.

  17. Space Objects Maneuvering Detection and Prediction via Inverse Reinforcement Learning

    Linares, R.; Furfaro, R.

    This paper determines the behavior of Space Objects (SOs) using inverse Reinforcement Learning (RL) to estimate the reward function that each SO is using for control. The approach discussed in this work can be used to analyze maneuvering of SOs from observational data. The inverse RL problem is solved using the Feature Matching approach. This approach determines the optimal reward function that a SO is using while maneuvering by assuming that the observed trajectories are optimal with respect to the SO's own reward function. This paper uses estimated orbital elements data to determine the behavior of SOs in a data-driven fashion.

  18. Virtual simulation of maneuvering captive tests for a surface vessel

    Ahmad Hajivand


    Full Text Available Hydrodynamic derivatives or coefficients are required to predict the maneuvering characteristics of a marine vehicle. These derivatives are obtained numerically for a DTMB 5512 model ship by virtual simulating of captive model tests in a CFD environment. The computed coefficients are applied to predict the turning circle and zigzag maneuvers of the model ship. The comparison of the simulated results with the available experimental data shows a very good agreement among them. The simulations show that the CFD is precise and affordable tool at the preliminary design stage to obtain maneuverability performance of a marine vehicles.

  19. Space Flight and Re-Entry Trajectories : International Symposium

    Libby, Paul A


    In this and a following issue (Vol. VIII, 1962, Fasc. 2-3) of "Astronautica Acta" there will appear the papers presented at the first international symposium sponsored by the International Academy of Astronautics of the International Astronautical Federation. The theme of the meeting was "Space Flight and Re-Entry Trajectories." It was held at Louveciennes outside of Paris on June 19-21, 1961. Sixteen papers by authors from nine countries were presented; attendees numbered from 80 to 100. The organizing committee for the symposium was as follows: Prof. PAUL A. LIBBY, Polytechnic Institute of Brooklyn, U.S.A., Chairman; Prof. LuiGI BROGLIO, University of Rome, Italy; Prof. B. FRAEIJS DE VEUBEKE, University of Liege, Belgium; Dr. D. G. KING-HELE, Royal Aircraft Establishment, Farnborough, Rants, United Kingdom; Prof. J. M. J. KooY, Royal Military School, Breda, Netherlands; Prof. JEAN KovALEVSKY, Bureau des Longitudes, Paris, France; Prof. RuDOLF PESEK, Academy of Sciences, Prague, Czechoslovakia. The detailed ...

  20. ARV Re-Entry Module Aerodynmics And Aerothermodynamics

    Scheer, Heloise; Tran, Philippe; Berthe, Philippe


    Astrium-ST is the prime contractor of ARV phase A and is especially in charge of designing the Reentry Module (RM). The RM aeroshape has been defined following a trade-off. High level system requirements were derived with particular attention paid on minimum lift-over-drag ratio, trim incidence, centre-of-gravity lateral off-set and box size, volumetric efficiency, attitude at parachute deployment, flight heritage and aeroheating. Since moderate cross-range and thus L/D ratio were required, the aeroshape trade-off has been performed among blunt capsule candidates. Two front- shield families were considered: spherical (Apollo/ARD/Soyuz type) and sphero-conical (CTV type) segment front-shield. The rear-cone angle was set to 20° for internal pressurized volume and accommodation purposes. Figures of merit were assessed and a spherical front- shield of ARD type with a 20° rear-cone section was selected and proposed for further investigations. Maximum benefits will be taken from ARD flight heritage. CFD and WTT campaigns plans will be presented including preliminary results.

  1. "The stress will kill you": prisoner reentry as experienced by family members and the urgent need for support services.

    Grieb, Suzanne M; Crawford, Amelia; Fields, Julie; Smith, Horace; Harris, Richard; Matson, Pamela


    The role of incarceration and community reentry after incarceration has been studied extensively for individual and community health; however, little attention has been given to the experiences of individuals who provide support to those in reentry. Through a community-academic partnership, seven focus groups were conducted with 39 individuals supporting a family member in reentry in the summer of 2012. The primary objectives of the focus groups were to explore community experiences and perspectives regarding providing support during a family member's reentry from a period of incarceration and any desired support for themselves during this time. Five themes emerged under a metatheme of stress, indicating that family members experience acute stress as a result of family reentry that adds to the chronic stress they already endure. Programs that acknowledge the difficult role of family members as supporters during an individual's reentry and provide support to them are desperately needed.

  2. Transient Structured Distance as a Maneuver in Marital Therapy

    Greene, Bernard L.; And Others


    Experience with 73 cases has shown the value of Transient Structured Distance as a maneuver in marriage therapy. While the TSD is a radical form of intervention with risks of anxiety reactions, homosexual panic, or divorce, it has proved effective with difficult forms of acute or chronic marital disharmony. (Author)

  3. 47 CFR 25.282 - Orbit raising maneuvers.


    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Orbit raising maneuvers. 25.282 Section 25.282 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS... geostationary satellite orbit under this part is also authorized to transmit in connection with short-term...

  4. A Small State Maneuvering in the Changing World Order

    Sørensen, Camilla T. N.


    , especially the Danish approach to the BRICs, has developed in recent years, I show how Denmark – a small state – is trying to maneuver in the changing world order through a “creative agency” approach characterized by pragmatic low-profile activism. I develop a neoclassical realist framework and use...

  5. Lightweight Ultrahigh Temperature CMC-Encased C/C Structure for Reentry and Hypersonic Applications, Phase II

    National Aeronautics and Space Administration — Future reentry and hypersonic vehicles require advanced lightweight leading edge thermal protection systems that can provide the dual functionality of...

  6. DEBRISK, a Tool for Re-Entry Risk Analysis

    Omaly, P.; Spel, M.


    An act of French parliament, adopted in 2008, imposes satellite constructors to evaluate the end-of-life operations in order to assure the risk mitigation of their satellites. One important element in this evaluation is the estimation of the mass and impact energy of the satellite debris after atmospheric re-entry. For this purpose, CNES has developed the tool DEBRISK which allows the operator to simulate the re-entry phase and to study the demise altitudes or impact energy of the individual fragments of the original satellite. DEBRISK is based on the so called object based approach. Using this approach, a breakup altitude is assumed where the satellite disintegrates due to the pressure loads. This altitude is typically around 78 km. After breakup, the satellite structure is modelled by a parent-child approach, where each child has its birth criterion. In the simplest approach the child is born after demise of the parent object. This could be the case of an object A containing an object B which is in the interior of object A and thus not exposed to the atmosphere. Each object is defined by: - its shape, attitude and dimensions, - the material along with their physical properties - the state and velocity vectors. The shape, attitude and dimensions define the aerodynamic drag of the object which is input to the 3DOF trajectory modelling. The aerodynamic mass used in the equation of motion is defined as the sum of the object's own mass and the mass of the object's offspring. A new born object inherits the state vector of the parent object. The shape, attitude and dimensions also define the heating rates experienced by the object. The heating rate is integrated in time up to the point where the melting temperature is reached. The mass of melted material is computed from the excess heat and the material properties. After each step the amount of ablated material is determined using the lumped mass approach and is peeled off from the object, updating mass and shape of the

  7. Passivity analysis for a winged re-entry vehicle

    Mooij, E. [Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands)


    Application of simple adaptive control (SAC) theory to the design of guidance and control systems for winged re-entry vehicles has been proven successful. To apply SAC to these non-linear and non-stationary systems, it needs to be Almost Strictly Passive (ASP), which is an extension of the Almost Strictly Positive Real (ASPR) condition for linear, time-invariant systems. To fulfill the ASP condition, the controlled, non-linear system has to be minimum-phase (i.e., the zero dynamics is stable), and there is a specific condition for the product of output and input matrix. Earlier studies indicate that even the linearised system is not ASPR. The two problems at hand are: 1) the system is non-minimum phase when flying with zero bank angle, and 2) whenever there is hybrid control, e.g., yaw control is established by combined reaction and aerodynamic control for the major part of flight, the second ASPR condition cannot be met. In this paper we look at both issues, the former related to the guidance system and the latter to the attitude-control system. It is concluded that whenever the nominal bank angle is zero, the passivity conditions can never be met, and guidance should be based on nominal commands and a redefinition of those whenever the error becomes too large. For the remaining part of the trajectory, the passivity conditions are marginally met, but it is proposed to add feedforward compensators to alleviate these conditions. The issue of hybrid control is avoided by redefining the controls with total control moments and adding a so-called control allocator. Deriving the passivity conditions for rotational motion, and evaluating these conditions along the trajectory shows that the (non-linear) winged entry vehicle is ASP. The sufficient conditions to apply SAC for attitude control are thus met.

  8. Beta Emission and Bremsstrahlung

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Bremsstrahlung is continuous radiation produced by beta particles decelerating in matter; different beta emitters have different endpoint energies; high-energy betas interacting with high-Z materials will more likely produce bremsstrahlung; depending on the data, sometimes all you can say is that a beta emitter is present.

  9. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach.

    Kaplan, Sigal; Prato, Carlo Giacomo


    The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. The analysis is conducted by means of a mixed logit model that represents the selection among 5 emergency lateral and speed control maneuvers (i.e., "no avoidance maneuvers," "braking," "steering," "braking and steering," and "other maneuvers) while accommodating correlations across maneuvers and heteroscedasticity. Data for the analysis were retrieved from the General Estimates System (GES) crash database for the year 2009 by considering drivers for which crash avoidance maneuvers are known. The results show that (1) the nature of the critical event that made the crash imminent greatly influences the choice of crash avoidance maneuvers, (2) women and elderly have a relatively lower propensity to conduct crash avoidance maneuvers, (3) drowsiness and fatigue have a greater negative marginal effect on the tendency to engage in crash avoidance maneuvers than alcohol and drug consumption, (4) difficult road conditions increase the propensity to perform crash avoidance maneuvers, and (5) visual obstruction and artificial illumination decrease the probability to carry out crash avoidance maneuvers. The results emphasize the need for public awareness campaigns to promote safe driving style for senior drivers and warning about the risks of driving under fatigue and distraction being comparable to the risks of driving under the influence of alcohol and drugs. Moreover, the results suggest the need to educate drivers about hazard perception, designing

  10. Risk Assessment During the Final Phase of an Uncontrolled Re-Entry

    Gaudel, A.; Hourtolle, C.; Goester, J. F.; Fuentes, N.


    As French National Space Agency, CNES is empowered to monitor compliance with technical regulations of the French Space Operation Act, FSOA, and to take all necessary measures to ensure the safety of people, property, public health and environment for all space operations involving French responsibility at international level.Therefore, CNES developed ELECTRA that calculates the risk for ground population involved in three types of events: rocket launching, controlled re-entry and uncontrolled re-entry. For the first two cases, ELECTRA takes into account degraded cases due to a premature stop of propulsion.Major evolutions were implemented recently on ELECTRA to meet new users' requirements, like the risk assessment during the final phase of uncontrolled re-entry, that can be combined with the computed risk for each country involved by impacts.The purpose of this paper is to provide an overview of the ELECTRA method and main functionalities, and then to highlight these recent improvements.

  11. Behavioral health problems, ex-offender reentry policies, and the "Second Chance Act".

    Pogorzelski, Wendy; Wolff, Nancy; Pan, Ko-Yu; Blitz, Cynthia L


    The federal "Second Chance Act of 2005" calls for expanding reentry services for people leaving prison, yet existing policies restrict access to needed services for those with criminal records. We examined the interaction between individual-level characteristics and policy-level restrictions related to criminal conviction, and the likely effects on access to resources upon reentry, using a sample of prisoners with Axis I mental disorders (n=3073). We identified multiple challenges related to convictions, including restricted access to housing, public assistance, and other resources. Invisible punishments embedded within existing policies were inconsistent with the call for second chances. Without modification of federal and state policies, the ability of reentry services to foster behavioral health and community reintegration is limited.

  12. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview

    Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil


    Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural

  13. Application of the FADS system on the Re-entry Module

    Zhen, Huang


    The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.

  14. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Antônio D. C. Jesus


    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  15. Thermally-Constrained Fuel-Optimal ISS Maneuvers

    Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol


    Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.

  16. Novel Fractional Order Calculus Extended PN for Maneuvering Targets

    Jikun Ye


    Full Text Available Based on the theory of fractional order calculus (FOC, a novel extended proportional guidance (EPN law for intercepting the maneuvering target is proposed. In the first part, considering the memory function and filter characteristic of FOC, the novel extended PN guidance algorithm is developed based on the conventional PN after introducing the properties and operation rules of FOC. Further, with the help of FOC theory, the average load and ballistics characteristics of proposed guidance law are analyzed. Then, using the small offset kinematic model, the robustness of the new guidance law against autopilot parameters is studied theoretically by analyzing the sensitivity of the closed loop guidance system. At last, representative numerical results show that the designed guidance law obtains a better performance than the traditional PN for maneuvering target.

  17. Parametric Dependence of Initial LEV Behavior on Maneuvering Wings

    Berdon, Randall; Wabick, Kevin; Buchholz, James; Johnson, Kyle; Thurow, Brian; University of Iowa Team; Auburn University Team


    A maneuvering rectangular wing of aspect ratio 2 is examined experimentally using dye visualization and PIV to characterize the initial development of the leading-edge vortex (LEV) during a rolling maneuver in a uniform free stream. Understanding the underlying physics during the early evolution of the vortex is important for developing strategies to manipulate vortex evolution. Varying the dimensionless radius of gyration of the wing (Rg/c, where Rg is the radius of gyration and c is the chord) and the advance ratio (J=U/ ΩRg, where U is the free-stream velocity and Ω is the roll rate) affects the structure of the vortex and its propensity to remain attached. The influence of these parameters will be discussed, toward identification of similarity parameters governing vortex development. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  18. 8 CFR 211.3 - Expiration of immigrant visas, reentry permits, refugee travel documents, and Form I-551.


    ... permits, refugee travel documents, and Form I-551. 211.3 Section 211.3 Aliens and Nationality DEPARTMENT... Expiration of immigrant visas, reentry permits, refugee travel documents, and Form I-551. An immigrant visa, reentry permit, refugee travel document, or Form I-551 shall be regarded as unexpired if the rightful...

  19. Reentry Orientation and Alumni Networking in U.S. Colleges and Universities with Agriculture and Natural Resources Programs. Survey Report.

    Huntsberger, Paul E.

    This report presents results of a survey of U.S. postsecondary institutions with agriculture and natural resources programs, concerning institutional support for reentry orientation and alumni networking programs. Reentry orientation" involves programs that help international students become aware of the adjustment aspects of returning home,…

  20. Differential Evolution Optimization for Targeting Spacecraft Maneuver Plans

    Mattern, Daniel


    Previous analysis identified specific orbital parameters as being safer for conjunction avoidance for the TDRS fleet. With TDRS-9 being considered an at-risk spacecraft, a potential conjunction concern was raised should TDRS-9 fail while at a longitude of 12W. This document summarizes the analysis performed to identify if these specific orbital parameters could be targeted using the remaining drift-termination maneuvers for the relocation of TDRS-9 from 41W longitude to 12W longitude.

  1. An expert system for pressurized water reactor load maneuvers

    Chaung Lin; Jungping Chen; Yihjiunn Lin; Lianshin Lin


    Restartup after reactor shutdown and load-follow operations are the important tasks in operating pressurized water reactors. Generally, the most efficient method is to apply constant axial offset control (CAOC) strategy during load maneuvers. An expert system using CAOC strategy, fuzzy reasoning, a two-node core model, and operational constraints has been developed. The computation time is so short that this system, which leads to an approximate closed-loop control, could be useful for on-site calculation

  2. Maintenance Maneuver Automation for an Adapted Cylindrical Shape TEC

    Rafael Morales


    Full Text Available Several manufacturers have developed devices with which to harness tidal/current power in areas where the depth does not exceed 40 m. These are the so-called first generation Tidal Energy Converters (TEC, and they are usually fixed to the seabed by gravity. When carrying out maintenance tasks on these devices it is, therefore, necessary to remove the nacelles from their bases and raise them to the surface of the sea. They must subsequently be placed back on their bases. These tasks require special high performance ships, signifying high maintenance costs. The automation of emersion and immersion maneuvers will undoubtedly lead to lower costs, given that ships with less demanding requirements will be required for the aforementioned maintenance tasks. This research presents a simple two degrees of freedom dynamic model that can be used to control a first generation TEC that has been conceived of to harness energy from marine currents. The control of the system is carried out by means of a water ballast system located inside the nacelle of the main power unit and is used as an actuator to produce buoying vertical forces. A nonlinear control law based on a decoupling term for the closed loop depth and/or orientation control is also proposed in order to ensure adequate behavior when the TEC performs emersion and immersion maneuvers with only hydrostatic buoyancy forces. The control scheme is composed of an inner loop consisting of a linear and decoupled input/output relationship and the vector of friction and compressibility terms and an outer loop that operates with the tracking error vector in order to ensure the asymptotically exponential stability of the TEC posture. Finally, the effectiveness of the dynamic model and the controller approach is demonstrated by means of numerical simulations when the TEC is carrying out an emersion maneuver for the development of general maintenance tasks and an emersion maneuver for blade-cleaning maintenance

  3. A New Concept for Atmospheric Reentry Optimal Guidance: An Inverse Problem Inspired Approach

    Davood Abbasi


    Full Text Available This paper presents a new concept for atmospheric reentry online optimal guidance and control using a method called MARE G&C that exploits the different time scale featured by reentry dynamics. The new technique reaches a quasi-analytical solution and simplified computations, even considering both lift-to-drag ratio and aerodynamic roll as control variables; in addition, the paper offers a solution for the challenging path constraints issue, getting inspiration from the inverse problem methodology. The final resulting algorithm seems suitable for onboard predictive guidance, a new need for future space missions.

  4. Maternal Separations During the Reentry Years for 100 Infants Raised in a Prison Nursery

    Byrne, Mary W.; Goshin, Lorie; Blanchard-Lewis, Barbara


    Prison nurseries prevent maternal separations related to incarceration for the small subset of children whose pregnant mothers are incarcerated in states with such programs. For a cohort of 100 children accepted by corrections into one prison nursery, subsequent separation patterns are analyzed. The largest numbers are caused by corrections’ removal of infants from the nursery and infants reaching a one-year age limit. Criminal recidivism and substance abuse relapse threaten continued mothering during reentry. Focused and coordinated services are needed during prison stay and reentry years to sustain mothering for women and children accepted into prison nursery programs. PMID:22328865

  5. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    Zhou, Zhinqiang


    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  6. State Estimation for Landing Maneuver on High Performance Aircraft

    Suresh, P. S.; Sura, Niranjan K.; Shankar, K.


    State estimation methods are popular means for validating aerodynamic database on aircraft flight maneuver performance characteristics. In this work, the state estimation method during landing maneuver is explored for the first of its kind, using upper diagonal adaptive extended Kalman filter (UD-AEKF) with fuzzy based adaptive tunning of process noise matrix. The mathematical model for symmetrical landing maneuver consists of non-linear flight mechanics equation representing Aircraft longitudinal dynamics. The UD-AEKF algorithm is implemented in MATLAB environment and the states with bias is considered to be the initial conditions just prior to the flare. The measurement data is obtained from a non-linear 6 DOF pilot in loop simulation using FORTRAN. These simulated measurement data is additively mixed with process and measurement noises, which are used as an input for UD-AEKF. Then, the governing states that dictate the landing loads at the instant of touch down are compared. The method is verified using flight data wherein, the vertical acceleration at the aircraft center of gravity (CG) is compared. Two possible outcome of purely relying on the aircraft measured data is highlighted. It is observed that, with the implementation of adaptive fuzzy logic based extended Kalman filter tuned to adapt for aircraft landing dynamics, the methodology improves the data quality of the states that are sourced from noisy measurements.

  7. Development of power change maneuvering method for BWR

    Fukuzaki, Takaharu; Yamada, Naoyuki; Kiguchi, Takashi; Sakurai, Mikio.


    A power change maneuvering method for BWR has been proposed to generate an optimal power control maneuver, which realizes the power change operation closest to a power change demand pattern under operating constraints. The method searches for the maneuver as an optimization problem, where the variables are thermal power levels sampled from the demand pattern, the performance index is defined to express the power mismatch between demand and feasible patterns, and the constraints are limit lines on the thermal power-core flow rate map and limits on keeping fuel integrity. The usable feasible direction method is utilized as the optimization algorithm, with newly developed techniques for initial value generation and step length determination, which apply one-dimensional search and inverse-interpolation methods, respectively, to realize the effective search of the optimal solution. Simulation results show that a typical computing time is about 5 min by a general purpose computer and the method has been verified to be practical even for on-line use. (author)

  8. Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.

    Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen


    Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.

  9. A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance

    Bowe, Aisha Ruth; Santiago, Confesor


    Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.

  10. Evaluation of Mathematical Models for Tankers’ Maneuvering Motions

    Erhan AKSU


    Full Text Available In this study, the maneuvering performance of two tanker ships, KVLCC1 and KVLCC2 which have different stern forms are predicted using a system-based method. Two different 3 DOF (degrees of freedom mathematical models based on the MMG(Maneuvering Modeling Group concept areappliedwith the difference in representing lateral force and yawing moment by second and third order polynomials respectively. Hydrodynamic coefficients and related parameters used in the mathematical models of the same scale models of KVLCC1 and KVLCC2 ships are estimated by using experimental data of NMRI (National Maritime Research Institute. The simulations of turning circle with rudder angle ±35o , zigzag(±10o /±10o and zigzag (±20o /±20o maneuvers are carried out and compared with free running model test data of MARIN (Maritime Research Institute Netherlands in this study. As a result of the analysis, it can be summarised that MMG model based on the third order polynomial is superior to the one based on the second order polynomial in view of estimation accuracy of lateral hull force and yawing moment.

  11. "Spaghetti Maneuver": A useful tool in pediatric laparoscopy - Our experience

    Antonio Marte


    Full Text Available Aims: The laparoscopic "Spaghetti Maneuver" consists in holding an organ by its extremity with a grasper and rolling it up around the tool to keep the organ stable and facilitate its traction within a small space. We describe our experience with the "Spaghetti Maneuver" in some minimally invasive procedures. Materials and Methods: We successfully adopted this technique in 13 patients (5F : 8M aged between 6 and 14 years (average age, 10 on whom we performed 7 appendectomies, 2 ureteral reimplantation and 4 cholecystectomies. In all cases, after the first steps, the appendix, the gallbladder and the ureter were rolled around the grasper and easily isolated; hemostasis was thus induced and the organ was mobilized until removal during cholecystectomy and appendectomy, and before the reimplantation in case of ureteral reimplantation. Results: We found that this technique facilitated significantly the acts of holding, isolating and removing, when necessary, the structures involved, which remained constantly within the visual field of the operator. This allowed a very ergonomic work setting, overcoming the problem of the "blind" zone, which represents a dangerous and invisible area out of the operator′s control during laparoscopy. Moreover the isolation maneuvers resulted easier and reduced operating time. Conclusion: We think that this technique is easy to perform and very useful, because it facilitates the dissection of these organs, by harmonizing and stabilizing the force of traction exercised.

  12. Users manual for Aerospace Nuclear Safety Program six-degree-of-freedom reentry simulation (TMAGRA6C)

    Sharbaugh, R.C.


    This report documents the updated six-degree-of-freedom reentry simulation TMAGRA6C used in the Aerospace Nuclear Safety Program, ANSP. The simulation provides for the inclusion of the effects of ablation on the aerodynamic stability and drag of reentry bodies, specifically the General Purpose Heat Source, GPHS. The existing six-degree-of-freedom reentry body simulations (TMAGRA6A and TMAGRA6B) used in the JHU/APL Nuclear Safety Program do not include aerodynamic effects resulting from geometric changes to the configuration due to ablation from reentry flights. A wind tunnel test was conducted in 1989 to obtain the effects of ablation on the hypersonic aerodynamics of the GPHS module. The analyzed data were used to form data sets which are included herein in tabular form. These are used as incremental aerodynamic inputs in the new TMAGRA6C six-degree-of-freedom reentry simulation. 20 refs., 13 figs., 2 tabs

  13. Levered and unlevered Beta

    Fernandez, Pablo


    We prove that in a world without leverage cost the relationship between the levered beta ( L) and the unlevered beta ( u) is the No-costs-of-leverage formula: L = u + ( u - d) D (1 - T) / E. We also analyze 6 alternative valuation theories proposed in the literature to estimate the relationship between the levered beta and the unlevered beta (Harris and Pringle (1985), Modigliani and Miller (1963), Damodaran (1994), Myers (1974), Miles and Ezzell (1980), and practitioners) and prove that all ...

  14. Who Comes Back? A Longitudinal Analysis of the Reentry Behavior of Exiting Teachers

    Grissom, Jason A.; Reininger, Michelle


    While a large literature examines the factors that lead teachers to leave teaching, few studies have examined what factors affect teachers' decisions to reenter the profession. Drawing on research on the role of family characteristics in predicting teacher work behavior, we examine predictors of reentry. We employ survival analysis of time to…

  15. The impact of prison reentry services on short-term outcomes: evidence from a multisite evaluation.

    Lattimore, Pamela K; Visher, Christy A


    Renewed interest in prisoner rehabilitation to improve postrelease outcomes occurred in the 1990s, as policy makers reacted to burgeoning prison populations with calls to facilitate community reintegration and reduce recidivism. In 2003, the Federal government funded grants to implement locally designed reentry programs. Adult programs in 12 states were studied to determine the effects of the reentry programs on multiple outcomes. A two-stage matching procedure was used to examine the effectiveness of 12 reentry programs for adult males. In the first stage, "intact group matching" was used to identify comparison populations that were similar to program participants. In the second stage, propensity score matching was used to adjust for remaining differences between groups. Propensity score weighted logistic regression was used to examine the impact of reentry program participation on multiple outcomes measured 3 months after release. The study population was 1,697 adult males released from prisons in 2004-2005. Data consisted of interview data gathered 30 days prior to release and approximately 3 months following release, supplemented by administrative data from state departments of correction and the National Crime Information Center. Results suggest programs increased in-prison service receipt and produced modest positive outcomes across multiple domains (employment, housing, and substance use) 3 months after release. Although program participants reported fewer crimes, differences in postrelease arrest and reincarceration were not statistically significant. Incomplete implementation and service receipt by comparison group members may have resulted in insufficient statistical power to identify stronger treatment effects.

  16. Surface dust criteria for dioxin and dioxin-like compounds for re-entry to buildings

    Greene, J.; Brorby, G.; Warmerdam, J. [Exponent, Oakland, CA (United States); Paustenbach, D. [ChemRisk, San Francisco, CA (United States)


    Introduction. Building reentry criteria for dioxin TEQ, as measured by surface wipes, vary greatly, from as low as 1 ng/m{sup 2} to as high as 125 ng/m{sup 2}1. Recently, the World Trade Center Indoor Air Taskforce calculated a reentry criterion of 2 ng TEQ/m{sup 2} for a residential exposure. This number was based on the EPA's draft cancer slope factor (CSF) of 1 x 10{sup 6} (mg/kg-day)-1, and various exposure parameters, dermal absorption values, and a cancer risk criterion of 1 x 10{sup -4}. An indoor 'degradation' parameter was also included in the calculations. However, a single criterion based on a single set of assumptions cannot be universally applied to all sites with contaminated surfaces. Reentry criteria that consider a wider range of exposure scenarios, exposure pathways, bioavailability, and behavioral parameters would be very useful to risk managers who may have to address multiple diverse situations in the coming years. This paper describes our recommended reentry ''building surface'' criteria for four exposure scenarios: (1) adult occupational, (2) adult residential, (3) childhood ''occupational'' (i.e., school), and (4) childhood residential.

  17. Effects of Personality Correlates on Achievement Motivation in Traditional and Reentry College Women.

    Johnson, Carolyn H.

    There is little literature comparing personality differences between traditional (under age 25) and reentry women students (aged 25 and older). The purpose of the present study is to examine these differences. A background questionnaire and five additional scales: (1) the Work and Family Orientation Questionnaire (WOFO-3); (2) the…

  18. Linear quadratic regulator design for an unpowered, winged re-entry vehicle

    Mooij, E.


    This report describes the design of an attitude controller for an unpowered, winged re-entry vehicle. The decoupling of the symmetric and asymmetric motion makes it possible to design two separate controllers, one for the pitch mot ion and one for the lateral motion. The design of the controller, a

  19. 78 FR 72011 - Interpretation Concerning Involvement of NASA Astronauts During a Licensed Launch or Reentry


    ..., from engaging in operational functions during an FAA-licensed launch or reentry. NASA noted that all... environmental controls and life support systems.'' NASA also asked the FAA whether NASA's astronauts could... an off-nominal or emergency situation, the NASA astronaut would, much of the time, be using...

  20. Application of Taylor-Series Integration to Reentry Problems with Wind

    Bergsma, Michiel; Mooij, E.


    Taylor-series integration is a numerical integration technique that computes the Taylor series of state variables using recurrence relations and uses this series to propagate the state in time. A Taylor-series integration reentry integrator is developed and compared with the fifth-order

  1. Career Reentry Strategies for Highly Educated, Stay-at-Home Mothers

    Guc, Cheryl M.


    Most stay-at-home mothers wish to return to the workplace; yet, the majority are not successful. There is a looming labor shortage and increasing organizational initiatives to increase female participation at most levels, providing opportunity for this talent pool. The purpose of this descriptive study was to examine the reentry strategies of…

  2. Exploring Efficacy in Negotiating Support: Women Re-Entry Students in Higher Education

    Filipponi-Berardinelli, Josephine Oriana


    The existing literature on women re-entry students reveals that women students concurrently struggle with family, work, and sometimes health issues. Women students often do not receive adequate support from their partners or from other sources in helping manage the multiple roles that compete for their time, and often face constraints that affect…

  3. Seismic Parameters of Mining-Induced Aftershock Sequences for Re-entry Protocol Development

    Vallejos, Javier A.; Estay, Rodrigo A.


    A common characteristic of deep mines in hard rock is induced seismicity. This results from stress changes and rock failure around mining excavations. Following large seismic events, there is an increase in the levels of seismicity, which gradually decay with time. Restricting access to areas of a mine for enough time to allow this decay of seismic events is the main approach in re-entry strategies. The statistical properties of aftershock sequences can be studied with three scaling relations: (1) Gutenberg-Richter frequency magnitude, (2) the modified Omori's law (MOL) for the temporal decay, and (3) Båth's law for the magnitude of the largest aftershock. In this paper, these three scaling relations, in addition to the stochastic Reasenberg-Jones model are applied to study the characteristic parameters of 11 large magnitude mining-induced aftershock sequences in four mines in Ontario, Canada. To provide guidelines for re-entry protocol development, the dependence of the scaling relation parameters on the magnitude of the main event are studied. Some relations between the parameters and the magnitude of the main event are found. Using these relationships and the scaling relations, a space-time-magnitude re-entry protocol is developed. These findings provide a first approximation to concise and well-justified guidelines for re-entry protocol development applicable to the range of mining conditions found in Ontario, Canada.

  4. Beta Thalassemia (For Parents)

    ... Safe Videos for Educators Search English Español Beta Thalassemia KidsHealth / For Parents / Beta Thalassemia What's in this ... Symptoms Diagnosis Treatment Print en español Beta talasemia Thalassemias Thalassemias are a group of blood disorders that ...

  5. Aerothermodynamics of generic re-entry vehicle with a series of aerospikes at nose

    Yadav, Rajesh; Velidi, Gurunadh; Guven, Ugur


    Re-entry of a blunt nosed vehicle is one of the most intriguing problems in any space programme. Especially in light of various space tourism possibilities, there are many works concerning re-entry of commercial blunt nosed space vehicles. In this paper, a generic blunt body re-entry model represented by a hemisphere-cylinder, fitted axisymmetrically with an aerodisk aerospike at the nose is investigated numerically with commercially available control volume based axisymmetric flow solver. The scaled down re-entry model has a base diameter of 40 mm and an overall length of 100 mm. A 6 mm diameter aerospike fitted axisymmetrically at the nose has a hemispherical cap from which another aerospike of 4 mm diameter protrudes which again has a hemispherical cap. Two dimensional compressible, axisymmetric Navier Stokes Equations are solved for a turbulent hypersonic flow of a 5 species, chemically reacting air in thermal equilibrium with free stream conditions of Mach no., static pressure and temperature of 10.1, 16,066 Pa and 216.65 K, respectively. The results are compared with that of re-entry model without any aerospike. Among the cases investigated, the spiked blunt body having two aerospikes in series with lengths l1 and l2 equal to 30 and 20 respectively and overall length-to-diameter ratio of 1.5 showed a favourable reduction in the peak reattachment heat flux along with high reduction in aerodynamic drag and thus stands as a prospective case for blunt body nose configuration for hypersonic flight.

  6. Using the Two-Burn Escape Maneuver for Fast Transfers in the Solar System and Beyond

    Adams, Robert B.; Richardson, Georgia A.


    The two-burn maneuver to escape the gravitational pull of a central body is described. The maneuver, originally suggested by Hermann Oberth, improves efficiency considerably for a wide range of missions of interest in space exploration and scientific investigation. A clear delineation of when the maneuver is more effective is given, as are methods to extract the most advantage when using the maneuver. Some examples are given of how this maneuver can enable exploration of the outer solar system, near interstellar space, and crewed missions to Mars and beyond. The maneuver has the potential to halve the required infrastructure associated with a crewed mission to Mars and achieve increased solar escape velocities with existing spacecraft technologies.

  7. Forward-Looking Betas

    Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory

    Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward......-looking. This paper introduces a radically different approach to estimating market betas. Using the tools in Bakshi and Madan (2000) and Bakshi, Kapadia and Madan (2003) we employ the information embedded in the prices of individual stock options and index options to compute our forward-looking market beta...

  8. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    Jiang, M.; de Vries, W.H.; Pertica, A.J.; Olivier, S.S.


    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the 'point-cloud' of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  9. Simulation of upwind maneuvering of a sailing yacht

    Harris, Daniel Hartrick

    A time domain maneuvering simulation of an IACC class yacht suitable for the analysis of unsteady upwind sailing including tacking is presented. The simulation considers motions in six degrees of freedom. The hydrodynamic and aerodynamic loads are calculated primarily with unsteady potential theory supplemented by empirical viscous models. The hydrodynamic model includes the effects of incident waves. Control of the rudder is provided by a simple rate feedback autopilot which is augmented with open loop additions to mimic human steering. The hydrodynamic models are based on the superposition of force components. These components fall into two groups, those which the yacht will experience in calm water, and those due to incident waves. The calm water loads are further divided into zero Froude number, or "double body" maneuvering loads, hydrostatic loads, gravitational loads, free surface radiation loads, and viscous/residual loads. The maneuvering loads are calculated with an unsteady panel code which treats the instantaneous geometry of the yacht below the undisturbed free surface. The free surface radiation loads are calculated via convolution of impulse response functions derived from seakeeping strip theory. The viscous/residual loads are based upon empirical estimates. The aerodynamic model consists primarily of a database of steady state sail coefficients. These coefficients treat the individual contributions to the total sail force of a number of chordwise strips on both the main and jib. Dynamic effects are modeled by using the instantaneous incident wind velocity and direction as the independent variables for the sail load contribution of each strip. The sail coefficient database was calculated numerically with potential methods and simple empirical viscous corrections. Additional aerodynamic load calculations are made to determine the parasitic contributions of the rig and hull. Validation studies compare the steady sailing hydro and aerodynamic loads

  10. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    Jiang, M.; de Vries, W.; Pertica, A.; Olivier, S.


