Sample records for beta isoforms regulation

  1. Differential regulation of renal phospholipase C isoforms by catecholamines. (United States)

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A


    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam or pramipexole) or antinatriuresis (NE) occurred, the kidneys were removed for analysis of PLC isoform protein expression activity. Western blot analysis revealed that in renal cortical membranes, fenoldopam and pramipexole increased expression of PLC beta 1 and decreased expression of PLC gamma 1; PLC delta was unchanged. In the cytosol, pramipexole and fenoldopam increased expression of both PLC beta 1 and PLC gamma 1. No effects were noted in the medulla. A preferential D1 antagonist, SKF 83742, which by itself had no effect, blocked the effects of pramipexole, thus confirming the involvement of the D1 receptor. In contrast, NE also increased PLC beta 1 but did not affect PLC gamma 1 protein expression in membranes. The changes in PLC isoform expression were accompanied by similar changes in PLC isoform activity. These studies demonstrate for the first time differential regulation of PLC isoforms by catecholamines. PMID:7814630

  2. Retinal and choroidal TGF-beta in the tree shrew model of myopia: isoform expression, activation and effects on function. (United States)

    Jobling, Andrew Ian; Wan, Ran; Gentle, Alex; Bui, Bang Viet; McBrien, Neville Anthony


    the specific nature of TGF-beta isoform expression, which reflects the differences in tissue structure and function. While TGF-beta isoforms are involved in scleral regulation during myopia development in mammals, they do not have a primary role in the retinal and choroidal signals. Thus, the regulation of eye growth via the retinoscleral cascade involves more than one factor, which is likely to be tissue-specific in nature. PMID:19046968

  3. Differential water permeability and regulation of three aquaporin 4 isoforms

    DEFF Research Database (Denmark)

    Fenton, Robert A.; Moeller, Hanne B; Zelenina, Marina;


    Aquaporin 4 (AQP4) is expressed in the perivascular glial endfeet and is an important pathway for water during formation and resolution of brain edema. In this study, we examined the functional properties and relative unit water permeability of three functional isoforms of AQP4 expressed...... in the brain (M1, M23, Mz). The M23 isoform gave rise to square arrays when expressed in Xenopus laevis oocytes. The relative unit water permeability differed significantly between the isoforms in the order of M1 > Mz > M23. None of the three isoforms were permeable to small osmolytes nor were they affected...... by changes in external K(+) concentration. Upon protein kinase C (PKC) activation, oocytes expressing the three isoforms demonstrated rapid reduction of water permeability, which correlated with AQP4 internalization. The M23 isoform was more sensitive to PKC regulation than the longer isoforms...

  4. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yuka; Hagiwara, Natsumi [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan); Radisky, Derek C. [Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32225 (United States); Hirai, Yohei, E-mail: [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan)


    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.

  5. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination

  6. Molecular regulation of skeletal muscle myosin heavy chain isoforms


    Brown, David M.


    Research investigating the regulation of muscle fibre type has traditionally been conducted in vivo, analyzing global changes at a whole muscle level. Broadly, this thesis aimed to explore more “molecular” approaches, utilizing molecular and cell biology to understand the expression and regulation of myosin heavy chain (MyHC) isoforms as an indicator of muscle fibre composition. The mRNA expression profile of six MyHC isoform genes during C2C12 myogenesis was elucidated to reveal that the...

  7. Differential regulation of renal phospholipase C isoforms by catecholamines.


    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A


    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam ...

  8. GABAB(1) receptor subunit isoforms differentially regulate stress resilience


    O’Leary, Olivia F.; Felice, Daniela; Galimberti, Stefano; Savignac, Hélène M.; Bravo, Javier A.; Crowley, Tadhg; El Yacoubi, Malika; Vaugeois, Jean-Marie; Gassmann, Martin; Bettler, Bernhard; Dinan, Timothy G.; Cryan, John F.


    Stress can increase susceptibility to developing psychiatric disorders, including depression. Understanding the neurobiological mechanisms underlying stress resilience and susceptibility is key to identifying novel targets for the development of more effective treatments for stress-related psychiatric disorders. Here we show that specific isoforms of GABAB receptor subunits differentially regulate stress resilience. Specifically, GABAB(1a)−/− mice are more susceptible whereas GABAB(1b)−/− mic...

  9. Isoform-specific phosphorylation-dependent regulation of connexin hemichannels

    DEFF Research Database (Denmark)

    Alstrøm, Jette Skov; Hansen, Daniel Bloch; Nielsen, Morten Schak;


    Connexins form gap junction channels made up of two connexons (hemichannels) from adjacent cells. Unopposed hemichannels may open toward the extracellular space upon stimulation by, e.g., removal of divalent cations from the extracellular solution and allow isoform-specific transmembrane flux of...... fluorescent dyes and physiologically relevant molecules, such as ATP and ions. Connexin (Cx)43 and Cx30 are the major astrocytic connexins. Protein kinase C (PKC) regulates Cx43 in its cell-cell gap junction configuration and may also act to keep Cx43 hemichannels closed. In contrast, the regulation of Cx30...... hemichannels by PKC is unexplored. To determine phosphorylation-dependent regulation of Cx30 and Cx43 hemichannels, these were heterologously expressed in Xenopus laevis oocytes and opened with divalent cation-free solution. Inhibition of PKC activity did not affect hemichannel opening of either connexin. PKC...

  10. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with DeltaNp73. (United States)

    Petitjean, A; Ruptier, C; Tribollet, V; Hautefeuille, A; Chardon, F; Cavard, C; Puisieux, A; Hainaut, P; Caron de Fromentel, C


    TP63, a member of the TP53 gene family, encodes two groups of three isoforms (alpha, beta and gamma). The TAp63 isoforms act as transcription factors. The DeltaNp63 isoforms lack the main transcription activation domain and act as dominant-negative inhibitors of transactivation (TA) isoforms. To clarify the role of these isoforms and to better understand their functional overlap with p53, we ectopically expressed each p63 isoform in the p53-null hepatocellular carcinoma cell line Hep3B. All TA isoforms, as well as DeltaNp63alpha, had a half-life of 8 h. As expected, TA isoforms differed in their transcriptional activities toward genes regulated by p53, TAp63gamma being the most active form. In contrast, DeltaNp63 isoforms were transcriptionally inactive on genes studied and inhibited TA isoforms in a dose-dependent manner. When stably expressed in polyclonal cell populations, TAp63beta and gamma isoforms were undetectable. However, when treated with doxorubicin (DOX), p63 proteins rapidly accumulated in the cells. This stabilization was associated with an increase in phosphorylation. Strikingly, in DOX-treated polyclonal populations, increase in TAp63 levels was accompanied by overexpression of DeltaNp73. This observation suggests complex regulatory cross talks between the different isoforms of the p53 family. In conclusion, p63 exhibits several transcriptional and stress-response properties similar to those of p53, suggesting that p63 activities should be taken into consideration in approaches to improve cancer therapies based on genotoxic agents. PMID:18048390

  11. Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms.

    Directory of Open Access Journals (Sweden)

    Patrycja M Dubielecka

    Full Text Available BACKGROUND: Macropinocytosis, which is a constitutive cellular process of fluid and macromolecule uptake, is regulated by actin cytoskeleton rearrangements near the plasma membrane. Activation of Rac1, which is proposed to act upstream of the actin polymerization regulatory Wave 2 complex, has been found to correlate with enhanced macropinocytosis. One of the components of the Wave 2 complex is Abi1. Multiple, alternatively spliced isoforms of Abi1 are expressed in mammalian cells, but the functional significance of the various isoforms is unknown. PRINCIPAL FINDINGS: Here, using flow cytometric assay analysis for Alexa Fluor 647, we demonstrate that Abi1 isoforms 2 and 3 differentially regulate macropinocytosis. LNCaP cells expressing isoform 3 had increased macropinocytic uptake that correlated with enhanced cell spreading and higher Rac1 activation in comparison to cells expressing isoform 2. Isoform 2 expressing cells had decreased macropinocytic uptake, but demonstrated greater sensitivity to Rac1 activation. Moreover, more isoform 2 was localized within the cytoplasm in comparison to isoform 3, which was more associated with the plasma membrane. Activated Rac1 was found to specifically bind to a site in exon 10 of isoform 2 in vitro. Because of alternative mRNA splicing, exon 10 is absent from isoform 3, precluding similar binding of activated Rac1. Both isoforms, however, bound to inactive Rac1 through the same non-exon 10 site. Thus, Abi1 isoform 3-containing Wave 2 complex exhibited a differential binding to activated vs. inactive Rac1, whereas isoform 2-containing Wave 2 complex bound activated or inactive Rac1 comparably. CONCLUSION: Based on these observations, we postulate that Abi1 isoforms differentially regulate macropinocytosis as a consequence of their different relative affinities for activated Rac1 in Wave 2 complex. These findings also raise the possibility that isoform-specific roles occur in other Abi1 functions.

  12. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. (United States)

    Turnquist, C; Horikawa, I; Foran, E; Major, E O; Vojtesek, B; Lane, D P; Lu, X; Harris, B T; Harris, C C


    Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. PMID:27104929

  13. Inter-isoform-dependent Regulation of the Drosophila Master Transcriptional Regulator SIN3. (United States)

    Chaubal, Ashlesha; Todi, Sokol V; Pile, Lori A


    SIN3 is a transcriptional corepressor that acts as a scaffold for a histone deacetylase (HDAC) complex. The SIN3 complex regulates various biological processes, including organ development, cell proliferation, and energy metabolism. Little is known, however, about the regulation of SIN3 itself. There are two major isoforms of Drosophila SIN3, 187 and 220, which are differentially expressed. Intrigued by the developmentally timed exchange of SIN3 isoforms, we examined whether SIN3 187 controls the fate of the 220 counterpart. Here, we show that in developing tissue, there is interplay between SIN3 isoforms: when SIN3 187 protein levels increase, SIN3 220 protein decreases concomitantly. SIN3 187 has a dual effect on SIN3 220. Expression of 187 leads to reduced 220 transcript, while also increasing the turnover of SIN3 220 protein by the proteasome. These data support the presence of a novel, inter-isoform-dependent mechanism that regulates the amount of SIN3 protein, and potentially the level of specific SIN3 complexes, during distinct developmental stages. PMID:27129248

  14. Cooperation between two ClpB isoforms enhances the recovery of the recombinant {beta}-galactosidase from inclusion bodies

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Izabela [Department of Biochemistry, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk (Poland); Zolkiewski, Michal [Department of Biochemistry, Kansas State University, Manhattan, KS 66506 (United States); Kedzierska-Mieszkowska, Sabina, E-mail: [Department of Biochemistry, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk (Poland)


    Highlights: Black-Right-Pointing-Pointer An important role of synergistic cooperation between the two ClpB isoforms. Black-Right-Pointing-Pointer Both ClpB isoforms are associated with IBs of {beta}-galactosidase. Black-Right-Pointing-Pointer ClpB is a key chaperone in IB protein release. -- Abstract: Bacterial ClpB is a molecular chaperone that solubilizes and reactivates aggregated proteins in cooperation with the DnaK chaperone system. The mechanism of protein disaggregation mediated by ClpB is linked to translocation of substrates through the central channel within the ring-hexameric structure of ClpB. Two isoforms of ClpB are produced in vivo: the full-length ClpB95 and the truncated ClpB80 (ClpB{Delta}N), which does not contain the N-terminal domain. The functional specificity of the two ClpB isoforms and the biological role of the N-terminal domain are still not fully understood. Recently, it has been demonstrated that ClpB may achieve its full potential as an aggregate-reactivating chaperone through the functional interaction and synergistic cooperation of its two isoforms. It has been found that the most efficient resolubilization and reactivation of stress-aggregated proteins occurred in the presence of both ClpB95 and ClpB80. In this work, we asked if the two ClpB isoforms functionally cooperate in the solubilization and reactivation of proteins from insoluble inclusion bodies (IBs) in Escherichia coli cells. Using the model {beta}-galactosidase fusion protein (VP1LAC), we found that solubilization and reactivation of enzymes entrapped in IBs occurred more efficiently in the presence of ClpB95 with ClpB80 than with either ClpB95 or ClpB80 alone. The two isoforms of ClpB chaperone acting together enhanced the solubility and enzymatic activity of {beta}-galactosidase sequestered into IBs. Both ClpB isoforms were associated with IBs of {beta}-galactosidase, what demonstrates their affinity to this type of aggregates. These results demonstrate a synergistic

  15. Specific regulation of NRG1 isoform expression by neuronal activity


    Liu, Xihui; Bates, Ryan; Wang, Fay; Su, Nan; Kirov, Sergei A.; Luo, Yuling; Wang, Jian-Zhi; Xiong, Wen-Cheng; Mei, Lin


    Neuregulin 1 (NRG1) is a trophic factor that has been implicated in neural development, neurotransmission and synaptic plasticity. NRG1 has multiple isoforms that are generated by usage of different promoters and alternative splicing of a single gene. However, little is known about NRG1 isoform composition profile, whether it changes during development or the underlying mechanisms. We found that each of the six types of NRG1 has a distinct expression pattern in the brain at different ages, re...

  16. Characterization and differential expression of protein kinase C isoforms in PC12 cells. Differentiation parallels an increase in PKC beta II. (United States)

    Wooten, M W; Seibenhener, M L; Soh, Y; Ewald, S J; White, K R; Lloyd, E D; Olivier, A; Parker, P J


    Nerve growth factor (NGF) treatment of PC12 cells induced a 2.8-fold increase in protein kinase C activity concomitant with differentiation and acquisition of neuritis. PKC protein isoforms were separated by sequential chromatography on DEAE-Sephacel/hydroxylapatite. A broad peak of PKC activity eluted which corresponded to the alpha PKC isoform. In control cells, message for all six PKC isoforms was detected and expressed as epsilon greater than zeta = gamma greater than delta greater than beta greater than alpha. Western blot of whole cell lysates revealed a large increase in the beta II, while slight changes were observed for the other five PKC isoforms during treatment (1-14 days) with NGF (50 ng/ml). In parallel, coordinate changes in the expression of the individual transcripts for the six isoforms occurred during NGF treatment. Induction and accumulation of PKC beta II may play a role in maintenance of neuronal morphology. PMID:1544425

  17. Regulation of three isoforms of SOD gene by environmental stresses in citrus red mite, Panonychus citri. (United States)

    Feng, Ying-Cai; Liao, Chong-Yu; Xia, Wen-Kai; Jiang, Xuan-Zhao; Shang, Feng; Yuan, Guo-Rui; Wang, Jin-Jun


    Superoxide dismutase (SOD) is a family of enzymes with multiple isoforms that possess antioxidative abilities in response to environmental stresses. Panonychus citri is one of the most important pest mites and has a global distribution. In this study, three distinct isoforms of SOD were cloned from P. citri and identified as cytoplasmic Cu-ZnSOD (PcSOD1), extracellular Cu-ZnSOD (PcSOD2), and mitochondrial MnSOD (PcSOD3). mRNA expression level analysis showed that all three isoforms were up-regulated significantly after exposure to the acaricide abamectin and to UV-B ultraviolet irradiation. In particular, PcSOD3 was up-regulated under almost all environmental stresses tested. The fold change of PcSOD3 expression was significantly higher than those of the two Cu-ZnSOD isoforms. Taken together, the results indicate that abamectin and UV-B can induce transcripts of all three SOD isoforms in P. citri. Furthermore, PcSOD3 seems to play a more important role in P. citri tolerance to oxidative stress. PMID:26063404

  18. Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development.

    Directory of Open Access Journals (Sweden)

    Nathalie Schmieg

    Full Text Available Kidins220/ARMS is a transmembrane protein playing a crucial role in neuronal and cardiovascular development. Kidins220/ARMS is a downstream target of neurotrophin receptors and interacts with several signalling and trafficking factors. Through computational modelling, we found two potential sites for alternative splicing of Kidins220/ARMS. The first is located between exon 24 and exon 29, while the second site replaces exon 32 by a short alternative terminal exon 33. Here we describe the conserved occurrence of several Kidins220/ARMS splice isoforms at RNA and protein levels. Kidins220/ARMS splice isoforms display spatio-temporal regulation during development with distinct patterns in different neuronal populations. Neurotrophin receptor stimulation in cortical and hippocampal neurons and neuroendocrine cells induces specific Kidins220/ARMS splice isoforms and alters the appearance kinetics of the full-length transcript. Remarkably, alternative terminal exon splicing generates Kidins220/ARMS variants with distinct cellular localisation: Kidins220/ARMS containing exon 32 is targeted to the plasma membrane and neurite tips, whereas Kidins220/ARMS without exon 33 mainly clusters the full-length protein in a perinuclear intracellular compartment in PC12 cells and primary neurons, leading to a change in neurotrophin receptor expression. Overall, this study demonstrates the existence of novel Kidins220/ARMS splice isoforms with unique properties, revealing additional complexity in the functional regulation of neurotrophin receptors, and potentially other signalling pathways involved in neuronal and cardiovascular development.

  19. Antimicrobial actions of the human epididymis 2 (HE2 protein isoforms, HE2alpha, HE2beta1 and HE2beta2

    Directory of Open Access Journals (Sweden)

    French Frank S


    Full Text Available Abstract Background The HE2 gene encodes a group of isoforms with similarities to the antimicrobial beta-defensins. We demonstrated earlier that the antimicrobial activity of HE2 proteins and peptides is salt resistant and structure dependent and involves permeabilization of bacterial membranes. In this study, we further characterize the antimicrobial properties of HE2 peptides in terms of the structural changes induced in E. coli and the inhibition of macromolecular synthesis. Methods E. coli treated with 50 micro g/ml of HE2alpha, HE2beta1 or HE2beta2 peptides for 30 and 60 min were visualized using transmission and scanning electron microscopy to investigate the impact of these peptides on bacterial internal and external structure. The effects of HE2alpha, HE2beta1 and HE2beta2 on E. coli macromolecular synthesis was assayed by incubating the bacteria with 2, 10 and 25 micro g/ml of the individual peptides for 0–60 min and measuring the incorporation of the radioactive precursors [methyl-3H]thymidine, [5-3H]uridine and L-[4,5-3H(N]leucine into DNA, RNA and protein. Statistical analyses using Student's t-test were performed using Sigma Plot software. Values shown are Mean ± S.D. Results E. coli treated with HE2alpha, HE2beta1 and HE2beta2 peptides as visualized by transmission electron microscopy showed extensive damage characterized by membrane blebbing, thickening of the membrane, highly granulated cytoplasm and appearance of vacuoles in contrast to the smooth and continuous membrane structure of the untreated bacteria. Similarly, bacteria observed by scanning electron microscopy after treating with HE2alpha, HE2beta1 or HE2beta2 peptides exhibited membrane blebbing and wrinkling, leakage of cellular contents, especially at the dividing septa, and external accumulation of fibrous materials. In addition, HE2alpha, HE2beta1 and HE2beta2 peptides inhibited E. coli DNA, RNA and protein synthesis. Conclusions The morphological changes observed

  20. Functional studies and expression regulation of two leptin isoforms in grass carp


    Chen, Ting; 陈廷


    Leptin, the protein product of obese gene, is a 16-kD adipokine with regulatory functions on food intake and energy metabolism. At present, limited information is available on leptin functions and regulation in lower vertebrates mainly due to the fact that the primary structure of leptin is highly diversified from fish to mammals. Leptin in teleost fish is even more complicated as leptin isoforms have been reported presumably as a result of whole-genome duplication that occurred during the ev...

  1. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF

    DEFF Research Database (Denmark)

    Worm, Jesper; Stenvang, Jan; Petri, Andreas;


    -stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression...

  2. Yin-Yang Regulation of Adiponectin Signaling by APPL Isoforms in Muscle Cells*


    Wang, Changhua; Xin, Xiaoban; Xiang, Ruihua; Ramos, Fresnida J.; Liu, Meilian; Lee, Hak Joo; Chen, Hongzhi; Mao, Xuming; Kikani, Chintan K.; Liu, Feng; Dong, Lily Q.


    APPL1 is a newly identified adiponectin receptor-binding protein that positively mediates adiponectin signaling in cells. Here we report that APPL2, an isoform of APPL1 that forms a dimer with APPL1, can interacts with both AdipoR1 and AdipoR2 and acts as a negative regulator of adiponectin signaling in muscle cells. Overexpression of APPL2 inhibits the interaction between APPL1 and AdipoR1, leading to down-regulation of adiponectin signaling in C2C12 myotubes. In contrast, suppressing APPL2 ...

  3. Computational identification of transcriptionally co-regulated genes, validation with the four ANT isoform genes

    Directory of Open Access Journals (Sweden)

    Dupont Pierre-Yves


    Full Text Available Abstract Background The analysis of gene promoters is essential to understand the mechanisms of transcriptional regulation required under the effects of physiological processes, nutritional intake or pathologies. In higher eukaryotes, transcriptional regulation implies the recruitment of a set of regulatory proteins that bind on combinations of nucleotide motifs. We developed a computational analysis of promoter nucleotide sequences, to identify co-regulated genes by combining several programs that allowed us to build regulatory models and perform a crossed analysis on several databases. This strategy was tested on a set of four human genes encoding isoforms 1 to 4 of the mitochondrial ADP/ATP carrier ANT. Each isoform has a specific tissue expression profile linked to its role in cellular bioenergetics. Results From their promoter sequence and from the phylogenetic evolution of these ANT genes in mammals, we constructed combinations of specific regulatory elements. These models were screened using the full human genome and databases of promoter sequences from human and several other mammalian species. For each of transcriptionally regulated ANT1, 2 and 4 genes, a set of co-regulated genes was identified and their over-expression was verified in microarray databases. Conclusions Most of the identified genes encode proteins with a cellular function and specificity in agreement with those of the corresponding ANT isoform. Our in silico study shows that the tissue specific gene expression is mainly driven by promoter regulatory sequences located up to about a thousand base pairs upstream the transcription start site. Moreover, this computational strategy on the study of regulatory pathways should provide, along with transcriptomics and metabolomics, data to construct cellular metabolic networks.

  4. CK2(beta)tes gene encodes a testis-specific isoform of the regulatory subunit of casein kinase 2 in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kalmykova, Alla I; Shevelyov, Yuri Y; Polesskaya, Oksana O; Dobritsa, Anna A; Evstafieva, Alexandra G; Boldyreff, Brigitte; Issinger, Olaf-Georg; Gvozdev, Vladimir A


    An earlier described CK2(beta)tes gene of Drosophila melanogaster is shown to encode a male germline specific isoform of regulatory beta subunit of casein kinase 2. Western-analysis using anti-CK2(beta)tes Ig revealed CK2(beta)tes protein in Drosophila testes extract. Expression of a CK2(beta)tes-beta......-galactosidase fusion protein driven by the CK2(beta)tes promoter was found in transgenic flies at postmitotic stages of spermatogenesis. Examination of biochemical characteristics of a recombinant CK2(beta)tes protein expressed in Escherichia coli revealed properties similar to those of CK2beta: (a) CK2(beta......)tes protein stimulates CK2alpha catalytic activity toward synthetic peptide; (b) it inhibits phosphorylation of calmodulin and mediates stimulation of CK2alpha by polylysine; (c) it is able to form (CK2(beta)tes)2 dimers, as well as (CK2alpha)2(CK2(beta)tes)2 tetramers. Using the yeast two-hybrid system and...

  5. Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Johansson, Helle Wulf; Hay-Schmidt, Anders;


    We investigated the expression of splice variants and beta-subunits of the BK channel (big conductance Ca(2+)-activated K(+) channel, Slo1, MaxiK, K(Ca)1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An alpha-subunit splice variant X1(+24) was found expressed...

  6. RAS and RHO Families of GTPases Directly Regulate Distinct Phosphoinositide 3-Kinase Isoforms


    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S.; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian


    Summary RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind an...

  7. Roles and post-translational regulation of cardiac class IIa histone deacetylase isoforms. (United States)

    Weeks, Kate L; Avkiran, Metin


    Cardiomyocyte hypertrophy is an integral component of pathological cardiac remodelling in response to mechanical and chemical stresses in settings such as chronic hypertension or myocardial infarction. For hypertrophy to ensue, the pertinent mechanical and chemical signals need to be transmitted from membrane sensors (such as receptors for neurohormonal mediators) to the cardiomyocyte nucleus, leading to altered transcription of the genes that regulate cell growth. In recent years, nuclear histone deacetylases (HDACs) have attracted considerable attention as signal-responsive, distal regulators of the transcriptional reprogramming that in turn precipitates cardiomyocyte hypertrophy, with particular focus on the role of members of the class IIa family, such as HDAC4 and HDAC5. These histone deacetylase isoforms appear to repress cardiomyocyte hypertrophy through mechanisms that involve protein interactions in the cardiomyocyte nucleus, particularly with pro-hypertrophic transcription factors, rather than via histone deacetylation. In contrast, evidence indicates that class I HDACs promote cardiomyocyte hypertrophy through mechanisms that are dependent on their enzymatic activity and thus sensitive to pharmacological HDAC inhibitors. Although considerable progress has been made in understanding the roles of post-translational modifications (PTMs) such as phosphorylation, oxidation and proteolytic cleavage in regulating class IIa HDAC localisation and function, more work is required to explore the contributions of other PTMs, such as ubiquitination and sumoylation, as well as potential cross-regulatory interactions between distinct PTMs and between class IIa and class I HDAC isoforms. PMID:25362149

  8. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. (United States)

    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian


    RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind and activate p110β via its RBD. In fibroblasts, GPCRs couple to PI3K through Dock180/Elmo1-mediated RAC activation and subsequent interaction with p110β. Cells from mice carrying mutations in the p110β RBD show reduced PI3K activity and defective chemotaxis, and these mice are resistant to experimental lung fibrosis. These findings revise our understanding of the regulation of type I PI3K by showing that both RAS and RHO family GTPases directly regulate distinct ubiquitous PI3K isoforms and that RAC activates p110β downstream of GPCRs. PMID:23706742

  9. Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor


    Song, Xiulong; Chen, Yuan; Valanejad, Leila; Kaimal, Rajani; Yan, Bingfang; Stoner, Matthew; Deng, Ruitang


    Expression of bile salt export pump (BSEP) is regulated by the bile acid/farnesoid X receptor (FXR) signaling pathway. Two FXR isoforms, FXRα1 and FXRα2, are predominantly expressed in human liver. We previously showed that human BSEP was isoform-dependently regulated by FXR and diminished with altered expression of FXRα1 and FXRα2 in patients with hepatocellular carcinoma. In this study, we demonstrate that FXRα1 and FXRα2 regulate human BSEP through two distinct FXR responsive elements (FXR...

  10. Alternative-splicing in the exon-10 region of GABA(A receptor beta(2 subunit gene: relationships between novel isoforms and psychotic disorders.

    Directory of Open Access Journals (Sweden)

    Cunyou Zhao

    Full Text Available BACKGROUND: Non-coding single nucleotide polymorphisms (SNPs in GABRB2, the gene for beta(2-subunit of gamma-aminobutyric acid type A (GABA(A receptor, have been associated with schizophrenia (SCZ and quantitatively correlated to mRNA expression and alternative splicing. METHODS AND FINDINGS: Expression of the Exon 10 region of GABRB2 from minigene constructs revealed this region to be an "alternative splicing hotspot" that readily gave rise to differently spliced isoforms depending on intron sequences. This led to a search in human brain cDNA libraries, and the discovery of two novel isoforms, beta(2S1 and beta(2S2, bearing variations in the neighborhood of Exon-10. Quantitative real-time PCR analysis of postmortem brain samples showed increased beta(2S1 expression and decreased beta(2S2 expression in both SCZ and bipolar disorder (BPD compared to controls. Disease-control differences were significantly correlated with SNP rs187269 in BPD males for both beta(2S1 and beta(2S2 expressions, and significantly correlated with SNPs rs2546620 and rs187269 in SCZ males for beta(2S2 expression. Moreover, site-directed mutagenesis indicated that Thr(365, a potential phosphorylation site in Exon-10, played a key role in determining the time profile of the ATP-dependent electrophysiological current run-down. CONCLUSION: This study therefore provided experimental evidence for the importance of non-coding sequences in the Exon-10 region in GABRB2 with respect to beta(2-subunit splicing diversity and the etiologies of SCZ and BPD.

  11. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner.

    Directory of Open Access Journals (Sweden)

    Jee-Hyun Um

    Full Text Available BACKGROUND: AMP protein kinase (AMPK plays an important role in food intake and energy metabolism, which are synchronized to the light-dark cycle. In vitro, AMPK affects the circadian rhythm by regulating at least two clock components, CKIα and CRY1, via direct phosphorylation. However, it is not known whether the catalytic activity of AMPK actually regulates circadian rhythm in vivo. METHODOLOGY/PRINCIPAL FINDING: THE CATALYTIC SUBUNIT OF AMPK HAS TWO ISOFORMS: α1 and α2. We investigate the circadian rhythm of behavior, physiology and gene expression in AMPKα1-/- and AMPKα2-/- mice. We found that both α1-/- and α2-/- mice are able to maintain a circadian rhythm of activity in dark-dark (DD cycle, but α1-/- mice have a shorter circadian period whereas α2-/- mice showed a tendency toward a slightly longer circadian period. Furthermore, the circadian rhythm of body temperature was dampened in α1-/- mice, but not in α2-/- mice. The circadian pattern of core clock gene expression was severely disrupted in fat in α1-/- mice, but it was severely disrupted in the heart and skeletal muscle of α2-/- mice. Interestingly, other genes that showed circadian pattern of expression were dysreguated in both α1-/- and α2-/- mice. The circadian rhythm of nicotinamide phosphoryl-transferase (NAMPT activity, which converts nicotinamide (NAM to NAD+, is an important regulator of the circadian clock. We found that the NAMPT rhythm was absent in AMPK-deficient tissues and cells. CONCLUSION/SIGNIFICANCE: This study demonstrates that the catalytic activity of AMPK regulates circadian rhythm of behavior, energy metabolism and gene expression in isoform- and tissue-specific manners.

  12. Concordant and discordant regulation of target genes by miR-31 and its isoforms.

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Chan

    Full Text Available It has been shown that imprecise cleavage of a primary or precursor RNA by Drosha or Dicer, respectively, may yield a group of microRNA (miRNA variants designated as "isomiR". Variations in the relative abundance of isoforms for a given miRNA among different species and different cell types beg the question whether these isomiRs might regulate target genes differentially. We compared the capacity of three miR-31 isoforms (miR-31-H, miR-31-P, and miR-31-M, which differ only slightly in their 5'- and/or 3'-end sequences, to regulate several known targets and a predicted target, Dicer. Notably, we found isomiR-31s displayed concordant and discordant regulation of 6 known target genes. Furthermore, we validated a predicted target gene, Dicer, to be a novel target of miR-31 but only miR-31-P could directly repress Dicer expression in both MCF-7 breast cancer cells and A549 lung cancer cells, resulting in their enhanced sensitivity to cisplatin, a known attribute of Dicer knockdown. This was further supported by reporter assay using full length 3'-untranslated region (UTR of Dicer. Our findings not only revealed Dicer to be a direct target of miR-31, but also demonstrated that isomiRs displayed similar and disparate regulation of target genes in cell-based systems. Coupled with the variations in the distribution of isomiRs among different cells or conditions, our findings support the possibility of fine-tuning gene expression by miRNAs.

  13. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms (United States)

    Liu, Z.; Xia, M.; Poovaiah, B. W.


    cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.

  14. An endothelial laminin isoform, laminin 8 (alpha4beta1gamma1), is secreted by blood neutrophils, promotes neutrophil migration and extravasation, and protects neutrophils from apoptosis. (United States)

    Wondimu, Zenebech; Geberhiwot, Tarekegn; Ingerpuu, Sulev; Juronen, Erkki; Xie, Xun; Lindbom, Lennart; Doi, Masayuki; Kortesmaa, Jarkko; Thyboll, Jill; Tryggvason, Karl; Fadeel, Bengt; Patarroyo, Manuel


    During extravasation, neutrophils migrate through the perivascular basement membrane (BM), a specialized extracellular matrix rich in laminins. Laminins 8 (LN-8) (alpha4beta1gamma1) and 10 (LN-10) (alpha5beta1gamma1) are major components of the endothelial BM, but expression, recognition, and use of these laminin isoforms by neutrophils are poorly understood. In the present study, we provide evidence, using a panel of novel monoclonal antibodies against human laminin alpha4 (LNalpha4) chain, that neutrophils contain and secrete LN-8, and that this endogenous laminin contributes to chemoattractant-induced, alphaMbeta2-integrin-dependent neutrophil migration through albumin-coated filters. Phorbol ester-stimulated neutrophils adhered to recombinant human (rh) LN-8, rhLN-10, and mouse LN-1 (mLN-1) (alpha1beta1gamma1) via alphaMbeta2-integrin, and these laminin isoforms strongly promoted chemoattractant-induced neutrophil migration via the same integrin. However, only rhLN-8 enhanced the spontaneous migration. In addition, recruitment of neutrophils into the peritoneum following an inflammatory stimulus was impaired in LNalpha4-deficient mice. rhLN-8 also protected isolated neutrophils from spontaneous apoptosis. This study is the first to identify a specific laminin isoform in neutrophils and provides evidence for the role of LN-8 in the adhesion, migration, extravasation, and survival of these cells. PMID:15172971

  15. Beta tubulin isoforms are not interchangeable for rescuing impaired radial migration due to Tubb3 knockdown. (United States)

    Saillour, Yoann; Broix, Loïc; Bruel-Jungerman, Elodie; Lebrun, Nicolas; Muraca, Giuseppe; Rucci, Julien; Poirier, Karine; Belvindrah, Richard; Francis, Fiona; Chelly, Jamel


    Over the last years, the critical role of cytoskeletal proteins in cortical development including neuronal migration as well as in neuronal morphology has been well established. Inputs from genetic studies were provided through the identification of several mutated genes encoding either proteins associated with microtubules (DCX, LIS1, KIF2A, KIF5C, DYNC1H1) or tubulin subunits (TUBA1A, TUBB2B, TUBB5 and TUBG1), in malformations of cortical development (MCD). We also reported the identification of missense mutations in TUBB3, the postmitotic neuronal specific tubulin, in six different families presenting either polymicrogyria or gyral disorganization in combination with cerebellar and basal ganglial abnormalities. Here, we investigate further the association between TUBB3 mutations and MCDs by analyzing the consequences of Tubb3 knockdown on cortical development in mice. Using the in utero-electroporation approach, we demonstrate that Tubb3 knockdown leads to delayed bipolar morphology and radial migration with evidence, suggesting that the neuronal arrest is a transient phenomenon overcome after birth. Silenced blocked cells display a round-shape and decreased number of processes and a delay in the acquisition of the bipolar morphology. Also, more Tbr2 positive cells are observed, although less cells express the proliferation marker Ki67, suggesting that Tubb3 inactivation might have an indirect effect on intermediate progenitor proliferation. Furthermore, we show by rescue experiments the non-interchangeability of other beta-tubulins which are unable to rescue the phenotype. Our study highlights the critical and specific role of Tubb3 on the stereotyped morphological changes and polarization processes that are required for initiating radial migration to the cortical plate. PMID:24179174

  16. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts. (United States)

    Kacena, Melissa A; Eleniste, Pierre P; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E; Mayo, Lindsey D; Bruzzaniti, Angela


    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  17. Megakaryocytes Regulate Expression of Pyk2 Isoforms and Caspase-mediated Cleavage of Actin in Osteoblasts* (United States)

    Kacena, Melissa A.; Eleniste, Pierre P.; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E.; Mayo, Lindsey D.; Bruzzaniti, Angela


    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  18. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Michael B. Armstrong


    Full Text Available Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB. MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation.

  19. LPA is a novel lipid regulator of mesangial cell hexokinase activity and HKII isoform expression. (United States)

    Coy, Platina E; Taneja, Navin; Lee, Iris; Hecquet, Claudie; Bryson, Jane M; Robey, R Brooks


    The prototypical extracellular phospholipid mediator, lysophosphatidic acid (LPA), exhibits growth factor-like properties and represents an important survival factor in serum. This potent mesangial cell mitogen is increased in conditions associated with glomerular injury. It is also a known activator of the classic mitogen-activated protein kinase (MAPK) pathway, which plays an important role in the regulation of mesangial cell hexokinase (HK) activity. To better understand the mechanisms coupling metabolism to injury, we examined the ability of LPA to regulate HK activity and expression in cultured murine mesangial cells. LPA increased total HK activity in a concentration- and time-dependent manner, with maximal increases of >50% observed within 12 h of exposure to LPA concentrations > or =25 microM (apparent ED(50) 2 microM). These effects were associated with increased extracellular signal-regulated kinase (ERK) activity and were prevented by the pharmacological inhibition of either MAPK/ERK kinase or protein kinase C (PKC). Increased HK activity was also associated with increased glucose (Glc) utilization and lactate accumulation, as well as selectively increased HKII isoform abundance. The ability of exogenous LPA to increase HK activity was both Ca2+ independent and pertussis toxin insensitive and was mimicked by LPA-generating phospholipase A2. We conclude that LPA constitutes a novel lipid regulator of mesangial cell HK activity and Glc metabolism. This regulation requires sequential activation of both Ca2+-independent PKC and the classic MAPK pathway and culminates in increased HKII abundance. These previously unrecognized metabolic consequences of LPA stimulation have both physiological and pathophysiological implications. They also suggest a novel mechanism whereby metabolism may be coupled to cellular injury via extracellular lipid mediators. PMID:12110510

  20. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. (United States)

    Hubert, Nadia; Hentze, Matthias W


    Divalent metal transporter 1 (DMT1) mediates apical iron uptake into duodenal enterocytes and also transfers iron from the endosome into the cytosol after cellular uptake via the transferrin receptor. Hence, mutations in DMT1 cause systemic iron deficiency and anemia. DMT1 mRNA levels are increased in the duodenum of iron-deficient animals. This regulation has been observed for DMT1 mRNA harboring an iron-responsive element (IRE) in its 3' UTR, but not for a processing variant lacking a 3'UTR IRE, suggesting that the IRE regulates the expression of DMT1 mRNA in response to iron levels. Here, we show that iron regulation of DMT1 involves the expression of a previously unrecognized upstream 5' exon (exon 1A) of the human and murine DMT1 gene. The expression of this previously uncharacterized 5' exon is tissue-specific and particularly prevalent in the duodenum and kidney. It adds an in-frame AUG translation initiation codon extending the DMT1 ORF by a conserved sequence of 29-31 amino acids. In combination with the IRE- and non-IRE variants in the 3'UTR, our results reveal the existence of four DMT1 mRNA isoforms predicting the synthesis of four different DMT1 proteins. We show that two regulatory regions, the 5' promoter/exon 1A region and the IRE-containing terminal exon participate in iron regulation of DMT1 expression, which operate in a tissue-specific way. These results uncover an unexpected complexity of DMT1 expression and regulation, with implications for understanding the physiology, cell biology, and pathophysiology of mammalian iron metabolism. PMID:12209011

  1. Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator

    Directory of Open Access Journals (Sweden)

    Fabian V Filipp


    Full Text Available Pyruvate kinase activity is controlled by a tightly woven regulatory network. The oncofetal isoform of pyruvate kinase (PKM2 is a master regulator of cancer metabolism. PKM2 engages in parallel, feed-forward, positive and negative feedback control contributing to cancer progression. Besides its metabolic role, non-metabolic functions of PKM2 as protein kinase and transcriptional coactivator for c-MYC and hypoxia-inducible factor 1-alpha are essential for epidermal growth factor receptor activation-induced tumorigenesis. These biochemical activities are controlled by a shift in the oligomeric state of PKM2 that includes acetylation, oxidation, phosphorylation, prolyl hydroxylation and sumoylation. Metabolically active PKM2 tetramer is allosterically regulated and responds to nutritional and stress signals. Metabolically inactive PKM2 dimer is imported into the nucleus and can function as protein kinase stimulating transcription. A systems biology approach to PKM2 at the genome, transcriptome, proteome, metabolome and fluxome level reveals how differences in biomolecular structure translate into a global rewiring of cancer metabolism. Cancer systems biology takes us beyond the Warburg effect, opening unprecedented therapeutic opportunities.

  2. Estradiol differentially induces progesterone receptor isoforms expression through alternative promoter regulation in a mouse embryonic hypothalamic cell line. (United States)

    Vázquez-Martínez, Edgar Ricardo; Camacho-Arroyo, Ignacio; Zarain-Herzberg, Angel; Rodríguez, María Carmen; Mendoza-Garcés, Luciano; Ostrosky-Wegman, Patricia; Cerbón, Marco


    Progesterone receptor (PR) presents two main isoforms (PR-A and PR-B) that are regulated by two specific promoters and transcribed from alternative transcriptional start sites. The molecular regulation of PR isoforms expression in embryonic hypothalamus is poorly understood. The aim of the present study was to assess estradiol regulation of PR isoforms in a mouse embryonic hypothalamic cell line (mHypoE-N42), as well as the transcriptional status of their promoters. MHypoE-N42 cells were treated with estradiol for 6 and 12 h. Then, Western blot, real-time quantitative reverse transcription polymerase chain reaction, and chromatin and DNA immunoprecipitation experiments were performed. PR-B expression was transiently induced by estradiol after 6 h of treatment in an estrogen receptor alpha (ERα)-dependent manner. This induction was associated with an increase in ERα phosphorylation (serine 118) and its recruitment to PR-B promoter. After 12 h of estradiol exposure, a downregulation of this PR isoform was associated with a decrease of specific protein 1, histone 3 lysine 4 trimethylation, and RNA polymerase II occupancy on PR-B promoter, without changes in DNA methylation and hydroxymethylation. In contrast, there were no estradiol-dependent changes in PR-A expression that could be related with the epigenetic marks or the transcription factors evaluated. We demonstrate that PR isoforms are differentially regulated by estradiol and that the induction of PR-B expression is associated to specific transcription factors interactions and epigenetic changes in its promoter in embryonic hypothalamic cells. PMID:26676302

  3. Insulin signaling regulates mitochondrial function in pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Siming Liu

    Full Text Available Insulin/IGF-I signaling regulates the metabolism of most mammalian tissues including pancreatic islets. To dissect the mechanisms linking insulin signaling with mitochondrial function, we first identified a mitochondria-tethering complex in beta-cells that included glucokinase (GK, and the pro-apoptotic protein, BAD(S. Mitochondria isolated from beta-cells derived from beta-cell specific insulin receptor knockout (betaIRKO mice exhibited reduced BAD(S, GK and protein kinase A in the complex, and attenuated function. Similar alterations were evident in islets from patients with type 2 diabetes. Decreased mitochondrial GK activity in betaIRKOs could be explained, in part, by reduced expression and altered phosphorylation of BAD(S. The elevated phosphorylation of p70S6K and JNK1 was likely due to compensatory increase in IGF-1 receptor expression. Re-expression of insulin receptors in betaIRKO cells partially restored the stoichiometry of the complex and mitochondrial function. These data indicate that insulin signaling regulates mitochondrial function and have implications for beta-cell dysfunction in type 2 diabetes.

  4. Epimorphin is a novel regulator of the progesterone receptor isoform-a. (United States)

    Bascom, Jamie L; Radisky, Derek C; Koh, Eileen; Fata, Jimmie E; Lo, Alvin; Mori, Hidetoshi; Roosta, Neda; Hirai, Yohei; Bissell, Mina J


    Epimorphin/syntaxin-2 is a membrane-tethered protein localized extracellularly (Epim) and intracellularly (Stx-2). The extracellular form Epim stimulates morphogenic processes in a range of tissues, including in murine mammary glands where its overexpression in luminal epithelial cells is sufficient to drive hyperplasia and neoplasia. We analyzed WAP-Epim transgenic mice to gain insight into how Epim promotes malignancy. Ectopic overexpression of Epim during postnatal mammary gland development led to early side-branching onset, precocious bud formation, and increased proliferation of mammary epithelial cells. Conversely, peptide-based inhibition of Epim function reduced side branching. Because increased side branching and hyperplasia occurs similarly in mice upon overexpression of the progesterone receptor isoform-a (Pgr-a), we investigated whether Epim exhibits these phenotypes through Pgr modulation. Epim overexpression indeed led to a steep upregulation of both total Pgr mRNA and Pgr-a protein levels. Notably, the Pgr antagonist RU486 abrogated Epim-induced ductal side branching, mammary epithelial cell proliferation, and bud formation. Evaluation of Epim signaling in a three-dimensional ex vivo culture system showed that its action was dependent on binding to its extracellular receptor, integrin-αV, and on matrix metalloproteinase 3 activity downstream of Pgr-a. These findings elucidate a hitherto unknown transcriptional regulator of Pgr-a, and shed light on how overexpression of Epim leads to malignancy. PMID:23867473

  5. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi


    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  6. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes

    DEFF Research Database (Denmark)

    Müller, Margit S; Pedersen, Sofie E; Walls, Anne B;


    Glycogen phosphorylase (GP) is activated to degrade glycogen in response to different stimuli, to support both the astrocyte's own metabolic demand and the metabolic needs of neurons. The regulatory mechanism allowing such a glycogenolytic response to distinct triggers remains incompletely...... understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each...... determination of glycogen content showing an increase in glycogen levels following knockdown of either GPMM or GPBB. NE triggered glycogenolysis within 15 min in control cells and after GPBB knockdown. However, astrocytes in which expression of GPMM had been silenced showed a delay in response to NE, with...

  7. Progesterone receptor isoform A may regulate the effects of neoadjuvant aglepristone in canine mammary carcinoma


    Guil-Luna, Silvia; Stenvang, Jan; Brünner, Nils; De Andrés, Francisco Javier; Rollón, Eva; Domingo, Víctor; Sánchez-Céspedes, Raquel; Millán, Yolanda; Mulas, Juana Martín de las


    Background Progesterone receptors play a key role in the development of canine mammary tumours, and recent research has focussed on their possible value as therapeutic targets using antiprogestins. Cloning and sequencing of the progesterone receptor gene has shown that the receptor has two isoforms, A and B, transcribed from a single gene. Experimental studies in human breast cancer suggest that the differential expression of progesterone receptor isoforms has implications for hormone therapy...

  8. Alternative Splicing Regulates the Subcellular Localization of Divalent Metal Transporter 1 Isoforms


    Tabuchi, Mitsuaki; Tanaka, Naotaka; Nishida-Kitayama, Junko; Ohno, Hiroshi; Kishi, Fumio


    Divalent metal transporter 1 (DMT1) is responsible for dietary-iron absorption from apical plasma membrane in the duodenum and iron acquisition from the transferrin cycle endosomes in peripheral tissues. Two isoforms of the DMT1 transcript generated by alternative splicing of the 3′ exons have been identified in mouse, rat, and human. These isoforms can be distinguished by the different C-terminal amino acid sequences and by the presence (DMT1A) or absence (DMT1B) of an iron response element ...

  9. Progesterone receptor isoform A may regulate the effects of neoadjuvant aglepristone in canine mammary carcinoma

    DEFF Research Database (Denmark)

    Guil-Luna, Silvia; Stenvang, Jan; Brünner, Nils;


    and mRNA expression of progesterone receptor isoforms A and B in mammary carcinomas in dogs treated with 20 mg/Kg of aglepristone (n¿=¿22) or vehicle (n¿=¿5) twice before surgery.ResultsFormalin-fixed, paraffin-embedded tissue samples taken before and after treatment were used to analyse total......BackgroundProgesterone receptors play a key role in the development of canine mammary tumours, and recent research has focussed on their possible value as therapeutic targets using antiprogestins. Cloning and sequencing of the progesterone receptor gene has shown that the receptor has two isoforms...

  10. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends. (United States)

    Kern, David M; Nicholls, Peter K; Page, David C; Cheeseman, Iain M


    The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning. PMID:27138257

  11. Regulation of. beta. -cell glucose transporter gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ling; Alam, Tausif; Johnson, J.H.; Unger, R.H. (Univ. of Texas Southwestern Medical Center, Dallas (USA) Department of Veterans Affairs Medical Center, Dallas, TX (USA)); Hughes, S.; Newgard, C.B. (Univ. of Texas Southwestern Medical Center, Dallas (USA))


    It has been postulated that a glucose transporter of {beta} cells (GLUT-2) may be important in glucose-stimulated insulin secretion. To determine whether this transporter is constitutively expressed or regulated, the authors subjected conscious unrestrained Wistar rats to perturbations in glucose homeostasis and quantitated {beta}-cell GLUT-2 mRNA by in situ hybridization. After 3 hr of hypoglycemia, GLUT-2 and proinsulin mRNA signal densities were reduced by 25% of the level in control rats. After 4 days, GLUT-2 and proinsulin mRNA densities were reduced by 85% and 65%, respectively. After 12 days of hypoglycemia, the K{sub m} for 3-O-methyl-D-glucose transport in isolated rat islets, normally 18-20 mM, was 2.5 mM. This provides functional evidence of a profound reduction of high K{sub m} glucose transporter in {beta} cells. In contrast, GLUT-2 was only slightly reduced by hypoglycemia in liver. To determine the effect of prolonged hyperglycemia, they also infused animals with 50% (wt/vol) glucose for 5 days. Hyperglycemic clamping increased GLUT-2 mRNA by 46% whereas proinsulin mRNA doubled. They conclude that GLUT-2 expression in {beta} cells, but not liver, is subject to regulation by certain perturbations in blood glucose homeostasis.

  12. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    International Nuclear Information System (INIS)

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  13. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn, E-mail:


    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  14. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation


    Strand, D.W.; Jiang, M; Murphy, T A; Yi, Y.; Konvinse, K C; Franco, O E; Wang, Y.; Young, J D; Hayward, S.W.


    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithel...

  15. Regulation of carnitine palmitoyltransferase I (CPT-Iα) gene expression by the peroxisome proliferator activated receptor gamma coactivator (PGC-1) isoforms


    Sadana, Prabodh; Zhang, Yi; Song, Shulan; Cook, George A.; Elam, Marshall B.; Park, Edwards A.


    The peroxisome proliferator-activated receptor gamma coactivators (PGC-1) have important roles in mitochondrial biogenesis and metabolic control in a variety of tissues. There are multiple isoforms of PGC-1 including PGC-1α and PGC-1β. Both the PGC-1α and β isoforms promote mitochondrial biogenesis and fatty acid oxidation, but only PGC-1α stimulates gluconeogenesis in the liver. Carnitine palmitoyltransferase I (CPT-I) is a key enzyme regulating mitochondrial fatty acid oxidation. In these s...

  16. Novel secreted isoform of adhesion molecule ICAM-4: Potential regulator of membrane-associated ICAM-4 interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gloria; Spring, Frances A.; Parons, Stephen F.; Mankelow, Tosti J.; Peters, Luanne L.; Koury, Mark J.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne


    ICAM-4, a newly characterized adhesion molecule, is expressed early in human erythropoiesis and functions as a ligand for binding a4b1 and aV integrin-expressing cells. Within the bone marrow, erythroblasts surround central macrophages forming erythroblastic islands. Evidence suggests that these islands are highly specialized subcompartments where cell adhesion events, in concert with cytokines, play critical roles in regulating erythropoiesis and apoptosis. Since erythroblasts express a4b1 and ICAM-4 and macrophages exhibit aV, ICAM-4 is an attractive candidate for mediating cellular interactions within erythroblastic islands. To determine whether ICAM-4 binding properties are conserved across species, we first cloned and sequenced the murine homologue. The translated amino acid sequence showed 68 percent overall identity with human ICAM-4. Using recombinant murine ICAM-4 extracellular domains, we discovered that hematopoietic a4b1-expressing HEL cells and non-hematopoietic aV-expressing FLY cells adhered to mouse ICAM-4. Cell adhesion studies showed that FLY and HEL cells bound to mouse and human proteins with similar avidity. These data strongly suggest conservation of integrin-binding properties across species. Importantly, we characterized a novel second splice cDNA that would be predicted to encode an ICAM-4 isoform, lacking the membrane-spanning domain. Erythroblasts express both isoforms of ICAM-4. COS-7 cells transfected with GFP constructs of prototypic or novel ICAM-4 cDNA showed different cellular localization patterns. Moreover, analysis of tissue culture medium revealed that the novel ICAM-4 cDNA encodes a secreted protein. We postulate that secretion of this newly described isoform, ICAM-4S, may modulate binding of membrane-associated ICAM-4 and could thus play a critical regulatory role in erythroblast molecular attachments.

  17. Regulation of glycogen synthase kinase-3{beta} (GSK-3{beta}) after ionizing radiation; Regulation der Glykogen Synthase Kinase-3{beta} (GSK-3{beta}) nach ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, K.A.


    Glycogen Synthase Kinase-3{beta} (GSK-3{beta}) phosphorylates the Mdm2 protein in the central domain. This phosphorylation is absolutely required for p53 degradation. Ionizing radiation inactivates GSK-3{beta} by phosphorylation at serine 9 and in consequence prevents Mdm2 mediated p53 degradation. During the work for my PhD I identified Akt/PKB as the kinase that phosphorylates GSK-3{beta} at serine 9 after ionizing radiation. Ionizing radiation leads to phosphorylation of Akt/PKB at threonine 308 and serine 473. The PI3 Kinase inhibitor LY294002 completely abolished Akt/PKB serine 473 phosphorylation and prevented the induction of GSK-3{beta} serine 9 phosphorylation after ionizing radiation. Interestingly, the most significant activation of Akt/PKB after ionizing radiation occurred in the nucleus while cytoplasmic Akt/PKB was only weakly activated after radiation. By using siRNA, I showed that Akt1/PKBa, but not Akt2/PKB{beta}, is required for phosphorylation of GSK- 3{beta} at serine 9 after ionizing radiation. Phosphorylation and activation of Akt/PKB after ionizing radiation depends on the DNA dependent protein kinase (DNA-PK), a member of the PI3 Kinase family, that is activated by free DNA ends. Both, in cells from SCID mice and after knockdown of the catalytic subunit of DNA-PK by siRNA in osteosarcoma cells, phosphorylation of Akt/PKB at serine 473 and of GSK-3{beta} at serine 9 was completely abolished. Consistent with the principle that phosphorylation of GSK-3 at serine 9 contributes to p53 stabilization after radiation, the accumulation of p53 in response to ionizing radiation was largely prevented by downregulation of DNA-PK. From these results I conclude, that ionizing radiation induces a signaling cascade that leads to Akt1/PKBa activation mediated by DNA-PK dependent phosphorylation of serine 473. After activation Akt1/PKBa phosphorylates and inhibits GSK-3{beta} in the nucleus. The resulting hypophosphorylated form of Mdm2 protein is no longer

  18. DNA signals at isoform promoters. (United States)

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua


    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  19. Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton


    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Justine R. Stehn; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.; Fath, Thomas; Schevzov, Galina; Gunning, Peter W.


    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to...

  20. Tissue- and isoform-specific phytochrome regulation of light-dependent anthocyanin accumulation in Arabidopsis thaliana


    Warnasooriya, Sankalpi N.; Porter, Katie J.; Montgomery, Beronda L


    Phytochromes regulate light- and sucrose-dependent anthocyanin synthesis and accumulation in many plants. Mesophyll-specific phyA alone has been linked to the regulation of anthocyanin accumulation in response to far-red light in Arabidopsis thaliana. However, multiple mesophyll-localized phytochromes were implicated in the photoregulation of anthocyanin accumulation in red-light conditions. Here, we report a role for mesophyll-specific phyA in blue-light-dependent regulation of anthocyanin l...

  1. Laminin isoforms differentially regulate adhesion, spreading, proliferation, and ERK activation of β1 integrin-null cells

    International Nuclear Information System (INIS)

    The presence of many laminin receptors of the β1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin α6β4 and dystroglycan. We therefore tested the binding of a β1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin α6Aβ4A variant. GD25 β1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin α6 antibody, but not by a dystroglycan antibody. Hence, integrin α6Aβ4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin α6Aβ4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin α6Aβ4A

  2. Regulation and genetic enhancement of beta-amylase production in Clostridium thermosulfurogenes.


    Hyun, H H; Zeikus, J G


    We studied the general mechanism for regulation of beta-amylase synthesis in Clostridium thermosulfurogenes. beta-Amylase was expressed at high levels only when the organism was grown on maltose or other carbohydrates containing maltose units. Three kinds of mutants altered in beta-amylase production were isolated by using nitrosoguanidine treatment, enrichment on 2-deoxyglucose, and selection of colonies with large clear zones on iodine-stained starch-glucose agar plates. beta-Amylase was pr...

  3. Cdk4 regulates recruitment of quiescent beta-cells and ductal epithelial progenitors to reconstitute beta-cell mass.

    Directory of Open Access Journals (Sweden)

    Ji-Hyeon Lee

    Full Text Available Insulin-producing pancreatic islet beta cells (beta-cells are destroyed, severely depleted or functionally impaired in diabetes. Therefore, replacing functional beta-cell mass would advance clinical diabetes management. We have previously demonstrated the importance of Cdk4 in regulating beta-cell mass. Cdk4-deficient mice display beta-cell hypoplasia and develop diabetes, whereas beta-cell hyperplasia is observed in mice expressing an active Cdk4R24C kinase. While beta-cell replication appears to be the primary mechanism responsible for beta-cell mass increase, considerable evidence also supports a contribution from the pancreatic ductal epithelium in generation of new beta-cells. Further, while it is believed that majority of beta-cells are in a state of 'dormancy', it is unclear if and to what extent the quiescent cells can be coaxed to participate in the beta-cell regenerative response. Here, we address these queries using a model of partial pancreatectomy (PX in Cdk4 mutant mice. To investigate the kinetics of the regeneration process precisely, we performed DNA analog-based lineage-tracing studies followed by mathematical modeling. Within a week after PX, we observed considerable proliferation of islet beta-cells and ductal epithelial cells. Interestingly, the mathematical model showed that recruitment of quiescent cells into the active cell cycle promotes beta-cell mass reconstitution in the Cdk4R24C pancreas. Moreover, within 24-48 hours post-PX, ductal epithelial cells expressing the transcription factor Pdx-1 dramatically increased. We also detected insulin-positive cells in the ductal epithelium along with a significant increase of islet-like cell clusters in the Cdk4R24C pancreas. We conclude that Cdk4 not only promotes beta-cell replication, but also facilitates the activation of beta-cell progenitors in the ductal epithelium. In addition, we show that Cdk4 controls beta-cell mass by recruiting quiescent cells to enter the cell

  4. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism


    Herman, Mark Andrew; Peroni, Odile Daniele; Villoria, Jorge; Schön, Michael R; Abumrad, Nada A.; Blüher, Matthias; Klein, Samuel; Kahn, Barbara


    Summary The prevalence of obesity and type 2-diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the Glut4-glucose transporter and alterations in adipose-Glut4 expression or function regulate systemic insulin sensitivity. Downregulation of adipose tissue-Glut4 occurs early in diabetes development. Here we report that adipose tissue-Glut4 regul...

  5. Diacylglycerol kinase theta and zeta isoforms: regulation of activity, protein binding partners and physiological functions


    Los, Alrik Pieter


    Diacylglycerol kinases (DGKs) phosphorylate the second messenger diacylglycerol (DAG) yielding phosphatidic acid (PA). In this thesis, we investigated which structural domains of DGKtheta are required for DGK activity. Furthermore, we showed that DGKzeta binds to and is activated by the Retinoblastoma tumour suppressor protein (pRB) and the pRB-related proteins p107 and p130, key regulators of the cell-cycle, differentiation and apoptosis. The interaction between pRB and DGKzeta is regulated ...

  6. Calponin isoforms CNN1, CNN2 and CNN3: Regulators for actin cytoskeleton functions in smooth muscle and non-muscle cells. (United States)

    Liu, Rong; Jin, J-P


    Calponin is an actin filament-associated regulatory protein expressed in smooth muscle and many types of non-muscle cells. Three homologous genes, CNN1, CNN2 and CNN3, encoding calponin isoforms 1, 2, and 3, respectively, are present in vertebrate species. All three calponin isoforms are actin-binding proteins with functions in inhibiting actin-activated myosin ATPase and stabilizing the actin cytoskeleton, while each isoform executes different physiological roles based on their cell type-specific expressions. Calponin 1 is specifically expressed in smooth muscle cells and plays a role in fine-tuning smooth muscle contractility. Calponin 2 is expressed in both smooth muscle and non-muscle cells and regulates multiple actin cytoskeleton-based functions. Calponin 3 participates in actin cytoskeleton-based activities in embryonic development and myogenesis. Phosphorylation has been extensively studied for the regulation of calponin functions. Cytoskeleton tension regulates the transcription of CNN2 gene and the degradation of calponin 2 protein. This review summarizes our knowledge learned from studies over the past three decades, focusing on the evolutionary lineage of calponin isoform genes, their tissue- and cell type-specific expressions, structure-function relationships, and mechanoregulation. PMID:26970176

  7. Nkx factors specifically regulate expression of Hedgehog receptor isoforms in early embryonic development (United States)

    BACKGROUND: NK homeobox family members are tissue-specific transcription factors that regulate developmental genes. Homozygous disruption of Nkx3.2 produces severe developmental defects of the axial skeleton, skull, spleen, and stomach. Murine mutation of Nkx2.5 results in death at E9 with defects i...

  8. A Combinatorial Interplay Among the 1-Aminocyclopropane-1-carboxylate Isoforms Regulates Ethylene Biosynthesis in Arabidopsis thaliana (United States)

    Ethylene (C2H4) is a unique plant-signaling molecule that regulates numerous developmental processes. The key enzyme in the two-step biosynthetic pathway of ethylene is 1-aminocyclopropane-1-carboxylate synthase (ACS), which catalyzes the conversion of Sadenosyl-methionine (AdoMet) to ACC, the precu...

  9. Opposition between PKC Isoforms Regulates Histone Deimination and Neutrophil Extracellular Chromatin Release


    Marko eRadic; Indira eNeeli


    In response to inflammation, neutrophils deiminate histones and externalize chromatin. Neutrophil extracellular traps (NETs) are an innate immune defense mechanism, yet NETs also may aggravate chronic inflammatory and autoimmune disorders. Activation of peptidylarginine deiminase IV (PAD4) is associated with NET release (NETosis) but the precise mechanisms of PAD4 regulation are unknown. We observed that, in human neutrophils, calcium ionophore induced histone deimination, whereas phorbol ...

  10. Nuclear Factor I isoforms regulate gene expression during the differentiation of human neural progenitors to astrocytes


    Wilczynska, Katarzyna M.; Singh, Sandeep K.; Adams, Bret; Bryan, Lauren; Rao, Raj R.; Valerie, Kristoffer; Wright, Sarah; Griswold-Prenner, Irene; Kordula, Tomasz


    Even though astrocytes are critical for both normal brain functions and the development and progression of neuropathological states, including neuroinflammation associated with neurodegenerative diseases, the mechanisms controlling gene expression during astrocyte differentiation are poorly understood. Thus far, several signaling pathways were shown to regulate astrocyte differentiation, including JAK-STAT, BMP-2/Smads, and Notch. More recently, a family of Nuclear Factor-1 (NFI-A, -B, -C, an...

  11. Muscle Lim Protein isoform negatively regulates striated muscle actin dynamics and differentiation


    Vafiadaki, Elizabeth; Arvanitis, Demetrios A.; Papalouka, Vasiliki; Terzis, Gerasimos; ROUMELIOTIS, Theodoros I.; Spengos, Konstantinos; Garbis, Spiros D.; Manta, Panagiota; Kranias, Evangelia G.; Sanoudou, Despina


    Muscle Lim Protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, while aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum ...

  12. Both liver-X receptor (LXR) isoforms control energy expenditure by regulating Brown Adipose Tissue activity


    Korach-André, Marion; Archer, Amena; Barros, Rodrigo P.; Parini, Paolo; Gustafsson, Jan-Åke


    Brown adipocytes are multilocular lipid storage cells that play a crucial role in nonshivering thermogenesis. Uncoupling protein 1 (UCP1) is a unique feature of brown fat cells that allows heat generation on sympathetic nervous system stimulation. As conventional transcriptional factors that are activated in various signaling pathways, liver-X receptors (LXRs) play important roles in many physiological processes. The role of LXRs in the regulation of energy homeostasis remains unclear, howeve...

  13. The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4.

    Directory of Open Access Journals (Sweden)

    Cédric Laguri

    Full Text Available BACKGROUND: CXCL12alpha, a chemokine that importantly promotes the oriented cell migration and tissue homing of many cell types, regulates key homeostatic functions and pathological processes through interactions with its cognate receptor (CXCR4 and heparan sulfate (HS. The alternative splicing of the cxcl12 gene generates a recently identified isoform, CXCL12gamma, which structure/function relationships remain unexplored. The high occurrence of basic residues that characterize this isoform suggests however that it could feature specific regulation by HS. METHODOLOGY/PRINCIPAL FINDINGS: Using surface plasmon resonance and NMR spectroscopy, as well as chemically and recombinantly produced chemokines, we show here that CXCL12gamma first 68 amino acids adopt a structure closely related to the well described alpha isoform, followed by an unfolded C-terminal extension of 30 amino acids. Remarkably, 60% of these residues are either lysine or arginine, and most of them are clustered in typical HS binding sites. This provides the chemokine with the highest affinity for HP ever observed (Kd = 0.9 nM, and ensures a strong retention of the chemokine at the cell surface. This was due to the unique combination of two cooperative binding sites, one strictly required, found in the structured domain of the protein, the other one being the C-terminus which essentially functions by enhancing the half life of the complexes. Importantly, this peculiar C-terminus also regulates the balance between HS and CXCR4 binding, and consequently the biological activity of the chemokine. CONCLUSIONS/SIGNIFICANCE: Together these data describe an unusual binding process that gives rise to an unprecedented high affinity between a chemokine and HS. This shows that the gamma isoform of CXCL12, which features unique structural and functional properties, is optimized to ensure its strong retention at the cell surface. Thus, depending on the chemokine isoform to which it binds, HS

  14. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis (United States)

    Donelan, Matthew J.; Morfini, Gerardo; Julyan, Richard; Sommers, Scott; Hays, Lori; Kajio, Hiroshi; Briaud, Isabelle; Easom, Richard A.; Molkentin, Jeffery D.; Brady, Scott T.; Rhodes, Christopher J.


    The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.

  15. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function


    Hubert, Nadia; Hentze, Matthias W.


    Divalent metal transporter 1 (DMT1) mediates apical iron uptake into duodenal enterocytes and also transfers iron from the endosome into the cytosol after cellular uptake via the transferrin receptor. Hence, mutations in DMT1 cause systemic iron deficiency and anemia. DMT1 mRNA levels are increased in the duodenum of iron-deficient animals. This regulation has been observed for DMT1 mRNA harboring an iron–responsive element (IRE) in its 3′ UTR, but not for a processing variant lacking a 3′UTR...

  16. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy


    Ruas, Jorge L.; White, James P.; Rao, Rajesh R.; Kleiner, Sandra; Brannan, Kevin T.; Harrison, Brooke C.; Greene, Nicholas P.; Wu, Jun; Estall, Jennifer L.; Irving, Brian A.; Lanza, Ian R.; Rasbach, Kyle A.; Okutsu, Mitsuharu; Nair, K. Sreekumaran; Yan, Zhen


    PGC-1α is a transcriptional coactivator induced by exercise that gives muscle many of the best known adaptations to endurance-type exercise, but has no effects on muscle strength or hypertrophy. We have identified a novel form of PGC-1α (PGC-1α4) that results from alternative promoter usage and splicing of the primary transcript. PGC-1α4 is highly expressed in exercised muscle but does not regulate most known PGC-1α targets such as the mitochondrial OXPHOS genes. Rather, it specifically induc...

  17. Beta adrenoreceptor subtype cross regulation in the human heart.


    Hall, J. A.; Ferro, A; Dickerson, J. E.; Brown, M. J.


    OBJECTIVES--To find out in a prospective study whether beta 1 blocker treatment causes selective beta 2 adrenoreceptor sensitisation, and to find whether such sensitisation is confined to the heart. DESIGN--A placebo controlled cross over study of two weeks of selective beta 1 blocker treatment with 10 mg of bisoprolol daily. SUBJECTS--Six healthy volunteers. OUTCOME MEASURES--Three days after stopping the 10 mg of bisoprolol or placebo, subjects underwent treadmill exercise (to measure cardi...

  18. SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies. (United States)

    Liang, Ya-Chen; Lee, Chia-Chin; Yao, Ya-Li; Lai, Chien-Chen; Schmitz, M Lienhard; Yang, Wen-Ming


    Promyelocytic leukemia nuclear bodies (PML-NBs) are PML-based nuclear structures that regulate various cellular processes. SUMOylation, the process of covalently conjugating small ubiquitin-like modifiers (SUMOs), is required for both the formation and the disruption of PML-NBs. However, detailed mechanisms of how SUMOylation regulates these processes remain unknown. Here we report that SUMO5, a novel SUMO variant, mediates the growth and disruption of PML-NBs. PolySUMO5 conjugation of PML at lysine 160 facilitates recruitment of PML-NB components, which enlarges PML-NBs. SUMO5 also increases polySUMO2/3 conjugation of PML, resulting in RNF4-mediated disruption of PML-NBs. The acute promyelocytic leukemia oncoprotein PML-RARα blocks SUMO5 conjugation of PML, causing cytoplasmic displacement of PML and disruption of PML-NBs. Our work not only identifies a new member of the SUMO family but also reveals the mechanistic basis of the PML-NB life cycle in human cells. PMID:27211601

  19. Down-regulated expression of atypical PKC-binding domain deleted asip isoforms in human hepatocellular carcinomas

    Institute of Scientific and Technical Information of China (English)


    Asip is a mammalian homologue of polarity protein Par-3 of Caenorhabditis elegans and Bazooka of Drosophila melanogaster. Asip/Par-3/Bazooka are PDZ-motif containing proteins that localize asymmetrically to the cell periphery and play a pivotal role in cell polarity and asymmetric cell division. In the present study, we have cloned human asip cDNA and its splicing variants by 5'-RACE and RT-PCR using candidate human EST clones which have a high homology to rat asip cDNA. The full-length cDNA of human asip encodes a 1,353 aa protein exhibiting 88% similarity to the rat one. Human asip is a single copy gene consisting of at least 26 exons and localizing in human chromosome 10, band p11.2, with some extraordinarily long introns. All exon/intron boundary nucleotides conform to the “gt-ag” rule. Three main transcripts were detected by Northern blot analysis, and at least five variants, from alternative splicing and polyadenylation, have been identified by RT-PCR and liver cDNA library screening. Exon 17b deleted asip mRNAs expressed ubiquitously in normal human tissues, including liver, on RT-PCR analysis. However, they were absent from most human liver cancer cell lines examined. More interestingly, the expression of exon 17b deleted variants was down regulated in 52.6% (10/19) clinic specimens of human hepatocellular carcinomas (HCCs), compared with the surrounding nontumorous liver tissues from the same patients. The presence of various splicing transcripts, the variation of their distribution among different tissues and cells, and their differential expressions in human HCCs suggest that human Asip isoforms may function in different context.

  20. An adenylate kinase is involved in KATP channel regulation of mouse pancreatic beta cells.

    NARCIS (Netherlands)

    Schulze, D.U.; Dufer, M.; Wieringa, B.; Krippeit-Drews, P.; Drews, G.


    AIMS/HYPOTHESIS: In a previous study, we demonstrated that a creatine kinase (CK) modulates K(ATP) channel activity in pancreatic beta cells. To explore phosphotransfer signalling pathways in more detail, we examined whether K(ATP) channel regulation in beta cells is determined by a metabolic intera

  1. Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites


    Lindgren, Niklas; Usiello, Alessandro; Goiny, Michel; Haycock, John; Erbs, Eric; Greengard, Paul; Hökfelt, Tomas; Borrelli, Emiliana; Fisone, Gilberto


    Dopamine D2 receptors are highly expressed in the dorsal striatum where they participate in the regulation of (i) tyrosine hydroxylase (TH), in nigrostriatal nerve terminals, and (ii) the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), in medium spiny neurons. Two isoforms of the D2 receptor are generated by differential splicing of the same gene and are referred to as short (D2S) and long (D2L) dopamine receptors. Here we have used wild-type mice, dopamine D2 receptor knock...

  2. Regulation of Beta-Cell Function and Mass by the Dual Leucine Zipper Kinase. (United States)

    Oetjen, Elke


    Diabetes mellitus is one of the most rapidly increasing diseases worldwide, whereby approximately 90-95% of patients suffer from type 2 diabetes. Considering its micro- and macrovascular complications like blindness and myocardial infarction, a reliable anti-diabetic treatment is needed. Maintaining the function and the mass of the insulin producing beta-cells despite elevated levels of beta-cell-toxic prediabetic signals represents a desirable mechanism of action of anti-diabetic drugs. The dual leucine zipper kinase (DLK) inhibits the action of two transcription factors within the beta-cell, thereby interfering with insulin secretion and production and the conservation of beta-cell mass. Furthermore, DLK action is regulated by prediabetic signals. Hence, the inhibition of this kinase might protect beta-cells against beta-cell-toxic prediabetic signals and prevent the development of diabetes. DLK might thus present a novel drug target for the treatment of diabetes mellitus type 2. PMID:27100796

  3. Regulation of carnitine palmitoyltransferase I (CPT-Iα) gene expression by the peroxisome proliferator activated receptor gamma coactivator (PGC-1) isoforms (United States)

    Sadana, Prabodh; Zhang, Yi; Song, Shulan; Cook, George A.; Elam, Marshall B.; Park, Edwards A.


    Summary The peroxisome proliferator-activated receptor gamma coactivators (PGC-1) have important roles in mitochondrial biogenesis and metabolic control in a variety of tissues. There are multiple isoforms of PGC-1 including PGC-1α and PGC-1β. Both the PGC-1α and β isoforms promote mitochondrial biogenesis and fatty acid oxidation, but only PGC-1α stimulates gluconeogenesis in the liver. Carnitine palmitoyltransferase I (CPT-I) is a key enzyme regulating mitochondrial fatty acid oxidation. In these studies, we determined that PGC-1β stimulated expression of the “liver” isoform of CPT-I (CPT-Iα) but that PGC-1β did not induce pyruvate dehydrogenase kinase 4 (PDK4) which is a regulator of pyruvate metabolism. The CPT-Iα gene is induced by thyroid hormone. We found that T3 increased the expression of PGC-1β and that PGC-1β enhanced the T3 induction of CPT-Iα. The thyroid hormone receptor interacts with PGC-1β in a ligand dependent manner. Unlike PGC-1α, the interaction of PGC-1β and the T3 receptor does not occur exclusively through the leucine-X-X-leucine-leucine motif in PGC-1β. We have found that PGC-1β is associated with the CPT-Iα gene in vivo. Overall, our results demonstrate that PGC-1β is a coactivator in the T3 induction of CPT-Iα and that PGC-1β has similarities and differences with the PGC-1α isoform. PMID:17239528

  4. [Transforming growth factor beta-1: structure, function, and regulation mechanisms in cancer]. (United States)

    Peralta-Zaragoza, O; Lagunas-Martínez, A; Madrid-Marina, V


    Transforming growth factor beta-1 (TGF-beta 1) is produced by several cell lineages such as lymphocytes, macrophages, and dendritic cells, and its expression serves in both autocrine and paracrine modes to control the differentiation, proliferation, and state of activation of these and other cells. In general, TGF-beta 1 has pleiotropic properties on the immune response during the development of infection diseases and cancer; however, the mechanisms of action and regulation of gene expression of this cytokine are poorly understood, in this review, the biological properties and the molecular mechanisms that regulate TGF-beta 1 gene expression are described, to understand the role of this cytokine in growth and cell differentiation. The knowledge of molecular mechanisms of gene expression of TGF-beta 1 may serve to develop new cancer therapies. The English version of this paper is available at: PMID:11547595

  5. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation.

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Vita

    Full Text Available BACKGROUND: The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-beta (TGF-beta in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-beta/Smad pathway in atherosclerosis and vascular cells. METHODOLOGY: In cultured vascular smooth muscle cells (VSMCs statins enhanced Smad pathway activation caused by TGF-beta. In addition, statins upregulated TGF-beta receptor type II (TRII, and increased TGF-beta synthesis and TGF-beta/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-beta induced apoptosis and increased TGF-beta-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-beta/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. CONCLUSIONS: Statins enhance TGF-beta/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-beta/Smad pathway is essential for statins-dependent actions in VSMCs.

  6. Integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Sansing, Hope A. [Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center-New Orleans, School of Dentistry, New Orleans, LA (United States); Sarkeshik, Ali; Yates, John R. [Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA (United States); Patel, Vyomesh; Gutkind, J. Silvio [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Yamada, Kenneth M. [Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Berrier, Allison L., E-mail: [Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center-New Orleans, School of Dentistry, New Orleans, LA (United States)


    Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomics screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.

  7. ADAM12-mediated focal adhesion formation is differently regulated by beta1 and beta3 integrins

    DEFF Research Database (Denmark)

    Thodeti, Charles Kumar; Frohlich, Camilla; Nielsen, Christian Kamp;


    ADAM12, adisintegrin and metalloprotease, has been demonstrated to be upregulated in human malignant tumors and to accelerate the malignant phenotype in a mouse model for breast cancer. ADAM12 is a substrate for beta1 integrins and may affect tumor and stromal cell behavior through its binding to...

  8. Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs

    Directory of Open Access Journals (Sweden)

    Jonathan L. S. Esguerra


    Full Text Available Increased blood glucose after a meal is countered by the subsequent increased release of the hypoglycemic hormone insulin from the pancreatic beta cells. The cascade of molecular events encompassing the initial sensing and transport of glucose into the beta cell, culminating with the exocytosis of the insulin large dense core granules (LDCVs is termed “stimulus-secretion coupling.” Impairment in any of the relevant processes leads to insufficient insulin release, which contributes to the development of type 2 diabetes (T2D. The fate of the beta cell, when exposed to environmental triggers of the disease, is determined by the possibility to adapt to the new situation by regulation of gene expression. As established factors of post-transcriptional regulation, microRNAs (miRNAs are well-recognized mediators of beta cell plasticity and adaptation. Here, we put focus on the importance of comprehending the transcriptional regulation of miRNAs, and how miRNAs are implicated in stimulus-secretion coupling, specifically those influencing the late stages of insulin secretion. We suggest that efficient beta cell adaptation requires an optimal balance between transcriptional regulation of miRNAs themselves, and miRNA-dependent gene regulation. The increased knowledge of the beta cell transcriptional network inclusive of non-coding RNAs such as miRNAs is essential in identifying novel targets for the treatment of T2D.

  9. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, Jozsef, E-mail: [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullar, Alexandra, E-mail: [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Bitsche, Mario, E-mail: [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Schartinger, Volker, E-mail: [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: [1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Sprinzl, Georg Mathias, E-mail: [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)


    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  10. Tumor necrosis factor beta and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression

    International Nuclear Information System (INIS)

    Intercellular adhesion molecule-1 (ICAM-1) functions as a ligand of leukocyte function-associated antigen-1 (LFA-1), as well as a receptor for human picorna virus, and its regulation thus affects various immunologic and inflammatory reactions. The weak, constitutive ICAM-1 expression on human keratinocytes (KC) can be up-regulated by cytokines such as interferon-gamma (IFN gamma) and tumor necrosis factor alpha (TNF alpha). In order to further examine the regulation of KC ICAM-1 expression, normal human KC or epidermoid carcinoma cells (KB) were incubated with different cytokines and/or exposed to ultraviolet (UV) radiation. Subsequently, ICAM-1 expression was monitored cytofluorometrically using a monoclonal anti-ICAM-1 antibody. Stimulation of cells with recombinant human (rh) interleukin (IL) 1 alpha, rhIL-4, rhIL-5, rhIL-6, rh granulocyte/macrophage colony-stimulating factor (GM-CSF), rh interferon alpha (rhIFN alpha), and rh transforming growth factor beta (TGF beta) did not increase ICAM-1 surface expression. In contrast, rhTNF beta significantly up-regulated ICAM-1 expression in a time- and dose-dependent manner. Moreover, the combination of rhTNF beta with rhIFN gamma increased the percentage of ICAM-1-positive KC synergistically. This stimulatory effect of rhTNF beta was further confirmed by the demonstration that rhTNF beta was capable of markedly enhancing ICAM-1 mRNA expression in KC. Finally, exposure of KC in vitro to sublethal doses of UV radiation (0-100 J/m2) prior to cytokine (rhIFN tau, rhTNF alpha, rhTNF beta) stimulation inhibited ICAM-1 up-regulation in a dose-dependent fashion. These studies identify TNF beta and UV light as potent regulators of KC ICAM-1 expression, which may influence both attachment and detachment of leukocytes and possibly viruses to KC

  11. The amyloid precursor protein (APP) intracellular domain regulates translation of p44, a short isoform of p53, through an IRES-dependent mechanism. (United States)

    Li, Mi; Pehar, Mariana; Liu, Yan; Bhattacharyya, Anita; Zhang, Su-Chun; O'Riordan, Kenneth J; Burger, Corinna; D'Adamio, Luciano; Puglielli, Luigi


    p44 is a short isoform of the tumor suppressor protein p53 that is regulated in an age-dependent manner. When overexpressed in the mouse, it causes a progeroid phenotype that includes premature cognitive decline, synaptic defects, and hyperphosphorylation of tau. The hyperphosphorylation of tau has recently been linked to the ability of p44 to regulate transcription of relevant tau kinases. Here, we report that the amyloid precursor protein (APP) intracellular domain (AICD), which results from the processing of the APP, regulates translation of p44 through a cap-independent mechanism that requires direct binding to the second internal ribosome entry site (IRES) of the p53 mRNA. We also report that AICD associates with nucleolin, an already known IRES-specific trans-acting factor that binds with p53 IRES elements and regulates translation of p53 isoforms. The potential biological impact of our findings was assessed in a mouse model of Alzheimer's disease. In conclusion, our study reveals a novel aspect of AICD and p53/p44 biology and provides a possible molecular link between APP, p44, and tau. PMID:26174856

  12. XBAT35, a Novel Arabidopsis RING E3 Ligase Exhibiting Dual Targeting of Its Splice Isoforms,Is Involved in Ethylene-Mediated Regulation of Apical Hook Curvature

    Institute of Scientific and Technical Information of China (English)

    Sofia D.Carvalho; Rita Saraiva; Teresa M.Maia; Isabel A.Abreu; Paula Duque


    The Arabidopsis XBAT35 is one of five structurally related ankyrin repeat-containing Really interesting New Gene (RING) E3 ligases involved in ubiquitin-mediated protein degradation,which plays key roles in a wide range of cellular processes.Here,we show that the XBAT35 gene undergoes alternative splicing,generating two transcripts that are constitutively expressed in all plant tissues.The two splice variants derive from an exon skipping event that excludes an in-frame segment from the XBAT35 precursor mRNA,giving rise to two protein isoforms that differ solely in the presence of a nuclear localization signal (NLS).Transient expression assays indicate that the isoform lacking the NLS localizes in the cytoplasm of plant cells,whereas the other is targeted to the nucleus,accumulating in nuclear speckles.Both isoforms are functional E3 ligases,as assessed by in vitro ubiquitination assays.Two insertion mutant alleles and RNA-interference (RNAi) silencing lines for XBAT35 display no evident phenotypes under normal growth conditions,but exhibit hypersensitivity to the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) during apical hook exaggeration in the dark,which is rescued by an inhibitor of ethylene perception.Independent expression of each XBAT35 splice variant in the mutant background indicates that the two isoforms may differentially contribute to apical hook formation but are both functional in this ethylene-mediated response.Thus,XBAT35 defines a novel player in ethylene signaling involved in negatively regulating apical hook curvature,with alternative splicing controlling dual targeting of this E3 ubiquitin ligase to the nuclear and cytoplasmic compartments.

  13. Suppressor of cytokine signalling (SOCS)-3 protects beta cells against IL-1beta-mediated toxicity through inhibition of multiple nuclear factor-kappaB-regulated proapoptotic pathways

    DEFF Research Database (Denmark)

    Karlsen, Allan Ertman; Heding, P E; Frobøse, H;


    The proinflammatory cytokine IL-1beta induces apoptosis in pancreatic beta cells via pathways dependent on nuclear factor-kappaB (NF-kappaB), mitogen-activated protein kinase, and protein kinase C. We recently showed suppressor of cytokine signalling (SOCS)-3 to be a natural negative feedback...... regulator of IL-1beta- and IFN-gamma-mediated signalling in rat islets and beta cell lines, preventing their deleterious effects. However, the mechanisms underlying SOCS-3 inhibition of IL-1beta signalling and prevention against apoptosis remain unknown....

  14. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. (United States)

    Worm, Jesper; Stenvang, Jan; Petri, Andreas; Frederiksen, Klaus Stensgaard; Obad, Susanna; Elmén, Joacim; Hedtjärn, Maj; Straarup, Ellen Marie; Hansen, Jens Bo; Kauppinen, Sakari


    microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155 and that the transcription factor c/ebp Beta is a direct target of miR-155. Interestingly, expression profiling of LPS-stimulated macrophages combined with overexpression and silencing of miR-155 in murine macrophages and human monocytic cells uncovered marked changes in the expression of granulocyte colony-stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression in mouse splenocytes. Finally, we report for the first time on miR-155 silencing in vivo in a mouse inflammation model, which underscores the potential of miR-155 antagonists in the development of novel therapeutics for treatment of chronic inflammatory diseases. PMID:19596814

  15. Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta

    DEFF Research Database (Denmark)

    Damsgaard, Christian; Storz, Jay F.; Hoffmann, Federico G.;


    When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2......-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from...... turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site...

  16. CKI isoforms α and ε regulate Star–PAP target messages by controlling Star–PAP poly(A) polymerase activity and phosphoinositide stimulation


    Laishram, Rakesh S.; Barlow, Christy A.; Richard A. Anderson


    Star–PAP is a non-canonical, nuclear poly(A) polymerase (PAP) that is regulated by the lipid signaling molecule phosphatidylinositol 4,5 bisphosphate (PI4,5P2), and is required for the expression of a select set of mRNAs. It was previously reported that a PI4,5P2 sensitive CKI isoform, CKIα associates with and phosphorylates Star–PAP in its catalytic domain. Here, we show that the oxidative stress-induced by tBHQ treatment stimulates the CKI mediated phosphorylation of Star–PAP, which is crit...

  17. Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glutamate treatment in the ex vivo rat retina

    International Nuclear Information System (INIS)

    Glutamate has been shown to induce neural progenitor cells in the adult vertebrate retina. However, protein dynamics during progenitor cell induction by glutamate are not fully understood. To identify specific proteins involved in the process, we employed two-dimensional electrophoresis-based proteomics on glutamate untreated and treated retinal ex vivo sections. Rat retinal tissues were incubated with 1 mM glutamate for 1 h, followed by incubation in glutamate-free media for a total of 24 h. Consistent with prior reports, it was found that mitotic cells appeared in the outer nuclear layer without any histological damage. Immunohistological evaluations and immunoblotting confirmed the emergence of neuronal progenitor cells in the mature retina treated with glutamate. Proteomic analysis revealed the up-regulation of dihydropyrimidinase-related protein 3 (DRP-3), DRP-2 and stress-induced-phosphoprotein 1 (STIP1) during neural progenitor cell induction by glutamate. Moreover, mRNA expression of DRP-3, especially, its long isoform, robustly increased in the treated retina compared to that in the untreated retina. These results may indicate that glutamate induces neural progenitor cells in the mature rat retina by up-regulating the proteins which mediate cell mitosis and neurite growth. - Highlights: • Glutamate induced neuronal progenitor cells in the mature rat retina. • Proteomic analysis revealed the up-regulation of DRP-3, DRP-2 and STIP1. • mRNA expression of DRP-3, especially, its long isoform, robustly increased

  18. Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glutamate treatment in the ex vivo rat retina

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, Kazuhiro, E-mail: [Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi (Japan); Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi (Japan); Kuramitsu, Yasuhiro; Byron, Baron; Kitagawa, Takao [Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi (Japan); Tokuda, Nobuko [Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Ube (Japan); Kobayashi, Daiki; Nagayama, Megumi; Araki, Norie [Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sonoda, Koh-Hei [Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi (Japan); Nakamura, Kazuyuki [Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi (Japan)


    Glutamate has been shown to induce neural progenitor cells in the adult vertebrate retina. However, protein dynamics during progenitor cell induction by glutamate are not fully understood. To identify specific proteins involved in the process, we employed two-dimensional electrophoresis-based proteomics on glutamate untreated and treated retinal ex vivo sections. Rat retinal tissues were incubated with 1 mM glutamate for 1 h, followed by incubation in glutamate-free media for a total of 24 h. Consistent with prior reports, it was found that mitotic cells appeared in the outer nuclear layer without any histological damage. Immunohistological evaluations and immunoblotting confirmed the emergence of neuronal progenitor cells in the mature retina treated with glutamate. Proteomic analysis revealed the up-regulation of dihydropyrimidinase-related protein 3 (DRP-3), DRP-2 and stress-induced-phosphoprotein 1 (STIP1) during neural progenitor cell induction by glutamate. Moreover, mRNA expression of DRP-3, especially, its long isoform, robustly increased in the treated retina compared to that in the untreated retina. These results may indicate that glutamate induces neural progenitor cells in the mature rat retina by up-regulating the proteins which mediate cell mitosis and neurite growth. - Highlights: • Glutamate induced neuronal progenitor cells in the mature rat retina. • Proteomic analysis revealed the up-regulation of DRP-3, DRP-2 and STIP1. • mRNA expression of DRP-3, especially, its long isoform, robustly increased.

  19. Global regulator SATB1 recruits beta-catenin and regulates T(H2 differentiation in Wnt-dependent manner.

    Directory of Open Access Journals (Sweden)

    Dimple Notani


    Full Text Available In vertebrates, the conserved Wnt signalling cascade promotes the stabilization and nuclear accumulation of beta-catenin, which then associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs to activate target genes. Wnt/beta -catenin signalling is essential for T cell development and differentiation. Here we show that special AT-rich binding protein 1 (SATB1, the T lineage-enriched chromatin organizer and global regulator, interacts with beta-catenin and recruits it to SATB1's genomic binding sites. Gene expression profiling revealed that the genes repressed by SATB1 are upregulated upon Wnt signalling. Competition between SATB1 and TCF affects the transcription of TCF-regulated genes upon beta-catenin signalling. GATA-3 is a T helper type 2 (T(H2 specific transcription factor that regulates production of T(H2 cytokines and functions as T(H2 lineage determinant. SATB1 positively regulated GATA-3 and siRNA-mediated knockdown of SATB1 downregulated GATA-3 expression in differentiating human CD4(+ T cells, suggesting that SATB1 influences T(H2 lineage commitment by reprogramming gene expression. In the presence of Dickkopf 1 (Dkk1, an inhibitor of Wnt signalling, GATA-3 is downregulated and the expression of signature T(H2 cytokines such as IL-4, IL-10, and IL-13 is reduced, indicating that Wnt signalling is essential for T(H2 differentiation. Knockdown of beta-catenin also produced similar results, confirming the role of Wnt/beta-catenin signalling in T(H2 differentiation. Furthermore, chromatin immunoprecipitation analysis revealed that SATB1 recruits beta-catenin and p300 acetyltransferase on GATA-3 promoter in differentiating T(H2 cells in a Wnt-dependent manner. SATB1 coordinates T(H2 lineage commitment by reprogramming gene expression. The SATB1:beta-catenin complex activates a number of SATB1 regulated genes, and hence this study has potential to find novel Wnt responsive genes. These results demonstrate that SATB1

  20. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States); Rebecchi, Mario, E-mail: [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States)


    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  1. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P


    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  2. ATP regulates sodium channel kinetics in pancreatic islet beta cells


    Zou, Na; Rupnik, Marjan


    Pancreatic beta cells act as glucose sensors, in which intracellular ATP ([ATP](i)) are altered with glucose concentration change. The characterization of voltage-gated sodium channels under different [ATP](i) remains unclear. Here, we demonstrated that increasing [ATP](i) within a certain range of concentrations (2-8 mM) significantly enhanced the voltage-gated sodium channel currents, compared with 2 mM cytosolic ATP. This enhancement was attenuated by even high intracellular ATP (12 mM). F...

  3. beta-carotene-induced changes in RARbeta isoform mRNA expression patterns do not influence lung adenoma multiplicity in the NNK-initiated A/J mouse model.


    Goralczyk, Regina; Bachmann, Heinrich; Wertz, Karin; Lenz, Barbara; Riss, Georges; Buchwald Hunziker, Petra; Greatrix, Brad; Aebischer, Claude-Pierre


    Dietary modulation of cancer & cancer biomarkers; Dietary modulation of carcinogenesis-related pathways. Dietary item or component studied: beta-carotene Outcome studied: lung adenoma; gene regulation of the putative tumor suppressor RARbeta in mouse lung. Study type: A/J-mice Tissue/biological material/sample size: lung; blood. Mode of exposure: dietaryImpact on outcome (including dose-response): Despite high lung beta-carotene concentrations of up to 6 micromol/kg, tumor multiplicity was n...

  4. C/EBP beta regulation of the tumor necrosis factor alpha gene.


    Pope, R. M.; Leutz, A; Ness, S A


    Activated macrophages contribute to chronic inflammation by the secretion of cytokines and proteinases. Tumor necrosis factor alpha (TNF alpha) is particularly important in this process because of its ability to regulate other inflammatory mediators in an autocrine and paracrine fashion. The mechanism(s) responsible for the cell type-specific regulation of TNF alpha is not known. We present data to show that the expression of TNF alpha is regulated by the transcription factor C/EBP beta (NF-I...

  5. p53 isoforms, Δ133p53 and p53β, are endogenous regulators of replicative cellular senescence


    Fujita, Kaori; Mondal, Abdul M.; Horikawa, Izumi; Nguyen, Giang H.; Kumamoto, Kensuke; Sohn, Jane J.; Bowman, Elise D.; Mathe, Ewy A.; Schetter, Aaron J.; Pine, Sharon R.; Ji, Helen; Vojtesek, Borivoj; Bourdon, Jean-Christophe; Lane, David P; Harris, Curtis C.


    The finite proliferative potential of normal human cells leads to replicative cellular senescence, which is a critical barrier to tumour progression in vivo1–3. We show that human p53 isoforms (Δ133p53 and p53β)4 constitute an endogenous regulatory mechanism for p53-mediated replicative senescence. Induced p53β and diminished Δ133p53 were associated with replicative senescence, but not oncogene-induced senescence, in normal human fibroblasts. The replicatively senescent fibroblasts also expre...

  6. Up-regulation of the proapoptotic caspase 2 splicing isoform by a candidate tumor suppressor, RBM5


    Fushimi, Kazuo; Ray, Payal; Kar, Amar; Wang, Lei; Sutherland, Leslie C.; Jane Y Wu


    Similar to many genes involved in programmed cell death (PCD), the caspase 2 (casp-2) gene generates both proapoptotic and antiapoptotic isoforms by alternative splicing. Using a yeast RNA–protein interaction assay, we identified RBM5 (also known as LUCA-15) as a protein that binds to casp-2 pre-mRNA. In both transfected cells and in vitro splicing assay, RBM5 enhances the formation of proapoptotic Casp-2L. RBM5 binds to a U/C-rich sequence immediately upstream of the previously identified In...

  7. Human CD72 splicing isoform responsible for resistance to systemic lupus erythematosus regulates serum immunoglobulin level and is localized in endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Hitomi Yuki


    Full Text Available Abstract Background CD72 is an inhibitory co-receptor expressed on B cells. We previously demonstrated significant association of the polymorphism of the CD72 gene with susceptibility to human systemic lupus erythematosus (SLE in individuals carrying a SLE-susceptible FCGR2B genotype (FCGR2B-232Thr/Thr. The human CD72 locus generates a splicing isoform that lacks exon 8 (CD72Δex8 as well as full-length CD72 (CD72fl, and the CD72 polymorphism regulates exon 8 skipping. Results Here we demonstrated that individuals carrying the disease-protective CD72 genotype exhibit significantly lower serum immunoglobulin levels than do individuals carrying other CD72 genotypes (P CD72 genotype, the protein level of CD72Δex8 was increased in individuals carrying the disease-protective CD72 genotype, suggesting a crucial role of CD72Δex8 in regulation of antibody production. By expressing these human CD72 isoforms in mouse cell lines, we further demonstrated that CD72Δex8 is accumulated in endoplasmic reticulum (ER and fails to regulate BCR signaling whereas human CD72fl is efficiently transported to the cell surface and inhibits signaling through the B cell antigen receptor (BCR, as is the case for mouse CD72. Conclusion Human CD72 polymorphism appears to regulate antibody production as well as susceptibility to SLE by regulating expression of ER-localizing CD72Δex8.

  8. Apolipoprotein E isoform-specific effects on lipoprotein receptor processing. (United States)

    Bachmeier, Corbin; Shackleton, Ben; Ojo, Joseph; Paris, Daniel; Mullan, Michael; Crawford, Fiona


    Recent findings indicate an isoform-specific role for apolipoprotein E (apoE) in the elimination of beta-amyloid (Aβ) from the brain. ApoE is closely associated with various lipoprotein receptors, which contribute to Aβ brain removal via metabolic clearance or transit across the blood–brain barrier (BBB). These receptors are subject to ectodomain shedding at the cell surface, which alters endocytic transport and mitigates Aβ elimination. To further understand the manner in which apoE influences Aβ brain clearance, these studies investigated the effect of apoE on lipoprotein receptor shedding. Consistent with prior reports, we observed an increased shedding of the low-density lipoprotein receptor (LDLR) and the LDLR-related protein 1 (LRP1) following Aβ exposure in human brain endothelial cells. When Aβ was co-treated with each apoE isoform, there was a reduction in Aβ-induced shedding with apoE2 and apoE3, while lipoprotein receptor shedding in the presence of apoE4 remained increased. Likewise, intracranial administration of Aβ to apoE-targeted replacement mice (expressing the human apoE isoforms) resulted in an isoform-dependent effect on lipoprotein receptor shedding in the brain (apoE4 > apoE3 > apoE2). Moreover, these results show a strong inverse correlation with our prior work in apoE transgenic mice in which apoE4 animals showed reduced Aβ clearance across the BBB compared to apoE3 animals. Based on these results, apoE4 appears less efficient than other apoE isoforms in regulating lipoprotein receptor shedding, which may explain the differential effects of these isoforms in removing Aβ from the brain. PMID:25015123

  9. Antioxidant diet and sex interact to regulate NOS isoform expression and glomerular mesangium proliferation in Zucker diabetic rat kidney. (United States)

    Slyvka, Yuriy; Malgor, Ramiro; Inman, Sharon R; Ding, Julia; Heh, Victor; Nowak, Felicia V


    Oxidative stress contributes substantially to the pathophysiology of diabetic nephropathy (DN). Consumption of an antioxidant-fortified (AO) diet from an early age prevents or delays later development of DN in the Zucker rat female with type 2 diabetes. We hypothesize this is due to effects on mesangial matrix and renal nitric oxide synthase (NOS) distribution and to sex-specific differences in NOS responses in the diabetic kidney. Total glomerular tuft area (GTA) and PAS-positive tuft area (PTA), endothelial (e), neuronal (n) and inducible (i) NOS were quantified in males and females on AO or regular (REG) diet at 6 and 20 weeks of age. eNOS was observed in glomeruli and tubules. nNOS predominantly localized to tubular epithelium in both cortex and medulla. iNOS was expressed in proximal and distal tubules and collecting ducts. Sex, diabetes duration and AO diet affected the distribution of the three isoforms. GTA and PTA increased with duration of hyperglycemia and showed a negative correlation with renal levels of all NOS isoforms. AO diet in both genders was associated with less PAS-positive staining and less mesangial expansion than the REG diet, an early increase in cortical iNOS in males, and sex-specific changes in cortical eNOS at 20 weeks. These effects of AO diet may contribute to sex-specific preservation of renal function in females. PMID:26797190

  10. Regulation of lactose catabolism in Streptococcus mutans: purification and regulatory properties of phospho-beta-galactosidase. (United States)

    Calmes, R; Brown, A T


    Phospho-beta-galactosidase (P-beta-gal), the enzyme which catalyzes the first step in the metabolism of intracellular lactose phosphate, occurred at high specific activity in the cytoplasm in 12 of 13 strains of streptococcus mutans grown on lactose but not other carbon sources. The P-beta-gal from S. mutans SL1 was purified 13-fold using diethylaminoethyl-cellulose ion exchange and agarose A--0.5 M molecular exclusion column chromatography. The molecualr weight of the enzyme was estimated to be 40,000, and its pH optimum was 6.5 in three different buffer systems. P-beta-gal activity was inhibited by Co2+, Zn2+, and Cu2+, but other cations, ethylenediaminetetraacetic acid, orthophosphate, and fluoride had no effect upon enzyme activity. The kinetic response of P-beta-gal to a model substrate, o-nitrophenyl-beta-D-galactopyranoside-6-phosphate, obeyed Michaelis-Menten kinetics, and the Km for this substrate was 0.19 mM. In addition to being under genetic control, P-beta-gal activity was regulated by a number of biologically active metabolites. Enzyme activity was inhibited in a sigmoidal fashion by phosphoenolpyruvate. The M 0.5 V value for phosphoenolpyruvate was 2.8 mM, and the Hill coefficient (n) was 3. In addition, P-beta-gal exhibited strong inhibition by ATP, galactose-6-phosphate, and glucose-6-phosphate. In contrast to inhibition of P-beta-gal activity by phosphoenolpyruvate, the inhibition exerted by ATP, galactose-6-phosphate, and glucose-6-phosphate obeyed classical Michaelis-Menten kinetics; the Ki values for these inhibitors were 0.55, 1.6, and 4.0 mM, respectively. PMID:33899

  11. Normotensive sodium loading in conscious dogs: Regulation of renin secretion during beta receptor blockade

    DEFF Research Database (Denmark)

    Bie, Peter; Mølstrøm, Simon; Wamberg, Søren


    Renin secretion is regulated in part by renal nerves operating through beta1-receptors of the renal juxtaglomerular cells. Slow sodium loading may decrease plasma renin (PRC) and cause natriuresis at constant mean arterial blood pressure (MAP) and glomerular filtration rate (GFR). We hypothesized...... infusion of NaCl (20 micromol/kg/min for 180 min, NaLoad) during regular or low-sodium diet (0.03 mmol/kg/d, LowNa) with and without metoprolol (2 mg/kg plus 0.9 mg/kg/h). Vasopressin V2 receptors were blocked by Otsuka compound OPC31260 to facilitate clearance measurements. Body fluid volume was...... augmented during metoprolol irrespective of diet. In conclusion, PRC depended on dietary sodium and beta1-adrenergic control as expected; however, the acute sodium-driven decrease in PRC at constant MAP and GFR was unaffected by beta1-receptor blockade demonstrating that renin may be regulated without...

  12. A role for the androgen metabolite, 5alpha-androstane-3beta,17beta-diol, in modulating oestrogen receptor beta-mediated regulation of hormonal stress reactivity. (United States)

    Handa, R J; Weiser, M J; Zuloaga, D G


    Activation of the hypothalamic-pituitary-adrenal (HPA) axis is a basic response of animals to environmental perturbations that threaten homeostasis. These responses are regulated by neurones in the paraventricular nucleus of the hypothalamus (PVN) that synthesise and secrete corticotrophin-releasing hormone (CRH). Other PVN neuropeptides, such as arginine vasopressin and oxytocin, can also modulate activity of CRH neurones in the PVN and enhance CRH secretagogue activity of the anterior pituitary gland. In rodents, sex differences in HPA reactivity are well established; females exhibit a more robust activation of the HPA axis after stress than do males. These sex differences primarily result from opposing actions of sex steroids, testosterone and oestrogen, on HPA function. Ostreogen enhances stress activated adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) secretion, whereas testosterone decreases the gain of the HPA axis and inhibits ACTH and CORT responses to stress. Data show that androgens can act directly on PVN neurones in the male rat through a novel pathway involving oestrogen receptor (ER)beta, whereas oestrogen acts predominantly through ERalpha. Thus, we examined the hypothesis that, in males, testosterone suppresses HPA function via an androgen metabolite that binds ERbeta. Clues to the neurobiological mechanisms underlying such a novel action can be gleaned from studies showing extensive colocalisation of ERbeta in oxytocin-containing cells of the PVN. Hence, in this review, we address the possibility that testosterone inhibits HPA reactivity by metabolising to 5alpha-androstane-3beta,17beta-diol, a compound that binds ERbeta and regulates oxytocin containing neurones of the PVN. These findings suggest a re-evaluation of studies examining pathways for androgen receptor signalling. PMID:19207807

  13. Urocortins and CRF type 2 receptor isoforms expression in the rat stomach are regulated by endotoxin: role in the modulation of delayed gastric emptying. (United States)

    Yuan, Pu-Qing; Wu, S Vincent; Taché, Yvette


    Peripheral activation of corticotropin-releasing factor receptor type 2 (CRF(2)) by urocortin 1, 2, or 3 (Ucns) exerts powerful effects on gastric function; however, little is known about their expression and regulation in the stomach. We investigated the expression of Ucns and CRF(2) isoforms by RT-PCR in the gastric corpus (GC) mucosa and submucosa plus muscle (S+M) or laser captured layers in naive rats, their regulations by lipopolysaccharide (LPS, 100 μg/kg ip) over 24 h, and the effect of the CRF(2) antagonist astresssin(2)-B (100 μg/kg sc) on LPS-induced delayed gastric emptying (GE) 2-h postinjection. Transcripts of Ucns and CRF(2b,) the most common wild-type CRF(2) isoform in the periphery, were expressed in all layers, including myenteric neurons. LPS increased Ucn mRNA levels significantly in both mucosa and S+M, reaching a maximal response at 6 h postinjection and returning to basal levels at 24 h except for Ucn 1 in S+M. By contrast, CRF(2b) mRNA level was significantly decreased in the mucosa and M+S with a nadir at 6 h. In addition, CRF(2a), reportedly only found in the brain, and the novel splice variant CRF(2a-3) were also detected in the GC, antrum, and pylorus. LPS reciprocally regulated these variants with a decrease of CRF(2a) and an increase of CRF(2a-3) in the GC 6 h postinjection. Astressin(2)-B exacerbated LPS-delayed GE (42-73%, P gastric motor alterations to endotoxemia. PMID:22517775

  14. Axial (HNF3beta) and retinoic acid receptors are regulators of the zebrafish sonic hedgehog promoter.


    Chang, B E; Blader, P.; Fischer, N.; Ingham, P W; Strähle, U.


    The signalling molecule Sonic hedgehog is involved in a multitude of distinct patterning processes during vertebrate embryogenesis. In the nascent body axis of the zebrafish embryo, sonic hedgehog is co-expressed with axial (HNF3beta in mammals), a transcription regulator of the winged helix family. We show here that misexpression of axial leads to ectopic activation of sonic hedgehog expression in the zebrafish, suggesting that axial is a regulator of sonic hedgehog transcription. The sonic ...

  15. Sox17 regulates the Wnt/beta-catenin signaling pathway in oligodendrocyte progenitor cells


    Chew, Li-Jin; Shen, Weiping; Ming, Xiaotian; Senatorov, Vladimir V.; Chen, Hui-Ling; Ying CHENG; Hong, Elim; Knoblach, Susan; Gallo, Vittorio


    The SRY-box (Sox) transcription factors regulate oligodendrocyte differentiation, but their signaling targets are largely unknown. We have identified a major signal transduction pathway regulated by Sox17 in the oligodendrocyte lineage. Microarray analysis in oligodendrocyte progenitor cells (OPCs) after Sox17 attenuation revealed upregulated genes associated with cell cycle control and activation of the Wnt/beta-catenin-pathway. Sox17 knockdown also increases the levels of cyclinD1, Axin2 an...

  16. The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. (United States)

    Borello, Ugo; Berarducci, Barbara; Murphy, Paula; Bajard, Lola; Buffa, Viviana; Piccolo, Stefano; Buckingham, Margaret; Cossu, Giulio


    Canonical Wnt/beta-catenin signaling regulates the activation of the myogenic determination gene Myf5 at the onset of myogenesis, but the underlying molecular mechanism is unknown. Here, we report that the Wnt signal is transduced in muscle progenitor cells by at least two Frizzled (Fz) receptors (Fz1 and/or Fz6), through the canonical beta-catenin pathway, in the epaxial domain of newly formed somites. We show that Myf5 activation is dramatically reduced by blocking the Wnt/beta-catenin pathway in somite progenitor cells, whereas expression of activated beta-catenin is sufficient to activate Myf5 in somites but not in the presomitic mesoderm. In addition, we identified Tcf/Lef sequences immediately 5' to the Myf5 early epaxial enhancer. These sites determine the correct spatiotemporal expression of Myf5 in the epaxial domain of the somite, mediating the synergistic action of the Wnt/beta-catenin and the Shh/Gli pathways. Taken together, these results demonstrate that Myf5 is a direct target of Wnt/beta-catenin, and that its full activation requires a cooperative interaction between the canonical Wnt and the Shh/Gli pathways in muscle progenitor cells. PMID:16936075

  17. IL-4 and TGF-beta 1 counterbalance one another while regulating mast cell homeostasis. (United States)

    Macey, Matthew R; Sturgill, Jamie L; Morales, Johanna K; Falanga, Yves T; Morales, Joshua; Norton, Sarah K; Yerram, Nitin; Shim, Hoon; Fernando, Josephine; Gifillan, Alasdair M; Gomez, Gregorio; Schwartz, Lawrence; Oskeritzian, Carole; Spiegel, Sarah; Conrad, Daniel; Ryan, John J


    Mast cell responses can be altered by cytokines, including those secreted by Th2 and regulatory T cells (Treg). Given the important role of mast cells in Th2-mediated inflammation and recent demonstrations of Treg-mast cell interactions, we examined the ability of IL-4 and TGF-beta1 to regulate mast cell homeostasis. Using in vitro and in vivo studies of mouse and human mast cells, we demonstrate that IL-4 suppresses TGF-beta1 receptor expression and signaling, and vice versa. In vitro studies demonstrated that IL-4 and TGF-beta1 had balancing effects on mast cell survival, migration, and FcepsilonRI expression, with each cytokine cancelling the effects of the other. However, in vivo analysis of peritoneal inflammation during Nippostrongylus brasiliensis infection in mice revealed a dominant suppressive function for TGF-beta1. These data support the existence of a cytokine network involving the Th2 cytokine IL-4 and the Treg cytokine TGF-beta1 that can regulate mast cell homeostasis. Dysregulation of this balance may impact allergic disease and be amenable to targeted therapy. PMID:20304823

  18. MicroRNAs as regulators of beta-cell function and dysfunction. (United States)

    Osmai, Mirwais; Osmai, Yama; Bang-Berthelsen, Claus H; Pallesen, Emil M H; Vestergaard, Anna L; Novotny, Guy W; Pociot, Flemming; Mandrup-Poulsen, Thomas


    In the last decade, there has been an explosion in both the number of and knowledge about miRNAs associated with both type 1 and type 2 diabetes. Even though we are presently in the initial stages of understanding how this novel class of posttranscriptional regulators are involved in diabetes, recent studies have demonstrated that miRNAs are important regulators of the islet transcriptome, controlling apoptosis, differentiation and proliferation, as well as regulating unique islet and beta-cell functions and pathways such as insulin expression, processing and secretion. Furthermore, a large number of miRNAs have been linked to diabetogenic processes induced by elevated levels of glucose, free fatty acids and inflammatory cytokines. Thus, miRNAs are novel therapeutic targets with the potential of protecting the beta-cell, and there is proof of principle that miRNA antagonists, so-called antagomirs, are effective in vivo for other disorders. miRNAs are exported out of cells in exosomes, raising the intriguing possibility of cell-to-cell communication between distant tissues via miRNAs and that miRNAs can be used as biomarkers of beta-cell function, mass and survival. The purpose of this review is to provide a status on how miRNAs control beta-cell function and viability in health and disease. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26418758

  19. The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells

    Directory of Open Access Journals (Sweden)

    Halsey Christina


    Full Text Available Abstract Background Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL where GATA1FL mutations are an essential driver for disease pathogenesis. Methods Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. Results We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. Conclusions These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL.

  20. The molecular, temporal and region-specific requirements of the beta isoform of Calcium/Calmodulin-dependent protein kinase type 2 (CAMK2B) in mouse locomotion. (United States)

    Kool, Martijn J; van de Bree, Jolet E; Bodde, Hanna E; Elgersma, Ype; van Woerden, Geeske M


    Genetic approaches using temporal and brain region-specific restricted gene deletions have provided a wealth of insight in the brain regions and temporal aspects underlying spatial and associative learning. However, for locomotion such extensive studies are still scarce. Previous studies demonstrated that Camk2b(-/-) mice, which lack the β isoform of Calcium/Calmodulin-dependent protein kinase 2 (CAMK2B), show very severe locomotion deficits. However, where these locomotion deficits originate is unknown. Here we made use of novel Camk2b mutants (Camk2b(f/f) and Camk2b(T287A)), to explore the molecular, temporal and brain region-specific requirements of CAMK2B for locomotion. At the molecular level we found that normal locomotion requires Calcium/Calmodulin mediated activation of CAMK2B, but CAMK2B autonomous activity is largely dispensable. At a systems level, we found that global deletion of Camk2b in the adult mouse causes only mild locomotion deficits, suggesting that the severe locomotion deficits of Camk2b(-/-) mice are largely of developmental origin. However, early onset deletion of Camk2b in cerebellum, striatum or forebrain did not recapitulate the locomotion deficits, suggesting that these deficits cannot be attributed to a single brain area. Taken together, these results provide the first insights into the molecular, temporal and region-specific role of CAMK2B in locomotion. PMID:27244486

  1. Cocaine- and amphetamine-regulated transcript (CART) protects beta cells against glucotoxicity and increases cell proliferation. (United States)

    Sathanoori, Ramasri; Olde, Björn; Erlinge, David; Göransson, Olga; Wierup, Nils


    Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide that promotes glucose-stimulated insulin secretion in beta cells via cAMP/PKA-dependent pathways. In addition, CART is a regulator of neuronal survival. In this study, we examined the effect of exogenous CART 55-102 on beta cell viability and dissected its signaling mechanisms. Evaluation of DNA fragmentation and chromatin condensation revealed that CART 55-102 reduced glucotoxicity-induced apoptosis in both INS-1 (832/13) cells and isolated rat islets. Glucotoxicity in INS-1 (832/13) cells also caused a 50% reduction of endogenous CART protein. We show that CART increased proliferation in INS-1 (832/13) cells, an effect that was blocked by PKA, PKB, and MEK1 inhibitors. In addition, CART induced phosphorylation of CREB, IRS, PKB, FoxO1, p44/42 MAPK, and p90RSK in INS-1 (832/13) cells and isolated rat islets, all key mediators of cell survival and proliferation. Thus, we demonstrate that CART 55-102 protects beta cells against glucotoxicity and promotes proliferation. Taken together our data point to the potential use of CART in therapeutic interventions targeted at enhancing functional beta cell mass and long-term insulin secretion in T2D. PMID:23250745

  2. Rapid transient isoform-specific neuregulin1 transcription in motor neurons is regulated by neurotrophic factors and axon-target interactions. (United States)

    Wang, Jiajing; Hmadcha, Abdelkrim; Zakarian, Vaagn; Song, Fei; Loeb, Jeffrey A


    The neuregulins (NRGs) are a family of alternatively spliced factors that play important roles in nervous system development and disease. In motor neurons, NRG1 expression is regulated by activity and neurotrophic factors, however, little is known about what controls isoform-specific transcription. Here we show that NRG1 expression in the chick embryo increases in motor neurons that have extended their axons and that limb bud ablation before motor axon outgrowth prevents this induction, suggesting a trophic role from the developing limb. Consistently, NRG1 induction after limb bud ablation can be rescued by adding back the neurotrophic factors BDNF and GDNF. Mechanistically, BDNF induces a rapid and transient increase in type I and type III NRG1 mRNAs that peak at 4h in rat embryonic ventral spinal cord cultures. Blocking MAPK or PI3K signaling or blocking transcription with Actinomycin D blocks BDNF induced NRG1 gene induction. BDNF had no effect on mRNA degradation, suggesting that transcriptional activation rather than message stability is important. Furthermore, BDNF activates a reporter construct that includes 700bp upstream of the type I NRG1 start site. Protein synthesis is also required for type I NRG1 mRNA transcription as cycloheximide produced a super-induction of type I, but not type III NRG1 mRNA, possibly through a mechanism involving sustained activation of MAPK and PI3K. These results reveal the existence of highly responsive, transient transcriptional regulatory mechanisms that differentially modulate NRG1 isoform expression as a function of extracellular and intracellular signaling cascades and mediated by neurotrophic factors and axon-target interactions. PMID:25913151

  3. Analysis of opa1 isoforms expression and apoptosis regulation in autosomal dominant optic atrophy (ADOA) patients with mutations in the opa1 gene. (United States)

    Formichi, Patrizia; Radi, Elena; Giorgi, Eleonora; Gallus, Gian Nicola; Brunetti, Jlenia; Battisti, Carla; Rufa, Alessandra; Dotti, Maria Teresa; Franceschini, Rossella; Bracci, Luisa; Federico, Antonio


    Autosomal dominant optic atrophy (ADOA) is a hereditary optic neuropathy characterized by bilateral symmetrical visual loss, decrease in retinal ganglion cells and a loss of myelin within the optic nerve. ADOA is associated to mutations in Optic atrophy 1 gene (OPA1), which encodes a mitochondrial protein involved in cristae remodeling, maintenance of mitochondrial membrane integrity, mitochondrial fusion and apoptosis regulation. We thus evaluated the rate of apoptosis and the expression levels of OPA1 isoforms in ADOA and control cells. Peripheral blood lymphocytes from eight patients with OPA1 mutation and age matched controls were cultivated both in basal conditions or with 2-deoxy-D-ribose, a reducing sugar that induces apoptosis through oxidative stress. Apoptosis was analyzed by flow cytometry, phosphatidylserine translocation, mitochondrial membrane depolarization and caspase 3 activation. We also analyzed the expression levels of OPA1 isoforms in ADOA and control cells cultured with and without 2-deoxy-D-ribose. We showed an increased percentage of apoptotic cells in ADOA patients compared to controls, both in basal culture conditions and after 2-deoxy-D-ribose treatment. This suggested a great susceptibility of ADOA cells to oxidative stress and a strong correlation between OPA1 protein dysfunctions and morphological-functional alterations to mitochondria. Moreover OPA1 protein expression was significantly decreased in lymphocytes from the ADOA patients after 2-deoxy-D-ribose treatment, implying a great sensitivity of the mutated protein to free radical damage. Concluding, we could confirm that oxidative stress-induced apoptosis may play a key role in the pathophysiological process bringing to retinal ganglion cells degeneration in ADOA. PMID:25796301

  4. NADPH-dependent glutamate dehydrogenase in Penicillium chrysogenum is involved in regulation of beta-lactam production

    DEFF Research Database (Denmark)

    Thykær, Jette; Kildegaard, Kanchana Rueksomtawin; Noorman, H.; Nielsen, Jens


    The interactions between the ammonium assimilatory pathways and beta-lactam production were investigated by disruption of the NADPH-dependent glutamate dehydrogenase gene (gdhA) in two industrial beta-lactam-producing strains of Penicillium chrysogenum. The strains used were an adipoyl-7-ADCA- an...... results indicate that the NADPH-dependent glutamate dehydrogenase may be directly or indirectly involved in the regulation of beta-lactann production in industrial strains of P. chrysogenum....