    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the "point-cloud" of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  11. Multiple Re-entry Closures After TEVAR for Ruptured Chronic Post-dissection Thoraco-abdominal Aortic Aneurysm

    R. Kinoshita

    Full Text Available Introduction: Although thoracic endovascular aortic repair (TEVAR has become a promising treatment for complicated acute type B dissection, its role in treating chronic post-dissection thoraco-abdominal aortic aneurysm (TAA is still limited owing to persistent retrograde flow into the false lumen (FL through abdominal or iliac re-entry tears. Report: A case of chronic post-dissection TAA treatment, in which a dilated descending FL ruptured into the left thorax, is described. The primary entry tear was closed by emergency TEVAR and multiple abdominal re-entries were closed by EVAR. In addition, major re-entries at the detached right renal artery and iliac bifurcation were closed using covered stents. To close re-entries as far as possible, EVAR was carried out using the chimney technique, and additional aortic extenders were placed above the coeliac artery. A few re-entries remained, but complete FL thrombosis of the rupture site was achieved. Follow-up computed tomography showed significant shrinkage of the FL. Discussion: In treating post-dissection TAA, entry closure by TEVAR is sometimes insufficient, owing to persistent retrograde flow into the FL from abdominal or iliac re-entries. Adjunctive techniques are needed to close these distal re-entries to obtain complete FL exclusion, especially in rupture cases. Recently, encouraging results of complete coverage of the thoraco-abdominal aorta with fenestrated or branched endografts have been reported; however, the widespread employment of such techniques appears to be limited owing to technical difficulties. The present method with multiple re-entry closures using off the shelf and immediately available devices is an alternative for the endovascular treatment of post-dissection TAA, especially in the emergency setting. Keywords: Aortic dissection, Ruptured aortic aneurysm, Post-dissection thoracoabdominal aortic aneurysm, Endovascular aortic repair, Reentry closure, Endovascular procedures

  12. Maneuvering a pilot implementation to align agendas across sectors

    Mønsted, Troels; Hertzum, Morten; Søndergaard, Jens


    A prerequisite for pilot implementations in complex organizational settings is that the agendas of the stakeholders of the system are maneuvered into alignment. In this paper we present a study of the pilot implementation of the IT-supported, preventive intervention TOF (Tidlig Opsporing og...... Forebyggelse). A core element of TOF is an IT system that stratifies citizens into risk groups on the basis of self-reported lifestyle information and data retrieved from the medical records of the general practitioners (GPs). In addition, the system facilitates cross-sectoral coordination between preventive...

  13. Near Earth Asteroid redirect missions based on gravity assist maneuver

    Ledkov, Anton; Shustov, Boris M.; Eismont, Natan; Boyarsky, Michael; Nazirov, Ravil; Fedyaev, Konstantin

    During last years several events attracted world community attention to the hazards of hitting the Earth by sky objects. One of these objects is Apophis asteroid what was expected with nonzero probability to hit the Earth in 2036. Luckily after more precise measurements this event is considered as practically improbable. But the other object has really reached the Earth, entered the atmosphere in the Chelyabinsk area and caused vast damages. After this the hazardous near Earth objects problem received practical confirmation of the necessity to find the methods of its resolution. The methods to prevent collision of the dangerous sky object with the Earth proposed up to now look not practical enough if one mentions such as gravitational tractor or changing the reflectivity of the asteroid surface. Even the method supposing the targeting of the spacecraft to the hazardous object in order to deflect it from initial trajectory by impact does not work because its low mass as compared with the mass of asteroid to be deflected. For example the mass of the Apophis is estimated to be about 40 million tons but the spacecraft which can be launched to intercept the asteroid using contemporary launchers has the mass not more than 5 tons. So the question arises where to find the heavier projectile which is possible to direct to the dangerous object? The answer proposed in our paper is very simple: to search it among small near Earth asteroids. As small ones we suppose those which have the cross section size not more than 12-15 meters and mass not exceeding 1500 -1700 tons. According to contemporary estimates the number of such asteroids is not less than 100000. The other question is how to redirect such asteroid to the dangerous one. In the paper the possibilities are studied to use for that purpose gravity assist maneuvers near Earth. It is shown that even among asteroids included in contemporary catalogue there are the ones which could be directed to the trajectory of the

  14. Improving aggregate behavior in parking lots with appropriate local maneuvers

    Rodriguez, Samuel


    In this paper we study the ingress and egress of pedestrians and vehicles in a parking lot. We show how local maneuvers executed by agents permit them to create trajectories in constrained environments, and to resolve the deadlocks between them in mixed-flow scenarios. We utilize a roadmap-based approach which allows us to map complex environments and generate heuristic local paths that are feasible for both pedestrians and vehicles. Finally, we examine the effect that some agent-behavioral parameters have on parking lot ingress and egress. © 2013 IEEE.

  15. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Wichmann, H.


    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  16. Limited War in the Precision Engagement Era: The Balance Between Dominant Maneuver and Precision Engagement

    Hedstrom, Marvin


    .... German historian Hans Delbruck's two strategies of warfare: annihilation and exhaustion, and American military theorist Robert Leonhard's concepts of attrition and maneuver are examined to establish the relationship...

  17. Study on zigzag maneuver characteristics of V-U very large crude oil (VLCC) tankers

    Jaswar, Maimun, A.; Wahid, M. A.; Priyanto, A.; Zamani, Pauzi, Saman


    The Department of Marine Technology at the Faculty of Mechanical Engineering, University Teknologi Malaysia has recently developed an Ship Maneuverability tool which intends to upgrade student's level understanding the application of fluid dynamic on interaction between hull, propeller, and rudder during maneuvering. This paper discusses zigzag maneuver for conventional Very Large Crude Oil (VLCC) ships with the same principal dimensions but different stern flame shape. 10/10 zigzag maneuver characteristics of U and V types of VLCC ships are investigated. Simulation results for U-type show a good agreement with the experimental data, but V-type not good agreement with experimental one. Further study on zigzag maneuver characteristics are required.

  18. How hummingbirds hum: Acoustic holography of hummingbirds during maneuvering flight

    Hightower, Ben; Wijnings, Patrick; Ingersoll, Rivers; Chin, Diana; Scholte, Rick; Lentink, David


    Hummingbirds make a characteristic humming sound when they flap their wings. The physics and the biological significance of hummingbird aeroacoustics is still poorly understood. We used acoustic holography and high-speed cameras to determine the acoustic field of six hummingbirds while they either hovered stationary in front of a flower or maneuvered to track flower motion. We used a robotic flower that oscillated either laterally or longitudinally with a linear combination of 20 different frequencies between 0.2 and 20 Hz, a range that encompasses natural flower vibration frequencies in wind. We used high-speed marker tracking to dissect the transfer function between the moving flower, the head, and body of the bird. We also positioned four acoustic arrays equipped with 2176 microphones total above, below, and in front of the hummingbird. Acoustic data from the microphones were back-propagated to planes adjacent to the hummingbird to create the first real-time holograms of the pressure field a hummingbird generates in vivo. Integration of all this data offers insight into how hummingbirds modulate the acoustic field during hovering and maneuvering flight.

  19. Propulsive Maneuver Design for the 2007 Mars Phoenix Lander Mission

    Raofi, Behzad; Bhat, Ramachandra S.; Helfrich, Cliff


    On May 25, 2008, the Mars Phoenix Lander (PHX) successfully landed in the northern planes of Mars in order to continue and complement NASA's "follow the water" theme as its predecessor Mars missions, such as Mars Odyssey (ODY) and Mars Exploration Rovers, have done in recent years. Instruments on the lander, through a robotic arm able to deliver soil samples to the deck, will perform in-situ and remote-sensing investigations to characterize the chemistry of materials at the local surface, subsurface, and atmosphere. Lander instruments will also identify the potential history of key indicator elements of significance to the biological potential of Mars, including potential organics within any accessible water ice. Precise trajectory control and targeting were necessary in order to achieve the accurate atmospheric entry conditions required for arriving at the desired landing site. The challenge for the trajectory control maneuver design was to meet or exceed these requirements in the presence of spacecraft limitations as well as other mission constraints. This paper describes the strategies used, including the specialized targeting specifically developed for PHX, in order to design and successfully execute the propulsive maneuvers that delivered the spacecraft to its targeted landing site while satisfying the planetary protection requirements in the presence of flight system constraints.

  20. Betting Against Beta

    Frazzini, Andrea; Heje Pedersen, Lasse

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model’s five central predictions: (1) Since constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for U...... of the BAB factor is low; (4) Increased funding liquidity risk compresses betas toward one; (5) More constrained investors hold riskier assets........S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return...

  1. Roughing up Beta

    Bollerslev, Tim; Li, Sophia Zhengzi; Todorov, Viktor

    -section. An investment strategy that goes long stocks with high jump betas and short stocks with low jump betas produces significant average excess returns. These higher risk premiums for the discontinuous and overnight market betas remain significant after controlling for a long list of other firm characteristics......Motivated by the implications from a stylized equilibrium pricing framework, we investigate empirically how individual equity prices respond to continuous, or \\smooth," and jumpy, or \\rough," market price moves, and how these different market price risks, or betas, are priced in the cross......-section of expected returns. Based on a novel highfrequency dataset of almost one-thousand individual stocks over two decades, we find that the two rough betas associated with intraday discontinuous and overnight returns entail significant risk premiums, while the intraday continuous beta is not priced in the cross...

  2. Lightweight Ultrahigh Temperature CMC-Encased C/C Structure for Reentry and Hypersonic Applications, Phase I

    National Aeronautics and Space Administration — The reentry spacecraft and hypersonic cruisers of the future will require advanced lightweight thermal protection systems that can provide the dual functionality of...

  3. Beta limits for ETF

    Helton, F.J.; Miller, R.L.


    ETF (Engineering Test Facility) one-dimensional transport simulations indicate that a volume-average beta of 4% is required for ignition. It is therefore important that theoretical beta limits, determined by requiring equilibria to be stable to all ideal modes, exceed 4%. This paper documents an ideal MHD analysis wherein it is shown that, with appropriate plasma cross-sectional shape and current profile optimization, operation near 5% is possible. The critical beta value, however, depends on the functional form used for ff', which suggests that higher critical betas could be achieved by directly optimizing the safety factor profile. (author)

  4. Cardiac re-entry dynamics and self-termination in DT-MRI based model of Human Foetal Heart

    Biktasheva, Irina V.; Anderson, Richard A.; Holden, Arun V.; Pervolaraki, Eleftheria; Wen, Fen Cai


    The effect of human foetal heart geometry and anisotropy on anatomy induced drift and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of gestational age human foetal heart obtained from 100μm voxel diffusion tensor MRI data sets were used in the computer simulations. The fiber orientation angles of the heart were obtained from the orientation of the DT-MRI primary eigenvectors. In a spatially homogeneous electrophysiological monodomain model with the DT-MRI based heart geometries, cardiac re-entry was initiated at a prescribed location in a 2D slice, and in the 3D whole heart anatomy models. Excitation was described by simplified FitzHugh-Nagumo kinetics. In a slice of the heart, with propagation velocity twice as fast along the fibres than across the fibers, DT-MRI based fiber anisotropy changes the re-entry dynamics from pinned to an anatomical re-entry. In the 3D whole heart models, the fiber anisotropy changes cardiac re-entry dynamics from a persistent re-entry to the re-entry self-termination. The self-termination time depends on the re-entry’s initial position. In all the simulations with the DT-MRI based cardiac geometry, the anisotropy of the myocardial tissue shortens the time to re-entry self-termination several folds. The numerical simulations depend on the validity of the DT-MRI data set used. The ventricular wall showed the characteristic transmural rotation of the helix angle of the developed mammalian heart, while the fiber orientation in the atria was irregular.

  5. Beta-energy averaging and beta spectra

    Stamatelatos, M.G.; England, T.R.


    A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality

  6. Measuring the spectral emissivity of thermal protection materials during atmospheric reentry simulation

    Marble, Elizabeth


    Hypersonic spacecraft reentering the earth's atmosphere encounter extreme heat due to atmospheric friction. Thermal Protection System (TPS) materials shield the craft from this searing heat, which can reach temperatures of 2900 F. Various thermophysical and optical properties of TPS materials are tested at the Johnson Space Center Atmospheric Reentry Materials and Structures Evaluation Facility, which has the capability to simulate critical environmental conditions associated with entry into the earth's atmosphere. Emissivity is an optical property that determines how well a material will reradiate incident heat back into the atmosphere upon reentry, thus protecting the spacecraft from the intense frictional heat. This report describes a method of measuring TPS emissivities using the SR5000 Scanning Spectroradiometer, and includes system characteristics, sample data, and operational procedures developed for arc-jet applications.

  7. Recovery, Transportation and Acceptance to the Curation Facility of the Hayabusa Re-Entry Capsule

    Abe, M.; Fujimura, A.; Yano, H.; Okamoto, C.; Okada, T.; Yada, T.; Ishibashi, Y.; Shirai, K.; Nakamura, T.; Noguchi, T.; hide


    The "Hayabusa" re-entry capsule was safely carried into the clean room of Sagamihara Planetary Sample Curation Facility in JAXA on June 18, 2010. After executing computed tomographic (CT) scanning, removal of heat shield, and surface cleaning of sample container, the sample container was enclosed into the clean chamber. After opening the sample container and residual gas sampling in the clean chamber, optical observation, sample recovery, sample separation for initial analysis will be performed. This curation work is continuing for several manths with some selected member of Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). We report here on the 'Hayabusa' capsule recovery operation, and transportation and acceptance at the curation facility of the Hayabusa re-entry capsule.

  8. Automated scheme to determine design parameters for a recoverable reentry vehicle

    Williamson, W.E.


    The NRV (Nosetip Recovery Vehicle) program at Sandia Laboratories is designed to recover the nose section from a sphere cone reentry vehicle after it has flown a near ICBM reentry trajectory. Both mass jettison and parachutes are used to reduce the velocity of the RV near the end of the trajectory to a sufficiently low level that the vehicle may land intact. The design problem of determining mass jettison time and parachute deployment time in order to ensure that the vehicle does land intact is considered. The problem is formulated as a min-max optimization problem where the design parameters are to be selected to minimize the maximum possible deviation in the design criteria due to uncertainties in the system. The results of the study indicate that the optimal choice of the design parameters ensures that the maximum deviation in the design criteria is within acceptable bounds. This analytically ensures the feasibility of recovery for NRV

  9. Improved MPSP Method-based Cooperative Re-entry Guidance for Hypersonic Gliding Vehicles

    Chu Haiyan


    Full Text Available A computationally sufficient technique is used to solve the 3-D cooperative re-entry guidance problem for hypersonic gliding vehicles. Due to the poor surrounding adaptive ability of the traditional cooperative guidance methods, a novel methodology, named as model predictive static programming (MPSP, is used to solve a class of finite-horizon optimal control problems with hard terminal constraints. The main feature of this guidance law is that it is capable of hitting the target with high accuracy for each one of the cooperative vehicles at the same time. In addition, it accurately satisfies variable constraints. Performance of the proposed MPSP-based guidance is demonstrated in 3-D nonlinear dynamics scenario. The numerical simulation results show that the proposed cooperative re-entry guidance methodology has the advantage of computational efficiency and better robustness against the perturbations.

  10. Facilitation of school re-entry and peer acceptance of children with cancer

    Helms, A. S.; Schmiegelow, K.; Brok, J.


    Increased survival rates from childhood cancer call for efforts to reintegrate children with cancer back into their academic and social environments. The aims of this study were to: (1) review and analyse the existing literature on school re-entry interventions for children with cancer; and (2......) discuss the importance of peer involvement in the treatment. Relevant databases were searched using equivalent search algorithms and six studies were selected that target children with cancer and/or their classmates. Two authors independently reviewed the literature for data extraction. The articles were...... reviewed using the PRISMA model for reporting reviews. Statistical calculations for the meta-analyses were done using Review Manager 5.2. The metaanalyses showed significant effects of school re-entry programmes in terms of enhancing academic achievement in children with cancer (P = 0.008) and lowering...

  11. From the inside/out: Greene County jail inmates on restorative reentry.

    Hass, Aida Y; Saxon, Caryn E


    The application of criminal justice sanctions is often misguided by a failure to recognize the need for a comprehensive approach in the transformation of offenders into law-abiding citizens. Restorative justice is a growing movement within criminal justice that recognizes the disconnect between offender rehabilitative measures and the social dynamics within which offender reentry takes place. By using restorative approaches to justice, what one hopes of these alternative processes is that the offenders become reconnected to the community and its values, something rarely seen in retributive models in which punishment is imposed and offenders can often experience further alienation from society. In this study, the authors wish to examine factors that contribute to failed prisoner reentry and reintegration and explore how restorative reintegration processes can address these factors as well as the needs, attitudes, and perceptions that help construct and maintain many of the obstacles and barriers returning inmates face when attempting to reintegrate into society.

  12. "I Want a Second Chance": Experiences of African American Fathers in Reentry.

    Dill, LeConté J; Mahaffey, Carlos; Mosley, Tracey; Treadwell, Henrie; Barkwell, Fabeain; Barnhill, Sandra


    With over 700,000 people on average released from prison each year to communities, greater attention is warranted on the experiences and needs of those who are parents and seeking to develop healthy relationships with their children and families. This study seeks to explore the experiences of African American fathers in reentry. Qualitative data from 16 African American men enrolled in a fellowship program for fathers were collected from a focus group and analyzed for common themes and using standpoint theory. Four themes emerged that focused on fathers' commitment toward healthy and successful reintegration postincarceration: redemption, employment, health care, and social support. Focus group participants actively strive to develop and rebuild healthy relationships with their children through seeking gainful employment and through bonding with like-minded peers. Barriers in accessing health care are also discussed. Research findings may inform future programs and policies related to supporting fathers and their children in reentry. © The Author(s) 2015.

  13. Reentry planning: The technical basis for offsite recovery following warfare agent contamination

    Watson, A.P.; Munro, N.B.


    In the event on an unplanned release of chemical agent during any stage of Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce and livestock. Persistent agents, such as VX or sulfur mustard, pose the greatest human health concern for reentry. The purpose of this technical support study is to provide information and analyses that can be used by federal, state and local emergency planners in determining the safety or reentry to, as well as the potential for recovery of, contaminated or suspect areas beyond the installation boundary. Guidelines for disposition of livestock, agricultural crops and personal/real property are summarized. Advisories for ingestion of food crops, water, meat and milk from the affected zones are proposed. This document does not address potential adverse effects to, or agent contamination of, wild species of plants or animals. 80 refs., 4 figs., 29 tabs.

  14. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo

    Mukadder Korkmaz

    Full Text Available ABSTRACT INTRODUCTION: Benign paroxysmal positional vertigo (BPPV is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. OBJECTIVE: The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning procedures for treatment. METHODS: Data were obtained from the clinical records of 153 patients diagnosed with benign paroxysmal positional vertigo. Patients were treated by repositioning maneuvers. Demographic data and the factors including age, sex, canal type, duration of symptoms, comorbidities and number of repositioning maneuvers for relief were documented for statistical analysis. RESULTS: Age, sex, canal type and the duration of symptoms had no impact on the number of maneuvers. The most common comorbidity was spine problems. Hypertension was the only comorbidity that significantly associated with increased number of maneuvers. CONCLUSION: The presence of hypertension is a risk factor for repeated maneuvers in benign paroxysmal positional vertigo treatment. Physicians should be aware of the increased probability of repeated repositioning maneuvers in these group of patients. The role of comorbidities and vascular factors need to be further clarified in the course of benign paroxysmal positional vertigo.

  15. The effects of betahistine in addition to epley maneuver in posterior canal benign paroxysmal positional vertigo.

    Guneri, Enis Alpin; Kustutan, Ozge


    The purpose of this study is to evaluate the effects of betahistine in addition to Epley maneuver on the quality of life of patients with posterior semicircular canal benign paroxysmal positional vertigo (BPPV) of the canalithiasis type. Double-blind, randomized, controlled clinical trial. Academic university hospital. Seventy-two patients were enrolled in the study. The first group was treated with Epley maneuver only. The second group received placebo drug 2 times daily for 1 week in addition to Epley maneuver, and the third group received 24 mg betahistine 2 times daily for 1 week in addition to Epley maneuver. The effectiveness of the treatments was assessed in each group as well as between them by analyzing and comparing data of 4 different vertigo symptom scales. Epley maneuver, alone or combined with betahistine or placebo, was found to be very effective with a primary success rate of 86.2%. The symptoms were significantly reduced in group 3 patients overall, and those patients younger or older than 50 years of age who had hypertension, with symptom onset <1 month, and with attack duration of less than a minute did significantly better with the combination of betahistine 48 mg daily. Betahistine in addition to Epley maneuver is more effective than Epley maneuver alone or combined with placebo with regard to improvement of symptoms in certain patients. However, future clinical studies covering more patients to investigate the benefit of medical treatments in addition to Epley maneuver are needed.

  16. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo.

    Korkmaz, Mukadder; Korkmaz, Hakan


    Benign paroxysmal positional vertigo (BPPV) is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning procedures for treatment. Data were obtained from the clinical records of 153 patients diagnosed with benign paroxysmal positional vertigo. Patients were treated by repositioning maneuvers. Demographic data and the factors including age, sex, canal type, duration of symptoms, comorbidities and number of repositioning maneuvers for relief were documented for statistical analysis. Age, sex, canal type and the duration of symptoms had no impact on the number of maneuvers. The most common comorbidity was spine problems. Hypertension was the only comorbidity that significantly associated with increased number of maneuvers. The presence of hypertension is a risk factor for repeated maneuvers in benign paroxysmal positional vertigo treatment. Physicians should be aware of the increased probability of repeated repositioning maneuvers in these group of patients. The role of comorbidities and vascular factors need to be further clarified in the course of benign paroxysmal positional vertigo. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  17. 32 CFR 552.38 - Acquisition of maneuver agreements for Army commanders.


    ... Real Estate and Interest Therein § 552.38 Acquisition of maneuver agreements for Army commanders. (a... specific areas desired for use. (b) Real estate coverage. Real estate coverage will be in the form of agreements with landowners, granting the right to conduct maneuvers at a given time or periodically. Short...

  18. Closeup of STS-26 Discovery, OV-103, orbital maneuvering system (OMS) leak


    Closeup of STS-26 Discovery, Orbiter Vehicle (OV) 103, orbital maneuvering system (OMS) reaction control system (RCS) nitrogen tetroxide gas leak was captured by a Cobra borescope and displayed on a video monitor. The borescope has a miniature videocamera at the end of a flexible rubber tube and is able to be maneuvered into other inaccessible locations.

  19. Applying Dynamical Systems Theory to Optimize Libration Point Orbit Stationkeeping Maneuvers for WIND

    Brown, Jonathan M.; Petersen, Jeremy D.


    NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.

  20. NPSAT1: Assessment Of Risk For Human Casualty From Atmospheric Reentry


    wrapped copper wire, resembling a large solenoid. Between their core and insulations , these wires are approximately 0.370 millimeter in diameter and... insulation is melted. This action would expose the wires to significantly greater stress during atmospheric reentry and would most likely end in their...solid piece of metal to create a hollow void for cables when assembled. Modeling this component requires the operator to reduce the overall structure to

  1. Active disturbance rejection attitude control for a hypersonic reentry vehicle with actuator saturation

    Hongjiu Yang


    Full Text Available In this article, nonlinear uncertainty has been investigated for a hypersonic reentry vehicle subject to actuator saturation via active disturbance rejection control technology. A nonlinear extended state observer is designed to estimate “total disturbances,” which is compensated with a linear controller. Both convergence of the nonlinear extended state observer and stabilization of the closed-loop system are studied in this article. Some simulation results are given to illustrate the effectiveness of the proposed method.

  2. Evaluating and Addressing Potential Hazards of Fuel Tanks Surviving Atmospheric Reentry

    Kelley, Robert L.; Johnson, Nicholas L.


    In order to ensure reentering spacecraft do not pose an undue risk to the Earth's population it is important to design satellites and rocket bodies with end of life considerations in mind. In addition to considering the possible consequences of deorbiting a vehicle, consideration must also be given to the possible risks associated with a vehicle failing to become operational or reach its intended orbit. Based on recovered space debris and numerous reentry survivability analyses, fuel tanks are of particular concern in both of these considerations. Most spacecraft utilize some type of fuel tank as part of their propulsion system. These fuel tanks are most often constructed using stainless steel or titanium and are filled with potentially hazardous substances such as hydrazine and nitrogen tetroxide. For a vehicle which has reached its scheduled end of mission the contents of the tanks are typically depleted. In this scenario the use of stainless steel and titanium results in the tanks posing a risk to people and property do to the high melting point and large heat of ablation of these materials leading to likely survival of the tank during reentry. If a large portion of the fuel is not depleted prior to reentry, there is the added risk of hazardous substance being released when the tank impact the ground. This paper presents a discussion of proactive methods which have been utilized by NASA satellite projects to address the risks associated with fuel tanks reentering the atmosphere. In particular it will address the design of a demiseable fuel tank as well as the evaluation of off the shelf designs which are selected to burst during reentry.

  3. Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry

    Marichalar, J.; Lumpkin, F.; Boyles, K.


    During reentry of the Orion Crew Module (CM), vehicle attitude control will be performed by firing reaction control system (RCS) thrusters. Simulation of RCS plumes and their interaction with the oncoming flow has been difficult for the analysis community due to the large scarf angles of the RCS thrusters and the unsteady nature of the Orion capsule backshell environments. The model for the aerothermal database has thus relied on wind tunnel test data to capture the heating effects of thruster plume interactions with the freestream. These data are only valid for the continuum flow regime of the reentry trajectory. A Direct Simulation Monte Carlo (DSMC) analysis was performed to study the vehicle heating effects that result from the RCS thruster plume interaction with the oncoming freestream flow at high altitudes during Orion CM reentry. The study was performed with the DSMC Analysis Code (DAC). The inflow boundary conditions for the jets were obtained from Data Parallel Line Relaxation (DPLR) computational fluid dynamics (CFD) solutions. Simulations were performed for the roll, yaw, pitch-up and pitch-down jets at altitudes of 105 km, 125 km and 160 km as well as vacuum conditions. For comparison purposes (see Figure 1), the freestream conditions were based on previous DAC simulations performed without active RCS to populate the aerodynamic database for the Orion CM. Other inputs to the analysis included a constant Orbital reentry velocity of 7.5 km/s and angle of attack of 160 degrees. The results of the study showed that the interaction effects decrease quickly with increasing altitude. Also, jets with highly scarfed nozzles cause more severe heating compared to the nozzles with lower scarf angles. The difficulty of performing these simulations was based on the maximum number density and the ratio of number densities between the freestream and the plume for each simulation. The lowest altitude solutions required a substantial amount of computational resources

  4. Behavior of HfB2-SiC Materials in Simulated Re-Entry Environments

    Ellerby, Don; Beckman, Sarah; Irby, Edward; Johnson, Sylvia M.; Gunsman, Michael; Gasch, Matthew; Ridge, Jerry; Martinez, Ed; Squire, Tom; Olejniczak, Joe


    The objectives of this research are to: 1) Investigate the oxidation/ablation behavior of HfB2/SiC materials in simulated re-entry environments; 2) Use the arc jet test results to define appropriate use environments for these materials for use in vehicle design. The parameters to be investigated include: surface temperature, stagnation pressure, duration, number of cycles, and thermal stresses.

  5. Engagement processes in model programs for community reentry from prison for people with serious mental illness.

    Angell, Beth; Matthews, Elizabeth; Barrenger, Stacey; Watson, Amy C; Draine, Jeffrey


    Linking prisoners with mental illness with treatment following release is critical to preventing recidivism, but little research exists to inform efforts to engage them effectively. This presentation compares the engagement process in two model programs, each representing an evidence-based practice for mental health which has been adapted to the context of prison reentry. One model, Forensic Assertive Community Treatment (FACT), emphasizes a long-term wrap-around approach that seeks to maximize continuity of care by concentrating all services within one interdisciplinary team; the other, Critical Time Intervention (CTI), is a time-limited intervention that promotes linkages to outside services and bolsters natural support systems. To compare engagement practices, we analyze data from two qualitative studies, each conducted in a newly developed treatment program serving prisoners with mental illness being discharged from prisons to urban communities. Findings show that the working relationship in reentry services exhibits unique features and is furthered in both programs by the use of practitioner strategies of engagement, including tangible assistance, methods of interacting with consumers, and encouragement of service use via third parties such as families and parole officers. Nevertheless, each program exhibited distinct cultures and rituals of reentry that were associated with fundamental differences in philosophy and differences in resources available to each program. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Advanced validation of CFD-FDTD combined method using highly applicable solver for reentry blackout prediction

    Takahashi, Yusuke


    An analysis model of plasma flow and electromagnetic waves around a reentry vehicle for radio frequency blackout prediction during aerodynamic heating was developed in this study. The model was validated based on experimental results from the radio attenuation measurement program. The plasma flow properties, such as electron number density, in the shock layer and wake region were obtained using a newly developed unstructured grid solver that incorporated real gas effect models and could treat thermochemically non-equilibrium flow. To predict the electromagnetic waves in plasma, a frequency-dependent finite-difference time-domain method was used. Moreover, the complicated behaviour of electromagnetic waves in the plasma layer during atmospheric reentry was clarified at several altitudes. The prediction performance of the combined model was evaluated with profiles and peak values of the electron number density in the plasma layer. In addition, to validate the models, the signal losses measured during communication with the reentry vehicle were directly compared with the predicted results. Based on the study, it was suggested that the present analysis model accurately predicts the radio frequency blackout and plasma attenuation of electromagnetic waves in plasma in communication. (paper)

  7. Analysis of Radio Frequency Blackout for a Blunt-Body Capsule in Atmospheric Reentry Missions

    Yusuke Takahashi


    Full Text Available A numerical analysis of electromagnetic waves around the atmospheric reentry demonstrator (ARD of the European Space Agency (ESA in an atmospheric reentry mission was conducted. During the ARD mission, which involves a 70% scaled-down configuration capsule of the Apollo command module, radio frequency blackout and strong plasma attenuation of radio waves in communications with data relay satellites and air planes were observed. The electromagnetic interference was caused by highly dense plasma derived from a strong shock wave generated in front of the capsule because of orbital speed during reentry. In this study, the physical properties of the plasma flow in the shock layer and wake region of the ESA ARD were obtained using a computational fluid dynamics technique. Then, electromagnetic waves were expressed using a frequency-dependent finite-difference time-domain method using the plasma properties. The analysis model was validated based on experimental flight data. A comparison of the measured and predicted results showed good agreement. The distribution of charged particles around the ESA ARD and the complicated behavior of electromagnetic waves, with attenuation and reflection, are clarified in detail. It is suggested that the analysis model could be an effective tool for investigating radio frequency blackout and plasma attenuation in radio wave communication.

  8. The effects of bedrest on crew performance during simulated shuttle reentry. Volume 2: Control task performance

    Jex, H. R.; Peters, R. A.; Dimarco, R. J.; Allen, R. W.


    A simplified space shuttle reentry simulation performed on the NASA Ames Research Center Centrifuge is described. Anticipating potentially deleterious effects of physiological deconditioning from orbital living (simulated here by 10 days of enforced bedrest) upon a shuttle pilot's ability to manually control his aircraft (should that be necessary in an emergency) a comprehensive battery of measurements was made roughly every 1/2 minute on eight military pilot subjects, over two 20-minute reentry Gz vs. time profiles, one peaking at 2 Gz and the other at 3 Gz. Alternate runs were made without and with g-suits to test the help or interference offered by such protective devices to manual control performance. A very demanding two-axis control task was employed, with a subcritical instability in the pitch axis to force a high attentional demand and a severe loss-of-control penalty. The results show that pilots experienced in high Gz flying can easily handle the shuttle manual control task during 2 Gz or 3 Gz reentry profiles, provided the degree of physiological deconditioning is no more than induced by these 10 days of enforced bedrest.

  9. Platelet injectors for Space Shuttle orbit maneuvering engine

    Kahl, R. C.; Labotz, R. J.; Bassham, L. B.


    The Space Shuttle Orbit Maneuvering Subsystem Rocket Engine employs a platelet element injector concept. This injector has demonstrated 316-sec vacuum specific impulse performance under simulated altitude conditions when tested with a milled slot/electroformed nickel close-out regenerative chamber and a full 71 area ratio nozzle. To date, over 300 altitude engine tests and 300 stability bomb tests have demonstrated stable, erosion free operation with this concept to test durations of 150 seconds. The injector and chamber also meet the reusable requirements of the shuttle with a cycle life capability in excess of 1000 cycles. An extensive altitude restart program has also demonstrated OMS-engine operation over large variations in the burn and coast times with helium saturated propellants.

  10. Space shuttle orbital maneuvering engine platelet injector program


    A platelet-face injector for the fully reusable orbit maneuvering system OMS on the space shuttle was evaluated as a means of obtaining additional design margin and low cost. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects of acoustic cavity configuration on combustion stability, including cavity depth, open area, inlet contour, and other parameters, were investigated using sea level bomb tests. Prototype injector and chamber behavior was evaluated for a variety of conditions; these tests examined the effects of film cooling, helium saturated propellants, chamber length, inlet conditions, and operating point, on performance, heat transfer and engine transient behavior. Helium bubble ingestion into both propellant circuits was investigated, as was chugging at low pressure operation, and hot and cold engine restart with and without a purge.

  11. Helicopter Acoustic Flight Test with Altitude Variation and Maneuvers

    Watts, Michael E.; Greenwood, Eric; Sim, Ben; Stephenson, James; Smith, Charles D.


    A cooperative flight test campaign between NASA and the U.S. Army was performed from September 2014 to February 2015. The purposes of the testing were to: investigate the effects of altitude variation on noise generation, investigate the effects of gross weight variation on noise generation, establish the statistical variability in acoustic flight testing of helicopters, and characterize the effects of transient maneuvers on radiated noise for a medium-lift utility helicopter. This test was performed at three test sites (0, 4000, and 7000 feet above mean sea level) with two aircraft (AS350 SD1 and EH-60L) tested at each site. This report provides an overview of the test, documents the data acquired and describes the formats of the stored data.

  12. Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions

    Carpenter, J. Russell; Markley, F. Landis


    A document discusses sequential probability ratio tests that explicitly allow decision-makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models the null hypotheses that the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming, highly elliptical orbit formation flying mission.

  13. Non-Toxic Orbital Maneuvering System Engine Development

    Green, Christopher; Claflin, Scott; Maeding, Chris; Butas, John


    Recent results using the Aestus engine operated with LOx/ethanol propellant are presented. An experimental program at Rocketdyne Propulsion and Power is underway to adapt this engine for the Boeing Reusable Space Systems Division non-toxic Orbital Maneuvering System/Reaction control System (OMS/RCS) system. Daimler-Chrysler Aerospace designed the Aestus as an nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) upper-stage engine for the Ariane 5. The non-toxic OMS/RCS system's preliminary design requires a LOx/ethanol (O2/C2H5OH) engine that operates with a mixture ratio of 1.8, a specific impulse of 323 seconds, and fits within the original OMS design envelope. This paper describes current efforts to meet these requirements including, investigating engine performance using LOx/ethanol, developing the en-ine system sizing package, and meeting the vehicle operation parameters. Data from hot-fire testing are also presented and discussed.

  14. Behavior learning in differential games and reorientation maneuvers

    Satak, Neha

    method is the Direct Approximation of Value Function (DAVF) method. In this method, unlike the CSR method, the player formulates an objective function for the opponent but does not formulates a strategy directly; rather, indirectly the player assumes that the opponent is playing optimally. Thus, a value function satisfying the HJB equation corresponding to the opponent's cost function exists. The DAVF method finds an approximate solution for the value function based on previous observations of the opponent's control. The approximate solution to the value function is then used to predict the opponent's future behavior. Game examples in which only a single player is learning its opponent's behavior are simulated. Subsequently, examples in which both players in a two-player game are learning each other's behavior are simulated. In the second part of this research, a reorientation control maneuver for a spinning spacecraft will be developed. This will aid the application of behavior learning and differential games concepts to the specific scenario involving multiple spinning spacecraft. An impulsive reorientation maneuver with coasting will be analytically designed to reorient the spin axis of the spacecraft using a single body fixed thruster. Cooperative maneuvers of multiple spacecraft optimizing fuel and relative orientation will be designed. Pareto optimality concepts will be used to arrive at mutually agreeable reorientation maneuvers for the cooperating spinning spacecraft.