  5. Funktionelle und molekulare Charakterisierung von Amer3: ein neuer Regulator des Wnt/beta-catenin-Signalwegs


    Brauburger, Katharina


    Das Tumorsuppressorprotein APC (adenomatous polyposis coli) ist ein wichtiger negativer Regulator des Wnt/beta-catenin-Signalwegs und spielt im Darm eine entscheidende Rolle in der Proliferation und Differenzierung von Epithelzellen. Mutationen, die zu C-terminal verkürzten APC-Molekülen führen, sind die Hauptursache für die Adenom- und Karzinom-Entwicklung in Darmkrebspatienten. Mit Amer1 und Amer2 wurden zwei Plasmamembran-assoziierte APC-Interaktoren identifiziert, welche di...

  6. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters


    Toneff, Thomas; Funkelstein, Lydiane; Mosier, Charles; Abagyan, Armen; Ziegler, Michael; Hook, Vivian


    Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1–40) and Aβ(1–42) with peptide neurotransmitters (galanin, enkephalin, an...

  7. MicroRNAs as regulators of beta-cell function and dysfunction

    DEFF Research Database (Denmark)

    Osmai, Mirwais; Osmai, Yama; Bang-Berthelsen, Claus Heiner;


    In the last decade, there has been an explosion in both the number of and knowledge about miRNAs associated with both type 1 and type 2 diabetes. Even though we are presently in the initial stages of understanding how this novel class of posttranscriptional regulators are involved in diabetes, re...... review is to provide a status on how miRNAs control beta-cell function and viability in health and disease....

  8. Differential Expression and Regulation of Brain-Derived Neurotrophic Factor (BDNF) mRNA Isoforms in Brain Cells from Mecp2(308/y) Mouse Model. (United States)

    Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry


    Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene. PMID:25634725

  9. Isoforms of elongation factor eEF1A may be differently regulated at post-transcriptional level in breast cancer progression

    Directory of Open Access Journals (Sweden)

    Vislovukh A. A.


    Full Text Available Eukaryotic translation elongation factor 1A exists as two 98 % homologous isoforms: eEF1A1 (A1 and eEF1A2 (A2 which are tissue and development specific. Despite high homology in an open reading frame (ORF region, mRNAs coding for eEF1A1 and eEF1A2 are different in their untranslated regions (UTR, suggesting a possibility of their dissimilar post-transcriptional regulation. Aim. To analyze the existence of cis-acting motifs in the UTRs of EEF1A1/A2 mRNAs, to confirm the possibility of post-transcriptional control of eEF1A1 and eEF1A2 expression. Methods. An ensemble of bioinformatic methods was applied to predict regulatory motifs in the UTRs of EEF1A1/A2 mRNAs. Dual-luciferase reporter assay was employed to detect post-transcriptional regulation of eEF1A1/A2 expression. Results. Numerous regulatory motifs in the UTR of EEF1A1/A2 mRNAs were found bioinformatically. The experimental evidence was obtained for the existence of negative regulation of EEF1A1 and positive regulation of EEF1A2 mRNA in the model of breast cancer development. Conclusions. EEF1A1 and EEF1A2 mRNAs contain distinct motifs in the UTRs and are differently regulated in cancer suggesting the possibility of their control by different cellular signals.

  10. Transcription regulation of AAC3 gene encoding hypoxic isoform of ADP/ATP carrier in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Two repressoric regions are present in the AAC3 promoter, termed URS1 and URS2. URS1 region is responsible for a carbon source-dependent regulation and plays a role under both, aerobic and anaerobic conditions. By deletion analysis URS1 was localized into the -322/-244 region and was found that the regulation is likely exerted by the repression by non-fermentable or non-repressing fermentable carbon sources than by the activation by repressing carbon source. By computer analysis cis sequences for two potential transcription factors, Rap1 and ERA, were identified within URS1. Rap1 binding into its consensus sequence was proved, effort to find the protein binding to the ERA cis regulatory sequences has failed. By the means of mutational analysis we revealed that the regulation pathway mediating the carbon source-dependent regulation via URS1 differs according to the presence or absence of oxygen in the growth medium. Under aerobic conditions the carbon source-dependent repression is mediated by the ERA factor and the role of Rap1 is only marginal. On the contrary, under anaerobic conditions, the repression is mediated solely by Rap1. AAC1 gene product might be involved in the regulation of the AAC3 gene, the regulation pathway has not been characterized yet. (author)

  11. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Ohno-Matsui, Kyoko, E-mail: [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Morita, Ikuo [Section of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)


    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas

  12. p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. (United States)

    Marcel, V; Vijayakumar, V; Fernández-Cuesta, L; Hafsi, H; Sagne, C; Hautefeuille, A; Olivier, M; Hainaut, P


    The tumor suppressor p53 protein is activated by genotoxic stress and regulates genes involved in senescence, apoptosis and cell-cycle arrest. Nine p53 isoforms have been described that may modulate suppressive functions of the canonical p53 protein. Among them, Delta133p53 lacks the 132 proximal residues and has been shown to modulate p53-induced apoptosis and cell-cycle arrest. Delta133p53 is expressed from a specific mRNA, p53I4, driven by an alternative promoter P2 located between intron 1 and exon 5 of TP53 gene. Here, we report that the P2 promoter is regulated in a p53-dependent manner. Delta133p53 expression is increased in response to DNA damage by doxorubicin in p53 wild-type cell lines, but not in p53-mutated cells. Chromatin immunoprecipitation and luciferase assays using P2 promoter deletion constructs indicate that p53 binds functional response elements located within the P2 promoter. We also show that Delta133p53 does not bind specifically to p53 consensus DNA sequence in vitro, but competes with wild-type p53 in specific DNA-binding assays. Finally, we report that Delta133p53 counteracts p53-dependent growth suppression in clonogenic assays. These observations indicate that Delta133p53 is a novel target of p53 that may participate in a negative feedback loop controlling p53 function. PMID:20190805

  13. Adaptive regulation of taurine and beta-alanine uptake in a human kidney cell line from the proximal tubule

    DEFF Research Database (Denmark)

    Jessen, H; Jacobsen, Christian


    ), mimicking the effects of diacylglycerol, induced inhibition of both beta-alanine and taurine uptake. By contrast, the Ca2(+)-ionophore A23187, mimicking the effects of IP3, only stimulated the uptake of taurine but not the influx of beta-alanine. However, the effect of PMA down-regulation and A23187 up...

  14. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-κB in human aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-κB (NF-κB) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-κB signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-α (TNFα), a potent inducer of both Nox and NF-κB, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-κB pathway reduced significantly the TNFα-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-κB elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-κB significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-κB proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-κB is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-κB and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.

  15. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S;


    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen......-activated protein kinase (MAPK) family. Inhibition of JNK prevents IL-1beta-mediated beta cell destruction. In mouse embryo fibroblasts and 3DO T cells, overexpression of the gene encoding growth arrest and DNA-damage-inducible 45beta (Gadd45b) downregulates pro-apoptotic JNK signalling. The aim of this study...

  16. Gluco-incretins regulate beta-cell glucose competence by epigenetic silencing of Fxyd3 expression.

    Directory of Open Access Journals (Sweden)

    David Vallois

    Full Text Available Gluco-incretin hormones increase the glucose competence of pancreatic beta-cells by incompletely characterized mechanisms.We searched for genes that were differentially expressed in islets from control and Glp1r-/-; Gipr-/- (dKO mice, which show reduced glucose competence. Overexpression and knockdown studies; insulin secretion analysis; analysis of gene expression in islets from control and diabetic mice and humans as well as gene methylation and transcriptional analysis were performed.Fxyd3 was the most up-regulated gene in glucose incompetent islets from dKO mice. When overexpressed in beta-cells Fxyd3 reduced glucose-induced insulin secretion by acting downstream of plasma membrane depolarization and Ca++ influx. Fxyd3 expression was not acutely regulated by cAMP raising agents in either control or dKO adult islets. Instead, expression of Fxyd3 was controlled by methylation of CpGs present in its proximal promoter region. Increased promoter methylation reduced Fxyd3 transcription as assessed by lower abundance of H3K4me3 at the transcriptional start site and in transcription reporter assays. This epigenetic imprinting was initiated perinatally and fully established in adult islets. Glucose incompetent islets from diabetic mice and humans showed increased expression of Fxyd3 and reduced promoter methylation.Because gluco-incretin secretion depends on feeding the epigenetic regulation of Fxyd3 expression may link nutrition in early life to establishment of adult beta-cell glucose competence; this epigenetic control is, however, lost in diabetes possibly as a result of gluco-incretin resistance and/or de-differentiation of beta-cells that are associated with the development of type 2 diabetes.

  17. Differentiation-induced cleavage of Cutl1/CDP generates a novel dominant-negative isoform that regulates mammary gene expression. (United States)

    Maitra, Urmila; Seo, Jin; Lozano, Mary M; Dudley, Jaquelin P


    Cutl1/CCAAT displacement protein (CDP) is a transcriptional repressor of mouse mammary tumor virus (MMTV), a betaretrovirus that is a paradigm for mammary-specific gene regulation. Virgin mammary glands have high levels of full-length CDP (200 kDa) that binds to negative regulatory elements (NREs) to repress MMTV transcription. During late pregnancy, full-length CDP levels decline, and a 150-kDa form of CDP (CDP150) appears concomitantly with a decline in DNA-binding activity for the MMTV NREs and an increase in viral transcripts. Developmental regulation of CDP was recapitulated in the normal mammary epithelial line, SCp2. Western blotting of tissue and SCp2 nuclear extracts confirmed that CDP150 lacks the C terminus. Transfection of tagged full-length and mutant cDNAs into SCp2 cells and use of a cysteine protease inhibitor demonstrated that CDP is proteolytically processed within the homeodomain to remove the C terminus during differentiation. Mixing of virgin and lactating mammary extracts or transfection of mutant CDP cDNAs missing the homeodomain into cells containing full-length CDP also abrogated NRE binding. Loss of DNA binding correlated with increased expression of MMTV and other mammary-specific genes, indicating that CDP150 is a developmentally induced dominant-negative protein. Thus, a novel posttranslational process controls Cutl1/CDP activity and gene expression in the mammary gland. PMID:17015474

  18. The Short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction


    Chen, Lanfen; Chen, Zhangguo; Baker, Kristi; Halvorsen, E lizabeth M.; da Cunha, Andre Pires; Flak, Magdalena B.; Gerber, Georg; Huang, Yu-Hwa; Hosomi, Shuhei; Arthur, J anelle C.; Dery, Ken J.; Nagaishi, Takashi; Beauchemin, Nicole; Kathryn V Holmes; Joshua W K Ho


    Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in ti...

  19. Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

    Directory of Open Access Journals (Sweden)

    Dan-Qing Liu

    Full Text Available BACKGROUND: Signal regulate protein alpha (SIRPalpha is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2 integrin-mediated monocyte adhesion, transendothelial migration (TEM and phagocytosis. METHODOLOGY/PRINCIPAL FINDINGS: THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs resulted in a decrease of SIRPalpha expression but an increase of beta(2 integrin cell surface expression and beta(2 integrin-mediated adhesion to tumor necrosis factor-alpha (TNFalpha-stimulated human microvascular endothelial cell (HMEC-1 monolayers. In contrast, SIRPalpha overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1-triggered cell surface expression of beta(2 integrins, in particular CD11b/CD18. SIRPalpha overexpression reduced beta(2 integrin-mediated firm adhesion of THP-1 cells to either TNFalpha-stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1. SIRPalpha overexpression also reduced MCP-1-initiated migration of THP-1 cells across TNFalpha-stimulated HMEC-1 monolayers. Furthermore, beta(2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPalpha overexpression. CONCLUSIONS/SIGNIFICANCE: SIRPalpha negatively regulates beta(2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.

  20. CCAAT/enhancer binding protein β (C/EBPβ isoforms as transcriptional regulators of the pro-invasive CDH3/P-cadherin gene in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    André Albergaria

    Full Text Available P-cadherin is a cell-cell adhesion molecule codified by the CDH3 gene, which expression is highly associated with undifferentiated cells in normal adult epithelial tissues, as well as with poorly differentiated carcinomas. In breast cancer, P-cadherin is frequently overexpressed in high-grade tumours and is a well-established indicator of aggressive tumour behaviour and poor patient prognosis. However, till now, the mechanisms controlling CDH3 gene activation have been poorly explored. Since we recently described the existence of several CCAAT/Enhancer Binding Protein β (C/EBPβ transcription factor binding sites at the CDH3 promoter, the aim of this study was to assess if the distinct C/EBPβ isoforms were directly involved in the transcriptional activation of the CDH3 gene in breast cancer cells. DNA-protein interactions, mutation analysis and luciferase reporter assay studies have been performed. We demonstrated that C/EBPβ is co-expressed with P-cadherin in breast cancer cells and all the three isoforms function as transcriptional regulators of the CDH3 gene, directly interacting with specific regions of its promoter. Interestingly, this transcriptional activation was only reflected at the P-cadherin protein level concerning the LIP isoform. Taken together, our data show that CDH3 is a newly defined transcriptional target gene of C/EBPβ isoforms in breast cancer, and we also identified the binding sites that are relevant for this activation.

  1. Morphometric evaluation of nitric oxide synthase isoforms and their cytokine regulators predict pulmonary dysfunction and survival in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    E.R. Parra


    Full Text Available Because histopathological changes in the lungs of patients with systemic sclerosis (SSc are consistent with alveolar and vessel cell damage, we presume that this interaction can be characterized by analyzing the expression of proteins regulating nitric oxide (NO and plasminogen activator inhibitor-1 (PAI-1 synthesis. To validate the importance of alveolar-vascular interactions and to explore the quantitative relationship between these factors and other clinical data, we studied these markers in 23 cases of SSc nonspecific interstitial pneumonia (SSc-NSIP. We used immunohistochemistry and morphometry to evaluate the amount of cells in alveolar septa and vessels staining for NO synthase (NOS and PAI-1, and the outcomes of our study were cellular and fibrotic NSIP, pulmonary function tests, and survival time until death. General linear model analysis demonstrated that staining for septal inducible NOS (iNOS related significantly to staining of septal cells for interleukin (IL-4 and to septal IL-13. In univariate analysis, higher levels of septal and vascular cells staining for iNOS were associated with a smaller percentage of septal and vascular cells expressing fibroblast growth factor and myofibroblast proliferation, respectively. Multivariate Cox model analysis demonstrated that, after controlling for SSc-NSIP histological patterns, just three variables were significantly associated with survival time: septal iNOS (P=0.04, septal IL-13 (P=0.03, and septal basic fibroblast growth factor (bFGF; P=0.02. Augmented NOS, IL-13, and bFGF in SSc-NSIP histological patterns suggest a possible functional role for iNOS in SSc. In addition, the extent of iNOS, PAI-1, and IL-4 staining in alveolar septa and vessels provides a possible independent diagnostic measure for the degree of pulmonary dysfunction and fibrosis with an impact on the survival of patients with SSc.

  2. Tumour-stromal interactions: Transforming growth factor-beta isoforms and hepatocyte growth factor/scatter factor in mammary gland ductal morphogenesis

    International Nuclear Information System (INIS)

    The mammary gland undergoes morphogenesis through the entire reproductive life of mammals. In mice, ductal outgrowth from the nipple across the fat pad results in an intricate, well spaced ductal tree that further ramifies and develops alveolar structures during pregnancy. Ductal morphogenesis is regulated by the concerted action of circulating steroid and polypeptide hormones, and local epithelial-mesenchymal inductive signals. Transforming growth factor (TGF)-β1-3 and hepatocyte growth factor (HGF)/scatter factor (SF) are important components of this latter signaling pathway. TGF-β1 and TGF-β3 have roles in both promotion and inhibition of branching morphogenesis that are dependent on concentration and context. HGF/SF promotes ductal outgrowth and tubule formation in the mammary gland. These data suggest that these two growth factors have complementary roles in promoting mammary ductal morphogenesis and in maintaining ductal spacing. In addition, TGF-β3 triggers apoptosis in the alveolar epithelia, which is a necessary component of mammary gland involution and return of the ductal structure to a virgin-like state after lactation

  3. A novel transcriptional enhancer is involved in the prolactin- and extracellular matrix-dependent regulation of beta-casein gene expression.


    Schmidhauser, C; Casperson, G F; Myers, C A; Sanzo, K T; Bolten, S; Bissell, M.J.


    Lactogenic hormones and extracellular matrix (ECM) act synergistically to regulate beta-casein expression in culture. We have developed a functional subpopulation of the mouse mammary epithelial cell strain COMMA-1D (designated CID 9), which expresses high level of beta-casein, forms alveolar-like structures when plated onto the EHS tumor-derived matrix, and secretes beta-casein unidirectionally into a lumen. We have further shown that ECM- and prolactin-dependent regulations of beta-casein o...

  4. Endoplasmic Reticulum-resident Heat Shock Protein 90 (HSP90) Isoform Glucose-regulated Protein 94 (GRP94) Regulates Cell Polarity and Cancer Cell Migration by Affecting Intracellular Transport. (United States)

    Ghosh, Suman; Shinogle, Heather E; Galeva, Nadezhda A; Dobrowsky, Rick T; Blagg, Brian S J


    Heat shock protein 90 (HSP90) is a molecular chaperone that is up-regulated in cancer and is required for the folding of numerous signaling proteins. Consequently, HSP90 represents an ideal target for the development of new anti-cancer agents. The human HSP90 isoform, glucose-regulated protein 94 (GRP94), resides in the endoplasmic reticulum and regulates secretory pathways, integrins, and Toll-like receptors, which contribute to regulating immunity and metastasis. However, the cellular function of GRP94 remains underinvestigated. We report that GRP94 knockdown cells are defective in intracellular transport and, consequently, negatively impact the trafficking of F-actin toward the cellular cortex, integrin α2 and integrin αL toward the cell membrane and filopodia, and secretory vesicles containing the HSP90α-AHA1-survivin complex toward the leading edge. As a result, GRP94 knockdown cells form a multipolar spindle instead of bipolar morphology and consequently manifest a defect in cell migration and adhesion. PMID:26872972

  5. A Role for the Androgen Metabolite, 5alpha androstane, 3beta, 17beta Diol (3b-DIol in the regulation of the hypothalamo-pituitary-adrenal axis.

    Directory of Open Access Journals (Sweden)

    Robert James Handa


    Full Text Available Activation of the hypothalamo-pituitary-adrenal (HPA axis is a basic reaction of animals to environmental perturbations that threaten homeostasis. These responses are ultimately regulated by neurons residing within the paraventricular nucleus of the hypothalamus (PVN. Within the PVN, corticotropin-releasing hormone (CRH, vasopressin (AVP and oxytocin (OT expressing neurons are critical as they can regulate both neuroendocrine and autonomic responses. Estradiol (E2 and testosterone (T are well known reproductive hormones, however, they have also been shown to modulate stress reactivity. In rodent models, evidence shows that under some conditions E2 enhances stress activated ACTH and corticosterone secretion. In contrast, T decreases the gain of the HPA axis. The modulatory role of testosterone was originally thought to be via 5 alpha reduction to the potent androgen, dihydrotestosterone, whereas E2 effects were thought to be mediated by both estrogen receptors alpha (ERα and beta (ERβ. However, DHT has been shown to be metabolized to the ERβ agonist, 5alpha- androstane 3beta,17beta diol (3b-Diol. The actions of 3β-Diol on the HPA axis are mediated by ERbeta which inhibits the PVN response to stressors. In gonadectomized rats, ERbeta agonists reduce CORT and ACTH responses to restraint stress, an effect that is also present in wild-type but not ERbeta knockout mice. The neurobiological mechanisms underlying the actions of ERbeta to alter HPA reactivity are not currently known. CRH, AVP and OT have all been shown to be regulated by estradiol and recent studies indicate an important role of ERbeta in these regulatory processes. Moreover, activation of the CRH and AVP promoters have been shown by 3β-Diol binding to ERbeta and this is thought to be through alternate pathways of gene regulation. Based on available data, a novel and important role for 3beta Diol in the regulation of the HPA axis is suggested.

  6. Modulation of the Wnt/beta-catenin pathway in human oligodendroglioma cells by Sox17 regulates proliferation and differentiation


    Chen, Hui-Ling; Chew, Li-Jin; Packer, Roger J.; Gallo, Vittorio


    Oligodendrogliomas originate from oligodendrocyte progenitor (OPs), whose development is regulated by the Sonic hedgehog and Wnt/beta-catenin pathways. We investigated the contribution of these pathways in the proliferation and differentiation of human oligodendroglioma cells (HOG). Inhibition of Hedgehog signaling with cyclopamine decreased cell survival and increased phosphorylated beta-catenin without altering myelin protein levels. Conversely, treatment of HOG with the Wnt antagonist secr...

  7. Iontophoretic {beta}-adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo.


    Shamsuddin, A. K. M.; Reddy, M. M.; Quinton, P. M.


    With the advent of numerous candidate drugs for therapy in cystic fibrosis (CF), there is an urgent need for easily interpretable assays for testing their therapeutic value. Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) abolished beta-adrenergic but not cholinergic sweating in CF. Therefore, the beta-adrenergic response of the sweat gland may serve both as an in vivo diagnostic tool for CF and as a quantitative assay for testing the efficacy of new drugs designed t...

  8. Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass

    Directory of Open Access Journals (Sweden)

    Vivas Yurena


    Full Text Available Abstract Background The progression towards type 2 diabetes depends on the allostatic response of pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physiological and pathophysiological states associated to insulin resistance such as pregnancy, obesity or ageing, but the mechanisms mediating beta cell mass expansion in these scenarios are not well defined. We have recently shown that ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse failed to expand its beta cell mass. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Thus, comparison of these models islets particularly at early ages could provide some new insights on early PPARγ dependent transcriptional responses involved in the process of beta cell mass expansion Results Here we have investigated PPARγ dependent transcriptional responses occurring during the early stages of beta cell adaptation to insulin resistance in wild type, ob/ob, PPARγ2 KO and POKO mice. We have identified genes known to regulate both the rate of proliferation and the survival signals of beta cells. Moreover we have also identified new pathways induced in ob/ob islets that remained unchanged in POKO islets, suggesting an important role for PPARγ in maintenance/activation of mechanisms essential for the continued function of the beta cell. Conclusions Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with the activation of an immune response that fails to occur in POKO islets. We have also indentified other PPARγ dependent differentially regulated pathways including cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation.

  9. A Poised Chromatin Platform for TGF-[beta] Access to Master Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Qiaoran; Wang, Zhanxin; Zaromytidou, Alexia-Ileana; Zhang, Xiang H.-F.; Chow-Tsang, Lai-Fong; Liu, Jing X.; Kim, Hyesoo; Barlas, Afsar; Manova-Todorova, Katia; Kaartinen, Vesa; Studer, Lorenz; Mark, Willie; Patel, Dinshaw J.; Massagué, Joan (Michigan); (MSKCC)


    Specific chromatin marks keep master regulators of differentiation silent yet poised for activation by extracellular signals. We report that nodal TGF-{beta} signals use the poised histone mark H3K9me3 to trigger differentiation of mammalian embryonic stem cells. Nodal receptors induce the formation of companion Smad4-Smad2/3 and TRIM33-Smad2/3 complexes. The PHD-Bromo cassette of TRIM33 facilitates binding of TRIM33-Smad2/3 to H3K9me3 and H3K18ac on the promoters of mesendoderm regulators Gsc and Mixl1. The crystal structure of this cassette, bound to histone H3 peptides, illustrates that PHD recognizes K9me3, and Bromo binds an adjacent K18ac. The interaction between TRIM33-Smad2/3 and H3K9me3 displaces the chromatin-compacting factor HP1, making nodal response elements accessible to Smad4-Smad2/3 for Pol II recruitment. In turn, Smad4 increases K18 acetylation to augment TRIM33-Smad2/3 binding. Thus, nodal effectors use the H3K9me3 mark as a platform to switch master regulators of stem cell differentiation from the poised to the active state.

  10. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Jungsug; Song, Taeyun [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Jie-Young; Yun, Yeon-Sook [Laboratory of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Choi, Il-Whan [Department of Microbiology, Center for Viral Disease Research, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Jeong, Yongsu [Department of Genetic Engineering, and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735 (Korea, Republic of); Oh, Sangtaek, E-mail: [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)


    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.

  11. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells (United States)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)


    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  12. A novel family of katanin-like 2 protein isoforms (KATNAL2), interacting with nucleotide-binding proteins Nubp1 and Nubp2, are key regulators of different MT-based processes in mammalian cells. (United States)

    Ververis, Antonis; Christodoulou, Andri; Christoforou, Maria; Kamilari, Christina; Lederer, Carsten W; Santama, Niovi


    Katanins are microtubule (MT)-severing AAA proteins with high phylogenetic conservation throughout the eukaryotes. They have been functionally implicated in processes requiring MT remodeling, such as spindle assembly in mitosis and meiosis, assembly/disassembly of flagella and cilia and neuronal morphogenesis. Here, we uncover a novel family of katanin-like 2 proteins (KATNAL2) in mouse, consisting of five alternatively spliced isoforms encoded by the Katnal2 genomic locus. We further demonstrate that in vivo these isoforms are able to interact with themselves, with each other and moreover directly and independently with MRP/MinD-type P-loop NTPases Nubp1 and Nubp2, which are integral components of centrioles, negative regulators of ciliogenesis and implicated in centriole duplication in mammalian cells. We find KATNAL2 localized on interphase MTs, centrioles, mitotic spindle, midbody and the axoneme and basal body of sensory cilia in cultured murine cells. shRNAi of Katnal2 results in inefficient cytokinesis and severe phenotypes of enlarged cells and nuclei, increased numbers of centrioles and the manifestation of aberrant multipolar mitotic spindles, mitotic defects, chromosome bridges, multinuclearity, increased MT acetylation and an altered cell cycle pattern. Silencing or stable overexpression of KATNAL2 isoforms drastically reduces ciliogenesis. In conclusion, KATNAL2s are multitasking enzymes involved in the same cell type in critically important processes affecting cytokinesis, MT dynamics, and ciliogenesis and are also implicated in cell cycle progression. PMID:26153462

  13. Domain organization, catalysis and regulation of eukaryotic cystathionine beta-synthases.

    Directory of Open Access Journals (Sweden)

    Tomas Majtan

    Full Text Available Cystathionine beta-synthase (CBS is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS, fruit fly (dCBS and yeast (yCBS enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme's catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet; however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme's catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.

  14. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Young-Whan [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Oh, Sangtaek [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of); Chung, Young-Hwa, E-mail: [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)


    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1

  15. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F. [and others


    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  16. Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase {beta} in long patch base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanova, Maria; Khodyreva, Svetlana [Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk (Russian Federation); Lavrik, Olga, E-mail: [Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk (Russian Federation)


    Poly(ADP-ribose)polymerase 1 (PARP1), functioning as DNA nick-sensor, interacts with base excision repair (BER) DNA intermediates containing single-strand breaks. When bound to DNA breaks, PARP1 catalyzes synthesis of poly(ADP-ribose) covalently attached to itself and some nuclear proteins. Autopoly(ADP-ribosyl)ation of PARP1 facilitates its dissociation from DNA breaks and is considered as a factor regulating DNA repair. In the study, using system reconstituted from purified BER proteins, bovine testis nuclear extract and model BER DNA intermediates, we examined the influence of PARP1 and its autopoly(ADP-ribosyl)ation on DNA polymerase {beta} (Pol {beta})-mediated long patch (LP) BER DNA synthesis that is accomplished through a cooperation between Pol {beta} and apurinic/apyrimidinic endonuclease1 (APE1) or flap endonuclease 1 (FEN1) and gap-filling activity of Pol {beta}. PARP1 upon interaction with nicked LP BER DNA intermediated, formed after gap-filling, was shown to suppress the subsequent steps in LP pathway. PARP1 interferes with APE1-dependent stimulation of DNA synthesis by Pol {beta} via strand-displacement mechanism. PARP1 also represses Pol {beta}/FEN1-mediated LP BER DNA synthesis via a 'gap translation' mechanism inhibiting FEN1 activity on the nicked DNA intermediate. Poly(ADP-ribosyl)ation of PARP1 abolishes its inhibitory influence on LP BER DNA synthesis catalyzed by Pol {beta} both via APE1-mediated strand-displacement and FEN1-mediated 'gap translation' mechanism. Thus PARP1 may act as a negative regulator of Pol {beta} activity in LP BER pathway and poly(ADP-ribosyl)ation of PARP1 seems to play a critical role in enablement of Pol {beta}-mediated DNA synthesis in this process. In contrast, interaction of PARP1 with one nucleotide gapped DNA mimicking the intermediate of short patch (SP) BER slightly inhibits the gap-filling activity of Pol {beta} and the overall efficiency of SP BER is practically unaffected by PARP1. Thus

  17. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Sergey V., E-mail: [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States); Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I. [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States)


    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  18. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations

    DEFF Research Database (Denmark)

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena;


    Plasma membrane Ca2+-ATPase (PMCA) by extruding Ca2+ outside the cell, actively participates in the regulation of intracellular Ca2+ concentration. Acting as Ca2+/H+ counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four...... isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca2+ overload evoked by 59 m......+-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient...

  19. Transforming growth factor beta-regulated gene expression in a mouse mammary gland epithelial cell line

    International Nuclear Information System (INIS)

    Transforming growth factor beta (TGF-β) plays an essential role in a wide array of cellular processes. The most well studied TGF-β response in normal epithelial cells is growth inhibition. In some cell types, TGF-β induces an epithelial to mesenchymal transition (EMT). NMuMG is a nontransformed mouse mammary gland epithelial cell line that exhibits both a growth inhibitory response and an EMT response to TGF-β, rendering NMuMG cells a good model system for studying these TGF-β effects. A National Institutes of Aging mouse 15,000 cDNA microarray was used to profile the gene expression of NMuMG cells treated with TGF-β1 for 1, 6, or 24 hours. Data analyses were performed using GenePixPro and GeneSpring software. Selected microarray results were verified by northern analyses. Of the 15,000 genes examined by microarray, 939 were upregulated or downregulated by TGF-β. This represents approximately 10% of the genes examined, minus redundancy. Seven genes previously not known to be regulated by TGF-β at the transcriptional level (Akt and RhoB) or not at all (IQGAP1, mCalpain, actinin α3, Ikki, PP2A-PR53), were identified and their regulation by TGF-β verified by northern blotting. Cell cycle pathway examination demonstrated downregulation of cyclin D2, c-myc, Id2, p107, E2F5, cyclin A, cyclin B, and cyclin H. Examination of cell adhesion-related genes revealed upregulation of c-Jun, α-actinin, actin, myosin light chain, p120cas catenin (Catns), α-integrin, integrin β5, fibronectin, IQGAP1, and mCalpain. Using a cDNA microarray to examine TGF-β-regulated gene expression in NMuMG cells, we have shown regulation of multiple genes that play important roles in cell cycle control and EMT. In addition, we have identified several novel TGF-β-regulated genes that may mediate previously unknown TGF-β functions

  20. ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling

    DEFF Research Database (Denmark)

    Le Pabic, Hélène; Bonnier, Dominique; Wewer, Ulla M;


    "A disintegrin and metalloproteinases" (ADAMs) form a family of cell-surface glycoproteins with potential protease and cell-adhesion activities. We have investigated ADAM expression in human liver cancers and their regulation by several cytokines involved in liver injury. Using degenerative RT...... carcinomas (up to 3- and 6-fold, respectively) and liver metastases from colonic carcinomas (up to 40- and 60-fold, respectively). The up-regulation of both ADAM9 and ADAM12 was correlated with an increase in matrix metalloproteinase 2 expression and activity. In conclusion, in liver cancers ADAM9 and ADAM12...... was associated with the transition from quiescent to activated state of rat HSCs and markedly increased in human livers with cirrhosis. ADAM12 but not ADAM9 expression was up-regulated by transforming growth factor beta (TGF-beta) in human activated HSCs. The PI3K inhibitor LY294002 and the mitogen...

  1. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A


    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  2. Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of {beta}-arrestin using spot-immobilized peptide arrays


    Baillie, G. S.; Adams, D. R.; Bhari, N.; Houslay, T.M.; Vadrevu, S.; Meng, D.; Li, X.; Dunlop, A.; Milligan, G.; Bolger, G.B.; Klussmann, E; Houslay, M.D.


    Beta2-ARs (beta2-adrenoceptors) become desensitized rapidly upon recruitment of cytosolic beta-arrestin. PDE4D5 (family 4 cAMP-specific phosphodiesterase, subfamily D, isoform 5) can be recruited in complex with beta-arrestin, whereupon it regulates PKA (cAMP-dependent protein kinase) phosphorylation of the beta2-AR. In the present study, we have used novel technology, employing a library of overlapping peptides (25-mers) immobilized on cellulose membranes that scan the entire sequence of bet...

  3. PGC-1{beta} regulates mouse carnitine-acylcarnitine translocase through estrogen-related receptor {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Gacias, Mar; Perez-Marti, Albert; Pujol-Vidal, Magdalena; Marrero, Pedro F. [Department of Biochemistry and Molecular Biology, School of Pharmacy and the Institute of Biomedicine of the University of Barcelona (IBUB) (Spain); Haro, Diego, E-mail: [Department of Biochemistry and Molecular Biology, School of Pharmacy and the Institute of Biomedicine of the University of Barcelona (IBUB) (Spain); Relat, Joana [Department of Biochemistry and Molecular Biology, School of Pharmacy and the Institute of Biomedicine of the University of Barcelona (IBUB) (Spain)


    Highlights: Black-Right-Pointing-Pointer The Cact gene is induced in mouse skeletal muscle after 24 h of fasting. Black-Right-Pointing-Pointer The Cact gene contains a functional consensus sequence for ERR. Black-Right-Pointing-Pointer This sequence binds ERR{alpha} both in vivo and in vitro. Black-Right-Pointing-Pointer This ERRE is required for the activation of Cact expression by the PGC-1/ERR axis. Black-Right-Pointing-Pointer Our results add Cact as a genuine gene target of these transcriptional regulators. -- Abstract: Carnitine/acylcarnitine translocase (CACT) is a mitochondrial-membrane carrier proteins that mediates the transport of acylcarnitines into the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway. CACT deficiency causes a variety of pathological conditions, such as hypoketotic hypoglycemia, cardiac arrest, hepatomegaly, hepatic dysfunction and muscle weakness, and it can be fatal in newborns and infants. Here we report that expression of the Cact gene is induced in mouse skeletal muscle after 24 h of fasting. To gain insight into the control of Cact gene expression, we examine the transcriptional regulation of the mouse Cact gene. We show that the 5 Prime -flanking region of this gene is transcriptionally active and contains a consensus sequence for the estrogen-related receptor (ERR), a member of the nuclear receptor family of transcription factors. This sequence binds ERR{alpha}in vivo and in vitro and is required for the activation of Cact expression by the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1/ERR axis. We also demonstrate that XTC790, the inverse agonist of ERR{alpha}, specifically blocks Cact activation by PGC-1{beta} in C2C12 cells.

  4. Beta-Adrenergic Receptor Population is Up-Regulated in Chicken Skeletal Muscle Cells Treated with Forskolin (United States)

    Bridge, K. Y.; Young, R. B.; Vaughn, J. R.


    Skeletal muscle hypertrophy is promoted by in vivo administration of beta-adrenergic receptor (betaAR) agonists. These compounds presumably exert their physiological action through the betaAR, and alterations in the population of betaAR could potentially change the ability of the cell to respond to the betaAR agonists. Since the intracellular chemical signal generated by the betaAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of functional betaAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 microM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the betaAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 microM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in betaAR population, with a maximum increase of approximately 50% at 10 microM. This increase in PAR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of betaAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc

  5. Lymphoid enhancer factor-1 blocks adenomatous polyposis coli-mediated nuclear export and degradation of beta-catenin. Regulation by histone deacetylase 1. (United States)

    Henderson, Beric R; Galea, Melanie; Schuechner, Stefan; Leung, Louie


    The oncogenic protein beta-catenin is overexpressed in many cancers, frequently accumulating in nuclei where it forms active complexes with lymphoid enhancer factor-1 (LEF-1)/T-cell transcription factors, inducing genes such as c-myc and cyclin D1. In normal cells, nuclear beta-catenin levels are controlled by the adenomatous polyposis coli (APC) protein through nuclear export and cytoplasmic degradation. Transient expression of LEF-1 is known to increase nuclear beta-catenin levels by an unknown mechanism. Here, we show that APC and LEF-1 compete for nuclear beta-catenin with opposing consequences. APC can export nuclear beta-catenin to the cytoplasm for degradation. In contrast, LEF-1 anchors beta-catenin in the nucleus by blocking APC-mediated nuclear export. LEF-1 also prevented the APC/CRM1-independent nuclear export of beta-catenin as revealed by in vitro assays. Importantly, LEF-1-bound beta-catenin was protected from degradation by APC and axin in SW480 colon cancer cells. The ability of LEF-1 to trap beta-catenin in the nucleus was down-regulated by histone deacetylase 1, and this correlated with a decrease in LEF1 transcription activity. Our findings identify LEF-1 as key regulator of beta-catenin nuclear localization and stability and suggest that overexpression of LEF-1 in colon cancer and melanoma cells may contribute to the accumulation of oncogenic beta-catenin in the nucleus. PMID:11986304

  6. The Zebrafish Equivalent of Alzheimer's Disease-Associated PRESENILIN Isoform PS2V Regulates Inflammatory and Other Responses to Hypoxic Stress. (United States)

    Ebrahimie, Esmaeil; Moussavi Nik, Seyyed Hani; Newman, Morgan; Van Der Hoek, Mark; Lardelli, Michael


    Dominant mutations in the PRESENILIN genes PSEN1 and PSEN2 cause familial Alzheimer's disease (fAD) that usually shows onset before 65 years of age. In contrast, genetic variation at the PSEN1 and PSEN2 loci does not appear to contribute to risk for the sporadic, late onset form of the disease (sAD), leading to doubts that these genes play a role in the majority of AD cases. However, a truncated isoform of PSEN2, PS2V, is upregulated in sAD brains and is induced by hypoxia and high cholesterol intake. PS2V can increase γ-secretase activity and suppress the unfolded protein response (UPR), but detailed analysis of its function has been hindered by lack of a suitable, genetically manipulable animal model since mice and rats lack this PRESENILIN isoform. We recently showed that zebrafish possess an isoform, PS1IV, that is cognate to human PS2V. Using an antisense morpholino oligonucleotide, we can block specifically the induction of PS1IV that normally occurs under hypoxia. Here, we exploit this ability to identify gene regulatory networks that are modulated by PS1IV. When PS1IV is absent under hypoxia-like conditions, we observe changes in expression of genes controlling inflammation (particularly sAD-associated IL1B and CCR5), vascular development, the UPR, protein synthesis, calcium homeostasis, catecholamine biosynthesis, TOR signaling, and cell proliferation. Our results imply an important role for PS2V in sAD as a component of a pathological mechanism that includes hypoxia/oxidative stress and support investigation of the role of PS2V in other diseases, including schizophrenia, when these are implicated in the pathology. PMID:27031468

  7. Apolipoprotein E Regulates the Integrity of Tight Junctions in an Isoform-dependent Manner in an in Vitro Blood-Brain Barrier Model*


    Nishitsuji, Kazuchika; Hosono, Takashi; Nakamura, Toshiyuki; Bu, Guojun; Michikawa, Makoto


    Apolipoprotein E (apoE) is a major apolipoprotein in the brain. The ϵ4 allele of apoE is a major risk factor for Alzheimer disease, and apoE deficiency in mice leads to blood-brain barrier (BBB) leakage. However, the effect of apoE isoforms on BBB properties are as yet unknown. Here, using an in vitro BBB model consisting of brain endothelial cells and pericytes prepared from wild-type (WT) mice, and primary astrocytes prepared from human apoE3- and apoE4-knock-in mice, we show that the barri...

  8. Sex-Steroid Regulation of Relaxin Receptor Isoforms (RXFP1 & RXFP2) Expression in the Patellar Tendon and Lateral Collateral Ligament of Female WKY Rats


    Dehghan, Firouzeh; Muniandy, Sekaran; Yusof, Ashril; Salleh, Naguib


    The incidence of non-contact knee injury was found higher in female than in male and is related to the phases of the menstrual cycle. This raised the possibility that female sex-steroids are involved in the mechanism underlying this injury via affecting the expression of the receptors for relaxin, a peptide hormone known to modulate ligament laxity. Therefore, this study aims to investigate the effect of sex-steroids on relaxin receptor isoforms (RXFP1 & RXFP2) expression in the ligaments and...

  9. Spinach pyruvate kinase isoforms: partial purification and regulatory properties

    Energy Technology Data Exchange (ETDEWEB)

    Baysdorfer, C.; Bassham, J.A.


    Pyruvate kinase from spinach (Spinacea oleracea L.) leaves consists of two isoforms, separable by blue agarose chromatography. Both isoforms share similar pH profiles and substrate and alternate nucleotide K/sub m/ values. In addition, both isoforms are inhibited by oxalate and ATP and activated by AMP. The isoforms differ in their response to three key metabolites; citrate, aspartate, and glutamate. The first isoform is similar to previously reported plant pyruvate kinases in its sensitivity to citrate inhibition. The K/sub i/ for this inhibition is 1.2 millimolar citrate. The second isoform is not affected by citrate but is regulated by aspartate and glutamate. Aspartate is an activator with a K/sub a/ of 0.05 millimolar, and glutamate is an inhibitor with a K/sub i/ of 0.68 millimolar. A pyruvate kinase with these properties has not been previously reported. Based on these considerations, the authors suggest that the activity of the first isoform is regulated by respiratory metabolism. The second isoform, in contrast, may be regulated by the demand for carbon skeletons for use in ammonia assimilation.

  10. PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    Jelena Marković

    Full Text Available Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12 transcription. The roles of poly(ADP-ribose polymerase-1 (PARP-1 and transcription factor Yin Yang 1 (YY1 in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the

  11. Cyclic regulation of transcription factor C/EBP beta in human endometrium

    Directory of Open Access Journals (Sweden)

    Young Steven L


    Full Text Available Abstract Background The transcription factor CCAAT/enhancer-binding protein (C/EBP beta is a critical mediator of murine endometrial function during embryo implantation. Our objective is to characterize changes in C/EBP beta mRNA abundance and protein localization over the normal human menstrual cycle. Methods Fifty normally cycling volunteers without reproductive disorders were randomized to undergo endometrial sampling on a specific cycle day, with secretory phase samples timed using urinary LH surge. Samples were assessed for relative C/EBP beta mRNA expression using quantitative real-time RT-PCR and for C/EBP beta protein localization using immunohistochemistry. The semiquantitative histologic scoring (HSCORE system was used to compare staining intensity in each tissue compartment between each cycle phase. Results C/EBP beta mRNA expression by whole endometrium peaks in the late secretory phase and is significantly higher than that in the proliferative and mid-secretory phases. A marked increase in nuclear C/EBP beta protein immunostaining is seen in stromal cells beginning about cycle day 20, coincident with the start of endometrial receptivity. This increased staining continues for the remainder of the cycle. Conclusion In the normal human menstrual cycle, C/EBP beta mRNA and protein expression also change, with increased nuclear immunostaining in the mid-secretory phase, suggesting a possible role for C/EBP beta in human endometrial receptivity.

  12. Physiological studies of the regulation of beta-lactamase expression in Pseudomonas maltophilia. (United States)

    Rosta, S; Mett, H


    The kinetics of beta-lactamase induction in Pseudomonas maltophilia IID1275/873 were investigated. Upon induction with beta-lactam antibiotics, a correlation was seen between the increase in specific beta-lactamase activity and the generation time, as well as the concentration of inducer in the medium. The specific beta-lactamase activity increased slowly within the first 0.5 generation and then more rapidly; it decreased regularly after about 2 generations of growth in the presence of inducer. This decrease could presumably be attributed to the continuous breakdown of inducer by beta-lactamases in the culture medium. In a chemostat culture with continuous supply of fresh inducer-containing medium, the specific beta-lactamase activity could be stabilized at a high level over several generations. Removal of the beta-lactam after a certain induction time showed that a short exposure of the bacteria to inducer caused induction kinetics comparable to those resulting from continuous exposure of the cells to inducer. The two beta-lactamases of P. maltophilia, L1 and L2, were induced simultaneously under various experimental conditions. PMID:2783690

  13. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Rasmussen, D N; Mascagni, P; Dinarello, C A; Billestrup, N; Grunnet, L G; Mandrup-Poulsen, T


    Cytokine-induced beta cell toxicity is abrogated by non-selective inhibitors of lysine deacetylases (KDACs). The KDAC family consists of 11 members, namely histone deacetylases HDAC1 to HDAC11, but it is not known which KDAC members play a role in cytokine-mediated beta cell death. The aim of the...

  14. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Fabiana Salm

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

  15. Expression of inwardly rectifying potassium channels (GIRKs and beta-adrenergic regulation of breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Cakir Yavuz


    Full Text Available Abstract Background Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. We wished to determine if this regulation exists in breast adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying potassium channel (GIRK1 has been shown in tissue samples from approximately 40% of primary human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic signaling. Methods Breast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene expression were determined by both relative competitive and real time PCR. Potassium flux was determined by flow cytometry and cell signaling was determined by western blotting. Results Breast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed mRNA for the GIRK1 channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (1 μM increased the GIRK1 mRNA levels and decreased beta2-adrenergic mRNA levels, while treatment for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol hemifumarate, led to increases in K+ flux into MDA-MB-453 cells, and this increase was inhibited by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, a high affinity agonist for beta-adrenergic receptors stimulated activation of Erk 1/2 in MDA-MB-453 cells. Conclusions Our data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer.

  16. Activation of AMPK alpha and gamma-isoform complexes in the intact ischemic rat heart (United States)

    AMP-activated protein kinase (AMPK) plays a key role in modulating cellular metabolic processes. AMPK, a serine-threonine kinase, is a heterotrimeric complex of catalytic alpha-subunits and regulatory beta- and gamma-subunits with multiple isoforms. Mutations in the cardiac gamma(2)-isoform have bee...

  17. Hypomethylation and Over-Expression of the Beta Isoform of BLIMP1 is Induced by Epstein-Barr Virus Infection of B Cells; Potential Implications for the Pathogenesis of EBV-Associated Lymphomas

    Directory of Open Access Journals (Sweden)

    Katerina Vrzalikova


    Full Text Available B-lymphocyte-induced maturation protein 1 (BLIMP1 exists as two major isoforms, α and β, which arise from alternate promoters. Inactivation of the full length BLIMP1α isoform is thought to contribute to B cell lymphomagenesis by blocking post-germinal centre (GC B cell differentiation. In contrast, the shorter β isoform is functionally impaired and over-expressed in several haematological malignancies, including diffuse large B cell lymphomas (DLBCL. We have studied the influence on BLIMP1β expression of the Epstein-Barr virus (EBV, a human herpesvirus that is implicated in the pathogenesis of several GC-derived lymphomas, including a subset of DLBCL and Hodgkin’s lymphoma (HL. We show that BLIMP1β expression is increased following the EBV infection of normal human tonsillar GC B cells. We also show that this change in expression is accompanied by hypomethylation of the BLIMP1β-specific promoter. Furthermore, we confirmed previous reports that the BLIMP1β promoter is hypomethylated in DLBCL cell lines and show for the first time that BLIMP1β is hypomethylated in the Hodgkin/Reed-Sternberg (HRS cells of HL. Our results provide evidence in support of a role for BLIMP1β in the pathogenesis of EBV-associated B cell lymphomas.

  18. Krüppel-like factor 9 was down-regulated in esophageal squamous cell carcinoma and negatively regulated beta-catenin/TCF signaling. (United States)

    Qiao, Fan; Yao, Feng; Chen, Ling; Lu, Chengjun; Ni, Yiqian; Fang, Wentao; Jin, Hai


    Krüppel-like factor 9 (KLF9) has been found to play suppressive roles in several types of tumor. However, the expression pattern and biological functions of KLF9 in esophageal squamous cell carcinoma (ESCC) are still unknown. In this study, it was found that the expression of KLF9 was significantly down-regulated in ESCC compared to their adjacent normal esophageal tissues. Meanwhile, the expression of KLF9 was inversely correlated with the clinical features of ESCC patients. Moreover, in the biological function study, KLF9 was further validated to inhibit the growth, migration, and metastasis of ESCC cells in vitro and in vivo. Mechanistically, KLF9 bind with TCF4 and suppressed the beta-catenin/TCF signaling as well as the expression of its target gene Cyr61. Collectively, our study clarified the function of KLF9 in both ESCC progression and the regulation of beta-catenin/TCF signaling. PMID:25641762

  19. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution.

    Directory of Open Access Journals (Sweden)

    Niels Jacob Aachmann-Andersen

    Full Text Available The membrane-assisted isoform immunoassay (MAIIA quantitates erythropoietin (EPO isoforms as percentages of migrated isoforms (PMI. We evaluated the effect of recombinant human EPO (rhEPO on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13; high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13; or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3 % (mean (SD. High-dose Epoetin beta decreased PMI on days 4 and 11 to 31.0 (4.2% (p<0.00001 and 45.2 (7.3% (p<0.00001. Low-dose Epoetin beta decreased PMI on days 4 and 11 to 46.0 (12.8% (p<0.00001 and 46.1 (10.4% (p<0.00001. In both rhEPO groups, PMI on day 25 was still decreased (high-dose Epoetin beta: 72.9 (19.4% (p=0.029; low-dose Epoetin beta: 73.1 (17.8% (p=0.039. In conclusion, Epoetin beta leaves a footprint in the plasma-EPO isoform pattern. MAIIA can detect changes in EPO isoform distribution up til at least three weeks after administration of Epoetin beta even though the total EPO concentration has returned to normal.

  20. Tubulin evolution in insects: gene duplication and subfunctionalization provide specialized isoforms in a functionally constrained gene family

    Directory of Open Access Journals (Sweden)

    Gadagkar Sudhindra R


    with microtubule-associated proteins. CTT residues overwhelming comprise the co-evolving residues between Drosophila alpha 2 and beta 3 tubulin proteins, indicating CTT specializations can be mediated at the level of the tubulin dimer. Gene duplications post-dating separation of the insect orders are unevenly distributed, most often appearing in major alpha 1 and minor beta 2 clades. More than 40 introns are found in tubulins. Their distribution among tubulins reveals that insertion and deletion events are common, surprising given their potential for disrupting tubulin coding sequence. Compensatory evolution is found in Drosophila beta 2 tubulin cis-regulation, and reveals selective pressures acting to maintain testis expression without the use of previously identified testis cis-regulatory elements. Conclusion Tubulins have stringent structure/function relationships, indicated by strong purifying selection, the loss of many gene duplication products, alpha-beta co-evolution in the tubulin dimer, and compensatory evolution in beta 2 tubulin cis-regulation. They evolve through gene duplication, subfunctionalization in expression domain and divergence of duplication products, largely in CTT residues that mediate interactions with other proteins. This has resulted in the tissue-specific minor insect isoforms, and in particular the highly diverse α3, α4, and β2 reproductive tissue-specific tubulin isoforms, illustrating that even a highly conserved protein family can participate in the adaptive process and respond to sexual selection.

  1. A role for the androgen metabolite, 5alpha androstane 3beta, 17beta diol (3β-diol) in the regulation of the hypothalamo-pituitary-adrenal axis. (United States)

    Handa, Robert J; Sharma, Dharmendra; Uht, Rosalie


    Activation of the hypothalamo-pituitary-adrenal (HPA) axis is a basic reaction of animals to environmental perturbations that threaten homeostasis. These responses are ultimately regulated by neurons residing within the paraventricular nucleus (PVN) of the hypothalamus. Within the PVN, corticotrophin-releasing hormone (CRH), vasopressin (AVP), and oxytocin (OT) expressing neurons are critical as they can regulate both neuroendocrine and autonomic responses. Estradiol (E2) and testosterone (T) are well known reproductive hormones; however, they have also been shown to modulate stress reactivity. In rodent models, evidence shows that under some conditions E2 enhances stress activated adrenocorticotropic hormone (ACTH) and corticosterone secretion. In contrast, T decreases the gain of the HPA axis. The modulatory role of testosterone was originally thought to be via 5 alpha reduction to the potent androgen dihydrotestosterone (DHT) and its subsequent binding to the androgen receptor, whereas E2 effects were thought to be mediated by estrogen receptors alpha (ERalpha) and beta (ERbeta). However, DHT has been shown to be metabolized to the ERbeta agonist, 5α- androstane 3β, 17β Diol (3β-Diol). The actions of 3β-Diol on the HPA axis are mediated by ERbeta which inhibits the PVN response to stressors. In gonadectomized rats, ERbeta agonists reduce CORT and ACTH responses to restraint stress, an effect that is also present in wild-type but not ERbeta-knockout mice. The neurobiological mechanisms underlying the ability of ERbeta to alter HPA reactivity are not currently known. CRH, AVP, and OT have all been shown to be regulated by estradiol and recent studies indicate an important role of ERbeta in these regulatory processes. Moreover, activation of the CRH and AVP promoters has been shown to occur by 3β-Diol binding to ERbeta and this is thought to occur through alternate pathways of gene regulation. Based on available data, a novel and important role of 3β-Diol in

  2. A Role for the Androgen Metabolite, 5alpha Androstane 3beta, 17beta Diol (3β-Diol) in the Regulation of the Hypothalamo-Pituitary–Adrenal Axis (United States)

    Handa, Robert J.; Sharma, Dharmendra; Uht, Rosalie


    Activation of the hypothalamo-pituitary–adrenal (HPA) axis is a basic reaction of animals to environmental perturbations that threaten homeostasis. These responses are ultimately regulated by neurons residing within the paraventricular nucleus (PVN) of the hypothalamus. Within the PVN, corticotrophin-releasing hormone (CRH), vasopressin (AVP), and oxytocin (OT) expressing neurons are critical as they can regulate both neuroendocrine and autonomic responses. Estradiol (E2) and testosterone (T) are well known reproductive hormones; however, they have also been shown to modulate stress reactivity. In rodent models, evidence shows that under some conditions E2 enhances stress activated adrenocorticotropic hormone (ACTH) and corticosterone secretion. In contrast, T decreases the gain of the HPA axis. The modulatory role of testosterone was originally thought to be via 5 alpha reduction to the potent androgen dihydrotestosterone (DHT) and its subsequent binding to the androgen receptor, whereas E2 effects were thought to be mediated by estrogen receptors alpha (ERalpha) and beta (ERbeta). However, DHT has been shown to be metabolized to the ERbeta agonist, 5α- androstane 3β, 17β Diol (3β-Diol). The actions of 3β-Diol on the HPA axis are mediated by ERbeta which inhibits the PVN response to stressors. In gonadectomized rats, ERbeta agonists reduce CORT and ACTH responses to restraint stress, an effect that is also present in wild-type but not ERbeta-knockout mice. The neurobiological mechanisms underlying the ability of ERbeta to alter HPA reactivity are not currently known. CRH, AVP, and OT have all been shown to be regulated by estradiol and recent studies indicate an important role of ERbeta in these regulatory processes. Moreover, activation of the CRH and AVP promoters has been shown to occur by 3β-Diol binding to ERbeta and this is thought to occur through alternate pathways of gene regulation. Based on available data, a novel and important role of 3

  3. Ikaros isoforms:The saga continues

    Institute of Scientific and Technical Information of China (English)

    Laura; A; Perez-Casellas; Aleksandar; Savic; Sinisa; Dovat


    Through alternate splicing,the Ikaros gene produces multiple proteins.Ikaros is essential for normal hematopoiesis and possesses tumor suppressor activity.Ikaros isoforms interact to form dimers and potentially multimeric complexes.Diverse Ikaros complexes produced by the presence of different Ikaros isoforms are hypothesized to confer distinct functions.Small dominantnegative Ikaros isoforms have been shown to inhibit the tumor suppressor activity of full-length Ikaros.Here,we describe how Ikaros activity is regulated by the coordinated expression of the largest Ikaros isoforms IK-1 and IK-H.Although IK-1 is described as full-length Ikaros,IK-H is the longest Ikaros isoform.IK-H,which includes residues coded by exon 3B (60 bp that lie between exons 3 and 4),is abundant in human but not murine hematopoietic cells.Specific residues that lie within the 20 amino acids encoded by exon 3B give IK-H DNA-binding characteristics that are distinct from those of IK-1.Moreover,IK-H can potentiate or inhibit the ability of IK-1 to bind DNA.IK-H binds to the regulatory regions of genes that are upregulated by Ikaros,but not genes that are repressed by Ikaros.Although IK-1 localizes to pericentromeric heterochromatin,IK-H can be found in both pericentromeric and non-pericentromeric locations.Anti-silencing activity of gamma satellite DNA has been shown to depend on the binding of IK-H,but not other Ikaros isoforms.The unique features of IK-H,its influence on Ikaros activity,and the lack of IK-H expression in mice suggest that Ikaros function in humans may be more complex and possibly distinct from that in mice.

  4. Involvement of tyrosine residues located in the carboxyl tail of the human beta 2-adrenergic receptor in agonist-induced down-regulation of the receptor.


    Valiquette, M; Bonin, H.; Hnatowich, M; Caron, M G; Lefkowitz, R J; Bouvier, M


    Chronic exposure of various cell types to adrenergic agonists leads to a decrease in cell surface beta 2-adrenergic receptor (beta 2AR) number. Sequestration of the receptor away from the cell surface as well as a down-regulation of the total number of cellular receptors are believed to contribute to this agonist-mediated regulation of receptor number. However, the molecular mechanisms underlying these phenomena are not well characterized. Recently, tyrosine residues located in the cytoplasmi...

  5. Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U

    DEFF Research Database (Denmark)

    Davis, Matti; Hatzubai, Ada; Andersen, Jens S; Ben-Shushan, Etti; Fisher, Gregory Zvi; Yaron, Avraham; Bauskin, Asne; Mercurio, Frank; Mann, Matthias; Ben-Neriah, Yinon


    beta-TrCP/E3RS (E3RS) is the F-box protein that functions as the receptor subunit of the SCF(beta-TrCP) ubiquitin ligase (E3). Surprisingly, although its two recognized substrates, IkappaB(alpha) and beta-catenin, are present in the cytoplasm, we have found that E3RS is located predominantly in the...... competition with a pIkappaB(alpha) peptide, or by a specific point mutation in the E3RS WD region, indicating an E3-substrate-type interaction. However, unlike pI(kappa)Balpha, which is targeted by SCF(beta-TrCP) for degradation, the E3-bound hnRNP-U is stable and is, therefore, a pseudosubstrate....... Consequently, hnRNP-U engages a highly neddylated active SCF(beta-TrCP), which dissociates in the presence of a high-affinity substrate, resulting in ubiquitination of the latter. Our study points to a novel regulatory mechanism, which secures the localization, stability, substrate binding threshold, and...

  6. Ability of CK2beta to selectively regulate cellular protein kinases

    DEFF Research Database (Denmark)

    Olsen, Birgitte; Guerra, Barbara


    The Wee1 protein kinase plays a prominent role in keeping cyclin dependent kinase 1 (CDK1) inactive during the G2 phase of the cell cycle. At the onset of mitosis, Wee1 is ubiquitinated by the E3 ubiquitin ligase SCF(beta-TrCP) and subsequently degraded by the proteasome machinery. Previously, it...... additional phosphodegrons recognised by beta-TrCP. These events contribute to destabilise Wee1 at the onset of mitosis (Watanabe et al. Proc Natl Acad Sci USA 101:4419-4424, 2004). We show here that in addition to the ability of CK2 to phosphorylate Wee1 as reported earlier, the regulatory beta-subunit of...

  7. Regulation of pancreatic beta-cell mass and proliferation by SOCS-3

    DEFF Research Database (Denmark)

    Lindberg, K; Rønn, S G; Tornehave, D;


    Growth hormone and prolactin are important growth factors for pancreatic beta-cells. The effects exerted by these hormones on proliferation and on insulin synthesis and secretion in beta-cells are largely mediated through the Janus kinase (JAK)/signal transducer and activator of transcription (STAT...... tyrosine phosphorylation of STAT-5 when compared with wild-type islets. Transduction of primary islet cultures with adenoviruses expressing various SOCS proteins followed by stimulation with GH or glucagon-like peptide-1 (GLP-1) revealed that SOCS-3 inhibited GH- but not GLP-1-mediated islet cell...

  8. Differential regulation of rat beta-casein-chloramphenicol acetyltransferase fusion gene expression in transgenic mice.


    Lee, K. F.; Atiee, S H; Rosen, J. M.


    Previous studies in our laboratory have demonstrated the mammary-specific expression of the entire rat beta-casein gene with 3.5 kilobases (kb) of 5' and 3.0 kb of 3' DNA in transgenic mice (Lee et al., Nucleic Acids Res. 16:1027-1041, 1988). In an attempt to localize sequences that dictate this specificity, lines of transgenic mice carrying two different rat beta-casein promoter-bacterial chloramphenicol acetyltransferase (cat) fusion genes have been established. Twenty and eight lines of tr...

  9. Regulation of beta-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism.


    Reizer, J; Panos, C


    Streptococcus pyogenes pregrown on lactose took up glucose, lactose, or methyl beta-D-thiogalactopyranoside (MeSGal or TMG) by a phosphoenolpyruvate-dependent phosphotransferase system. MeSGal accumulated in the cell as MeSGal-phosphate (MeSGalP). Three effects were noted when various sugars were added to MeSGal preloaded cells: (i) no decrease in intracellular MeSGalP concentration after addition of fructose, sucrose, o-nitrophenyl-beta-D-galactoside, glycerol, 6-deoxyglucose, alpha-methyl D...

  10. N-terminal tyrosine modulation of the endocytic adaptor function of the beta-arrestins. (United States)

    Marion, Sébastien; Fralish, Gregory B; Laporte, Stéphane; Caron, Marc G; Barak, Larry S


    The highly homologous beta-arrestin1 and -2 adaptor proteins play important roles in the function of G protein-coupled receptors. Either beta-arrestin variant can function as a molecular chaperone for clathrin-mediated receptor internalization. This role depends primarily upon two distinct, contiguous C-terminal beta-arrestin motifs recognizing clathrin and the beta-adaptin subunit of AP2. However, a molecular basis is lacking to explain the different endocytic efficacies of the two beta-arrestin isoforms and the observation that beta-arrestin N-terminal substitution mutants can act as dominant negative inhibitors of receptor endocytosis. Despite the near identity of the beta-arrestins throughout their N termini, sequence variability is present at a small number of residues and includes tyrosine to phenylalanine substitutions. Here we show that corresponding N-terminal (Y/F)VTL sequences in beta-arrestin1 and -2 differentially regulate mu-adaptin binding. Our results indicate that the beta-arrestin1 Tyr-54 lessens the interaction with mu-adaptin and moreover is a Src phosphorylation site. A gain of endocytic function is obtained with the beta-arrestin1 Y54F substitution, which improves both the beta-arrestin1 interaction with mu-adaptin and the ability to enhance beta2-adrenergic receptor internalization. These data indicate that beta-arrestin2 utilizes mu-adaptin as an endocytic partner, and that the inability of beta-arrestin1 to sustain a similar degree of interaction with mu-adaptin may result from coordination of Tyr-54 by neighboring residues or its modification by Src kinase. Additionally, these naturally occurring variations in beta-arrestins may also differentially regulate the composition of the signaling complexes organized on the receptor. PMID:17456469

  11. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Raekil


    Full Text Available Abstract Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi and that interleukin 1 alpha (IL-1 alpha up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM. Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway.

  12. DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans. (United States)

    Tullet, Jennifer M A; Araiz, Caroline; Sanders, Matthew J; Au, Catherine; Benedetto, Alexandre; Papatheodorou, Irene; Clark, Emily; Schmeisser, Kathrin; Jones, Daniel; Schuster, Eugene F; Thornton, Janet M; Gems, David


    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, β and γ subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory γ subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ∼75% of total γ subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 γ subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK β subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be evolutionarily conserved

  13. DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jennifer M A Tullet


    Full Text Available The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK, which has α, β and γ subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory γ subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ∼75% of total γ subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 γ subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK β subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be

  14. Characterization and regulation of. beta. /sub 2/-adrenergic receptors in rat vas deferens

    Energy Technology Data Exchange (ETDEWEB)

    May, J.M.


    ..beta../sub 2/-Adrenergic receptors in rat vas deferens were examined by measuring the binding of /sup 125/I-pindolol (/sup 125/IPIN) to membrane preparations and the inhibition of evoked contractions in intact tissues. /sup 125/IPIN labeled a single class of binding sites with mass action kinetics. Affinity constants for ..beta..-adrenergic receptor antagonists calculated from both binding and functional experiments agreed well, suggesting that /sup 125/IPIN labels the functional ..beta../sub 2/-adrenergic receptor. n-Bromoacetylalprenololmenthane (BAAM) was used to decrease receptor density so that agonist affinity constants could be determined functionally. Treatment of tissues with BAAM decreased the functional potencies of agonists. Higher concentrations of BAAM decreased the maximum tissue response. Affinity constants for agonists calculated after BAAM treatment were compared to affinity constants determined from binding studies done under conditions designed to promote high or low affinity agonist binding. Functional affinity constants for isoproterenol and salbutamol agreed with the low affinity binding constants, suggesting that the low affinity form of the receptor initiates the functional response. Because acute denervation of vasa deferentia did not alter the density of /sup 125/IPIN binding sites, the sites are probably post-junctional. Chronic infusion of isoproterenol reduced the potency of isoproterenol, the maximum tissue response, and the receptor density. These results suggest that ..beta..-adrenergic receptor density and responsiveness in rat vas deferens are not affected by removing catecholamine sources, but receptor density and responsiveness can be decreased by increasing agonist concentration at the receptor.

  15. Dual aminergic regulation of central beta adrenoceptors. Effect of atypical antidepressants and 5-hydroxytryptophan

    International Nuclear Information System (INIS)

    Nonlinear regression analysis of agonist competition binding curves reveals that the [3H]-dihydroalprenolol-labeled receptor population with low affinity for isoproterenol is increased by p-chlorophenylalanine (PCPA) and this increase is abolished by 5-hydroxytryptophan (5-HTP) in vivo. Desipramine (DMI) decreased the beta adrenoceptor population with high agonist affinity to the same degree in PCPA-treated animals as in control animals, thus explaining the reported discrepancy between beta adrenoceptor number and responsiveness of the beta adrenoceptor-coupled adenylate cyclase system. Mianserin also selectively reduced the beta adrenoceptor population with high agonist affinity in membrane preparations of normal animals, whereas fluoxetine selectively abolished the upregulation of the low affinity sites in reserpinized animals and had no effect on either receptor population from brain of normal animals. The results emphasize the importance of nonlinear regression analysis of agonist competition binding for the interpretation of drug action and encourage the pursuit of the molecular neurobiology of the serotonin (5-HT)/norepinephrine (NE) link in brain

  16. p53 Family: Role of Protein Isoforms in Human Cancer

    Directory of Open Access Journals (Sweden)

    Jinxiong Wei


    Full Text Available TP53, TP63, and TP73 genes comprise the p53 family. Each gene produces protein isoforms through multiple mechanisms including extensive alternative mRNA splicing. Accumulating evidence shows that these isoforms play a critical role in the regulation of many biological processes in normal cells. Their abnormal expression contributes to tumorigenesis and has a profound effect on tumor response to curative therapy. This paper is an overview of isoform diversity in the p53 family and its role in cancer.

  17. EASI—enrichment of alternatively spliced isoforms


    Julian P Venables; Burn, John


    Alternative splicing produces more than one protein from the majority of genes and the rarer forms can have dominant functions. Instability of alternative transcripts can also hinder the study of regulation of gene expression by alternative splicing. To investigate the true extent of alternative splicing we have developed a simple method of enriching alternatively spliced isoforms (EASI) from PCRs using beads charged with Thermus aquaticus single-stranded DNA-binding protein (T.Aq ssb). This ...

  18. Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-beta peptide. (United States)

    Gomez-Brouchet, Anne; Pchejetski, Dimitri; Brizuela, Leyre; Garcia, Virginie; Altié, Marie-Françoise; Maddelein, Marie-Lise; Delisle, Marie-Bernadette; Cuvillier, Olivier


    We examined the role of sphingosine kinase-1 (SphK1), a critical regulator of the ceramide/sphingosine 1-phosphate (S1P) biostat, in the regulation of death and survival of SH-SY5Y neuroblastoma cells in response to amyloid beta (Abeta) peptide (25-35). Upon incubation with Abeta, SH-SY5Y cells displayed a marked down-regulation of SphK1 activity coupled with an increase in the ceramide/S1P ratio followed by cell death. This mechanism was redox-sensitive; N-acetylcysteine totally abrogated the down-regulation of SphK1 activity and strongly inhibited Abeta-induced cell death. SphK1 overexpression impaired the cytotoxicity of Abeta, whereas SphK1 silencing by RNA interference mimicked Abeta-induced cell death, thereby establishing a critical role for SphK1. We further demonstrated that SphK1 could mediate the well established cytoprotective action of insulin-like growth factor (IGF-I) against Abeta toxicity. A dominant-negative form of SphK1 or its pharmacological inhibition not only abrogated IGF-I-triggered stimulation of SphK1 but also hampered IGF-I protective effect. Similarly to IGF-I, the neuroprotective action of TGF-beta1 was also dependent on SphK1 activity; activation of SphK1 as well as cell survival were impeded by a dominant-negative form of SphK1. Taken together, these results provide the first illustration of SphK1 role as a critical regulator of death and survival of Abeta-treated cells. PMID:17522181

  19. The level of nitric oxide regulates lipocalin-2 expression under inflammatory condition in RINm5F beta-cells. (United States)

    Chang, Seo-Yoon; Kim, Dong-Bin; Ko, Seung-Hyun; Jang, Hyun-Jong; Jo, Yang-Hyeok; Kim, Myung-Jun


    We previously reported that proinflammatory cytokines (interleukin-1β and interferon-γ) induced the expression of lipocalin-2 (LCN-2) together with inducible nitric oxide synthase (iNOS) in RINm5F beta-cells. Therefore, we examined the effect of nitric oxide (NO) on LCN-2 expression in cytokines-treated RINm5F beta-cells. Additionally, we observed the effect of LCN-2 on cell viability. First, we found the existence of LCN-2 receptor and the internalization of exogenous recombinant LCN-2 peptide in RINm5F and INS-1 beta-cells. Next, the effects of NO on LCN-2 expression were evaluated. Aminoguanidine, an iNOS inhibitor and iNOS gene silencing significantly inhibited cytokines-induced LCN-2 expression while sodium nitroprusside (SNP), an NO donor potentiated it. Luciferase reporter assay showed that transcription factor NF-κB was not involved in LCN-2 expression. Both LCN-2 mRNA and protein stability assays were conducted. SNP did not affect LCN-2 mRNA stability, however, it significantly reduced LCN-2 protein degradation. The LCN-2 protein degradation was significantly attenuated by MG132, a proteasome inhibitor. Finally, the effect of LCN-2 on cell viability was evaluated. LCN-2 peptide treatment and LCN-2 overexpression significantly reduced cell viability. FACS analysis showed that LCN-2 induced the apoptosis of the cells. Collectively, NO level affects LCN-2 expression via regulation of LCN-2 protein stability under inflammatory condition and LCN-2 may reduce beta-cell viability by promoting apoptosis. PMID:27233602

  20. Normotensive sodium loading in normal man: Regulation of renin secretion during beta-receptor blockade

    DEFF Research Database (Denmark)

    Mølstrøm, Simon; Larsen, Nils Heden; Simonsen, Jane Angel;


    sodium excretion. The results are com-patible with the notion that at constant arterial pressure, a volume-receptor elicited reduction in RSNA, via receptors other than beta1-adrenoceptors, decreases renal tubular sodium reabsorption proximal to the macula densa leading to increased NaCl concentration at...... the macula densa and subsequent inhibition of renin secretion. Key words: Blood pressure, angiotensin, aldosterone, natriuresis....

  1. PKC beta 2 is regulated by PI-3 kinase in colorectal adenocarcinoma

    Czech Academy of Sciences Publication Activity Database

    Turečková, Jolana; Vojtěchová, Martina; Tuháčková, Zdena

    Oxford : Blackwell Publishing Ltd., 2003. s. 095 238. [FEBS Special Meeting 2003 on Signal Transduction. 03.07.2003-08.07.2003, Brussels, Belgium ] R&D Projects: GA ČR GP301/02/D159; GA AV ČR KJB5052302 Institutional research plan: CEZ:AV0Z5052915 Keywords : colorectal adenocarcinoma * PKC beta * PI-3 kinase Subject RIV: EB - Genetics ; Molecular Biology

  2. Role of clathrin in the regulated secretory pathway of pancreatic beta-cells


    Molinete, M.; Dupuis, S.; Brodsky, F M; Halban, Philippe A.


    The role of clathrin in the sorting of proinsulin to secretory granules, the formation of immature granules and their subsequent maturation is not known. To this end, primary rat pancreatic beta-cells were infected with a recombinant adenovirus co-expressing the Hub fragment, a dominant-negative peptide of the clathrin heavy chain and enhanced green fluorescent protein (EGFP as a marker of infected cells). A population of cells expressing the highest levels of EGFP (and thus Hub) was obtained...

  3. Regulation of dioxin receptor function by different beta-carboline alkaloids

    Energy Technology Data Exchange (ETDEWEB)

    Haarmann-Stemmann, Thomas; Goetz, Christine; Krug, Nathalie; Bothe, Hanno; Abel, Josef [Heinrich-Heine-Universitaet Duesseldorf gGmbH, Institut fuer Umweltmedizinische Forschung (IUF), Duesseldorf (Germany); Sendker, Jandirk; Proksch, Peter [Heinrich-Heine-Universitaet, Institut fuer Pharmazeutische Biologie und Biotechnologie, Duesseldorf (Germany); Fritsche, Ellen [Heinrich-Heine-Universitaet Duesseldorf gGmbH, Institut fuer Umweltmedizinische Forschung (IUF), Duesseldorf (Germany); University Hospital, RWTH Aachen, Department of Dermatology, Aachen (Germany)


    The dioxin receptor, also known as arylhydrocarbon receptor (AhR), is a ligand-activated transcription factor that mediates the toxicity of dioxins and related environmental contaminants. In addition, there is a growing list of natural compounds, mainly plant polyphenols that can modulate AhR function and downstream signaling with quite unknown consequences for cellular function. We investigate the potential of four different {beta}-carboline alkaloids to stimulate AhR signaling in human hepatoma cells and keratinocytes. Three test substances, namely rutaecarpine, annomontine and xestomanzamine A, increase AhR-driven reporter gene activity as well as expression of two AhR target genes in a dose-dependent and time-dependent manner. Additionally, the three test alkaloids stimulate cytochrome P450 (CYP) 1 enzyme activity without showing any antagonistic effects regarding benzo(a)pyrene-stimulated CYP1 activation. The AhR-activating property of the {beta}-carbolines is completely abrogated in AhR-deficient cells providing evidence that rutaecarpine, annomontine and xestomanzamine A are natural stimulators of the human AhR. The toxicological relevance of beta-carboline-mediated AhR activation is discussed. (orig.)

  4. Distribution of beta-adrenergic receptors in failing human myocardium. Implications for mechanisms of down-regulation

    International Nuclear Information System (INIS)

    The density of beta-adrenergic receptors is reduced in crude membranes prepared from failing human myocardium. We used quantitative autoradiography of radioligand binding sites in intact tissue slices to determine whether the total tissue content of receptors is reduced and to characterize the transmural distribution of receptors in cardiac myocytes and the coronary vasculature in hearts obtained from nine cardiac transplant patients with severe congestive failure. Binding of [125Iodo]cyanopindolol to transmural slices of human myocardium was rapid, saturable, stereoselective, and displaceable by agonists and antagonists with an appropriate rank order of potency. Binding isotherms in four normal and nine failing ventricles showed a significant reduction in the total tissue content of beta-receptors in failing myocardium (38.3 +/- 2.0 fmol/mg protein) compared with normal tissue (52.4 +/- 1.7 fmol/mg protein, p = 0.038). In the normal ventricles, the greatest receptor density was observed autoradiographically in myocytic regions of the subendocardium. Receptor density of the coronary arterioles was approximately 70% of that in adjacent myocytic regions. The density of binding sites in both myocytic regions and arterioles was diminished in all regions of the failing ventricles, but down-regulation was due primarily to a selective reduction of beta-receptors of subendocardial myocytes (63 +/- 5% of subepicardial receptor density vs. 115 +/- 6% in controls, p less than 0.0001). These observations indicate that down-regulation occurs nonuniformly in the transmural distribution and thus is likely not related simply to elevated circulating catecholamine levels

  5. Computational Estimates of Binding Affinities for Estrogen Receptor Isoforms in Rainbow Trout

    CERN Document Server

    Shyu, Conrad


    Molecular dynamics simulations are performed to determine the binding affinities between the hormone 17 beta-estradiol (E2) and different estrogen receptor (ER) isoforms in the rainbow trout (Oncorhynchus mykiss). Previous studies have demonstrated that a recent, unique gene duplication of the ER alpha subtype created two isoforms ER alpha 1 and ER alpha 2, and an early secondary split of ER beta produced two distinct isoforms of ER beta 1 and ER beta 2 based on the phylogenetic analysis. The objective of our computational studies is to provide insight into the underlying evolutionary selection pressure on the ER isoforms. Our results show that E2 binds preferentially to ER alpha 1. This finding corresponds to the experimental results as the ERs evolved from gene duplication events are frequently free from selective pressure and should exhibit no deleterious effects. The E2, however, only binds slightly better to ER beta 2. Both isoforms remain competitive. This finding reflects the fact that since ER beta 2 ...

  6. The regulatory beta-subunit of protein kinase CK2 regulates cell-cycle progression at the onset of mitosis

    DEFF Research Database (Denmark)

    Yde, C W; Olsen, B B; Meek, D;


    Cell-cycle transition from the G(2) phase into mitosis is regulated by the cyclin-dependent protein kinase 1 (CDK1) in complex with cyclin B. CDK1 activity is controlled by both inhibitory phosphorylation, catalysed by the Myt1 and Wee1 kinases, and activating dephosphorylation, mediated by the CDC...... interference results in delayed cell-cycle progression at the onset of mitosis. Knockdown of CK2beta causes stabilization of Wee1 and increased phosphorylation of CDK1 at the inhibitory Tyr15. PLK1-Wee1 association is an essential event in the degradation of Wee1 in unperturbed cell cycle. We have found that...... regulatory subunit, identifying it as a new component of signaling pathways that regulate cell-cycle progression at the entry of mitosis.Oncogene advance online publication, 12 May 2008; doi:10.1038/onc.2008.146....

  7. C-terminus of progranulin interacts with the beta-propeller region of sortilin to regulate progranulin trafficking.

    Directory of Open Access Journals (Sweden)

    Yanqiu Zheng

    Full Text Available Progranulin haplo-insufficiency is a main cause of frontotemporal lobar degeneration (FTLD with TDP-43 aggregates. Previous studies have shown that sortilin regulates progranulin trafficking and is a main determinant of progranulin level in the brain. In this study, we mapped the binding site between progranulin and sortilin. Progranulin binds to the beta-propeller region of sortilin through its C-terminal tail. The C-terminal progranulin fragment is fully sufficient for sortilin binding and progranulin C-terminal peptide displaces progranulin binding to sortilin. Deletion of the last 3 residues of progranulin (QLL abolishes its binding to sortilin and also sortilin dependent regulation of progranulin trafficking. Since progranulin haplo-insufficiency results in FTLD, these results may provide important insights into future studies of progranulin trafficking and signaling and progranulin based therapy for FTLD.

  8. β-Adrenergic regulation of a novel isoform of NCX: sequence and expression of shark heart NCX in human kidney cells


    Janowski, Einsley; Day, Regina; Kraev, Alexander; Roder, John C.; Cleemann, Lars; Morad, Martin


    The function, regulation, and molecular structure of the cardiac Na+/Ca2+ exchangers (NCXs) vary significantly among vertebrates. We previously reported that β-adrenergic suppression of amphibian cardiac NCX1.1 is associated with specific molecular motifs. Here we investigated the bimodal, cAMP-dependent regulation of spiny dogfish shark (Squalus acanthias) cardiac NCX, exploring the effects of molecular structure, host cell environment, and ionic milieu. The shark cardiac NCX sequence (GenBa...

  9. Two conventional PKC isoforms, α and βI, are involved in the ATP-induced regulation of VRAC and glutamate release in cultured astrocytes


    Rudkouskaya, Alena; Chernoguz, Artur; Haskew-Layton, Renée E.; Mongin, Alexander A.


    Volume-regulated anion channels (VRACs) are activated by cell swelling and are permeable to inorganic and small organic anions, including the excitatory amino acids glutamate and aspartate. In astrocytes, ATP potently enhances VRAC activity and glutamate release via a P2Y receptor-dependent mechanism. Our previous pharmacological study identified protein kinase C (PKC) as a major signaling enzyme in VRAC regulation by ATP. However, conflicting results obtained with potent PKC blockers prompte...

  10. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Bagge, Annika [Department of Science, Systems and Models, Roskilde University, Roskilde (Denmark); Clausen, Trine R. [Diabetes Biology, Novo Nordisk, Maaloev (Denmark); Larsen, Sylvester [Department of Science, Systems and Models, Roskilde University, Roskilde (Denmark); Ladefoged, Mette [Diabetes Biology, Novo Nordisk, Maaloev (Denmark); Rosenstierne, Maiken W. [Department of Science, Systems and Models, Roskilde University, Roskilde (Denmark); Department of Virology, Statens Serum Institut (Denmark); Larsen, Louise [Department of Biomedical Sciences, University of Copenhagen, Copenhagen (Denmark); Vang, Ole [Department of Science, Systems and Models, Roskilde University, Roskilde (Denmark); Nielsen, Jens H. [Department of Biomedical Sciences, University of Copenhagen, Copenhagen (Denmark); Dalgaard, Louise T., E-mail: [Department of Science, Systems and Models, Roskilde University, Roskilde (Denmark)


    Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cells and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.

  11. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    International Nuclear Information System (INIS)

    Highlights: ► MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. ► miR-29a increases proliferation of INS-1E beta-cells. ► Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). ► Depletion of beta-cell miR-29a improves GSIS. ► miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cells and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.

  12. Up-regulation of the integrin alpha 1/beta 1 in human neuroblastoma cells differentiated by retinoic acid: correlation with increased neurite outgrowth response to laminin.


    Rossino, P; P. Defilippi; Silengo, L; Tarone, G.


    Retinoic acid (RA) is known to induce differentiation of neuroblastoma cells in vitro. Here we show that treatment of two human neuroblastoma cell lines, SY5Y and IMR32, with RA resulted in a fivefold increase of the integrin alpha 1/beta 1 expression. The effect was selective because expression of the alpha 3/beta 1 integrin, also present in these cells, was not increased. The up-regulation of the alpha 1/beta 1 differentiated SY5Y cells correlated with increased neurite response to laminin....

  13. Conventional protein kinase C isoforms differentially regulate ADP- and thrombin-evoked Ca²⁺ signalling in human platelets. (United States)

    Lever, Robert A; Hussain, Azhar; Sun, Benjamin B; Sage, Stewart O; Harper, Alan G S


    -selective cation permeability of the plasma membrane as assessed by Mn(2+) quench of Fura-2 fluorescence. PKC inhibition was without effect on thrombin-evoked rises in [Ca(2+)]cyt following SERCA inhibition and either removal of extracellular Na(+) or inhibition of Na(+)/K(+)-ATPase activity by removal of extracellular K(+) or treatment with digoxin. These data suggest that PKC limits ADP-evoked rises in [Ca(2+)]cyt by acceleration of SERCA activity, whilst rises in [Ca(2+)]cyt evoked by the stronger platelet activator thrombin are limited by PKC through acceleration of both SERCA and Na(+)/K(+)-ATPase activity, with the latter limiting the effect of thrombin on rises in [Na(+)]cyt and so forward mode NCX activity. The use of selective PKC inhibitors indicated that conventional and not novel PKC isoforms are responsible for the inhibition of agonist-evoked Ca(2+) signalling. PMID:26434503

  14. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer's disease. (United States)

    Jiao, Yanan; Kong, Liang; Yao, Yingjia; Li, Shaoheng; Tao, Zhenyu; Yan, Yuhui; Yang, Jingxian


    Accumulation of β-amyloid peptide (Aβ) in the brain plays an important role in the pathogenesis of Alzheimer's disease (AD). Although osthole has been shown to neuroprotective activity in AD, the exact molecular mechanism of its neuroprotective effects has not yet been fully elucidated. Recently, microRNAs (miRNAs) have been reported to regulate multiple aspects of AD development and progression, indicating that targeting miRNAs could be a novel strategy to treat AD. In the current study, we investigated whether a natural coumarin derivative osthole could up-regulate miR-107, resulting in facilitating the cells survival, reducing LDH leakage, inhibiting apoptosis and reducing beta amyloid (Aβ) production in AD. We found that osthole treatment significantly up-regulate miR-107 expression and inhibited BACE1, one of the targets of miR-107. Administration of osthole to APP/PS1 transgenic mice resulted in a significant improvement in learning and memory function, which was associated with a significant a decrease in Aβ in the hippocampal and cortex region of the brain. Our findings demonstrated that osthole plays a neuroprotective activity role in part through up-regulate miR-107 in AD. PMID:27143098

  15. Factor de crecimiento transformante beta-1: estructura, función y mecanismos de regulación en cáncer Transforming growth factor beta-1: structure, function and regulation mechanisms in cancer

    Directory of Open Access Journals (Sweden)

    Oscar Peralta-Zaragoza


    Full Text Available El factor de crecimiento transformante beta-1 (TGF-beta1 es sintetizado por muchas estirpes celulares como linfocitos, macrófagos y células dendríticas, y su expresión regula de manera autócrina o parácrina la diferenciación, proliferación y el estado de activación de éstas y muchas otras células. En general, el TGF-beta1 tiene propiedades pleiotrópicas en el contexto de la respuesta inmune durante el desarrollo de infecciones y procesos neoplásicos; sin embargo, los mecanismos de acción y regulación de la expresión de esta citocina aún no se comprenden del todo. En la presente revisión se describen las propiedades biológicas y los procesos moleculares que regulan la expresión del TGF-beta1, para entender los efectos de esta citocina durante la proliferación y la diferenciación celular. El conocimiento de los mecanismos moleculares de la regulación del TGF-beta1 puede representar una importante estrategia de tratamiento del cáncer. El texto completo en inglés de este artículo está disponible en: growth factor beta-1 (TGF-beta1 is produced by several cell lineages such as lymphocytes, macrophages, and dendritic cells, and its expression serves in both autocrine and paracrine modes to control the differentiation, proliferation, and state of activation of these and other cells. In general, TGF-beta1 has pleiotropic properties on the immune response during the development of infection diseases and cancer; however, the mechanisms of action and regulation of gene expression of this cytokine are poorly understood, In this review, the biological properties and the molecular mechanisms that regulate TGF-beta1 gene expression are described, to understand the role of this cytokine in growth and cell differentiation. The knowledge of molecular mechanisms of gene expression of TGF-beta1 may serve to develop new cancer therapies. The English version of this paper is available at:

  16. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy;


    OBJECTIVE: Cytokines contribute to pancreatic beta-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the...... expression of genes involved in the maintenance of beta-cell phenotype and growth/regeneration. Cytokines induced hypoxia-inducible factor-alpha, which in this context has a proapoptotic role. Cytokines also modified the expression of >20 genes involved in RNA splicing, and exon array analysis showed...... cytokine-induced changes in alternative splicing of >50% of the cytokine-modified genes. CONCLUSIONS: The present study doubles the number of known genes expressed in primary beta-cells, modified or not by cytokines, and indicates the biological role for several novel cytokine-modified pathways in beta...

  17. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Tasneem; Opie, Lionel H. [Hatter Cardiovascular Research Institute, Faculty of Health Sciences, University of Cape Town, Observatory 7925 (South Africa); Essop, M. Faadiel, E-mail: [Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600 (South Africa)


    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.

  18. beta-Casein mRNA sequesters a single-stranded nucleic acid-binding protein which negatively regulates the beta-casein gene promoter.


    Altiok, S; Groner, B


    beta-Casein gene expression in mammary epithelial cells is under the control of the lactogenic hormones, glucocorticoids, insulin, and prolactin. The hormonal control affects gene transcription, and several regulatory elements in the beta-casein gene promoter between positions -80 and -221 have previously been identified. A region located in the promoter between positions -170 and -221 contains overlapping sequences for negative and positive regulatory elements. A sequence-specific single-str...

  19. Connexin implication in the control of the murine beta-cell mass. (United States)

    Klee, Philippe; Lamprianou, Smaragda; Charollais, Anne; Caille, Dorothée; Sarro, Rossella; Cederroth, Manon; Haefliger, Jacques-Antoine; Meda, Paolo


    Diabetes develops when the insulin needs of peripheral cells exceed the availability or action of the hormone. This situation results from the death of most beta-cells in type 1 diabetes, and from an inability of the beta-cell mass to adapt to increasing insulin needs in type 2 and gestational diabetes. We analyzed several lines of transgenic mice and showed that connexins (Cxs), the transmembrane proteins that form gap junctions, are implicated in the modulation of the beta-cell mass. Specifically, we found that the native Cx36 does not alter islet size or insulin content, whereas the Cx43 isoform increases both parameters, and Cx32 has a similar effect only when combined with GH. These findings open interesting perspectives for the in vitro and in vivo regulation of the beta-cell mass. PMID:21527868

  20. Characterization of a Novel Cardiac Isoform of the Cell Cycle-related Kinase That Is Regulated during Heart Failure*S⃞


    Qiu, Hongyu; Dai, Huacheng; Jain, Komal; Shah, Rina; Hong, Chull; Pain, Jayashree; Tian, Bin; Vatner, Dorothy E.; Vatner, Stephen F.; Depre, Christophe


    Myocardial infarction (MI) is often followed by heart failure (HF), but the mechanisms precipitating the transition to HF remain largely unknown. A genomic profile was performed in a monkey model of MI, from the myocardium adjacent to chronic (2-month) MI followed by 3 weeks of pacing to develop HF. The transcript of the gene encoding the cell cycle-related kinase (CCRK) was down-regulated by 50% in HF heart compared with control (p < 0.05), which was confirmed by quan...

  1. Staged stromal extracellular 3D matrices differentially regulate breast cancer cell responses through PI3K and beta1-integrins

    International Nuclear Information System (INIS)

    Interactions between cancer cells and stroma are critical for growth and invasiveness of epithelial tumors. The biochemical mechanisms behind tumor-stromal interactions leading to increased invasiveness and metastasis are mostly unknown. The goal of this study was to analyze the direct effects of staged stroma-derived extracellular matrices on breast cancer cell behavior. Early and late three-dimensional matrices were produced by NIH-3T3 and tumor-associated murine fibroblasts, respectively. After removing fibroblasts, extracted matrices were re-cultured with breast epithelial cells of assorted characteristics: MCF-10A (non-tumorigenic), MCF-7 (tumorigenic, non-invasive), and MDA-MB-231 (tumorigenic, invasive). Effects prompted by staged matrices on epithelial cell's growth, morphology and invasion were determined. Also, matrix-induced velocity, directionality and relative track orientation of invasive cells were assessed in the presence or absence of inhibitors of phosphoinositide-3 kinase (PI3K) and/or beta-1 integrin. We observed that assorted breast epithelial cells reacted differently to two-dimensional vs. staged, control (early) and tumor-associated (late), three-dimensional matrices. MCF-10A had a proliferative advantage on two-dimensional substrates while MCF-7 and MDA-MB-231 showed no difference. MCF-10A and MCF-7 formed morphologically distinguishable aggregates within three-dimensional matrices, while MDA-MB-231 exhibited increased spindle-shape morphologies and directional movements within three-dimensional matrices. Furthermore, MDA-MB-231 acquired a pattern of parallel oriented organization within tumor-associated, but not control matrices. Moreover, tumor-associated matrices induced PI3K and beta1-integrin dependent Akt/PKB activity in MDA-MB-231 cells. Interestingly, beta1-integrin (but not PI3K) regulated tumor-associated matrix-induced mesenchymal invasion which, when inhibited, resulted in a change of invasive strategy rather than impeding

  2. Simultaneous stimulation of GABA and beta adrenergic receptors stabilizes isotypes of activated adenylyl cyclase heterocomplex

    Directory of Open Access Journals (Sweden)

    Robichon Alain


    Full Text Available Abstract Background We investigated how the synthesis of cAMP, stimulated by isoproterenol acting through β-adrenoreceptors and Gs, is strongly amplified by simultaneous incubation with baclofen. Baclofen is an agonist of δ-aminobutyric acid type B receptors [GABAB], known to inhibit adenylyl cyclase via Gi. Because these agents have opposite effects on cAMP levels, the unexpected increase in cAMP synthesis when they are applied simultaneously has been intensively investigated. From previous reports, it appears that cyclase type II contributes most significantly to this phenomenon. Results We found that simultaneous application of isoproterenol and baclofen specifically influences the association/dissociation of molecules involved in the induction and termination of cyclase activity. Beta/gamma from [GABA]B receptor-coupled Gi has a higher affinity for adenylyl cyclase isoform(s when these isoforms are co-associated with Gs. Our data also suggest that, when beta/gamma and Gαs are associated with adenylyl cyclase isoform(s, beta/gamma from [GABA]B receptor-coupled Gi retards the GTPase activity of Gαs from adrenergic receptor. These reciprocal regulations of subunits of the adenylyl cyclase complex might be responsible for the drastic increase of cAMP synthesis in response to the simultaneous signals. Conclusions Simultaneous signals arriving at a particular synapse converge on molecular detectors of coincidence and trigger specific biochemical events. We hypothesize that this phenomenon comes from the complex molecular architectures involved, including scaffolding proteins that make reciprocal interactions between associated molecules possible. The biochemistry of simultaneous signaling is addressed as a key to synaptic function.

  3. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A., E-mail:


    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  4. Proinsulin C-peptide antagonizes the profibrotic effects of TGF-beta1 via up-regulation of retinoic acid and HGF-related signaling pathways. (United States)

    Hills, Claire E; Willars, Gary B; Brunskill, Nigel J


    Novel signaling roles for C-peptide have recently been discovered with evidence that it can ameliorate complications of type 1 diabetes. Here we sought to identify new pathways regulated by C-peptide of relevance to the pathophysiology of diabetic nephropathy. Microarray analysis was performed to identify genes regulated by either C-peptide and/or TGF-beta1 in a human proximal tubular cell line, HK-2. Expression of retinoic acid receptor beta (RARbeta), hepatocyte growth factor (HGF), cellular retinoic acid-binding protein II (CRABPII), vimentin, E-cadherin, Snail, and beta-catenin was assessed by immunoblotting. The cellular localization of vimentin and beta-catenin was determined by immunocytochemistry. Changes in cell morphology were assessed by phase contrast microscopy. Gene expression profiling demonstrated differential expression of 953 and 1458 genes after C-peptide exposure for 18 h or 48 h, respectively. From these, members of the antifibrotic retinoic acid (RA)- and HGF-signaling pathways were selected. Immunoblotting demonstrated that C-peptide increased RARbeta, CRABPII, and HGF. We confirmed a role for RA in reversal of TGF-beta1-induced changes associated with epithelial-mesenchymal transition, including expression changes in Snail, E-cadherin, vimetin, and redistribution of beta-catenin. Importantly, these TGF-beta1-induced changes were inhibited by C-peptide. Further, effects of TGF-beta1 on Snail and E-cadherin expression were blocked by HGF, and inhibitory effects of C-peptide were removed by blockade of HGF activity. This study identifies a novel role for HGF as an effector of C-peptide, possibly via an RA-signaling pathway, highlighting C-peptide as a potential therapy for diabetic nephropathy. PMID:20197308

  5. The Implication and Significance of Beta 2 Microglobulin: A Conservative Multifunctional Regulator

    Institute of Scientific and Technical Information of China (English)

    Ling Li; Mei Dong; Xiao-Guang Wang


    Objective: This review focuses on the current knowledge on the implication and significance of beta 2 microglobulin (β2M), a conservative immune molecule in vertebrate.Data Sources: The data used in this review were obtained from PubMed up to October 2015.Terms of β2M, immune response, and infection were used in the search.Study Selections: Articles related to β2M were retrieved and reviewed.Articles focusing on the characteristic and function of β2M were selected.The exclusion criteria of articles were that the studies on β2M-related molecules.Results: β2M is critical for the immune surveillance and modulation in vertebrate animals.The dysregulation of β2M is associated with multiple diseases, including endogenous and infectious diseases.β2M could directly participate in the development of cancer cells, and the level of β2M is deemed as a prognostic marker for several malignancies.It also involves in forming major histocompatibility complex (MHC class Ⅰ or MHC Ⅰ) or like heterodimers, covering from antigen presentation to immune homeostasis.Conclusions: Based on the characteristic of β2M, it or its signaling pathway has been targeted as biomedical or therapeutic tools.Moreover, β2M is highly conserved among different species, and overall structures are virtually identical, implying the versatility of β2M on applications.

  6. Fibroblast interleukin 1 beta: synergistic stimulation by recombinant interleukin 1 and tumor necrosis factor and posttranscriptional regulation.


    Elias, J. A.; Reynolds, M M; Kotloff, R M; Kern, J A


    To understand the role fibroblasts play in mediating and amplifying the effects of inflammatory cytokines, we determined whether recombinant interleukin 1 (IL-1) and recombinant tumor necrosis factor (TNF), alone and in combination, stimulated fibroblasts to produce IL-1 beta. Recombinant IL-1 (alpha and beta) stimulated fibroblast IL-1 beta mRNA accumulation, whereas recombinant TNF did not. In addition, simultaneous stimulation with recombinant IL-1 (alpha or beta) and recombinant TNF resul...

  7. Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells. (United States)

    Gu, Yu-Chen; Kortesmaa, Jarkko; Tryggvason, Karl; Persson, Jenny; Ekblom, Peter; Jacobsen, Sten-Eirik; Ekblom, Marja


    Laminins are alphabetagamma heterotrimeric extracellular proteins that regulate cellular functions by adhesion to integrin and nonintegrin receptors. Laminins containing alpha4 and alpha5 chains are expressed in bone marrow, but their interactions with hematopoietic progenitors are unknown. We studied human bone marrow cell adhesion to laminin-10/11 (alpha5beta1gamma1/alpha5beta2gamma1), laminin-8 (alpha4beta1gamma1), laminin-1 (alpha1beta1gamma1), and fibronectin. About 35% to 40% of CD34(+) and CD34(+)CD38(-) stem and progenitor cells adhered to laminin-10/11, and 45% to 50% adhered to fibronectin, whereas they adhered less to laminin-8 and laminin-1. Adhesion of CD34(+)CD38(-) cells to laminin-10/11 was maximal without integrin activation, whereas adhesion to other proteins was dependent on protein kinase C activation by 12-tetradecanoyl phorbol-13-acetate (TPA). Fluorescence-activated cell-sorting (FACS) analysis showed expression of integrin alpha6 chain on most CD34(+) and CD34(+)CD38(-) cells. Integrin alpha6 and beta1 chains were involved in binding of both cell fractions to laminin-10/11 and laminin-8. Laminin-10/11 was highly adhesive to lineage-committed myelomonocytic and erythroid progenitor cells and most lymphoid and myeloid cell lines studied, whereas laminin-8 was less adhesive. In functional assays, both laminin-8 and laminin-10/11 facilitated stromal-derived factor-1alpha (SDF-1alpha)-stimulated transmigration of CD34(+) cells, by an integrin alpha6 receptor-mediated mechanism. In conclusion, we demonstrate laminin isoform-specific adhesive interactions with human bone marrow stem, progenitor, and more differentiated cells. The cell-adhesive laminins affected migration of hematopoietic progenitors, suggesting a physiologic role for laminins during hematopoiesis. PMID:12393739

  8. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution

    DEFF Research Database (Denmark)

    Aachmann-Andersen, Niels Jacob; Just Christensen, Søren; Lisbjerg, Kristian;


    The membrane-assisted isoform immunoassay (MAIIA) quantitates erythropoietin (EPO) isoforms as percentages of migrated isoforms (PMI). We evaluated the effect of recombinant human EPO (rhEPO) on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross......-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13); high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13); or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N......-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3) % (mean (SD)). High-dose Epoetin beta decreased PMI on...

  9. Regulation of the cellulolytic system in Trichoderma reesei by sophorose: induction of cellulase and repression of beta-glucosidase.


    Sternberg, D; Mandels, G. R.


    Sophorose has two regulatory roles in the production of cellulase enzymes in Trichoderma reesei: beta-glucosidase repression and cellulase induction. Sophorose also is hydrolyzed by the mycelial-associated beta-glucosidase. Repression of beta-glucosidase reduces sophorose hydrolysis and thus may increase cellulase induction.

  10. Data on CUX1 isoforms in idiopathic pulmonary fibrosis lung and systemic sclerosis skin tissue sections. (United States)

    Ikeda, Tetsurou; Fragiadaki, Maria; Shi-Wen, Xu; Ponticos, Markella; Khan, Korsa; Denton, Christopher; Garcia, Patricia; Bou-Gharios, George; Yamakawa, Akio; Morimoto, Chikao; Abraham, David


    This data article contains complementary figures related to the research article entitled, "Transforming growth factor-β-induced CUX1 isoforms are associated with fibrosis in systemic sclerosis lung fibroblasts" (Ikeda et al. (2016) [2],, which presents that TGF-β increased CUX1 binding in the proximal promoter and enhancer of the COL1A2 and regulated COL1. Further, in the scleroderma (SSc) lung and diffuse alveolar damage lung sections, CUX1 localized within the α- smooth muscle actin (α-SMA) positive cells (Fragiadaki et al., 2011) [1], "High doses of TGF-beta potently suppress type I collagen via the transcription factor CUX1" (Ikeda et al., 2016) [2]. Here we show that CUX1 isoforms are localized within α-smooth muscle actin-positive cells in SSc skin and idiopathic pulmonary fibrosis (IPF) lung tissue sections. In particular, at the granular and prickle cell layers in the SSc skin sections, CUX1 and α-SMA are co-localized. In addition, at the fibrotic loci in the IPF lung tissue sections, CUX1 localized within the α-smooth muscle actin (α-SMA) positive cells. PMID:27583344

  11. Negative regulation of TGF-beta-induced Foxp3 expression in alloantigen-activated mouse CD4+ and CD8+ T cells by IL-4 and IL-12

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Frič, Jan; Pokorná, Kateřina; Neuwirth, Aleš; Krulová, Magdalena; Zajícová, Alena

    Rio de Janeiro : Brazílie, 2007. ---. [International Congress of Immunology /13./. 21.08.2007-25.08.2007, Rio de Janeiro] Institutional research plan: CEZ:AV0Z50520514 Keywords : TGF-beta * Foxp3 * interleukin * negative regulation Subject RIV: EB - Genetics ; Molecular Biology

  12. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    International Nuclear Information System (INIS)

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erbβΔE in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erbβΔE expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erbβ siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erbβ expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erbβ was recruited to the Srebp-1c promoter. Moreover, Rev-erbβ trans-activated the Srebp-1c promoter, in contrast, Rev-erbβ efficiently repressed the Rev-erbα promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erbβ; and (ii) increased Rev-erbβ and Srebp-1c mRNA expression. These data suggest that Rev-erbβ has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  13. Labisia pumila extract down-regulates hydroxysteroid (11-beta) dehydrogenase 1 expression and corticosterone levels in ovariectomized rats. (United States)

    Fazliana, Mansor; Gu, Harvest F; Östenson, Claes-Göran; Yusoff, Mashitah Mohd; Wan Nazaimoon, W M


    We evaluated the effects of a standardized Labisia pumila var. alata (LPva) extract on body weight change, hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1) expressions and corticosterone (CORT) level in ovariectomized (OVX) rats. The decoction of LPva has been used for generations among Malay women in Malaysia to maintain a healthy reproductive system.Thirty-six Sprague-Dawley OVX rats were treated orally with LPva extract (10, 20 or 50 mg/kg/day) or estrogen replacement (ERT) for 30 days. Sham operated rats were used as controls. Compared to untreated OVX rats, LPva-treated rats showed less weight gain and had significantly down-regulated HSD11B1 mRNA in liver tissues. HSD11B1 mRNA in adipose tissues increased by 55% (p rats but normalized in rats treated with LPva. Similarly, there was significant down-regulation (p rats. This is the first study ever conducted to evaluate the beneficial effects of LPva in relation to weight gain caused by estrogen insufficiency. Results implied that the bioactive components in LPva extract affect not only HSD11B1 expressions in both adipose and liver tissues but also decrease circulating CORT. The extract should be explored for its potential use as a natural remedy for weight management. PMID:21833773

  14. A novel functional rabbit IL- 7 isoform


    Siewe, Basile T.; Kalis, Susan L.; Esteves, Pedro J; Zhou, Tong; Knight, Katherine L.


    IL-7 is required for B cell development in mouse and is a key regulator of T cell development and peripheral T cell homeostasis in mouse and human. Recently, we found that IL-7 is expressed in rabbit bone marrow and in vitro, is required for differentiation of lymphoid progenitors to B and T lineage cells. Herein, we report the identification of a novel rabbit IL-7 isoform, IL-7II. Recombinant IL-7II (rIL-7II) binds lymphocytes via the IL-7R and induces phosphorylation of STAT5. Further, rIL-...

  15. Isolation and characterization of the lacA gene encoding beta-galactosidase in Bacillus subtilis and a regulator gene, lacR.


    Daniel, R.A.; Haiech, J.; Denizot, F; Errington, J


    We have isolated transposon insertions in the lacA gene encoding an endogenous beta-galactosidase of Bacillus subtilis. Upstream of the putative operon containing lacA is a negative regulator, lacR, which encodes a product related to a family of regulators that includes the lactose repressor, lacI, of Escherichia coli. New strains with insertions in the lacA gene should be of use in studies using lacZ fusions in B. subtilis.

  16. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1. (United States)

    Brozic, P; Lanisnik Risner, T; Gobec, S


    Carcinogenesis of hormone-related cancers involves hormone-stimulated cell proliferation, which increases the number of cell divisions and the opportunity for random genetic errors. In target tissues, steroid hormones are interconverted between their potent, high affinity forms for their respective receptors and their inactive, low affinity forms. One group of enzymes responsible for these interconversions are the hydroxysteroid dehydrogenases, which regulate ligand access to steroid receptors and thus act at a pre-receptor level. As part of this group, the 17beta-hydroxysteroid dehydrogenases catalyze either oxidation of hydroxyl groups or reduction of keto groups at steroid position C17. The thoroughly characterized 17beta-hydroxysteroid dehydrogenase type 1 activates the less active estrone to estradiol, a potent ligand for estrogen receptors. This isoform is expressed in gonads, where it affects circulating levels of estradiol, and in peripheral tissue, where it regulates ligand occupancy of estrogen receptors. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 are thus highly interesting potential therapeutic agents for the control of estrogen-dependent diseases such as endometriosis, as well as breast and ovarian cancers. Here, we present the review on the recent development of inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 published and patented since the previous review of 17beta-hydroxysteroid dehydrogenase inhibitors of Poirier (Curr. Med. Chem., 2003, 10, 453). These inhibitors are divided into two separate groups according to their chemical structures: steroidal and non-steroidal 17beta-hydroxysteroid dehydrogenase type 1 inhibitors. Their estrogenic/ proliferative activities and selectivities over other 17beta-hydroxysteroid dehydrogenases that are involved in local regulation of estrogen action (types 2, 7 and 12) are also presented. PMID:18220769

  17. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes. (United States)

    Wu, I; Shin, S C; Cao, Y; Bender, I K; Jafari, N; Feng, G; Lin, S; Cidlowski, J A; Schleimer, R P; Lu, N Z


    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids. PMID:23303127

  18. Thymosin beta 4 expression and nuclear transport are regulated by hMLH1

    International Nuclear Information System (INIS)

    For hMLH1, a key enzyme of DNA mismatch repair and frequently mutated in human cancers, several additional functions have been suggested. We now identified Thymosin β4 (Tβ4), an actin-binding and cell motility regulating protein, by bacterial two-hybrid screening. Interaction was confirmed by coimmunoprecipitation. Tβ4 was weakly expressed in the hMLH1-deficient cell lines 293T and HCT-116. Reconstitution of hMLH1 resulted in strong expression of Tβ4. Confocal laser microscopy revealed nuclear colocalization of both proteins. Reconstitution with hMLH1 mutants lacking a functional nuclear localization sequence resulted in cytoplasmatic retention of both proteins. After Tβ4- or hMLH1-siRNA treatment, cell migration of hMLH1-proficient cells was markedly decreased. Our results show that hMLH1 interacts with Tβ4 and regulates its expression and nuclear transport. Moreover, loss of hMLH1 causes Tβ4 deprivation and results in reduced migratory activity in vitro. These data give insight into novel functions of hMLH1 and probably disease related dysregulated mechanisms

  19. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    DEFF Research Database (Denmark)

    Naik, M U; Benedikz, Eirikur; Hernandez, I;


    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region of......, protein kinase Mzeta (PKMzeta). In this study, we used immunoblot and immunocytochemical techniques with isoform-specific antisera to examine the distribution of the complete family of PKC isozymes and PKMzeta in rat brain. Each form of PKC showed a widespread distribution in the brain with a distinct...

  20. Altered Alpha-Synuclein, Parkin, and Synphilin Isoform Levels in Multiple System Atrophy Brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Bredo Rasmussen, Nadja;


    -1 isoforms. In MSA brains, alpha-synuclein140 and alpha-synuclein112 isoform levels were significantly increased,whereas levels of the alpha-synuclein126 isoform were decreased in the substantia nigra, striatum, cerebellar cortex, and nucleus dentatus vs. CONTROLS: Moreover, in MSA cases, we showed...... increased levels of parkin isoforms lacking the N-terminal ubiquitin-like domain and an aggregation-prone synphiln-1A isoform that causes neuronal toxicity in MSA. In PD brains, Parkin transcript variant 3, 7 and 11 were significantly and specifically overexpressed in the striatum and cerebellar cortex......, together with synphilin-1A and 1C. The changes of isoform expression profiles in neurodegenerative diseases suggest alterations in the regulation of transcription and/or splicing events, leading to regional/cellular events that may be important for the highly increased aggregation of alpha-synuclein in the...

  1. Development of isoform-specific sensors of polypeptide GalNAc-transferase activity

    DEFF Research Database (Denmark)

    Song, Lina; Bachert, Collin; Schjoldager, Katrine T; Clausen, Henrik; Linstedt, Adam D


    Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms...

  2. Differential roles of PML isoforms

    Directory of Open Access Journals (Sweden)



    Full Text Available The tumor suppressor promyelocytic leukemia protein (PML is fused to the retinoic acid receptor alpha in patients suffering from acute promyelocytic leukemia (APL. Treatment of APL patients with arsenic trioxide (As2O3 reverses the disease phenotype by a process involving the degradation of the fusion protein via its PML moiety. Several PML isoforms are generated from a single PML gene by alternative splicing. They share the same N-terminal region containing the RBCC/TRIM motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. Here, we review the nomenclature and structural organization of the PML isoforms in order to clarify the various designations and classifications found in different databases. The functions of the PML isoforms and their differential roles in antiviral defense also are reviewed. Finally, the key players involved in the degradation of the PML isoforms in response to As2O3 or other inducers are discussed.

  3. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W;


    function-inhibiting antibodies, we provide evidence that LN5 and its two integrin receptors (alpha6beta4 and alpha3beta1) appear necessary for wound healing to occur in MCF-10A cell culture wounds. We propose a model for healing of wounded epithelial tissues based on these results....... epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix of...... cover the wound site. A similar phenomenon is observed in human skin wounds, since we also detect expression of the unprocessed alpha3 laminin subunit at the leading tip of the sheet of epidermal cells that epithelializes skin wounds in vivo. In addition, using alpha3 laminin subunit and integrin...

  4. Phytoestrogens regulate mRNA and protein levels of guanine nucleotide-binding protein, beta-1 subunit (GNB1) in MCF-7 cells. (United States)

    Naragoni, Srivatcha; Sankella, Shireesha; Harris, Kinesha; Gray, Wesley G


    Phytoestrogens (PEs) are non-steroidal ligands, which regulate the expression of number of estrogen receptor-dependent genes responsible for a variety of biological processes. Deciphering the molecular mechanism of action of these compounds is of great importance because it would increase our understanding of the role(s) these bioactive chemicals play in prevention and treatment of estrogen-based diseases. In this study, we applied suppression subtractive hybridization (SSH) to identify genes that are regulated by PEs through either the classic nuclear-based estrogen receptor or membrane-based estrogen receptor pathways. SSH, using mRNA from genistein (GE) treated MCF-7 cells as testers, resulted in a significant increase in GNB1 mRNA expression levels as compared with 10 nM 17beta estradiol or the no treatment control. GNB1 mRNA expression was up regulated two- to fivefold following exposure to 100.0 nM GE. Similarly, GNB1 protein expression was up regulated 12- to 14-fold. GE regulation of GNB1 was estrogen receptor-dependent, in the presence of the anti-estrogen ICI-182,780, both GNB1 mRNA and protein expression were inhibited. Analysis of the GNB1 promoter using ChIP assay showed a PE-dependent association of estrogen receptor alpha (ERalpha) and beta (ERbeta) to the GNB1 promoter. This association was specific for ERalpha since association was not observed when the cells were co-incubated with GE and the ERalpha antagonist, ICI. Our data demonstrate that the levels of G-protein, beta-1 subunit are regulated by PEs through an estrogen receptor pathway and further suggest that PEs may control the ratio of alpha-subunit to beta/gamma-subunits of the G-protein complex in cells. J. Cell. Physiol. 219: 584-594, 2009. (c) 2009 Wiley-Liss, Inc. PMID:19170076

  5. Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes.


    Rocha-Singh, K J; Honbo, N Y; Karliner, J S


    We explored the effects of two components of ischemia, hypoxia and glucose deprivation, on the beta-adrenergic receptor (beta AR)-adenylate cyclase system in a model of hypoxic injury in cultured neonatal rat ventricular myocytes. After 2 h of hypoxia in the presence of 5 mM glucose, cell surface beta AR density (3H-CGP-12177) decreased from 54.8 +/- 8.4 to 39 +/- 6.3 (SE) fmol/mg protein (n = 10, P less than 0.025), while cytosolic beta AR density (125I-iodocyanopindolol [ICYP]) increased by...

  6. Design, synthesis, and structure-activity analysis of isoform-selective retinoic acid receptor ß ligands

    DEFF Research Database (Denmark)

    Lund, Birgitte W.; Knapp, Anne Eeg; Piu, Fabrice;


    We recently discovered the isoform selective RAR beta 2 ligand 4'-octyl-4-biphenylcarboxylic acid (3, AC-55649). Although 3 is highly potent at RAR beta 2 and displays excellent selectivity, solubility issues make it unsuitable for drug development. Herein we describe the exploration of the SAR in...

  7. Isolation and characterization of beta-glucan synthase: A potential biochemical regulator of gravistimulated differential cell wall loosening (United States)

    Kuzmanoff, K. M.


    In plants, gravity stimulates differential growth in the upper and lower halves of horizontally oriented organs. Auxin regulation of cell wall loosening and elongation is the basis for most models of this phenomenon. Auxin treatment of pea stem tissue rapidly increases the activity of Golgi-localized Beta-1,4-glucan synthase, an enzyme involved in biosynthesis of wall xyloglucan which apparently constitutes the substrate for the wall loosening process. The primary objective is to determine if auxin induces de novo formation of Golgi glucan synthase and increases the level of this glucan synthase mRNA. This shall be accomplished by (a) preparation of a monoclonal antibody to the synthase, (b) isolation, and characterization of the glucan synthase, and (c) examination for cross reactivity between the antibody and translation products of auxin induced mRNAs in pea tissue. The antibody will also be used to localize the glucan synthase in upper and lower halves of pea stem tissue before, during and after the response to gravity.

  8. Follicle-stimulating hormone (FSH activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization

    Directory of Open Access Journals (Sweden)

    Crepieux Pascale


    Full Text Available Abstract Background The follicle-stimulating hormone receptor (FSH-R is a seven transmembrane spanning receptor (7TMR which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK. However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418 dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418 construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH.

  9. Susceptibility of pancreatic beta cells to fatty acids is regulated by LXR/PPARalpha-dependent stearoyl-coenzyme A desaturase.

    Directory of Open Access Journals (Sweden)

    Karine H Hellemans

    Full Text Available Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARalpha-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRbeta(-/- and LXRalphabeta(-/-, beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARalpha agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARalpha agonists favors their desaturation and subsequent incorporation in neutral lipids.