  15. Mars Exploration Rovers Launch Performance and TCM-1 Maneuver Design

    Kangas, Julie A.; Potts, Christopher L.; Raofi, Behzad


    The Mars Exploration Rover (MER) project successfully landed two identical rovers on Mars in order to remotely conduct geologic investigations, including characterization of rocks and soils that may hold clues to past water activity. Two landing sites, Gusev crater and Meridiani Planum, were selected out of nearly 200 candidate sites after balancing science returns and flight system engineering and safety. Precise trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites within the flight system constraints. This paper discusses the expected and achieved launch vehicle performance and the impacts of that performance on the first Trajectory Correction Maneuver (TCM-1) while maintaining targeting flexibility in accommodating additional project concerns about landing site safety and possible in-flight retargeting to alternate landing sites.

  16. Propulsive maneuver design for the Mars Exploration Rover mission

    Potts, Christopher L.; Kangas, Julie A.; Raofi, Behzad


    Starting from approximately 150 candidate Martian landing sites, two distinct sites have been selected for further investigation by sophisticated rovers. The two rovers, named 'Spirit' and 'Opportunity', begin the surface mission respectively to Gusec Crater and Meridiani Planum in January 2004. the rovers are essentially robotic geologists, sent on a mission to research for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. Before this scientific search can commence, precise trajectory targeting and control is necessary to achieve the entry requirements for the selected landing sites within the constraints of the flight system. The maneuver design challenge is to meet or exceed these requirements while maintaining the necessary design flexibility to accommodate additional project concerns. Opportunities to improve performance and reduce risk based on trajectory control characteristics are also evaluated.

  17. Nuclear space power systems for orbit raising and maneuvering

    Buden, D.; Sullivan, J.A.


    Reference is made to recent studies which have shown that direct thrust nuclear rockets for routine orbit raising and near-earth space tug missions are probably not cost-effective. The need for additional trade-off studies and comparisons of direct-thrust nuclear systems with chemical systems to clarify the role of nuclear rockets in missions requiring rapid orbit maneuvering is stressed. Attention is confined here to nuclear electric propulsion considerations. Low-mass nuclear power plants are constructed to optimize nuclear electric propulsion systems. Electric power levels from 100 kilowatts to as much as several megawatts are desirable. The goals for the power plant specific mass are 20-30 kg/kW at the lower powers to 2-4 kg/kW at the higher powers

  18. Identification and risk estimation of movement strategies during cutting maneuvers.

    David, Sina; Komnik, Igor; Peters, Markus; Funken, Johannes; Potthast, Wolfgang


    Approximately 70% of anterior cruciate ligament (ACL) injuries occur in non-contact situations during cutting and landing maneuvers. Parameters such as footstrike patterns and trunk orientation were found to influence ACL relevant knee loading, however, the relationship between the whole body movement and injury risk is debated. This study identifies whole body movement strategies that increase injury risk, and provides training recommendations to reduce this risk or enable a save return to sports after injury. Experimental cross-sectional study design. Three dimensional movement analysis was carried out to investigate 50 participants performing anticipated 90° cutting maneuvers. To identify and characterize movement strategies, footstrike pattern, knee valgus moment, knee internal rotation moment, angle of attack, shoulder and pelvis axis were analyzed using statistical parametric mapping. Three different movement strategies were identified. One strategy included rearfoot striking in combination with a relatively upright body position which generated higher knee joint loads than the second strategy, forefoot striking in combination with more backwards leaning and pre-rotation of the trunk towards the new movement direction. A third strategy combined forefoot striking with less preorientation which increased the ACL relevant knee joint load compared to the second strategy. The identified movement strategies clearly pre-determine the injury risk during non-contact situations with the third strategy as the most unfavorable one. Compared to the study of isolated parameters, the analysis of the whole body movement allowed for detailed separation of more risky from less risky cutting strategies. These results give practical recommendations for the prevention of ACL injury. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. High beta tokamaks

    Dory, R.A.; Berger, D.P.; Charlton, L.A.; Hogan, J.T.; Munro, J.K.; Nelson, D.B.; Peng, Y.K.M.; Sigmar, D.J.; Strickler, D.J.


    MHD equilibrium, stability, and transport calculations are made to study the accessibility and behavior of ''high beta'' tokamak plasmas in the range β approximately 5 to 15 percent. For next generation devices, beta values of at least 8 percent appear to be accessible and stable if there is a conducting surface nearby

  20. Sorting out Downside Beta

    G.T. Post (Thierry); P. van Vliet (Pim); S.D. Lansdorp (Simon)


    textabstractDownside risk, when properly defined and estimated, helps to explain the cross-section of US stock returns. Sorting stocks by a proper estimate of downside market beta leads to a substantially larger cross-sectional spread in average returns than sorting on regular market beta. This

  1. Betting against Beta

    Frazzini, Andrea; Heje Pedersen, Lasse


    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model's five central predictions: (1) Because constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically...

  2. Investigation of plasma–surface interaction effects on pulsed electrostatic manipulation for reentry blackout alleviation

    Krishnamoorthy, S; Close, S


    The reentry blackout phenomenon affects most spacecraft entering a dense planetary atmosphere from space, due to the presence of a plasma layer that surrounds the spacecraft. This plasma layer is created by ionization of ambient air due to shock and frictional heating, and in some cases is further enhanced due to contamination by ablation products. This layer causes a strong attenuation of incoming and outgoing electromagnetic waves including those used for command and control, communication and telemetry over a period referred to as the ‘blackout period’. The blackout period may last up to several minutes and is a major contributor to the landing error ellipse at best, and a serious safety hazard in the worst case, especially in the context of human spaceflight. In this work, we present a possible method for alleviation of reentry blackout using electronegative DC pulses applied from insulated electrodes on the reentry vehicle’s surface. We study the reentry plasma’s interaction with a DC pulse using a particle-in-cell (PIC) model. Detailed models of plasma–insulator interaction are included in our simulations. The absorption and scattering of ions and electrons at the plasma–dielectric interface are taken into account. Secondary emission from the insulating surface is also considered, and its implications on various design issues is studied. Furthermore, we explore the effect of changing the applied voltage and the impact of surface physics on the creation and stabilization of communication windows. The primary aim of this analysis is to examine the possibility of restoring L- and S-band communication from the spacecraft to a ground station. Our results provide insight into the effect of key design variables on the response of the plasma to the applied voltage pulse. Simulations show the creation of pockets where electron density in the plasma layer is reduced three orders of magnitude or more in the vicinity of the electrodes. These pockets extend to

  3. EntrySat: A 3U CubeStat to study the reentry atmospheric environment

    Anthony, Sournac; Raphael, Garcia; David, Mimoun; Jeremie, Chaix


    ISAE France Entrysat has for main scientific objective the study of uncontrolled atmospheric re-entry. This project, is developed by ISAE in collaboration with ONERA and University of Toulouse, is funded by CNES, in the overall frame of the QB50 project. This nano-satellite is a 3U Cubesat measuring 34*10*10 cm3, similar to secondary debris produced during the break up of a spacecraft. EntrySat will collect the external and internal temperatures, pressure, heat flux, attitude variations and drag force of the satellite between ≈150 and 90 km before its destruction in the atmosphere, and transmit them during the re-entry using the IRIDIUM satellite network. The result will be compared with the computations of MUSIC/FAST, a new 6-degree of freedom code developed by ONERA to predict the trajectory of space debris. In order to fulfil the scientific objectives, the satellite will acquire 18 re-entry sensors signals, convert them and compress them, thanks to an electronic board developed by ISAE students in cooperation with EREMS. In order to transmit these data every second during the re-entry phase, the satellite will use an IRIDIUM connection. In order to keep a stable enough attitudes during this phase, a simple attitude orbit and control system using magnetotorquers and an inertial measurement unit (IMU) is developed at ISAE by students. A commercial GPS board is also integrated in the satellite into Entry Sat to determine its position and velocity which are necessary during the re-entry phase. This GPS will also be used to synchronize the on-board clock with the real-time UTC data. During the orbital phase (≈2 year) EntrySat measurements will be recorded transmitted through a more classical "UHF/VHF" connection. Preference for presentation: Poster Most suitable session: Author for correspondence: Dr Raphael F. Garcia ISAE 10, ave E. Belin, 31400 Toulouse, France +33 5 61 33 81 14

  4. Genetics Home Reference: beta thalassemia

    ... Facebook Twitter Home Health Conditions Beta thalassemia Beta thalassemia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Beta thalassemia is a blood disorder that reduces the production ...

  5. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew


    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  6. Rapid synthesis of beta zeolites

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng


    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  7. A general method for closed-loop inverse simulation of helicopter maneuver flight

    Wei WU


    Full Text Available Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability. A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provide mathematical descriptions of different kinds of maneuvers. A comprehensive control solver based on the optimal linear quadratic regulator theory is developed to calculate the pilot controls of different maneuvers. The coupling problem between pilot controls and flight control system outputs is well solved by taking the flight control system model into the control solver. Inverse simulation of three different kinds of maneuvers with different agility requirements defined in the ADS-33E-PRF is implemented based on the developed method for a UH-60 helicopter. The results show that the method developed in this paper can solve the closed-loop inverse simulation problem of helicopter maneuver flight with high reliability as well as efficiency. Keywords: Closed-loop, Flying quality, Helicopters, Inverse simulation, Maneuver flight

  8. Dynamic sensor tasking and IMM EKF estimation for tracking impulsively maneuvering satellites

    Lace, Arthur A.

    In order to efficiently maintain space situational awareness, care must be taken to optimally allocate expensive observation resources. In most situations the available sensors capable of tracking spacecraft have their time split between many different monitoring responsibilities. Tracking maneuvering spacecraft can be especially difficult as the schedule of maneuvers may not be known and will often throw off previous orbital models. Effectively solving this tasking problem is an ongoing focus of research in the area of space situational awareness. Most methods of automated tasking do not make use of interacting multiple model extended Kalman filter techniques to better track satellites during maneuvers. This paper proposes a modification to a Fisher information gain and estimated state covariance based sensor tasking method to take maneuver probability and multiple model dynamics into account. By incorporating the probabilistic maneuvering model, sensor tasking can be improved during satellite maneuvers using constrained resources. The proposed methods are verified through the use of numerical simulations with multiple maneuvering satellites and both orbital and ground-based sensors.

  9. Minimum Propellant Low-Thrust Maneuvers near the Libration Points

    Marinescu, A.; Dumitrache, M.

    The impulse technique certainly can bring the vehicle on orbits around the libration points or close to them. The question that aries is, by what means can the vehicle arrive in such cases at the libration points? A first investigation carried out in this paper can give an answer: the use of the technique of low-thrust, which, in addition, can bring the vehicle from the libration points near to or into orbits around these points. This aspect is considered in this present paper where for the applications we have considered the transfer for orbits of the equidistant point L4 and of the collinear point L2, from Earth-moon system. This transfer maneuver can be used to insertion one satellite on libration points orbits. In Earth- moon system the points L 4 and L 5 because an vehicle in on of the equidistant points in quite stable and remains in its vicinity of perturbed, have potential interest for the establishment of transporder satellite for interplanetary tracking. In contrast an vehicle in one of the collinear points is quite instable and it will oscillate along the Earth-moon-axis at increasing amplitude and gradually escape from the libration point. Let use assume that a space vehicle equipped with a low-thrust propulsion is near a libration point L. We consider the planar motion in the restricted frame of the three bodies in the rotating system L, where the Earth-moon distance D=l. The unit of time T is period of the moon's orbit divided by 2 and multiplied by the square root of the quantity one plus the moon/Earth mass ratio, and the unit of mass is the Earth's mass. With these predictions the motion equatios of the vehicle equiped with a low-thrust propulsion installation in the linear approximation near the libration point, have been established. The parameters of the motion at the beginning and the end of these maneuvers are known, the variational problem has been formulated as a Lagrange type problem with fixed extremities. On established the differential

  10. Beta particle measurement fundamentals

    Alvarez, J.L.


    The necessary concepts for understanding beta particle behavior are stopping power, range, and scattering. Dose as a consequence of beta particle interaction with tissue can be derived and explained by these concepts. Any calculations of dose, however, assume or require detailed knowledge of the beta spectrum at the tissue depth of calculation. A rudimentary knowledge of the incident spectrum can be of use in estimating dose, interpretating dose measuring devices and designing protection. The stopping power and range based on the csda will give a conservative estimate in cases of protection design, as scattering will reduce the range. Estimates of dose may be low because scattering effects were neglected

  11. Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers

    Pomares, Jorge; Felicetti, Leonard; Pérez, Javier; Emami, M. Reza


    An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations.

  12. Statistical study of overvoltages by maneuvering in switches in high voltage using EMTP-RV

    Dominguez Herrera, Diego Armando


    The transient overvoltages produced by maneuvering of switches are studied in a statistical way and through a variation the sequential closing times of switches in networks larger than 230 kV. This study is performed according to time delays and typical deviation ranges, using the tool EMTP- RV (ElectroMagnetic Trasient Program Restructured Version). A conceptual framework related with the electromagnetic transients by maneuver is developed in triphasic switches installed in nominal voltages higher than 230 kV. The methodology established for the execution of statistical studies of overvoltages by switch maneuver is reviewed and evaluated by simulating two fictitious cases in EMTP-RV [es

  13. Neutrinoless double beta decay


    Oct 6, 2012 ... Anyhow, the 'multi-isotope' ansatz is needed to compensate for matrix element ... The neccessary half-life requirement to touch this ... site energy depositions (like double beta decay) and multiple site interactions (most of.

  14. Beta-Carotene

    ... disease (COPD). It is also used to improve memory and muscle strength. Some people use beta-carotene ... to reduce the chance of death and night blindness during pregnancy, as well as diarrhea and fever ...

  15. Double beta decay: experiments

    Fiorini, Ettore


    The results obtained so far and those of the running experiments on neutrinoless double beta decay are reviewed. The plans for second generation experiments, the techniques to be adopted and the expected sensitivities are compared and discussed

  16. Safe Reentry for False Aneurysm Operations in High-Risk Patients.

    Martinelli, Gian Luca; Cotroneo, Attilio; Caimmi, Philippe Primo; Musica, Gabriele; Barillà, David; Stelian, Edmond; Romano, Angelo; Novelli, Eugenio; Renzi, Luca; Diena, Marco


    In the absence of a standardized safe surgical reentry strategy for high-risk patients with large or anterior postoperative aortic false aneurysm (PAFA), we aimed to describe an effective and safe approach for such patients. We prospectively analyzed patients treated for PAFA between 2006 and 2015. According to the preoperative computed tomography scan examination, patients were divided into two groups according to the anatomy and extension of PAFA: in group A, high-risk PAFA (diameter ≥3 cm) developed in the anterior mediastinum; in group B, low-risk PAFA (diameter <3 cm) was situated posteriorly. For group A, a safe surgical strategy, including continuous cerebral, visceral, and coronary perfusion was adopted before resternotomy; group B patients underwent conventional surgery. We treated 27 patients (safe reentry, n = 13; standard approach, n = 14). Mean age was 60 years (range, 29 to 80); 17 patients were male. Mean interval between the first operation and the last procedure was 4.3 years. Overall 30-day mortality rate was 7.4% (1 patient in each group). No aorta-related mortality was observed at 1 and 5 years in either group. The Kaplan-Meier overall survival estimates at 1 and 5 years were, respectively, 92.3% ± 7.4% and 73.4% ± 13.4% in group A, and 92.9% ± 6.9% and 72.2% ± 13.9% in group B (log rank test, p = 0.830). Freedom from reoperation for recurrent aortic disease was 100% at 1 year and 88% at 5 years. The safe reentry technique with continuous cerebral, visceral, and coronary perfusion for high-risk patients resulted in early and midterm outcomes similar to those observed for low-risk patients undergoing conventional surgery. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. 'What on earth can this possibly mean'? French reentry courts and experts' risk assessment.

    Herzog-Evans, Martine


    Against the backdrop of ten years of punitive criminal justice policies, the number of cases in which risk assessments by psychiatrist experts are mandatory has considerably increased in France. Because of complex and deeply ingrained cultural factors, most experts and academics oppose the use of actuarial or other structured judgement tools, which they assimilate to these policy changes. Parallel to this, the reentry judges in charge of making release and other community sentence decisions have maintained a strong rehabilitative and desistance-focused culture. Drawing on interviews with these judges and experts, the author wanted to assess the judges' expectations of experts' reports, their opinion on actuarial tools, and how they perceived experts and their aptitude to assess risk. The study showed that French reentry judges manage to keep experts' conclusions at bay when they do not fit with their desistance goals, as they can draw upon their own expertise and that of probation services. They do not have much faith in the professionalism and methodology of experts, and would like them to better demonstrate how they reach their conclusions. Moreover, criminogenic needs assessment would be much more useful to them than static risk assessment, which raises the issue as to why this is not the French probation services' role. Reentry judges who never encountered a report which uses a structured tool are influenced by the French ideological debate; those who have read such reports are unanimously in favour of such tools. It thus seems clear that they would like experts to be more strongly guided by science, but are not yet fully aware of what this entails. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. {beta} - amyloid imaging probes

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)


    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  19. The Dix-Hallpike test and the canalith repositioning maneuver.

    Viirre, Erik; Purcell, Ian; Baloh, Robert W


    The Dix-Hallpike test and the canalith repositioning maneuver (CRM) are used to diagnose and treat benign positional vertigo (BPV). Dix-Hallpike is the standard procedure for diagnosis of BPV, but if the horizontal canal is not tested for BPV and the Dix-Hallpike is only carried out once, the condition may not be diagnosed and appropriately treated. We describe our method of testing for BPV and treating it with CRM. The Dix-Hallpike test involves rapidly moving the patient from a sitting position to "head hanging," where the patient's head is at least 10 degrees below horizontal. This is performed initially for the posterior semicircular canals. If these movements fail to elicit vertigo and nystagmus, tests of the horizontal semicircular canals are performed by laying the patient on each side. Importantly, if there is no vertigo or nystagmus elicited by testing the horizontal semi-circular canals, the posterior semicircular canals are tested again. It appears that being held in the head hanging positions and then left and right lateral positions will often allow the canaliths to collect such that the Dix-Hallpike test will become positive. Failure to repeat the tests of the posterior semicircular canals may result in a falsely negative test. Testing the horizontal canals and repeating the Dix-Hallpike test will reduce the likelihood of patients undergoing extra testing or other consequences of misdiagnosis. If, during any of this testing, a movement elicits vertigo or nystagmus, the appropriate CRM is then carried out.

  20. Combilift ideal for maneuvering oil and gas equipment



    This article described an innovative forklift that responds to the oil industry's need for a safer, better and easier way to move long tubular products that cannot be carried high in the air. The Gator Jaw is a duplex pipe clamp attachment that secures to the Combilift forklift carriage. The clamp arm can be hydraulically moved upwards to allow the operator full use of the forks without interference from the hold down arm. The Combilift's platform is ideal for maneuvering oil and gas equipment close to the ground. Since it can travel sideways, the length of the load is not critical. The Gator Jaw's unique design makes it possible for one forklift to handle both skids and pallets. The C-Series product extends to the subsea oil and gas industry, which works with long loads such as oil drilling tools and pipe. The benefits include safer product handling, significant space savings, increased productivity and versatile indoor and outdoor use. The machines are available with a fuel-efficient liquefied petroleum gas (LPG) or diesel engine. 1 fig.

  1. Space shuttle orbit maneuvering engine reusable thrust chamber program

    Senneff, J. M.


    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  2. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    Zhou, Zhiqiang


    The accuracy of spacecraft attitude control using magnetic actuators only is low and on the order of 0.4-5 degrees. The key reason is that the magnetic torque is two-dimensional and it is only in the plane perpendicular to the magnetic field vector. In this paper novel attitude control algorithms using the combination of magnetic actuators with Reaction Wheel Assembles (RWAs) or other types of actuators, such as thrusters, are presented. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for Nadir pointing, pitch and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude control accuracy is comparable with RWAs based attitude control. The algorithms are also useful for the RWAs based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode and the control accuracy can be maintained.

  3. Development of Strategy Generator for PWRs Core Maneuver



    Generally, nuclear power plants are utilized for base-load operation. However, if the nuclear capacity constitutes a large fraction of the total electric capacity in a country, the ability of nuclear power plants to perform load following operation is inevitable. In the load following operation, the reactor power is adjusted based on the fluctuation of electric power demand in the grid. That changes of power level can cause unbalance in the reactor, therefore, the control actions should be done during the power maneuvering. In order that the control actions could be effective and efficient, guidance for the reactor operators is needed. Strategy generator refers to a tool which provides guidance for operators as to control actions to be taken. This work developed the strategy generator based on the three concepts of control strategy. By numerical simulation, performance of these three strategies was tested and compared. The simulation result shows the unique characteristic for each strategy and discussion was provided to evaluate the abilities of each strategy in achieving the control targets. (author)

  4. Open Platform for Limit Protection with Carefree Maneuver Applications

    Jeram, Geoffrey J.


    This Open Platform for Limit Protection guides the open design of maneuver limit protection systems in general, and manned, rotorcraft, aerospace applications in particular. The platform uses three stages of limit protection modules: limit cue creation, limit cue arbitration, and control system interface. A common set of limit cue modules provides commands that can include constraints, alerts, transfer functions, and friction. An arbitration module selects the "best" limit protection cues and distributes them to the most appropriate control path interface. This platform adopts a holistic approach to limit protection whereby it considers all potential interface points, including the pilot's visual, aural, and tactile displays; and automatic command restraint shaping for autonomous limit protection. For each functional module, this thesis guides the control system designer through the design choices and information interfaces among the modules. Limit cue module design choices include type of prediction, prediction mechanism, method of critical control calculation, and type of limit cue. Special consideration is given to the nature of the limit, particularly the level of knowledge about it, and the ramifications for limit protection design, especially with respect to intelligent control methods such as fuzzy inference systems and neural networks.

  5. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    Zhou, Zhiqiang


    A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.

  6. Tactical approach to maneuvering within the chemical contamination labyrinth

    Joseph, T.W. [Department of Energy, Oak Ridge, TN (United States)


    The Department of Energy (DOE) recognized the need and accepts the responsibility for understanding the reality and mitigating the consequence of the complex chemical contamination legacy it inherited as well as controlling, reducing, and eliminating extant emissions and effluents. The key to maneuvering through this complicated and multifaceted labyrinth of concerns, from which a meaningful, high quality, and cost-effective restoration/mitigation machine is then set in motions, is the ability to perform accurate, factual, and explicit health and environmental/ecological risk assessments. Likewise, the common denominator for carrying out this essential task is to have access to comprehensive and reliable data of known quality with which to perform those analyses. DOE is committed to identifying the data universe; to technically scrutinize and ensure the quality of that data; to develop efficient and cost-effective means to maximize the handling, utilization, and sharing of that universe; and to undertake those assessments. DOE views this as an effort that can only be accomplished through a merging of the technical excellence that exists within federal and state agencies, academia, and industry. The task at hand is so large that only by integrating that intelligence base can we hope to accomplish the goals of establishing meaningful standards, developing functional and effective solutions, and providing quality guidance at a national scale.

  7. Steering characteristic of an articulated bus under quasi steady maneuvering

    Ubaidillah, Setiawan, Budi Agus; Aridharma, Airlangga Putra; Lenggana, Bhre Wangsa; Caesar, Bernardus Placenta Previo


    Articulated buses have been being preferred as public transportation modes due to their operational capacity. Therefore, passenger safety must be the priority of this public service vehicle. This research focused on the analytical approach of steering characteristics of an articulated bus when it maneuvered steadily. Such turning condition could be referred as a stability parameter of the bus for preliminary handling assessment. The analytical approach employed kinematics relationship between front and rear bodies as well as steering capabilities. The quasi steady model was developed to determine steering parameters such as turning radius, oversteer, and understeer. The mathematical model was useful for determining both coefficients of understeer and oversteer. The dimension of articulated bus followed a commonly used bus as utilized in Trans Jakarta busses. Based on the simulation, for one minimum center of the body, the turning radius was calculated about 8.8 m and 7.6 m at steady turning speed of 10 km/h. In neutral condition, the minimum road radius should be 6.5 m at 10 km/h and 6.9 m at 40 km/h. For two centers of the body and oversteer condition, the front body has the turning radius of 8.8 m, while, the rear body has the turning radius of 9.8 m at both turning speeds of 40 km/h. The other steering parameters were discussed accordingly.

  8. A safe-repositioning maneuver for the management of benign paroxysmal positional vertigo: Gans vs. Epley maneuver; a randomized comparative clinical trial.

    Saberi, Alia; Nemati, Shadman; Sabnan, Salah; Mollahoseini, Fatemeh; Kazemnejad, Ehsan


    Benign paroxysmal positional vertigo (BPPV) is the most common cause of peripheral vertigo. Some repositioning maneuvers have been described for its management. The aim of this study was comparing the therapeutic effect of Epley and Gans maneuvers in BPPV. This randomized clinical trial was performed from September to December 2015. 73 patients with true vertigo diagnosed as BPPV enrolled the study. They randomly assigned in quadripartite blocks to modified Epley maneuver group (E) or Gans maneuver group (G). 1 day and 1 week after intervention, the objective and subjective responses to treatment were assessed. Statistical analysis was performed using the Chi-square test and regression model in the SPSS software version 21. Thirty patients enrolled each group with a mean age of 46.9 ± 13.4 (E group) and 46.7 ± 7.5 year (G group). 23.3 % of E group and 26.7 % of G group were men (p = 0.766). In E and G groups in the first day, subjective outcomes revealed 86.7 and 60 % rate of success (p = 0.02); and 86.7 and 56.7 % of patients exhibited objective improvement, respectively (p = 0.01). After 1 week, the subjective and objective outcomes revealed improvement among 70 % of E group and 46.7 % of G group (p = 0.067). The only complication with significant difference was cervical pain with a higher rate in E group (23.3 vs. 0.0 %, p = 0.005). These results revealed the similar long-term efficacy of Epley and Gans maneuver for the treatment of BPPV. Cervical pain was most frequent complication of Epley maneuver.

  9. Focal and Reentrant Mechanisms of Torsades de Pointes: EAD, Reentry, or Chimera?

    Yuji Murakawa, MD


    Full Text Available Torsades de pointes (TdP. is characterized not only by its electrocardiographic morphology but also by a tendency to spontaneously terminate. Although clinical and experimental studies suggested that TdP is triggered exclusively by early afterdepolarization, the reentrant mechanism seems to play a certain role in its maintenance. In this article, I review the studies that investigated the origin and activation sequences of the twisting QRS complexes of TdP, and discuss whether it is fortunate or unfortunate for us if TdP has something to do with reentry.

  10. Re-entry simulation chamber for thermo-mechanical characterisation of space materials

    Liedtke, Volker


    During re-entry, materials and components are subject to very high thermal and mechanical loads. Any failure may cause loss of mission. Therefore, materials and components have to be tested under most rigid conditions to verify the suitability of the material and to verify the design of the components. The Re-Entry Simulation Chamber (RESiC) at ARC Seibersdorf research (ARCS) allows simulating the high thermal loads as well as complex mechanical load profiles that may occur during a re-entry; additionally, the influence of chemical reactions of materials with gaseous components of the atmosphere can be studied. The high vacuum chamber (better than 1×10-6 mbar) has a diameter of 650 mm and allows a sample height of 500 mm, or 1000 mm with extension flange. The gas dosing system is designed to emulate the increasing atmospheric pressure during the re-entry trajectory of a vehicle. Heating is performed by a 30 kW induction generator that allows a sufficiently rapid heating of larger components; electrically conductive materials such as metals or carbon fibre reinforced ceramics are directly heated, while for electrical insulators, susceptor plates or tubes will be employed. The uniaxial servo-hydraulic testing machine has a maximum load of 70 kN, either static or with a frequency of up to 70 Hz, with any given load profile (sinus, rectangular, triangular, ...). Strain measurements will be done by non-contacting laser speckle system for maximum flexibility and minimum instrumentation time effort (currently under application testing), or by strain gauges. All relevant process parameters are controlled and recorded by microcomputer. The highly sophisticated control software allows a convenient and reliable multi-channel data acquisition, e.g. temperatures at various positions of the test piece, pressure, loads, strains, and any other test data according to customer specifications; the data format is suitable for any further data processing. During the set-up and

  11. Efficacy of Epley’s Maneuver in Treating BPPV Patients: A Prospective Observational Study

    Sushil Gaur


    Full Text Available Vertigo and balance disorders are among the most common symptoms encountered in patients who visit ENT outpatient department. This is associated with risk of falling and is compounded in elderly persons with other neurologic deficits and chronic medical problems. BPPV is the most common cause of peripheral vertigo. BPPV is a common vestibular disorder leading to significant morbidity, psychosocial impact, and medical costs. The objective of Epley’s maneuver, which is noninvasive, inexpensive, and easily administered, is to move the canaliths out of the canal to the utricle where they no longer affect the canal dynamics. Our study aims to analyze the response to Epley’s maneuver in a series of patients with posterior canal BPPV and compares the results with those treated exclusively by medical management alone. Even though many studies have been conducted to prove the efficacy of this maneuver, this study reinforces the validity of Epley’s maneuver by comparison with the medical management.

  12. Importance of back blow maneuvers in a 6 month old patient with sudden upper airway obstruction

    Pinar Gencpinar


    Full Text Available Foreign body aspiration in children under four years old is one of the most frequently observed reasons for accident related deaths. It is more common in this age group due to inadequate swallowing functions and exploration of objects with the mouth. The most frequently encountered foreign bodies are food and toy parts. Life threatening complete laryngeal obstruction is rarely observed. Dyspnea, hypersalivation, cough and cyanosis can be seen. The basic and life-saving treatment approach is complete removal of foreign body maneuvers in the sudden onset of total obstruction. Here we report a six-month old male, who ingested a foreign body and was treated with back blow maneuvers successfully. In this case we emphasized the importance of back blow maneuvers. Keywords: Upper airway obstruction, Child, Back blows maneuvers

  13. A Computer Simulation of the System-Wide Effects of Parallel-Offset Route Maneuvers

    Lauderdale, Todd A.; Santiago, Confesor; Pankok, Carl


    Most aircraft managed by air-traffic controllers in the National Airspace System are capable of flying parallel-offset routes. This paper presents the results of two related studies on the effects of increased use of offset routes as a conflict resolution maneuver. The first study analyzes offset routes in the context of all standard resolution types which air-traffic controllers currently use. This study shows that by utilizing parallel-offset route maneuvers, significant system-wide savings in delay due to conflict resolution of up to 30% are possible. It also shows that most offset resolutions replace horizontal-vectoring resolutions. The second study builds on the results of the first and directly compares offset resolutions and standard horizontal-vectoring maneuvers to determine that in-trail conflicts are often more efficiently resolved by offset maneuvers.

  14. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver, Phase I

    National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...

  15. The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers

    Kaplan, Sigal; Prato, Carlo Giacomo

    This study explores the plausibility of regret minimization as behavioral paradigm underlying the choice of crash avoidance maneuvers. Alternatively to previous studies that considered utility maximization, this study applies the random regret minimization (RRM) model while assuming that drivers ...

  16. The application of the random regret minimization model to drivers’ choice of crash avoidance maneuvers

    Kaplan, Sigal; Prato, Carlo Giacomo


    This study explores the plausibility of regret minimization as behavioral paradigm underlying the choice of crash avoidance maneuvers. Alternatively to previous studies that considered utility maximization, this study applies the random regret minimization (RRM) model while assuming that drivers ...

  17. Determination of the optimal conditions for inclination maneuvers using a Swing-by

    Moura, O.; Celestino, C. C.; Prado, A. F. B. A.


    The search for methods to reduce the fuel consumption in orbital transfers is something relevant and always current in astrodynamics. Therefore, the maneuvers assisted by the gravity, also called Swing-by maneuvers, can be an advantageous option to save fuel. The proposal of the present research is to explore the influence of some parameters in a Swing-by of an artificial satellite orbiting a planet with one of the moons of this mother planet, with the goal of changing the inclination of the artificial satellite around the main body of the system. The fuel consumption of this maneuver is compared with the required consumption to perform the same change of inclination using the classical approach of impulsive maneuvers.

  18. Development of a Ground Vehicle Maneuver Ontology to Support the Common Operational Picture

    Richmond, Paul W; Blais, Curtis L; Goerger, Niki C


    .... This paper describes both the Mobility-COP, from which warfighters can assess the ability of forces to maneuver effectively under multiple environmental and tactical conditions, and a formal ontology...

  19. The Rapier or the Club: The Relationship between Attrition and Maneuver Warfare

    Springman, Jeffrey A


    ...? This project compares the relationship between attrition and maneuver warfare. The study considers whether there are times when wars of attrition should be fought, and whether there are conditions that force wars of attrition...

  20. Use of Lung Opening Maneuver in Patients with Acute Respiratory Failure After Cardiosurgical Operations

    A. A. Yeremenko


    Full Text Available Postoperative respiratory failure is a most common complication and a main cause of postoperative death. The lung opening maneuver is a most effective method of respiratory therapy for this syndrome.Objective. To evaluate the impact of recruiting maneuver on gas exchange parameters, the biomechanical properties of the lung, and hemodynamic parameters. To determine whether the lung opening maneuver can be fully performed in patients undergoing cardiac surgery.Materials and methods. The study covered 19 patients aged 53 to 70 years who had postoperative failure. The indication for the recruiting maneuver was a decrease in the oxygenation index below 250 mm Hg during assisted ventilation (AV with FiO2>0.5, an inspiratory-expira-tory phase ratio of 1:1 to 3:1, and a positive end-expiratory pressure of 5—10 cm H2O.Results. A decrease in the oxygenation index to 139±36 mm Hg was observed before the recruiting maneuver was applied. Cd;n. averaged 41.1±8.4 ml/cm H2O. After use of the recruiting maneuver, there were increases in the oxygenation index up to 371±121 mm Hg and in Cd;n. up to 64.3±10 ml/cm H2O in all the patients. When the recruiting maneuver was employed, 14 patients were observed to have elevated blood pressures corrected with a vasopressor. One patient developed pneumothorax that was drained in proper time.Conclusion. The application of the lung opening maneuver leads to a considerable improvement of gas exchange parameters and lung mechanical properties.

  1. CFD Analysis of a Maneuvering F/A-18E Super Hornet


    tools for aircraft, ships, and radio - frequency antenna design and analysis. The resulting program is called the Computational Research and Engineering...accurately predicting the forces and moments on the F/A-18E Super Hornet while performing several complicated maneuvers. Past F/A-18E computational studies... predicting the forces and moments on the F/A-18E Super Hornet while performing several complicated maneuvers. Past F/A-18E computational studies have

  2. Know Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models


    features/index.htm. Accessed: 2014-09-30. [3] Google self driving car . Google driverless car . Accessed: 2014-10-11. [4...and outside the car , GPS, and speed information, with lane and driving maneuver annotations. II. RELATED WORK Assistive features for vehicles . Recent...made driving safer over the last decade. They prepare vehicles for unsafe road conditions and alert drivers if they perform a dangerous maneuver

  3. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo

    Korkmaz, Mukadder; Korkmaz, Hakan


    ABSTRACT INTRODUCTION: Benign paroxysmal positional vertigo (BPPV) is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. OBJECTIVE: The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning proced...

  4. A general method for closed-loop inverse simulation of helicopter maneuver flight

    Wei WU


    Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability. A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provid...

  5. Analysis of Electromagnetic Wave Propagation in a Magnetized Re-Entry Plasma Sheath Via the Kinetic Equation

    Manning, Robert M.


    Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that is experienced during atmospheric reentry can be mitigated through the appropriate control of an external magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and involves an analytical solution for the electric and magnetic fields within the plasma allowing for a description of the attendant transmission, reflection and absorption coefficients. The ability to transmit through the magnetized plasma is due to the magnetic windows that are created within the plasma via the well-known whistler modes of propagation. The case of 2 GHz transmission through a re-entry plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves through the re-entry phase.