  10. Integrin alpha1beta1 regulates epidermal growth factor receptor activation by controlling peroxisome proliferator-activated receptor gamma-dependent caveolin-1 expression. (United States)

    Chen, Xiwu; Whiting, Carrie; Borza, Corina; Hu, Wen; Mont, Stacey; Bulus, Nada; Zhang, Ming-Zhi; Harris, Raymond C; Zent, Roy; Pozzi, Ambra


    Integrin alpha1beta1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin alpha1beta1-mediated EGFR activation. Integrin alpha1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin alpha1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin alpha1-null MCs decreases EGFR-mediated ROS production. We further show that integrin alpha1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARgamma or inhibition of ERK increases Cav-1 levels in the integrin alpha1-null MCs. Finally, we show that glomeruli of integrin alpha1-null mice have reduced levels of Cav-1 and activated PPARgamma but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin alpha1beta1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARgamma axis plays a key role in regulating integrin alpha1beta1-dependent Cav-1 expression and consequent EGFR-mediated ROS production. PMID:20368353

  11. Exo70 Isoform Switching upon Epithelial-Mesenchymal Transition Mediates Cancer Cell Invasion (United States)

    Lu, Hezhe; Liu, Jianglan; Liu, Shujing; Zeng, Jingwen; Ding, Deqiang; Carstens, Russ P.; Cong, Yusheng; Xu, Xiaowei; Guo, Wei


    Summary Epithelial-mesenchymal transition (EMT) is an important developmental process hijacked by cancer cells for their dissemination. Here we show that Exo70, a component of the exocyst complex, undergoes isoform switching mediated by ESRP1, a pre-mRNA splicing factor that regulates EMT. Expression of the epithelial isoform of Exo70 affects the levels of key EMT transcriptional regulators such as Snail and ZEB2, and is sufficient to drive the transition to epithelial phenotypes. Differential Exo70 isoforms expression in human tumors correlates with cancer progression, and increased expression of the epithelial isoform of Exo70 inhibits tumor metastasis in mice. At the molecular level, the mesenchymal but not the epithelial isoform of Exo70 interacts with the Arp2/3 complex and stimulates actin polymerization for tumor invasion. Our findings provide a mechanism by which the exocyst function and actin dynamics are modulated for EMT and tumor invasion. PMID:24331928

  12. Vitamin E Isoforms as Modulators of Lung Inflammation

    Directory of Open Access Journals (Sweden)

    Hiam Abdala-Valencia


    Full Text Available Asthma and allergic diseases are complex conditions caused by a combination of genetic and environmental factors. Clinical studies suggest a number of protective dietary factors for asthma, including vitamin E. However, studies of vitamin E in allergy commonly result in seemingly conflicting outcomes. Recent work indicates that allergic inflammation is inhibited by supplementation with the purified natural vitamin E isoform α-tocopherol but elevated by the isoform γ-tocopherol when administered at physiological tissue concentrations. In this review, we discuss opposing regulatory effects of α-tocopherol and γ-tocopherol on allergic lung inflammation in clinical trials and in animal studies. A better understanding of the differential regulation of inflammation by isoforms of vitamin E provides a basis towards the design of clinical studies and diets that would effectively modulate inflammatory pathways in lung disease.

  13. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Brandt, Berenice [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Wuensch, Annegret [Institute of Molecular Animal Breeding and Biotechnology, Ludwig Maximilians University, Munich (Germany); Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Albrecht, Martin, E-mail: [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany)


    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined

  14. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF


    Worm, Jesper; Stenvang, Jan; Petri, Andreas; Frederiksen, Klaus Stensgaard; Obad, Susanna; Elmén, Joacim; Hedtjärn, Maj; Straarup, Ellen Marie; Hansen, Jens Bo; Kauppinen, Sakari


    microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155 and that the transcription factor c/ebp Beta is a direct target of miR-155. Interestingly, expression profiling of LPS-stimulated macrophages combined with overexpression and silencing of miR-155 in murine ...

  15. Structure of the iSH2 domain of Human phosphatidylinositol 3-kinase p85 beta Subunit Reveals Conformational Plasticity in the Interhelical Turn Region

    Energy Technology Data Exchange (ETDEWEB)

    C Schauder; L Ma; R Krug; G Montelione; R Guan


    Phosphatidylinositol 3-kinase (PI3K) proteins actively trigger signaling pathways leading to cell growth, proliferation and survival. These proteins have multiple isoforms and consist of a catalytic p110 subunit and a regulatory p85 subunit. The iSH2 domain of the p85 {beta} isoform has been implicated in the binding of nonstructural protein 1 (NS1) of influenza A viruses. Here, the crystal structure of human p85 {beta} iSH2 determined to 3.3 {angstrom} resolution is reported. The structure reveals that this domain mainly consists of a coiled-coil motif. Comparison with the published structure of the bovine p85 {beta} iSH2 domain bound to the influenza A virus nonstructural protein 1 indicates that little or no structural change occurs upon complex formation. By comparing this human p85 {beta} iSH2 structure with the bovine p85 {beta} iSH2 domain, which shares 99% sequence identity, and by comparing the multiple conformations observed within the asymmetric unit of the bovine iSH2 structure, it was found that this coiled-coil domain exhibits a certain degree of conformational variability or 'plasticity' in the interhelical turn region. It is speculated that this plasticity of p85 {beta} iSH2 may play a role in regulating its functional and molecular-recognition properties.

  16. Developmental and environmental regulation of a phenylalanine ammonia-lyase-beta-glucuronidase gene fusion in transgenic tobacco plants.


    Liang, X W; Dron, M; J. Schmid; Dixon, R. A.; Lamb, C J


    A 1.1-kilobase promoter fragment of the bean (Phaseolus vulgaris L.) phenylalanine ammonia-lyase (EC gene PAL2 was translationally fused to the beta-glucuronidase reporter gene and transferred to tobacco by Agrobacterium tumefaciens-mediated leaf disk transformation. The distribution of beta-glucuronidase activity in these transgenic plants is very similar to that of endogenous PAL2 transcripts in bean, with very high levels in petals; marked accumulation in anthers, stigmas, roots, ...

  17. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.


    Chassy, B. M.; Thompson, J.


    The lactose-phosphoenolpyruvate-dependent phosphotransferase system (lac-PTS) and beta-D-phosphogalactoside galactohydrolase (P-beta-gal) mediate the metabolism of lactose by Lactobacillus casei. Starved cells of L. casei contained a high intracellular concentration of phosphoenolpyruvate, and this endogenous energy reserve facilitated characterization of phosphotransferase system activities in physiologically intact cells. Data obtained from transport studies with whole cells and from in vit...

  18. Male-specific Fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains


    Dalton, Justin E.; Fear, Justin M.; Knott, Simon; Baker, Bruce S.; McIntyre, Lauren M.; Arbeitman, Michelle N.


    Background Drosophila melanogaster adult males perform an elaborate courtship ritual to entice females to mate. fruitless (fru), a gene that is one of the key regulators of male courtship behavior, encodes multiple male-specific isoforms (FruM). These isoforms vary in their carboxy-terminal zinc finger domains, which are predicted to facilitate DNA binding. Results By over-expressing individual FruM isoforms in fru-expressing neurons in either males or females and assaying the global transcri...

  19. Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of beta-arrestin using spot-immobilized peptide arrays. (United States)

    Baillie, George S; Adams, David R; Bhari, Narinder; Houslay, Thomas M; Vadrevu, Suryakiran; Meng, Dong; Li, Xiang; Dunlop, Allan; Milligan, Graeme; Bolger, Graeme B; Klussmann, Enno; Houslay, Miles D


    Beta2-ARs (beta2-adrenoceptors) become desensitized rapidly upon recruitment of cytosolic beta-arrestin. PDE4D5 (family 4 cAMP-specific phosphodiesterase, subfamily D, isoform 5) can be recruited in complex with beta-arrestin, whereupon it regulates PKA (cAMP-dependent protein kinase) phosphorylation of the beta2-AR. In the present study, we have used novel technology, employing a library of overlapping peptides (25-mers) immobilized on cellulose membranes that scan the entire sequence of beta-arrestin 2, to define the interaction sites on beta-arrestin 2 for binding of PDE4D5 and the cognate long isoform, PDE4D3. We have identified a binding site in the beta-arrestin 2 N-domain for the common PDE4D catalytic unit and two regions in the beta-arrestin 2 C-domain that confer specificity for PDE4D5 binding. Alanine-scanning peptide array analysis of the N-domain binding region identified severely reduced interaction with PDE4D5 upon R26A substitution, and reduced interaction upon either K18A or T20A substitution. Similar analysis of the beta-arrestin 2 C-domain identified Arg286 and Asp291, together with the Leu215-His220 region, as being important for binding PDE4D5, but not PDE4D3. Transfection with wild-type beta-arrestin 2 profoundly decreased isoprenaline-stimulated PKA phosphorylation of the beta2-AR in MEFs (mouse embryo fibroblasts) lacking both beta-arrestin 1 and beta-arrestin 2. This effect was negated using either the R26A or the R286A mutant form of beta-arrestin 2 or a mutant with substitution of an alanine cassette for Leu215-His220, which showed little or no PDE4D5 binding, but was still recruited to the beta2-AR upon isoprenaline challenge. These data show that the interaction of PDE4D5 with both the N- and C-domains of beta-arrestin 2 are essential for beta2-AR regulation. PMID:17288540

  20. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol-Hee [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Lee, Byung-Hoon [College of Pharmacy and Multiscreening Center for Drug Development, Seoul National University, Seoul 151-742 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of); Oh, Seon-Hee, E-mail: [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)


    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our

  1. Differences between disease-associated endoplasmic reticulum aminopeptidase 1 (ERAP1) isoforms in cellular expression, interactions with tumour necrosis factor receptor 1 (TNF-R1) and regulation by cytokines. (United States)

    Yousaf, N; Low, W Y; Onipinla, A; Mein, C; Caulfield, M; Munroe, P B; Chernajovsky, Y


    Endoplasmic reticulum aminopeptidase 1 (ERAP1) processes peptides for major histocompatibility complex (MHC) class I presentation and promotes cytokine receptor ectodomain shedding. These known functions of ERAP1 may explain its genetic association with several autoimmune inflammatory diseases. In this study, we identified four novel alternatively spliced variants of ERAP1 mRNA, designated as ΔExon-11, ΔExon-13, ΔExon-14 and ΔExon-15. We also observed a rapid and differential modulation of ERAP1 mRNA levels and spliced variants in different cell types pretreated with lipopolysaccharide (LPS). We have studied three full-length allelic forms of ERAP1 (R127-K528, P127-K528, P127-R528) and one spliced variant (ΔExon-11) and assessed their interactions with tumour necrosis factor receptor 1 (TNF-R1) in transfected cells. We observed variation in cellular expression of different ERAP1 isoforms, with R127-K528 being expressed at a much lower level. Furthermore, the cellular expression of full-length P127-K528 and ΔExon-11 spliced variant was enhanced significantly when co-transfected with TNF-R1. Isoforms P127-K528, P127-R528 and ΔExon-11 spliced variant associated with TNF-R1, and this interaction occurred in a region within the first 10 exons of ERAP1. Supernatant-derived vesicles from transfected cells contained the full-length and ectodomain form of soluble TNF-R1, as well as carrying the full-length ERAP1 isoforms. We observed marginal differences between TNF-R1 ectodomain levels when co-expressed with individual ERAP1 isoforms, and treatment of transfected cells with tumour necrosis factor (TNF), interleukin (IL)-1β and IL-10 exerted variable effects on TNF-R1 ectodomain cleavage. Our data suggest that ERAP1 isoforms may exhibit differential biological properties and inflammatory mediators could play critical roles in modulating ERAP1 expression, leading to altered functional activities of this enzyme. PMID:25545008

  2. Down-regulation of transforming growth factor beta-2 expression is associated with the reduction of cyclosporin induced gingival overgrowth in rats treated with roxithromycin: an experimental study

    Directory of Open Access Journals (Sweden)

    Aarestrup Fernando


    Full Text Available Abstract Background Gingival overgrowth (GO is a common side effect of the chronic use of cyclosporine (CsA, an immunosuppressant widely used to prevent rejection in transplant patients. Recent studies have reported elevated levels of specific cytokines in gingival overgrowth tissue, particularly TGF-beta, suggesting that this growth factor plays a role in the accumulation of extracellular matrix materials. The effectiveness of azithromycin, a macrolide antibiotic, in the regression of this undesirable side effect has also been demonstrated. Methods In this study, we created an experimental model for assessing the therapeutic effect of roxithromycin in GO and the expression of transforming growth factor beta (TGF-beta2 through immunohistochemistry. We used four groups of rats totaling 32 individuals. GO was induced during five weeks and drug treatment was given on the 6th week as follows: group 1 received saline; group 2 received CsA and was treated with saline on the 6th week; group 3 received CsA and, on the 6th week, ampicilin; and group 4 received CsA during 5 weeks and, on the 6th week, was treated with roxithromycin. Results The results demonstrated that roxithromycin treatment was effective in reducing cyclosporine-induced GO in rats. Both epithelial and connective tissue showed a decrease in thickness and a significant reduction in TGF-beta2 expression, with a lower number of fibroblasts, reduction in fibrotic areas and decrease in inflammatory infiltrate. Conclusion The present data suggest that the down-regulation of TGF-beta2 expression may be an important mechanism of action by which roxithromycin inhibits GO.

  3. Activation of antithrombin III isoforms by heparan sulphate glycosaminoglycans and other sulphated polysaccharides. (United States)

    Carlson, T H; Kolman, M R; Piepkorn, M


    Antithrombin III occurs naturally as two functionally distinct molecular species that differ in glycosylation at Asn135. Whereas the predominant, glycosylated isoform has high affinity for heparin, a quantitatively minor isoform lacking glycosylation at that site displays relatively higher affinity for both heparins and heparinoids. We characterized the ability of various sulphated polysaccharides to potentiate the rates of thrombin inhibition by the isoforms. High-molecular-weight dextran sulphate was the most effective of those studied, increasing thrombin inhibition by the higher-affinity antithrombin III isoform up to five-fold more efficiently than did heparin fractions with low-affinity for antithrombin III. In addition, dextran sulphate activated the higher-affinity isoform as much as twelve times more effectively than it did the lower-affinity isoform. Pentosan polysulphate was up to three-fold, and some heparan sulphate fractions up to two-fold, more effective with the higher, compared with the lower affinity, isoform. Heparan sulphate preparations less effectively increased the rate of thrombin inhibition than did the other low-affinity polysaccharides. Structure-function studies indicated positive correlations between activity and both polymer length and anionic group density of low-affinity sulphated polysaccharides. The observed effects of the heparan sulphates on this anticoagulant pathway, although of low potency, are consistent with the hypotheses that these substances naturally regulate blood homeostasis in vascular tissues and that much of this function may be mediated by the higher-affinity antithrombin III isoform. PMID:8589216

  4. Melatonin reduces LH, 17 beta-estradiol and induces differential regulation of sex steroid receptors in reproductive tissues during rat ovulation

    Directory of Open Access Journals (Sweden)

    Pinheiro Patrícia Fernanda F


    Full Text Available Abstract Background Melatonin is associated with direct or indirect actions upon female reproductive function. However, its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation. Methods Twenty-four adult Wistar rats, 60 days old (+/- 250 g were randomly divided into two groups. Control group (Co: received 0.9% NaCl 0.3 mL + 95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL: received vehicle + melatonin [100 μg/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by decapitation during the morning estrus at 4 a.m. Results Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-sulfatoximelatonin (STM was increased at the morning estrus. In addition, melatonin promoted differential regulation of the estrogen receptor (ER, progesterone receptor (PR, androgen receptor (AR and melatonin receptor (MTR along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were down-regulated in uterus tissue and only MT1R was up-regulated. Conclusions We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.

  5. Regulation of proliferation of embryonic heart mesenchyme: Role of transforming growth factor-beta 1 and the interstitial matrix

    International Nuclear Information System (INIS)

    Proliferation of atrioventricular cushion mesenchyme of the embryonic avian heart maintained in three-dimensional aggregate culture is stimulated by interaction with the interstitial matrix. Chicken serum or transforming growth factor-beta 1, which stimulates proliferation, induces matrix deposition in regions of the aggregate showing high labeling indices with tritiated thymidine. Dispersed heart mesenchyme interstitial matrix introduced into serum-free culture is incorporated into the aggregate and stimulates cellular proliferation similar to serum or transforming growth factor-beta 1. Proliferation is reversibly inhibited by the peptide Gly-Arg-Gly-Asp-Ser-Pro. It is suggested that transforming growth factor-beta 1 stimulates the production of interstitial matrix and that a sufficient stimulus for proliferation in this system is the presence of the matrix, which acts as the adhesive support for cellular anchorage

  6. Regulation of (1,3;1,4)-beta-D-glucan synthesis in developing endosperm of barley lys mutants

    DEFF Research Database (Denmark)

    Christensen, Ulla; Scheller, Henrik Vibe


    alleles lys5f and lys5g exerted pronounced effects on the cell wall with increased level of (1,3;1,4)-beta-D-glucan content. The low-starch high-(1,3;1,4)-beta-D-glucan phenotype was most pronounced in lys5f. Among the Cellulose Synthase-Like (CSL) gene members belonging to the families CSLF and CSLH...... suggests the presence of a sensing and signaling system in the cell wall, which in the case of the lys5 mutants caused a decreased transcript level in response to the increased (1,3;1,4)-beta-D-glucan levels. In the lys3a mutant we found a 1000-fold repression of the CSLF6 transcript throughout the whole...

  7. Inference of Isoforms from Short Sequence Reads (United States)

    Feng, Jianxing; Li, Wei; Jiang, Tao

    Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms (or splicing variants) is a difficult problem. Traditional experimental methods for this purpose are time consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective method to address this problem. Although the advantages of RNA-Seq over traditional methods in transcriptome analysis have been confirmed by many studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa reads) has remained computationally challenging. In this work, we propose a method to calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) information. We first formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the isoforms are known and infer novel isoforms from scratch. Our experimental tests on known mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is able to calculate the expression levels of isoforms with an accuracy comparable to the state-of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both simulated and real reads show that it achieves a good precision and sensitivity in inferring isoforms when given accurate exon-intron boundary, TSS and PAS information, especially for isoforms whose expression levels are significantly high.


    Aslanyan, E V; Kiroy, V N; Stoletniy, A S; Lazurenko, D M; Bahtin, O M; Minyaeva, N R; Kiroy, R I


    The ability to voluntary control severity of alpha- and beta-2 frequency bands in the parietal and frontal cortical areas was investigated at 17 volunteers using biofeedback. The impact of different personality traits on the effectiveness of control was evaluated. According to the data, it was easier task to decrease expression beta-2 frequency in the frontal cortex than to decline the power of alpha frequency in the parietal cortex. The effectiveness of voluntary control of brain activity is influenced by personality features as extraversion, psychoticism, neuroticism, mobility and steadiness of nerve processes, level of person anxiety. PMID:26263685

  9. Beta Thalassemia (United States)

    ... South Asian (Indian, Pakistani, etc.), Southeast Asian and Chinese descent. 1 Beta Thalassemia ßß Normal beta globin ... then there is a 25% chance with each pregnancy that their child will inherit two abnormal beta ...

  10. Role of p53 isoforms and aggregations in cancer. (United States)

    Kim, SeJin; An, Seong Soo A


    p53 is a master regulatory protein that is involved in diverse cellular metabolic processes such as apoptosis, DNA repair, and cell cycle arrest. The protective function of p53 (in its homotetrameric form) as a tumor suppressor is lost in more than 50% of human cancers.Despite considerable experimental evidence suggesting the presence of multiple p53 states, it has been difficult to correlate the status of p53 with cancer response to treatments and clinical outcomes, which suggest the importance of complex but essential p53 regulatory pathways.Recent studies have indicated that the expression pattern of p53 isoforms may play a crucial role in regulating normal and cancer cell fates in response to diverse stresses. The human TP53 gene encodes at least 12 p53 isoforms, which are produced in normal tissue through alternative initiation of translation, usage of alternative promoters, and alternative splicing. Furthermore, some researchers have suggested that the formation of mutant p53 aggregates may be associated with cancer pathogenesis due to loss-of function (LoF), dominant-negative (DN), and gain-of function (GoF) effects.As different isoforms or the aggregation state of p53 may influence tumorigenesis, this review aims to examine the correlation of p53 isoforms and aggregation with cancer. PMID:27368003

  11. Antagonistic functions of LMNA isoforms in energy expenditure and lifespan. (United States)

    Lopez-Mejia, Isabel C; de Toledo, Marion; Chavey, Carine; Lapasset, Laure; Cavelier, Patricia; Lopez-Herrera, Celia; Chebli, Karim; Fort, Philippe; Beranger, Guillaume; Fajas, Lluis; Amri, Ez Z; Casas, Francois; Tazi, Jamal


    Alternative RNA processing of LMNA pre-mRNA produces three main protein isoforms, that is, lamin A, progerin, and lamin C. De novo mutations that favor the expression of progerin over lamin A lead to Hutchinson-Gilford progeria syndrome (HGPS), providing support for the involvement of LMNA processing in pathological aging. Lamin C expression is mutually exclusive with the splicing of lamin A and progerin isoforms and occurs by alternative polyadenylation. Here, we investigate the function of lamin C in aging and metabolism using mice that express only this isoform. Intriguingly, these mice live longer, have decreased energy metabolism, increased weight gain, and reduced respiration. In contrast, progerin-expressing mice show increased energy metabolism and are lipodystrophic. Increased mitochondrial biogenesis is found in adipose tissue from HGPS-like mice, whereas lamin C-only mice have fewer mitochondria. Consistently, transcriptome analyses of adipose tissues from HGPS and lamin C-only mice reveal inversely correlated expression of key regulators of energy expenditure, including Pgc1a and Sfrp5. Our results demonstrate that LMNA encodes functionally distinct isoforms that have opposing effects on energy metabolism and lifespan in mammals. PMID:24639560

  12. Tropomyosin-binding properties modulate competition between tropomodulin isoforms. (United States)

    Colpan, Mert; Moroz, Natalia A; Gray, Kevin T; Cooper, Dillon A; Diaz, Christian A; Kostyukova, Alla S


    The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities. PMID:27091317

  13. Regulation of interleukin-1 beta production by glucocorticoids in human monocytes: the mechanism of action depends on the activation signal. (United States)

    Hurme, M; Siljander, P; Anttila, H


    Glucocorticoids are known to downregulate interleukin-1 beta production in monocytic cells by two different mechanims: direct inhibition of the gene transcription and destabilization of the preformed interleukin-1 beta mRNA. Now we have examined the effect of the nature of the monocyte activating signal on these two inhibitory mechanims. When human monocytes were preincubated with dexamethasone for 1 hour and then stimulated either with bacterial lipopolysaccharide or phorbol myristate, it was found that dexamethasone inhibited the lipopolysaccharide-induced interleukin-1 beta protein production, but the phorbol myristate-induced production was increased 3-10 fold. This difference was also seen at the mRNA level. When dexamethasone was added to the cultures 3 hours after the stimulators, it clearly decreased the interleukin-1 beta mRNA levels regardless of the stimulator used (although the effect was clearly weaker on the PMA-induced mRNA). Thus these data suggest that the phorbol myristate-induced signal (prolonged protein kinase C activation?) cannot be inhibited by prior incubation with dexamethasone and it also protects the induced mRNA for the degradative action of dexamethasone. PMID:1953785

  14. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549. (United States)

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei


    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  15. Subunit-specific sulphation of oligosaccharides relating to charge-heterogeneity in porcine lutrophin isoforms. (United States)

    Ujihara, M; Yamamoto, K; Nomura, K; Toyoshima, S; Demura, H; Nakamura, Y; Ohmura, K; Osawa, T


    Lutrophin (LH) consists of an array of isoforms with different charges and bioactivities. This study was undertaken to clarify specifically how oligosaccharides of alpha and beta subunits contribute to LH isoform charges. Porcine LH (pLH) was separated into four isoforms by isoelectric focusing (IEF), followed by subunit isolation. Their oligosaccharides were released by hydrazinolysis, labelled by reduction with NaB3H4, and fractionated by HPLC with a Mono Q column into five populations differing in the number of sulphate (S) and sialic acid (N) residues, designated as Neutral, N-1, S-1, S-N and S-2. Oligosaccharides were predominantly sulphated (S-1 and S-2) and infrequently sialylated (N-1 and S-N). Further analysis, including concanavalin A (Con A) affinity chromatography, desialylation, desulphation, sequential exoglycosidase digestion and methylation, clarified the structures of the acidic oligosaccharides. All were of the biantennary complex type. Their two peripheral branches were SO4-4GalNAc beta 1-4Glc-NAc and GalNAc beta 1-4GlcNAc or GlcNAc in S-1, SO4-4GalNAc beta 1-4GlcNAc and Sia alpha 2-6Gal beta 1-4GlcNAc in S-N, and (SO4-4GalNAc beta 1-4GlcNAc)2 in S-2 (where GalNAc is N-acetylgalactosamine and GlcNAc is N-acetylglucosamine). Ten percent of S-1 and of S-N had a bisecting GlcNAc residue. Sulphate residues occurred in nearly the same amount for both subunits; however, the alpha and beta subunits were sulphated differently. S-1 predominated in the alpha subunit, while S-1 and S-2 were major components in the beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1498420

  16. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line.


    Ball, R K; Friis, R R; Schoenenberger, C A; Doppler, W; Groner, B


    In order to study the hormonal regulation of gene expression in mammary epithelial cells, we isolated a prolactin-responsive cell clone, HC11, from the COMMA-1D mouse mammary epithelial cell line. Clone HC11 was selected as a unique example of a cloned mouse mammary epithelial cell which has no requirement for complex, exogenously added, extracellular matrix or co-cultivation with other cell types for the prolactin-dependent in vitro induction of the endogenous beta-casein gene by lactogenic ...

  17. Crystallization and Identification of the Glycosylated Moieties of Two Isoforms of the Main Allergen Hev b 2 and Preliminary X-ray Analysis of Two Polymorphs of Isoform ll

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes-Silva,D.; Mendoza-Hernandez, G.; Stojanoff, V.; Palomares, L.; Zenteno, E.; Torres-Larios, A.; Rodriguez-Romero, A.


    Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a {beta}-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content consisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoforms were crystallized by the hanging-drop vapor-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 {angstrom} were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 {angstrom}, {beta}= 113.6{sup o}. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.

  18. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Jun; Jiang, Li; Lue, Qingguo; Ke, Linqiu [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041 (China); Tong, Nanwei, E-mail: [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China)


    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  19. Regulation of 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase expression and activity in the hypophysectomized rat ovary: Interactions between the stimulatory effect of human chorionic gonadotropin and the luteolytic effect of prolactin

    International Nuclear Information System (INIS)

    The enzyme 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3 beta-HSD) catalyzes an obligatory step in the conversion of pregnenolone and other 5-ene-3 beta-hydroxysteroids into progesterone as well as precursors of all androgens and estrogens in the ovary. Since 3 beta-HSD is likely to be an important target for regulation by pituitary hormones, we have studied the effect of chronic treatment with LH (hCG), FSH, and PRL on ovarian 3 beta-HSD expression and activity in hypophysectomized adult female rats. Human CG (hCG) [10 IU, twice a day (bid)], ovine FSH (0.5 microgram, bid), and ovine PRL (1 mg, bid) were administered, singly or in combination, for a period of 10 days starting 15 days after hypophysectomy. In hypophysectomized rats, PRL exerted a potent inhibitory effect on all the parameters studied. In fact, PRL caused a 81% decrease in ovarian 3 beta-HSD mRNA content accompanied by a similar decrease in 3 beta-HSD activity and protein levels. In addition, ovarian weight decreased by 40% whereas serum progesterone fell dramatically from 1.92 nmol/liter to undetectable levels after treatment with PRL. Whereas hCG alone had only slight stimulatory effects on 3 beta-HSD mRNA, protein content and activity levels, treatment with the gonadotropin partially or completely reversed the potent inhibitory effects of oPRL on all the parameters measured. FSH, on the other hand, had no significant effect on 3 beta-HSD expression and activity. In situ hybridization experiments using the 35S-labeled rat ovary 3 beta-HSD cDNA probe show that the inhibitory effect of PRL is exerted primarily on luteal cell 3 beta-HSD expression and activity. On the other hand, it can be seen that hCG stimulates 3 beta-HSD mRNA accumulation in interstitial cells

  20. Expression of Two Novel Alternatively Spliced COL2A1 Isoforms During Chondrocyte Differentiation


    McAlinden, Audrey; Johnstone, Brian; Kollar, John; Kazmi, Najam; Hering, Thomas M.


    Alternative splicing of the type II procollagen gene (COL2A1) is developmentally-regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 n...

  1. Differential and Conditional Activation of PKC-Isoforms Dictates Cardiac Adaptation during Physiological to Pathological Hypertrophy


    Shaon Naskar; Kaberi Datta; Arkadeep Mitra; Kanchan Pathak; Ritwik Datta; Trisha Bansal; Sagartirtha Sarkar


    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week ...

  2. Learning-dependent gene expression of CREB1 isoforms in the molluscan brain

    Directory of Open Access Journals (Sweden)

    Hisayo Sadamoto


    Full Text Available Cyclic AMP-responsive element binding protein1 (CREB1 has multiple functions in gene regulation. Various studies have reported that CREB1-dependent gene induction is necessary for memory formation and long-lasting behavioral changes in both vertebrates and invertebrates. In the present study, we characterized Lymnaea CREB1 (LymCREB1 mRNA isoforms of spliced variants in the central nervous system (CNS of the pond snail Lymnaea stagnalis. Among these spliced variants, the three isoforms that code a whole LymCREB1 protein are considered to be the activators for gene regulation. The other four isoforms, which code truncated LymCREB1 proteins with no kinase inducible domain, are the repressors. For a better understanding of the possible roles of different LymCREB1 isoforms, the expression level of these isoform mRNAs was investigated by a real-time quantitative RT-PCR method. Further, we examined the changes in gene expression for all the isoforms in the CNS after conditioned taste aversion (CTA learning or backward conditioning as a control. The results showed that CTA learning increased LymCREB1 gene expression, but it did not change the activator/repressor ratio. Our findings showed that the repressor isoforms, as well as the activator ones, are expressed in large amounts in the CNS, and the gene expression of CREB1 isoforms appeared to be specific for the given stimulus. This was the first quantitative analysis of the expression patterns of CREB1 isoforms at the mRNA level and their association with learning behavior.

  3. Enhanced PKC beta II translocation and PKC beta II-RACK1 interactions in PKC epsilon-induced heart failure: a role for RACK1. (United States)

    Pass, J M; Gao, J; Jones, W K; Wead, W B; Wu, X; Zhang, J; Baines, C P; Bolli, R; Zheng, Y T; Joshua, I G; Ping, P


    Recent investigations have established a role for the beta II-isoform of protein kinase C (PKC beta II) in the induction of cardiac hypertrophy and failure. Although receptors for activated C kinase (RACKs) have been shown to direct PKC signal transduction, the mechanism through which RACK1, a selective PKC beta II RACK, participates in PKC beta II-mediated cardiac hypertrophy and failure remains undefined. We have previously reported that PKC epsilon activation modulates the expression of RACKs, and that altered epsilon-isoform of PKC (PKC epsilon)-RACK interactions may facilitate the genesis of cardiac phenotypes in mice. Here, we present evidence that high levels of PKC epsilon activity are commensurate with impaired left ventricular function (dP/dt = 6,074 +/- 248 mmHg/s in control vs. 3,784 +/- 269 mmHg/s in transgenic) and significant myocardial hypertrophy. More importantly, we demonstrate that high levels of PKC epsilon activation induce a significant colocalization of PKC beta II with RACK1 (154 +/- 7% of control) and a marked redistribution of PKC beta II to the particulate fraction (17 +/- 2% of total PKC beta II in control mice vs. 49 +/- 5% of total PKC beta II in hypertrophied mice), without compensatory changes of the other eight PKC isoforms present in the mouse heart. This enhanced PKC beta II activation is coupled with increased RACK1 expression and PKC beta II-RACK1 interactions, demonstrating PKC epsilon-induced PKC beta II signaling via a RACK1-dependent mechanism. Taken together with our previous findings regarding enhanced RACK1 expression and PKC epsilon-RACK1 interactions in the setting of cardiac hypertrophy and failure, these results suggest that RACK1 serves as a nexus for at least two isoforms of PKC, the epsilon-isoform and the beta II-isoform, thus coordinating PKC-mediated hypertrophic signaling. PMID:11709417

  4. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley


    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  5. Dysregulation of miRNA isoform level at 5' end in Alzheimer's disease. (United States)

    Wang, Shengqin; Xu, Yuming; Li, Musheng; Tu, Jing; Lu, Zuhong


    Alzheimer's disease (AD) is the most common form of dementia, whose mechanism is still not yet fully understood. A miRNA-based signature method, commonly according to the changes of expression levels, is widely used for AD analysis in previous studies. Recently, miRNA isoforms called as isomiR variants, which is considered to play important biological roles, have been demonstrated as the applications of high throughput sequencing platforms. Here, we presented an entropy-based model to detect the miRNA isoform level at the 5' end, and found many miRNAs with significant changes of isoform levels between the early stage and the late stage of AD by the application of this model to the public data. The statistical significance of the overlap between isoform-level changed miRNAs and AD related miRNAs extracted from HMDD2 supports that these miRNA isoforms are not degradation products. Based on the most common isomiR seed analysis of isoform-level changed AD related miRNAs, the predicted targets are also found to be enriched for genes involved in transcriptional regulation and the nervous system. After comparing with the expression level based method, we detected that changes of 5' isoform levels are more stable than those of expression levels for AD related miRNA detecting. PMID:26899870

  6. Identification of T-cell factor-4 isoforms that contribute to the malignant phenotype of hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsedensodnom, Orkhontuya [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States); Department of Molecular Biology Cell Biology and Biochemistry, The Warren Alpert Medical School of Brown University, Providence, RI (United States); Koga, Hironori; Rosenberg, Stephen A.; Nambotin, Sarah B.; Carroll, John J.; Wands, Jack R. [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States); Kim, Miran, E-mail: [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States)


    The Wnt/{beta}-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). Downstream signaling events involving the Wnt/{beta}-catenin cascade occur through T-cell factor (TCF) proteins. The human TCF-4 gene is composed of 17 exons with multiple alternative splicing sites. However, the role of different TCF-4 isoforms in the pathogenesis of HCC is unknown. The purpose of this study was to identify and characterize TCF-4 isoforms in HCC. We identified 14 novel TCF-4 isoforms from four HCC cell lines. Functional analysis following transfection and expression in HCC cells revealed distinct effects on the phenotype. The TCF-4J isoform expression produced striking features of malignant transformation characterized by high cell proliferation rate, migration and colony formation even though its transcriptional activity was low. In contrast, the TCF-4K isoform displayed low TCF transcriptional activity; cell proliferation rate and colony formation were reduced as well. Interestingly, TCF-4J and TCF-4K differed by only five amino acids (the SxxSS motif). Thus, these studies suggest that conserved splicing motifs may have a major influence on the transcriptional activity and functional properties of TCF-4 isoforms and alter the characteristics of the malignant phenotype.

  7. Developmental Changes is Expression of Beta-Adrenergic Receptors in Cultures of C2C12 Skeletal Muscle Cells (United States)

    Young, Ronald B.; Bridge, K. Y.; Vaughn, J. R.


    beta-Adrenergic receptor (bAR) agonists have been reported to modulate growth in several mammalian and avian species, and bAR agonists presumably exert their physiological action on skeletal muscle cells through this receptor. Because of the importance of bAR regulation on muscle protein metabolism in muscle cells, the objectives of this study were to determine the developmental expression pattern of the bAR population in C2C12 skeletal muscle cells, and to analyze changes in both the quantity and isoform expression of the major muscle protein, myosin. The number of bAR in mononucleated C2C12 cells was approximately 8,000 bAR per cell, which is comparable with the population reported in several other nonmuscle cell types. However, the bar population increased after myoblast fusion to greater than 50,000 bAR per muscle cell equivalent. The reasons for this apparent over-expression of bAR in C2C12 cells is not known. The quantity of myosin also increased after C2C12 myoblast fusion, but the quantity of myosin was less than that reported in primary muscle cell cultures. Finally, at least five different isoforms of myosin heavy chain could be resolved in C2C12 cells, and three of these exhibited either increased or decreased developmental regulation relative to the others. Thus, C2C12 myoblasts undergo developmental regulation of bAR population and myosin heavy chain isoform expression.

  8. Phosphatidylinositol 4-kinase serves as a metabolic sensor and regulates priming of secretory granules in pancreatic beta cells

    DEFF Research Database (Denmark)

    Olsen, Hervør L; Hoy, Marianne; Zhang, Wei;


    priming of secretory granules for release and increasing the number of granules residing in a readily releasable pool. Reducing the cytoplasmic ADP concentration in a way mimicking the effects of glucose stimulation activated PI 4-kinase and increased exocytosis whereas changes of the ATP concentration in...... the physiological range had little effect. The PI(4,5)P(2)-binding protein Ca(2+)-dependent activator protein for secretion (CAPS) is present in beta cells, and neutralization of the protein abolished both Ca(2+)- and PI(4,5)P(2)-induced exocytosis. We conclude that ADP-induced changes in PI 4-kinase...

  9. Nandrolone-pretreatment enhances cardiac beta(2)-adrenoceptor expression and reverses heart contractile down-regulation in the post-stress period of acute-stressed rats. (United States)

    Penna, Claudia; Abbadessa, Giuliana; Mancardi, Daniele; Spaccamiglio, Angela; Racca, Silvia; Pagliaro, Pasquale


    To investigate whether nandrolone decanoate (ND)-pretreatment can modulate (1) beta-adrenoceptor expression and (2) myocardial contractility in response to beta-adrenoceptors stimulation with isoproterenol (ISO), in hearts of both normal and stressed rats. Rats were treated with 15 mg/(kgday) of Deca-Durabolin (ND, 1 ml i.m.) or with vehicle (oil) for 14 days. The day after the last injection, the dose-response to ISO (1 x 10(-8), 5 x 10(-8) and 10(-7)M), was studied in isolated rat hearts harvested from unstressed animals (unstressed+vehicle (control) or unstressed+ND) or from stressed animals (stressed+vehicle or stressed+ND): acute stress protocol consisted in restrain for 1h immediately before sacrifice. ND-pretreatment increased beta(2)-adrenoceptor expression. In baseline conditions all hearts had a similar left ventricular developed pressure (LVDP) and maximum rate of increase of LVDP (dP/dt(max)). In hearts of unstressed+vehicle or unstressed+ND, ISO caused a similar increase in LVDP (+90-100%) and dP/dt(max) (+120-150%). However, hearts of stressed+vehicle animals showed a marked depression of inotropic response to ISO (i.e. for ISO 1 x 10(-8),-55% in LVDP response versus unstressed). Yet, in hearts of stressed+ND-animals the effect of stress was reversed, showing the highest response to ISO (i.e. for ISO 1 x 10(-7), +30% LVDP response versus unstressed). The ND-induced beta(2)-adrenoceptor overexpression does not affect ISO-response in unstressed animals. However, acute stress induces a down-regulation of ISO-response, which is reversed by ND-pretreatment. Since the physiological post-stress down-regulation of adrenergic-response is absent after nandrolone treatment, the heart may be exposed to a sympathetic over-stimulation. This might represent a risk for cardiovascular incidents in anabolic steroid addicts under stressing conditions. PMID:17611100

  10. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells

    DEFF Research Database (Denmark)

    Blomqvist, Maria; Rhost, Sara; Teneberg, Susann;


    relevant isoforms C24:1 and C24:0, major constituents of the myelin sheet of the nervous system, and C16:0, prominent in the pancreatic islet beta-cells. The most potent sulfatide isoform was lysosulfatide (lacking a fatty acid). Shortened fatty acid chain length (C24:1 versus C18:1), or saturation of the...... mixture of sulfatide isoforms, i.e. sulfatide molecules with different long-chain bases and fatty acid chain lengths and saturation. Here, we demonstrate that sulfatide-specific CD1d-restricted murine NKT hybridomas recognized several different sulfatide isoforms. These included the physiologically...... long fatty acid (C24:0), resulted in reduced stimulatory capacity, and fatty acid hydroxylation abolished the response. Moreover, sulfatide was not responsible for the natural autoreactivity toward splenocytes by XV19 T hybridoma cells. Our results reveal a promiscuity in the recognition of sulfatide...

  11. Loss of bone marrow adrenergic beta 1 and 2 receptors modifies transcriptional networks, reduces circulating inflammatory factors, and regulates blood pressure. (United States)

    Ahmari, Niousha; Schmidt, Jordan T; Krane, Gregory A; Malphurs, Wendi; Cunningham, Bruce E; Owen, Jennifer L; Martyniuk, Christopher J; Zubcevic, Jasenka


    Hypertension (HTN) is a prevalent condition with complex etiology and pathophysiology. Evidence exists of significant communication between the nervous system and the immune system (IS), and there appears to be a direct role for inflammatory bone marrow (BM) cells in the pathophysiology of hypertension. However, the molecular and neural mechanisms underlying this interaction have not been characterized. Here, we transplanted whole BM cells from the beta 1 and 2 adrenergic receptor (AdrB1(tm1Bkk)AdrB2(tm1Bkk)/J) knockout (KO) mice into near lethally irradiated C57BL/6J mice to generate a BM AdrB1.B2 KO chimera. This allowed us to evaluate the role of the BM beta 1 and beta 2 adrenergic receptors in mediating BM IS homeostasis and regulating blood pressure (BP) in an otherwise intact physiological setting. Fluorescence-activated cell sorting demonstrated that a decrease in systolic and mean BP in the AdrB1.B2 KO chimera is associated with a decrease in circulating inflammatory T cells, macrophage/monocytes, and neutrophils. Transcriptomics in the BM identified 7,419 differentially expressed transcripts between the C57 and AdrB1.B2 KO chimera. Pathway analysis revealed differentially expressed transcripts related to several cell processes in the BM of C57 compared with AdrB1.B2 KO chimera, including processes related to immunity (e.g., T-cell activation, T-cell recruitment, cytokine production, leukocyte migration and function), the cardiovascular system (e.g., blood vessel development, peripheral nerve blood flow), and the brain (e.g., central nervous system development, neurite development) among others. This study generates new insight into the molecular events that underlie the interaction between the sympathetic drive and IS in modulation of BP. PMID:27235450

  12. Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: focus on alpha and beta cell function and lipid metabolism. (United States)

    Ahrén, Bo; Foley, James E


    Inhibition of dipeptidyl peptidase-4 (DPP-4) is an established glucose-lowering strategy for the management of type 2 diabetes mellitus. DPP-4 inhibitors reduce both fasting and postprandial plasma glucose levels, resulting in reduced HbA1c with low risk for hypoglycaemia and weight gain. They act primarily by preventing inactivation of the incretin hormones glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, thereby prolonging the enhanced endogenous levels of these hormones after meal ingestion. This in turn causes islet and extrapancreatic effects, including increased glucose sensing in islet alpha and beta cells. These effects result in increased insulin secretion and decreased glucagon secretion being more effective in hyperglycaemic states and reduced insulin secretion and increased glucagon secretion being more effective during hypoglycaemia. Other secondary pharmacological actions of DPP-4 inhibitors include mobilisation and burning of fat during meals, decrease in fat extraction from the gut, reduction of fasting lipolysis and liver fat and increase in LDL particle size. These actions contribute to the clinical effects of DPP-4 inhibition, and the reduced demand for insulin could also lead to a durability benefit. This review summarises the current knowledge of the secondary pharmacological actions of DPP-4 inhibitors that lead to improved glucose regulation in patients with type 2 diabetes, focusing on alpha and beta cell function and lipid metabolism. PMID:26894277

  13. Beta-actin deficiency with oxidative posttranslational modifications in Rett syndrome erythrocytes: insights into an altered cytoskeletal organization.

    Directory of Open Access Journals (Sweden)

    Alessio Cortelazzo

    Full Text Available Beta-actin, a critical player in cellular functions ranging from cell motility and the maintenance of cell shape to transcription regulation, was evaluated in the erythrocyte membranes from patients with typical Rett syndrome (RTT and methyl CpG binding protein 2 (MECP2 gene mutations. RTT, affecting almost exclusively females with an average frequency of 1∶10,000 female live births, is considered the second commonest cause of severe cognitive impairment in the female gender. Evaluation of beta-actin was carried out in a comparative cohort study on red blood cells (RBCs, drawn from healthy control subjects and RTT patients using mass spectrometry-based quantitative analysis. We observed a decreased expression of the beta-actin isoforms (relative fold changes for spots 1, 2 and 3: -1.82±0.15, -2.15±0.06, and -2.59±0.48, respectively in pathological RBCs. The results were validated by western blotting and immunofluorescence microscopy. In addition, beta-actin from RTT patients also showed a dramatic increase in oxidative posttranslational modifications (PTMs as the result of its binding with the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE. Our findings demonstrate, for the first time, a beta-actin down-regulation and oxidative PTMs for RBCs of RTT patients, thus indicating an altered cytoskeletal organization.

  14. Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets

    DEFF Research Database (Denmark)

    Maedler, Kathrin; Størling, Joachim; Sturis, Jeppe;


    -regulated kinase (ERK) 1/2, an effect that was abrogated by 3 micromol/l NN414. Similarly, 1 micromol/l of the mitogen-activated protein kinase/ERK kinase 1/2 inhibitor PD098059 or 1 micromol/l of the l-type Ca(2+) channel blocker nimodipine prevented glucose- and IL-1beta-induced ERK activation, beta......Increasing evidence indicates that a progressive decrease in the functional beta-cell mass is the hallmark of both type 1 and type 2 diabetes. The underlying causes, beta-cell apoptosis and impaired secretory function, seem to be partly mediated by macrophage production of interleukin (IL)-1beta...... and/or high-glucose-induced beta-cell production of IL-1beta. Treatment of type 1 and type 2 diabetic patients with the potassium channel opener diazoxide partially restores insulin secretion. Therefore, we studied the effect of diazoxide and of the novel potassium channel opener NN414, selective for...

  15. Extracellular matrix and hormones transcriptionally regulate bovine beta-casein 5' sequences in stably transfected mouse mammary cells.


    Schmidhauser, C; Bissell, M.J.; Myers, C A; Casperson, G F


    Milk protein regulation involves synergistic action of lactogenic hormones and extracellular matrix (ECM). It is well established that substratum has a dramatic effect on morphology and function of mammary cells. The molecular mechanisms that regulate the ECM- and hormone-dependent gene expression, however, have not been resolved. To address this question, a subpopulation (designated CID 9) of the mouse mammary epithelial cell strain COMMA-1D has been developed in which more than 35% of the c...

  16. Structure, chromosome location, and expression of the human. gamma. -actin gene: Differential evolution, location, and expression of the cytoskeletal BETA- and. gamma. -actin genes

    Energy Technology Data Exchange (ETDEWEB)

    Erba, H.P.; Eddy, R.; Shows, T.; Kedes, L.; Gunning, P.


    The accumulation of the cytoskeletal ..beta..-and ..gamma..-actin mRNAs was determined in a variety of mouse tissues and organs. The ..beta..-iosform is always expressed in excess of the ..gamma..-isoform. However, the molar ratio of ..beta..- to ..gamma..-actin mRNA varies from 1.7 in kidney and testis to 12 in sarcomeric muscle to 114 in liver. The authors conclude that, whereas the cytoskeletal ..beta..- and ..gamma..-actins are truly coexpressed, their mRNA levels are subject to differential regulation between different cell types. The human ..gamma..-actin gene has been cloned and sequenced, and its chromosome location has been determined. The gene is located on human chromosome 17, unlike ..beta..-actin which is on chromosome 7. Thus, if these genes are also unlinked in the mouse, the coexpression of the ..beta..- and ..gamma..-actin genes in rodent tissues cannot be determined by gene linkage. Comparison of the human ..beta..- and ..gamma..-actin genes reveals that noncoding sequences in the 5'-flanking region and in intron III have been conserved since the duplication that gave rise to these two genes. In contrast, there are sequences in intron III and the 3'-untranslated region which are not present in the ..beta..-actin gene but are conserved between the human ..gamma..-actin and the Xenopus borealis type 1 actin genes. Such conserved noncoding sequences may contribute to the coexpression of ..beta..- and ..gamma..-actin or to the unique regulation and function of the ..gamma..-actin gene. Finally, the authors demonstrate that the human ..gamma..-actin gene is expressed after introduction into mouse L cells and C2 myoblasts and that, upon fusion of C2 cells to form myotubes, the human ..gamma..-actin gene is appropriately regulated.

  17. FSH isoform pattern in classic galactosemia


    Gubbels, Cynthia S.; Thomas, Chris M.G.; Wodzig, Will K. W. H.; Olthaar, André J.; Jaeken, Jaak; Sweep, Fred C. G. J.; Rubio-Gozalbo, M. Estela


    Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfunction. An earlier study showed less acidic isoforms of FSH in serum samples of two classic galactosemia patients compared to controls, indicating hypoglycosylation. In this study, FSH isoform patterns...

  18. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity (United States)

    Sossin, Wayne S.


    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  19. PKC Isoform Expression in Modeled Microgravity (United States)

    Risin, Diana; Sundaresan, Alamelu; Pellis, Neal R.; Dawson, David L. (Technical Monitor)


    Our previous studies showed that modeled (MMG) and true (USA Space Shuttle Missions STS-54 and STS-56) microgravity (MG) inhibit human lymphocyte locomotion, Modeled MG also suppressed polyclonal and antigen-specific lymphocyte activation. Activation of PKC by phorbol myristate acetate (PMA) restored the microgravity-inhibited lymphocyte locomotion as well as activation by phytohaemagglutinin (PHA), whereas calcium ionophore (ionomycin) was unable to restore these functions. Based on these results we hypothesized that MG-induced changes in lymphocyte functions are caused by a fundamental defect in signal transduction mechanism. This defect may be localized either at the PKC level or upstream of PKC, most likely, at the cell membrane level. In this study we examined the expression of PKC isoforms alpha, epsilon and delta in PBMC cultured in rotating wall vessel bioreactor, developed at NASA JSC, which models microgravity by sustaining cells in continuous free fall. The assessment of the isoforms was performed by FACS analysis following cell permeabilization. A decrease in the expression of isoforms epsilon and delta, but not isoform a, was observed in PBMC cultured in microgravity conditions. These data suggest that MMG might selectively affect the expression of Ca2+ independent isoforms of PKC Molecular analysis confirm selective suppression of Ca2+ independent isoforms of PKC.

  20. DAF-16/FoxO Directly Regulates an Atypical AMP-Activated Protein Kinase Gamma Isoform to Mediate the Effects of Insulin/IGF-1 Signaling on Aging in Caenorhabditis elegans


    Tullet, J. M.; Araiz, C.; Sanders, M J; Au, C.; Benedetto, A.; Papatheodorou, I.; Clark, E.; Schmeisser, K.; Jones, D.; Schuster, E F; Thornton, J M; Gems, D.


    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, ...

  1. DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans.


    Tullet, Jennifer M. A.; Caroline Araiz; Sanders, Matthew J.; Catherine Au; Alexandre Benedetto; Irene Papatheodorou; Emily Clark; Kathrin Schmeisser; Daniel Jones; Eugene F Schuster; Thornton, Janet M.; David Gems


    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, ...

  2. Evidence for Phytochrome Regulation of Gibberellin A(20) 3beta-Hydroxylation in Shoots of Dwarf (lele) Pisum sativum L. (United States)

    Campell, B R; Bonner, B A


    The effect of light on the dwarfing allele, le, in Pisum sativum L. was tested as the growth response to gibberellins prior to or beyond the presumed block in the gibberellin biosynthetic pathway. The response to the substrate (GA(20)), the product (GA(1)), and a nonendogenous early precursor (steviol) was compared in plants bearing the normal Le and the deficient lele genotypes in plants made low in gibberellin content genetically (nana lines) or by paclobutrazol treatment to tall (cv Alaska) and dwarf (cv Progress) peas. Both genotypes responded to GA(1) under red irradiation and in darkness. The lele plants grew in response to GA(20) and steviol in darkness but showed a much smaller response when red irradiated. The Le plants responded to GA(20) and steviol in both light and darkness. The red effects on lele plants were largely reversible by far-red irradiation. It is concluded that the deficiency in 3beta-hydroxylation of GA(20) to GA(1) in genotype lele is due to a Pfr-induced blockage in the expression of that activity. PMID:16665165

  3. Molecular modeling study on tunnel behavior in different histone deacetylase isoforms.

    Directory of Open Access Journals (Sweden)

    Sundarapandian Thangapandian

    Full Text Available Histone deacetylases (HDACs have emerged as effective therapeutic targets in the treatment of various diseases including cancers as these enzymes directly involved in the epigenetic regulation of genes. However the development of isoform-selective HDAC inhibitors has been a challenge till date since all HDAC enzymes possess conserved tunnel-like active site. In this study, using molecular dynamics simulation we have analyzed the behavior of tunnels present in HDAC8, 10, and 11 enzymes of class I, II, and IV, respectively. We have identified the equivalent tunnel forming amino acids in these three isoforms and found that they are very much conserved with subtle differences to be utilized in selective inhibitor development. One amino acid, methionine of HDAC8, among six tunnel forming residues is different in isoforms of other classes (glutamic acid (E in HDAC10 and leucine (L in HDAC 11 based on which mutations were introduced in HDAC11, the less studied HDAC isoform, to observe the effects of this change. The HDAC8-like (L268M mutation in the tunnel forming residues has almost maintained the deep and narrow tunnel as present in HDAC8 whereas HDAC10-like (L268E mutation has changed the tunnel wider and shallow as observed in HDAC10. These results explained the importance of the single change in the tunnel formation in different isoforms. The observations from this study can be utilized in the development of isoform-selective HDAC inhibitors.

  4. RSPO1/beta-Catenin Signaling Pathway Regulates Oogonia Differentiation and Entry into Meiosis in the Mouse Fetal Ovary

    NARCIS (Netherlands)

    A.A. Chassot; E.P. Gregoire; R. Lavery; M.M. Taketo; D.G. de Rooij; I.R. Adams; M.C. Chaboissier


    Differentiation of germ cells into male gonocytes or female oocytes is a central event in sexual reproduction. Proliferation and differentiation of fetal germ cells depend on the sex of the embryo. In male mouse embryos, germ cell proliferation is regulated by the RNA helicase Mouse Vasa homolog gen

  5. Interactions of the integrin subunit beta1A with protein kinase B/Akt, p130Cas and paxillin contribute to regulation of radiation survival

    DEFF Research Database (Denmark)

    Seidler, Julia; Durzok, Rita; Brakebusch, Cord; Cordes, Nils


    BACKGROUND AND PURPOSE: Cell adhesion-mediated radioresistance is a common phenomenon particularly relevant in tumor cells, which might hamper anticancer therapies. To analyze the role of adhesion-mediating beta1-integrins, stably transfected functional beta1A-integrin-expressing GD25beta1A and G...

  6. Retinoic acid-mediated repression of human papillomavirus 18 transcription and different ligand regulation of the retinoic acid receptor beta gene in non-tumorigenic and tumorigenic HeLa hybrid cells. (United States)

    Bartsch, D; Boye, B; Baust, C; zur Hausen, H; Schwarz, E


    Human papillomavirus type 18 (HPV18) belongs to the group of genital papillomaviruses involved in the development of cervical carcinomas. Since retinoic acid (RA) is a key regulator of epithelial cell differentiation and a growth inhibitor in vitro of HPV18-positive HeLa cervical carcinoma cells, we have used HeLa and HeLa hybrid cells in order to analyse the effects of RA on expression of the HPV18 E6 and E7 oncogenes and of the cellular RA receptor genes RAR-beta and -gamma. We show here that RA down-regulates HPV18 mRNA levels apparently due to transcriptional repression. Transient cotransfection assays indicated that RARs negatively regulate the HPV18 upstream regulatory region and that the central enhancer can confer RA-dependent repression on a heterologous promoter. RA treatment resulted in induction of RAR-beta mRNA levels in non-tumorigenic HeLa hybrid cells, but not in tumorigenic hybrid segregants nor in HeLa cells. No alterations of the RAR-beta gene or of the HeLa RAR-beta promoter could be revealed by Southern and DNA sequence analysis, respectively. As determined by transient transfection assays, however, the RAR-beta control region was activated by RA more strongly in non-tumorigenic hybrid cells than in HeLa cells, thus indicating differences in trans-acting regulatory factors. Our data suggest that the RARs are potential negative regulators of HPV18 E6 and E7 gene expression, and that dysregulation of the RAR-beta gene either causatively contributes to or is an indicator of tumorigenicity in HeLa and HeLa hybrid cells. Images PMID:1318198

  7. Identification of genes regulated by Wnt/beta-catenin pathway and involved in apoptosis via microarray analysis.


    Chen Quan; Wang Shengqi; Bai Jinfeng; Quan Lanping; Yang Shangbin; Zhang Wei; Yin Yanbing; Zhu Hongxia; Sun Daochun; Wang Yihua; Huang Moli; Li Songgang; Xu Ningzhi


    Abstract Background Wnt/β-catenin pathway has critical roles in development and oncogenesis. Although significant progress has been made in understanding the downstream signaling cascade of this pathway, little is known regarding Wnt/β-catenin pathway modification of the cellular apoptosis. Methods To identify potential genes regulated by Wnt/β-catenin pathway and involved in apoptosis, we used a stably integrated, inducible RNA interference (RNAi) vector to specific inhibit the expression an...

  8. Differential regulation of iPLA2beta splice variants by in vitro ischemia in C2C12 myotubes

    DEFF Research Database (Denmark)

    Poulsen, K. A.; Kolko, M.; Lambert, I. H.


    In this study we investigated the activity, expression and regulation of iPLA2 during ischemia in mouse C2C12 myotubes. Here, we show that in vitro ischemia, i.e. oxygen deprivation and glucose starvation, induces an iPLA2 activity that is totally reversed by siRNA knock down of iPLA2£], indicating...... preferential activation of iPLA2£]. The activity of the native iPLA2£] tetramer has in humans been proposed to be negatively regulated by interactions with catalytic inactive splice variants of the full-length protein. These variants, characterized by the presence exon 9a, have however not been identified in...... transcript would be a C-terminally truncated î50 kDa protein lacking the catalytic site. qPCR indicated that, while the total iPLA2£] mRNA level in C2C12 myotubes increased weakly within 1-2 hours of in vitro ischemia, the transcript containing the mouse exon 9a was rapidly down regulated. In addition...