  6. Advanced Technology and Mitigation (ATDM) SPARC Re-Entry Code Fiscal Year 2017 Progress and Accomplishments for ECP.

    Crozier, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howard, Micah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rider, William J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Freno, Brian Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bova, Steven W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carnes, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The SPARC (Sandia Parallel Aerodynamics and Reentry Code) will provide nuclear weapon qualification evidence for the random vibration and thermal environments created by re-entry of a warhead into the earth’s atmosphere. SPARC incorporates the innovative approaches of ATDM projects on several fronts including: effective harnessing of heterogeneous compute nodes using Kokkos, exascale-ready parallel scalability through asynchronous multi-tasking, uncertainty quantification through Sacado integration, implementation of state-of-the-art reentry physics and multiscale models, use of advanced verification and validation methods, and enabling of improved workflows for users. SPARC is being developed primarily for the Department of Energy nuclear weapon program, with additional development and use of the code is being supported by the Department of Defense for conventional weapons programs.

  7. Re-Entry Women Students in Higher Education: A Model for Non-Traditional Support Programs in Counseling and Career Advisement.

    Karr-Kidwell, PJ

    A model program of support for non-traditional women students has been developed at Texas Woman's University (TWU). Based on a pilot study, several steps were taken to assist these re-entry students at TWU. For example, in spring semester of 1983, a committee for re-entry students was established, with a student organization--Women in…

  8. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    Thorsen, Adam

    This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight

  9. Effects of a reentry plasma sheath on the beam pointing properties of an array antenna

    Bowen Bai


    Full Text Available The reduction in the gain of an on-board antenna caused by a reentry plasma sheath is an important effect that contributes to the reentry “blackout” problem. Using phased array antenna and beamforming technology could provide higher gain and an increase in the communication signal intensity. The attenuation and phase delay of the electromagnetic (EM waves transmitting through the plasma sheath are direction-dependent, and the radiation pattern of the phased array antenna is affected, leading to a deviation in the beam pointing. In this paper, the far-field pattern of a planar array antenna covered by a plasma sheath is deduced analytically by considering both refraction and mutual coupling effects. A comparison between the analytic results and the results from an electromagnetic simulation is carried out. The effect of the plasma sheath on the radiation pattern and the beam pointing errors of the phased array antenna is studied systematically, and the derived results could provide useful information for the correction of pointing errors.

  10. Recording animal vocalizations from a UAV: bat echolocation during roost re-entry.

    Kloepper, Laura N; Kinniry, Morgan


    Unmanned aerial vehicles (UAVs) are rising in popularity for wildlife monitoring, but direct recordings of animal vocalizations have not yet been accomplished, likely due to the noise generated by the UAV. Echolocating bats, especially Tadarida brasiliensis, are good candidates for UAV recording due to their high-speed, high-altitude flight. Here, we use a UAV to record the signals of bats during morning roost re-entry. We designed a UAV to block the noise of the propellers from the receiving microphone, and report on the characteristics of bioacoustic recordings from a UAV. We report the first published characteristics of echolocation signals from bats during group flight and cave re-entry. We found changes in inter-individual time-frequency shape, suggesting that bats may use differences in call design when sensing in complex groups. Furthermore, our first documented successful recordings of animals in their natural habitat demonstrate that UAVs can be important tools for bioacoustic monitoring, and we discuss the ethical considerations for such monitoring.

  11. Incarcerated women's relationship-based strategies to avoid drug use after community re-entry.

    Snell-Rood, Claire; Staton-Tindall, Michele; Victor, Grant


    While recent research has stressed the supportive role that family and friends play for incarcerated persons as they re-enter the community, drug-using incarcerated women re-entering the community often have to rely on family, community, and intimate relationships that have played a role in their substance abuse and criminalization. In this study the authors conducted qualitative analysis of clinical sessions with rural, drug-using women (N = 20) in a larger prison-based HIV risk reduction intervention in Kentucky during 2012-2014 to examine incarcerated women's perceptions of the role of their family, community, and intimate relationships in their plans to decrease their substance abuse upon community re-entry. Women stressed the obstacles to receiving support in many of their family and drug-using relationships after community re-entry. Nonetheless, they asserted that changes in their relationships could support their desires to end their substance abuse by setting limits on and using their positive relationships, particularly with their children, to motivate them to change. Interventions to promote incarcerated women's health behavior changes-including substance abuse-must acknowledge the complex social environments in which they live.

  12. Reentry Program and Social Work Education: Training the Next Generation of Criminal Justice Social Workers.

    Franke, Nancy D; Treglia, Dan; Cnaan, Ram A


    Social work plays a marginal role in opposing the trend of mass incarceration and high rates of recidivism, and social work education offers limited opportunities for students to specialize in working with people who are currently or were previously incarcerated. How to train students of social work to work against mass-incarceration is still challenging. The authors devised and implemented an in-school social service agency devoted to working with people pre and post release from a prison system. The agency is a field practicum setting where interested students study and practice reentry work. In this article, the authors describe and assess the educational merit of this in-school agency. Findings from surveys of students and alumni suggest that the program attained its educational goals of connecting classroom education to practice experience and training students for careers in the criminal justice system. The authors also discuss pending challenges. The experience of the Goldring Reentry Initiative suggests that by developing their own social work agencies, the authors may be able to heighten their students educational experience and expand their contribution to social work practice broadly.

  13. Boosted beta regression.

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  14. Manned maneuvering unit applications for automated rendezvous and capture

    Brehm, Donald L.; Cuseo, John A.; Lenda, Joseph A.; Ray, Lex; Whitsett, C. Edward

    Automated Rendezvous and Capture (AR&C) is an important technology to multiple National Aeronautics and Space Administration (NASA) programs and centers. The recent Johnson Spacecraft Center (JSC) AR&C Quality Function Deployment (QFD) has listed on-orbit demonstration of related technologies as a near term priority. Martin Marietta has been evaluating use of the Manned Maneuvering Unit (MMU) for a low cost near term on-orbit demonstration of AR&C technologies such as control algorithms, sensors, and processors as well as system level performance. The MMU Program began in 1979 as the method of repairing the Space Shuttle (STS) Thermal Protection System (the tiles). The units were not needed for this task, but were successfully employed during three Shuttle flights in 1984: a test flight was flown in in February as proof of concept, in April the MMU participated in the Solar Max Repair Mission, and in November the MMU's returned to space to successfully rescue the two errant satellites, Westar and Palapa. In the intervening years, the MMU simulator and MMU Qualification Test Unit (QTU) have been used for Astronaut training and experimental evaluations. The Extra-Vehicular Activities (EVA) Retriever has used the QTU, in an unmanned form, as a free-flyer on the Johnson Space Center (JSC) Precision Air Bearing Floor (PABF). Currently, the MMU is undergoing recertification for flight. The two flight units were removed from storage in September, 1991 and evaluation tests were performed. The tests demonstrated that the units are in good shape with no discrepancies that would preclude further use. The Return to Flight effort is currently clearing up recertification issues and evaluating the design against the present Shuttle environments.

  15. An Analytical Solution for Yaw Maneuver Optimization on the International Space Station and Other Orbiting Space Vehicles

    Dobrinskaya, Tatiana


    This paper suggests a new method for optimizing yaw maneuvers on the International Space Station (ISS). Yaw rotations are the most common large maneuvers on the ISS often used for docking and undocking operations, as well as for other activities. When maneuver optimization is used, large maneuvers, which were performed on thrusters, could be performed either using control moment gyroscopes (CMG), or with significantly reduced thruster firings. Maneuver optimization helps to save expensive propellant and reduce structural loads - an important factor for the ISS service life. In addition, optimized maneuvers reduce contamination of the critical elements of the vehicle structure, such as solar arrays. This paper presents an analytical solution for optimizing yaw attitude maneuvers. Equations describing pitch and roll motion needed to counteract the major torques during a yaw maneuver are obtained. A yaw rate profile is proposed. Also the paper describes the physical basis of the suggested optimization approach. In the obtained optimized case, the torques are significantly reduced. This torque reduction was compared to the existing optimization method which utilizes the computational solution. It was shown that the attitude profiles and the torque reduction have a good match for these two methods of optimization. The simulations using the ISS flight software showed similar propellant consumption for both methods. The analytical solution proposed in this paper has major benefits with respect to computational approach. In contrast to the current computational solution, which only can be calculated on the ground, the analytical solution does not require extensive computational resources, and can be implemented in the onboard software, thus, making the maneuver execution automatic. The automatic maneuver significantly simplifies the operations and, if necessary, allows to perform a maneuver without communication with the ground. It also reduces the probability of command

  16. Labelling of. beta. -endorphin (. beta. -END) and. beta. -lipotropin (. beta. -LPH) by /sup 125/I

    Deby-Dupont, G.; Joris, J.; Franchimont, P. (Universite de Liege (Belgique)); Reuter, A.M.; Vrindts-Gevaert, Y. (Institut des Radioelements, Fleurus (Belgique))


    5 of human ..beta..-endorphin were labelled with 2 mCi /sup 125/I by the chloramine T technique. After two gel filtrations on Sephadex G-15 and on Sephadex G-50 in phosphate buffer with EDTA, Trasylol and mercapto-ethanol, a pure tracer was obtained with a specific activity about 150 at + 4/sup 0/C, the tracer remained utilizable for 30 days without loss of immunoreactivity. The labelling with lactoperoxydase and the use of another gel filtration method (filtration on Aca 202) gave a /sup 125/I ..beta..-END tracer with the same immunoreactivity. The binding of this tracer to the antibody of an anti-..beta..-END antiserum diluted at 1/8000 was 32% with a non specific binding of 2%. 5 of human ..beta..-lipotropin were labelled with 0.5 mCi /sup 125/I by the lactoperoxydase method. After two gel filtrations on Sephadex G-25 and on Sephadex G-75 in phosphate buffer with EDTA, Trasylol and mercapto-ethanol, a pure tracer with a specific activity of 140 was obtained. It remained utilizable for 30 days when kept at + 4/sup 0/C. Gel filtration on Aca 202 did not give good purification, while gel filtration on Aca 54 was good but slower than on Sephadex G-75. The binding to antibody in absence of unlabelled ..beta..-LPH was 32% for an anti-..beta..-LPH antiserum diluted at 1/4000. The non specific binding was 2.5%.

  17. [Effects of recruitment maneuver in prone position on hemodynamics in patients with severe pulmonary infection].

    Fan, Yuan-hua; Liu, Yuan-fei; Zhu, Hua-yong; Zhang, Min


    To evaluate effects of recruitment maneuver in prone position on hemodynamics in patients with severe pulmonary infection, based on the protective pulmonary ventilation strategy. Ninety-seven cases with severe pulmonary infection admitted to intensive care unit (ICU) of Ganzhou City People's Hospital undergoing mechanical ventilation were involved. Volume controlled ventilation mode with small tidal volume (8 ml/kg) and positive end-expiratory pressure (PEEP) of 6 cm H(2)O [1 cm H(2)O = 0.098 kPa] was conducted. Each patient underwent recruitment maneuver in supine position and then in prone position [PEEP 20 cm H(2)O+pressure control (PC) 20 cm H(2)O]. Heart rate (HR), mean arterial pressure (MAP), pulse oxygen saturation [SpO(2)] and blood gas analysis data were recorded before and after recruitment maneuver in either position. A double-lumen venous catheter was inserted into internal jugular vein or subclavian vein, and a pulse index contour cardiac output (PiCCO) catheter was introduced into femoral artery. Cardiac index (CI), stroke volume index (SVI), systemic vascular resistance index (SVRI), intra-thoracic blood volume index (ITBVI), extra vascular lung water index (EVLWI), global end-diastolic volume index (GEDVI), global ejection fraction (GEF), stroke volume variation (SVV) and central vein pressure (CVP) were monitored. (1) Compared with data before recruitment maneuver, there were no significant differences in HR and MAP after supine position and prone position recruitment maneuver, but significant differences in SpO(2) were found between before and after recruitment maneuver when patients' position was changed (supine position: 0.954 ± 0.032 vs. 0.917 ± 0.025, P recruitment maneuver (P recruitment maneuver, CI [L×min(-1)×m(-2)], SVI (ml/m(2)), GEDVI (ml/m(2)) and GEF were decreased significantly during recruitment maneuver (supine position: CI 3.2 ± 0.4 vs. 3.8 ± 0.6, SVI 32.4 ± 5.6 vs. 38.8 ± 6.5, GEDVI 689 ± 44 vs. 766 ± 32, GEF 0.267 ± 0

  18. Plasma beta HCG determination

    Amaral, L.B.D.; Pinto, J.C.M.; Linhares, E.; Linhares, Estevao


    There are three important indications for the early diagnosis of pregnancy through the determination of the beta sub-unit of chorionic gonadotrophin using radioimmunoassay: 1) some patient's or doctor's anxiety to discover the problem; 2) when it will be necessary to employ diagnostic or treatment procedures susceptible to affect the ovum; and 3) in the differential diagnosis of amenorrhoea, uterine hemorrhage and abdominal tumors. Other user's are the diagnosis of missed absortion, and the diagnosis and follow-up of chrorioncarcinoma. The AA. studied 200 determinations of plasma beta-HCG, considering the main difficulties occuring in the clinical use of this relevant laboratory tool in actual Obstetrics. (author) [pt

  19. Relation between the 2{nu}{beta}{beta} and 0{nu}{beta}{beta} nuclear matrix elements

    Vogel, Petr [Kellogg Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Simkovic, Fedor [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, SK-84248 Bratislava (Slovakia)


    A formal relation between the GT part of the nuclear matrix elements M{sub GT}{sup 0{nu}} of 0{nu}{beta}{beta} decay and the closure matrix elements M{sub cl}{sup 2{nu}} of 2{nu}{beta}{beta} decay is established. This relation is based on the integral representation of these quantities in terms of their dependence on the distance r between the two nucleons undergoing transformation. We also discuss the difficulties in determining the correct values of the closure 2{nu}{beta}{beta} decay matrix elements.

  20. Qualitative analysis of the Dix-Hallpike maneuver in multi-canal BPPV using a biomechanical model: Introduction of an expanded Dix-Hallpike maneuver for enhanced diagnosis of multi-canal BPPV

    Henri Traboulsi


    Conclusion: The Dix–Hallpike maneuver may cause simultaneous movement of otoliths present in multiple canals and create an obstacle to accurate diagnosis in multi-canal BPPV. An expanded Dix-Hallpike maneuver is described which adds intermediate steps with the head positioned to the right and left in the horizontal position before head-hanging. This expanded maneuver has helped to isolate affected semi-circular canals for individual assessment in multiple canal BPPV.

  1. Prevention of shoulder dystocia: A randomized controlled trial to evaluate an obstetric maneuver.

    Poujade, Olivier; Azria, Elie; Ceccaldi, Pierre-François; Davitian, Carine; Khater, Carine; Chatel, Paul; Pernin, Emilie; Aflak, Nizar; Koskas, Martin; Bourgeois-Moine, Agnès; Hamou-Plotkine, Laurence; Valentin, Morgane; Renner, Jean-Paul; Roy, Carine; Estellat, Candice; Luton, Dominique


    Shoulder dystocia is a major obstetric emergency defined as a failure of delivery of the fetal shoulder(s). This study evaluated whether an obstetric maneuver, the push back maneuver performed gently on the fetal head during delivery, could reduce the risk of shoulder dystocia. We performed a multicenter, randomized, single-blind trial to compare the push back maneuver with usual care in parturient women at term. The primary outcome, shoulder dystocia, was considered to have occurred if, after delivery of the fetal head, any additional obstetric maneuver, beginning with the McRoberts maneuver, other than gentle downward traction and episiotomy was required. We randomly assigned 522 women to the push back maneuver group (group P) and 523 women to the standard vaginal delivery group (group S). Finally, 473 women assigned to group P and 472 women assigned to group S delivered vaginally. The rate of shoulder dystocia was significantly lower in group P (1·5%) than in group S (3·8%) (odds ratio [OR] 0·38 [0·16-0·92]; P = 0·03). After adjustment for predefined main risk factors, dystocia remained significantly lower in group P than in group S. There were no significant between-group differences in neonatal complications, including brachial plexus injury, clavicle fracture, hematoma and generalized asphyxia. In this trial in 945 women who delivered vaginally, the push back maneuver significantly decreased the risk of shoulder dystocia, as compared with standard vaginal delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Five surgical maneuvers on nasal mucosa movement in cleft palate repair: A cadaver study.

    Nguyen, Dennis C; Patel, Kamlesh B; Parikh, Rajiv P; Skolnick, Gary B; Woo, Albert S


    This biomechanical study aims to characterize the nasal mucosa during palatoplasty, thereby describing the soft tissue attachments at different zones and quantifying movement following their release. Palatal nasal mucosa was exposed and divided in the midline in 10 adult cadaver heads. Five consecutive maneuvers were performed: (1) elevation of nasal mucosa off the maxilla, (2) dissection of nasal mucosa from soft palate musculature, (3) separation of nasal mucosa from palatine aponeurosis, (4) release of mucosa at the pterygopalatine junction, and (5) mobilization of vomer flaps. The mucosal movements across the midline at the midpalate (MP) and posterior nasal spine (PNS) following each maneuver were measured. At the MP, maneuvers 1-4 cumulatively provided 3.8 mm (36.9%), 4.9 mm (47.6%), 6.1 mm (59.2%), and 10.3 mm, respectively. Vomer flap (10.5 mm) elevation led to mobility equivalent to that of maneuvers 1-4 (p = 0.72). At the PNS, cumulative measurements after maneuvers 1-4 were 1.3 mm (10%), 2.4 mm (18.6%), 5.7 mm (44.2%), and 12.9 mm. Here, vomer flaps (6.5 mm) provided less movement (p < 0.001). Maneuver 4 yielded the greatest amount of movement of the lateral nasal mucosa at both MP (4.2 mm, 40.8%) and PNS (7.2 mm, 55.8%). At the MP, complete release of the lateral nasal mucosa achieves as much movement as the vomer flap. At the hard-soft palate junction, the maneuvers progressively add to the movement of the lateral nasal mucosa. The most powerful step is release of attachments along the posterior aspect of the medial pterygoid. Published by Elsevier Ltd.

  3. Mechanical Constraints on Flight at High Elevation Decrease Maneuvering Performance of Hummingbirds.

    Segre, Paolo S; Dakin, Roslyn; Read, Tyson J G; Straw, Andrew D; Altshuler, Douglas L


    High-elevation habitats offer ecological advantages including reduced competition, predation, and parasitism [1]. However, flying organisms at high elevation also face physiological challenges due to lower air density and oxygen availability [2]. These constraints are expected to affect the flight maneuvers that are required to compete with rivals, capture prey, and evade threats [3-5]. To test how individual maneuvering performance is affected by elevation, we measured the free-flight maneuvers of male Anna's hummingbirds in a large chamber translocated to a high-elevation site and then measured their performance at low elevation. We used a multi-camera tracking system to identify thousands of maneuvers based on body position and orientation [6]. At high elevation, the birds' translational velocities, accelerations, and rotational velocities were reduced, and they used less demanding turns. To determine how mechanical and metabolic constraints independently affect performance, we performed a second experiment to evaluate flight maneuvers in an airtight chamber infused with either normoxic heliox, to lower air density, or nitrogen, to lower oxygen availability. The hypodense treatment caused the birds to reduce their accelerations and rotational velocities, whereas the hypoxic treatment had no significant effect on maneuvering performance. Collectively, these experiments reveal how aerial maneuvering performance changes with elevation, demonstrating that as birds move up in elevation, air density constrains their maneuverability prior to any influence of oxygen availability. Our results support the hypothesis that changes in competitive ability at high elevations are the result of mechanical limits to flight performance [7]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ship operation and failure mode analysis using a maneuver simulator

    Cabrerizo-Morales, Miguel Angel; Molina, Rafael; de los Santos, Francisco; Camarero, Alberto


    In a ship or floating structure operation the agents that contribute to the systems behaviour are not only those derived from fluid-structure interaction, but also the ones linked to mooring-control line set-up evolution and human interaction. Therefore, the analysis of such systems is affected by boundary conditions that change during a complete operation. Frequently, monitoring techniques in laboratory (model) and field (prototype) are based in different instrumental techniques adding difficulty to data comparison and, in some cases, inducing precision and repeatability errors. For this reason, the main aim of this study is to develop the methods and tools to achieve a deep knowledge of those floating systems and obtain capabilities to optimize their operationally thresholds. This abstract presents a methodology and an instrumental system applicable both in field and laboratory: SRECMOCOS Project (Small scale REal-time Caisson MOnitoring and COntrol System). SRECMOCOS compiles three modules. For the monitoring and control of the structure it has been developed a synchronized open and modular microcontroller-based electronic system that comprises sensors, to monitor agents and reactions, and actuators to perform pertinent actions after processing the sensors' data. A secondary objective has been to design and implement a global scaled simulator (1:22), at the 3D basin of The Harbour Research Lab at Technical University of Madrid, in which climatic agents and those derived from the rig/maneuvering setup and the structural design were included. The particular case of Campamento's drydock, in Algeciras Bay (Spain), has been used to apply and validate the methodology. SRECMOCOS Project conjugates control, monitoring and wireless communication systems in a real time basis, offering the possibility to register and simulate all the parameters involved in port operations. This approach offers a step forward into a monitoring strategy to be included in monitoring

  5. An Exploration of Factors Reducing Recidivism Rates of Formerly Incarcerated Youth with Disabilities Participating in a Re-Entry Intervention

    Unruh, Deanne K.; Gau, Jeff M.; Waintrup, Miriam G.


    Juvenile offenders are costly to our society in terms of the monetary and social expenditures from the legal system, victims' person costs, and incarceration. The re-entry and community reintegration outcomes for formerly incarcerated youth with a disabling condition are bleak compared to peers without disabilities. In this study, we examined the…

  6. Vocational Interest as a Correlate of Re-Entry of Girls into School in Edo State, Nigeria: Implications for Counselling

    Alika, Ijeoma Henrietta; Egbochuku, Elizabeth Omotunde


    The study investigated the relationship between vocational interest socio-economic status and re-entry of girls into school in Edo State. The research design adopted was correlational because it sought to establish the relationship between the independent variable and the dependent variable. A sample size of 306 girls who re-enrolled in institutes…

  7. Does Offender Gambling on the inside Continue on the outside? Insights from Correctional Professionals on Gambling and Re-Entry

    Williams, D. J.; Walker, Gordon J.


    This study brings to light a neglected topic of particular importance--offender gambling issues within the context of re-entry into the community. Fifteen correctional professionals from Nevada (high gambling availability) and Utah (no legalized gambling) participated in semi-structured interviews to provide insights into how gambling may impact…

  8. The Role of Counselling and Parental Encouragement on Re-Entry of Adolescents into Secondary Schools in Abia State, Nigeria

    Alika, Henrietta Ijeoma; Ohanaka, Blessing Ijeoma


    This paper examined the role of counselling, and parental encouragement on re-entry of adolescents into secondary school in Abia State, Nigeria. A total of 353 adolescents who re-entered school were selected from six secondary schools in the State through a simple random sampling technique. A validated questionnaire was used for data analysis.…

  9. A Qualitative Investigation of the College Choice Experiences and Reentry Expectations of U.S. American Third Culture Kids

    Thurston-Gonzalez, Sara J.


    The focus of this qualitative study is on U.S. third culture kids (TCKs), youth who have grown up abroad because of their parent's work, and their college choice experiences and reentry expectations. Through a background questionnaire and personal interviews with eleven students transitioning from two international secondary schools in a…

  10. Induced nuclear beta decay

    Reiss, H.R.


    Certain nuclear beta decay transitions normally inhibited by angular momentum or parity considerations can be induced to occur by the application of an electromagnetic field. Such decays can be useful in the controlled production of power, and in fission waste disposal

  11. Trichoderma .beta.-glucosidase

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian


    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  12. Applied Beta Dosimetry

    Rich, B.L.


    Measurements of beta and/or nonpenetrating exposure results is complicated and past techniques and capabilities have resulted in significant inaccuracies in recorded results. Current developments have resulted in increased capabilities which make the results more accurate and should result in less total exposure to the work force. Continued development of works in progress should provide equivalent future improvements

  13. Beta thalassemia - a review

    R Jha


    Full Text Available Thalassemia is a globin gene disorder that results in a diminished rate of synthesis of one or more of the globin chains. About 1.5% of the global population (80 to 90 million people are carriers of beta Thalassemia. More than 200 mutations are described in beta thalassemia. However not all mutations are common in different ethnic groups. The only effective way to reduce burden of thalassemia is to prevent birth of homozygotes. Diagnosis of beta thalassemia can be done by fetal DNA analysis for molecular defects of beta thalassemia or by fetal blood analysis. Hematopoietic stem cell transplantation is the only available curative approach for Thalassemia. Many patients with thalassemia in underdeveloped nations die in childhood or adolescence. Programs that provide acceptable care, including transfusion of safe blood and supportive therapy including chelation must be established.DOI: Journal of Pathology of Nepal; Vol.4,No. 8 (2014 663-671

  14. Double Beta Decay Experiments

    Piepke, A.


    The experimental observation of neutrino oscillations and thus neutrino mass and mixing gives a first hint at new particle physics. The absolute values of the neutrino mass and the properties of neutrinos under CP-conjugation remain unknown. The experimental investigation of the nuclear double beta decay is one of the key techniques for solving these open problems

  15. Beta cell adaptation in pregnancy

    Nielsen, Jens Høiriis


    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades...... in the expansion of the beta cell mass in human pregnancy, and the relative roles of endocrine factors and nutrients....

  16. The influence of airway supporting maneuvers on glottis view in pediatric fiberoptic bronchoscopy

    Tarik Umutoglu


    Full Text Available ABSTRACTINTRODUCTION:Flexible fiber optic bronchoscopy is a valuable intervention for evaluation and management of respiratory diseases in both infants, pediatric and adult patients. The aim of this study is to investigate the influence of the airway supporting maneuvers on glottis view during pediatric flexible fiberoptic bronchoscopy.MATERIALS AND METHODS:In this randomized, controlled, crossover study; patients aged between 0 and 15 years who underwent flexible fiberoptic bronchoscopy procedure having American Society of Anesthesiologists I---II risk score were included. Patients having risk of difficult intubation, intubated or patients with tracheostomy, and patients with reduced neck mobility or having cautions for neck mobility were excluded from this study. After obtaining best glottic view at the neutral position, patients were positioned jaw trust with open mouth, jaw trust with teeth prottution, head tilt chin lift and triple airway maneuvers and best glottis scores were recorded.RESULTS:Total of 121 pediatric patients, 57 girls and 64 boys, were included in this study. Both jaw trust with open mouth and jaw trust with teeth prottution maneuvers improved the glottis view compared with neutral position (p 0.05. Head tilt chin lift and triple airway maneuvers improved glottis view when compared with both jaw trust with open mouth and jaw trust with teeth prottution maneuvers and neutral position (p 0.05.

  17. Kristeller maneuvers or fundal pressure and maternal/neonatal morbidity: obstetric and judicial literature review.

    Malvasi, Antonio; Zaami, Simona; Tinelli, Andrea; Trojano, Giuseppe; Montanari Vergallo, Gianluca; Marinelli, Enrico


    A significant amount of data concerning maternal-fetal damage arising from the exertion of Kristeller maneuvers (KMs) or fundal pressure (FP) go unreleased due to medicolegal implications. For this reason, the paper gathers information as to the real magnitude of litigation related to FP-induced damages and injuries. The authors have undertaken a research in order to include general search engines (PubMed-Medline, Cochrane, Embase, Google, GyneWeb) and legal databases (De Jure, Italian database of jurisprudence daily update; Westlaw, Thomson Reuters, American ruling database and Bailii, UK Court Ruling Database). Results confirm said phenomenon to be more wide ranging than it appears through official channels. Several courts of law, both in the United States of America (USA) and in European Union (EU) Member States as well, have ruled against the use of the maneuver itself, assuming a stance conducive to a presumption of guilt against those doctors and healthcare providers who resorted to KMs or FP during deliveries. Given how rife FP is in mainstream obstetric practice, it is as if there were a wide gap between obstetric real-life and what official jurisprudence and healthcare institutions-sanctioned official practices are. The authors think that it would be desirable to draft specifically targeted guidelines or recommendations on maneuvers during vaginal delivery, in which to point out exactly what kinds of maneuvering techniques are to be absolutely banned and what maneuvers are to be allowed, and under what conditions their application can be considered appropriate.

  18. Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.

    Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping


    Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.

  19. Multiple Maneuvering Target Tracking by Improved Particle Filter Based on Multiscan JPDA

    Jing Liu


    Full Text Available The multiple maneuvering target tracking algorithm based on a particle filter is addressed. The equivalent-noise approach is adopted, which uses a simple dynamic model consisting of target state and equivalent noise which accounts for the combined effects of the process noise and maneuvers. The equivalent-noise approach converts the problem of maneuvering target tracking to that of state estimation in the presence of nonstationary process noise with unknown statistics. A novel method for identifying the nonstationary process noise is proposed in the particle filter framework. Furthermore, a particle filter based multiscan Joint Probability Data Association (JPDA filter is proposed to deal with the data association problem in a multiple maneuvering target tracking. In the proposed multiscan JPDA algorithm, the distributions of interest are the marginal filtering distributions for each of the targets, and these distributions are approximated with particles. The multiscan JPDA algorithm examines the joint association events in a multiscan sliding window and calculates the marginal posterior probability based on the multiscan joint association events. The proposed algorithm is illustrated via an example involving the tracking of two highly maneuvering, at times closely spaced and crossed, targets, based on resolved measurements.

  20. oVEMP as an objective indicator of successful repositioning maneuver.

    Asal, Samir; Sobhy, Osama; Balbaa, Amany

    Benign paroxysmal positioning vertigo (BPPV) is the most common peripheral vestibular disorder. Canalolithiasis in the posterior semi-circular canal is the most common underlying pathology that can be treated effectively by repositioning maneuvers. Our hypothesis suggested that successful maneuvers can lead to repositioning of dislodged otoconia to the utricle. Air conducted oVEMP, which is thought to originate from the contra-lateral utricular organ was measured in twenty patients with unilateral BPPV and we compared n1-p1 peak to peak amplitude of the affected ears in 3 separate intervals: on pre-treatment when typical nystagmus was confirmed, immediately after, and 1 week after repositioning maneuvers to assess change, if any, in amplitude. This study showed significant increase of oVEMP amplitude in the affected ears after successful repositioning maneuver that was more significant after 1 week. oVEMP can be used as a reliable objective test for ensuring a successful maneuver rather than subjective dependence on the patient's symptoms, which may be misleading due to a remission. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  1. A Comparison of Obstetric Maneuvers for the Acute Management of Shoulder Dystocia

    Hoffman, Matthew K; Bailit, Jennifer L; Branch, D. Ware; Burkman, Ronald T; Van Veldhusien, Paul; Lu, Li; Kominiarek, Michelle A.; Hibbard, Judith U; Landy, Helain J; Haberman, Shoshana; Wilkins, Isabelle; Gonzalez Quintero, Victor H; Gregory, Kimberly D; Hatjis, Christos G; Ramirez, Mildred M; Reddy, Uma M.; Troendle, James; Zhang, Jun


    Objective To assess the efficacy of obstetric maneuvers for resolving shoulder dystocia, and the effect that these maneuvers have on neonatal injury when shoulder dystocia occurs. Methods Using an electronic database encompassing 206,969 deliveries, we identified all women with a vertex fetus beyond 34 0/7 weeks of gestation who incurred a shoulder dystocia during the process of delivery. Women whose fetuses had a congenital anomaly and women with an antepartum stillbirth were excluded. Medical records of all cases were reviewed by trained abstractors. Cases involving neonatal injury (defined as brachial plexus injury, clavicular or humerus fracture, or hypoxic ischemic encephalopathy or intrapartum neonatal death attributed to the shoulder dystocia) were compared to those without injury. RESULTS Among 132,098 women who delivered a term cephalic liveborn fetus vaginally, 2,018 incurred a shoulder dystocia (1.5%), and 101 (5.2%) of these incurred a neonatal injury. Delivery of the posterior shoulder was associated with the highest rate of delivery when compared to other maneuvers (84.4% compared with 24.3% to 72.0% for other maneuvers; Pdystocia. The need for additional maneuvers was associated with higher rates of neonatal injury. PMID:21555962

  2. Misleading Betas: An Educational Example

    Chong, James; Halcoussis, Dennis; Phillips, G. Michael


    The dual-beta model is a generalization of the CAPM model. In the dual-beta model, separate beta estimates are provided for up-market and down-market days. This paper uses the historical "Anscombe quartet" results which illustrated how very different datasets can produce the same regression coefficients to motivate a discussion of the…

  3. Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles

    Riedell, James A.; Easler, Timothy E.


    This adhesive is capable of repairing damaged leading edge components of reentry vehicles while in space, and is novel with regard to its ability to be applied in the vacuum of space, and in a microgravity environment. Once applied, the adhesive provides thermal and oxidation protection to the substrate (in this case, reinforced carbon/carbon composites, RCCs) during re-entry of a space vehicle. Although there may be many formulations for repair adhesives, at the time of this reporting, this is the first known adhesive capable of an on-orbit repair. The adhesive is an engineered ceramic material composed of a pre-ceramic polymer and refractory powders in the form of a paste or putty that can be applied to a scratched, cracked, or fractured composite surface, covering and protecting the damaged area. The adhesive is then "cured" with a heat cycle, thereby cross-linking the polymer into a hardened material and bonding it to the substrate. During the heat of reentry, the material is converted to a ceramic coating that provides thermal and oxidative stability to the repaired area, thus allowing the vehicle to pass safely from space into the upper atmosphere. Ceramic powders such as SiC, ZrB2 and Y2O3 are combined with allylhydridopolycarbosilane (AHPCS) resin, and are mixed to form a paste adhesive. The material is then applied to the damaged area by brush, spatula, trowel, or other means to fill cracks, gaps, and holes, or used to bond patches onto the damaged area. The material is then cured, in a vacuum, preferably at 250F (approximately equal to 121C) for two hours. The re-entry heating of the vehicle at temperatures in excess of 3,000F (approximately equal to 1,650C) then converts this material into a ceramic coating. This invention has demonstrated advantages in resistance to high temperatures, as was demonstrated in more than 100 arc-jet tests in representative environments at NASA. Extensive testing verified oxidation protection for the repaired substrate (RCC

  4. Pre-flight physical simulation test of HIMES reentry test vehicle

    Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hosokawa, Shigeru

    ISAS is now developing a small reentry test vehicle, which is 2m long with a 1.5m wing span and weighs about 170 kg, for the purpose of exploring high angle-of-attack aerodynamic attitude control issue in supersonic and hypersonic speed. The flight test, employing 'Rockoon' launch system, is planned as a preliminary design verification for a fully reusable winged rocket named HIMES (Highly Maneuverable Experimental Space) vehicle. This paper describes the results of preflight ground test using a motion table system. This ground system test is called 'physical simulation' aimed at: (1) functional verification of side-jet system, aerodynamic surface actuators, battery and onboard avionics; and (2) guidance and control law evaluation, in total hardware-in-the-loop system. The pressure of side-jet nozzles was measured to provide exact thrust characteristics of reaction control. The dynamics of vehicle motion was calculated in real-time by the ground simulation computer.

  5. Re-entry of the Soyuz MS-08 carrier rocket 25 March 2018

    Stomeo, Enrico


    The re-entry of the Soyuz MS-08 carrier rocket on 2018 March 25 could be observed from a large part of the central Mediterranean Sea. The radio station of the Planetarium in Venice was able to record the return into the atmosphere. The radio signal was perceived in Venice from 01h23m52,5s UTC with a frequency of 1431,363 Hz until 01h24m02,0s with a frequency of 805,487 Hz. Considering the recorded frequency variations due to the Doppler effect, it can be deduced that the object was drastically decelerating in those last moments by about 1.3 km/s.

  6. From the ideal to the real world: a phenomenological inquiry into student sojourners' reentry adaptation.

    Hsiao, Feilin


    This phenomenological study examines the thematic structure of reentry transition for international music therapy graduates who have returned home after studying in the United States. Emphasis is placed upon career development. Standardized open-ended interviews were used to obtain rich and in-depth descriptions of the participants' experiences. Ten music therapists from six countries participated in the study. The themes that emerged from the data include moving from the ideal to the real world, shifting from the role of student to professional, confronting reality and working through challenges, and achieving personal growth and self-transformation. The dynamics of cross-cultural comparison, confronting the home culture, and redefining music therapy and professional identities within the local cultural context are illustrated via quotations from the participants. Implications and recommendations for music therapy education and career preparation for international graduates are discussed.

  7. In Depth Analysis of AVCOAT TPS Response to a Reentry Flow

    Titov, E. V.; Kumar, Rakesh; Levin, D. A.


    Modeling of the high altitude portion of reentry vehicle trajectories with DSMC or statistical BGK solvers requires accurate evaluation of the boundary conditions at the ablating TPS surface. Presented in this article is a model which takes into account the complex ablation physics including the production of pyrolysis gases, and chemistry at the TPS surface. Since the ablation process is time dependent the modeling of the material response to the high energy reentry flow starts with the solution of the rarefied flow over the vehicle and then loosely couples with the material response. The objective of the present work is to carry out conjugate thermal analysis by weakly coupling a flow solver to a material thermal response model. The latter model solves the one dimensional heat conduction equation accounting for the pyrolysis process that takes place in the reaction zone of an ablative thermal protection system (TPS) material. An estimate of the temperature range within which the pyrolysis reaction (decomposition and volatilization) takes place is obtained from Ref. [1]. The pyrolysis reaction results in the formation of char and the release of gases through the porous charred material. These gases remove additional amount of heat as they pass through the material, thus cooling the material (the process known as transpiration cooling). In the present work, we incorporate the transpiration cooling model in the material thermal response code in addition to the pyrolysis model. The flow in the boundary layer and in the vicinity of the TPS material is in the transitional flow regime. Therefore, we use a previously validated statistical BGK method to model the flow physics in the vicinity of the micro-cracks, since the BGK method allows simulations of flow at pressures higher than can be computed using DSMC.

  8. Psychophysiological assessment and correction of spatial disorientation during simulated Orion spacecraft re-entry.

    Cowings, Patricia S; Toscano, William B; Reschke, Millard F; Tsehay, Addis


    The National Aeronautics and Space Administration (NASA) has identified a potential risk of spatial disorientation, motion sickness, and degraded performance to astronauts during re-entry and landing of the proposed Orion crew vehicle. The purpose of this study was to determine if a physiological training procedure, Autogenic-Feedback Training Exercise (AFTE), can mitigate these adverse effects. Fourteen men and six women were assigned to two groups (AFTE, no-treatment Control) matched for motion sickness susceptibility and gender. All subjects received a standard rotating chair test to determine motion sickness susceptibility; three training sessions on a manual performance task; and four exposures in the rotating chair (Orion tests) simulating angular accelerations of the crew vehicle during re-entry. AFTE subjects received 2 h of training before Orion tests 2, 3, and 4. Motion sickness symptoms, task performance, and physiological measures were recorded on all subjects. Results showed that the AFTE group had significantly lower symptom scores when compared to Controls on test 2 (p = .05), test 3 (p = .03), and test 4 (p = .02). Although there were no significant group differences on task performance, trends showed that AFTE subjects were less impaired than Controls. Heart rate change scores (20 rpm minus baseline) of AFTE subjects indicated significantly less reactivity on Test 4 compared to Test 1 (10.09 versus 16.59, p = .02), while Controls did not change significantly across tests. Results of this study indicate that AFTE may be an effective countermeasure for mitigating spatial disorientation and motion sickness in astronauts. Copyright © 2018. Published by Elsevier B.V.

  9. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors.

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H


    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  10. Ground Track Acquisition and Maintenance Maneuver Modeling for Low-Earth Orbit Satellite

    Byoung-Sun Lee


    Full Text Available This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  11. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach

    Kaplan, Sigal; Prato, Carlo Giacomo


    from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. Methods: The analysis is conducted by means of a mixed...... about the risks of driving under fatigue and distraction being comparable to the risks of driving under the influence of alcohol and drugs. Moreover, the results suggest the need to educate drivers about hazard perception, designing a forgiving infrastructure within a sustainable safety systems......Objective: The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives...

  12. Effect of Conflict Resolution Maneuver Execution Delay on Losses of Separation

    Cone, Andrew C.


    This paper examines uncertainty in the maneuver execution delay for data linked conflict resolution maneuvers. This uncertainty could cause the previously cleared primary conflict to reoccur or a secondary conflict to appear. Results show that the likelihood of a primary conflict reoccurring during a horizontal conflict resolution maneuver increases with larger initial turn-out angles and with shorter times until loss of separation. There is also a significant increase in the probability of a primary conflict reoccurring when the time until loss falls under three minutes. Increasing horizontal separation by an additional 1.5 nmi lowers the risk, but does not completely eliminate it. Secondary conflicts were shown to have a small probability of occurring in all tested configurations.

  13. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    Genova, A. L.


    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  14. Tracking Maneuvering Group Target with Extension Predicted and Best Model Augmentation Method Adapted

    Linhai Gan


    Full Text Available The random matrix (RM method is widely applied for group target tracking. The assumption that the group extension keeps invariant in conventional RM method is not yet valid, as the orientation of the group varies rapidly while it is maneuvering; thus, a new approach with group extension predicted is derived here. To match the group maneuvering, a best model augmentation (BMA method is introduced. The existing BMA method uses a fixed basic model set, which may lead to a poor performance when it could not ensure basic coverage of true motion modes. Here, a maneuvering group target tracking algorithm is proposed, where the group extension prediction and the BMA adaption are exploited. The performance of the proposed algorithm will be illustrated by simulation.

  15. Low-beta investment strategies

    Korn, Olaf; Kuntz, Laura-Chloé


    This paper investigates investment strategies that exploit the low-beta anomaly. Although the notion of buying low-beta stocks and selling high-beta stocks is natural, a choice is necessary with respect to the relative weighting of high-beta stocks and low-beta stocks in the investment portfolio. Our empirical results for US large-cap stocks show that this choice is very important for the risk-return characteristics of the resulting portfolios and their sensitivities to common risk factors. W...

  16. Neutrophil beta-2 microglobulin: an inflammatory mediator

    Bjerrum, O W; Nissen, Mogens Holst; Borregaard, N


    Beta-2 microglobulin (beta 2m) constitutes the light invariant chain of HLA class I antigen, and is a constituent of mobilizable compartments of neutrophils. Two forms of beta 2m exist: native beta 2m and proteolytically modified beta 2m (Des-Lys58-beta 2m), which shows alpha mobility in crossed ...

  17. Analysis of effects of manhole covers on motorcycle driver maneuvers: a nonparametric classification tree approach.

    Chang, Li-Yen


    A manhole cover is a removable plate forming the lid over the opening of a manhole to allow traffic to pass over the manhole and to prevent people from falling in. Because most manhole covers are placed in roadway traffic lanes, if these manhole covers are not appropriately installed or maintained, they can represent unexpected hazards on the road, especially for motorcycle drivers. The objective of this study is to identify the effects of manhole cover characteristics as well as driver factors and traffic and roadway conditions on motorcycle driver maneuvers. A video camera was used to record motorcycle drivers' maneuvers when they encountered an inappropriately installed or maintained manhole cover. Information on 3059 drivers' maneuver decisions was recorded. Classification and regression tree (CART) models were applied to explore factors that can significantly affect motorcycle driver maneuvers when passing a manhole cover. Nearly 50 percent of the motorcycle drivers decelerated or changed their driving path to reduce the effects of the manhole cover. The manhole cover characteristics including the level difference between manhole cover and pavement, the pavement condition over the manhole cover, and the size of the manhole cover can significantly affect motorcycle driver maneuvers. Other factors, including traffic conditions, lane width, motorcycle speed, and loading conditions, also have significant effects on motorcycle driver maneuvers. To reduce the effects and potential risks from the manhole covers, highway authorities not only need to make sure that any newly installed manhole covers are as level as possible but also need to regularly maintain all the manhole covers to ensure that they are in good condition. In the long run, the size of manhole covers should be kept as small as possible so that the impact of manhole covers on motorcycle drivers can be effectively reduced. Supplemental materials are available for this article. Go to the publisher

  18. Effect of a hybrid maneuver in treating posterior canal benign paroxysmal positional vertigo.

    Badawy, Wanees M A; Gad El-Mawla, Ebtessam K; Chedid, Ahmed E F; Mustafa, Ahmed H A


    Benign paroxysmal positional vertigo (BPPV) is the most common disorder of the vestibular system of the inner ear, which is a vital part of maintaining balance. Although the efficacy of the Epley maneuver-also known as the canalith repositioning maneuver (CRM)-is well established, data comparing CRM versus a hybrid treatment are lacking. The purpose of this study was to determine the effect of a hybrid treatment, the Gans repositioning maneuver (GRM) either with or without postmaneuver restrictions, compared with CRM on treatment of posterior canal BPPV (PC-BPPV). Study design was a randomized controlled trial. A total of 45 patients (30 males and 15 females) with unilateral PC-BPPV were randomly allocated to one of three equal groups on the basis of the date of the first visit with matched assignment for gender: a GRMR group (GRM with postmaneuver restrictions), a GRM group, and a CRM group. Patients received weekly administration of the maneuver until resolution of symptoms. The Dix-Hallpike test was performed before treatment at every appointment, and finally after 1 mo from the last maneuver. Nystagmus duration and vertigo intensity were recorded. The supine roll test was performed in case the Dix-Hallpike test was negative to test otoconial migration. Data were analyzed with repeated-measures analysis of variance, paired t-tests with a Bonferroni correction, and the Spearman rank correlation coefficient. All patients showed improvement within the groups, and PC-BPPV symptoms were resolved by an average of 2, 1.7, and 1.6 maneuvers for GRMR, GRM, and CRM, respectively, with no statistical differences among the three groups (p > 0.05). Only two patients had recurrence, and one patient had horizontal BPPV at 1 mo follow-up. We demonstrated that the GRM as a new treatment is effective in treating PC-BPPV with no benefits to postmaneuver restrictions. American Academy of Audiology.

  19. Beta and muon decays

    Galindo, A.; Pascual, P.


    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  20. Beta-thalassemia

    Origa Raffaella


    Full Text Available Abstract Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands, dilated myocardiopathy, liver fibrosis and cirrhosis. Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes, gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely

  1. Beta and Gamma Gradients

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.


    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...... that the present practice of avoiding samples above a depth of 0.3 m may be over-cautious...

  2. Beta and muon decays

    Galindo, A; Pascual, P


    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  3. Regulation of beta cell replication

    Lee, Ying C; Nielsen, Jens Høiriis


    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  4. High beta experiments in CHS

    Okamura, S.; Matsuoka, K.; Nishimura, K.


    High beta experiments were performed in the low-aspect-ratio helical device CHS with the volume-averaged equilibrium beta up to 2.1 %. These values (highest for helical systems) are obtained for high density plasmas in low magnetic field heated with two tangential neutral beams. Confinement improvement given by means of turning off gas puffing helped significantly to make high betas. Magnetic fluctuations increased with increasing beta, but finally stopped to increase in the beta range > 1 %. The coherent modes appearing in the magnetic hill region showed strong dependence on the beta values. The dynamic poloidal field control was applied to suppress the outward plasma movement with the plasma pressure. Such an operation gave fixed boundary operations of high beta plasmas in helical systems. (author)

  5. Beta rays and neutrinos

    Adams, S.F.


    It was over 30 years between the first observation of the enigmatic process of beta decay and the first postulation of the neutrino. It took a further 26 years until the first neutrino was detected and yet another 27 until the electroweak theory was confirmed by the discovery of W and Z particles. This article traces some of the puzzles and paradoxes associated with the history of the neutrino. (author)

  6. Coroutine Sequencing in BETA

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger

    In object-oriented programming, a program execution is viewed as a physical model of some real or imaginary part of the world. A language supporting object-oriented programming must therefore contain comprehensive facilities for modeling phenomena and concepts form the application domain. Many...... applications in the real world consist of objects carrying out sequential processes. Coroutines may be used for modeling objects that alternate between a number of sequential processes. The authors describe coroutines in BETA...

  7. COM Support in BETA

    Madsen, Ole Lehrmann


    Component technologies based on binary units of independent production are some of the most important contributions to software architecture and reuse during recent years. Especially the COM technologies and the CORBA standard from the Object Management Group have contributed new and interesting...... principles for software architecture, and proven to be useful in parctice. In this paper ongoing work with component support in the BETA language is described....

  8. Maneuver Acoustic Flight Test of the Bell 430 Helicopter Data Report

    Watts, Michael E.; Greenwood, Eric; Smith, Charles D.; Snider, Royce; Conner, David A.


    A cooperative ight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 test points over 10 test days and compiled an extensive database of dynamic maneuver measurements. Three microphone arrays with up to 31 microphon. es in each were used to acquire acoustic data. Aircraft data included Differential Global Positioning System, aircraft state and rotor state information. This paper provides an overview of the test and documents the data acquired.

  9. Catheter Entrapment During Posterior Mitral Leaflet Pushing Maneuver for MitraClip Implantation.

    Castrodeza, Javier; Amat-Santos, Ignacio J; Tobar, Javier; Varela-Falcón, Luis H


    MitraClip (Abbott Vascular) therapy has been reported to be an effective procedure for mitral regurgitation, especially in high-risk patients. Recently, the novel pushing maneuver technique has been described for approaching restricted and short posterior leaflets with a pigtail catheter in order to facilitate grasping of the clip. However, complications or unexpected situations may occur. We report the case of an 84-year-old patient who underwent MitraClip implantation wherein the pushing maneuver was complicated by the clip accidentally gripping the pigtail catheter along with the two leaflets.

  10. LHCb: $2\\beta_s$ measurement at LHCb

    Conti, G


    A measurement of $2\\beta_s$, the phase of the $B_s-\\bar{B_s}$ oscillation amplitude with respect to that of the ${\\rm b} \\rightarrow {\\rm c^{+}}{\\rm W^{-}}$ tree decay amplitude, is one of the key goals of the LHCb experiment with first data. In the Standard Model (SM), $2\\beta_s$ is predicted to be $0.0360^{+0.0020}_{-0.0016} \\rm rad$. The current constraints from the Tevatron are: $2\\beta_{s}\\in[0.32 ; 2.82]$ at 68$\\%$CL from the CDF experiment and $2\\beta_{s}=0.57^{+0.24}_{-0.30}$ from the D$\\oslash$ experiment. Although the statistical uncertainties are large, these results hint at the possible contribution of New Physics in the $B_s-\\bar{B_s}$ box diagram. After one year of data taking at LHCb at an average luminosity of $\\mathcal{L}\\sim2\\cdot10^{32}\\rm cm^{-2} \\rm s^{-1}$ (integrated luminosity $\\mathcal{L}_{\\rm int}\\sim 2 \\rm fb^{-1}$), the expected statistical uncertainty on the measurement is $\\sigma(2\\beta_s)\\simeq 0.03$. This uncertainty is similar to the $2\\beta_s$ value predicted by the SM.

  11. Effects of the Eccentricity of a Perturbing Third Body on the Orbital Correction Maneuvers of a Spacecraft

    R. C. Domingos


    Full Text Available The fuel consumption required by the orbital maneuvers when correcting perturbations on the orbit of a spacecraft due to a perturbing body was estimated. The main goals are the measurement of the influence of the eccentricity of the perturbing body on the fuel consumption required by the station keeping maneuvers and the validation of the averaged methods when applied to the problem of predicting orbital maneuvers. To study the evolution of the orbits, the restricted elliptic three-body problem and the single- and double-averaged models are used. Maneuvers are made by using impulsive and low thrust maneuvers. The results indicated that the averaged models are good to make predictions for the orbital maneuvers when the spacecraft is in a high inclined orbit. The eccentricity of the perturbing body plays an important role in increasing the effects of the perturbation and the fuel consumption required for the station keeping maneuvers. It is shown that the use of more frequent maneuvers decreases the annual cost of the station keeping to correct the orbit of a spacecraft. An example of an eccentric planetary system of importance to apply the present study is the dwarf planet Haumea and its moons, one of them in an eccentric orbit.

  12. 78 FR 11555 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...


    ... Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR...; Design Roll Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT... design roll maneuver for electronic flight controls, specifically an electronic flight control system...

  13. 77 FR 70384 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...


    ... Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR... Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... design roll maneuver for electronic flight controls, specifically an electronic flight control system...

  14. Pressure applied by the healthcare staff on a cricoids cartilage simulator during Sellick's maneuver in rapid sequence intubation

    J.A. Calvache (Jose Andrés); L.C.B. Sandoval (Luz); W.A. Vargas (William Andres)


    textabstractBackground: Sellick's maneuver or cricoid pressure is a strategy used to prevent bronchoaspiration during the rapid intubation sequence. Several studies have described that the force required for an adequate maneuver is of 2.5-3.5 kg. The purpose of this paper was to determine the force

  15. Enantioselective synthesis of alpha,beta-disubstituted-beta-amino acids.

    Sibi, Mukund P; Prabagaran, Narayanasamy; Ghorpade, Sandeep G; Jasperse, Craig P


    Highly diastereoselective and enantioselective addition of N-benzylhydroxylamine to imides 17 and 20-30 produces alpha,beta-trans-disubstituted N-benzylisoxazolidinones 19 and 31-41. These reactions proceed in 60-96% ee with 93-99% de's using 5 mol % of Mg(NTf2)2 and ligand 18. The product isoxazolidinones can be hydrogenolyzed directly to provide alpha,beta-disubstituted-beta-amino acids.

  16. Project, Aerodynamic, Thermal and Ballistic Analysis of a Lifting-Body Reentry Vehicle

    A. N. Eliseev


    Full Text Available The objective of this article is to assess the prospects for an increasingly maneuverable reentry vehicle (RV of class "lifting body". In this regard, a project aerodynamic thermal and ballistic analysis has been conducted and the results have been compared with some well-known projects of the RV of the same class, made both in our country and abroad.The project analysis begins with finding a position of the "lifting body" vehicle in the classification system. Said classification distribution allows correct formulation of requirements for the conceptual structure of an aerospace vehicle at the initial stage of design in terms of system positions, since just the initial phase of the design often determines the success of the whole program.Then the paper compares design characteristics of the RV of class "lifting body" with vehicles such as X-15 rocket plane, the orbiter "Space Shuttle», M2-F2, HL-10, SV-5, and NASP "Hermes". It also gives a comparative estimate of the "lifting body" RV mass in a wide range of dimensions. The paper shows the sustainability of various landing complexes with reference to the Russian experience in developing the RV " Soyuz", and the conditions for using the vehicles of class "lifting body" in space programs.The aerodynamic analysis uses method for the approximate Newtonian theory to calculate aerodynamic characteristics of the perspective RV of class "lifting body" in the hypersonic descent phase. To obtain the desired aerodynamic performance and reduce balancing weight is contemplated a possibility to provide balance by introducing additional boards. The ballistic analysis considers four modes of descent:1. zero roll descent;2. maximum cross-range descent without restriction;3. maximum cross-range descent with restriction of maximum overload and maximum temperature;4. ballistic descent.To calculate the RV ballistic characteristics a system of equations of the vehicle motion in the atmosphere is used. The vehicle

  17. Huang's three-step maneuver shortens the learning curve of laparoscopic spleen-preserving splenic hilar lymphadenectomy.

    Huang, Chang-Ming; Huang, Ze-Ning; Zheng, Chao-Hui; Li, Ping; Xie, Jian-Wei; Wang, Jia-Bin; Lin, Jian-Xian; Jun, Lu; Chen, Qi-Yue; Cao, Long-Long; Lin, Mi; Tu, Ru-Hong


    The goal of this study was to investigate the difference between the learning curves of different maneuvers in laparoscopic spleen-preserving splenic hilar lymphadenectomy for advanced upper gastric cancer. From January 2010 to April 2014, 53 consecutive patients who underwent laparoscopic spleen-preserving splenic hilar lymphadenectomy via the traditional-step maneuver (group A) and 53 consecutive patients via Huang's three-step maneuver (group B) were retrospectively analyzed. No significant difference in patient characteristics were found between the two groups. The learning curves of groups A and B were divided into phase 1 (1-43 cases and 1-30 cases, respectively) and phase 2 (44-53 cases and 31-53 cases, respectively). Compared with group A, the dissection time, bleeding loss and vascular injury were significantly decreased in group B. No significant differences in short-term outcomes were found between the two maneuvers. The multivariate analysis indicated that the body mass index, short gastric vessels, splenic artery type and maneuver were significantly associated with the dissection time in group B. No significant difference in the survival curve was found between the maneuvers. The learning curve of Huang's three-step maneuver was shorter than that of the traditional-step maneuver, and the former represents an ideal maneuver for laparoscopic spleen-preserving splenic hilar lymphadenectomy.To shorten the learning curve at the beginning of laparoscopic spleen-preserving splenic hilar lymphadenectomy, beginners should beneficially use Huang's three-step maneuver and select patients with advanced upper gastric cancer with a body mass index of less than 25 kg/m 2 and the concentrated type of splenic artery. Copyright © 2017. Published by Elsevier Ltd.

  18. Analysis of risk factors influencing the outcome of the Epley maneuver.

    Domínguez-Durán, E; Domènech-Vadillo, E; Álvarez-Morujo de Sande, M G; González-Aguado, R; Guerra-Jiménez, G; Ramos-Macías, Á; Morales-Angulo, C; Martín-Mateos, A J; Figuerola-Massana, E; Galera-Ruiz, H


    Benign paroxysmal positional vertigo (BPPV) is the most frequent type of vertigo. The treatment of canalithiasis of the posterior semicircular canal consists in performing a particle-repositioning maneuver, such as the Epley maneuver (EM). However, the EM is not effective in all cases. The objective of this study is to identify risk factors, which predict the EM failure, among the clinical variables recorded in anamnesis and patient examination. This is an observational prospective multicentric study. All patients presenting with BPPV were recruited and applied the EM and appointed for a follow-up visit 7 days later. The following variables were recorded: sex, age, arterial hypertension, diabetes, hyperlipidemia, smoking habit, alcohol consumption, migraine, osteoporosis, diseases of the inner ear, previous ipsilateral BPPV, previous traumatic brain injury, previous sudden head deceleration, time of evolution, sulpiride or betahistine treatment, experienced symptoms, outcome of the Halmagyi maneuver, laterality, cephalic hyperextension of the neck, intensity of nystagmus, intensity of vertigo, duration of nystagmus, occurrence of orthotropic nystagmus, symptoms immediately after the EM, postural restrictions, and symptoms 7 days after the EM. Significant differences in the rate of loss of nystagmus were found for six variables: hyperlipidemia, previous ipsilateral BPPV, intensity of nystagmus, duration of nystagmus, post-maneuver sweating, and subjective status. The most useful significant variables in the clinical practice to predict the success of the EM are previous BPPV and intensity of nystagmus. In the other significant variables, no physiopathological hypothesis can be formulated or differences between groups are too small.

  19. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury

    Henzler, Dietrich; Rossaint, Rolf [University Hospital, RWTH Aachen, Anesthesiology Department, Aachen (Germany); Mahnken, Andreas H.; Wildberger, Joachim E.; Guenther, Rolf W. [University Hospital of the RWTH Aachen, Clinic of Diagnostic Radiology, Aachen (Germany); Kuhlen, Ralf [University Hospital of the RWTH Aachen, Operative Intensive Care Department, Aachen (Germany)


    Although recruitment of atelectatic lung is a common aim in acute respiratory distress syndrome (ARDS), the effects of a recruitment maneuver have not been assessed quantitatively. By multislice spiral CT (MSCT), we analyzed the changes in lung volumes calculated from the changes in the CT values of hyperinflated (V{sub HYP}), normally (V{sub NORM}), poorly (V{sub POOR}) and nonaerated (V{sub NON}) lung in eight mechanically ventilated pigs with saline lavage-induced acute lung injury before and after a recruitment maneuver. This was compared to single slice analysis near the diaphragm. The increase in aerated lung was mainly for V{sub POOR} and the less in V{sub NORM}. Total lung volume and intrathoracic gas increased. No differences were found for tidal volumes measured by spirometry or determined by CT. The inspiratory-expiratory volume differences were not different after the recruitment maneuver in V{sub NON} (from 62{+-}18 ml to 43{+-}26 ml, P=0.114), and in V{sub NORM} (from 216{+-}51 ml to 251{+-}37 ml, P=0.102). Single slice analysis significantly underestimated the increase in normally and poorly aerated lung. Quantitative analysis of lung volumes by whole lung MSCT revealed the increase of poorly aerated lung as the main mechanism of a standard recruitment maneuver. MSCT can provide additional information as compared to single slice CT. (orig.)

  20. Cooperative maneuvering in close environments among cybercars and dual-mode cars

    Milanés, V.; Alonso, J.; Bouraoui, L.; Ploeg, J.


    This paper describes the results of vehicle-to-vehicle (V2V) and infrastructure-to-vehicle (I2V) experiments implementing cooperative maneuvering for three different vehicles driving automatically. The cars used were cybercars from the Institut National de Recherche en Informatique et Automatique

  1. The Prospect of Responsive Spacecraft Using Aeroassisted, Trans-Atmospheric Maneuvers


    99 V. Design of Experiments Approach to Atmospheric Skip Entry Maneuver Optimization .....100 Chapter Overview...Transfer Diagram .................................................................................................11 3.1. Comparison of Geocentric ...Comparison of Geocentric /Geodetic Latitude for Apollo 10 (2-Gravity Model, Fourth-Order Runge-Kutta Solver

  2. Conflict Resolution Performance in an Experimental Study of En Route Free Maneuvering Operations

    Doble, Nathan A.; Barhydt, Richard; Hitt, James M., II


    NASA has developed a far-term air traffic management concept, termed Distributed Air/Ground Traffic Management (DAG-TM). One component of DAG-TM, En Route Free Maneuvering, allows properly trained flight crews of equipped autonomous aircraft to assume responsibility for separation from other autonomous aircraft and from Instrument Flight Rules (IFR) aircraft. Ground-based air traffic controllers continue to separate IFR traffic and issue flow management constraints to all aircraft. To examine En Route Free Maneuvering operations, a joint human-in-the-loop experiment was conducted in summer 2004 at the NASA Ames and Langley Research Centers. Test subject pilots used desktop flight simulators to resolve traffic conflicts and adhere to air traffic flow constraints issued by subject controllers. The experimental airspace integrated both autonomous and IFR aircraft at varying traffic densities. This paper presents a subset of the En Route Free Maneuvering experimental results, focusing on airborne and ground-based conflict resolution, and the effects of increased traffic levels on the ability of pilots and air traffic controllers to perform this task. The results show that, in general, increases in autonomous traffic do not significantly impact conflict resolution performance. In addition, pilot acceptability of autonomous operations remains high throughout the range of traffic densities studied. Together with previously reported findings, these results continue to support the feasibility of the En Route Free Maneuvering component of DAG-TM.

  3. 46 CFR 35.20-40 - Maneuvering characteristics-T/OC.


    ... for the normal load and normal ballast condition for: (1) Calm weather—wind 10 knots or less, calm sea... response of the (name of the vessel) may be different from those listed above if any of the following conditions, upon which the maneuvering information is based, are varied: (1) Calm weather—wind 10 knots or...

  4. Linearity of electrical impedance tomography during maximum effort breathing and forced expiration maneuvers.

    Ngo, Chuong; Leonhardt, Steffen; Zhang, Tony; Lüken, Markus; Misgeld, Berno; Vollmer, Thomas; Tenbrock, Klaus; Lehmann, Sylvia


    Electrical impedance tomography (EIT) provides global and regional information about ventilation by means of relative changes in electrical impedance measured with electrodes placed around the thorax. In combination with lung function tests, e.g. spirometry and body plethysmography, regional information about lung ventilation can be achieved. Impedance changes strictly correlate with lung volume during tidal breathing and mechanical ventilation. Initial studies presumed a correlation also during forced expiration maneuvers. To quantify the validity of this correlation in extreme lung volume changes during forced breathing, a measurement system was set up and applied on seven lung-healthy volunteers. Simultaneous measurements of changes in lung volume using EIT imaging and pneumotachography were obtained with different breathing patterns. Data was divided into a synchronizing phase (spontaneous breathing) and a test phase (maximum effort breathing and forced maneuvers). The EIT impedance changes correlate strictly with spirometric data during slow breathing with increasing and maximum effort ([Formula: see text]) and during forced expiration maneuvers ([Formula: see text]). Strong correlations in spirometric volume parameters [Formula: see text] ([Formula: see text]), [Formula: see text]/FVC ([Formula: see text]), and flow parameters PEF, [Formula: see text], [Formula: see text], [Formula: see text] ([Formula: see text]) were observed. According to the linearity during forced expiration maneuvers, EIT can be used during pulmonary function testing in combination with spirometry for visualisation of regional lung ventilation.

  5. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury

    Henzler, Dietrich; Rossaint, Rolf; Mahnken, Andreas H.; Wildberger, Joachim E.; Guenther, Rolf W.; Kuhlen, Ralf


    Although recruitment of atelectatic lung is a common aim in acute respiratory distress syndrome (ARDS), the effects of a recruitment maneuver have not been assessed quantitatively. By multislice spiral CT (MSCT), we analyzed the changes in lung volumes calculated from the changes in the CT values of hyperinflated (V HYP ), normally (V NORM ), poorly (V POOR ) and nonaerated (V NON ) lung in eight mechanically ventilated pigs with saline lavage-induced acute lung injury before and after a recruitment maneuver. This was compared to single slice analysis near the diaphragm. The increase in aerated lung was mainly for V POOR and the less in V NORM . Total lung volume and intrathoracic gas increased. No differences were found for tidal volumes measured by spirometry or determined by CT. The inspiratory-expiratory volume differences were not different after the recruitment maneuver in V NON (from 62±18 ml to 43±26 ml, P=0.114), and in V NORM (from 216±51 ml to 251±37 ml, P=0.102). Single slice analysis significantly underestimated the increase in normally and poorly aerated lung. Quantitative analysis of lung volumes by whole lung MSCT revealed the increase of poorly aerated lung as the main mechanism of a standard recruitment maneuver. MSCT can provide additional information as compared to single slice CT. (orig.)

  6. Associating Crash Avoidance Maneuvers with Driver Attributes and Accident Characteristics: A Mixed Logit Model Approach

    Kaplan, Sigal; Prato, Carlo Giacomo


    as from the key role of the ability of drivers to perform effective corrective maneuvers for the success of automated in-vehicle warning and driver assistance systems. The analysis is conducted by means of a mixed logit model that accommodates correlations across alternatives and heteroscedasticity. Data...

  7. Leveraging Manet and Mobile Devices in Ship-to-Objective Maneuver and Expeditionary MAGTF Operations


    support and firepower. ECO allows for the Marine Corps to deploy a lower- level maneuver unit as an economy of force measure to assert combat power the Global Information Grid ( GIG ) is the course of action the Marine Corps should adopt (Price & McHuen, 2009). My proposed research addresses

  8. Effect of different body postures on the pressures generated during an L-1 maneuver.

    Williams, C A; Lind, A R; Wiley, R L; Douglas, J E; Miller, G


    Changes in blood pressure, intrathoracic pressure, heart rate and the electromyographic activity of various muscle groups were determined while nine male subjects performed 15-s L-1 straining maneuvers at four spine-to-thigh angles (70, 84, 94, and 105 degrees) and two seatback angles (30 and 60 degrees). There was no significant difference between the changes in these variables due to the different body positions. At the onset of the L-1, arterial pressure immediately increased to 195 +/- 5 mm Hg, but fell progressively during the next 5 s to 160 +/- 5 mm Hg. It remained constant during the next 5 s of the maneuver and then recovered to 180 +/- mm Hg during the last 5 s of the maneuver. Esophageal pressure followed essentially the same pattern of response, but heart rate progressively increased during the entire L-1. No one muscle group was utilized more than another. Inflation of an anti-G suit to 4 PSI had no effect on the variables measured. Generation of high arterial pressures during L-1 maneuvers is transitory and not affected either positively or negatively by altering subject body position.

  9. Romance, recovery & community re-entry for criminal justice involved women: Conceptualizing and measuring intimate relationship factors and power.

    Walt, Lisa C; Hunter, Bronwyn; Salina, Doreen; Jason, Leonard

    Researchers have suggested that interpersonal relationships, particularly romantic relationships, may influence women's attempts at substance abuse recovery and community re-entry after criminal justice system involvement. The present paper evaluates relational and power theories to conceptualize the influence of romantic partner and romantic relationship qualities on pathways in and out of substance abuse and crime. The paper then combines these conceptualizations with a complementary empirical analysis to describe an ongoing research project that longitudinally investigates these relational and power driven factors on women's substance abuse recovery and community re-entry success among former substance abusing, recently criminally involved women. This paper is designed to encourage the integration of theory and empirical analysis by detailing how each of these concepts are operationalized and measured. Future research and clinical implications are also discussed.

  10. Comparing Black and White Drug Offenders: Implications for Racial Disparities in Criminal Justice and Reentry Policy and Programming.

    Rosenberg, Alana; Groves, Allison K; Blankenship, Kim M


    Despite knowledge of racial bias for drug-related criminal justice involvement and its collateral consequences, we know less about differences between Black and White drug offenders. We compare 243 Blacks and White non-violent drug offenders in New Haven, CT for demographic characteristics, substance use, and re-entry services accessed. Blacks were significantly more likely to have sales and possession charges, significantly more likely to prefer marijuana, a less addictive drug, and significantly less likely to report having severe drug problems. For both races, drug treatment was the most common service accessed through supervision. These comparisons suggest different reasons for committing drug-related crimes and thus, different reentry programming needs. While drug treatment is critical for all who need it, for racial justice, we must also intervene to address other needs of offenders, such as poverty alleviation and employment opportunities.

  11. Application of light-initiated explosive for simulating x-ray blowoff impulse effects on a full scale reentry vehicle

    Benham, R.A.; Mathews, F.H.; Higgins, P.B.


    Laboratory nuclear effects testing allows the study of reentry vehicle response to simulated exoatmospheric x-ray encounters. Light-initiated explosive produces the nearly simultaneous impulse loading of a structure by using a spray painted coating of explosive which is detonated by an intense flash of light. A lateral impulse test on a full scale reentry vehicle is described which demonstrates that the light-initiated explosive technique can be extended to the lateral loading of very large systems involving load discontinuities. This experiment required the development of a diagnostic method for verifying the applied impulse, and development of a large light source for simultaneously initiating the explosive over the surface of the vehicle. Acceptable comparison between measured strain response and code predictions is obtained. The structural capability and internal response of a vehicle subjected to an x-ray environment was determined from a light-initiated explosive test

  12. Doppler ultrasonography measurement of hepatic hemodynamics during Valsalva maneuver: healthy volunteer study

    Dong-Ho Bang


    Full Text Available Purpose: The aim of our study was to assess the hemodynamic change of liver during the Valsalva maneuver using Doppler ultrasonography. Methods: Thirty healthy men volunteers were enrolled (mean age, 25.5±3.64 years. The diameter, minimal and maximal velocities, and volume flow of intrahepatic inferior vena cava (IVC, middle hepatic vein (MHV, and right main portal vein (RMPV was measured during both rest and Valsalva maneuver. These changes were compared using paired t-test. Results: The mean diameters (cm of the intrahepatic IVC at rest and Valsalva maneuver were 1.94±0.40 versus 0.56±0.66 (P<0.001. The mean diameter (cm, minimal velocity (cm/sec, maximal velocity (cm/sec, and volume flow (mL/min of MHV at rest and Valsalva maneuver were 0.60±0.15 versus 0.38±0.20 (P<0.001, -7.98±5.47 versus 25.74±13.13 (P<0.001, 21.34±6.89 versus 35.12±19.95 (P=0.002, and 106.94±97.65 versus 153.90±151.80 (P=0.014, respectively. Those of RMPV at rest and Valsalva maneuver were 0.78±0.21 versus 0.76±0.20 (P=0.485, 20.21±8.22 versus 18.73±7.43 (P=0.351, 26.79±8.85 versus 24.93±9.91 (P=0.275, and 391.52±265.63 versus 378.43±239.36 (P=0.315, respectively. Conclusion: The blood flow velocity and volume flow of MHV increased significantly during Valsalva maneuver. These findings suggest that hepatic vein might play an important role to maintain venous return to the heart during the maneuver.