  9. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β. (United States)

    Wang, Shuxin; Li, Zheyi; Shen, Hongyan; Zhang, Zhong; Yin, Yuxin; Wang, Qingsong; Zhao, Xuyang; Ji, Jianguo


    Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affected the phosphorylation state of Ctnnb1 and Gsk3β, which regulates the differentiation of NSCs. Our data provides a valuable resource for studying the self-renewal and differentiation of NSCs. Stem Cells 2016;34:2090-2101. PMID:27097102

  10. Drug and cell type-specific regulation of genes with different classes of estrogen receptor beta-selective agonists.

    Directory of Open Access Journals (Sweden)

    Sreenivasan Paruthiyil

    Full Text Available Estrogens produce biological effects by interacting with two estrogen receptors, ERalpha and ERbeta. Drugs that selectively target ERalpha or ERbeta might be safer for conditions that have been traditionally treated with non-selective estrogens. Several synthetic and natural ERbeta-selective compounds have been identified. One class of ERbeta-selective agonists is represented by ERB-041 (WAY-202041 which binds to ERbeta much greater than ERalpha. A second class of ERbeta-selective agonists derived from plants include MF101, nyasol and liquiritigenin that bind similarly to both ERs, but only activate transcription with ERbeta. Diarylpropionitrile represents a third class of ERbeta-selective compounds because its selectivity is due to a combination of greater binding to ERbeta and transcriptional activity. However, it is unclear if these three classes of ERbeta-selective compounds produce similar biological activities. The goals of these studies were to determine the relative ERbeta selectivity and pattern of gene expression of these three classes of ERbeta-selective compounds compared to estradiol (E(2, which is a non-selective ER agonist. U2OS cells stably transfected with ERalpha or ERbeta were treated with E(2 or the ERbeta-selective compounds for 6 h. Microarray data demonstrated that ERB-041, MF101 and liquiritigenin were the most ERbeta-selective agonists compared to estradiol, followed by nyasol and then diarylpropionitrile. FRET analysis showed that all compounds induced a similar conformation of ERbeta, which is consistent with the finding that most genes regulated by the ERbeta-selective compounds were similar to each other and E(2. However, there were some classes of genes differentially regulated by the ERbeta agonists and E(2. Two ERbeta-selective compounds, MF101 and liquiritigenin had cell type-specific effects as they regulated different genes in HeLa, Caco-2 and Ishikawa cell lines expressing ERbeta. Our gene profiling studies

  11. Scientific Opinion on the substantiation of a health claim related to beta-palmitate and contribution to softening of stools pursuant to Article 14 of Regulation (EC No 1924/2006

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA


    Full Text Available Following an application from Specialised Nutrition Europe (formerly IDACE, submitted for authorisation of a health claim pursuant to Article 14 of Regulation (EC No 1924/2006 via the Competent Authority of France, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to beta-palmitate and contribution to softening of stools. The food constituent, beta-palmitate, that is the subject of the health claim, is sufficiently characterised. Contribution to softening of stools is a beneficial physiological effect for infants. In weighing the evidence the Panel took into account that, out of two human intervention studies with important methodological limitations, one suggested a stool-softening effect of beta-palmitate whereas the second did not, that one animal study did not support a stool-softening effect of beta-palmitate, and that the evidence provided for a mechanism by which beta-palmitate could contribute to the softening of stools is weak. The Panel concludes that a cause and effect relationship has not been established between the consumption of beta-palmitate and softening of stools.

  12. Purification and characterization of soluble (cytosolic) and bound (cell wall) isoforms of invertases in barley (Hordeum vulgare) elongating stem tissue (United States)

    Karuppiah, N.; Vadlamudi, B.; Kaufman, P. B.


    Three different isoforms of invertases have been detected in the developing internodes of barley (Hordeum vulgare). Based on substrate specificities, the isoforms have been identified to be invertases (beta-fructosidases EC The soluble (cytosolic) invertase isoform can be purified to apparent homogeneity by diethylaminoethyl cellulose, Concanavalin-A Sepharose, organo-mercurial Sepharose, and Sephacryl S-300 chromatography. A bound (cell wall) invertase isoform can be released by 1 molar salt and purified further by the same procedures as above except omitting the organo-mercurial Sepharose affinity chromatography step. A third isoform of invertase, which is apparently tightly associated with the cell wall, cannot be isolated yet. The soluble and bound invertase isoforms were purified by factors of 60- and 7-fold, respectively. The native enzymes have an apparent molecular weight of 120 kilodaltons as estimated by gel filtration. They have been identified to be dimers under denaturing and nondenaturing conditions. The soluble enzyme has a pH optimum of 5.5, Km of 12 millimolar, and a Vmax of 80 micromole per minute per milligram of protein compared with cell wall isozyme which has a pH optimum of 4.5, Km of millimolar, and a Vmax of 9 micromole per minute per milligram of protein.

  13. Basic residues in the 74-83 and 191-198 segments of protein kinase CK2 catalytic subunit are implicated in negative but not in positive regulation by the beta-subunit

    DEFF Research Database (Denmark)

    Sarno, S; Vaglio, P; Marin, O; Meggio, F; Issinger, O G; Pinna, L A


    Protein kinase CK2 is a ubiquitous pleiotropic serine/threonine protein kinase whose holoenzyme is comprised of two catalytic (alpha and/or alpha') and two non-catalytic, beta-subunits. The beta-subunit possesses antagonist functions that can be physically dissected by generating synthetic...... fragments encompassing its N-terminal and C-terminal domains. Here we show that by mutating basic residues in the 74-77 and in the 191-198 regions of the alpha-subunit, the negative regulation by the beta-subunit and by its N-terminal synthetic fragment CK2beta-(1-77), which is observable using calmodulin...... as a substrate for phosphorylation, is drastically reduced. In contrast, the positive regulation by a C-terminal, CK2beta-(155-215)-peptide is unaffected or even increased. Moreover, the basal activity of alpha mutants K74-77A, K79R80K83A, and R191R195K198A toward specific peptide substrates is...

  14. Menin-mediated regulation of miRNA biogenesis uncovers the IRS2 pathway as a target for regulating pancreatic beta cells (United States)

    Gurung, Buddha; Katona, Bryson W.; Hua, Xianxin


    Menin, a protein encoded by the MEN1 gene, is mutated in patients with multiple endocrine neoplasia type 1 (MEN1). Menin acts as a tumor suppressor in endocrine organs while it is also required for transformation of a subgroup of leukemia. The recently solved crystal structure of menin with different binding partners reveals that menin is a key scaffold protein that cross-talks with various partners, including transcription factors, to regulate gene transcription. Our recent findings unravel a previously undiscovered mechanism for menin-mediated control of gene expression via processing of certain microRNA’s, thus adding to the plethora of ways in which menin regulates gene expression. By interacting with ARS2, an RNA binding protein, menin facilitates the processing of pri-let 7a and pri-miR155 to pre-let 7a and pre-miR155 respectively. Consistently, excision of the Men1 gene results in upregulation of IRS2, a let-7a target. As IRS2 is known to mediate both insulin signaling and insulin-induced cell proliferation, and let-7a targets include oncogenes like RAS and HMGA2, a deeper understanding of the menin-ARS2 complex in regulating miRNA biogenesis will yield further insights into the pathogenesis of the MEN1 syndrome and other menin-associated malignancies. PMID:25594065

  15. Interleukin-1 beta-induced up-regulation of opioid receptors in the untreated and morphine-desensitized U87 MG human astrocytoma cells

    Directory of Open Access Journals (Sweden)

    Byrne Linda


    Full Text Available Abstract Background Interleukin-1beta (IL-1β is a pro-inflammatory cytokine that can be produced in the central nervous system during inflammatory conditions. We have previously shown that IL-1β expression is altered in the rat brain during a morphine tolerant state, indicating that this cytokine may serve as a convergent point between the immune challenge and opiate mediated biological pathways. We hypothesized that IL-1β up-regulates opioid receptors in human astrocytes in both untreated and morphine-desensitized states. Methods To test this hypothesis, we compared the basal expression of the mu (MOR, delta (DOR, and kappa (KOR opioid receptors in the human U87 MG astrocytic cell line to SH-SY5Y neuronal and HL-60 immune cells using absolute quantitative real time RT-PCR (AQ-rt-RT-PCR. To demonstrate that IL-1β induced up-regulation of the MOR, DOR and KOR, U87 MG cells (2 x 105 cells/well were treated with IL-1β (20 ng/mL or 40 ng/mL, followed by co-treatment with interleukin-1 receptor antagonist protein (IL-1RAP (400 ng/mL or 400 ng/mL. The above experiment was repeated in the cells desensitized with morphine, where U87 MG cells were pre-treated with 100 nM morphine. The functionality of the MOR in U87 MG cells was then demonstrated using morphine inhibition of forksolin-induced intracellular cAMP, as determined by radioimmunoassay. Results U87 MG cells treated with IL-1β for 12 h showed a significant up-regulation of MOR and KOR. DOR expression was also elevated, although not significantly. Treatment with IL-1β also showed a significant up-regulation of the MOR in U87 MG cells desensitized with morphine. Co-treatment with IL-1β and interleukin-1 receptor antagonist protein (IL-1RAP resulted in a significant decrease in IL-1β-mediated MOR up-regulation. Conclusion Our results indicate that the pro-inflammatory cytokine, IL-1β, affects opiate-dependent pathways by up-regulating the expression of the MOR in both untreated and

  16. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH isoforms.

    Directory of Open Access Journals (Sweden)

    Elaine C Thomas

    Full Text Available We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH, a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii communication occurs between the Bateman and catalytic domains and (iii the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.

  17. Influenza A Viruses Control Expression of Proviral Human p53 Isoforms p53β and Δ133p53α


    Terrier, Olivier; Marcel, Virginie; Cartet, Gaëlle; Lane, David P; Lina, Bruno; Rosa-Calatrava, Manuel; Bourdon, Jean-Christophe


    Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infec...

  18. The FU gene and its possible protein isoforms

    Directory of Open Access Journals (Sweden)

    Nöthen Markus M


    Full Text Available Abstract Background FU is the human homologue of the Drosophila gene fused whose product fused is a positive regulator of the transcription factor Cubitus interruptus (Ci. Thus, FU may act as a regulator of the human counterparts of Ci, the GLI transcription factors. Since Ci and GLI are targets of Hedgehog signaling in development and morphogenesis, it is expected that FU plays an important role in Sonic, Desert and/or Indian Hedgehog induced cellular signaling. Results The FU gene was identified on chromosome 2q35 at 217.56 Mb and its exon-intron organization determined. The human developmental disorder Syndactyly type 1 (SD1 maps to this region on chromosome 2 and the FU coding region was sequenced using genomic DNA from an affected individual in a linked family. While no FU mutations were found, three single nucleotide polymorphisms were identified. The expression pattern of FU was thoroughly investigated and all examined tissues express FU. It is also clear that different tissues express transcripts of different sizes and some tissues express more than one transcript. By means of nested PCR of specific regions in RT/PCR generated cDNA, it was possible to verify two alternative splicing events. This also suggests the existence of at least two additional protein isoforms besides the FU protein that has previously been described. This long FU and a much shorter isoform were compared for the ability to regulate GLI1 and GLI2. None of the FU isoforms showed any effects on GLI1 induced transcription but the long form can enhance GLI2 activity. Apparently FU did not have any effect on SUFU induced inhibition of GLI. Conclusions The FU gene and its genomic structure was identified. FU is a candidate gene for SD1, but we have not identified a pathogenic mutation in the FU coding region in a family with SD1. The sequence information and expression analyses show that transcripts of different sizes are expressed and subjected to alternative splicing

  19. Post-harvest regulated gene expression and splicing efficiency in storage roots of sugar beet (Beta vulgaris L.). (United States)

    Rotthues, Alexander; Kappler, Jeannette; Lichtfuss, Anna; Kloos, Dorothee U; Stahl, Dietmar J; Hehl, Reinhard


    Sixteen post-harvest upregulated genes from sugar beet comprising five novel sequences were isolated by subtractive cloning. Transcription profiles covering a period of up to 49 days after harvest under controlled storage conditions and in field clamps are reported. Post-harvest induced genes are involved in wound response, pathogen defense, dehydration stress, and detoxification of reactive oxygen species. An early induction of a cationic peroxidase indicates a response to post-harvest damage. Wound response reactions may also involve genes required for cell division such as a regulator of chromatin condensation and a precursor of the growth stimulating peptide phytohormone phytosulfokine-alpha. Surprisingly, also three putative non-protein coding genes were isolated. Two of these genes show intron specific and storage temperature dependent splicing of a precursor mRNA. The temperature dependent splicing of an intron containing sugar beet mRNA is also maintained in transgenic Arabidopsis thaliana. The storage induced genes are integrated into a model that proposes the response to several post-harvest stress conditions. Temperature regulated splicing may be a mechanism to sense seasonal temperature changes. PMID:18324413

  20. Absolute Quantification of Endogenous Ras Isoform Abundance.

    Directory of Open Access Journals (Sweden)

    Craig J Mageean

    Full Text Available Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data.

  1. Telomerase Regulation


    Cifuentes-Rojas, Catherine; Dorothy E Shippen


    The intimate connection between telomerase regulation and human disease is now well established. The molecular basis for telomerase regulation is highly complex and entails multiple layers of control. While the major target of enzyme regulation is the catalytic subunit TERT, the RNA subunit of telomerase is also implicated in telomerase control. In addition, alterations in gene dosage and alternative isoforms of core telomerase components have been described. Finally, telomerase localization,...

  2. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Min Kong; Maowen Ba; Hui Liang; Peng Shao; Tianxia Yu; Ying Wang


    In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could that the increases in both mitochondrial membrane potential and reactive oxygen species levels adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid-β

  3. N-WASP is a novel regulator of hair-follicle cycling that controls antiproliferative TGF{beta} pathways

    DEFF Research Database (Denmark)

    Lefever, Tine; Pedersen, Esben; Basse, Astrid;


    N-WASP is a cytoplasmic molecule mediating Arp2/3 nucleated actin polymerization. Mice with a keratinocyte-specific deletion of the gene encoding N-WASP showed normal interfollicular epidermis, but delayed hair-follicle morphogenesis and abnormal hair-follicle cycling, associated with cyclic...... control cells and enhanced expression of the gene encoding the cell-cycle inhibitor p15INK4B, a TGFbeta target gene. Inhibition of TGFbeta signaling blocked overexpression of p15INK4B and restored proliferation of N-WASP-deficient keratinocytes in vitro. However, induction of N-WASP gene deletion in vitro...... did not result in obvious changes in TGFbeta signaling or growth of keratinocytes, indicating that the in vivo environment is required for the phenotype development. These data identify the actin nucleation regulator N-WASP as a novel element of hair-cycle control that modulates the antiproliferative...

  4. c-Src regulates cell cycle proteins expression through protein kinase B/glycogen synthase kinase 3 beta and extracellular signal-regulated kinases 1/2 pathways in MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    Xiang Liu; Liying Du; Renqing Feng


    We have demonstrated that c-Src suppression inhibited the epithelial to mesenchymal transition in human breast cancer cells.Here,we investigated the role of c-Src on the cell cycle progression using siRNAs and small molecule inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine (PP2).Western blot analysis demonstrated the downregulation of cyclin D1 and cyclin E and up-regulation of p27 Kip1 after c-Src suppression by PP2.Incubation of cells in the presence of PP2 significantly blocked the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2),protein kinase B (AKT),and glycogen synthase kinase 3 beta (GSK3β).Specific pharmacological inhibitors of MEK1/2/ERK1/2 and phosphatidylinositide 3-kinase/AKTpathways were used to demonstrate the relationship between the signal cascade and cell cycle proteins expression.The expression of cyclin D1 and cyclin E were decreased after inhibition of ERK1/2 or AKT activity,whereas the p27 Kip1 expression was increased.In addition,knockdown of c-Src by siRNAs reduced cell proliferation and phosphorylation of ERK1/2,AKT,and GSK3β.After c-Src depletion by siRNAs,we observed significant down-regulation of cyclin D1 and cyclin E,and up-regulation of p27 Kip1.These results suggest that c-Src suppression by PP2 or siRNAs may regulate the progression of cell cycle through AKT/GSK3β and ERK1/2 pathways.

  5. Heparanase isoform expression and extracellular matrix remodeling in intervertebral disc degenerative disease

    Directory of Open Access Journals (Sweden)

    Luciano Miller Reis Rodrigues


    Full Text Available OBJECTIVE: To determine the molecules involved in extracellular matrix remodeling and to identify and quantify heparanase isoforms present in herniated and degenerative discs. INTRODUCTION: Heparanase is an endo-beta-glucuronidase that specifically acts upon the heparan sulfate chains of proteoglycans. However, heparanase expression in degenerative intervertebral discs has not yet been evaluated. Notably, previous studies demonstrated a correlation between changes in the heparan sulfate proteoglycan pattern and the degenerative process associated with intervertebral discs. METHODS: Twenty-nine samples of intervertebral degenerative discs, 23 samples of herniated discs and 12 samples of non-degenerative discs were analyzed. The expression of both heparanase isoforms (heparanase-1 and heparanase-2 was evaluated using immunohistochemistry and real-time RT-PCR analysis. RESULTS: Heparanase-1 and heparanase-2 expression levels were significantly higher in the herniated and degenerative discs in comparison to the control tissues, suggesting a possible role of these proteins in the intervertebral degenerative process. CONCLUSION: The overexpression of heparanase isoforms in the degenerative intervertebral discs and the herniated discs suggests a potential role of both proteins in the mediation of inflammatory processes and in extracellular matrix remodeling. The heparanase-2 isoform may be involved in normal metabolic processes, as evidenced by its higher expression in the control intervertebral discs relative to the expression of heparanase-1.

  6. Evaluation of Hepcidin Isoforms in Hemodialysis Patients by a Proteomic Approach Based on SELDI-TOF MS


    Oliviero Olivieri; Antonio Lupo; Nicola Martinelli; Albino Poli; Nicola Tessitore; Valeria Bedogna; Annalisa Castagna; Federica Zaninotto; Domenico Girelli; Natascia Campostrini


    The hepatic iron regulator hormone hepcidin consists, in its mature form, of 25 amino acids, but two other isoforms, hepcidin-20 and hepcidin-22, have been reported, whose biological meaning remains poorly understood. We evaluated hepcidin isoforms in sera from 57 control and 54 chronic haemodialysis patients using a quantitative proteomic approach based on SELDI-TOF-MS. Patients had elevated serum levels of both hepcidin-25 and hepcidin-20 as compared to controls (geometric means: 7.52 versu...

  7. Differential expression of intracellular and secreted osteopontin isoforms by murine macrophages in response to Toll-like receptor agonists.


    Zhao, Wei; Wang, Lijuan; Zhang, Lei; Yuan, Chao; Kuo, Paul C.; Gao, Chengjiang


    Osteopontin (OPN), expressed by various immune cells, modulates both innate and adaptive immune responses. Different immune cells have shown differential expression of the two isoforms of OPN: secreted form of OPN (sOPN) and intracellular form of OPN (iOPN). However, the molecular mechanisms that control opn gene expression and the OPN isoforms produced by immune cells remain largely unknown. In this study, we demonstrate that OPN mRNA and protein expression are significantly up-regulated upo...

  8. Influence of Temperature, Hypercapnia, and Development on the Relative Expression of Different Hemocyanin Isoforms in the Common Cuttlefish Sepia officinalis


    Strobel, Anneli; Hu, Marian Y.A.; Gutowska, Magdalena A.; Lieb, Bernhard; Lucassen, Magnus; Melzner, Frank; Pörtner, Hans-Otto; Mark, Felix Christopher


    The cuttlefish Sepia officinalis expresses several hemocyanin isoforms with potentially different pH optima, indicating their reliance on efficient pH regulation in the blood. Ongoing ocean warming and acidification could influence the oxygen-binding properties of respiratory pigments in ectothermic marine invertebrates. This study examined whether S. officinalis differentially expresses individual hemocyanin isoforms to maintain optimal oxygen transport during development and ...

  9. Evaluation of beta defensin 2 production by chicken heterophils using direct MALDI mass spectrometry (United States)

    Beta defensins (BD) are cysteine rich, cationic antimicrobial peptides (AMP) produced mainly by epithelial and myeloid cells such as neutrophils. In birds, the equivalent of neutrophils, heterophils produce avian beta defensins (AvBD) of which AvBD2 is the major isoform. Heterophils recognize patho...

  10. Antitumor effects in hepatocarcinoma of isoform-selective inhibition of HDAC2

    DEFF Research Database (Denmark)

    Lee, Yun-Han; Seo, Daekwan; Choi, Kyung-Ju;


    Histone deacetylase 2 (HDAC2) is a chromatin modifier involved in epigenetic regulation of cell cycle, apoptosis and differentiation that is upregulated commonly in human hepatocellular carcinoma (HCC). In this study, we show that specific targeting of this HDAC isoform is sufficient to inhibit H...

  11. A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells.

    Directory of Open Access Journals (Sweden)

    Ioannis Gavvovidis

    Full Text Available Biallelic mutations in MCPH1 cause primary microcephaly (MCPH with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL and a second transcript lacking the six 3' exons (MCPH1Δe9-14. Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1Δe9-14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.

  12. Unraveling complex interplay between heat shock factor 1 and 2 splicing isoforms.

    Directory of Open Access Journals (Sweden)

    Sylvain Lecomte

    Full Text Available Chaperone synthesis in response to proteotoxic stress is dependent on a family of transcription factors named heat shock factors (HSFs. The two main factors in this family, HSF1 and HSF2, are co-expressed in numerous tissues where they can interact and form heterotrimers in response to proteasome inhibition. HSF1 and HSF2 exhibit two alternative splicing isoforms, called α and β, which contribute to additional complexity in HSF transcriptional regulation, but remain poorly examined in the literature. In this work, we studied the transcriptional activity of HSF1 and HSF2 splicing isoforms transfected into immortalized Mouse Embryonic Fibroblasts (iMEFs deleted for both Hsf1 and Hsf2, under normal conditions and after proteasome inhibition. We found that HSF1α is significantly more active than the β isoform after exposure to the proteasome inhibitor MG132. Furthermore, we clearly established that, while HSF2 had no transcriptional activity by itself, short β isoform of HSF2 exerts a negative role on HSF1β-dependent transactivation. To further assess the impact of HSF2β inhibition on HSF1 activity, we developed a mathematical modelling approach which revealed that the balance between each HSF isoform in the cell regulated the strength of the transcriptional response. Moreover, we found that cellular stress such as proteasome inhibition could regulate the splicing of Hsf2 mRNA. All together, our results suggest that relative amounts of each HSF1 and HSF2 isoforms quantitatively determine the cellular level of the proteotoxic stress response.

  13. The α and Δ isoforms of CREB1 are required to maintain normal pulmonary vascular resistance.

    Directory of Open Access Journals (Sweden)

    Lili Li

    Full Text Available Chronic hypoxia causes pulmonary hypertension associated with structural alterations in pulmonary vessels and sustained vasoconstriction. The transcriptional mechanisms responsible for these distinctive changes are unclear. We have previously reported that CREB1 is activated in the lung in response to alveolar hypoxia but not in other organs. To directly investigate the role of α and Δ isoforms of CREB1 in the regulation of pulmonary vascular resistance we examined the responses of mice in which these isoforms of CREB1 had been inactivated by gene mutation, leaving only the β isoform intact (CREB(αΔ mice. Here we report that expression of CREB regulated genes was altered in the lungs of CREB(αΔ mice. CREB(αΔ mice had greater pulmonary vascular resistance than wild types, both basally in normoxia and following exposure to hypoxic conditions for three weeks. There was no difference in rho kinase mediated vasoconstriction between CREB(αΔ and wild type mice. Stereological analysis of pulmonary vascular structure showed characteristic wall thickening and lumen reduction in hypoxic wild-type mice, with similar changes observed in CREB(αΔ. CREB(αΔ mice had larger lungs with reduced epithelial surface density suggesting increased pulmonary compliance. These findings show that α and Δ isoforms of CREB1 regulate homeostatic gene expression in the lung and that normal activity of these isoforms is essential to maintain low pulmonary vascular resistance in both normoxic and hypoxic conditions and to maintain the normal alveolar structure. Interventions that enhance the actions of α and Δ isoforms of CREB1 warrant further investigation in hypoxic lung diseases.

  14. Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development

    Directory of Open Access Journals (Sweden)

    De Santanu


    Full Text Available Abstract Background The 14-3-3 (YWHA proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ. These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. Results We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. Conclusions We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the

  15. Regulation of alveolar macrophage transforming growth factor-beta secretion by corticosteroids in bleomycin-induced pulmonary inflammation in the rat.


    Khalil, N.; Whitman, C.; Zuo, L; Danielpour, D; Greenberg, A


    In a model of pulmonary inflammation and fibrosis induced by the antineoplastic antibiotic, bleomycin, we previously demonstrated that TGF-beta was markedly elevated within 7 d of bleomycin administration. At the time of maximal TGF-beta production, TGF-beta 1 was localized by immunohistochemistry to be present almost exclusively in alveolar macrophages. In this study, we have demonstrated that alveolar macrophages stimulated by bleomycin-induced injury secrete large quantities of biologicall...

  16. Regulation of the vitamin D receptor and cornifin beta expression in vaginal epithelium of the rats through vitamin D3

    Directory of Open Access Journals (Sweden)

    G Abban


    Full Text Available The aim of the present study was to determine the respective role of 1,25-dihydroxyvitamin D3 on vaginal epithelium and 1,25-dihydroxyvitamin D3 receptor expression in ovariectomized rats and vitamin D3 treated rats. Bilateral ovariectomies were performed in 20 mature, non-pregnant Wistar female rats. All the animals were divided into 2 groups consisting of 10 rats each. Group I served as control. In group II, animals were injected intramuscularly with vitamin D3 (50, 00 IU/kg. Two weeks after the injections, vaginas of animals in group I and group II were removed removed and processed for immunohistochemistry. Epithelial differentiation, 1,25-dihydroxyvitamin D3 receptor and cornifin b expression were investigated in vaginal epithelium of control group (ovariectomized and vitamin D3 treated rats. Vaginal epithelial cells from vitamin D3 treated animals changed into highly- stratified keratinizing layers. 1,25-dihydroxyvitamin D3 receptor and cornifin b as a marker of squamous differentiation were present in ovariectomized rats treated with 1,25- dihydroxyvitamin D3. In contrast, cornifin b and 1,25-dihydroxyvitamin D3 receptor were absent in all layers of vaginal epithelium in control group. We demonstrated for the first time that 1,25-dihydroxyvitamin D3 induced proliferation of vaginal epithelium consistent with the cornifin b expression and 1,25-dihydroxyvitamin D3 up-regulated 1,25-dihydroxyvitamin D3 receptor expression in vaginal epithelium.

  17. 17beta-雌二醇通过beta受体和cAMP-ERK1/2级联调节仔猪睾丸支持细胞cyclinA2mRNA的表达%17-beta Estradiol Regulates the Expression of CyclinA2 mRNA of Cultured Immature Boar Sertoli Cells via Estrogen Receptor beta, cAMP-PKA and ERK1/2

    Institute of Scientific and Technical Information of China (English)

    左敬; 甘瑞; 张国升; 张姣姣; 朱峰伟; 孙燕; 王鲜忠; 张家骅


    [Objective]The objective of this study was to identify whether 17beta-estradiol regulates the expression of eCyclinA2 mRNA via the estrogen receptor beta (ERbetβa) and the cAMP-PKA-extracellular signal-regulated kinase (ERK1/2)pathway.[Method]Cultured immature boar sertoli cells were treated with 10-9 mol·L-1 17beta-estradiol, and real-time PCR was used to detect the expression of cyclinA2 mRNA.[Result]Treatment with 17beta-estradiol increased the expression of cyclinA2 mRNA from 15 min to 90 min (P<0.05).The effects of 17beta-estradiol activity peaked at 30 min compared to the control cells (P<0.05).Combined treatment with ICI182780 and ERβ reduced the 17beta-estradiol-induced increase in the expression of cyclinA2 mRNA (P <0.05), but ERβ alone did not significantly affect these parameters (P<0.05).Both 17beta-estradiol and forskolin induced the abundance of cyclinA2 mRNA (P<0.05 for both).Combined treatment with Rp-cAMP, H-89 and U0126 reduced the 17beta -estradiol-induced expression of cyclinA2 mRNA (P <0.05 for all), but Rp-cAMP, H-89 and U0126 alone had no significant effect on the abundance of cyclinA2 mRNA, compared to the control group.[Conclusion]This study showed that 17beta-estradiol regulates the expression of cyclinA2 mRNA via the activation of ERβ, cAMP-PKA and ERK1/2.%[目的]确定雌激素是否通过雌激素受体以及在cAMP-细胞外调节的蛋白激酶(ERK1/2)调节培养条件下,未成熟仔猪睾丸支持细胞中cyclinA2 mRNA的表达.[方法]以培养的仔猪睾丸支持细胞为试验材料,通过添加雌激素受体抑制剂以及各种信号通路的抑制剂,应用实时荧光定量PCR检测cyclinA2 mRNA的相对表达量.[结果]17beta-雌二醇(10-9mol·L-1)以时间依赖的方式促进了cyclinA2 mRNA的表达(P0.05),但ICI 182780与ERbetaAnt,而不是ERalphaAnt抑制了17beta-雌二醇诱导的eyelinA2 mRNA的表达(P0.05).[结论]17beta-雌二醇主要通过Erbeta受体、影响cAMP的产生和ERK1/2

  18. Prolonged exposure of human beta cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation.


    Z. Ling; Pipeleers, D G


    Human beta cells can be maintained in serum-free culture at 6 mmol/liter glucose, with 80% cell recovery and preserved glucose-inducible functions after 1 wk. Between 0 and 10 mmol/liter, glucose dose-dependently increases the number of beta cells in active protein synthesis (15% at 0 mmol/liter glucose, 60% at 5 mmol/liter, and 82% at 10 mmol/liter), while lacking such an effect in islet non-beta cells (> 75% activated irrespective of glucose concentrations). As in rat beta cells, this inter...

  19. Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities.

    Directory of Open Access Journals (Sweden)

    Luis J Cocka


    Full Text Available Tetherin (BST-2/CD317/HM1.24 is an IFN induced transmembrane protein that restricts release of a broad range of enveloped viruses. Important features required for Tetherin activity and regulation reside within the cytoplasmic domain. Here we demonstrate that two isoforms, derived by alternative translation initiation from highly conserved methionine residues in the cytoplasmic domain, are produced in both cultured human cell lines and primary cells. These two isoforms have distinct biological properties. The short isoform (s-Tetherin, which lacks 12 residues present in the long isoform (l-Tetherin, is significantly more resistant to HIV-1 Vpu-mediated downregulation and consequently more effectively restricts HIV-1 viral budding in the presence of Vpu. s-Tetherin Vpu resistance can be accounted for by the loss of serine-threonine and tyrosine motifs present in the long isoform. By contrast, the l-Tetherin isoform was found to be an activator of nuclear factor-kappa B (NF-κB signaling whereas s-Tetherin does not activate NF-κB. Activation of NF-κB requires a tyrosine-based motif found within the cytoplasmic tail of the longer species and may entail formation of l-Tetherin homodimers since co-expression of s-Tetherin impairs the ability of the longer isoform to activate NF-κB. These results demonstrate a novel mechanism for control of Tetherin antiviral and signaling function and provide insight into Tetherin function both in the presence and absence of infection.

  20. Analysis by liquid chromatography-electrospray ionization tandem mass spectrometry and acute toxicity evaluation for beta-blockers and lipid-regulating agents in wastewater samples. (United States)

    Hernando, M D; Petrovic, M; Fernández-Alba, A R; Barceló, D


    This paper describes a multiresidue method for the extraction and determination of two therapeutic groups of pharmaceuticals, lipid-regulating agents (clofibric acid, bezafibrate, gemfibrocil, fenofibrate) and beta-blockers (atenolol, sotalol, metoprolol, betaxolol) in waters by solid-phase extraction followed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). Recoveries obtained from spiked HPLC water, as well as, from spiked real samples (sewage treatment plants influent and effluents, river and tap water) were all above 60%, with the exception of betaxolol with a 52% recovery. The quantitative MS analysis was performed using a multiple reaction monitoring. The LC-MS-MS method gave detection limits ranging from 0.017 to 1.25 microg/l in spiked effluent. Precision of the method, calculated as relative standard deviation, ranged from 3.7 to 18.5%. Individual and combined effects on Daphnia magna were evaluated for both therapeutic groups. Individual effects in culture medium showed these compounds as not harmful and not toxic, an exception is fenofibrate that was found to be harmful, but at high, in the environment unrealistic concentrations (EC50 of 50 mg/l). Combined effect in wastewater showed synergistic toxic effects at low concentration level (2 microg/l). PMID:15387181

  1. Changes in claudin isoform expression in the gill during salinity shifts and smoltification of Atlantic salmon

    DEFF Research Database (Denmark)

    Madsen, Steffen; Tipsmark, Christian Kølbæk


    expression was confirmed by RT-QPCR. We examined the expression profile during the parr-smolt transformation (PST) in freshwater and during acclimation to sea water (SW). During PST, claudin 10e expression peaked in May, coinciding with optimal SW tolerance. The other claudin isoforms were not influenced...... during PST. SW-transfer induced a 5-fold increase in expression of claudin 10e, reduced the expression of 27a and 30a and had no overall effect on 28a and 28b isoforms. The study demonstrates for the first time that SW acclimation involves differential regulation of claudin gene expression in the salmon...

  2. p53 isoforms change p53 paradigm


    Bourdon, JC


    Although p53 defines cellular responses to cancer treatment it is not clear how p53 can be used to control cell fate outcome. Data demonstrate that so-called p53 does not exist as a single protein, but is in fact a group of p53 protein isoforms whose expression can be manipulated to control the cellular response to treatment.

  3. New isoforms of rat Aquaporin-4

    DEFF Research Database (Denmark)

    Moe, Svein Erik; Sorbo, Jan Gunnar; Søgaard, Rikke;


    Aquaporin-4 (AQP4) is a brain aquaporin implicated in the pathophysiology of numerous clinical conditions including brain edema. Here we show that rat AQP4 has six cDNA isoforms, formed by alternative splicing. These are named AQP4a-f, where AQP4a and AQP4c correspond to the two classical M1 and M...

  4. Factor de crecimiento transformante beta-1: estructura, función y mecanismos de regulación en cáncer Transforming growth factor beta-1: structure, function and regulation mechanisms in cancer


    Oscar Peralta-Zaragoza; A. Lagunas-Martínez; Vicente Madrid-Marina


    El factor de crecimiento transformante beta-1 (TGF-beta1) es sintetizado por muchas estirpes celulares como linfocitos, macrófagos y células dendríticas, y su expresión regula de manera autócrina o parácrina la diferenciación, proliferación y el estado de activación de éstas y muchas otras células. En general, el TGF-beta1 tiene propiedades pleiotrópicas en el contexto de la respuesta inmune durante el desarrollo de infecciones y procesos neoplásicos; sin embargo, los mecanismos de acción y r...

  5. [Preparation and properties of isocitrate lyase isoforms from the cotyledons of Glycine max L]. (United States)

    Eprintsev, A T; Diachenko, E V; Lykova, T V; Kuen, C T H; Popov, V N


    A four-stage purification procedure including ammonium sulfate precipitation and ion exchange chromatography on DEAE cellulose has been elaborated for isolation of isocitrate lyase (EC isoforms from the cotyledons of soybean Glycine max L. Electrophoretically homogeneous preparations of two forms of the enzyme with specific activity of 5.28 and 5.81 U/mg protein have been obtained. Comparison of physicochemical, kinetic, and regulation characteristics of the isoforms obtained revealed fundamental differences between them. Thus, the isoform that migrated quickly in PAAG had a much lower affinity to isocitrate (K(M) - 50 microM) than the slowly migrating form (K(M) - 16 microM). It has been shown that the conservation of activity of the isoforms obtained depends on the presence of divalent cations (Mn2+ and Mg2+) in the medium. It is suggested to use the isoforms of isocitrate lyase isolated from soybeans for the development of biosensors for biochemical and kinetic assays. PMID:20198926

  6. Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure.

    Directory of Open Access Journals (Sweden)

    Sophie A O Armitage

    Full Text Available The hypervariable Dscam1 (Down syndrome cell adhesion molecule 1 gene can produce thousands of different ectodomain isoforms via mutually exclusive alternative splicing. Dscam1 appears to be involved in the immune response of some insects and crustaceans. It has been proposed that the diverse isoforms may be involved in the recognition of, or the defence against, diverse parasite epitopes, although evidence to support this is sparse. A prediction that can be generated from this hypothesis is that the gene expression of specific exons and/or isoforms is influenced by exposure to an immune elicitor. To test this hypothesis, we for the first time, use a long read RNA sequencing method to directly investigate the Dscam1 splicing pattern after exposing adult Drosophila melanogaster and a S2 cell line to live Escherichia coli. After bacterial exposure both models showed increased expression of immune-related genes, indicating that the immune system had been activated. However there were no changes in total Dscam1 mRNA expression. RNA sequencing further showed that there were no significant changes in individual exon expression and no changes in isoform splicing patterns in response to bacterial exposure. Therefore our studies do not support a change of D. melanogaster Dscam1 isoform diversity in response to live E. coli. Nevertheless, in future this approach could be used to identify potentially immune-related Dscam1 splicing regulation in other host species or in response to other pathogens.

  7. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    DEFF Research Database (Denmark)

    Bagge, Annika; Clausen, Trine R; Larsen, Sylvester;


    Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate...

  8. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements.

    Directory of Open Access Journals (Sweden)

    Carl O Olson

    Full Text Available MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum, whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute

  9. Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR ligands or beta-amyloid (Aβ

    Directory of Open Access Journals (Sweden)

    Watterson D Martin


    Full Text Available Abstract Background Overproduction of proinflammatory cytokines from activated microglia has been implicated as an important contributor to pathophysiology progression in both acute and chronic neurodegenerative diseases. Therefore, it is critical to elucidate intracellular signaling pathways that are significant contributors to cytokine overproduction in microglia exposed to specific stressors, especially pathways amenable to drug interventions. The serine/threonine protein kinase p38α MAPK is a key enzyme in the parallel and convergent intracellular signaling pathways involved in stressor-induced production of IL-1β and TNFα in peripheral tissues, and is a drug development target for peripheral inflammatory diseases. However, much less is known about the quantitative importance of microglial p38α MAPK in stressor-induced cytokine overproduction, or the potential of microglial p38α MAPK to be a druggable target for CNS disorders. Therefore, we examined the contribution of microglial p38αMAPK to cytokine up-regulation, with a focus on the potential to suppress the cytokine increase by inhibition of the kinase with pharmacological or genetic approaches. Methods The microglial cytokine response to TLR ligands 2/3/4/7/8/9 or to Aβ1-42 was tested in the presence of a CNS-penetrant p38α MAPK inhibitor, MW01-2-069A-SRM. Primary microglia from mice genetically deficient in p38α MAPK were used to further establish a linkage between microglia p38α MAPK and cytokine overproduction. The in vivo significance was determined by p38α MAPK inhibitor treatment in a LPS-induced model of acute neuroinflammation. Results Increased IL-1β and TNFα production by the BV-2 microglial cell line and by primary microglia cultures was inhibited in a concentration-dependent manner by the p38α MAPK-targeted inhibitor. Cellular target engagement was demonstrated by the accompanying decrease in the phosphorylation state of two p38α MAPK protein substrates, MK2

  10. Overexpression of the short endoglin isoform reduces renal fibrosis and inflammation after unilateral ureteral obstruction. (United States)

    Muñoz-Félix, José M; Pérez-Roque, Lucía; Núñez-Gómez, Elena; Oujo, Bárbara; Arévalo, Miguel; Ruiz-Remolina, Laura; Cuesta, Cristina; Langa, Carmen; Pérez-Barriocanal, Fernando; Bernabeu, Carmelo; Lopez-Novoa, José M


    Transforming growth factor beta 1 (TGF-β1) is one of the most studied cytokines involved in renal tubulo-interstitial fibrosis, which is characterized by myofibroblast abundance and proliferation, and high buildup of extracellular matrix in the tubular interstitium leading to organ failure. Endoglin (Eng) is a 180-kDa homodimeric transmembrane protein that regulates a great number of TGF-β1 actions in different biological processes, including ECM synthesis. High levels of Eng have been observed in experimental models of renal fibrosis or in biopsies from patients with chronic kidney disease. In humans and mice, two Eng isoforms are generated by alternative splicing, L-Eng and S-Eng that differ in the length and composition of their cytoplasmic domains. We have previously described that L-Eng overexpression promotes renal fibrosis after unilateral ureteral obstruction (UUO). However, the role of S-Eng in renal fibrosis is unknown and its study would let us analyze the possible function of the cytoplasmic domain of Eng in this process. For this purpose, we have generated a mice strain that overexpresses S-Eng (S-ENG(+)) and we have performed an UUO in S-ENG(+) and their wild type (WT) control mice. Our results indicate that obstructed kidney of S-ENG(+) mice shows lower levels of tubulo-interstitial fibrosis, less inflammation and less interstitial cell proliferation than WT littermates. Moreover, S-ENG(+) mice show less activation of Smad1 and Smad2/3 pathways. Thus, S-Eng overexpression reduces UUO-induced renal fibrosis and some associated mechanisms. As L-Eng overexpression provokes renal fibrosis we conclude that Eng-mediated induction of renal fibrosis in this model is dependent on its cytoplasmic domain. PMID:27321931

  11. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    International Nuclear Information System (INIS)

    Research highlights: → AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. → Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. → AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACCβ) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACCβ activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid β-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACCβ promoter activity via AMPK activation. A human ACCβ promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes ± a NRF-1 expression construct. NRF-1 overexpression decreased ACCβ gene promoter activity by 71 ± 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACCβ was abolished with a pPIIβ-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACCβ promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACCβ gene promoter. Here NRF-1 blunted USF1-dependent induction of ACCβ promoter activity by 58 ± 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 ± 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACCβ gene promoter in the mammalian heart. Our data extends AMPK regulation of ACCβ to the transcriptional level.

  12. Characterization of the hemoglobins of the neonatal brushtailed possum Trichosurus vulpecula (Kerr): evidence for a highly cooperative, aggregated isoform of hemoglobin. (United States)

    Henty, Kristen; Wells, Rufus M G; Brittain, Thomas


    The red blood cells of the neonatal brushtailed possum exhibit unusually strong cooperativity at high levels of oxygen saturation (n=5.4) which appear to arise from a concentration dependent aggregation of one of the neonatal hemoglobin isoforms. Red blood cells from neonatal pouched young exhibit a Bohr factor of -0.36. Stripped hemolysate is sensitive to added 2,3-bisphosphoglycerate (BPG) (apparent binding constant K=35 micromol L(-1)) and ATP (K=180 micromol L(-1)), but is largely insensitive towards chloride ions. Five isoforms of non-adult hemoglobin were identified using isoelectric focusing. Mass spectrometry indicated that two early isoforms contain alpha chains identical to the adult alpha chain. The remaining three isoforms are composed of identical alpha type and beta type gene products, but differ in their isoelectric points due to differential post-translational modification. PMID:18420437

  13. Identification of novel chicken estrogen receptor-alpha messenger ribonucleic acid isoforms generated by alternative splicing and promoter usage. (United States)

    Griffin, C; Flouriot, G; Sonntag-Buck, V; Nestor, P; Gannon, F


    Using the rapid amplification of complementary DNA ends (RACE) methodology we have identified three new chicken estrogen receptor-alpha (cER alpha) messenger RNA (mRNA) variants in addition to the previously described form (isoform A). Whereas one of the new variants (isoform B) presents a 5'-extremity contiguous to the 5'-end of isoform A, the two other forms (isoforms C and D) are generated by alternative splicing of upstream exons (C and D) to a common site situated 70 nucleotides upstream of the translation start site in the previously assigned exon 1 (A). The 3'-end of exon 1C has been located at position -1334 upstream of the transcription start site of the A isoform (+1). Whereas the genomic location of exon 1D is unknown, 700 bp 5' to this exon were isolated by genomic walking, and their sequence was determined. The transcription start sites of the cER alpha mRNA isoforms were defined. In transfection experiments, the regions immediately upstream of the A-D cER alpha mRNA isoforms were shown to possess cell-specific promoter activities. Three of these promoters were down-regulated in the presence of estradiol and ER alpha protein. It is concluded, therefore, that the expression of the four different cER alpha mRNA isoforms is under the control of four different promoters. Finally, RT-PCR, S1 nuclease mapping, and primer extension analysis of these different cER alpha mRNA isoforms revealed a differential pattern of expression of the cER alpha gene in chicken tissues. Together, the results suggest that alternative 5'-splicing and promoter usage may be mechanisms used to modulate the levels of expression of the chicken ER alpha gene in a tissue-specific and/or developmental stage-specific manner. PMID:9794473

  14. Novel P2 promoter-derived HNF4{alpha} isoforms with different N-terminus generated by alternate exon insertion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianmin, E-mail: [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States); Levitsky, Lynne L. [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States); Rhoads, David B., E-mail: [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States)


    Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a critical transcription factor for pancreas and liver development and functions in islet {beta} cells to maintain glucose homeostasis. Mutations in the human HNF4A gene lead to maturity onset diabetes of the young (MODY1) and polymorphisms are associated with increased risk for type 2 diabetes mellitus (T2DM). Expression of six HNF4{alpha} variants, three each from two developmentally regulated promoters, has been firmly established. We have now detected a new set of HNF4{alpha} variants designated HNF4{alpha}10-12 expressed from distal promoter P2. These variants, generated by inclusion of previously undetected exon 1E (human = 222 nt, rodent = 136 nt) following exon 1D have an altered N-terminus but identical remaining reading frame. HNF4{alpha}10-{alpha}12 are expressed in pancreatic islets (and liver) and exhibit transactivation potentials similar to the corresponding {alpha}7-{alpha}9 isoforms. DNA-binding analyses implied much higher protein levels of HNF4{alpha}10-{alpha}12 in liver than expected from the RT-PCR data. Our results provide evidence for a more complex expression pattern of HNF4{alpha} than previously appreciated. We recommend inclusion of exon 1E and nearby DNA sequences in screening for HNF4{alpha} mutations and polymorphisms in genetic analyses of MODY1 and T2DM.

  15. Molecular cloning of cDNA for the B beta subunit of Xenopus fibrinogen, the product of a coordinately-regulated gene family. (United States)

    Bhattacharya, A; Shepard, A R; Moser, D R; Roberts, L R; Holland, L J


    Fibrinogen, the principal blood-clotting protein, is made up of three different subunits synthesized in the liver. In vitro administration of glucocorticoids to liver cells from the frog Xenopus laevis causes a dramatic increase in fibrinogen synthesis. Investigations of molecular mechanisms underlying this hormonal stimulation at the mRNA level require cDNA clones complementary to the mRNAs coding for the three fibrinogen subunits, called A alpha, B beta, and gamma. We describe here the isolation and characterization of cDNA clones for the B beta subunit of Xenopus fibrinogen. cDNA libraries in both plasmid (pBR322) and phage (lambda gt10) cloning vectors were constructed from frog liver mRNA and screened with a rat B beta cDNA. Clones thus isolated hybridized to two Xenopus liver mRNAs 2500 and 1800 bases long, the previously-determined sizes for B beta mRNAs. The identity of the plasmid clone B beta-27 was confirmed by hybridization-selection of complementary mRNA which translated in vitro into the B beta polypeptide, as determined by size and susceptibility to thrombin cleavage. lambda/B beta 10, a clone representing nearly all of the 2500-base B beta mRNA, was isolated from the phage cDNA library. The 3'-end of this clone includes a polyadenylation signal about 20 residues upstream of a stretch of 34 adenosine residues, which probably represents the 3'-poly(A) tail of the messenger RNA. lambda/B beta 10 lacks only 20 nucleotides of full-length B beta mRNA at the 5'-end and there is one major start site of transcription. The 2500-base B beta mRNA has a 700-base extension at the 3'-end that is not present in the 1800-base mRNA. The Xenopus laevis genome contains two or three genes for the B beta fibrinogen subunit. Using the cDNA clone as a probe, B beta mRNA was shown to be induced at least 20-fold by glucocorticoid treatment of purified parenchymal cells of Xenopus liver maintained in primary culture. PMID:2050271

  16. Entropy-based model for miRNA isoform analysis.

    Directory of Open Access Journals (Sweden)

    Shengqin Wang

    Full Text Available MiRNAs have been widely studied due to their important post-transcriptional regulatory roles in gene expression. Many reports have demonstrated the evidence of miRNA isoform products (isomiRs in high-throughput small RNA sequencing data. However, the biological function involved in these molecules is still not well investigated. Here, we developed a Shannon entropy-based model to estimate isomiR expression profiles of high-throughput small RNA sequencing data extracted from miRBase webserver. By using the Kolmogorov-Smirnov statistical test (KS test, we demonstrated that the 5p and 3p miRNAs present more variants than the single arm miRNAs. We also found that the isomiR variant, except the 3' isomiR variant, is strongly correlated with Minimum Free Energy (MFE of pre-miRNA, suggesting the intrinsic feature of pre-miRNA should be one of the important factors for the miRNA regulation. The functional enrichment analysis showed that the miRNAs with high variation, particularly the 5' end variation, are enriched in a set of critical functions, supporting these molecules should not be randomly produced. Our results provide a probabilistic framework for miRNA isoforms analysis, and give functional insights into pre-miRNA processing.

  17. Viewing ageing eyes: diverse sites of amyloid Beta accumulation in the ageing mouse retina and the up-regulation of macrophages.

    Directory of Open Access Journals (Sweden)

    Jaimie Hoh Kam

    Full Text Available BACKGROUND: Amyloid beta (Aβ accumulates in the ageing central nervous system and is associated with a number of age-related diseases, including age-related macular degeneration (AMD in the eye. AMD is characterised by accumulation of extracellular deposits called drusen in which Aβ is a key constituent. Aβ activates the complement cascade and its deposition is associated with activated macrophages. So far, little is known about the quantitative measurements of Aβ accumulation and definitions of its relative sites of ocular deposition in the normal ageing mouse. METHODOLOGY/PRINCIPAL FINDINGS: We have traced Aβ accumulation quantitatively in the ageing mouse retina using immunohistochemistry and Western blot analysis. We reveal that it is not only deposited at Bruch's membrane and along blood vessels, but unexpectedly, it also coats photoreceptor outer segments. While Aβ is present at all sites of deposition from 3 months of age, it increases markedly from 6 months onward. Progressive accumulation of deposits on outer segments was confirmed with scanning electron microscopy, revealing age-related changes in their morphology. Such progress of accumulation of Aβ on photoreceptor outer segments with age was also confirmed in human retinae using immunohistochemistry. We also chart the macrophage response to increases in Aβ showing up-regulation in their numbers using both confocal laser imaging of the eye in vivo followed by in vitro immunostaining. With age macrophages become bloated with cellular debris including Aβ, however, their increasing numbers fail to stop Aβ accumulation. CONCLUSIONS: Increasing Aβ deposition in blood vessels and Bruch's membrane will impact upon retinal perfusion and clearance of cellular waste products from the outer retina, a region of very high metabolic activity. This accumulation of Aβ may contribute to the 30% reduction of photoreceptors found throughout life and the shortening of those that remain. The

  18. Comparative inter-strain sequence analysis of the putative regulatory region of murine psychostimulant-regulated gene GNB1 (G protein beta 1 subunit gene). (United States)

    Kitanaka, Nobue; Kitanaka, Junichi; Walther, Donna; Wang, Xiao-Bing; Uhl, George R


    We isolated a cDNA clone from a murine genomic library of C57BL/6 strain, carrying 13.8 kb of nucleotides including exon 1 of heterotrimeric GTP-binding protein beta 1 subunit gene (genetic symbol, GNB1) and 10.6 kb of the 5' flanking region. Sequence comparison with GNB1 gene locus from 129Sv strain revealed a 0.2% divergence in a 13.2 kb common region between these two strains. The divergence consisted of eight single nucleotide polymorphisms, three insertions and one deletion, with 129Sv used as the reference. The exon 1 and the putative regulation elements, such as cyclic AMP response element, AP1, AP2, Sp1 and nuclear factor-kappa B recognition sites, were perfectly conserved. The expression of GNB1 mRNA was significantly increased in mouse striatum 2 h after single methamphetamine administration with an approximately 150% expression level compared with the basal level. In contrast, no change in the expression level was observed in the cerebral cortex. After the chronic methamphetamine treatment regimen, the expression level of GNB1 mRNA did not change in any brain regions examined. These results suggest (1) that the 5' flanking nucleotide sequence of GNB1 gene was strictly conserved for its possible contribution to the same change in the expression level between the mouse strains in response to psychostimulants and (2) that the initial process of development of behavioral sensitization appeared to occur parallel to the significant increase in the expression level of GNB1 gene in the mouse striatum. PMID:14631649

  19. Differential expression of Na+, K(+)-ATPase α-1 isoforms during seawater acclimation in the amphidromous galaxiid fish Galaxias maculatus. (United States)

    Urbina, Mauricio A; Schulte, Patricia M; Bystriansky, Jason S; Glover, Chris N


    Inanga (Galaxias maculatus) is an amphidromous fish with a well-known capacity to withstand a wide range of environmental salinities. To investigate the molecular mechanisms facilitating acclimation of inanga to seawater, several isoforms of the Na(+), K(+)-ATPase ion transporter were identified. This included three α-1 (a, b and c), an α-2 and two α-3 (a and b) isoforms. Phylogenetic analysis showed that the inanga α-1a and α-1b formed a clade with the α-1a and α-1b isoforms of rainbow trout, while another clade contained the α-1c isoforms of these species. The expression of all the α-1 isoforms was modulated after seawater exposure (28‰). In gills, the expression of the α-1a isoform was progressively down-regulated after seawater exposure, while the expression of the α-1b isoform was up-regulated. The α-1c isoform behaved similarly to the α-1a, although changes were less dramatic. Physiological indicators of salinity acclimation matched the time frame of the changes observed at the molecular level. A 24-h osmotic shock period was highlighted by small increases in plasma osmolality, plasma Na(+) and a decrease in muscle tissue water content. Thereafter, these values returned close to their pre-exposure (freshwater) values. Na(+), K(+)-ATPase activity showed a decreasing trend over the first 72 h following seawater exposure, but activity increased after 240 h. Our results indicate that inanga is an excellent osmoregulator, an ability that is conferred by the rapid activation of physiological and molecular responses to salinity change. PMID:23142926

  20. Calmodulin effects on steroids-regulated plasma membrane calcium pump activity. (United States)

    Zylinska, Ludmila; Kowalska, Iwona; Ferenc, Bozena


    It is now generally accepted that non-genomic steroids action precedes their genomic effects by modulation of intracellular signaling pathways within seconds after application. Ca(2+) is a very potent and ubiquitous ion in all cells, and its concentration is precisely regulated. The most sensitive on Ca(2+) increase is ATP-consuming plasma membrane calcium pump (PMCA). The enzyme is coded by four genes, but isoforms diversity was detected in excitable and non-excitable cells. It is the only ion pump stimulated directly by calmodulin (CaM). We examined the role of PMCA isoforms composition and CaM effect in regulation of Ca(2+) uptake by estradiol, dehydroepiandrosterone (DHEA), pregnenolone (PREG), and their sulfates in a concentration range from 10(-9) to 10(-6) M, using the membranes from rat cortical synaptosomes, differentiated PC12 cells, and human erythrocytes. In excitable membranes with full set of PMCAs steroids apparently increased Ca(2+) uptake, although to a variable extent. In most of the cases, CaM decreased transport by 30-40% below controls. Erythrocyte PMCA was regulated by the steroids somewhat differently than excitable cells. CaM strongly increased the potency for Ca(2+) extrusion in membranes incubated with 17-beta-estradiol and PREG. Our results indicated that steroids may sufficiently control cytoplasmic calcium concentration within physiological and therapeutic range. The response depended on the cell type, PMCA isoforms expression profile, CaM presence, and the steroids structure. PMID:19226536

  1. Protein Phosphatase 2Cβl Regulates Human Pregnane X Receptor-Mediated CYP3A4 Gene Expression in HepG2 Liver Carcinoma Cells


    Pondugula, Satyanarayana R.; Tong, Alexander A.; Wu, Jing; Cui, Jimmy; Chen, Taosheng


    The human pregnane X receptor (hPXR) regulates the expression of CYP3A4, which plays a vital role in hepatic drug metabolism and has considerably reduced expression levels in proliferating hepatocytes. We have recently shown that cyclin-dependent kinase 2 (CDK2) negatively regulates hPXR-mediated CYP3A4 gene expression. CDK2 can be dephosphorylated and inactivated by protein phosphatase type 2C beta isoform long (PP2Cβl), a unique phosphatase that was originally cloned from human liver. In th...

  2. Transforming growth factor-beta messenger RNA and protein in murine colitis

    DEFF Research Database (Denmark)

    Whiting, C V; Williams, A M; Claesson, Mogens Helweg;


    farther along the crypt axis in disease. Control lamina propria cells transcribed little TGF-beta1 or TGF-beta3 mRNA, but in inflamed tissues many cells expressed mRNA for both isoforms. No TGF-beta2 message was detected in either control or inflamed tissues. Immunohistochemistry for latent and active TGF......-beta1 showed that all cells produced perinuclear latent TGF-beta1. The epithelial cell basal latent protein resulted in only low levels of subepithelial active protein, which co-localized with collagen IV and laminin in diseased and control tissue. Infiltrating cells expressed very low levels of active...

  3. Lipoprotein lipase isoelectric point isoforms in humans

    DEFF Research Database (Denmark)

    Badia-Villanueva, M.; Carulla, P.; Carrascal, M.;


    characterization of these forms was carried out by 2DE combined with Western blotting and mass spectrometry (MALDI-TOF/MS and LC-MS/MS). Further studies are needed to discover their molecular origin, the pattern of pI isoforms in human tissues, their possible physiological functions and possible modifications of......-heparin plasma (PHP), LPL consists of a pattern of more than 8 forms of the same apparent molecular weight, but different isoelectric point (pI). In the present study we describe, for the first time, the existence of at least nine LPL pI isoforms in human PHP, with apparent pI between 6.8 and 8.6. Separation and...