  13. Doppler ultrasonography measuement of hepatic hemodynamics during Valsalva maneuver: healthy volunteers study

    Bang, Dong Ho; Son, Young Jin; Lee, Young Hwan; Yoon, Kwon Ha [Dept. of Radiology, Wonkwang University School of Medicine, Iksan (Korea, Republic of)


    The aim of our study was to assess the hemodynamic change of liver during the Valsalva maneuver using Doppler ultrasonography. Thirty healthy men volunteers were enrolled (mean age, 25.5±3.64 years). The diameter, minimal and maximal velocities, and volume flow of intrahepatic inferior vena cava (IVC), middle hepatic vein (MHV), and right main portal vein (RMPV) was measured during both rest and Valsalva maneuver. These changes were compared using paired t-test. The mean diameters (cm) of the intrahepatic IVC at rest and Valsalva maneuver were 1.94±0.40 versus 0.56±0.66 (P<0.001). The mean diameter (cm), minimal velocity (cm/sec), maximal velocity (cm/sec), and volume flow (mL/min) of MHV at rest and Valsalva maneuver were 0.60±0.15 versus 0.38±0.20 (P<0.001), -7.98±5.47 versus 25.74±13.13 (P<0.001), 21.34±6.89 versus 35.12±19.95 (P=0.002), and 106.94±97.65 versus 153.90±151.80 (P=0.014), respectively. Those of RMPV at rest and Valsalva maneuver were 0.78±0.21 versus 0.76±0.20 (P=0.485), 20.21±8.22 versus 18.73±7.43 (P=0.351), 26.79±8.85 versus 24.93±9.91 (P=0.275), and 391.52±265.63 versus 378.43±239.36 (P=0.315), respectively. The blood flow velocity and volume flow of MHV increased significantly during Valsalva maneuver. These findings suggest that hepatic vein might play an important role to maintain venous return to the heart during the maneuver.

  14. Beta measurement evaluation and upgrade

    Swinth, K.L.; Rathbun, L.A.; Roberson, P.L.; Endres, G.W.R.


    This program focuses on the resolution of problems associated with the field measurement of the beta dose component at Department of Energy (DOE) facilities. The change in DOE programs, including increased efforts in improved waste management and decontamination and decommissioning (D and D) of facilities, coupled with beta measurement problems identified at Three Mile Island has increased the need to improve beta measurements. In FY 1982, work was initiated to provide a continuing effort to identify problems associated with beta dose assessment at DOE facilities. The problems identified resulted in the development of this program. The investigation includes (1) an assessment of measurement systems now in use, (2) development of improved calibration systems and procedures, (3) application of innovative beta dosimetry concepts, (4) investigation of new instruments or concepts for monitoring and spectroscopy, and (5) development of recommendations to assure an adequate beta measurement program within DOE facilities

  15. The Choice of the Maneuver of the Vessel’s Passing Considering the Coordination’s System of the Interactive Vessels and Their Dynamic Characteristics

    Yevgen Volkov


    Full Text Available The maneuver of the altering course of the vessel is a more preferable to avoid a collision. Due to that the calculation of the parameters of the avoidance maneuver should be done considering the dynamic characteristics of the vessel in maneuvering. The paper analyzes the dynamic models of the vessel rotation motion in order to select more appropriate one for the calculation of avoidance maneuver of the vessel applying the altering of the course.

  16. Phospho-Rb mediating cell cycle reentry induces early apoptosis following oxygen-glucose deprivation in rat cortical neurons.

    Yu, Ying; Ren, Qing-Guo; Zhang, Zhao-Hui; Zhou, Ke; Yu, Zhi-Yuan; Luo, Xiang; Wang, Wei


    The aim of this study was to investigate the relationship between cell cycle reentry and apoptosis in cultured cortical neurons following oxygen-glucose deprivation (OGD). We found that the percentage of neurons with BrdU uptake, TUNEL staining, and colocalized BrdU uptake and TUNEL staining was increased relative to control 6, 12 and 24 h after 1 h of OGD. The number of neurons with colocalized BrdU and TUNEL staining was decreased relative to the number of TUNEL-positive neurons at 24 h. The expression of phosphorylated retinoblastoma protein (phospho-Rb) was significantly increased 6, 12 and 24 h after OGD, parallel with the changes in BrdU uptake. Phospho-Rb and TUNEL staining were colocalized in neurons 6 and 12 h after OGD. This colocalization was strikingly decreased 24 h after OGD. Treatment with the cyclin-dependent kinase inhibitor roscovitine (100 μM) decreased the expression of phospho-Rb and reduced neuronal apoptosis in vitro. These results demonstrated that attempted cell cycle reentry with phosphorylation of Rb induce early apoptosis in neurons after OGD and there must be other mechanisms involved in the later stages of neuronal apoptosis besides cell cycle reentry. Phosphoralated Rb may be an important factor which closely associates aberrant cell cycle reentry with the early stages of neuronal apoptosis following ischemia/hypoxia in vitro, and pharmacological interventions for neuroprotection may be useful directed at this keypoint.

  17. Conditional Betas and Investor Uncertainty

    Fernando D. Chague


    We derive theoretical expressions for market betas from a rational expectation equilibrium model where the representative investor does not observe if the economy is in a recession or an expansion. Market betas in this economy are time-varying and related to investor uncertainty about the state of the economy. The dynamics of betas will also vary across assets according to the assets' cash-flow structure. In a calibration exercise, we show that value and growth firms have cash-flow structures...

  18. Parameter Identification of Ship Maneuvering Models Using Recursive Least Square Method Based on Support Vector Machines

    Man Zhu


    Full Text Available Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS, are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM, is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.

  19. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie


    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  20. Correlation between crash avoidance maneuvers and injury severity sustained by motorcyclists in single-vehicle crashes.

    Wang, Chen; Lu, Linjun; Lu, Jian; Wang, Tao


    In order to improve motorcycle safety, this article examines the correlation between crash avoidance maneuvers and injury severity sustained by motorcyclists, under multiple precrash conditions. Ten-year crash data for single-vehicle motorcycle crashes from the General Estimates Systems (GES) were analyzed, using partial proportional odds models (i.e., generalized ordered logit models). The modeling results show that "braking (no lock-up)" is associated with a higher probability of increased severity, whereas "braking (lock-up)" is associated with a higher probability of decreased severity, under all precrash conditions. "Steering" is associated with a higher probability of reduced injury severity when other vehicles are encroaching, whereas it is correlated with high injury severity under other conditions. "Braking and steering" is significantly associated with a higher probability of low severity under "animal encounter and object presence," whereas it is surprisingly correlated with high injury severity when motorcycles are traveling off the edge of the road. The results also show that a large number of motorcyclists did not perform any crash avoidance maneuvers or conducted crash avoidance maneuvers that are significantly associated with high injury severity. In general, this study suggests that precrash maneuvers are an important factor associated with motorcyclists' injury severity. To improve motorcycle safety, training/educational programs should be considered to improve safety awareness and adjust driving habits of motorcyclists. Antilock brakes and such systems are also promising, because they could effectively prevent brake lock-up and assist motorcyclists in maneuvering during critical conditions. This study also provides valuable information for the design of motorcycle training curriculum.

  1. Concept of a Maneuvering Load Control System and Effect on the Fatigue Life Extension

    N. Paletta

    Full Text Available Abstract This paper presents a methodology for the conceptual design of a Maneuver Load Control system taking into account the airframe flexibility. The system, when switched on, is able to minimize the bending moment augmentation at a wing station near the wing root during an unsteady longitudinal maneuver. The reduction of the incremental wing bending moment due to maneuvers can lead to benefits such as improved pay-loads/gross weight capabilities and/or extended structural fatigue life. The maneuver is performed by following a desired vertical load factor law with elevators deflections, starting from the trim equilibrium in level flight. The system observes load factor and structural bending through accelerometers and calibrated strain sensors and then sends signals to a computer that symmetrically actuates ailerons for reducing the structural bending and elevators for compensating the perturbation to the longitudinal equilibrium. The major limit of this kind of systems appears when it has to be installed on commercial transport aircraft for reduced OEW or augmented wing aspect-ratio. In this case extensive RAMS analyses and high redundancy of the MLC related sub-systems are required by the Certification Authority. Otherwise the structural design must be performed at system off. Thus the unique actual benefit to be gained from the adoption of a MLC system on a commercial transport is the fatigue life extension. An application to a business aircraft responding to the EASA Certification Specifications, Part 25, has been performed. The aircraft used for the numerical application is considered only as a test case-study. Most of design and analysis considerations are applicable also to other aircraft, such as unmanned or military ones, although some design requirements can be clearly different. The estimation of the fatigue life extension of a structural joint (wing lower skin-stringer, located close to the wing root, has been estimated by showing

  2. Dynamic returns of beta arbitrage

    Nascimento, Mafalda


    This thesis studies the patterns of the abnormal returns of the beta strategy. The topic can be helpful for professional investors, who intend to achieve a better performance in their portfolios. Following the methodology of Lou, Polk, & Huang (2016), the COBAR measure is computed in order to determine the levels of beta arbitrage in the market in each point in time. It is argued that beta arbitrage activity can have impact on the returns of the beta strategy. In fact, it is demonstrated that...

  3. Integration of BETA with Eclipse

    Andersen, Peter; Madsen, Ole Lehrmann; Enevoldsen, Mads Brøgger


    This paper presents language interoperability issues appearing in order to implement support for the BETA language in the Java-based Eclipse integrated development environment. One of the challenges is to implement plug-ins in BETA and be able to load them in Eclipse. In order to do this, some fo...... it is possible to implement plug-ins in BETA and even inherit from Java classes. In the paper the two approaches are described together with part of the mapping from BETA to Java class files.

  4. Simultaneous beta and gamma spectroscopy

    Farsoni, Abdollah T.; Hamby, David M.


    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  5. Potential Dermal Exposure in greenhouses for manual sprayers: Analysis of the mix/load, application and re-entry stages

    Ramos, Laura M.; Querejeta, Giselle A.; Flores, Andrea P.; Hughes, Enrique A.; Zalts, Anita; Montserrat, Javier M.


    An evaluation of the Potential Dermal Exposure for the mix/load, application and re-entry stages, associated with procymidone and deltamethrin usage, was carried out for tomatoes grown in greenhouses of small production units in Argentina. Eight experiments were done with four different operators, under typical field conditions with a lever operated backpack sprayer. The methodology applied was based on the Whole Body Dosimetry technique, evaluating a set of different data for the mix and load, application and re-entry operations. These results indicated that the Potential Dermal Exposure of the application step was (38 ± 17) mL h -1 with the highest proportion on torso, head and arms. When the three stages were compared, re-entry was found to contribute least towards the total Potential Dermal Exposure; meanwhile in all cases, except one, the mix/load operation was the stage with highest exposure. The Margin of Safety for each different operation was also calculated and the proportion of pesticide drift from the greenhouse to the environment is presented. These results emphasize the importance of improving the personal protection measures in the mix and load stage, an operation that is not usually associated with high-risk in small production units.

  6. Potential Dermal Exposure in greenhouses for manual sprayers: Analysis of the mix/load, application and re-entry stages

    Ramos, Laura M.; Querejeta, Giselle A.; Flores, Andrea P.; Hughes, Enrique A.; Zalts, Anita [Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutierrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires (Argentina); Montserrat, Javier M., E-mail: [Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutierrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires (Argentina); Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular (CONICET), Vuelta de Obligado 2490, 2o piso, Buenos Aires (Argentina)


    An evaluation of the Potential Dermal Exposure for the mix/load, application and re-entry stages, associated with procymidone and deltamethrin usage, was carried out for tomatoes grown in greenhouses of small production units in Argentina. Eight experiments were done with four different operators, under typical field conditions with a lever operated backpack sprayer. The methodology applied was based on the Whole Body Dosimetry technique, evaluating a set of different data for the mix and load, application and re-entry operations. These results indicated that the Potential Dermal Exposure of the application step was (38 {+-} 17) mL h{sup -1} with the highest proportion on torso, head and arms. When the three stages were compared, re-entry was found to contribute least towards the total Potential Dermal Exposure; meanwhile in all cases, except one, the mix/load operation was the stage with highest exposure. The Margin of Safety for each different operation was also calculated and the proportion of pesticide drift from the greenhouse to the environment is presented. These results emphasize the importance of improving the personal protection measures in the mix and load stage, an operation that is not usually associated with high-risk in small production units.

  7. Identification of active anti-inflammatory principles of beta- beta ...

    chromatography. Components of the extracts were identified by thin layer chromatography (TLC) scanner and UV-visible spectroscopy, using scopoletin as standard. Results: ... basic coumarin skeleton ring structure reduce ... Figure 2: Thin-layer chromatogram: (1) Ethanol extract; (2) Dichloromethane fraction; (3) Beta-beta.

  8. Improved limits on beta(-) and beta(-) decays of Ca-48

    Bakalyarov, A.; Balysh, A.; Barabash, AS.; Beneš, P.; Briancon, C.; Brudanin, V. B.; Čermák, P.; Egorov, V.; Hubert, F.; Hubert, P.; Korolev, NA.; Kosjakov, VN.; Kovalík, Alojz; Lebedev, NA.; Novgorodov, A. F.; Rukhadze, NI.; Štekl, NI.; Timkin, VV.; Veleshko, IE.; Vylov, T.; Umatov, VI.


    Roč. 76, č. 9 (2002), s. 545-547 ISSN 0021-3640 Institutional research plan: CEZ:AV0Z1048901 Keywords : beta decay * double beta decay * Ca-48 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.483, year: 2002

  9. Lagrangian Particle Tracking in a Discontinuous Galerkin Method for Hypersonic Reentry Flows in Dusty Environments

    Ching, Eric; Lv, Yu; Ihme, Matthias


    Recent interest in human-scale missions to Mars has sparked active research into high-fidelity simulations of reentry flows. A key feature of the Mars atmosphere is the high levels of suspended dust particles, which can not only enhance erosion of thermal protection systems but also transfer energy and momentum to the shock layer, increasing surface heat fluxes. Second-order finite-volume schemes are typically employed for hypersonic flow simulations, but such schemes suffer from a number of limitations. An attractive alternative is discontinuous Galerkin methods, which benefit from arbitrarily high spatial order of accuracy, geometric flexibility, and other advantages. As such, a Lagrangian particle method is developed in a discontinuous Galerkin framework to enable the computation of particle-laden hypersonic flows. Two-way coupling between the carrier and disperse phases is considered, and an efficient particle search algorithm compatible with unstructured curved meshes is proposed. In addition, variable thermodynamic properties are considered to accommodate high-temperature gases. The performance of the particle method is demonstrated in several test cases, with focus on the accurate prediction of particle trajectories and heating augmentation. Financial support from a Stanford Graduate Fellowship and the NASA Early Career Faculty program are gratefully acknowledged.

  10. Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna

    B. W. Bai


    Full Text Available A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.

  11. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.

    Xingling, Shao; Honglun, Wang


    This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties.

    Shao, Xingling; Wang, Honglun


    This paper investigates a novel compound control scheme combined with the advantages of trajectory linearization control (TLC) and alternative active disturbance rejection control (ADRC) for hypersonic reentry vehicle (HRV) attitude tracking system with bounded uncertainties. Firstly, in order to overcome actuator saturation problem, nonlinear tracking differentiator (TD) is applied in the attitude loop to achieve fewer control consumption. Then, linear extended state observers (LESO) are constructed to estimate the uncertainties acting on the LTV system in the attitude and angular rate loop. In addition, feedback linearization (FL) based controllers are designed using estimates of uncertainties generated by LESO in each loop, which enable the tracking error for closed-loop system in the presence of large uncertainties to converge to the residual set of the origin asymptotically. Finally, the compound controllers are derived by integrating with the nominal controller for open-loop nonlinear system and FL based controller. Also, comparisons and simulation results are presented to illustrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Fault-tolerant control with mixed aerodynamic surfaces and RCS jets for hypersonic reentry vehicles

    Jingjing He


    Full Text Available This paper proposes a fault-tolerant strategy for hypersonic reentry vehicles with mixed aerodynamic surfaces and reaction control systems (RCS under external disturbances and subject to actuator faults. Aerodynamic surfaces are treated as the primary actuator in normal situations, and they are driven by a continuous quadratic programming (QP allocator to generate torque commanded by a nonlinear adaptive feedback control law. When aerodynamic surfaces encounter faults, they may not be able to provide sufficient torque as commanded, and RCS jets are activated to augment the aerodynamic surfaces to compensate for insufficient torque. Partial loss of effectiveness and stuck faults are considered in this paper, and observers are designed to detect and identify the faults. Based on the fault identification results, an RCS control allocator using integer linear programming (ILP techniques is designed to determine the optimal combination of activated RCS jets. By treating the RCS control allocator as a quantization element, closed-loop stability with both continuous and quantized inputs is analyzed. Simulation results verify the effectiveness of the proposed method.

  14. Anatomical and spiral wave reentry in a simplified model for atrial electrophysiology.

    Richter, Yvonne; Lind, Pedro G; Seemann, Gunnar; Maass, Philipp


    For modeling the propagation of action potentials in the human atria, various models have been developed in the past, which take into account in detail the influence of the numerous ionic currents flowing through the cell membrane. Aiming at a simplified description, the Bueno-Orovio-Cherry-Fenton (BOCF) model for electric wave propagation in the ventricle has been adapted recently to atrial physiology. Here, we study this adapted BOCF (aBOCF) model with respect to its capability to accurately generate spatio-temporal excitation patterns found in anatomical and spiral wave reentry. To this end, we compare results of the aBOCF model with the more detailed one proposed by Courtemanche, Ramirez and Nattel (CRN model). We find that characteristic features of the reentrant excitation patterns seen in the CRN model are well captured by the aBOCF model. This opens the possibility to study origins of atrial fibrillation based on a simplified but still reliable description. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model.

    Krogh-Madsen, Trine; Christini, David J


    Accumulation of intracellular Na + is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na + concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na + concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na + ] i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na + ] i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na + ] i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na + ] i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na + ] i may play complex roles in cellular and tissue-level cardiac dynamics.

  16. Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer

    Xuzhong Wu


    Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.

  17. Physiological responses of astronaut candidates to simulated +Gx orbital emergency re-entry.

    Wu, Bin; Xue, Yueying; Wu, Ping; Gu, Zhiming; Wang, Yue; Jing, Xiaolu


    We investigated astronaut candidates' physiological and pathological responses to +Gx exposure during simulated emergency return from a running orbit to advance astronaut +Gx tolerance training and medical support in manned spaceflight. There were 13 male astronaut candidates who were exposed to a simulated high +Gx acceleration profile in a spacecraft during an emergency return lasting for 230 s. The peak value was 8.5 G. Subjective feelings and symptoms, cardiovascular and respiratory responses, and changes in urine component before, during, and after +Gx exposure were investigated. Under high +Gx exposure, 15.4% of subjects exhibited arrhythmia. Heart rate (HR) increased significantly and four different types of HR response curves were distinguished. The ratio of QT to RR interval on the electrocardiograms was significantly increased. Arterial oxygen saturation (SaO2) declined with increasing G value and then returned gradually. SaO2 reached a minimum (87.7%) at 3 G during the decline phase of the +Gx curve. Respiratory rate increased significantly with increasing G value, while the amplitude and area of the respiratory waves were significantly reduced. The overshoot appeared immediately after +Gx exposure. A few subjects suffered from slight injuries, including positive urine protein (1/13), positive urinary occult blood (1/13), and a large area of petechiae on the back (1/13). Astronaut candidates have relatively good tolerance to the +Gx profile during a simulation of spacecraft emergent ballistic re-entry. However, a few subjects exhibited adverse physiological responses and slight reversible pathological injuries.

  18. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease

    Bing Bai


    Full Text Available The aberrancy of U1 small nuclear ribonucleoprotein (snRNP complex and RNA splicing has been demonstrated in Alzheimer’s disease (AD. Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP phosphorylation, and the possible neuronal death through mitotic catastrophe (MC. Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.

  19. Community reentry challenges after release from prison among people who inject drugs in St. Petersburg, Russia.

    Cepeda, Javier A; Vetrova, Marina V; Lyubimova, Alexandra I; Levina, Olga S; Heimer, Robert; Niccolai, Linda M


    Little is known about the context of the post-release risk environment among formerly incarcerated people who inject drugs (PWID) in Russia. The purpose of this paper is to explore these challenges as they relate to reentry, relapse to injection opioid use, and overdose. The authors conducted 25 in-depth semi-structured interviews among PWID living in St Petersburg, Russia who had been incarcerated within the past two years. Participants were recruited from street outreach (n=20) and a drug treatment center (n=5). Emergent themes related to the post-release environment included financial instability, negative interactions with police, return to a drug using community, and reuniting with drug using peers. Many respondents relapsed to opioid use immediately after release. Those whose relapse occurred weeks or months after their release expressed more motivation to resist. Alcohol or stimulant use often preceded the opioid relapse episode. Among those who overdosed, alcohol use was often reported prior to overdosing on opioids. Future post-release interventions in Russia should effectively link PWID to social, medical, and harm reduction services. Particular attention should be focussed on helping former inmates find employment and overdose prevention training prior to leaving prison that should also cover the heightened risk of concomitant alcohol use. In addition to describing a syndemic involving the intersection of incarceration, injection drug use, poverty, and alcohol abuse, the findings can inform future interventions to address these interrelated public health challenges within the Russian setting.

  20. Conversion of beta-methylbutyric acid to beta-hydroxy-beta-methylbutyric acid by Galactomyces reessii.

    Lee, I Y; Nissen, S L; Rosazza, J P


    beta-Hydroxy-beta-methylbutyric acid (HMB) has been shown to increase strength and lean mass gains in humans undergoing resistance-exercise training. HMB is currently marketed as a calcium salt of HMB, and thus, environmentally sound and inexpensive methods of manufacture are being sought. This study investigates the microbial conversion of beta-methylbutyric acid (MBA) to HMB by cultures of Galactomyces reessii. Optimal concentrations of MBA were in the range of 5 to 20 g/liter for HMB produ...

  1. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    Chai, Dean; Queen, Steve; Placanica, Sam


    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  2. The Pringle maneuver reduces the infusion rate of rocuronium required to maintain surgical muscle relaxation during hepatectomy.

    Kajiura, Akira; Nagata, Osamu; Sanui, Masamitsu


    We investigated the continuous infusion rates of rocuronium necessary to obtain the surgical muscle relaxation before, during, and after the Pringle maneuver on patients who underwent hepatectomy. Fifteen patients were induced by total intravenous anesthesia with propofol. After obtaining the calibration of acceleromyography, the patient was intubated with rocuronium 0.6 mg/kg. Fifteen minutes after initial rocuronium injection, the continuous infusion was started at 7.5 µg/kg/min. The infusion rate was adjusted every 15 min so that the first twitch height (% T1) might become from 3 to 10% of control. The infusion rates at the time when the state of surgical muscle relaxation was achieved for more than 15 min were recorded before, during and after the Pringle maneuver. The 25% recovery time was measured after discontinuing the continuous infusion. The infusion rate of rocuronium before, during, and after the Pringle maneuver was 7.2 ± 1.8, 4.2 ± 1.4, and 4.7 ± 1.5 µg/kg/min (mean ± SD), respectively. The rocuronium infusion rate during the Pringle maneuver was decreased about 40% compared to that before this maneuver, and that after completion of the Pringle maneuver was not recovered to that before the Pringle maneuver. The 25% recovery time was 20 ± 7 min. In case of continuous administration of rocuronium during surgery performing the Pringle maneuver, it was considered necessary to regulate the administration of rocuronium using muscle relaxant monitoring in order to deal with the decrease in muscle relaxant requirement by the Pringle maneuver.

  3. The best-beta CAPM

    Zou, L.


    The issue of 'best-beta' arises as soon as potential errors in the Sharpe-Lintner-Black capital asset pricing model (CAPM) are acknowledged. By incorporating a target variable into the investor preferences, this study derives a best-beta CAPM (BCAPM) that maintains the CAPM's theoretical appeal and

  4. Beta decay of Cu-56

    Borcea, R; Aysto, J; Caurier, E; Dendooven, P; Doring, J; Gierlik, M; Gorska, M; Grawe, H; Hellstrom, M; Janas, Z; Jokinen, A; Karny, M; Kirchner, R; La Commara, M; Langanke, K; Martinez-Pinedo, G; Mayet, P; Nieminen, A; Nowacki, F; Penttila, H; Plochocki, A; Rejmund, M; Roeckl, E; Schlegel, C; Schmidt, K; Schwengner, R; Sawicka, M


    The proton-rich isotope Cu-56 was produced at the GSI On-Line Mass Separator by means of the Si-28(S-32, p3n) fusion-evaporation reaction. Its beta -decay properties were studied by detecting beta -delayed gamma rays and protons. A half-Life of 93 +/- 3 ms was determined for Cu-56. Compared to the

  5. BETA SPECTRA. I. Negatrons spectra

    Grau Malonda, A.; Garcia-Torano, E.


    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  6. Review of the beta situation

    Sheffield, J.


    This note lists some of the possible causes of beta limitation in tokamak and discusses what is known and what is involved in investigating them. The motivation for preparing this note is the observed degradation of confinement with increasing beta poloidal β/sub p/ and beam power P/sub b/ in ISX-B

  7. Evaluation of lung recruitment maneuvers in acute respiratory distress syndrome using computer simulation.

    Das, Anup; Cole, Oana; Chikhani, Marc; Wang, Wenfei; Ali, Tayyba; Haque, Mainul; Bates, Declan G; Hardman, Jonathan G


    Direct comparison of the relative efficacy of different recruitment maneuvers (RMs) for patients with acute respiratory distress syndrome (ARDS) via clinical trials is difficult, due to the heterogeneity of patient populations and disease states, as well as a variety of practical issues. There is also significant uncertainty regarding the minimum values of positive end-expiratory pressure (PEEP) required to ensure maintenance of effective lung recruitment using RMs. We used patient-specific computational simulation to analyze how three different RMs act to improve physiological responses, and investigate how different levels of PEEP contribute to maintaining effective lung recruitment. We conducted experiments on five 'virtual' ARDS patients using a computational simulator that reproduces static and dynamic features of a multivariable clinical dataset on the responses of individual ARDS patients to a range of ventilator inputs. Three recruitment maneuvers (sustained inflation (SI), maximal recruitment strategy (MRS) followed by a titrated PEEP, and prolonged recruitment maneuver (PRM)) were implemented and evaluated for a range of different pressure settings. All maneuvers demonstrated improvements in gas exchange, but the extent and duration of improvement varied significantly, as did the observed mechanism of operation. Maintaining adequate post-RM levels of PEEP was seen to be crucial in avoiding cliff-edge type re-collapse of alveolar units for all maneuvers. For all five patients, the MRS exhibited the most prolonged improvement in oxygenation, and we found that a PEEP setting of 35 cm H2O with a fixed driving pressure of 15 cm H2O (above PEEP) was sufficient to achieve 95% recruitment. Subsequently, we found that PEEP titrated to a value of 16 cm H2O was able to maintain 95% recruitment in all five patients. There appears to be significant scope for reducing the peak levels of PEEP originally specified in the MRS and hence to avoid exposing the lung to

  8. Integrated detection, estimation, and guidance in pursuit of a maneuvering target

    Dionne, Dany

    The thesis focuses on efficient solutions of non-cooperative pursuit-evasion games with imperfect information on the state of the system. This problem is important in the context of interception of future maneuverable ballistic missiles. However, the theoretical developments are expected to find application to a broad class of hybrid control and estimation problems in industry. The validity of the results is nevertheless confirmed using a benchmark problem in the area of terminal guidance. A specific interception scenario between an incoming target with no information and a single interceptor missile with noisy measurements is analyzed in the form of a linear hybrid system subject to additive abrupt changes. The general research is aimed to achieve improved homing accuracy by integrating ideas from detection theory, state estimation theory and guidance. The results achieved can be summarized as follows. (i) Two novel maneuver detectors are developed to diagnose abrupt changes in a class of hybrid systems (detection and isolation of evasive maneuvers): a new implementation of the GLR detector and the novel adaptive- H0 GLR detector. (ii) Two novel state estimators for target tracking are derived using the novel maneuver detectors. The state estimators employ parameterized family of functions to described possible evasive maneuvers. (iii) A novel adaptive Bayesian multiple model predictor of the ballistic miss is developed which employs semi-Markov models and ideas from detection theory. (iv) A novel integrated estimation and guidance scheme that significantly improves the homing accuracy is also presented. The integrated scheme employs banks of estimators and guidance laws, a maneuver detector, and an on-line governor; the scheme is adaptive with respect to the uncertainty affecting the probability density function of the filtered state. (v) A novel discretization technique for the family of continuous-time, game theoretic, bang-bang guidance laws is introduced. The

  9. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra


    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  10. A multinomial-logit ordered-probit model for jointly analyzing crash avoidance maneuvers and crash severity

    Kaplan, Sigal; Prato, Carlo Giacomo

    ' propensity to engage in various corrective maneuvers in the case of the critical event of vehicle travelling. Five lateral and speed control maneuvers are considered: “braking”, “steering”, “braking & steering”, and “other maneuvers”, in addition to a “no action” option. The analyzed data are retrieved from...... the United States National Automotive Sampling System General Estimates System (GES) crash database for the years 2005-2009. Results show (i) the correlation between crash avoidance maneuvers and crash severity, and (ii) the link between drivers' attributes, risky driving behavior, road characteristics...

  11. RAVEN Beta Release

    Rabiti, Cristian; Alfonsi, Andrea; Cogliati, Joshua Joseph; Mandelli, Diego; Kinoshita, Robert Arthur; Wang, Congjian; Maljovec, Daniel Patrick; Talbot, Paul William


    This documents the release of the Risk Analysis Virtual Environment (RAVEN) code. A description of the RAVEN code is provided, and discussion of the release process for the M2LW-16IN0704045 milestone. The RAVEN code is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN has now increased in maturity enough for the Beta 1.0 release.

  12. RAVEN Beta Release

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Congjian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Daniel Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul William [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    This documents the release of the Risk Analysis Virtual Environment (RAVEN) code. A description of the RAVEN code is provided, and discussion of the release process for the M2LW-16IN0704045 milestone. The RAVEN code is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN has now increased in maturity enough for the Beta 1.0 release.

  13. Interactions between two beta-sheets. Energetics of beta/beta packing in proteins.

    Chou, K C; Némethy, G; Rumsey, S; Tuttle, R W; Scheraga, H A


    The analysis of the interactions between regularly folded segments of the polypeptide chain contributes to an understanding of the energetics of protein folding. Conformational energy-minimization calculations have been carried out to determine the favorable ways of packing two right-twisted beta-sheets. The packing of two five-stranded beta-sheets was investigated, with the strands having the composition CH3CO-(L-Ile)6-NHCH3 in one beta-sheet and CH3CO-(L-Val)6-NHCH3 in the other. Two distinct classes of low-energy packing arrangements were found. In the class with lowest energies, the strands of the two beta-sheets are aligned nearly parallel (or antiparallel) with each other, with a preference for a negative orientation angle, because this arrangement corresponds to the best complementary packing of the two twisted saddle-shaped beta-sheets. In the second class, with higher interaction energies, the strands of the two beta-sheets are oriented nearly perpendicular to each other. While the surfaces of the two beta-sheets are not complementary in this arrangement, there is good packing between the corner of one beta-sheet and the interior part of the surface of the other, resulting in a favorable energy of packing. Both classes correspond to frequently observed orientations of beta-sheets in proteins. In proteins, the second class of packing is usually observed when the two beta-sheets are covalently linked, i.e. when a polypeptide strand passes from one beta-sheet to the other, but we have shown here that a large contribution to the stabilization of this packing arrangement arises from noncovalent interactions.

  14. Derivatives of the Incomplete Beta Function

    Robert J. Boik


    Full Text Available The incomplete beta function is defined as where Beta(p, q is the beta function. Dutka (1981 gave a history of the development and numerical evaluation of this function. In this article, an algorithm for computing first and second derivatives of Ix,p,q with respect to p and q is described. The algorithm is useful, for example, when fitting parameters to a censored beta, truncated beta, or a truncated beta-binomial model.

  15. Evaluation of the Trade Space Between UAS Maneuver Performance and SAA System Performance Requirements

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.


    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, nearterm UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements for a wide range of encounters. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. The simulator is described herein and has both a graphical user interface and batch interface to support detailed analysis of individual UAS encounters and macro analysis of a very large set of UAS and encounter models, respectively. Results from the simulator using approximate performance data from a well-known manned aircraft is presented to provide insight into the problem and as verification and validation of the simulator. Analysis of climb, descent, and level turn maneuvers to avoid a collision is presented. Noting the diversity of backgrounds in the UAS community, a description of the UAS aerodynamic and propulsive design and performance parameters is included. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how

  16. Slewing maneuvers and vibration control of space structures by feedforward/feedback moment-gyro controls

    Yang, Li-Farn; Mikulas, Martin M., Jr.; Park, K. C.; Su, Renjeng


    This paper presents a moment-gyro control approach to the maneuver and vibration suppression of a flexible truss arm undergoing a constant slewing motion. The overall slewing motion is triggered by a feedforward input, and a companion feedback controller is employed to augment the feedforward input and subsequently to control vibrations. The feedforward input for the given motion requirement is determined from the combined CMG (Control Momentum Gyro) devices and the desired rigid-body motion. The rigid-body dynamic model has enabled us to identify the attendant CMG momentum saturation constraints. The task for vibration control is carried out in two stages; first in the search of a suitable CMG placement along the beam span for various slewing maneuvers, and subsequently in the development of Liapunov-based control algorithms for CMG spin-stabilization. Both analytical and numerical results are presented to show the effectiveness of the present approach.

  17. Conflict resolution maneuvers during near miss encounters with cockpit traffic displays

    Palmer, E.


    The benefits and liabilities associated with pilots' use of a cockpit traffic display to assess the threat posed by air traffic and to make small maneuvers to avoid situations which would result in collision avoidance advisories are experimentally studied. The crew's task was to fly a simulated wide-body aircraft along a straight course at constant altitude while intruder aircraft appeared on a variety of converging trajectories. The main experimental variables were the amount and quality of the information displayed on the intruder aircraft's estimated future position. Pilots were to maintain a horizontal separation of at least 1.5 nautical miles or a vertical separation of 500 ft, so that collision avoidance advisories would not be triggered. The results show that pilots could usually maneuver to provide the specified separation but often made course deviations greater than 1.5 nm or 500 ft.

  18. Horizontal Conflict Resolution Maneuvers with a Cockpit Display of Traffic Information

    Palmer, E.; Jago, S.; Dubord, M.


    Pilot resolution of potential conflicts in the horizontal plane when the only information available on the other aircraft was presented on a Cockpit Display of Traffic Information (CDTI) is investigated. The pilot's task was to assess the situation and if necessary maneuver so as to avoid the other aircraft. No instructions were given on evasive strategy or on what was considered to be an acceptable minimum separation. The results indicate that pilots had a strong bias of turning toward the intruder aircraft in order to pass behind it. In more than 50% of the encounters with a 90 degree crossing angle in which the intruder aircraft was programmed to pass behind the aircraft, the pilots maneuvered so as to pass behind the intruder. This bias was not as strong with the display which showed a prediction of the intruder's relative velocity. The average miss distance for all encounters was about 4500 feet.