  4. Ozone and ultraviolet B effects on the defense-related proteins beta-1,3-glucanase and chitinase in tobacco

    International Nuclear Information System (INIS)

    The air pollutant ozone is a potent abiotic inducer of defense-related enzymes such as pathogenesis-related proteins. Here we report on the accumulation of beta-1,3-glucanase and chitinase in Nicotiana tabacumL. treated with ozone and ultraviolet B radiation, singly and in combination, under a simulated sunlight spectrum. Ozone (0.16 mu L . L-1, 2 x 5 h) induced the basic isoforms of beta-1,3-glucanase in both, ozone-sensitive (Eel W3) and -tolerant (Bel B) cultivars, while chitinase was only affected in cv. Bel W3. Ultraviolet B radiation (7.5 MED) alone did not lead to beta-1,3-glucanase or chitinase induction. In combined treatments ultraviolet B increased the ozone-dependent lesion formation and reduced chitinase accumulation in the sensitive cv. Bel W3. Analysis of the intercellular washing fluid of ozone-treated plants revealed the accumulation of a major ozone-related protein (O(3)R-1) of 28 kDa within 32 h. Microsequence analysis of two tryptic peptides showed 100 % homology to acidic chitinase PR-3b. These results indicate that basic beta-1,3-glucanase and chitinase are distinctly regulated in ozone and ultraviolet B treated tobacco, and that ultraviolet B radiation with a similar UV edge as the solar spectrum does not lead to an accumulation of basic pathogenesis-related proteins

  5. Regulation of extracellular matrix synthesis by TNF-alpha and TGF-beta1 in type II cells exposed to coal dust. (United States)

    Lee, Y C; Rannels, D E


    Type II pulmonary epithelial cells respond to anthracite coal dust PSOC 867 with increased synthesis of extracellular matrix (ECM) components. Alveolar macrophages modulate this response by pathways that may involve soluble mediators, including tumor necrosis factor-alpha (TNF-alpha) or transforming growth factor-beta1 (TGF-beta1). The effects of TNF-alpha (10 ng/ml) and/or TGF-beta1 (2 ng/ml) were thus investigated in dust-exposed primary type II cell cultures. In control day 1 or day 3 cultures, TNF-alpha and/or TGF-beta1 had little or no effect on the synthesis of type II cellular proteins, independent of whether the cells were exposed to dust. With PSOC 867 exposure, where ECM protein synthesis is elevated, TNF-alpha and TGF-beta1 further increased both the absolute and relative rates of ECM synthesis on day 3 but had little effect on day 1. Each mediator increased expression of fibronectin mRNA, as well as of ECM fibronectin content, in a manner qualitatively similar to their effects on synthesis. Thus TNF-alpha and TGF-beta1 modulate both ECM synthesis and fibronectin content in coal dust-exposed type II cell cultures. PMID:9755095

  6. An investigation into the receptor-regulating effects of the acute administration of opioid agonists and an antagonist on beta adrenergic receptors in the rat cerebral cortex

    International Nuclear Information System (INIS)

    Past and current research indicated that biochemical deviations which might be involved in the etiology and pathophysiology of depression, included abnormalities or imbalances in the noradrenergic, serotonergic, hormonal and possibly in the endogenous opioid, dopaminergic, histaminergic, cholinergic and trace amine systems. In order to investigate a possible link between the noradrenergic system and opioids, it was decided to test the acute effects of opioid administration on cortical beta adrenoceptor numbers and affinity. As these receptors have been most consistently downregulated by antidepressant treatment, they may be involved in the mechanism of antidepressant action of these agents. It was decided to investigate beta adrenoceptor-regulatory effects of opioid treatment. Naloxone was tested alone, with a view to suppressing any possible endogenous opioid influences upon beta receptor status and revealing an effect which would possibly be the opposite of that brought about by the administration of opioid agonists. Naloxone was administered together with morphine to demonstrate that any beta receptor up- or downregulation which might be measured, had indeed been opioid-receptor mediated. It was found that the acute administration of four different mu opioid agonists, naloxone and naloxone plus morphine, did not cause any statistically significant alterations in cortical beta adrenergic receptor numbers or affinity in the rat. A radioactive ligand, the beta adrenoceptor-labelling compound referred to as DHA (L-dihydroalprenolol HCI) was used in this study

  7. Functional studies of sodium pump isoforms

    DEFF Research Database (Denmark)

    Clausen, Michael Jakob

    The Na+,K+-ATPase is an essential ion pump found in all animal cells. It uses the energy from ATP hydrolysis to export three Na+ and import two K+, both against their chemical gradients and for Na+ also against the electrical potential. Mammals require four Na+,K+-ATPase isoforms that each have...... synthesized cohorts of pumps from the Golgi apparatus to the plasma membrane....

  8. Isoform-specific proteasomal degradation of Rbfox3 during chicken embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kee K.; Adelstein, Robert S.; Kawamoto, Sachiyo, E-mail:


    Highlights: • Protein stability of Rbfox3 splice isoforms is differentially regulated. • Rbfox3-d31, an Rbfox3 isoform lacking the RRM, is highly susceptible to degradation. • The protein stability of Rbfox3-d31 is regulated by the ubiquitin–proteasome pathway. • Rbfox3-d31 inhibits the nuclear localization of Rbfox2. • Rbfox3-d31 inhibits the splicing activity of Rbfox2. - Abstract: Rbfox3, a neuron-specific RNA-binding protein, plays an important role in neuronal differentiation during development. An isoform Rbfox3-d31, which excludes the 93-nucleotide cassette exon within the RNA recognition motif of chicken Rbfox3, has been previously identified. However, the cellular functions of Rbfox3-d31 remain largely unknown. Here we find that Rbfox3-d31 mRNA is highly expressed during the early developmental stages of the chicken embryo, while Rbfox3-d31 protein is barely detected during the same stage due to its rapid degradation mediated by the ubiquitin–proteasome pathway. Importantly, this degradation is specific to the Rbfox3-d31 isoform and it does not occur with full-length Rbfox3. Furthermore, suppression of Rbfox3-d31 protein degradation with the proteasome inhibitor MG132 attenuates the splicing activity of another Rbfox family member Rbfox2 by altering the subcellular localization of Rbfox2. These results suggest that Rbfox3-d31 functions as a repressor for the splicing activity of the Rbfox family and its protein level is regulated in an isoform-specific manner in vivo.

  9. Isoform-specific proteasomal degradation of Rbfox3 during chicken embryonic development

    International Nuclear Information System (INIS)

    Highlights: • Protein stability of Rbfox3 splice isoforms is differentially regulated. • Rbfox3-d31, an Rbfox3 isoform lacking the RRM, is highly susceptible to degradation. • The protein stability of Rbfox3-d31 is regulated by the ubiquitin–proteasome pathway. • Rbfox3-d31 inhibits the nuclear localization of Rbfox2. • Rbfox3-d31 inhibits the splicing activity of Rbfox2. - Abstract: Rbfox3, a neuron-specific RNA-binding protein, plays an important role in neuronal differentiation during development. An isoform Rbfox3-d31, which excludes the 93-nucleotide cassette exon within the RNA recognition motif of chicken Rbfox3, has been previously identified. However, the cellular functions of Rbfox3-d31 remain largely unknown. Here we find that Rbfox3-d31 mRNA is highly expressed during the early developmental stages of the chicken embryo, while Rbfox3-d31 protein is barely detected during the same stage due to its rapid degradation mediated by the ubiquitin–proteasome pathway. Importantly, this degradation is specific to the Rbfox3-d31 isoform and it does not occur with full-length Rbfox3. Furthermore, suppression of Rbfox3-d31 protein degradation with the proteasome inhibitor MG132 attenuates the splicing activity of another Rbfox family member Rbfox2 by altering the subcellular localization of Rbfox2. These results suggest that Rbfox3-d31 functions as a repressor for the splicing activity of the Rbfox family and its protein level is regulated in an isoform-specific manner in vivo

  10. Scientific Opinion on the substantiation of a health claim related to beta-alanine and increase in physical performance during short-duration, high-intensity exercise pursuant to Article 13(5 of Regulation (EC No 1924/2006

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA


    Full Text Available Following an application from Natural Alternative International, Inc. (NAI, submitted pursuant to Article 13(5 of Regulation (EC No 1924/2006 via the Competent Authority of the United Kingdom, the Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to beta-alanine and increase in physical performance during short-duration, high-intensity exercise. The food constituent that is the subject of the claim is beta-alanine, which is sufficiently characterised. The Panel considers that an increase in physical performance during short-duration, high-intensity exercise is a beneficial physiological effect. In weighing the evidence the Panel took into account that only one out of 11 pertinent human intervention studies (including 14 pertinent outcomes from which conclusions could be drawn showed an effect of beta-alanine on physical performance during short-duration, high intensity exercise. The Panel concludes that a cause and effect relationship has not been established between the consumption of beta-alanine and an increase in physical performance during short-duration, high intensity exercise.

  11. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study. (United States)

    Verimli, Ural; Sehirli, Umit S


    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice. PMID:26643381

  12. Isoformes du domaine N-terminal du suppresseur de tumeur p53 : sur l'activité transcriptionnelle de p53 et expression dans les mélanomes cutanés


    Hafsi, Hind


    The p53 tumour suppressor protein has a highly complex pattern of regulation at transcriptional and posttranslationallevels. The discovery of p53 isoforms has added another layer of complexity to the mechanisms thatregulate p53 functions. Indeed, p53 is expressed as 12 isoforms that differ in their N- and C-terminus due toalternative splicing, promoter or codon initiation usage. So far, there is limited understanding of the patterns ofexpression and of the functions of each of these isoforms....

  13. Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation. Inter-tissue and inter-species expression of CPT I and CPT II enzymes. (United States)

    Brown, N F; Hill, J K; Esser, V; Kirkland, J L; Corkey, B E; Foster, D W; McGarry, J D


    The outer mitochondrial membrane enzyme carnitine palmitoyltransferase I (CPT I) represents the initial and regulated step in the beta-oxidation of fatty acids. It exists in at least two isoforms, denoted L (liver) and M (muscle) types, with very different kinetic properties and sensitivities to malonyl-CoA. Here we have examined the relative expression of the CPT I isoforms in two different models of adipocyte differentiation and in a number of rat tissues. Adipocytes from mice, hamsters and humans were also evaluated. Primary monolayer cultures of undifferentiated rat preadipocytes expressed solely L-CPT I, but significant levels of M-CPT I emerged after only 3 days of differentiation in vitro; in the mature cell M-CPT I predominated. In sharp contrast, the murine 3T3-L1 preadipocyte expressed essentially exclusively L-CPT I, both in the undifferentiated state and throughout the differentiation process in vitro. This was also true of the mature mouse white fat cell. Fully developed adipocytes from the hamster and human behaved similarly to those of the rat. Thus the mouse white fat cell differs fundamentally from those of the other species examined in terms of tis choice of a key regulatory enzyme in fatty acid metabolism. In contrast, brown adipose tissue from all three rodents displayed the same isoform profiles, each expressing overwhelmingly M-CPT I. Northern blot analysis of other rat tissues established L-CPT I as the dominant isoform not only in liver but also in kidney, lung, ovary, spleen, brain, intestine and pancreatic islets. In addition to its primacy in skeletal muscle, heart and fat, M-CPT I was also found to dominate the testis. The same inter-tissue isoform pattern (with the exception of white fat) was found in the mouse. Taken together, the data bring to light an intriguing divergence between white adipocytes of the mouse and other mammalian species. They also raise a cautionary note that should be considered in the choice of animal model used

  14. Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer's disease


    Portelius, Erik; Andreasson, Ulf; Ringman, John M.; Buerger, Katharina; Daborg, Jonny; Buchhave, Peder; Hansson, Oskar; Harmsen, Andreas; Gustavsson, Mikael K; Hanse, Eric; Galasko, Douglas; Hampel, Harald; Blennow, Kaj; Zetterberg, Henrik


    Background: Alzheimer's disease (AD) is associated with deposition of amyloid beta (A beta) in the brain, which is reflected by low concentration of the A beta 1-42 peptide in the cerebrospinal fluid (CSF). There are at least 15 additional A beta peptides in human CSF and their relative abundance pattern is thought to reflect the production and degradation of A beta. Here, we test the hypothesis that AD is characterized by a specific CSF A beta isoform pattern that is distinct when comparing ...

  15. Evidence for the association of the S100beta gene with low cognitive performance and dementia in the elderly

    DEFF Research Database (Denmark)

    Lambert, J-C; Ferreira, S; Gussekloo, J;


    Variations in the S100beta gene may be instrumental in producing a continuum from mild cognitive decline to overt dementia. After screening 25 single nucleotide polymorphisms (SNPs) in S100beta, we observed association of the rs2300403 intron 2 SNP with poorer cognitive function in three...... corresponding mRNA isoform was called S100beta2). S100beta2 expression was increased in AD brain compared with controls, and the rs2300403 SNP was associated with elevated levels of S100beta2 mRNA in AD brains, especially in women. Therefore, this genetic variant in S100beta increases the risk of low cognitive...

  16. Isoform-specific anti-MeCP2 antibodies confirm that expression of the e1 isoform strongly predominates in the brain [v1; ref status: indexed,

    Directory of Open Access Journals (Sweden)

    Lara Kaddoum


    Full Text Available Rett syndrome is a neurological disorder caused by mutations in the MECP2 gene.  MeCP2 transcripts are alternatively spliced to generate two protein isoforms (MeCP2_e1 and MeCP2_e2 that differ at their N-termini. Whilst mRNAs for both forms are expressed ubiquitously, the one for MeCP2_e1 is more abundant than for MeCP2_e2 in the central nervous system. In transfected cells, both protein isoforms are nuclear and colocalize with densely methylated heterochromatic foci. With a view to understanding the physiological contribution of each isoform, and their respective roles in the pathogenesis of Rett syndrome, we set out to generate isoform-specific anti-MeCP2 antibodies. To this end, we immunized rabbits against the peptides corresponding to the short amino-terminal portions that are different between the two isoforms. The polyclonal antibodies thus obtained specifically detected their respective isoforms of MeCP2 in Neuro2a (N2A cells transfected to express either form. Both antisera showed comparable sensitivities when used for Western blot or immunofluorescence, and were highly specific for their respective isoform. When those antibodies were used on mouse tissues, specific signals were easily detected for Mecp2_e1, whilst Mecp2_e2 was very difficult to detect by Western blot, and even more so by immunofluorescence. Our results thus suggest that brain cells express low amounts of the Mecp2-e2 isoform. Our findings are compatible with recent reports showing that MeCP2_e2 is dispensable for healthy brain function, and that it may be involved in the regulation of neuronal apoptosis and embryonic development.

  17. Immunocytochemical studies of the distribution of alpha and pi isoforms of glutathione S-transferase in cystic renal diseases. (United States)

    Hiley, C G; Otter, M; Bell, J; Strange, R C; Keeling, J W


    We describe immunohistochemical studies of the expression of alpha and pi class glutathione S-transferases (GSTs) in normal fetal kidneys. These define, in greater detail, changes in expression of alpha isoforms in the proximal tubule. At about 36 weeks of gestation expression of alpha isoforms was down-regulated in the distal tubules and collecting ducts while pi was expressed throughout the nephron. Tubular expression of alpha isoforms was restricted to the part adjacent to the glomerulus; cells farthest from the glomerulus were negative. After 40 weeks of gestation, alpha isoforms were expressed along the entire proximal tubule, while pi was restricted to the distal tubule and collecting ducts. GST expression was also studied in multicystic renal dysplasia, autosomal recessive polycystic kidney disease, and autosomal dominant polycystic kidney disease to determine whether the patterns of expression of alpha and pi isoforms allow identification of the origin of the cysts that characterize these diseases. Cysts were lined by epithelia that were strongly positive for alpha and pi isoforms. The epithelia of noncystic nephrons in renal cystic dysplasia demonstrated delayed maturity, suggesting that GST expression was dependent on the stage of development and not length of gestation. PMID:8066005

  18. Expression of a novel beta adaptin subunit mRNA splice variant in human testes

    Institute of Scientific and Technical Information of China (English)

    Xin-Dong Zhang; Lan-Lan Yin; Ying Zheng; Li Lu; Zuo-Min Zhou; Jia-Hao Sha


    Aim: To identify a novel isoform of adaptin 2 beta subunit (named Ap2β-NY) and to investigate its relationship with testicular development and spermatogenesis. Methods: Using a human testis cDNA microarray, a clone (Ap2β-NY),which was strongly expressed in adult testes but weakly expressed in embryo testes, was sequenced and analyzed.Using polymerase chain reaction (PCR), the tissue distribution and expression time pattern of Ap2β-NY were determined.Results: Ap2β-NY was identified and has been deposited in the GenBank (AY341427). The expression level of Ap2β-NY in the adult testis was about 3-fold higher than that in the embryo testis. PCR analysis using multi-tissue cDNA indicated that Ap2β-NY was highly expressed in the testis, spleen, thymus, prostate, ovary, blood leukocyte and brain, but not in the heart, placenta, lung, liver, skeletal muscle, kidney and pancreas. In addition, Ap2β-NY was variably expressed in the testes of patients with spermatogenesis-disturbance and spermatogenesis-arrest but not expressed in those of Sertoli-cell-only syndrome, which implied that, in the testis, Ap2β-NY was restrictively expressed in germ cells. Conclusion: Ap2β-NY is an isoform of Ap2β and may be involved in regulating the process of spermatogenesis and testis development.

  19. Mechanism of action of ferrocene derivatives on the catalytic activity of topoisomerase IIalpha and beta--distinct mode of action of two derivatives. (United States)

    Sai Krishna, A D; Panda, Gayatri; Kondapi, Anand K


    Topoisomerase II is found to be present in two isoforms alpha and beta, and both the isoforms are regulated in cancerous tissue. Development of isoform-specific topoisomerase II poisons has been of great interest for cancer-specific drug targeting. In the present investigation using quantitative structure-activity analysis of ferrocene derivatives, we show that two derivatives of ferrocene, azalactone ferrocene and thiomorpholide amido methyl ferrocene, can preferentially inhibit topoisomerase IIbeta activity. Thiomorpholide amido methyl ferrocene shows higher inhibition of catalytic activity (IC(50) = 50 microM) against topoisomerase IIbeta compared to azalactone ferrocene (IC(50) = 100 microM). The analysis of protein DNA intermediates formed in the presence of these two compounds suggests that azalactone ferrocene readily induces formation of cleavable complex in a dose-dependent manner, in comparison with thiomorpholide amido methyl ferrocene. Both the compounds show significant inhibition of DNA-dependent ATPase activity of enzyme. These results suggest that azalactone ferrocene inhibits DNA passage activity of enzyme leading to the formation of cleavable complex, while thiomorpholide amido methyl ferrocene competes with ATP binding resulting in the inhibition of catalytic activity of enzyme. In summary, thiomorpholide amido methyl ferrocene and azalactone ferrocene show distinctly different mechanisms in inhibition of catalytic activity of topoisomerase IIbeta. PMID:15907782

  20. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype.

    Directory of Open Access Journals (Sweden)

    Geert A Martens

    Full Text Available BACKGROUND AND METHODOLOGY: The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators. PRINCIPAL FINDINGS: A panel of 332 conserved beta cell biomarker genes was found to discriminate both isolated and laser capture microdissected beta cells from all other examined cell types. Of all conserved beta cell-markers, 15% were strongly beta cell-selective and functionally associated to hormone processing, 15% were shared with neuronal cells and associated to regulated synaptic vesicle transport and 30% with immune plus gut mucosal tissues reflecting active protein synthesis. Fasting specifically down-regulated the latter cluster, but preserved the neuronal and strongly beta cell-selective traits, indicating preserved differentiated state. Analysis of consensus binding site enrichment indicated major roles of CREB/ATF and various nutrient- or redox-regulated transcription factors in maintenance of differentiated beta cell phenotype. CONCLUSIONS: Conserved beta cell marker genes contain major gene clusters defined by their beta cell selectivity or by their additional abundance in either neural cells or in immune plus gut mucosal cells. This panel can be used as a template to identify changes in the differentiated state of beta cells.

  1. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation

    Directory of Open Access Journals (Sweden)

    Papa Maria


    Full Text Available Abstract Background Estrogen receptors alpha (ERα and beta (ERβ are transcription factors (TFs that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC. The two receptors can be found co-expressed and play specific, often opposite, roles, with ERβ being able to modulate the effects of ERα on gene transcription and cell proliferation. ERβ is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERβ in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Results Expression of full-length ERβ in hormone-responsive, ERα-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERβ and 6024 ERα binding sites in estrogen-stimulated cells, comprising sites occupied by either ERβ, ERα or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERβ+ vs ERβ- cells, 424 showed one or more ERβ site within 10 kb. These putative primary ERβ target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERβ binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Conclusions Results indicate that the

  2. Drosophila insulin and target of rapamycin (TOR pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo

    Directory of Open Access Journals (Sweden)

    Parisi Federica


    Full Text Available Abstract Background Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Results Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Conclusions Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At

  3. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben


    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  4. Identification of alternatively spliced Dab1 and Fyn isoforms in pig

    Directory of Open Access Journals (Sweden)

    Yuan Jihong


    Full Text Available Abstract Background Disabled-1 (Dab1 is an adaptor protein that is essential for the intracellular transduction of Reelin signaling, which regulates the migration and differentiation of postmitotic neurons during brain development in vertebrates. Dab1 function depends on its tyrosine phosphorylation by Src family kinases, especially Fyn. Results We have isolated alternatively spliced forms of porcine Dab1 from brain (sDab1 and liver (sDab1-Li and Fyn from brain (sFyn-B and spleen (sFyn-T. Radiation hybrid mapping localized porcine Dab1 (sDab1 and Fyn (sFyn to chromosomes 6q31-35 and 1p13, respectively. Real-time quantitative RT-PCR (qRT-PCR demonstrated that different isoforms of Dab1 and Fyn have tissue-specific expression patterns, and sDab1 and sFyn-B display similar temporal expression characteristics in the developing porcine cerebral cortex and cerebellum. Both sDab1 isoforms function as nucleocytoplasmic shuttling proteins. It was further shown that sFyn phosphorylates sDab1 at tyrosyl residues (Tyr 185, 198/200 and 232, whereas sDab1-Li was phosphorylated at Tyr 185 and Tyr 197 (corresponding to Y232 in sDab1 in vitro. Conclusions Alternative splicing generates natural sDab1-Li that only carries Y185 and Y197 (corresponding to Y232 in sDab1 sites, which can be phosphorylated by Fyn in vitro. sDab1-Li is an isoform that is highly expressed in peripheral organs. Both isoforms are suggested to be nucleocytoplasmic shuttling proteins. Our results imply that the short splice form sDab1-Li might regulate cellular responses to different cell signals by acting as a dominant negative form against the full length sDab1 variant and that both isoforms might serve different signaling functions in different tissues.

  5. The absence of dystrophin brain isoform expression in healthy human heart ventricles explains the pathogenesis of 5' X-linked dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Neri Marcella


    Full Text Available Abstract Background In X-linked dilated cardiomyopathy due to dystrophin mutations which abolish the expression of the M isoform (5'-XLDC, the skeletal muscle is spared through the up-regulation of the Brain (B isoform, a compensatory mechanism that does not appear to occur in the heart of affected individuals. Methods We quantitatively studied the expression topography of both B and M isoforms in various human heart regions through in-situ RNA hybridization, Reverse-Transcriptase and Real-Time PCR experiments. We also investigated the methylation profile of the B promoter region in the heart and quantified the B isoform up regulation in the skeletal muscle of two 5'-XLDC patients. Results Unlike the M isoform, consistently detectable in all the heart regions, the B isoform was selectively expressed in atrial cardiomyocytes, but absent in ventricles and in conduction system structures. Although the level of B isoform messenger in the skeletal muscle of 5'-XLDC patients was lower that of the M messenger present in control muscle, it seems sufficient to avoid an overt muscle pathology. This result is consistent with the protein level in XLDC patients muscles we previously quantified. Methylation studies revealed that the B promoter shows an overall low level of methylation at the CG dinucleotides in both atria and ventricles, suggesting a methylation-independent regulation of the B promoter activity. Conclusions The ventricular dilatation seen in 5'-XLDC patients appears to be functionally related to loss of the M isoform, the only isoform transcribed in human ventricles; in contrast, the B isoform is well expressed in heart but confined to the atria. Since the B isoform can functionally replace the M isoform in the skeletal muscle, its expression in the heart could potentially exert the same rescue function. Methylation status does not seem to play a role in the differential B promoter activity in atria and ventricles, which may be governed by

  6. Evidence of non-pancreatic beta cell-dependent roles of Tcf7l2 in the regulation of glucose metabolism in mice


    Bailey, Kathleen A.; Savic, Daniel; Zielinski, Mark; Park, Soo-Young; Wang, Ling-Jia; Witkowski, Piotr; Brady, Matthew; Hara, Manami; Bell, Graeme I.; Nobrega, Marcelo A.


    Non-coding variation within TCF7L2 remains the strongest genetic determinant of type 2 diabetes risk in humans. A considerable effort has been placed in understanding the functional roles of TCF7L2 in pancreatic beta cells, despite evidence of TCF7L2 expression in various peripheral tissues important in glucose homeostasis. Here, we use a humanized mouse model overexpressing Tcf7l2, resulting in glucose intolerance, to infer the contribution of Tcf7l2 overexpression in beta cells and in other...

  7. FOXP3 and CTLA-4 : how isoforms regulate immunological tolerance


    Liu, Sang


    The maintenance of immunological tolerance is vital for preventing the immune system to damage normal tissues and physiological function of the body. CD4+FOXP3+ regulatory T (Treg) cells can suppress immune responses in a dominant manner and are essential for immunological tolerance. Although many pathways and molecules have been attributed to the suppressive function of Treg cells, the exact nature of the Treg cell-mediated suppression program is still elusive. In this ...

  8. Evolutionary dynamics of gene and isoform regulation in mammalian tissues*


    Merkin, Jason; Russell, Caitlin; CHEN, PING; Burge, Christopher B.


    Most mammalian genes produce multiple distinct mRNAs through alternative splicing, but the extent of splicing conservation is not clear. To assess tissue-specific transcriptome variation across mammals, we sequenced cDNA from 9 tissues from 4 mammals and one bird in biological triplicate, at unprecedented depth. We find that while tissue-specific gene expression programs are largely conserved, alternative splicing is well conserved in only a subset of tissues and is frequently lineage-specifi...

  9. Localization and functional characterization of the human NKCC2 isoforms

    DEFF Research Database (Denmark)

    Carota, I; Theilig, F; Oppermann, M;


    inhibited by bumetanide than by furosemide. A sequence analysis of the amino acids encoded by exon 4 variants revealed high similarities between human and rodent NKCC2 isoforms, suggesting that differences in ion transport characteristics between species may be related to sequence variations outside the...... isoforms have specific localizations and transport characteristics, as assessed for rabbit, rat and mouse. In the present study, we aimed to address the localization and transport characteristics of the human NKCC2 isoforms. METHODS: RT-PCR, in situ hybridization and uptake studies in Xenopus oocytes were...... performed to characterize human NKCC2 isoforms. RESULTS: All three classical NKCC2 isoforms were detected in the human kidney; in addition, we found splice variants with tandem duplicates of the variable exon 4. Contrary to rodents, in which NKCC2F is the most abundant NKCC2 isoform, NKCC2A was the dominant...

  10. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis (United States)

    Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)


    Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.

  11. Both Myosin-10 isoforms are required for radial neuronal migration in the developing cerebral cortex. (United States)

    Ju, Xing-Da; Guo, Ye; Wang, Nan-Nan; Huang, Ying; Lai, Ming-Ming; Zhai, Yan-Hua; Guo, Yu-Guang; Zhang, Jian-Hua; Cao, Rang-Juan; Yu, Hua-Li; Cui, Lei; Li, Yu-Ting; Wang, Xing-Zhi; Ding, Yu-Qiang; Zhu, Xiao-Juan


    During embryonic development of the mammalian cerebral cortex, postmitotic cortical neurons migrate radially from the ventricular zone to the cortical plate. Proper migration involves the correct orientation of migrating neurons and the transition from a multipolar to a mature bipolar morphology. Herein, we report that the 2 isoforms of Myosin-10 (Myo10) play distinct roles in the regulation of radial migration in the mouse cortex. We show that the full-length Myo10 (fMyo10) isoform is located in deeper layers of the cortex and is involved in establishing proper migration orientation. We also demonstrate that fMyo10-dependent orientation of radial migration is mediated at least in part by the netrin-1 receptor deleted in colorectal cancer. Moreover, we show that the headless Myo10 (hMyo10) isoform is required for the transition from multipolar to bipolar morphologies in the intermediate zone. Our study reveals divergent functions for the 2 Myo10 isoforms in controlling both the direction of migration and neuronal morphogenesis during radial cortical neuronal migration. PMID:23300110

  12. A mutation in a skin-specific isoform of SMARCAD1 causes autosomal-dominant adermatoglyphia. (United States)

    Nousbeck, Janna; Burger, Bettina; Fuchs-Telem, Dana; Pavlovsky, Mor; Fenig, Shlomit; Sarig, Ofer; Itin, Peter; Sprecher, Eli


    Monogenic disorders offer unique opportunities for researchers to shed light upon fundamental physiological processes in humans. We investigated a large family affected with autosomal-dominant adermatoglyphia (absence of fingerprints) also known as the "immigration delay disease." Using linkage and haplotype analyses, we mapped the disease phenotype to 4q22. One of the genes located in this interval is SMARCAD1, a member of the SNF subfamily of the helicase protein superfamily. We demonstrated the existence of a short isoform of SMARCAD1 exclusively expressed in the skin. Sequencing of all SMARCAD1 coding and noncoding exons revealed a heterozygous transversion predicted to disrupt a conserved donor splice site adjacent to the 3' end of a noncoding exon uniquely present in the skin-specific short isoform of the gene. This mutation segregated with the disease phenotype throughout the entire family. Using a minigene system, we found that this mutation causes aberrant splicing, resulting in decreased stability of the short RNA isoform as predicted by computational analysis and shown by RT-PCR. Taken together, the present findings implicate a skin-specific isoform of SMARCAD1 in the regulation of dermatoglyph development. PMID:21820097

  13. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry

    Directory of Open Access Journals (Sweden)

    Linda V. Hjørnevik


    Full Text Available Azaspiracid-1 is an algal toxin that accumulates in edible mussels, and ingestion may result in human illness as manifested by vomiting and diarrhoea. When injected into mice, it causes neurotoxicological symptoms and death. Although it is well known that azaspiracid-1 is toxic to most cells and cell lines, little is known about its biological target(s. A rat PC12 cell line, commonly used as a model for the peripheral nervous system, was used to study the neurotoxicological effects of azaspiracid-1. Azaspiracid-1 induced differentiation-related morphological changes followed by a latter cell death. The differentiated phenotype showed peripherin-labelled neurite-like processes simultaneously as a specific isoform of peripherin was down-regulated. The precise mechanism behind this down-regulation remains uncertain. However, this study provides new insights into the neurological effects of azaspiracid-1 and into the biological significance of specific isoforms of peripherin.

  14. Androgen receptor isoforms in human and rat prostate

    Institute of Scientific and Technical Information of China (English)

    Shu-JieXIA; Gang-YaoHAO; Xiao-DaTANG


    Aim: To investigate the androgen receptor (AR) isoforms and its variability of expression in human and rat prostatic tissues. Methods: Human benign prostatic hyperplasia (BPH) and prostatic cancer tissues were obtained from patients undergoing prostatectomy, and rat ventral prostate was incised 3 days after castration. Forty-one AR-positive BPH specimens, 3 prostatic cancer specimens, and 6 rat prostates were used. After processing at 4℃, the tissues were examined by means of high resolution isoelectric focusing (IEF) technique to determine their AR isoforms. Results:From the prostatic specimens, 3 types of AR isoforms were detected with pI values at 6.5, 6.0, and 5.3. In human BPH tissues, 15/41 (36.6%) specimens showed all the three types of isoforms, while 19/41 (46.3%) showed 2 isoforms at various combinations and 7/41(17.1%), 1 isoform. For the 3 prostatic cancer specimens, one showed 3 isoforms, one, 2 isoforms, and the other failed to show any isoform. All rat prostatic tissues showed 2 isoforms at different combinations. Binding of 3H-dihydrotestosterone (DHT) to the isoforms was inhibited by the addition of 100-fold excess of DHT or testosterone, but not progesterone, oestradiol or diethylstilboestrol. Conclusion: AR isoforms are different in different patients. Although their genesis is not clear, the therapeutic implication of the present observation appears to be interesting, that may help clarifying the individual differences in the response to hormonal therapy.(Asian J Androl 2000 Dec;2:307-310)

  15. Triiodothyronine receptor beta-2 messenger ribonucleic acid expression by somatotropes and thyrotropes: effect of propylthiouracil-induced hypothyroidism in rats. (United States)

    Childs, G V; Taub, K; Jones, K E; Chin, W W


    mRNA for a thyroid hormone receptor isoform that is unique to the pituitary gland (TR beta-2) is down-regulated by T3. Increases in the expression of this mRNA are seen in rats rendered hypothyroid by treatment with propylthiouracil (PTU). This study used dual labeling to determine which pituitary cells expressed TR beta-2 mRNA in normal and PTU-treated rats. In situ hybridization protocols localized the mRNA (with biotinylated complementary oligonucleotide probes detected by avidin-biotin-peroxidase), and immunoperoxidase protocols identified the pituitary hormone proteins. In dispersed pituitary cells, 20 +/- 2% (average +/- SD) of cells from normal rats and 30 +/- 3% of cells from PTU-treated rats were labeled for TR beta-2 mRNA. PTU caused increases in the area of the labeled cells (from 114 +/- 11 to 225 +/- 7 microns 2), the area of the label per cell (from 27 +/- 3 to 71 +/- 11 microns 2), and label density. PTU produced increases in the percentage of TSH cells from 8 +/- 1% to 19 +/- 2%, decreases in the percentage of GH cells from 27 +/- 3% to 11 +/- 2%, and no change in other cell types. After dual labeling, 73% of cells that expressed TR beta-2 mRNA stored either TSH (35 +/- 8) or GH (38 +/- 6). Less than 10% stored other hormones. When each cell type was analyzed, 56 +/- 3% of TSH cells and 43 +/- 4% of GH cells expressed TR beta-2 mRNA. When these percentages were multiplied by the percentages of each cell type in the overall population, TSH and GH cells with TR beta-2 mRNA represented 6.8 +/- 1% and 11.6 +/- 1% of the pituitary cells, respectively. Less than 1% of all pituitary cells expressed TR beta-2 and ACTH (0.9 +/- 0.06), LH (0.8 +/- 0.1), FSH (0.8 +/- 0.1), and PRL (0.9 +/- 0.04). PTU treatment increased the percentage of TSH cells with TR beta-2 mRNA to 72 +/- 4% and decreased the percentage of GH cells with TR beta-2 mRNA to 30 +/- 3%. However, some enlarged putative TSH cells could not be identified by immunolabel because the storage levels

  16. p53 isoform Δ113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish


    Chen, Jun; Ng, Sok Meng; Chang, Changqing; Zhang, Zhenhai; Bourdon, Jean-Christophe; Lane, David P; Peng, Jinrong


    p53 is a well-known tumor suppressor and is also involved in processes of organismal aging and developmental control. A recent exciting development in the p53 field is the discovery of various p53 isoforms. One p53 isoform is human Δ133p53 and its zebrafish counterpart Δ113p53. These N-terminal-truncated p53 isoforms are initiated from an alternative p53 promoter, but their expression regulation and physiological significance at the organismal level are not well understood. We show here that ...


    NARCIS (Netherlands)



    As in other embryocarcinoma (EC) cell lines retinoic acid (RA) rapidly induces expression of the nuclear retinoic acid receptor (RAR) beta in murine P19 EC cells, while RAR-alpha is expressed constitutively. In the RA-resistant P19 EC-derived RAC65 cells, however, there is no such induction and an a

  18. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China); Li, Jianguo, E-mail: [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China)


    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  19. Characterization of Alien isoforms in vertebrates : Caracterización de isoformas de Alien en vertebrados


    Tenbaum, Stephan


    Alien protein isoforms have been described to be involved in a number of biological processes. Alienalpha is a corepressor of the thyroid hormone receptor mediating transcriptional repression in a ligand-sensitive manner. Furthermore, Alienalpha is a corepressor for the orphan receptor DAX1 and the vitamin-D3 receptor. Alienbetta/CSN2 is part of the COP9-signalosome complex that acts in protein phosphorylation, protein degradation and cell cycle regulation. The major goal of this...

  20. SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics


    Zhang, Fan; Drabier, Renee


    Background Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from pro...

  1. Differential expression of gill Na+,K+-ATPase alpha- and beta-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar

    DEFF Research Database (Denmark)

    Nilsen, Tom O.; Ebbesson, Lars O. E.; Madsen, Steffen S.;


    This study examines changes in gill Na(+),K(+)-ATPase (NKA) alpha- and beta-subunit isoforms, Na(+),K(+),2Cl(-) cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, and...... observed in landlocked salmon in May, increasing to peak levels in June. Gill CFTR I mRNA levels increased significantly from February to April in both strains, followed by a slight, though not significant increase in May and June. CFTR I mRNA levels were significantly lower in landlocked than anadromous...... salmon in April/June. Gill CFTR II mRNA levels did not change significantly in either strain. Our findings demonstrates that differential expression of gill NKA-alpha1a, -alpha1b and -alpha3 isoforms may be important for potential functional differences in NKA, both during preparatory development and...

  2. GSK3beta is involved in JNK2-mediated beta-catenin inhibition.

    Directory of Open Access Journals (Sweden)

    Dong Hu

    Full Text Available BACKGROUND: We have recently reported that mitogen-activated protein kinase (MAPK JNK1 downregulates beta-catenin signaling and plays a critical role in regulating intestinal homeostasis and in suppressing tumor formation. This study was designed to determine whether JNK2, another MAPK, has similar and/or different functions in the regulation of beta-catenin signaling. METHODOLOGY AND PRINCIPAL FINDINGS: We used an in vitro system with manipulation of JNK2 and beta-catenin expression and found that activated JNK2 increased GSK3beta activity and inhibited beta-catenin expression and transcriptional activity. However, JNK2-mediated downregulation of beta-catenin was blocked by the proteasome inhibitor MG132 and GSK3beta inhibitor lithium chloride. Moreover, targeted mutations at GSK3beta phosphorylation sites (Ser33 and Ser37 of beta-catenin abrogated JNK2-mediated suppression of beta-catenin. In vivo studies further revealed that JNK2 deficiency led to upregulation of beta-catenin and increase of GSK3-beta phosphorylation in JNK2-/- mouse intestinal epithelial cells. Additionally, physical interaction and co-localization among JNK2, beta-catenin and GSK3beta were observed by immunoprecipitation, mammalian two-hybridization assay and confocal microscopy, respectively. CONCLUSION AND SIGNIFICANCE: In general, our data suggested that JNK2, like JNK1, interacts with and suppresses beta-catenin signaling in vitro and in vivo, in which GSK3beta plays a key role, although previous studies have shown distinct functions of JNK1 and JNK2. Our study also provides a novel insight into the crosstalk between Wnt/beta-catenin and MAPK JNKs signaling.

  3. Nuclear glycogen synthase kinase-3 {beta} (GSK-3) in Rhipicephalus (Boophilus) microplus tick embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Mentzingen, Leticia; Andrade, Josiana G. de; Logullo, Carlos [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ (Brazil). Centro de Biociencias e Biotecnologia. Lab. de Quimica e Funcao de Proteinas e Peptideos (LQFPP); Andrade, Caroline P. de; Vaz Junior, Itabajara [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Biotecnologia


    Full text: Glycogen synthase kinase-3 (GSK3) is recognized as a key component of a large number of cellular processes and diseases. Several mechanisms play a part in controlling the actions of GSK3, including phosphorylation, protein complex formation, and subcellular distribution. Recent observations point to functions for phosphorylases several transcription factors in the nucleus. Also, GSK3b participate of the canonical W nt signalling pathway, which has been studied intensively in embryonic and cancer cells. Like in many other signaling pathways, most components in W nt signal transduction were highly conserved during the evolution. More than 40 proteins have been reported to be phosphorylated by GSK3, including over a dozen transcription factors. Although the mechanisms regulating GSK3 are not fully understood, precise control appears to be achieved by a combination of phosphorylation, localization, and interactions with GSK3-binding proteins. Although GSK3 is traditionally considered a cytosolic protein, it is also present in nuclei. Nuclear GSK3 is particularly interesting because of the many transcription factors that it regulates enabling GSK3 to influence many signaling pathways that converge on these transcription factors, thereby regulating the expression of many genes. Our group identified that GSK-3 {beta} could be detected in different stage eggs of R. micro plus. In this work we detected the GSK-3 in isolated nuclear fraction from the egg homogenates of R. micro plus by western-blot analysis, using anti-GSK- 3 {beta} antibodies. The enzyme activity was also detected radiochemically throughout embryogenesis in same fraction. The GSK-3 activity was inhibiting by using SB 216763 (selective molecule inhibitors of GSK-3). Taken together our results suggest that GSK-3 {beta} isoform probably is involved in gene transcription factors during R. micro plus embryo development.

  4. Duplicated CFTR isoforms in eels diverged in regulatory structures and osmoregulatory functions. (United States)

    Wong, Marty Kwok-Shing; Pipil, Supriya; Kato, Akira; Takei, Yoshio


    Two cystic fibrosis transmembrane conductance regulator (CFTR) isoforms, CFTRa and CFTRb, were cloned in Japanese eel and their structures and functions were studied in different osmoregulatory tissues in freshwater (FW) and seawater (SW) eels. Molecular phylogenetic results suggested that the CFTR duplication in eels occurred independently of the duplication event in salmonid. CFTRa was expressed in the intestine and kidney and downregulated in both tissues in SW eels, while CFTRb was specifically expressed in the gill and greatly upregulated in SW eels. Structurally, the CFTR isoforms are similar in most functional domains except the regulatory R domain, where the R domain of CFTRa is similar to that of human CFTR but the R domain of CFTRb is unique in having high intrinsic negative charges and fewer phosphorylation sites, suggesting divergence of isoforms in terms of gating properties and hormonal regulation. Immunohistochemical results showed that CFTR was localized on the apical regions of SW ionocytes, suggesting a Cl(-) secretory role as in other teleosts. In intestine and kidney, however, immunoreactive CFTR was mostly found in the cytosolic vesicles in FW eels, indicating that Cl(-) channel activity could be low at basal conditions, but could be rapidly increased by membrane insertion of the stored channels. Guanylin (GN), a known hormone that increases CFTR activity in mammalian intestine, failed to redistribute CFTR and to affect its expression in eel intestine. The results suggested that GN-independent CFTR regulation is present in eel intestine and kidney. PMID:27322796

  5. Identification of a novel TDRD7 isoforms

    Directory of Open Access Journals (Sweden)

    Filonenko V. V.


    Full Text Available The aim of our study was to investigate the tudor domain-containing protein 7 (TDRD7 subcellular localization, which could be linked to diverse functions of this protein within the cell. Methods. In this study we employed cell imaging technique for detecting TDRD7 subcellular localization, Western blot analysis of HEK293 cell fractions with anti-TDRD7 monoclonal antibodies and bioinformatical search of possible TDRD7 isoforms in Uniprot, Ensemble, UCSC databases. Results. We have observed specific TDRD7-containing structures in cytoplasm as well as in the nucleus in HEK293 cells. The Western blot analysis of subcellular fractions (cytoplasm, mitochondria, nucleus allowed us to detect three lower immunoreactive bands, with the aproximate molecular weight of 130, 110 and 60 kDa (we termed them as TDRD7, TDRD7 and TDRD7 and specific subcellular localization. The bioinformatical analysis of TDRD7 primary structure allowed us to determine two alternative transcripts from TDRD7 gene coding for proteins with calculated molecular weight of 130 and 60 kDa. Conclusion. The presented data demonstrate the existence at protein level of potential TDRD7 isoforms: TDRD7, TDRD7 and TDRD7. The expression profile of these splice variants and their role in cells remains to be elucidated.

  6. Multiple, but Concerted Cellular Activities of the Human Protein Hap46/BAG-1M and Isoforms

    Directory of Open Access Journals (Sweden)

    Ulrich Gehring


    Full Text Available The closely related human and murine proteins Hap46/BAG-1M and BAG-1, respectively, were discovered more than a decade ago by molecular cloning techniques. These and the larger isoform Hap50/BAG-1L, as well as shorter isoforms, have the ability to interact with a seemingly unlimited array of proteins of completely unrelated structures. This problem was partially resolved when it was realized that molecular chaperones of the hsp70 heat shock protein family are major primary association partners, binding being mediated by the carboxy terminal BAG-domain and the ATP-binding domain of hsp70 chaperones. The latter, in turn, can associate with an almost unlimited variety of proteins through their substrate-binding domains, so that ternary complexes may result. The protein folding activity of hsp70 chaperones is affected by interactions with Hap46/BAG-1M or isoforms. However, there also exist several proteins which bind to Hap46/BAG-1M and isoforms independent of hsp70 mediation. Moreover, Hap46/BAG-1M and Hap50/BAG-1L, but not the shorter isoforms, can bind to DNA in a sequence-independent manner by making use of positively charged regions close to their amino terminal ends. This is the molecular basis for their effects on transcription which are of major physiological relevance, as discussed here in terms of a model. The related proteins Hap50/BAG-1L and Hap46/BAG-1M may thus serve as molecular links between such diverse bioactivities as regulation of gene expression and protein quality control. These activities are coordinated and synergize in helping cells to cope with conditions of external stress. Moreover, they recently became markers for the aggressiveness of several cancer types.

  7. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Directory of Open Access Journals (Sweden)

    Wouter Eilers


    Full Text Available We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis and slow-type muscle (soleus for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02. In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII.

  8. Immunodetection of nmt55/p54nrb isoforms in human breast cancer

    International Nuclear Information System (INIS)

    We previously identified and characterized a novel 55 kDa nuclear protein, termed nmt55/p54nrb, whose expression was decreased in a subset of human breast tumors. The objective of this study was to determine if this reduced expression in human breast tumors was attributed to the regulation of mRNA transcription or the presence of altered forms of this protein. Northern blot analysis and ribonuclease protection assay indicated that nmt55/p54nrb mRNA is expressed at varying levels in estrogen receptor positive (ER+) and estrogen receptor negative (ER-) human breast tumors suggesting that reduced expression of nmt55/p54nrb protein in ER- tumors was not due to transcriptional regulation. To determine if multiple protein isoforms are expressed in breast cancer, we utilized Western blot and immunohistochemical analyses, which revealed the expression of an nmt55/p54nrb protein isoform in a subset of ER+ tumors. This subset of ER+ human breast tumors expressed an altered form of nmt55/p54nrb that was undetectable with an amino-terminal specific antibody suggesting that this isoform contains alterations or modifications within the amino terminal domain. Our study indicates that nmt55/p54nrb protein is post-transcriptionally regulated in human breast tumors leading to reduced expression in ER- tumors and the expression of an amino terminal altered isoform in a subset of ER+ tumors. The potential involvement of nmt55/p54nrb in RNA binding and pre-mRNA splicing may be important for normal cell growth and function; thus, loss or alteration of protein structure may contribute to tumor growth and progression

  9. The C-terminal domain of the nuclear factor I-B2 isoform is glycosylated and transactivates the WAP gene in the JEG-3 cells

    International Nuclear Information System (INIS)

    The transcription factor nuclear factor I (NFI) has been shown previously both in vivo and in vitro to be involved in the cooperative regulation of whey acidic protein (WAP) gene transcription along with the glucocorticoid receptor and STAT5. In addition, one of the specific NFI isoforms, NFI-B2, was demonstrated in transient co-transfection experiments in JEG cells, which lack endogenous NFI, to be preferentially involved in the cooperative regulation of WAP gene expression. A comparison of the DNA-binding specificities of the different NFI isoforms only partially explained their differential ability to activate the WAP gene transcription. Here, we analyzed the transactivation regions of two NFI isoforms by making chimeric proteins between the NFI-A and B isoforms. Though, their DNA-binding specificities were not altered as compared to the corresponding wild-type transcription factors, the C-terminal region of the NFI-B isoform was shown to preferentially activate WAP gene transcription in cooperation with GR and STAT5 in transient co-transfection assays in JEG-3 cells. Furthermore, determination of serine and threonine-specific glycosylation (O-linked N-acetylglucosamine) of the C-terminus of the NFI-B isoform suggested that the secondary modification by O-GlcNAc might play a role in the cooperative regulation of WAP gene transcription by NFI-B2 and STAT5

  10. TGF-beta1 suppresses IL-6-induced STAT3 activation through regulation of Jak2 expression in prostate epithelial cells

    Czech Academy of Sciences Publication Activity Database

    Staršíchová, Andrea; Lincová, Eva; Pernicová, Zuzana; Kozubík, Alois; Souček, Karel


    Roč. 22, č. 11 (2010), s. 1734-1744. ISSN 0898-6568 R&D Projects: GA MZd NS9600 Grant ostatní: GA ČR(CZ) GA310/07/0961 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : interleukin-6 * transforming growth factor-beta * prostate Subject RIV: BO - Biophysics Impact factor: 4.243, year: 2010

  11. Molecular Characterization of Clostridium perfringens Isolates from Humans with Sporadic Diarrhea: Evidence for Transcriptional Regulation of the Beta2-Toxin-Encoding Gene


    Harrison, Ben; Raju, Deepa; Garmory, Helen S.; Brett, Moira M.; Titball, Richard W.; Sarker, Mahfuzur R.


    Clostridium perfringens type A food poisoning is caused by C. perfringens isolates carrying a chromosomal enterotoxin gene (cpe), while non-food-borne gastrointestinal (GI) diseases, such as antibiotic-associated diarrhea (AAD) and sporadic diarrhea (SD), are caused by C. perfringens plasmid cpe isolates. A recent study reported the association of beta2 toxin (CPB2) with human GI diseases, and particularly AAD/SD, by demonstrating that a large percentage of AAD/SD isolates, in contrast to a s...

  12. Regulation of 11 beta-Hydroxysteroid Dehydrogenase Type 1 and 7 alpha-Hydroxylase CYP7B1 during Social Stress

    Czech Academy of Sciences Publication Activity Database

    Vodička, Martin; Ergang, Peter; Mikulecká, Anna; Řeháková, Lenka; Klusoňová, Petra; Makal, J.; Soták, Matúš; Musílková, Jana; Zach, P.; Pácha, Jiří


    Roč. 9, č. 2 (2014), e89421. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP303/10/0969 Grant ostatní: Univerzita Karlova(CZ) Prvouk P34; Univerzita Karlova(CZ) 5366/2012 Institutional support: RVO:67985823 Keywords : 11beta-hydroxysteroid dehydrogenase * stress * HPA axis Subject RIV: ED - Physiology Impact factor: 3.234, year: 2014

  13. Beta-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammary-gland-specific nuclear factor.


    Schmitt-Ney, M; Doppler, W; Ball, R K; Groner, B


    Transcription from the beta-casein milk protein gene promoter is induced by the synergistic action of glucocorticoid and prolactin hormones in the murine mammary epithelial cell line, HC11. We analyzed the binding of nuclear proteins to the promoter and determined their binding sites. Site-directed mutagenesis was used to determine the function of nuclear factor binding. During lactogenic hormone induction of HC11 cells, the binding of two nuclear factors increased. The binding of two other n...

  14. DMPD: The interferon-alpha/beta system in antiviral responses: a multimodal machineryof gene regulation by the IRF family of transcription factors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available ineryof gene regulation by the IRF family of transcription factors. Taniguchi T, Takaoka A. Curr Opin Immuno...sponses: a multimodal machineryof gene regulation by the IRF family of transcript...achineryof gene regulation by the IRF family of transcription factors. Authors Taniguchi T, Takaoka A. Publi

  15. Regulation of the expression of Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids in kidney. (United States)

    Hendricks, S P; He, P; Stults, C L; Macher, B A


    Previous studies (Galili, U., Clark, M. R., Shohet, S. B., Buehler, J., and Macher, B. A. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 1369-1373; Galili, U., Shohet, S. B., Korbrin, E., Stults, C. L. M., and Macher, B. A. (1988) J. Biol. Chem. 263, 17755-17762) have established that there is a unique evolutionary distribution of glycoconjugates carrying the Gal alpha 1-3Gal beta 1-4GlcNAc epitope. These glycoconjugates are expressed by cells from New World monkeys and non-primate mammals, but not by cells from humans, Old World monkeys, or apes. The lack of expression of this epitope in the latter species appears to result from the suppression of gene expression for the enzyme UDP-galactose:nLc4Cer alpha 1-3-galactosyltransferase (alpha 1-3GalT) (Joziasse, D. H., Shaper, J. H., Van den Eijnden, D. H., Van Tunen, A. J., and Shaper, N. L. (1989) J. Biol. Chem. 264, 14290-14297). Although many non-primate species are known to express this carbohydrate epitope, the nature (i.e. glycoprotein or glycosphingolipid) of the glycoconjugate carrying this epitope is only known for a few tissues in a few animal species. Furthermore, it is not known whether all animal species express this epitope in the same tissues. We have investigated these questions by analyzing the glycosphingolipids in kidney from several non-primate animal species. Immunostained thin layer chromatograms of glycosphingolipids from sheep, pig, rabbit, cow, and rat kidney with the Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipid-specific monoclonal antibody, Gal-13, demonstrated that kidney from all of these species except rat contained Gal alpha 1-3Gal beta 1-4GlcNAc neutral glycosphingolipids. A lack of expression of Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids in rat may be due to the lack of expression of the enzyme (alpha 1-3GalT) which catalyzes the formation of the Gal alpha 1-3Gal nonreducing terminal sequence of these compounds or to the lack of expression of glycosyltransferases which are

  16. The G-protein beta-subunit GPB-2 in Caenorhabditis elegans regulates the G(o)alpha-G(q)alpha signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16.


    Van Der Linden, A.M.; Simmer, F.; Cuppen, E.; Plasterk, R H


    The genome of Caenorhabditis elegans harbors two genes for G-protein beta-subunits. Here, we describe the characterization of the second G-protein beta-subunit gene gpb-2. In contrast to gpb-1, gpb-2 is not an essential gene even though, like gpb-1, gpb-2 is expressed during development, in the nervous system, and in muscle cells. A loss-of-function mutation in gpb-2 produces a variety of behavioral defects, including delayed egg laying and reduced pharyngeal pumping. Genetic analysis shows t...

  17. MXI1-0, an Alternatively Transcribed Mxi1 Isoform, Is Overexpressed in Glioblastomas

    Directory of Open Access Journals (Sweden)

    Lars D. Engstrom


    Full Text Available The c-Myc transcription factor regulates expression of genes related to cell growth, division, and apoptosis. Will, a member of the Mad family, represses transcription of c-Myc-regulated genes by mediating chromatin condensation via histone deacetylase and the Sin3 corepressor. Mxi1 is a c-Myc antagonist and suppresses cell proliferation in vitro. Here, we describe the identification of MXI1-0, a novel Mxi1 isoform that is alternatively transcribed from an upstream exon. MXI1-0 and Mxi1 have different amino-terminal sequences, but share identical Max- and DNA-binding domains. Both isoforms are able to bind Max, to recognize E-box binding sites, and to interact with Sin3. Despite these similarities and in contrast to Will, MXl10 is predominantly localized to the cytoplasm and fails to repress c-Myc-dependent transcription. Although MXI1-0 and Mxi1 are coexpressed in both human and mouse cells, the relative levels of MXI1-0 are higher in primary glioblastoma tumors than in normal brain tissue. This variation in the levels of MXI1-0 and Mxi1 suggests that MXI1-0 may modulate the Myc-inhibitory activity of Will. The identification of MXI1-0 as an alternatively transcribed Mxi1 isoform has significant implications for the interpretation of previous Mxi1 studies, particularly those related to the phenotype of the mxi1 knockout mouse.

  18. Expression of Monocarboxylate Transporter Isoforms in Rat Skeletal Muscle Under Hypoxic Preconditioning and Endurance Training. (United States)

    Saxena, Saurabh; Shukla, Dhananjay; Bansal, Anju


    Previously, we have reported the regulation of monocarboxylate transporters (MCT)1 and MCT4 by physiological stimuli such as hypoxia and exercise. In the present study, we have evaluated the effect of hypoxic preconditioning and training on expression of different MCT isoforms in muscles. We found the increased mRNA expression of MCT1, MCT11, and MCT12 after hypoxic preconditioning with cobalt chloride and training. However, the expression of other MCT isoforms increased marginally or even reduced after hypoxic preconditioning. Only the protein expression of MCT1 increased after hypoxia preconditioning. MCT2 protein expression increased after training only and MCT4 protein expression decreased both in preconditioning and hypoxic training. Furthermore, we found decreased plasma lactate level during hypoxia preconditioning (0.74-fold), exercise (0.78-fold), and hypoxia preconditioning along with exercise (0.67-fold), which indicates increased lactate uptake by skeletal muscle. The protein-protein interactions with hypoxia inducible factor-1 and MCT isoforms were also evaluated, but no interaction was found. In conclusion, we say that almost all MCTs are expressed in red gastrocnemius muscle at the mRNA level and their expression is regulated differently under hypoxia preconditioning and exercise condition. PMID:26716978

  19. A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids. (United States)

    Park, Woo Jung; Kothapalli, Kumar S D; Reardon, Holly T; Lawrence, Peter; Qian, Shu-Bing; Brenna, J Thomas


    The fatty acid desaturase (FADS) genes code for the rate-limiting enzymes required for the biosynthesis of long-chain polyunsaturated fatty acids (LCPUFA). Here we report discovery and function of a novel FADS1 splice variant. FADS1 alternative transcript 1 (FADS1AT1) enhances desaturation of FADS2, leading to increased production of eicosanoid precursors, the first case of an isoform modulating the enzymatic activity encoded by another gene. Multiple protein isoforms were detected in primate liver, thymus, and brain. In human neuronal cells, their expression patterns are modulated by differentiation and result in alteration of cellular fatty acids. FADS1, but not FADS1AT1, localizes to endoplasmic reticulum and mitochondria. Ribosomal footprinting demonstrates that all three FADS genes are translated at similar levels. The noncatalytic regulation of FADS2 desaturation by FADS1AT1 is a novel, plausible mechanism by which several phylogenetically conserved FADS isoforms may regulate LCPUFA biosynthesis in a manner specific to tissue, organelle, and developmental stage. PMID:22619218

  20. B cell receptor-mediated apoptosis of human lymphocytes is associated with a new regulatory pathway of Bim isoform expression. (United States)

    Mouhamad, Shahul; Besnault, Laurence; Auffredou, Marie Thérèse; Leprince, Corinne; Bourgeade, Marie Françoise; Leca, Gérald; Vazquez, Aimé


    Studies in Bim-deficient mice have shown that the proapoptotic molecule Bim plays a key role in the control of B cell homeostasis and activation. However, the role of Bim in human B lymphocyte apoptosis is unknown. We show in this study that, depending on the degree of cross-linking, B cell receptors can mediate both Bim-dependent and apparent Bim-independent apoptotic pathways. Cross-linked anti-mu Ab-mediated activation induces an original pathway governing the expression of the various Bim isoforms. This new pathway involves the following three sequential steps: 1) extracellular signal-regulated kinase-dependent phosphorylation of the BimEL isoform, which is produced in large amounts in healthy B cells; 2) proteasome-mediated degradation of phosphorylated BimEL; and 3) increased expression of the shorter apoptotic isoforms BimL and BimS. PMID:14764673

  1. Primary structure, tissue distribution, and chromosomal localization of a novel isoform of lysyl hydroxylase (lysyl hydroxylase 3) (United States)

    Valtavaara, M; Szpirer, C; Szpirer, J; Myllylä, R


    We report characterization of a novel isoform of lysyl hydroxylase (lysyl hydroxylase 3, LH3). The cDNA clones encode a polypeptide of 738 amino acids, including a signal peptide. The amino acid sequence has a high overall identity with LH1 and LH2, the isoforms characterized earlier. Conserved regions are present in the carboxyl-terminal portion of the isoforms and also in the central part of the molecules. Histidine and asparagine residues, which are conserved in the other isoforms and are known to be required for enzymatic activity, are also conserved in the novel isoform. The gene for LH3 (PLOD3) has been assigned to human chromosome 7q36 and rat chromosome 12. Gene expression of LH3 is highly regulated in adult human tissues. A strong hybridization signal, corresponding to an mRNA 2.75 kilobases in size, is obtained in heart, placenta and pancreas on multiple tissue RNA blots. Expression of the cDNA in vitro results in the synthesis of a protein that hydroxylates lysyl residues in collagenous sequences in a non-triple helical conformation. PMID:9582318

  2. PKD3 is the predominant protein kinase D isoform in mouse exocrine pancreas and promotes hormone-induced amylase secretion. (United States)

    Chen, L Andy; Li, Jing; Silva, Scott R; Jackson, Lindsey N; Zhou, Yuning; Watanabe, Hiroaki; Ives, Kirk L; Hellmich, Mark R; Evers, B Mark


    The protein kinase D (PKD) family of serine/threonine kinases, which can be activated by gastrointestinal hormones, consists of three distinct isoforms that modulate a variety of cellular processes including intracellular protein transport as well as constitutive and regulated secretion. Although isoform-specific functions have been identified in a variety of cell lines, the expression and function of PKD isoforms in normal, differentiated secretory tissues is unknown. Here, we demonstrate that PKD isoforms are differentially expressed in the exocrine and endocrine cells of the pancreas. Specifically, PKD3 is the predominant isoform expressed in exocrine cells of the mouse and human pancreas, whereas PKD1 and PKD2 are more abundantly expressed in the pancreatic islets. Within isolated mouse pancreatic acinar cells, PKD3 undergoes rapid membrane translocation, trans-activating phosphorylation, and kinase activation after gastrointestinal hormone or cholinergic stimulation. PKD phosphorylation in pancreatic acinar cells occurs viaaCa2+-independent, diacylglycerol- and protein kinase C-dependent mechanism. PKD phosphorylation can also be induced by physiologic concentrations of secretagogues and by in vivo stimulation of the pancreas. Furthermore, activation of PKD3 potentiates MEK/ERK/RSK (RSK, ribosomal S6 kinase) signaling and significantly enhances cholecystokinin-mediated pancreatic amylase secretion. These findings reveal a novel distinction between the exocrine and endocrine cells of the pancreas and further identify PKD3 as a signaling molecule that promotes hormone-stimulated amylase secretion. PMID:19028687

  3. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors* (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias


    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  4. Differentiation of Human Parthenogenetic Pluripotent Stem Cells Reveals Multiple Tissue- and Isoform-Specific Imprinted Transcripts

    Directory of Open Access Journals (Sweden)

    Yonatan Stelzer


    Full Text Available Parental imprinting results in monoallelic parent-of-origin-dependent gene expression. However, many imprinted genes identified by differential methylation do not exhibit complete monoallelic expression. Previous studies demonstrated complex tissue-dependent expression patterns for some imprinted genes. Still, the complete magnitude of this phenomenon remains largely unknown. By differentiating human parthenogenetic induced pluripotent stem cells into different cell types and combining DNA methylation with a 5′ RNA sequencing methodology, we were able to identify tissue- and isoform-dependent imprinted genes in a genome-wide manner. We demonstrate that nearly half of all imprinted genes express both biallelic and monoallelic isoforms that are controlled by tissue-specific alternative promoters. This study provides a global analysis of tissue-specific imprinting in humans and suggests that alternative promoters are central in the regulation of imprinted genes.