  19. Optimization model of conventional missile maneuvering route based on improved Floyd algorithm

    Wu, Runping; Liu, Weidong


    Missile combat plays a crucial role in the victory of war under high-tech conditions. According to the characteristics of maneuver tasks of conventional missile units in combat operations, the factors influencing road maneuvering are analyzed. Based on road distance, road conflicts, launching device speed, position requirements, launch device deployment, Concealment and so on. The shortest time optimization model was built to discuss the situation of road conflict and the strategy of conflict resolution. The results suggest that in the process of solving road conflict, the effect of node waiting is better than detour to another way. In this study, we analyzed the deficiency of the traditional Floyd algorithm which may limit the optimal way of solving road conflict, and put forward the improved Floyd algorithm, meanwhile, we designed the algorithm flow which would be better than traditional Floyd algorithm. Finally, throgh a numerical example, the model and the algorithm were proved to be reliable and effective.

  20. Quadcopter Aggressive Maneuvers along Singular Configurations: An Energy-Quaternion Based Approach

    Ayman A. El-Badawy


    Full Text Available Automatic aggressive maneuvers with quadcopters are regarded as a highly challenging control problem. The aim is to tackle the singularities that exist in a vertical looping maneuver. Modeling singularities are resolved by writing the equations-of-motion of the quadcopter in quaternion form. Physical singularities due to underactuation are resolved by using an energy-based control. Energy-based control is utilized to overcome the uncontrollability of the quadcopter at physical singular configurations, for instance, when commanding the quadcopter to gain altitude while pitched at 90∘. Three looping strategies (circular, clothoidal, and newly developed constant thrust are implemented on a nonlinear model of the quadcopter. The three looping strategies are discussed along with their advantages and limitations.

  1. Hybrid Switching Controller Design for the Maneuvering and Transit of a Training Ship

    Tomera Mirosław


    Full Text Available The paper presents the design of a hybrid controller used to control the movement of a ship in different operating modes, thereby improving the performance of basic maneuvers. This task requires integrating several operating modes, such as maneuvering the ship at low speeds, steering the ship at different speeds in the course or along the trajectory, and stopping the ship on the route. These modes are executed by five component controllers switched on and off by the supervisor depending on the type of operation performed. The desired route, containing the coordinates of waypoints and tasks performed along consecutive segments of the reference trajectory, is obtained by the supervisory system from the system operator. The former supports switching between component controllers and provides them with new set-points after each change in the reference trajectory segment, thereby ensuring stable operation of the entire hybrid switching controller.

  2. Implementation of the Orbital Maneuvering Systems Engine and Thrust Vector Control for the European Service Module

    Millard, Jon


    The European Space Agency (ESA) has entered into a partnership with the National Aeronautics and Space Administration (NASA) to develop and provide the Service Module (SM) for the Orion Multipurpose Crew Vehicle (MPCV) Program. The European Service Module (ESM) will provide main engine thrust by utilizing the Space Shuttle Program Orbital Maneuvering System Engine (OMS-E). Thrust Vector Control (TVC) of the OMS-E will be provided by the Orbital Maneuvering System (OMS) TVC, also used during the Space Shuttle Program. NASA will be providing the OMS-E and OMS TVC to ESA as Government Furnished Equipment (GFE) to integrate into the ESM. This presentation will describe the OMS-E and OMS TVC and discuss the implementation of the hardware for the ESM.

  3. Virtual maneuvering test in CFD media in presence of free surface

    Ahmad Hajivand


    Full Text Available Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, k-ε and SST k-ω in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.

  4. Analysis of LFM-waveform Libraries for Cognitive Tracking Maneuvering Targets

    Wang Hongyan


    Full Text Available Based on the idea of the waveform agility in cognitive radars,the waveform libraries for maneuvering target tracking are discussed. LFM-waveform libraries are designed according to different combinations of chirp parameters and FrFT rotation angles. By applying the interact multiple model (IMM algorithm in tracking maneuvering targets, transmitted waveform is called real time from the LFM-waveform libraries. The waveforms are selected from the library according to the criterion of maximum mutual information between the current state of knowledge of the model and the measurement. Simulation results show that waveform library containing certain amount LFM-waveforms can improve the performance of cognitive tracking radar.

  5. A Novel Guidance Law with Line-of-Sight Acceleration Feedback for Missiles against Maneuvering Targets

    Kemao Ma


    Full Text Available Terminal guidance law design and its implementation are considered for homing missiles against maneuvering targets. The lateral acceleration dynamics are taken into account in the design. In the guidance law design, the line-of-sight acceleration signals are incorporated into the acceleration reference signals to compensate for the targets’ maneuvers. Then the commanded accelerations are designed and the convergent tracking of the lateral accelerations to these signals is proven theoretically. In the guidance implementation, a linear high-gain differentiator is used to estimate the line-of-sight rates and the line-of-sight acceleration signals. To avoid the magnifying effects of higher order differentiation, a practical design of commanded accelerations is given to realize approximate tracking of the lateral accelerations to the given reference signals. Simulation is conducted for both cases with and without measurement noises. The simulation results justify the feasibility of the design and the implementation.

  6. HCN Production via Impact Ejecta Reentry During the Late Heavy Bombardment

    Parkos, Devon; Pikus, Aaron; Alexeenko, Alina; Melosh, H. Jay


    Major impact events have shaped the Earth as we know it. The Late Heavy Bombardment is of particular interest because it immediately precedes the first evidence of life. The reentry of impact ejecta creates numerous chemical by-products, including biotic precursors such as HCN. This work examines the production of HCN during the Late Heavy Bombardment in more detail. We stochastically simulate the range of impacts on the early Earth and use models developed from existing studies to predict the corresponding ejecta properties. Using multiphase flow methods and finite-rate equilibrium chemistry, we then find the HCN production due to the resulting atmospheric heating. We use Direct Simulation Monte Carlo to develop a correction factor to account for increased yields due to thermochemical nonequilibrium. We then model 1-D atmospheric turbulent diffusion to find the time accurate transport of HCN to lower altitudes and ultimately surface water. Existing works estimate the necessary HCN molarity threshold to promote polymerization that is 0.01 M. For a mixing depth of 100 m, we find that the Late Heavy Bombardment will produce at least one impact event above this threshold with probability 24.1% for an oxidized atmosphere and 56.3% for a partially reduced atmosphere. For a mixing depth of 10 m, the probability is 79.5% for an oxidized atmosphere and 96.9% for a partially reduced atmosphere. Therefore, Late Heavy Bombardment impact ejecta is likely an HCN source sufficient for polymerization in shallow bodies of water, particularly if the atmosphere were in a partially reduced state.

  7. Infrared Observations of the Orion Capsule During EFT-1 Hypersonic Reentry

    Horvath, Thomas J.; Rufer, Shann J.; Schuster, David M.; Mendeck, Gavin F.; Oliver, A. Brandon; Schwartz, Richard J.; Verstynen, Harry A.; Mercer, C. David; Tack, Steven; Ingram, Ben; hide


    High-resolution infrared observations of the Orion capsule during its atmospheric reentry on December 5, 2015 were made from a US Navy NP-3D. This aircraft, equipped with a long-range optical sensor system, tracked the capsule from Mach 10 to 7 from a distance of approximately 60 nmi. Global surface temperatures of the capsule's thermal heatshield were derived from near infrared intensity measurements. The global surface temperature measurements complemented onboard instrumentation and were invaluable to the interpretation of the in-depth thermocouple measurements which rely on inverse heat transfer methods and material response codes to infer the desired surface temperature from the sub-surface measurements. The full paper will address the motivations behind the NASA Engineering Safety Center sponsored observation and highlight premission planning processes with an emphasis on aircraft placement, optimal instrument configuration and sensor calibrations. Critical aspects of mission operations coordinated from the NASA Johnson Spaceflight Center and integration with the JSC Flight Test Management Office will be discussed. A summary of the imagery that was obtained and processed to global surface temperature will be presented. At the capsule's point of closest approach relative to the imaging system, the spatial resolution was estimated to be approximately 15-inches per pixel and was sufficient to identify localized temperature increases associated with compression pad support hardware on the heatshield. The full paper will discuss the synergy of the quantitative imagery derived temperature maps with in-situ thermocouple measurements. Comparison of limited onboard surface thermocouple data to the image derived surface temperature will be presented. The two complimentary measurements serve as an example of the effective leveraging of resources to advance the understanding of high Mach number environments associated with an ablated heatshield and provide unique data

  8. Atmosphere Re-Entry Simulation Using Direct Simulation Monte Carlo (DSMC Method

    Francesco Pellicani


    Full Text Available Hypersonic re-entry vehicles aerothermodynamic investigations provide fundamental information to other important disciplines like materials and structures, assisting the development of thermal protection systems (TPS efficient and with a low weight. In the transitional flow regime, where thermal and chemical equilibrium is almost absent, a new numerical method for such studies has been introduced, the direct simulation Monte Carlo (DSMC numerical technique. The acceptance and applicability of the DSMC method have increased significantly in the 50 years since its invention thanks to the increase in computer speed and to the parallel computing. Anyway, further verification and validation efforts are needed to lead to its greater acceptance. In this study, the Monte Carlo simulator OpenFOAM and Sparta have been studied and benchmarked against numerical and theoretical data for inert and chemically reactive flows and the same will be done against experimental data in the near future. The results show the validity of the data found with the DSMC. The best setting of the fundamental parameters used by a DSMC simulator are presented for each software and they are compared with the guidelines deriving from the theory behind the Monte Carlo method. In particular, the number of particles per cell was found to be the most relevant parameter to achieve valid and optimized results. It is shown how a simulation with a mean value of one particle per cell gives sufficiently good results with very low computational resources. This achievement aims to reconsider the correct investigation method in the transitional regime where both the direct simulation Monte Carlo (DSMC and the computational fluid-dynamics (CFD can work, but with a different computational effort.

  9. Electrophysiological markers predicting impeding AV-block during ablation of atrioventricular nodal reentry tachycardia.

    Fragakis, Nikolaos; Krexi, Lydia; Kyriakou, Panagiota; Sotiriadou, Melani; Lazaridis, Charalambos; Karamanolis, Athanasios; Dalampyras, Panagiotis; Tsakiroglou, Stelios; Skeberis, Vassilios; Tsalikakis, Dimitrios; Vassilikos, Vassilios


    Radiofrequency (RF) ablation of the slow pathway (SP) in atrioventricular nodal reentry tachycardia (AVNRT) is occasionally complicated with atrioventricular block (AVB) often predicted by junctional beats (JB) with loss of ventriculo-atrial (VA) conduction. We analyzed retrospectively 153 patients undergoing ablation of SP for typical AVNRT. Patients were divided into two age groups: 127 ≤ 70 years and 26 > 70 years. We analyzed the interval between the atrial electrogram in the His-bundle position and the distal ablation catheter [A(H)-A(RFd)] and between the distal ablation catheter and the proximal coronary sinus catheter [A(RFd)-A(CS)] before RF applications with and without JB. We evaluated if these intervals can be used as predictors of JB incidence and also of JB with loss of VA conduction. We also assessed if age influences the risk of loss of VA conduction. The A(H)-A(RFd) and A(RFd)-A(CS) intervals were significantly shorter in RF applications causing JB than those without JB (33 ± 11 ms vs 39 ± 9 ms, P JB with VA block than those with VA conduction (29 ± 11 ms vs 35 ± 11 ms, P  70 years had shorter intervals (36 ± 11 ms vs 29 ± 8 ms, P  =  0.012, 17 ± 8 ms vs 13 ± 7 ms, P  =  0.027, respectively), while VA block was more common in this age group. The A(H)-A(RFd) and A(RFd)-A(CS) intervals can be used as markers for predicting JB occurrence as well as impending AVB. JB with loss of VA conduction occur more often in older patients possibly due to a higher position of SP. © 2017 Wiley Periodicals, Inc.

  10. Cerebral near-infrared spectroscopy to evaluate anti-G straining maneuvers in centrifuge training.

    Kobayashi, Asao; Kikukawa, Azusa; Kimura, Mikihiko; Inui, Takuo; Miyamoto, Yoshinori


    Over the past decade, near-infrared spectroscopy (NIRS) has emerged as an easily manageable noninvasive method for the continuous monitoring of cerebral cortical oxygenation during +Gz exposure. NIRS is also used to evaluate pilot trainees' ability to adequately perform anti-G straining maneuvers in the course of centrifuge training. This study aimed to determine the general patterns and individual differences in NIRS recordings during +Gz exposure. There were 22 healthy male cadets who participated in the study. The centrifuge training profiles included a gradual onset run (GOR, onset rate of 0.1 Gz x s(-1)) and short-term repeated exposures, with Gz levels from 4 to 7 Gz at an onset rate of 1.0 Gz x s(-1) (rapid onset run, ROR). Cortical tissue hemoglobin saturation (tissue oxygenation index, TOI) and changes in the concentration of oxygenated hemoglobin (O2Hb) were recorded from the right forehead during the period of Gz exposure. Most of the subjects successfully performed an anti-G straining maneuver and maintained or increased the cerebral oxygenation level during Gz exposure. In four subjects, however, oxygenation decline was observed at levels over 4 Gz, even though their anti-G systems were functioning. In contrast to the O2Hb response, TOI, which reflects intracranial oxygenation changes, was decreased during the anti-G straining maneuver at Gz onset or during the countdown to a ROR exposure. Although NIRS is an effective tool for monitoring anti-G straining maneuver performance, it should be carefully evaluated in terms of intracranial oxygenation results.

  11. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Yang Yang, Ying Fang, Xini Zhang, Junliang He, Weijie Fu


    Full Text Available The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively performed a weight-bearing dorsiflexion (WB-DF maneuver, drop jumps (DJs, and lay-up jumps (LJs. Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041 was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028 and power (p = 0.022 were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  12. Stroke Volume during Mueller Maneuver Measured by Impedance Cardiography in Patients with Mitral Regurgitation

    Viščor, Ivo; Jurák, Pavel; Vondra, Vlastimil; Halámek, Josef; Leinveber, Pavel


    Roč. 36, - (2009), s. 749-751 ISSN 0276-6574 R&D Projects: GA AV ČR IAA200650801; GA ČR GP102/07/P425 Institutional research plan: CEZ:AV0Z20650511 Keywords : Mueller maneuver * impedance cardiography * congestive heart failure Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  13. Liver hanging maneuver for right hemiliver in situ donation – anatomical considerations

    Trotovšek, B.; Gadžijev, E.M.; Ravnik, D.; Hribernik, M.


    Background. An anatomical study was carried out to evaluate the safety of the liver hanging maneuver for the right hemiliver in living donor and in situ splitting transplantation. During this procedure a 4–6 cm blind dissection is performed between the inferior vena cava and the liver. Short subhepatic veins entering the inferior vena cava from segments 1 and 9 could be torn with consequent hemorrhage. Materials and methods. One hundred corrosive casts of livers were evaluated to establish th...

  14. Optimal Braking Patterns and Forces in Autonomous Safety-Critical Maneuvers

    Fors, Victor


    The trend of more advanced driver-assistance features and the development toward autonomous vehicles enable new possibilities in the area of active safety. With more information available in the vehicle about the surrounding traffic and the road ahead, there is the possibility of improved active-safety systems that make use of this information for stability control in safety-critical maneuvers. Such a system could adaptively make a trade-off between controlling the longitudinal, lateral, and ...

  15. The balance and harmony of control power for a combat aircraft in tactical maneuvering

    Bocvarov, Spiro; Cliff, Eugene M.; Lutze, Frederick H.


    An analysis is presented for a family of regular extremal attitude-maneuvers for the High Angle-of-Attack Research Vehicle that has thrust-vectoring capability. Different levels of dynamic coupling are identified in the combat aircraft attitude model, and the characteristic extremal-family motion is explained. It is shown why the extremal-family trajectories develop small sideslip-angles, a highly desirable feature from a practical viewpoint.

  16. Effects of Climate Change and Urban Development on Army Training Capabilities: Firing Ranges and Maneuver Areas


    investments in the development of off-post housing, shopping facilities, dining facilities ( restaurants ), and other busi- nesses that provide...Regional Urban Growth model (RUG) (Westervelt 2011), the ERDC TR-16-1 35 Landuse Evolution and Impact Assessment Model (LEAM) (Deal 2004), and the U.S...Land Use Scenarios JCSG Joint Cross-Service Group KBDI Keetch-Byram Drought Index LEAM Land-use Evolution and impact Assessment Model MAC Maneuver

  17. Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers

    Mehrdad N. Khajavi; Golamhassan Paygane; Ali Hakima


    Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is ca...

  18. Performance evaluation of control strategies for power maneuvering event of the KALIMER-600

    Seong, Seong-Hwan; Kim, Seong-O


    Highlights: ► The performance of three power control strategies of the KALIMER-600 was evaluated. ► There are turbine-, reactor- and feedwater-leading strategies in this study. ► For this, a performance analysis code was developed in this study. ► Simulation results show the turbine-leading is the best alternative. ► The feedwater-leading seems to be the second option. - Abstract: A sodium-cooled fast reactor named KALIMER-600 has been under development at KAERI. It is a pool-type reactor with the intermediate loops filled with sodium and has a superheated steam cycle with the once-through steam generators. Since the characteristic of the power control of the KALIMER-600 is expected to be different with that of a conventional power plant, the performance of the turbine-leading, reactor-leading and feedwater-leading control strategies for a power maneuvering event of the KALIMER-600 was evaluated in this study. The turbine-leading and reactor-leading strategies are very similar to those of a conventional water reactor but the feedwater-leading strategy is very similar to that of a fossil plant. Also, a performance analysis code which can analyze the plant dynamics of the KALIMER-600 and simulate the control actions during a power maneuvering event was developed. To evaluate the performance of control strategies, a simple power maneuvering event including a 10% step change and a ramp change with a rate of 5%/min was assumed and simulated. Through the simulation results, the turbine-leading strategy is proven to be very suitable for the KALIMER-600 and the feedwater-leading strategy for power maneuvering seems to be a good alternative for the power control. In further studies, various performance-related events such as the reactor power cutback, turbine runback and some transients will be evaluated and the best control strategy will be suggested.

  19. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie


    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion-extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  20. Home particle repositioning maneuver to prevent the recurrence of posterior canal BPPV.

    Ismail, Elshahat Ibrahem; Morgan, Ashraf Elsayed; Abdeltawwab, Mohamed Moustafa


    To check the value of home particle repositioning maneuver in the prevention of the recurrence of posterior canal benign paroxysmal positional vertigo (pc-BPPV). In this study, patients diagnosed as unilateral posterior canal BPPV were selected following an accurate evaluation using video goggle VNG system. All patients were managed by particle repositioning maneuver (PRM). Patients were instructed to do home PRM once weekly for five years. Then, they were divided into two groups (according to choice of patient to do PRM). The first group (control group) consisted of 144 patients who did not do home PRM; whereas the second group (study group) included 165 patients who performed home PRM. All patients (control & study groups) were followed up every four months for five years. The study found out that the recurrence rate of pc-BPPV in control group was 33 patients in the first year (27.2%), 11 patients in second year (9%), 5 patients in third year (4%), 3 patients in fourth year (2.5%) and 3 patients in fifth year (2.5%). The recurrence of pc-BPPV in the treated side (study group) of patients was reported as 5 patients in the first year (3.5%), 3 patients in the second year (2%), 2 patients in the third year (1.4%), 2 patients in the fourth year (1.4%), and 1 patient in the fifth year (0.7%). There was statistically significant difference between the control and the study groups regarding the recurrence rates in the first year follow up which was the highest in first four months. Home particle repositioning maneuver has the capacity to prevent the recurrence of pc-BPPV. It proved to be more successful and functional in minimizing the recurrence of the disease in the study than in the control group. Hence, home particle repositioning maneuver is highly recommended for one year at least in pc-BPPV. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.

    Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming


    Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Development of beta reference radiations

    Wan Zhaoyong; Cai Shanyu; Li Yanbo; Yin Wei; Feng Jiamin; Sun Yuhua; Li Yongqiang


    A system of beta reference radiation has been developed, that is composed of 740 MBq 147 Pm beta source, 74 MBq and 740 MBq 90 Sr + 90 Y β sources, compensation filters, a source handling tool, a source jig, spacing bars, a shutter, a control unit and a beta dose meter calibration stand. For 740 MBq 147 Pm and 74 MBq 90 Sr + 90 Y beta reference radiations with compensation filters and 740 MBq 90 Sr + 90 Y beta reference radiation without compensation filter, at 20 cm, 30 cm and 30 cm distance separately; the residual energy of maximum is 0.14 MeV, 1.98 MeV and 2.18 MeV separately; the absorbed dose to tissue D (0.07) is 1.547 mGy/h (1996-05-20), 5.037 mGy/h (1996-05-10) and 93.57 mGy/h (1996-05-15) separately; the total uncertainty is 3.0%, 1.7% and 1.7% separately. For the first and the second beta reference radiation, the dose rate variability in the area of 18 cm diameter in the plane perpendicular to the beta-ray beam axis is within +-6% and +-3% separately. (3 refs., 2 tabs., 8 figs.)

  3. A semiconductor beta ray spectrometer

    Bom, V.R.


    Measurement of energy spectra of beta particles emitted from nuclei in beta-decay processes provides information concerning the mass difference of these nuclei between initial and final state. Moreover, experimental beta spectra yield information on the feeding of the levels in the daughter nucleus. Such data are valuable in the construction and checking of the level schemes. This thesis describes the design, construction, testing and usage of a detector for the accurate measurement of the mentioned spectra. In ch. 2 the design and construction of the beta spectrometer, which uses a hyper-pure germanium crystal for energy determination, is described. A simple wire chamber is used to discriminate beta particles from gamma radiation. Disadvantages arise from the large amounts of scattered beta particles deforming the continua. A method is described to minimize the scattering. In ch. 3 some theoretical aspects of data analysis are described and the results of Monte-Carlo simulations of the summation of annihilation radiation are compared with experiments. Ch. 4 comprises the results of the measurements of the beta decay energies of 103-108 In. 87 refs.; 34 figs.; 7 tabs

  4. BETA (Bitter Electromagnet Testing Apparatus)

    Bates, Evan M.; Birmingham, William J.; Rivera, William F.; Romero-Talamas, Carlos A.


    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) prototype of the 10-T Adjustable Long Pulse High-Field Apparatus (ALPHA). These water-cooled resistive magnets use high DC currents to produce strong uniform magnetic fields. Presented here is the successful completion of the BETA project and experimental results validating analytical magnet designing methods developed at the Dusty Plasma Laboratory (DPL). BETA's final design specifications will be highlighted which include electromagnetic, thermal and stress analyses. The magnet core design will be explained which include: Bitter Arcs, helix starters, and clamping annuli. The final version of the magnet's vessel and cooling system are also presented, as well as the electrical system of BETA, which is composed of a unique solid-state breaker circuit. Experimental results presented will show the operation of BETA at 1 T. The results are compared to both analytical design methods and finite element analysis calculations. We also explore the steady state maximums and theoretical limits of BETA's design. The completion of BETA validates the design and manufacturing techniques that will be used in the succeeding magnet, ALPHA.

  5. Archaeological Sites Inventory in the Black Hills of the Pinon Canyon Maneuver Site, Las Animas County, Colorado

    Owens, Mark


    .... These tree-covered areas located adjacent to open plains, appear black on the horizon. This setting of open steppes and juxtaposed hills is found along the eastern portion of the Pinon Canyon Maneuver Site (PCMS), a U.S...

  6. Adjuvant Maneuvers for Residual Curvature Correction During Penile Prosthesis Implantation in Men with Peyronie's Disease.

    Berookhim, Boback M; Karpman, Edward; Carrion, Rafael


    The surgical treatment of comorbid erectile dysfunction and Peyronie's disease has long included the implantation of an inflatable penile prosthesis as well as a number of adjuvant maneuvers to address residual curvature after prosthesis placement. To review the various surgical options for addressing curvature after prosthesis placement, with specific attention paid to an original article by Wilson et al. reporting on modeling over a penile prosthesis for the management of Peyronie's disease. A literature review was performed analyzing articles reporting the management of penile curvature in patients undergoing implantation of an inflatable penile prosthesis. Reported improvement in Peyronie's deformity as well as the complication rate associated with the various surgical techniques described. Modeling is a well-established treatment modality among patients with Peyronie's disease undergoing penile prosthesis implantation. A variety of other adjuvant maneuvers to address residual curvature when modeling alone is insufficient has been presented in the literature. Over 20 years of experience with modeling over a penile prosthesis have proven the efficacy and safety of this treatment option, providing the surgeon a simple initial step for the management of residual curvature after penile implantation which allows for the use of additional adjuvant maneuvers in those with significant deformities. © 2015 International Society for Sexual Medicine.

  7. Mueller-Hillis maneuver and angle of progression: Are they correlated?

    Sofia Mendes

    Full Text Available Summary Objective: Mueller-Hillis maneuver (MHM and angle of progression (AOP measured by transperineal ultrasound have been used to assess fetal head descent during the second stage of labor. We aimed to assess whether AOP correlates with MHM in the second stage of labor. Method: A prospective observational study including women with singleton pregnancy in the second stage of labor was performed. The AOP was measured immediately after the Mueller-Hillis maneuver. A receiver-operating characteristics (ROC curve analysis was performed to determine the best discriminatory AOP cut-off for the identification of a positive MHM. A p-value less than 0.05 was considered statistically significant. Results: One hundred and sixty-six (166 women were enrolled in the study and 81.3% (n=135 had a positive MHM. The median AOP was 143º (106º to 210º. The area under the curve for the prediction of a positive maneuver was 0.619 (p=0.040. Derived from the ROC curve, an AOP of 138.5º had the best diagnostic performance for the identification of a positive MHM (specificity of 65% and a sensitivity of 67%. Conclusion: An AOP of 138º seems to be associated with a positive MHM in the second stage of labor.

  8. Effects of the Mueller maneuver on functional mitral regurgitation and implications for obstructive sleep apnea.

    Pressman, Gregg S; Orban, Marek; Leinveber, Pavel; Parekh, Kunal; Singh, Manmeet; Kara, Tomas; Somers, Virend K


    Obstructive sleep apnea is prevalent and adversely affects cardiovascular health. However, little is known of the acute effects of an obstructive apnea on cardiovascular physiology. We hypothesized that pre-existing functional mitral regurgitation (MR) would worsen during performance of a Mueller maneuver (MM) used to simulate an obstructive apnea; 15 subjects with an ejection fraction ≤35% and pre-existing functional MR were studied with Doppler echocardiography. The radius of the proximal flow convergence was used as a measure of mitral regurgitant flow. Measurements were made at baseline, during the MM, and post-MM. Areas of all 4 chambers were also measured at these time points, both in systole and diastole. Mean flow convergence radius for the group decreased significantly during the transition from the late-MM to post-MM (0.65 → 0.57 mm, p = 0.001), implying increased MR during the MM. In addition, in 3 subjects, duration of MR increased during the MM. Right atrial (RA) areas, both systolic and diastolic, increased during the maneuver, whereas RA fractional area change decreased, indicating reduced RA emptying. Left ventricular emptying decreased early in the maneuver, probably because of the increased afterload burden, and then recovered. In conclusion, high negative intrathoracic pressure produces changes that, repeated hundreds of times per night in patients with obstructive sleep apnea, have the potential to worsen heart failure and predispose affected subjects to atrial fibrillation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Experiments on double beta decay

    Busto, J [Neuchatel Univ. (Switzerland). Inst. de Physique


    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  10. Preventive Effects of Beta-Hydroxy-Beta-Methyl Butyrate

    N. Ravanbakhsh; N. Torabi; M. Foadoddini


    Aims: One of the major factors in sudden cardiac arrest is the initiation and continuation of deadly arrhythmias during ischemia. It is known that beta-hydroxy-beta-methylbutyrate (HMB) has useful effects such as anti-inflammatory and anti-apoptosis effects in the skeletal muscles. The aim of this study was to investigate the preventive effects of HMB on the ventricular arrhythmias due to the ischemia. Materials & Methods: In the experimental study, 30 Wistar male rats were randomly div...

  11. Dosimetry of {beta} extensive sources; Dosimetria de fuentes {beta} extensas

    Rojas C, E.L.; Lallena R, A.M. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)


    In this work, we have been studied, making use of the Penelope Monte Carlo simulation code, the dosimetry of {beta} extensive sources in situations of spherical geometry including interfaces. These configurations are of interest in the treatment of the called cranealfaringyomes of some synovia leisure of knee and other problems of interest in medical physics. Therefore, its application can be extended toward problems of another areas with similar geometric situation and beta sources. (Author)

  12. Sigma beta decay

    Newman, D.E.


    Describes an experiment to measure beta decays of the sigma particle. Sigmas produced by stopping a K - beam in a liquid hydrogen target decayed in the following reactions: Kp → Σπ; Σ → Neν. The electron and pion were detected by wire spark chambers in a magnetic spectrometer and by plastic scintillators, and were differentiated by a threshold gas Cherenkov counter. The neutron was detected by liquid scintillation counters. The data (n = 3) shell electrons or the highly excited electrons decay first. Instead, it is suggested that when there are two to five electrons in highly excited states immediately after a heavy ion--atom collision the first transitions to occur will be among highly excited Rydberg states in a cascade down to the 4s, 4p, and 3d-subshells. If one of the long lived states becomes occupied by electrons promoted during the collision or by electrons falling from higher levels, it will not decay until after the valence shell decays. LMM rates calculated to test the methods used are compared to previous works. The mixing coefficients are given in terms of the states 4s4p, 45sp+-, and 5s5p. The applicability of Cooper, Fano, and Prats' discussion of the energies and transition rates of doubly excited states is considered

  13. Double Beta Decay

    Fiorini, Ettore


    The importance of neutrinoless Double Beta Decay (DBD) is stressed in view of the recent results of experiments on neutrino oscillations which indicate that the difference between the squared masses of two neutrinos of different flavours is finite [For a recent review including neutrino properties and recent results see: Review of Particle Physics, J. of Phys. G: Nuclear and Particle Physics 33, 1]. As a consequence the mass of at least one neutrino has to be different from zero and it becomes imperative to determine its absolute value. The various experimental techniques to search for DBD are discussed together with the difficult problems of the evaluation of the corresponding nuclear matrix elements. The upper limits on neutrino mass coming from the results of the various experiments are reported together with the indication for a non zero value by one of them not confirmed so far. The two presently running experiments on neutrinoless DBD are briefly described together with the already approved or designed second generation searches aiming to reach the values on the absolute neutrino mass indicated by the results on neutrino oscillations

  14. Maintaining Aura's Orbit Requirements While Performing Orbit Maintenance Maneuvers Containing an Orbit Normal Delta-V Component

    Johnson, Megan R.; Petersen, Jeremy D.


    The Earth Observing System (EOS) Afternoon Constellation consists of five member missions (GCOM-W1, Aqua, CALIPSO, CloudSat, and Aura), each of which maintain a frozen, sun-synchronous orbit with a 16-day repeating ground track that follows the Worldwide Reference System-2 (WRS-2). Under nominal science operations for Aura, the propulsion system is oriented such that the resultant thrust vector is aligned 13.493 degrees away from the velocity vector along the yaw axis. When performing orbit maintenance maneuvers, the spacecraft performs a yaw slew to align the thrust vector in the appropriate direction. A new Drag Make Up (DMU) maneuver operations scheme has been implemented for Aura alleviating the need for the 13.493 degree yaw slew. The focus of this investigation is to assess the impact that no-slew DMU maneuver operations will have on Aura's Mean Local Time (MLT) which drives the required along track separation between Aura and the constellation members, as well as Aura's frozen orbit properties, eccentricity and argument of perigee. Seven maneuver strategies were analyzed to determine the best operational approach. A mirror pole strategy, with maneuvers alternating at the North and South poles, was implemented operationally to minimize impact to the MLT. Additional analysis determined that the mirror pole strategy could be further modified to include frozen orbit maneuvers and thus maintain both MLT and the frozen orbit properties under noslew operations.


    Paramasivan Mani


    Full Text Available Background: Back pain is the common musculoskeletal condition with a high prevalence of up to 80% among the general and work force population at some times in their lives.Muscular injury, fatigue, or facet or disc degeneration can compromise the stabilizing effects resulting in shearing forces that cause pain.Abdominal drawing in maneuver is used to facilitate the re-education of neuromuscular control mechanisms provided by local stabilizing muscles. Objective of the study is to measure the gait parameters and pain control before and after abdominal drawing in maneuver in patient with chronic mechanical low back pain. Methods: Total number of 30 consecutive patients and they were divided into two groups by purposive sampling. Group A is subjects with low back pain and Group B is subjects without low back pain. Outcome measures were average step cycle, average step length, coefficient of variation, time on each foot, Ambulation index measured with Biodex gait trainer. Pain is measured with Revised-Oswestry low back pain questionnaire. Results: Significant difference between gait parameters were observed in both low back pain group and the group without low back pain group with abdominal drawing in maneuver and the changes without abdominal drawing in maneuver was minimal. There was no significant difference found between both groups with or without abdominal drawing in maneuver. Conclusion: Gait parameters and Pain control can be improved by training with abdominal drawing in maneuver thereby it reduces pain and improves gait symmetry in subjects with low back pain.

  16. Study of the Use of a Terminal Controller Technique for Reentry Guidance of a Capsule-Type Vehicle

    Foudriat, Edwin C.


    A study has been made of the use o f a terminal controller technique i n the guidance of a high-drag, variable-lift reentry vehicle to a desired landing point. The technique uses linearized equations of motion attained by the perturbation of the dependent variables from those of a reference trajectory. The guidance system continuously predicts the terminal range error and uses this error to control the angle of attack of the vehicle in an on-off manner until the predicted range error is within +-O.1 degrees of the required arc or +-6.9 miles.

  17. Application of a Near Infrared Imaging System for Thermographic Imaging of the Space Shuttle during Hypersonic Re-Entry

    Zalameda, Joseph N.; Tietjen, Alan B.; Horvath, Thomas J.; Tomek, Deborah M.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Bush, Brett C.; Mercer, C. David; Shea, Edward J.


    High resolution calibrated near infrared (NIR) imagery was obtained of the Space Shuttle s reentry during STS-119, STS-125, and STS-128 missions. The infrared imagery was collected using a US Navy NP-3D Orion aircraft using a long-range infrared optical package referred to as Cast Glance. The slant ranges between the Space Shuttle and Cast Glance were approximately 26-41 nautical miles at point of closest approach. The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. HYTHIRM required several mission tools to acquire the imagery. These tools include pre-mission acquisition simulations of the Shuttle trajectory in relationship to the Cast Glance aircraft flight path, radiance modeling to predict the infrared response of the Shuttle, and post mission analysis tools to process the infrared imagery to quantitative temperature maps. The spatially resolved global thermal measurements made during the Shuttle s hypersonic reentry provides valuable flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is considered critical for the development of turbulence models supporting NASA s next-generation spacecraft. This paper will provide the motivation and details behind the use of an upgraded NIR imaging system used onboard a Navy Cast Glance aircraft and describe the characterizations and procedures performed to obtain quantitative temperature maps. A brief description and assessment will be provided of the previously used analog NIR camera along with image examples from Shuttle missions STS-121, STS-115, and solar tower test. These thermal

  18. E2F-dependent induction of p14ARF during cell cycle re-entry in human T cells

    del Arroyo, Ana Gutierrez; El Messaoudi, Selma; Clark, Paula A


    The ARF protein, encoded by alternate exon usage within the CDKN2A locus, provides a link between the retinoblastoma (pRb) and p53 tumor suppressor pathways. Agents that disable pRb or otherwise impinge on the E2F family of transcription factors induce expression of ARF, resulting in stabilization...... of p53 and activation of p53-regulated genes. However, in some cell types ARF is not induced upon cell cycle re-entry, as expected of a conventional E2F target gene, leading to the suggestion that the ARF promoter only responds to supra-physiological or aberrant levels of E2F. These properties have...

  19. (beta-HC CG) in


    Urothelial tumour samples were obtained from all the 86 patients requiring surgical ..... and/or urine beta HCG appears to be an efficient diagnostic marker for the ..... collected all urothelial tumour specimens for storage, cutting and staining.

  20. Beta-glucans and cholesterol

    Šíma, Petr; Vannucci, Luca; Větvička, V.


    Roč. 41, č. 4 (2017), s. 1799-1808 ISSN 1107-3756 Institutional support: RVO:61388971 Keywords : cholesterol * beta-glucans * diet Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.341, year: 2016

  1. Radioisotope indicator, type BETA 2

    Duszanski, M.; Pankow, A.; Skwarczynski, B.


    The authors describe a radioisotope indicator, type BETA 2, constructed in the ZKMPW Works to be employed in mines for counting, checking, signalling the presence and positioning of cars, as well as monitoring the state of some other equipment. (author)

  2. Thermal Response of Whipox-Type All-Oxide Ceramic Matrix Composites during Reentry Simulation in the Dlr-Lbk Arc-Heated Facility

    Mechnich, P.; Braue, W.; Schneider, H.; Koch, U.; Esser, B.; Gülhan, A.


    All-oxide ceramic matrix composites (CMCs) such as WHIPOXTM (wound highly porous oxide) exhibit excellent damage tolerance and thermal stability up to 1400°C. Due to their low density and thermal conductivity these new ceramic materials are considered promising candidates for thermal protection systems (TPS) of spacecrafts. The performance of WHIPOX-type CMCs was evaluated during reentry simulations in the L2K leg of the arc-heated LBK facility of DLR, Cologne. The application of reaction-bonded alumina (RBAO) coatings provides significant CMC surface protection and decreased gas permeability, which are key issues for reentry applications. Since emittance and catalycity of the RBAO-coatings limit the performance of CMCs in a reentry environment, binary SiC/RBAO coatings providing higher emittance and/or lower catalycity proved to be a promising approach.

  3. A case study of non-traditional students re-entry into college physics and engineering

    Langton, Stewart Gordon

    Two groups of students in introductory physics courses of an Access Program for engineering technologies were the subjects of this study. Students with a wide range of academic histories and abilities were enrolled in the program; many of the students were re-entry and academically unprepared for post-secondary education. Five years of historical data were evaluated to use as a benchmark for revised instruction. Data were gathered to describe the pre-course academic state of the students and their academic progress during two physics courses. Additional information was used to search for factors that might constrain academic success and as feedback for the instructional methods. The data were interpreted to regulate constructivist design features for the physics courses. The Engineering Technology Access Program was introduced to meet the demand from non-traditional students for admission to two-year engineering' technology programs, but who did not meet normal academic requirements. The duration of the Access Program was two terms for electronic and computer engineering students and three terms for civil and mechanical engineering students. The sequence of mathematics and physics courses was different for the two groups. The Civil/Mechanical students enrolled in their first mathematics course before undertaking their first physics course. The first mathematics and physics courses for the Electronics students were concurrent. Academic success in the two groups was affected by this difference. Over a five-year period the success rate of students graduating with a technology diploma was approximately twenty-five percent. Results from this study indicate that it was possible to reduce the very high attrition in the combined Access/Technology Programs. While the success rate for the Electronics students increased to 38% the rate for the Civil/Mechanical students increased dramatically to 77%. It is likely that several factors, related to the extra term in the Access

  4. Processing Near-Infrared Imagery of the Orion Heatshield During EFT-1 Hypersonic Reentry

    Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Kennerly, Steve; Osei-Wusu, Kwame; Horvath, Thomas J.; Schwartz, Richard J.; Tack, Steven; Bush, Brett C.; Oliver, A. Brandon


    The Scientifically Calibrated In-Flight Imagery (SCIFLI) team captured high-resolution, calibrated, near-infrared imagery of the Orion capsule during atmospheric reentry of the EFT-1 mission. A US Navy NP-3D aircraft equipped with a multi-band optical sensor package, referred to as Cast Glance, acquired imagery of the Orion capsule's heatshield during a period when Orion was slowing from approximately Mach 10 to Mach 7. The line-of-sight distance ranged from approximately 65 to 40 nmi. Global surface temperatures of the capsule's thermal heatshield derived from the near-infrared intensity measurements complemented the in-depth (embedded) thermocouple measurements. Moreover, these derived surface temperatures are essential to the assessment of the thermocouples' reliance on inverse heat transfer methods and material response codes to infer the surface temperature from the in-depth measurements. The paper describes the image processing challenges associated with a manually-tracked, high-angular rate air-to-air observation. Issues included management of significant frame-to-frame motions due to both tracking jerk and jitter as well as distortions due to atmospheric effects. Corrections for changing sky backgrounds (including some cirrus clouds), atmospheric attenuation, and target orientations and ranges also had to be made. The image processing goal is to reduce the detrimental effects due to motion (both sensor and capsule), vibration (jitter), and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity (temperature) variations. The paper will detail the approach of selecting and utilizing only the highest quality images, registering several co-temporal image frames to a single image frame to the extent frame-to-frame distortions would allow, and then co-adding the registered frames to improve image quality and reduce noise. Using preflight calibration data, the registered and averaged

  5. Tables of double beta decay data

    Tretyak, V.I. [AN Ukrainskoj SSR, Kiev (Ukraine)]|[Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Zdesenko, Y.G. [AN Ukrainskoj SSR, Kiev (Ukraine)


    A compilation of experimental data on double beta decay is presented. The tables contain the most stringent known experimental limits or positive results of 2{beta} transitions of 69 natural nuclides to ground and excited states of daughter nuclei for different channels (2{beta}{sup -}; 2{beta}{sup +}; {epsilon}{beta}{sup +}; 2{epsilon}) and modes (0{nu}; 2{nu}; 0{nu}M) of decay. (authors). 189 refs., 9 figs., 3 tabs.

  6. Beta Instability and Stochastic Market Weights

    David H. Goldenberg


    An argument is given for individual firm beta instability based upon the stochastic character of the market weights defining the market portfolio and the constancy of its beta. This argument is generalized to market weighted portfolios and the form of the stochastic process generating betas is linked to that of the market return process. The implications of this analysis for adequacy of models of beta nonstationarity and estimation of betas are considered in light of the available empirical e...

  7. An electromagnetic method for removing the communication blackout with a space vehicle upon re-entry into the atmosphere

    Cheng, Jianjun; Jin, Ke; Kou, Yong; Hu, Ruifeng; Zheng, Xiaojing


    When a hypersonic vehicle travels in the Earth and Mars atmosphere, the surface of the vehicle is surrounded by a plasma layer, which is an envelope of ionized air, created from the compression and heat of the atmosphere by the shock wave. The vehicles will lose contact with ground stations known as the reentry communication blackout. Based on the magnetohydrodynamic framework and electromagnetic wave propagation theory, an analytical model is proposed to describe the effect of the effectiveness of electromagnetic mitigation scheme on removing the reentry communication blackout. C and Global Positioning System (GPS) bands, two commonly used radio bands for communication, are taken as the cases to discuss the effectiveness of the electromagnetic field mitigation scheme. The results show that the electron density near the antenna of vehicles can be reduced by the electromagnetic field, and the required external magnetic field strength is far below the one in the magnetic window method. The directions of the external electric field and magnetic field have a significant impact on the effectiveness of the mitigation scheme. Furthermore, the effect of electron collisions on the required applied electromagnetic field is discussed, and the result indicates that electron collisions are a key factor to analyze the electromagnetic mitigation scheme. Finally, the feasible regions of the applied electromagnetic field for eliminating blackout are given. These investigations could have a significant benefit on the design and optimization of electromagnetic mitigation scheme for the blackout problem.

  8. Observer-based attitude controller for lifting re-entry vehicle with non-minimum phase property

    Wenming Nie


    Full Text Available This article concentrates on the attitude control problem for the lifting re-entry vehicle with non-minimum phase property. A novel attitude control method is proposed for this kind of lifting re-entry vehicle without assuming the internal dynamics to be measurable. First, an internal dynamics extended state observer is developed to deal with the unmeasurable problem of the internal dynamics. And then, the control scheme which adopts output feedback method is proposed by modifying the traditional output redefinition technique with internal dynamics extended state observer. This control scheme only requires the system output to be measurable, and it can still stabilize the unstable internal dynamics and track attitude commands. Besides, because of the inherent property of extended state observer in rejecting uncertainties and disturbances, the control precision of the proposed controller is higher than the controller designed with traditional output redefinition technique. Finally, the effectiveness and robustness of the proposed attitude controller are demonstrated by the simulation results.

  9. Evaluation of the Positive Re-Entry in Corrections Program: A Positive Psychology Intervention With Prison Inmates.

    Huynh, Kim H; Hall, Brittany; Hurst, Mark A; Bikos, Lynette H


    Two groups of male inmates (n = 31, n = 31) participated in the Positive Re-Entry in Corrections Program (PRCP). This positive psychology intervention focused on teaching offenders skills that facilitate re-entry into the community. Offenders participated in weekly lectures, discussions, and homework assignments focused on positive psychology principles. The two groups differed in duration of treatment (8 weeks and 12 weeks). Participants completed pre- and post-intervention measures of gratitude, hope, and life satisfaction. Using a 2 × 2 mixed design ANOVA, we hypothesized that the intervention (with two between-subjects levels of 8 and 12 weeks) and duration (with two repeated measures levels of pre and post) of treatment would moderate pre- to post-intervention change. Results indicated significant differences on pre- and post-intervention scores for both groups of offenders on all measures. The analysis did not yield statistically significant differences between groups, demonstrating no additive benefits from the inclusion of four additional sessions, thus saving time and money for correctional programming and funding. This research supports the use of positive psychology in prison interventions. © The Author(s) 2014.

  10. Effectiveness of Otolith Repositioning Maneuvers and Vestibular Rehabilitation exercises in elderly people with Benign Paroxysmal Positional Vertigo: a systematic review.

    Ribeiro, Karyna Figueiredo; Oliveira, Bruna Steffeni; Freitas, Raysa V; Ferreira, Lidiane M; Deshpande, Nandini; Guerra, Ricardo O


    Benign Paroxysmal Positional Vertigo is highly prevalent in elderly people. This condition is related to vertigo, hearing loss, tinnitus, poor balance, gait disturbance, and an increase in risk of falls, leading to postural changes and quality of life decreasing. To evaluate the outcomes obtained by clinical trials on the effectiveness of Otolith Repositioning Maneuver and Vestibular Rehabilitation exercises in the treatment of Benign Paroxysmal Positional Vertigo in elderly. The literature research was performed using PubMed, Scopus, Web of Science and PEDro databases, and included randomized controlled clinical trials in English, Spanish and Portuguese, published during January 2000 to August 2016. The methodological quality of the studies was assessed by PEDro score and the outcomes analysis was done by critical revision of content. Six studies were fully reviewed. The average age of participants ranged between 67.2 and 74.5 years. The articles were classified from 2 to 7/10 through the PEDro score. The main outcome measures analyzed were vertigo, positional nystagmus and postural balance. Additionally, the number of maneuvers necessary for remission of the symptoms, the quality of life, and the functionality were also assessed. The majority of the clinical trials used Otolith Repositioning Maneuver (n=5) and 3 articles performed Vestibular Rehabilitation exercises in addition to Otolith Repositioning Maneuver or pharmacotherapy. One study showed that the addition of movement restrictions after maneuver did not influence the outcomes. There was a trend of improvement in Benign Paroxysmal Positional Vertigo symptomatology in elderly patients who underwent Otolith Repositioning Maneuver. There is sparse evidence from methodologically robust clinical trials that examined the effects of Otolith Repositioning Maneuver and Vestibular Rehabilitation exercises for treating Benign Paroxysmal Positional Vertigo in the elderly. Randomized controlled clinical trials with

  11. Effectiveness of Otolith Repositioning Maneuvers and Vestibular Rehabilitation exercises in elderly people with Benign Paroxysmal Positional Vertigo: a systematic review

    Karyna Figueiredo Ribeiro

    Full Text Available Abstract Introduction Benign Paroxysmal Positional Vertigo is highly prevalent in elderly people. This condition is related to vertigo, hearing loss, tinnitus, poor balance, gait disturbance, and an increase in risk of falls, leading to postural changes and quality of life decreasing. Objective To evaluate the outcomes obtained by clinical trials on the effectiveness of Otolith Repositioning Maneuver and Vestibular Rehabilitation exercises in the treatment of Benign Paroxysmal Positional Vertigo in elderly. Methods The literature research was performed using PubMed, Scopus, Web of Science and PEDro databases, and included randomized controlled clinical trials in English, Spanish and Portuguese, published during January 2000 to August 2016. The methodological quality of the studies was assessed by PEDro score and the outcomes analysis was done by critical revision of content. Results Six studies were fully reviewed. The average age of participants ranged between 67.2 and 74.5 years. The articles were classified from 2 to 7/10 through the PEDro score. The main outcome measures analyzed were vertigo, positional nystagmus and postural balance. Additionally, the number of maneuvers necessary for remission of the symptoms, the quality of life, and the functionality were also assessed. The majority of the clinical trials used Otolith Repositioning Maneuver (n = 5 and 3 articles performed Vestibular Rehabilitation exercises in addition to Otolith Repositioning Maneuver or pharmacotherapy. One study showed that the addition of movement restrictions after maneuver did not influence the outcomes. Conclusion There was a trend of improvement in Benign Paroxysmal Positional Vertigo symptomatology in elderly patients who underwent Otolith Repositioning Maneuver. There is sparse evidence from methodologically robust clinical trials that examined the effects of Otolith Repositioning Maneuver and Vestibular Rehabilitation exercises for treating Benign Paroxysmal

  12. Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

    Young-Joo Song


    Full Text Available In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the 1st lunar orbit insertion (LOI maneuver of the Korea Pathfinder Lunar Orbiter (KPLO mission. During the early design phase of the system, associate analysis is an essential design factor as the 1st LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the 1st LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the 1st elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground

  13. Analysis of Driver Evasive Maneuvering Prior to Intersection Crashes Using Event Data Recorders.

    Scanlon, John M; Kusano, Kristofer D; Gabler, Hampton C


    Intersection crashes account for over 4,500 fatalities in the United States each year. Intersection Advanced Driver Assistance Systems (I-ADAS) are emerging vehicle-based active safety systems that have the potential to help drivers safely navigate across intersections and prevent intersection crashes and injuries. The performance of an I-ADAS is expected to be highly dependent upon driver evasive maneuvering prior to an intersection crash. Little has been published, however, on the detailed evasive kinematics followed by drivers prior to real-world intersection crashes. The objective of this study was to characterize the frequency, timing, and kinematics of driver evasive maneuvers prior to intersection crashes. Event data recorders (EDRs) downloaded from vehicles involved in intersection crashes were investigated as part of NASS-CDS years 2001 to 2013. A total of 135 EDRs with precrash vehicle speed and braking application were downloaded to investigate evasive braking. A smaller subset of 59 EDRs that collected vehicle yaw rate was additionally analyzed to investigate evasive steering. Each vehicle was assigned to one of 3 precrash movement classifiers (traveling through the intersection, completely stopped, or rolling stop) based on the vehicle's calculated acceleration and observed velocity profile. To ensure that any significant steering input observed was an attempted evasive maneuver, the analysis excluded vehicles at intersections that were turning, driving on a curved road, or performing a lane change. Braking application at the last EDR-recorded time point was assumed to indicate evasive braking. A vehicle yaw rate greater than 4° per second was assumed to indicate an evasive steering maneuver. Drivers executed crash avoidance maneuvers in four-fifths of intersection crashes. A more detailed analysis of evasive braking frequency by precrash maneuver revealed that drivers performing complete or rolling stops (61.3%) braked less often than drivers

  14. In-trap decay spectroscopy for {beta}{beta} decays

    Brunner, Thomas


    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge

  15. How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization.

    Daniel Kress

    Full Text Available Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones.

  16. Psychophysiological Assessment in Pilots Performing Challenging Simulated and Real Flight Maneuvers.

    Johannes, Bernd; Rothe, Stefanie; Gens, André; Westphal, Soeren; Birkenfeld, Katja; Mulder, Edwin; Rittweger, Jörn; Ledderhos, Carla


    The objective assessment of psychophysiological arousal during challenging flight maneuvers is of great interest to aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach was used which integrates different psychophysiological variables, yielding an integral arousal index called the Psychophysiological Arousal Value (PAV). The arousal levels of 15 male pilots were assessed during predetermined, well-defined flight maneuvers performed under simulated and real flight conditions. The physiological data, as expected, revealed inter- and intra-individual differences for the various measurement conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, arousal levels were comparable between simulator and real flight conditions. However, a distinct difference was observed when the pilots were divided by instructors into two groups based on their proficiency in AAR with AWACS (AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 flight hours on other aircrafts. They showed higher arousal reactions to AAR in real flight (contact: PAV score 8.4 ± 0.37) than under simulator conditions (7.1 ± 0.30), whereas AAR-Professionals did not (8.5 ± 0.46 vs. 8.8 ± 0.80). The psychophysiological arousal value assessment was tested in field measurements, yielding quantifiable arousal differences between proficiency groups of pilots during simulated and real flight conditions. The method used in this study allows an evaluation of the psychophysiological cost during a certain flying performance and thus is possibly a valuable tool for objectively evaluating the actual skill status of pilots.Johannes B, Rothe S, Gens A, Westphal S, Birkenfeld K, Mulder E, Rittweger J, Ledderhos C. Psychophysiological assessment in pilots performing challenging simulated and real flight maneuvers. Aerosp Med Hum Perform. 2017; 88(9):834-840.

  17. Neonatal Pneumothorax Pressures Surpass Higher Threshold in Lung Recruitment Maneuvers: An In Vivo Interventional Study.

    González-Pizarro, Patricio; García-Fernández, Javier; Canfrán, Susana; Gilsanz, Fernando


    Causing pneumothorax is one of the main concerns of lung recruitment maneuvers in pediatric patients, especially newborns. Therefore, these maneuvers are not performed routinely during anesthesia. Our objective was to determine the pressures that cause pneumothorax in healthy newborns by a prospective experimental study of 10 newborn piglets (pneumothorax. Animals under anesthesia and bilateral chest tube catheterization were randomly allocated to 2 groups: one with PEEP and fixed inspiratory driving pressure of 15 cm H2O (PEEP group) and the second one with PEEP = 0 cm H2O and non-fixed inspiratory driving pressure (zero PEEP group). In both groups, the ventilation mode was pressure-controlled, and PIP was raised at 2-min intervals, with steps of 5 cm H2O until air leak was observed through the chest tubes. The PEEP group raised PIP through 5-cm H2O PEEP increments, and the zero PEEP group raised PIP through 5-cm H2O inspiratory driving pressure increments. Pneumothorax was observed with a PIP of 90.5 ± 15.7 cm H2O with no statistically significant differences between the PEEP group (92 ± 14.8 cm H2O) and the zero PEEP group (89 ± 18.2 cm H2O). The zero PEEP group had hypotension, with a PIP of 35 cm H2O; the PEEP group had hypotension, with a PIP of 60 cm H2O (P = .01). The zero PEEP group presented bradycardia, with PIP of 40 cm H2O; the PEEP group presented bradycardia, with PIP of 70 cm H2O (P = .002). Performing recruitment maneuvers in newborns without lung disease is a safe procedure in terms of pneumothorax. Pneumothorax does not seem to occur in the clinically relevant PIPs of pneumothorax PIP in poorly compliant lungs. Copyright © 2016 by Daedalus Enterprises.

  18. A Patient-Invented Maneuver to Alleviate Freezing of Gait Using a Foot Loop Band

    Yasuyuki Okuma


    Full Text Available Freezing of gait (FOG is a disabling gait disorder in parkinsonian patients characterized by the inability to initiate or continue locomotion. I herein present a 65-year-old man with Parkinson's disease who invented a unique method (foot loop band to alleviate FOG, which has not been previously described in the literature. The mechanisms to alleviate FOG include not only facilitating mechanical weight shift, but also restoring internal cueing and driving motor commands for gait initiation. This patient-invented maneuver may be recommended for patients having intractable FOG, because it is portable, cheap and safe.

  19. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    Dowden, Donald J.; Bessette, Denis E.


    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  20. Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.

    Chen, Rong; Kusano, Kristofer D; Gabler, Hampton C


    Lane changes with the intention to overtake the vehicle in front are especially challenging scenarios for forward collision warning (FCW) designs. These overtaking maneuvers can occur at high relative vehicle speeds and often involve no brake and/or turn signal application. Therefore, overtaking presents the potential of erroneously triggering the FCW. A better understanding of driver behavior during lane change events can improve designs of this human-machine interface and increase driver acceptance of FCW. The objective of this study was to aid FCW design by characterizing driver behavior during lane change events using naturalistic driving study data. The analysis was based on data from the 100-Car Naturalistic Driving Study, collected by the Virginia Tech Transportation Institute. The 100-Car study contains approximately 1.2 million vehicle miles of driving and 43,000 h of data collected from 108 primary drivers. In order to identify overtaking maneuvers from a large sample of driving data, an algorithm to automatically identify overtaking events was developed. The lead vehicle and minimum time to collision (TTC) at the start of lane change events was identified using radar processing techniques developed in a previous study. The lane change identification algorithm was validated against video analysis, which manually identified 1,425 lane change events from approximately 126 full trips. Forty-five drivers with valid time series data were selected from the 100-Car study. From the sample of drivers, our algorithm identified 326,238 lane change events. A total of 90,639 lane change events were found to involve a closing lead vehicle. Lane change events were evenly distributed between left side and right side lane changes. The characterization of lane change frequency and minimum TTC was divided into 10 mph speed bins for vehicle travel speeds between 10 and 90 mph. For all lane change events with a closing lead vehicle, the results showed that drivers change

  1. Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic

    Brandon, Jay M.; Morelli, Eugene A.


    Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.

  2. On Motion Planning for Point-to-Point Maneuvers for a Class of Sailing Vehicles

    Xiao, Lin; Jouffroy, Jerome


    Despite their interesting dynamic and controllability properties, sailing vehicles have not been much studied in the control community. In this paper, we investigate motion planning of such vehicles. Starting from a simple dynamic model of sailing vessels in one dimension, this paper first...... considers their associated controllability issues, with the so-called no-sailing zone as a starting point, and it links them with a motion planning strategy using two-point boundary value problems as the main mathematical tool. This perspective is then expanded to do point-to-point maneuvers of sailing...

  3. Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence

    Feroskhan, Mir Alikhan Bin Mohammad

    Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and

  4. An Adaptive Nonlinear Aircraft Maneuvering Envelope Estimation Approach for Online Applications

    Schuet, Stefan R.; Lombaerts, Thomas Jan; Acosta, Diana; Wheeler, Kevin; Kaneshige, John


    A nonlinear aircraft model is presented and used to develop an overall unified robust and adaptive approach to passive trim and maneuverability envelope estimation with uncertainty quantification. The concept of time scale separation makes this method suitable for the online characterization of altered safe maneuvering limitations after impairment. The results can be used to provide pilot feedback and/or be combined with flight planning, trajectory generation, and guidance algorithms to help maintain safe aircraft operations in both nominal and off-nominal scenarios.

  5. Satellite formation flying relative dynamics, formation design, fuel optimal maneuvers and formation maintenance

    Wang, Danwei; Poh, Eng Kee


    This book systematically describes the concepts and principles for multi-satellite relative motion, passive and near passive formation designs, trajectory planning and control for fuel optimal formation maneuvers, and formation flying maintenance control design. As such, it provides a sound foundation for researchers and engineers in this field to develop further theories and pursue their implementations. Though satellite formation flying is widely considered to be a major advance in space technology, there are few systematic treatments of the topic in the literature. Addressing that gap, the book offers a valuable resource for academics, researchers, postgraduate students and practitioners in the field of satellite science and engineering.

  6. Study of a very low cost air combat maneuvering trainer aircraft

    Hill, G. C.; Bowles, J. V.


    A very low cost aircraft for performing Air Combat Maneuvering (ACM) training was studied using the BD-5J sport plane as a point of departure. The installation of a larger engine and increased fuel capacity were required to meet the performance and mission objectives. Reduced wing area increased the simulation of the ACM engagement, and a comparison with current tactical aircraft is presented. Other factors affecting the training transfer are considered analytically, but a flight evaluation is recommended to determine the concept utility.

  7. Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and-Avoid System Performance Requirements

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.


    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the United States' National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements, focusing on a descent avoidance maneuver. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, near-term UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are airplane, flight condition, and encounter specific, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for a descent avoidance maneuver. Results for the descent maneuver indicate that a minimum specific excess power magnitude can assure a minimum CPA for a given time-to-go prediction. However, smaller amounts of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. The results of this study will

  8. F-18 High Alpha Research Vehicle (HARV) parameter identification flight test maneuvers for optimal input design validation and lateral control effectiveness

    Morelli, Eugene A.


    Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for open loop parameter identification purposes, specifically for optimal input design validation at 5 degrees angle of attack, identification of individual strake effectiveness at 40 and 50 degrees angle of attack, and study of lateral dynamics and lateral control effectiveness at 40 and 50 degrees angle of attack. Each maneuver is to be realized by applying square wave inputs to specific control effectors using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time/amplitude points define each input are included, along with plots of the input time histories.

  9. Transcatheter closure of large atrial septal defects with deficient aortic or posterior rims using the "Greek maneuver". A multicenter study.

    Thanopoulos, Basil D; Dardas, Petros; Ninios, Vlasis; Eleftherakis, Nicholaos; Karanasios, Evangelos


    We report a modification ("Greek maneuver") of the standard atrial septal defect (ASD) closure technique using the Amplatzer septal occluder (ASO) to facilitate closure of large ASDs with deficient aortic or posterior rims. 185 patients (median 10.8, range 3 to 52 years) with large ASDs (mean diameter 26±7 mm, range 20-40 mm) with a deficient aortic (134 patients) or posterior (51 patients) rim underwent catheter closure with the ASO using the "Greek maneuver" under transesophageal guidance. The Greek maneuver is applied when protrusion of the aortic edge of the deployed left disk of the device in to the right atrium is detected by echo. To circumvent this left disk is recaptured and the whole delivery system is pushed inward and leftward into the left atrium where the left disk and the 2/3 of right disk are simultaneously released. This maneuver forces the left disk to become parallel to the septum preventing the protrusion of the device into the right atrium. The ASO was successfully implanted and was associated with complete closure in 175/185 (95%) of the patients. There were no early or late complications related to the procedure during a follow-up period ranging from 6 months to 7 years. The "Greek maneuver" is a simple quite useful trick that facilitates closure of large ASDs associated with or without deficient aortic or posterior rims. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Ocular VEMPs indicate repositioning of otoconia to the utricle after successful liberatory maneuvers in benign paroxysmal positioning vertigo



    Conclusions This study showed a transient increase of ocular vestibular evoked myogenic potential (oVEMP) amplitudes in the affected ear after successful liberatory maneuvers and no changes in cervical VEMP (cVEMP) amplitudes. These findings support the hypothesis that successful liberatory maneuvers can lead to a repositioning of otoconia to the utricle. Objectives To evaluate whether oVEMP amplitudes increase after successful liberatory maneuvers in patients with posterior semicircular canal benign paroxysmal positioning vertigo (pc-BPPV), while cVEMP amplitudes do not change. These findings may indicate a successful repositioning of dislodged otoconia to the utricular macula, but not to the saccular macula. Methods Thirty patients with unilateral pc-BPPV were prospectively examined with bone-conducted oVEMP and air-conducted cVEMP at four time points: before, after, 1 week after, and 1 month after the liberatory maneuvers (Sémont maneuvers). Results At the 1-week follow-up, 20 of 30 patients were asymptomatic (responders); BPPV could still be induced in the other 10 (non-responders). In responders the mean n10 amplitude on the affected side increased from 12 ± 6.5 μV at baseline (before the treatment) to 15.9 ± 7.1 μV at 1 week after treatment; this increase was significantly (p = 0.001) higher in responders than in non-responders. cVEMP did not differ significantly. PMID:24245699

  11. Effect of Repositioning Maneuver Type and Postmaneuver Restrictions on Vertigo and Dizziness in Benign Positional Paroxysmal Vertigo

    Toupet, Michel; Ferrary, Evelyne; Bozorg Grayeli, Alexis


    Introduction. To compare the efficiency of Epley (Ep) and Sémont-Toupet (ST) repositioning maneuvers and to evaluate postmaneuver restriction effect on short-term vertigo and dizziness after repositioning maneuvers by an analog visual scale (VAS) in benign positional paroxysmal vertigo (BPPV). Material and Methods. 226 consecutive adult patients with posterior canal BPPV were included. Patients were randomized into 2 different maneuver sequence groups (n = 113): 2 ST then 1 Ep or 2 Ep then 1 ST. Each group of sequence was randomized into 2 subgroups: with or without postmaneuver restrictions. Vertigo and dizziness were assessed from days 0 to 5 by VAS. Results. There was no difference between vertigo scores between Ep and ST groups. Dizziness scores were higher in Ep group during the first 3 days but became similar to those of ST group at days 4 and 5. ST maneuvers induced liberatory signs more frequently than Ep (58% versus 42% resp., P < 0.01, Fisher's test). After repositioning maneuvers, VAS scores decreased similarly in patients with and without liberatory signs. Postmaneuver restrictions did not influence VAS scores. Conclusion. Even if ST showed a higher rate of liberatory signs than Ep in this series, VAS scores were not influenced by these signs. PMID:22973168

  12. Hemodynamic responses during and after multiple sets of stretching exercises performed with and without the Valsalva maneuver.

    Lima, Tainah P; Farinatti, Paulo T V; Rubini, Ercole C; Silva, Elirez B; Monteiro, Walace D


    This study investigated the acute hemodynamic responses to multiple sets of passive stretching exercises performed with and without the Valsalva maneuver. Fifteen healthy men aged 21 to 29 years with poor flexibility performed stretching protocols comprising 10 sets of maximal passive unilateral hip flexion, sustained for 30 seconds with equal intervals between sets. Protocols without and with the Valsalva maneuver were applied in a random counterbalanced order, separated by 48-hour intervals. Hemodynamic responses were measured by photoplethysmography pre-exercise, during the stretching sets, and post-exercise. The effects of stretching sets on systolic and diastolic blood pressure were cumulative until the fourth set in protocols performed with and without the Valsalva maneuver. The heart rate and rate pressure product increased in both protocols, but no additive effect was observed due to the number of sets. Hemodynamic responses were always higher when stretching was performed with the Valsalva maneuver, causing an additional elevation in the rate pressure product. Multiple sets of unilateral hip flexion stretching significantly increased blood pressure, heart rate, and rate pressure product values. A cumulative effect of the number of sets occurred only for systolic and diastolic blood pressure, at least in the initial sets of the stretching protocols. The performance of the Valsalva maneuver intensified all hemodynamic responses, which resulted in significant increases in cardiac work during stretching exercises.

  13. Smart Beta or Smart Alpha

    Winther, Kenneth Lillelund; Steenstrup, Søren Resen


    that smart beta investing probably will do better than passive market capitalization investing over time, we believe many are coming to a conclusion too quickly regarding active managers. Institutional investors are able to guide managers through benchmarks and risk frameworks toward the same well......Smart beta has become the flavor of the decade in the investment world with its low fees, easy access to rewarded risk premiums, and appearance of providing good investment results relative to both traditional passive benchmarks and actively managed funds. Although we consider it well documented......-documented smart beta risk premiums and still motivate active managers to avoid value traps, too highly priced small caps, defensives, etc. By constructing the equity portfolios of active managers that resemble the most widely used risk premiums, we show that the returns and risk-adjusted returns measures...

  14. Beta decay of 22O

    Hubert, F.; Dufour, J.P.; Moral, R. del; Fleury, A.; Jean, D.; Pravikoff, M.S.; Delagrange, H.; Geissel, H.; Schmidt, K.H.; Hanelt, E.


    The beta-gamma spectroscopic study of 22 O is presented. This nucleus, produced as a projectile-like fragment from the interaction of a 60 MeV/n 40 Ar beam with a Be target, has been separated by the LISE spectrometer. Several gamma rays from 22 O decay have been observed, from which a half-life of (2.25±0.15) s has been determined. Accurate excitation energies have been deduced for several states in 22 F. A partial beta decay scheme of 22 O has been established. Experimental results have been compared with shell model calculations. (orig.)

  15. Beta-hemolytic Streptococcal Bacteremia

    Nielsen, Hans Ulrik; Kolmos, Hans Jørn; Frimodt-Møller, Niels


    Bacteremia with beta-hemolytic Streptococci groups A, B, C and G has a mortality rate of approximately 20%. In this study we analyzed the association of various patient risk factors with mortality. Records from 241 patients with beta-hemolytic streptococcal bacteremia were reviewed with particular...... attention to which predisposing factors were predictors of death. A logistic regression model found age, burns, immunosuppressive treatment and iatrogenic procedures prior to the infection to be significant predictors of death, with odds ratios of 1.7 (per decade), 19.7, 3.6 and 6.8, respectively...

  16. The Beta Transmuted Weibull Distribution

    Manisha Pal


    Full Text Available The paper introduces a beta transmuted Weibull distribution, which contains a number ofdistributions as special cases. The properties of the distribution are discussed and explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, and reliability. The distribution and moments of order statistics are also studied. Estimation of the model parameters by the method of maximum likelihood is discussed. The log beta transmuted Weibull model is introduced to analyze censored data. Finally, the usefulness of the new distribution in analyzing positive data is illustrated.

  17. Beta activity of enriched uranium

    Nambiar, P.P.V.J.; Ramachandran, V.


    Use of enriched uranium as reactor fuel necessitates its handling in various forms. For purposes of planning and organising radiation protection measures in enriched uranium handling facilities, it is necessary to have a basic knowledge of the radiation status of enriched uranium systems. The theoretical variations in beta activity and energy with U 235 enrichment are presented. Depletion is considered separately. Beta activity build up is also studied for two specific enrichments, in respect of which experimental values for specific alpha activity are available. (author)

  18. A {beta} - {gamma} coincidence; Metodo de coincidencias {beta} - {gamma}

    Agullo, F


    A {beta} - {gamma} coincidence method for absolute counting is given. The fundamental principles are revised and the experimental part is detailed. The results from {sup 1}98 Au irradiated in the JEN 1 Swimming pool reactor are given. The maximal accuracy is 1 per cent. (Author) 11 refs.

  19. A Novel Device for True Lumen Re-Entry After Subintimal Recanalization of Superficial Femoral Arteries: First-in-Man Experience and Technical Description

    Airoldi, Flavio; Faglia, Ezio; Losa, Sergio; Tavano, Davide; Latib, Azeem; Mantero, Manuela; Lanza, Gaetano; Clerici, Giacomo


    Subintimal angioplasty (SAP) is frequently performed for the treatment of critical limb ischemia (CLI) and has been recognized as an effective technique for these patients. Nevertheless, this approach is limited by the lack of controlled re-entry into the true lumen of the target vessel. We describe a novel device for true lumen re-entry after subintimal recanalization of superficial femoral arteries (SFA). We report our experience with six patients treated between April 2009 and January 2010 with a novel system designed to facilitate true lumen re-entry. The device was advanced by ipsilateral antegrade approach through a 6-French sheath. Successful reaccess into the true lumen was obtained in five of six patients without complications. The patient in whom the reaccess to the true lumen was not possible underwent successful bypass surgery. At 30 days follow-up, the SFA was patent in all patients according to echo-Doppler examination. Our preliminary experience indicates that this novel re-entry device increases the success rate of percutaneous revascularization of chronically occluded SFA.

  20. A complex dissected chronic occlusion: targeted balloon dilatation of false lumen to access true lumen, combined localized subintimal tracking and reentry, parallel wire, contralateral injection and a useful antegrade lumen re-entry technique

    James W. Tam


    Full Text Available Chronic total occlusion (CTO angioplasty is one of the most challenging procedures remaining for the interventional operator. Recanalizing CTOs can improve exercise capacity, symptoms, left ventricular function and possibly reduce mortality. Multiple strategies such as escalating wire, parallel wire, seesaw, contralateral injection, subintimal tracking and re-entry (STAR, retrograde wire techniques (controlled antegrade retrograde subintimal tracking, CART, reverse CART, confluent balloon, rendezvous in coronary, and other techniques have all been described. Selection of the most appropriate approach is based on assessment of vessel course, length of occluded segment, presence of bridging collaterals, presence of bifurcating side branches at the occlusion site, and other variables. Today, with significant operator expertise and the use of available techniques, the literature reports a 50-95% success rate for recanalizing CTOs.