  5. CCAAT/Enhancer-Binding Protein \\(\\gamma\\) Is a Critical Regulator of IL-1\\(\\beta\\)-Induced IL-6 Production in Alveolar Epithelial Cells


    Chunguang Yan; Ximo Wang; Jay Cao; Min Wu; Hongwei Gao


    CCAAT/enhancer binding protein \\(\\gamma\\) (C/EBPγ) is a member of the C/EBP family of transcription factors, which lacks known activation domains. C/EBP\\(\\gamma\\) was originally described as an inhibitor of C/EBP transactivation potential. However, previous study demonstrates that C/EBP\\(\\gamma\\) augments the C/EBP\\(\\beta\\) stimulatory activity in lipopolysaccharide induction of IL-6 promoter in a B lymphoblast cell line. These data indicate a complexing functional role for C/EBP\\(\\gamma\\) in...

  6. Expression, purification and enzymatic characterization of the catalytic domains of human tryptophan hydroxylase isoforms

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Boesen, Jane; Karlsen, Pernille Efferbach; Christensen, Hans Erik Mølager

    Tryptophan hydroxylase exists in two isoforms: Isoform 1 catalyses the first and rate-limiting step in the synthesis of serotonin in the peripheral parts of the body while isoform 2 catalyses this step in the brain. The catalytic domains of human tryptophan hydroxylase 1 and 2 have been expressed......, purified and the kinetic properties have been studied and are compared. Substrate inhibition by tryptophan is observed for isoform 1 but not for isoform 2. Large differences are observed in the K m,tetrahydrobiopterin values for the two isoforms, being >10 times larger for isoform 1 compared to isoform 2....

  7. Expression of novel isoforms of carnitine palmitoyltransferase I (CPT-1) generated by alternative splicing of the CPT-ibeta gene. (United States)

    Yu, G S; Lu, Y C; Gulick, T


    Carnitine palmitoyltransferase I (CPT-I) catalyses the rate-determining step in mitochondrial fatty acid beta-oxidation. The enzyme has two cognate structural genes that are preferentially expressed in liver (alpha) or fat and muscle (beta). We hypothesized the existence of additional isoforms in heart to account for unique kinetic characteristics of enzyme activity in this tissue. Hybridization and PCR screening of a human cardiac cDNA library revealed the expression of two novel CPT-I isoforms generated by alternative splicing of the CPT-Ibeta transcript, in addition to the beta and alpha cDNA species previously described. Ribonuclease protection and reverse transcriptase-mediated PCR assays confirmed the presence of mRNA species of each splicing variant in heart, skeletal muscle and liver, with differing relative concentrations in the tissues. The novel splicing variants omit exons or utilize a cryptic splice donor site within an exon. Deduced polypeptide sequences of the novel enzymes include omissions in the region of putative membrane-spanning and malonyl-CoA regulatory domains compared with the previously described CPT-Is, implying that the encoded enzymes will exhibit unique features with respect to outer mitochondrial membrane topology and response to physiological and pharmacological inhibitors. PMID:9693124

  8. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors. (United States)

    Zhang, Xian; Li, Yinghua; Zhang, Yang; Song, Jincheng; Wang, Qimin; Zheng, Luping; Liu, Dan


    Epithelial-mesenchymal transition (EMT) is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE), an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF-β1). We found that ELE (40 µg/ml ) blocked the TGF-β1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF-β1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1), potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF-β1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer. PMID:23516540

  9. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors.

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    Full Text Available Epithelial-mesenchymal transition (EMT is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE, an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF-β1. We found that ELE (40 µg/ml blocked the TGF-β1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF-β1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1, potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF-β1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer.

  10. The determination of the concentrations of Isoforms of Vitamin E in tissues, milk and blood via High-Performance Liquid Chromatography (HPLC) after short-term feeding in dairy cows (United States)

    The objective of this study was to determine the pattern of change in the concentrations of the four isoforms of vitamin E (alpha-, beta-, gamma- and delta-tocopherol) in bovine tissues (liver, mammary and muscle), blood and milk after short-term feeding of a vegetable-derived oil (Tmix) particularl...

  11. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H;


    of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser......The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators....

  12. ATR–FTIR, a new tool to analyze the oligomeric content of Aβ samples in the presence of apolipoprotein E isoforms


    Cerf, Emilie; Ruysschaert, Jean-Marie; Goormaghtigh, Erik; Raussens, Vincent


    Alzheimer̕s disease (AD) is a neurodegenerative disorder caused by the aggregation of the amyloid-beta peptide (Aβ), leading to amyloid plaques deposition in the brain. Although Aβ aggregation pathway still remains unclear, recent studies point out the enhanced toxicity of oligomers compared to fibrils. The E4 isoform of apolipoprotein E (ApoE) is the major risk factor in AD as people carrying one ɛ4 allele have significantly higher chances to develop the disease. Nevertheless, this phenomeno...

  13. BETA-S, Multi-Group Beta-Ray Spectra

    International Nuclear Information System (INIS)

    1 - Description of program or function: BETA-S calculates beta-decay source terms and energy spectra in multigroup format for time-dependent radionuclide inventories of actinides, fission products, and activation products. Multigroup spectra may be calculated in any arbitrary energy-group structure. The code also calculates the total beta energy release rate from the sum of the average beta-ray energies as determined from the spectral distributions. BETA-S also provides users with an option to determine principal beta-decaying radionuclides contributing to each energy group. The CCC-545/SCALE 4.3 (or SCALE4.2) code system must be installed on the computer before installing BETA-S, which requires the SCALE subroutine library and nuclide-inventory generation from the ORIGEN-S code. 2 - Methods:Well-established models for beta-energy distributions are used to explicitly represent allowed, and 1., 2. - and 3. -forbidden transition types. Forbidden non-unique transitions are assumed to have a spectral shape of allowed transitions. The multigroup energy spectra are calculated by numerically integrating the energy distribution functions using an adaptive Simpson's Rule algorithm. Nuclide inventories are obtained from a binary interface produced by the ORIGEN-S code. BETA-S calculates the spectra for all isotopes on the binary interface that have associated beta-decay transition data in the ENSDF-95 library, developed for the BETA-S code. This library was generated from ENSDF data and contains 715 materials, representing approximately 8500 individual beta transition branches. 3 - Restrictions on the complexity of the problem: The algorithms do not treat positron decay transitions or internal conversion electrons. The neglect of positron transitions in inconsequential for most applications involving aggregate fission products, since most of the decay modes are via electrons. The neglect of internal conversion electrons may impact on the accuracy of the spectrum in the low

  14. CD8+ T cell activation correlates with disease activity in clinically isolated syndromes and is regulated by interferon-beta treatment

    DEFF Research Database (Denmark)

    Jensen, J; Sellebjerg, Finn Thorup; Langkilde, A; Frederiksen, Jette Lautrup Battistini

    An increased percentage of blood CD8+ T cells from patients with clinically isolated syndromes (CIS) suggestive of multiple sclerosis (MS) was found to express CD26 and CD69. The percentage of CD26 or CD69 positive CD8+ T cells was higher in patients with MRI evidence of disease dissemination in...... space or with active MRI lesions than in the remaining patients. Treatment of MS with interferon (IFN)-beta resulted in a decrease in the percentage of CD26 and CD71 positive CD8+ T cells and an increase in the percentage of CD8+ T cells that expressed interleukin (IL)-10 and IL-13. CD8+ T cell...

  15. Characterization of protein kinase C and its isoforms in human T lymphocytes. (United States)

    Beyers, A D; Hanekom, C; Rheeder, A; Strachan, A F; Wooten, M W; Nel, A E


    Protein kinase C (PKC) regulates numerous T cell functions and is present in abundance in normal human T cells and certain T cell lines. Although crude Triton X-100 soluble material obtained from T cell pellets contains minimal PKC activity, DEAE chromatography revealed that 12 to 37% of cellular PKC was membrane associated, probably due to removal of an inhibitor through column chromatography. As in other tissues, PKC from lymphoid tissue was phospholipid and Ca2+ dependent and diolein reduced the Ca2+ requirements for enzyme activity. Hydroxylapatite chromatography revealed that T cells possess two major peaks of PKC activity. Although, the enzyme in these peaks had similar m.w. and identical iso-electric mobility, the proteins differed with respect to their autophosphorylation sites and immunoreactivity toward an isoform specific antibody. Furthermore, differences in their activities in the presence of phospholipid, diolein, and limiting amounts of Ca2+ imply that these isoforms may be differentially activated. We discuss optimal conditions for activation of PKC and its isoforms for study of T lymphocyte cellular function. PMID:3263426

  16. Role of JNK isoforms in the development of neuropathic pain following sciatic nerve transection in the mouse

    Directory of Open Access Journals (Sweden)

    Manassero Giusi


    Full Text Available Abstract Background Current tools for analgesia are often only partially successful, thus investigations of new targets for pain therapy stimulate great interest. Consequent to peripheral nerve injury, c-Jun N-terminal kinase (JNK activity in cells of the dorsal root ganglia (DRGs and spinal cord is involved in triggering neuropathic pain. However, the relative contribution of distinct JNK isoforms is unclear. Using knockout mice for single isoforms, and blockade of JNK activity by a peptide inhibitor, we have used behavioral tests to analyze the contribution of JNK in the development of neuropathic pain after unilateral sciatic nerve transection. In addition, immunohistochemical labelling for the growth associated protein (GAP-43 and Calcitonin Gene Related Peptide (CGRP in DRGs was used to relate injury related compensatory growth to altered sensory function. Results Peripheral nerve injury produced pain–related behavior on the ipsilateral hindpaw, accompanied by an increase in the percentage of GAP43-immunoreactive (IR neurons and a decrease in the percentage of CGRP-IR neurons in the lumbar DRGs. The JNK inhibitor, D-JNKI-1, successfully modulated the effects of the sciatic nerve transection. The onset of neuropathic pain was not prevented by the deletion of a single JNK isoform, leading us to conclude that all JNK isoforms collectively contribute to maintain neuropathy. Autotomy behavior, typically induced by sciatic nerve axotomy, was absent in both the JNK1 and JNK3 knockout mice. Conclusions JNK signaling plays an important role in regulating pain threshold: the inhibition of all of the JNK isoforms prevents the onset of neuropathic pain, while the deletion of a single splice JNK isoform mitigates established sensory abnormalities. JNK inactivation also has an effect on axonal sprouting following peripheral nerve injury.

  17. Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hu

    Full Text Available BACKGROUND: Rhodopseudomonas palustris (R. palustris is a purple non-sulfur anoxygenic phototrophic bacterium that belongs to the class of proteobacteria. It is capable of absorbing atmospheric carbon dioxide and converting it to biomass via the process of photosynthesis and the Calvin-Benson-Bassham (CBB cycle. Transketolase is a key enzyme involved in the CBB cycle. Here, we reveal the functions of transketolase isoforms I and II in R. palustris using a systems biology approach. METHODOLOGY/PRINCIPAL FINDINGS: By measuring growth ability, we found that transketolase could enhance the autotrophic growth and biomass production of R. palustris. Microarray and real-time quantitative PCR revealed that transketolase isoforms I and II were involved in different carbon metabolic pathways. In addition, immunogold staining demonstrated that the two transketolase isoforms had different spatial localizations: transketolase I was primarily associated with the intracytoplasmic membrane (ICM but transketolase II was mostly distributed in the cytoplasm. Comparative proteomic analysis and network construction of transketolase over-expression and negative control (NC strains revealed that protein folding, transcriptional regulation, amino acid transport and CBB cycle-associated carbon metabolism were enriched in the transketolase I over-expressed strain. In contrast, ATP synthesis, carbohydrate transport, glycolysis-associated carbon metabolism and CBB cycle-associated carbon metabolism were enriched in the transketolase II over-expressed strain. Furthermore, ATP synthesis assays showed a significant increase in ATP synthesis in the transketolase II over-expressed strain. A PEPCK activity assay showed that PEPCK activity was higher in transketolase over-expressed strains than in the negative control strain. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that the two isoforms of transketolase in R. palustris could affect photoautotrophic growth

  18. Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis (United States)

    Fridlyand, Leonid E.; Philipson, Louis H.


    Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger

  19. The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Membrez, Mathieu; Nicolas, Céline S;


    participate in controlling body electrolyte homeostasis. Several regulatory mechanisms of the KCNQ1 channel complexes have been reported, including protein kinase A (PKA)-phosphorylation and beta-subunit interactions. However, the mechanisms controlling the membrane density of KCNQ1 channels have attracted...... less attention. METHODS AND RESULTS: Here we demonstrate that KCNQ1 proteins expressed in HEK293 cells are down-regulated by Nedd4/Nedd4-like ubiquitin-protein ligases. KCNQ1 and KCNQ1/KCNE1 currents were reduced upon co-expression of Nedd4-2, the isoform among the nine members of the Nedd4/Nedd4-like...... KCNQ1 internalization and stability is physiologically regulated by its Nedd4/Nedd4-like-dependent ubiquitylation. This mechanism may thereby be important in regulating the surface density of the KCNQ1 channels in cardiomyocytes and other cell types....

  20. Monocytic cells synthesize, adhere to, and migrate on laminin-8 (alpha 4 beta 1 gamma 1). (United States)

    Pedraza, C; Geberhiwot, T; Ingerpuu, S; Assefa, D; Wondimu, Z; Kortesmaa, J; Tryggvason, K; Virtanen, I; Patarroyo, M


    Laminins, a growing family of large heterotrimeric proteins with cell adhesive and signaling properties, are major components of vascular and other basement membranes. Expression, recognition, and use of laminin isoforms by leukocytes are poorly understood. In monoblastic THP-1 cells, transcripts for laminin gamma(1)-, beta(1)-, and alpha(4)-chains were detected by RT-PCR. Following immunoaffinity purification on a laminin beta(1) Ab-Sepharose column, laminin beta(1)- (220 kDa), gamma(1)- (200 kDa), and alpha(4)- (180/200 kDa) chains were detected by Western blotting in THP-1 cells and in two other monoblastic cell lines, U-937 and Mono Mac 6. After cell permeabilization, a mAb to laminin gamma(1)-chain reacted with practically all blood monocytes by immunofluorescence flow cytometry, and laminin-8 (alpha(4)beta(1)gamma(1)) could be isolated also from these cells. Monoblastic JOSK-I cells adhered constitutively to immobilized recombinant laminin-8, less than to laminin-10/11 (alpha(5)beta(1)gamma(1)/alpha(5)beta(2)gamma(1)) but to a higher level than to laminin-1 (alpha(1)beta(1)gamma(1)). Compared with the other laminin isoforms, adhesion to laminin-8 was preferentially mediated by alpha(6)beta(1) and beta(2) integrins. Laminin-8 and, to a lower extent, laminin-1 promoted spontaneous and chemokine-induced migration of blood monocytes, whereas laminin-10/11 was inhibitory. Altogether, the results indicate that leukocytes, as other cell types, are able to synthesize complete laminin molecules. Expression, recognition, and use of laminin-8 by leukocytes suggest a major role of this laminin isoform in leukocyte physiology. PMID:11067943

  1. A Network of Splice Isoforms for the Mouse. (United States)

    Li, Hong-Dong; Menon, Rajasree; Eksi, Ridvan; Guerler, Aysam; Zhang, Yang; Omenn, Gilbert S; Guan, Yuanfang


    The laboratory mouse is the primary mammalian species used for studying alternative splicing events. Recent studies have generated computational models to predict functions for splice isoforms in the mouse. However, the functional relationship network, describing the probability of splice isoforms participating in the same biological process or pathway, has not yet been studied in the mouse. Here we describe a rich genome-wide resource of mouse networks at the isoform level, which was generated using a unique framework that was originally developed to infer isoform functions. This network was built through integrating heterogeneous genomic and protein data, including RNA-seq, exon array, protein docking and pseudo-amino acid composition. Through simulation and cross-validation studies, we demonstrated the accuracy of the algorithm in predicting isoform-level functional relationships. We showed that this network enables the users to reveal functional differences of the isoforms of the same gene, as illustrated by literature evidence with Anxa6 (annexin a6) as an example. We expect this work will become a useful resource for the mouse genetics community to understand gene functions. The network is publicly available at: PMID:27079421

  2. Integrative Network Analysis Combined with Quantitative Phosphoproteomics Reveals Transforming Growth Factor-beta Receptor type-2 (TGFBR2) as a Novel Regulator of Glioblastoma Stem Cell Properties. (United States)

    Narushima, Yuta; Kozuka-Hata, Hiroko; Koyama-Nasu, Ryo; Tsumoto, Kouhei; Inoue, Jun-ichiro; Akiyama, Tetsu; Oyama, Masaaki


    Glioblastoma is one of the most malignant brain tumors with poor prognosis and their development and progression are known to be driven by glioblastoma stem cells. Although glioblastoma stem cells lose their cancer stem cell properties during cultivation in serum-containing medium, little is known about the molecular mechanisms regulating signaling alteration in relation to reduction of stem cell-like characteristics. To elucidate the global phosphorylation-related signaling events, we performed a SILAC-based quantitative phosphoproteome analysis of serum-induced dynamics in glioblastoma stem cells established from the tumor tissues of the patient. Among a total of 2876 phosphorylation sites on 1584 proteins identified in our analysis, 732 phosphorylation sites on 419 proteins were regulated through the alteration of stem cell-like characteristics. The integrative computational analyses based on the quantified phosphoproteome data revealed the relevant changes of phosphorylation levels regarding the proteins associated with cytoskeleton reorganization such as Rho family GTPase and Intermediate filament signaling, in addition to transforming growth factor-β receptor type-2 (TGFBR2) as a prominent upstream regulator involved in the serum-induced phosphoproteome regulation. The functional association of transforming growth factor-β receptor type-2 with stem cell-like properties was experimentally validated through signaling perturbation using the corresponding inhibitors, which indicated that transforming growth factor-β receptor type-2 could play an important role as a novel cell fate determinant in glioblastoma stem cell regulation. PMID:26670566

  3. Small RNA profiling of influenza A virus-infected cells identifies miR-449b as a regulator of histone deacetylase 1 and interferon beta.

    Directory of Open Access Journals (Sweden)

    William A Buggele

    Full Text Available The mammalian antiviral response relies on the alteration of cellular gene expression, to induce the production of antiviral effectors and regulate their activities. Recent research has indicated that virus infections can induce the accumulation of cellular microRNA (miRNA species that influence the stability of host mRNAs and their protein products. To determine the potential for miRNA regulation of cellular responses to influenza A virus infection, small RNA profiling was carried out using next generation sequencing. Comparison of miRNA expression profiles in uninfected human A549 cells to cells infected with influenza A virus strains A/Udorn/72 and A/WSN/33, revealed virus-induced changes in miRNA abundance. Gene expression analysis identified mRNA targets for a cohort of highly inducible miRNAs linked to diverse cellular functions. Experiments demonstrate that the histone deacetylase, HDAC1, can be regulated by influenza-inducible miR-449b, resulting in altered mRNA and protein levels. Expression of miR-449b enhances virus and poly(I:C activation of the IFNβ promoter, a process known to be negatively regulated by HDAC1. These findings demonstrate miRNA induction by influenza A virus infection and elucidate an example of miRNA control of antiviral gene expression in human cells, defining a role for miR-449b in regulation of HDAC1 and antiviral cytokine signaling.

  4. Regulation of conformation and activity of nuclear NF-kappaBeta p65 by phosphorylation, chaperones and p65 DNA-binding


    Milanovic, Maja


    The TF NF-kB is an important regulator of immunity, stress responses as well as apoptosis, cell cycle progression and oncogenesis. NF-kB is activated by various stimuli and regulates expression many different target genes. The first part of this work shows that stimulation of cells with the cytokines TNF or IL-1 results in a profound conformational switch of the NF-kB subunit p65, as revealed by limited proteolysis assays. The cytokine-triggered reconfiguration of p65 mainly occurs for p65 co...

  5. Intron V, not intron I of human thrombopoietin, improves expression in the milk of transgenic mice regulated by goat beta-casein promoter


    Yan Li; Hu Hao; Mingqian Zhou; Hongwei Zhou; Jianbin Ye; Lijun Ning; Yunshan Ning


    Introns near 5′ end of genes generally enhance gene expression because of an enhancer /a promoter within their sequence or as intron-mediated enhancement. Surprisingly, our previous experiments found that the vector containing the last intron (intron V) of human thromobopoietin (hTPO) expressed higher hTPO in cos-1 cell than the vector containing intron I regulated by cytomegalovirus promoter. Moreover, regulated by 1.0 kb rat whey acidic protein promoter, hTPO expression was higher in transg...

  6. beta-oxidation modulates metabolic competition between eicosapentaenoic acid and arachidonic acid regulating prostaglandin E(2) synthesis in rat hepatocytes-Kupffer cells

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Winterthun, Synnøve; Kristiansen, Karsten; Frøyland, Livar; Madsen, Lise


    eicosapentaenoic acid (EPA) for PGE(2) synthesis in a rat hepatocyte-Kupffer cell (HPC/KC) co-culture system when the cellular oxidation capacity was enhanced by exogenous l-carnitine. We demonstrate that in the absence of l-carnitine, 1) beta-oxidation rates of EPA and AA were comparable in HPCs and in KCs; 2) AA...... and not EPA was preferentially incorporated into glycerolipids; and 3) addition of EPA significantly decreased AA-dependent PGE(2) synthesis in HPCs and cyclooxygenase-2 (COX-2) expression in co-cultured HPCs/KCs. However, enhancing the cellular oxidation capacity by the addition of l-carnitine 1...... inhibition of AA-dependent PGE(2) synthesis and COX-2 expression by EPA. Taken together, the results strongly suggest that l-carnitine affects competition between AA and EPA in PG synthesis in liver cells by enhancing oxidation of EPA in HPCs. This implies that the beneficial effects of n-3 PUFA, especially...

  7. 17-beta-estradiol-dependent regulation of somatostatin receptor subtype expression in the 7315b prolactin secreting rat pituitary tumor in vitro and in vivo

    NARCIS (Netherlands)

    H.A. Visser-Wisselaar (Heleen); C.J. van Uffelen; P.M. van Koetsveld (Peter); E.G. Lichtenauer-Kaligis; A.M. Waaijers (Annet); P. Uitterlinden (Piet); D.M. Mooy; S.W.J. Lamberts (Steven); L.J. Hofland (Leo)


    textabstractIn the present study, we have investigated the role of estrogens in the regulation of somatostatin receptor subtype (sst) expression in 7315b PRL-secreting rat pituitary tumor cells in vitro and in vivo. sst were undetectable in freshly dispersed cells of the transplant

  8. Increased limbic phosphorylated extracellular-regulated kinase 1 and 2 expression after chronic stress is reduced by cyclic 17 beta-estradiol administration

    NARCIS (Netherlands)

    Gerrits, M.; Westenbroek, C.; Koch, T.; Grootkarzijn, A.; Ter Horst, G. J.


    Chronic stress induced neuronal changes that may have consequences for subsequent stress responses. For example, chronic stress in rats rearranges dendritic branching patterns and disturbs the phosphorylation of extracellular-regulated kinase 1 and 2 (ERK) 1/2 throughout the limbic system. Stress-in

  9. Phosphorylation of activation function-1 regulates proteasome-dependent nuclear mobility and E6-associated protein ubiquitin ligase recruitment to the estrogen receptor beta (United States)

    Picard, Nathalie; Charbonneau, Catherine; Sanchez, Mélanie; Licznar, Anne; Busson, Muriel; Lazennec, Gwendal; Tremblay, André


    The ubiquitin-proteasome pathway has been recognized as an important regulator in the hormonal response by estrogen receptor ERα, but its impact on ERβ function is poorly characterized. In the current study, we investigated the role of the ubiquitin-proteasome pathway in regulating ERβ activity and identified regulatory sites within the activation function AF-1 domain that modulate ERβ ubiquitination and nuclear dynamics in a hormone-independent manner. Whereas both ERα and ERβ were dependent on proteasome function for their maximal response to estrogen, they were regulated differently by proteasome inhibition in the absence of hormone, an effect shown to be dependent on their respective AF-1 domain. Given the role of AF-1 phosphorylation to regulate ERα and ERβ activity, we found that sequential substitutions of specific serine residues contained in MAPK consensus sites conferred transcriptional activation of ERβ in a proteasome-dependent manner through reduced ubiquitination and enhanced accumulation of mutant receptors. Specifically, serines 94 and 106 within ERβ AF-1 domain were found to modulate sub-nuclear mobility of the receptor to transit between inactive clusters and a more mobile state in a proteasome-dependent manner. In addition, cellular levels of ERβ were regulated through these sites by facilitating the recruitment of the ubiquitin ligase E6-associated protein in a phosphorylation-dependent manner. These findings suggest a role for ERβ AF-1 in contributing to the activation-degradation cycling of the receptor through a functional clustering of phosphorylated serine residues that cooperate in generating signals to the ubiquitin-proteasome pathway. PMID:17962381

  10. Characterization of the transcripts and protein isoforms for cytoplasmic polyadenylation element binding protein-3 (CPEB3 in the mouse retina

    Directory of Open Access Journals (Sweden)

    Cooper Nigel GF


    Full Text Available Abstract Background Cytoplasmic polyadenylation element binding proteins (CPEBs regulate translation by binding to regulatory motifs of defined mRNA targets. This translational mechanism has been shown to play a critical role in oocyte maturation, early development, and memory formation in the hippocampus. Little is known about the presence or functions of CPEBs in the retina. The purpose of the current study is to investigate the alternative splicing isoforms of a particular CPEB, CPEB3, based on current databases, and to characterize the expression of CPEB3 in the retina. Results In this study, we have characterized CPEB3, whose putative role is to regulate the translation of GluR2 mRNA. We identify the presence of multiple alternative splicing isoforms of CPEB3 transcripts and proteins in the current databases. We report the presence of eight alternative splicing patterns of CPEB3, including a novel one, in the mouse retina. All but one of the patterns appear to be ubiquitous in 13 types of tissue examined. The relative abundance of the patterns in the retina is demonstrated. Experimentally, we show that CPEB3 expression is increased in a time-dependent manner during the course of postnatal development, and CPEB3 is localized mostly in the inner retina, including retinal ganglion cells. Conclusion The level of CPEB3 was up-regulated in the retina during development. The presence of multiple CPEB3 isoforms indicates remarkable complexity in the regulation and function of CPEB3.

  11. Phosphorylation of a neuronal-specific beta-tubulin isotype

    International Nuclear Information System (INIS)

    Adult rats were intracraneally injected with [32P] phosphate and brain microtubules isolated. The electrophoretically purified, in vivo phospholabeled, beta-tubulin was digested with the V8-protease and the labeled peptide purified by reversed-phase liquid chromatography. Its amino acid sequence corresponds to the COOH-terminal sequence of a minor neuronal beta 3-tubulin isoform from chicken and human. The phosphorylation site was at serine 444. A synthetic peptide with sequence EMYEDDEEESESQGPK, corresponding to that of the COOH terminus of beta 3-tubulin, was efficiently phosphorylated in vitro by casein kinase II at the same serine 444. The functional meaning of tubulin phosphorylation is still unclear. However, the modification of the protein takes place after microtubule assembly, and phosphorylated tubulin is mainly present in the assembled microtubule protein fraction

  12. Phytoestrogens Regulate mRNA and Protein Levels of Guanine Nucleotide-Binding Protein, Beta-1 Subunit (GNB1) in MCF-7 Cells


    Naragoni, Srivatcha; Sankella, Shireesha; Harris, Kinesha; Gray, Wesley G.


    Phytoestrogens (PEs) are non-steroidal ligands which regulate the expression of number of estrogen receptor-dependent genes responsible for a variety of biological processes. Deciphering the molecular mechanism of action of these compounds is of great importance because it would increase our understanding of the role(s) these bioactive chemicals play in prevention and treatment of estrogen-based diseases. In this study, we applied suppression subtractive hybridization (SSH) to identify genes ...

  13. Developmental and environmental regulation of a mammary gland-specific nuclear factor essential for transcription of the gene encoding beta-casein.


    Schmitt-Ney, M; Happ, B; Ball, R K; Groner, B


    During the lactation period, mammary epithelial cells secrete large amounts of milk proteins. The coordinate regulation of milk protein expression is effected by the lactogenic hormones. We have investigated the activity of a mammary gland-specific transcription factor (MGF), which mediates hormonal influences at the level of a milk protein gene promoter. MGF-binding sites are present in the promoters of the most abundantly expressed milk protein genes. Mutation of the MGF-binding site in the...

  14. The three isoforms of the light-harvesting complex II Spectroscopic features, trimer formation, and functional roles

    CERN Document Server

    Standfuss, Jorg


    The major light-harvesting complex (LHC-II) of higher plants plays a crucial role in capturing light energy for photosynthesis and in regulating the flow of energy within the photosynthetic apparatus. Native LHC-II isolated from plant tissue consists of three isoforms, Lhcb1, Lhcb2, and Lhcb3, which form homo- and heterotrimers. All three isoforms are highly conserved among different species, suggesting distinct functional roles. We produced the three LHC-II isoforms by heterologous expression of the polypeptide in Escherichia coli and in vitro refolding with purified pigments. Although Lhcb1 and Lhcb2 are very similar in polypeptide sequence and pigment content, Lhcb3 is clearly different because it lacks an N-terminal phosphorylation site and has a higher chlorophyll a/b ratio, suggesting the absence of one chlorophyll b. Low temperature absorption and fluorescence emission spectra of the pure isoforms revealed small but significant differences in pigment organization. The oligomeric state of the pure isofo...

  15. A real-time PCR method for the quantification of the two isoforms of metallothionein in Lake Trout (Salvelinus namaycush). (United States)

    Werner, Julieta; Palace, Vince; Baron, Christopher; Shiu, Robert; Yarmill, Alison


    Metallothioneins (MTs) are low-molecular-weight proteins whose physiologic roles are the regulation of essential metals Cu and Zn, sequestration of heavy metals, and free radical scavenging. Induced production of MTs in a wide variety of organisms exposed to heavy metals has made them popular exposure indicators. While it has been postulated that the three different isoforms of MT play different physiologic roles, methods to discern induction separately have not been available. The development of real-time polymerase chain reaction (real-time PCR) primers and TaqMan probes to measure the two MT isoforms found in salmonid fish are described. Assuming a high degree of homology between the isoforms and within different groups of salmonids, the sequences for MT-I and MT-II from rainbow trout were used to develop primers and probes for lake trout using the Primer3 program. Two sections of each isoform that varied by only a few nucleotides were targeted. SYBR Green validated the primer specificity, and melt curve analysis further ensured that only one product was amplified. Analysis of archived samples from fish captured in unmanipulated reference lakes or from lakes experimentally treated with cadmium or ethynylestradiol (EE2) afforded an examination of seasonal and contaminant influences on MT-I and MT-II mRNA expression. PMID:17687585

  16. [Isoforms of the human histamine H3 receptor: Generation, expression in the central nervous system and functional implications]. (United States)

    García-Gálvez, Ana Maricela; Arias-Montaño, José Antonio


    Histamine plays a significant role as a neuromodulator in the human central nervous system. Histamine-releasing neurons are exclusively located in the tuberomammillary nucleus of the hypothalamus, project to all major areas of the brain, and participate in functions such as the regulation of sleep/wakefulness, locomotor activity, feeding and drinking, analgesia, learning, and memory. The functional effects of histamine are exerted through the activation of four G protein-coupled receptors (H1, H2, H3 and H4), and in the central nervous system the first three receptors are widely expressed. The H3 receptor (H3R) is found exclusively in neuronal cells, where it functions as auto- and hetero-receptor. One remarkable characteristic of the H3R is the existence of isoforms, generated by alternative splicing of the messenger RNA. For the human H3R, 20 isoforms have been reported; although a significant number lack those regions required for agonist binding or receptor signaling, at least five isoforms appear functional upon heterologous expression. In this work we review the evidence for the generation of human H3R isoforms, their expression, and the available information regarding the functionality of such receptors. PMID:26927649

  17. Na(+)-K(+)-ATPase alpha(2)-isoform expression in guinea pig hearts during transition from compensation to decompensation. (United States)

    Trouve, P; Carre, F; Belikova, I; Leclercq, C; Dakhli, T; Soufir, L; Coquard, I; Ramirez-Gil, J; Charlemagne, D


    Disturbance in ionic gradient across sarcolemma may lead to arrhythmias. Because Na(+)-K(+)-ATPase regulates intracellular Na(+) and K(+) concentrations, and therefore intracellular Ca(2+) concentration homeostasis, our aim was to determine whether changes in the Na(+)-K(+)-ATPase alpha-isoforms in guinea pigs during transition from compensated (CLVH) to decompensated left ventricular hypertrophy (DLVH) were concomitant with arrhythmias. After 12- and 20-mo aortic stenosis, CLVH and DLVH were characterized by increased mean arterial pressure (30% and 52.7%, respectively). DLVH differed from CLVH by significantly increased end-diastolic pressure (34%), decreased sarco(endo)plasmic reticulum Ca(2+)-ATPase (-75%), and increased Na(+)/Ca(2+) exchanger (25%) mRNA levels and by the occurrence of ventricular arrhythmias. The alpha-isoform (mRNA and protein levels) was significantly lower in DLVH (2.2 +/- 0.2- and 1. 4 +/- 0.15-fold, respectively, vs. control) than in CLVH (3.5 +/- 0. 4- and 2.2 +/- 0.13-fold, respectively) and was present in sarcolemma and T tubules. Changes in the levels of alpha(1)- and alpha(3)-isoform in CLVH and DLVH appear physiologically irrelevant. We suggest that the increased level of alpha(2)-isoform in CLVH may participate in compensation, whereas its relative decrease in DLVH may enhance decompensation and arrhythmias. PMID:11009487

  18. Multiple Promoters in the WNK1 Gene: One Controls Expression of a Kidney-Specific Kinase-Defective Isoform (United States)

    Delaloy, Celine; Lu, Jingyu; Houot, Anne-Marie; Disse-Nicodeme, Sandra; Gasc, Jean-Marie; Corvol, Pierre; Jeunemaitre, Xavier


    WNK1 is a serine-threonine kinase, the expression of which is affected in pseudohypoaldosteronism type II, a Mendelian form of arterial hypertension. We characterized human WNK1 transcripts to determine the molecular mechanisms governing WNK1 expression. We report the presence of two promoters generating two WNK1 isoforms with a complete kinase domain. Further variations are achieved by the use of two polyadenylation sites and tissue-specific splicing. We also determined the structure of a kidney-specific isoform regulated by a third promoter and starting at a novel exon. This transcript is kinase defective and has a predominant expression in the kidney compared to the other WNK1 isoforms, with, furthermore, a highly restricted expression profile in the distal convoluted tubule. We confirmed that the ubiquitous and kidney-specific promoters are functional in several cells lines and identified core promoters and regulatory elements. In particular, a strong enhancer element upstream from the kidney-specific exon seems specific to renal epithelial cells. Thus, control of human WNK1 gene expression of kinase-active or -deficient isoforms is mediated predominantly through the use of multiple transcription initiation sites and tissue-specific regulatory elements. PMID:14645531

  19. Direct binding and activation of protein kinase C isoforms by steroid hormones.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo


    The non-genomic action of steroid hormones regulates a wide variety of cellular responses including regulation of ion transport, cell proliferation, migration, death and differentiation. In order to achieve such plethora of effects steroid hormones utilize nearly all known signal transduction pathways. One of the key signalling molecules regulating the non-genomic action of steroid hormones is protein kinase C (PKC). It is thought that rapid action of steroids hormones results from the activation of plasma membrane receptors; however, their molecular identity remains elusive. In recent years, an increasing number of studies have pointed at the selective binding and activation of specific PKC isoforms by steroid hormones. This has led to the hypothesis that PKC could act as a receptor as well as a transducer of the non-genomic effects of these hormones. In this review we summarize the current knowledge of the direct binding and activation of PKC by steroid hormones.

  20. A novel thyroid stimulating hormone β-subunit isoform in human pituitary, peripheral blood leukocytes, and thyroid


    Schaefer, Jeremy S.; Klein, John R.


    Thyroid stimulating hormone (TSH) is produced by the anterior pituitary and is used to regulate thyroid hormone output, which in turn controls metabolic activity. Currently, the pituitary is believed to be the only source of TSH used by the thyroid. Recent studies in mice from our laboratory have identified a TSH isoform that is expressed in the pituitary, in peripheral blood leukocytes (PBL), and in the thyroid. To determine whether a human TSH splice variant exists that is analogous to the ...

  1. Increased Stability and DNA Site Discrimination of Single Chain Variants of the Dimeric beta-Barrel DNA Binding Domain of the Human Papillomavirus E2 Transcriptional Regulator

    Energy Technology Data Exchange (ETDEWEB)

    Dellarole,M.; Sanchez, I.; Freire, E.; de Prat-Gay, G.


    Human papillomavirus infects millions of people worldwide and is a causal agent of cervical cancer in women. The HPV E2 protein controls the expression of all viral genes through binding of its dimeric C-terminal domain (E2C) to its target DNA site. We engineered monomeric versions of the HPV16 E2C, in order to probe the link of the dimeric {beta}-barrel fold to stability, dimerization, and DNA binding. Two single-chain variants, with 6 and 12 residue linkers (scE2C-6 and scE2C-12), were purified and characterized. Spectroscopy and crystallography show that the native structure is unperturbed in scE2C-12. The single chain variants are stabilized with respect to E2C, with effective concentrations of 0.6 to 6 mM. The early folding events of the E2C dimer and scE2C-12 are very similar and include formation of a compact species in the submillisecond time scale and a non-native monomeric intermediate with a half-life of 25 ms. However, monomerization changes the unfolding mechanism of the linked species from two-state to three-state, with a high-energy intermediate. Binding to the specific target site is up to 5-fold tighter in the single chain variants. Nonspecific DNA binding is up to 7-fold weaker in the single chain variants, leading to an overall 10-fold increased site discrimination capacity, the largest described so far for linked DNA binding domains. Titration calorimetric binding analysis, however, shows almost identical behavior for dimer and single-chain species, suggesting very subtle changes behind the increased specificity. Global analysis of the mechanisms probed suggests that the dynamics of the E2C domain, rather than the structure, are responsible for the differential properties. Thus, the plastic and dimeric nature of the domain did not evolve for a maximum affinity, specificity, and stability of the quaternary structure, likely because of regulatory reasons and for roles other than DNA binding played by partly folded dimeric or monomeric conformers.

  2. SURVIV for survival analysis of mRNA isoform variation. (United States)

    Shen, Shihao; Wang, Yuanyuan; Wang, Chengyang; Wu, Ying Nian; Xing, Yi


    The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects. PMID:27279334

  3. Intron V, not intron I of human thrombopoietin, improves expression in the milk of transgenic mice regulated by goat beta-casein promoter. (United States)

    Li, Yan; Hao, Hu; Zhou, Mingqian; Zhou, Hongwei; Ye, Jianbin; Ning, Lijun; Ning, Yunshan


    Introns near 5' end of genes generally enhance gene expression because of an enhancer /a promoter within their sequence or as intron-mediated enhancement. Surprisingly, our previous experiments found that the vector containing the last intron (intron V) of human thromobopoietin (hTPO) expressed higher hTPO in cos-1 cell than the vector containing intron I regulated by cytomegalovirus promoter. Moreover, regulated by 1.0 kb rat whey acidic protein promoter, hTPO expression was higher in transgenic mice generated by intron V-TPOcDNA than in transgenic mice generated by TPOcDNA and TPOgDNA. However, it is unknown whether the enhancement of hTPO expression by intron I is decreased by uAUG7 at 5'-UTR of hTPO in vivo. Currently, we constructed vectors regulated by stronger 6.5 kb β-casein promoter, including pTPOGA (containing TPOcDNA), pTPOGB (containing TUR-TPOcDNA, TUR including exon1, intron I and non-coding exon2 of hTPO gene), pTPOGC (containing ΔTUR-TPOcDNA, nucleotides of TUR from uAUG7 to physiological AUG were deleted), pTPOGD (containing intron V-TPOcDNA) and pTPOGE (containing TPOgDNA), to evaluate the effect of intron I on hTPO expression and to further verify whether intron V enhances hTPO expression in the milk of transgenic mice. The results demonstrated that intron V, not intron I improved hTPO expression. PMID:26527459

  4. Increased renal gene transcription of protein kinase C-beta in human diabetic nephropathy: relationship to long-term glycaemic control

    DEFF Research Database (Denmark)

    Langham, R.G.; Kelly, D.J.; Gow, R.M.;


    -embedded sections of renal biopsies using immunohistochemistry. The effects of high glucose on PRKC-beta expression and peptide production in cultured human proximal tubular epithelial cells were assessed. RESULTS: Quantitative real-time PCR demonstrated a 9.9-fold increase in PRKC-beta mRNA in kidney biopsies of......AIMS/HYPOTHESIS: Activation of protein kinase C (PKC) isoforms has been implicated as a central mediator in the pathogenesis of diabetic nephropathy. Although high glucose levels stimulate catalytic activity of PKC, the effects of high glucose levels on the expression of genes encoding PKC isoforms...... tubules. A 60% increase in PRKC-beta mRNA and peptide in cultured human proximal tubular epithelial cells exposed to high glucose (p<0.05) was seen in vitro. CONCLUSIONS/INTERPRETATION: PKC-beta is upregulated at the gene expression level in human diabetic nephropathy. PRKC-beta mRNA correlates closely...

  5. Levered and unlevered Beta


    Fernandez, Pablo


    We prove that in a world without leverage cost the relationship between the levered beta ( L) and the unlevered beta ( u) is the No-costs-of-leverage formula: L = u + ( u - d) D (1 - T) / E. We also analyze 6 alternative valuation theories proposed in the literature to estimate the relationship between the levered beta and the unlevered beta (Harris and Pringle (1985), Modigliani and Miller (1963), Damodaran (1994), Myers (1974), Miles and Ezzell (1980), and practitioners) and prove that all ...

  6. Betting Against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    .S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return of the...

  7. Forward-Looking Betas

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory

    Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward-...

  8. Isoforms of murine and human serum amyloid P component

    DEFF Research Database (Denmark)

    Nybo, Mads; Hackler, R; Kold, B;


    affect their number. When the acute-phase response was analysed in three mouse strains, CBA/J and C3H/HeN initially showed seven SAP isoforms in serum and C57BL/6 J three or four. The responses in all three strains peaked at day 2 and were normalized within 14 days. On days 2 and 4, CBA/J and C3H......Isoelectric focusing (IEF) and immunofixation of murine serum amyloid P component (SAP), purified and in serum, showed a distinct and strain-dependent isoform pattern with up to seven bands (pI 5.1-5.7). Neuraminidase treatment caused a shift of the isoforms to more basic pI values, but did not...

  9. Oxygenation properties and isoform diversity of snake hemoglobins

    DEFF Research Database (Denmark)

    Storz, Jay F.; Natarajan, Chandrasekhar; Moriyama, Hideaki;


    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer- dimer dissociation. However, standardized comparative data are lacking for...... snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying - and -type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the...... oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis...

  10. Laminin isoforms in endothelial and perivascular basement membranes (United States)

    Yousif, Lema F.; Di Russo, Jacopo; Sorokin, Lydia


    Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis. PMID:23263631

  11. Evidence of a progesterone receptor in the liver of the green frog Rana esculenta and its down-regulation by 17 beta estradiol and progesterone. (United States)

    Paolucci, M; Guerriero, G; Ciarcia, G


    Progesterone is a versatile hormone showing an ample variety of effects. One of the numerous functions attributed to progesterone is the modulation of vitellogenesis in oviparous vertebrates. As a prerequisite for the possible involvement of progesterone in vitellogenesis modulation, we investigated the presence of a progesterone receptor (PR) in the liver of the female green frog Rana esculenta. 3H-Progesterone (3H-P) binding activity was found in both cytosol and nuclear extract of the liver of Rana esculenta. The progesterone-binding moiety showed the typical characteristics of a true receptor, such as high affinity, low capacity, and specificity for progesterone. It also bound to DNA-cellulose and was eluted with a linear salt gradient at a concentration of 0.05 M of NaCl. The progesterone-binding moiety was down regulated by steroid hormones, in that ovariectomy resulted in a significant increase, in both cytosol and nuclear extract, of 3H-P binding activity with respect to intact females. On the contrary, 3H-P binding activity was almost undetectable after estradiol and/or progesterone treatment. The progesterone binding moiety of Rana esculenta was analyzed by Western blotting with the aid of a monoclonal antibody raised against the subunits A and B of the chicken PR. An immunoreactive band of about 67 kDa was observed in the liver of both intact and treated females. The 67 kDa band showed an increased intensity in ovariectomized animals, while it was faint following treatment with estradiol and/or progesterone. This is the first report on the presence of a progesterone receptor (PR) in the liver of an amphibian. PR of Rana esculenta is down regulated by estradiol and/or progesterone and shows peculiar immunological and biochemical characteristics, which make it rather different from the PR of other vertebrates. PMID:10589507

  12. Identification and characterization of novel NuMA isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin, E-mail: [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Xu, Zhe [Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); He, Dacheng [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Lu, Guanting, E-mail: [Beijing DnaLead Science and Technology Co., LTD, Beijing (China)


    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  13. Secondary structural analysis of the carboxyl-terminal domain from different connexin isoforms. (United States)

    Spagnol, Gaëlle; Al-Mugotir, Mona; Kopanic, Jennifer L; Zach, Sydney; Li, Hanjun; Trease, Andrew J; Stauch, Kelly L; Grosely, Rosslyn; Cervantes, Matthew; Sorgen, Paul L


    The connexin carboxyl-terminal (CxCT) domain plays a role in the trafficking, localization, and turnover of gap junction channels, as well as the level of gap junction intercellular communication via numerous post-translational modifications and protein-protein interactions. As a key player in the regulation of gap junctions, the CT presents itself as a target for manipulation intended to modify function. Specific to intrinsically disordered proteins, identifying residues whose secondary structure can be manipulated will be critical toward unlocking the therapeutic potential of the CxCT domain. To accomplish this goal, we used biophysical methods to characterize CxCT domains attached to their fourth transmembrane domain (TM4). Circular dichroism and nuclear magnetic resonance were complementary in demonstrating the connexin isoforms that form the greatest amount of α-helical structure in their CT domain (Cx45 > Cx43 > Cx32 > Cx50 > Cx37 ≈ Cx40 ≈ Cx26). Studies compared the influence of 2,2,2-trifluoroethanol, pH, phosphorylation, and mutations (Cx32, X-linked Charcot-Marie Tooth disease; Cx26, hearing loss) on the TM4-CxCT structure. While pH modestly influences the CT structure, a major structural change was associated with phosphomimetic substitutions. Since most connexin CT domains are phosphorylated throughout their life cycle, studies of phospho-TM4-CxCT isoforms will be critical toward understanding the role that structure plays in regulating gap junction function. PMID:26542351

  14. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. (United States)

    Teichroeb, Jonathan H; Kim, Joohwan; Betts, Dean H


    Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation. PMID:26786236

  15. Hsp70 Isoforms Are Essential for the Formation of Kaposi's Sarcoma-Associated Herpesvirus Replication and Transcription Compartments.

    Directory of Open Access Journals (Sweden)

    Belinda Baquero-Pérez


    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is an oncogenic herpesvirus associated with various AIDS-related malignancies. Like other herpesviruses, multiple processes required for KSHV lytic replication, including viral transcription, viral DNA synthesis and capsid assembly occur in virus-induced intranuclear structures, termed replication and transcription compartments (RTCs. Here we utilised a novel methodology, combining subcellular fractionation and quantitative proteomics, to identify cellular proteins which are recruited to KSHV-induced RTCs and thus play a key role in KSHV lytic replication. We show that several isoforms of the HSP70 chaperone family, Hsc70 and iHsp70, are redistributed from the cytoplasm into the nucleus coinciding with the initial formation of KSHV-induced RTCs. We demonstrate that nuclear chaperone foci are dynamic, initially forming adjacent to newly formed KSHV RTCs, however during later time points the chaperones move within KSHV RTCs and completely co-localise with actively replicating viral DNA. The functional significance of Hsp70 isoforms recruitment into KSHV RTCs was also examined using the specific Hsp70 isoform small molecule inhibitor, VER-155008. Intriguingly, results highlight an essential role of Hsp70 isoforms in the KSHV replication cycle independent of protein stability and maturation. Notably, inhibition of Hsp70 isoforms precluded KSHV RTC formation and RNA polymerase II (RNAPII relocalisation to the viral genome leading to the abolishment of global KSHV transcription and subsequent viral protein synthesis and DNA replication. These new findings have revealed novel mechanisms that regulate KSHV lytic replication and highlight the potential of HSP70 inhibitors as novel antiviral agents.

  16. Does Japanese medaka (Oryzias latipes) exhibit a gill Na(+)/K(+)-ATPase isoform switch during salinity change? (United States)

    Bollinger, Rebecca J; Madsen, Steffen S; Bossus, Maryline C; Tipsmark, Christian K


    Some euryhaline teleosts exhibit a switch in gill Na(+)/K(+)-ATPase (Nka) α isoform when moving between fresh water (FW) and seawater (SW). The present study tested the hypothesis that a similar mechanism is present in Japanese medaka and whether salinity affects ouabain, Mg(2+), Na(+) and K(+) affinity of the gill enzyme. Phylogenetic analysis classified six separate medaka Nka α isoforms (α1a, α1b, α1c, α2, α3a and α3b). Medaka acclimated long-term (>30 days) to either FW or SW had similar gill expression of α1c, α2, α3a and α3b, while both α1a and α1b were elevated in SW. Since a potential isoform shift may rely on early changes in transcript abundance, we conducted two short-term (1-3 days) salinity transfer experiments. FW to SW acclimation induced an elevation of α1b and α1a after 1 and 3 days. SW to FW acclimation reduced α1b after 3 days with no other α isoforms affected. To verify that the responses were typical, additional transport proteins were examined. Gill ncc and nhe3 expression were elevated in FW, while cftr and nkcc1a were up-regulated in SW. This is in accordance with putative roles in ion-uptake and secretion. SW-acclimated medaka had higher gill Nka V max and lower apparent K m for Na(+) compared to FW fish, while apparent affinities for K(+), Mg(2+) and ouabain were unchanged. The present study showed that the Japanese medaka does not exhibit a salinity-induced α isoform switch and therefore suggests that Na(+) affinity changes involve altered posttranslational modification or intermolecular interactions. PMID:26920794

  17. A short Gfi-1B isoform controls erythroid differentiation by recruiting the LSD1-corest complex through the dimethylation of its SNAG domain

    NARCIS (Netherlands)

    B. Laurent (Benoît); V. Randrianarison-Huetz (Voahangy); E. Frisan (Emilie); C. Andrieu-Soler (Charlotte); E. Soler (Eric); M. Fontenay (Michaela); I. Dusanter-Fourt (Isabelle); D. Dumenil (Dominique)


    textabstractGfi-1B is a transcriptional repressor essential for the regulation of erythropoiesis and megakaryopoiesis. Here we identify Gfi-1B p32, a Gfi-1B isoform, as essential for erythroid differentiation. Gfi-1B p32 is generated by alternative splicing and lacks the two first zinc finger domain

  18. A Review of Metallothionein Isoforms and their Role in Pathophysiology


    Senthil kumar M; Manisenthil Kumar KT; Shyam Sunder A; Thirumoorthy N; Ganesh GNK; Chatterjee Malay


    Abstract The Metallothionein (MT) is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological s...

  19. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies. (United States)

    Gong, Yan; Bourhis, Eric; Chiu, Cecilia; Stawicki, Scott; DeAlmeida, Venita I; Liu, Bob Y; Phamluong, Khanhky; Cao, Tim C; Carano, Richard A D; Ernst, James A; Solloway, Mark; Rubinfeld, Bonnee; Hannoush, Rami N; Wu, Yan; Polakis, Paul; Costa, Mike


    differential regulation of signaling by Wnt isoforms during development, and can be exploited with antibodies to differentially manipulate Wnt signaling in specific tissues or disease states. PMID:20856934

  20. Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Issinger, O G; Pińna, L A


    The noncatalytic beta-subunit is responsible for the latency of casein kinase 2 (CK2) activity toward calmodulin. Twenty-one mutants of the beta-subunit bearing either deletions or Ala substitutions for charged residues in the 5-6, 55-70, and 171-178 sequences have been assayed for their ability to...... substitute for wild-type beta-subunit as a suppressor of activity toward calmodulin. The only mutations that reduced the ability of the beta-subunit to suppress calmodulin phosphorylation activity, though being compatible with normal reconstitution of CK2 holoenzyme, were those affecting Asp55, Glu57 and the...... conversely ineffective. The latent "calmodulin kinase" activity of CK2 can also be specifically unmasked by a peptide (alpha[66-86]) reproducing a basic insert of the catalytic subunit. This effect is reversed by equimolar addition of a peptide (beta[55-71]) including the 55-64 acidic stretch of the beta...

  1. Waterborne gemfibrozil challenges the hepatic antioxidant defense system and down-regulates peroxisome proliferator-activated receptor beta (PPARβ) mRNA levels in male goldfish (Carassius auratus)

    International Nuclear Information System (INIS)

    The lipid regulator gemfibrozil (GEM) is one of many human pharmaceuticals found in the aquatic environment. We previously demonstrated that GEM bioconcentrates in blood and reduces plasma testosterone levels in goldfish (Carassius auratus). In this study, we address the potential of an environmentally relevant waterborne concentration of GEM (1.5 μg/l) to induce oxidative stress in goldfish liver and whether this may be linked to GEM acting as a peroxisome proliferator (PP). We also investigate the autoregulation of the peroxisome proliferator-activated receptors (PPARs) as a potential index of exposure. The three PPAR subtypes (α, β, and γ) were amplified from goldfish liver cDNA. Goldfish exposed to a concentration higher (1500 μg/l) than environmentally relevant for 14 and 28 days significantly reduce hepatic PPARβ mRNA levels (p < 0.001). Levels of CYP1A1 mRNA were unchanged. GEM exposure significantly induced the antioxidant defense enzymes catalase (p < 0.001), glutathione peroxidase (p < 0.001) and glutathione-S-transferase (p = 0.006) but not acyl-CoA oxidase or glutathione reductase. As GEM exposure failed to increase levels of thiobarbituric reactive substances (TBARS), we conclude that a sub-chronic exposure to GEM upregulates the antioxidant defense status of the goldfish as an adaptive response to this human pharmaceutical

  2. Cloning and expression of the liver and muscle isoforms of ovine carnitine palmitoyltransferase 1: residues within the N-terminus of the muscle isoform influence the kinetic properties of the enzyme. (United States)

    Price, Nigel T; Jackson, Vicky N; van der Leij, Feike R; Cameron, Jacqueline M; Travers, Maureen T; Bartelds, Beatrijs; Huijkman, Nicolette C; Zammit, Victor A


    The nucleotide sequence data reported will appear in DDBJ, EMBL, GenBank(R) and GSDB Nucleotide Sequence Databases; the sequences of ovine CPT1A and CPT1B cDNAs have the accession numbers Y18387 and AJ272435 respectively and the partial adipose tissue and liver CPT1A clones have the accession numbers Y18830 and Y18829 respectively. Fatty acid and ketone body metabolism differ considerably between monogastric and ruminant species. The regulation of the key enzymes involved may differ accordingly. Carnitine palmitoyltransferase 1 (CPT 1) is the key locus for the control of long-chain fatty acid beta-oxidation and liver ketogenesis. Previously we showed that CPT 1 kinetics in sheep and rat liver mitochondria differ. We cloned cDNAs for both isoforms [liver- (L-) and muscle- (M-)] of ovine CPT 1 in order to elucidate the structural features of these proteins and their genes ( CPT1A and CPT1B ). Their deduced amino acid sequences show a high degree of conservation compared with orthologues from other mammalian species, with the notable exception of the N-terminus of ovine M-CPT 1. These differences were also present in bovine M-CPT 1, whose N-terminal sequence we determined. In addition, the 5'-end of the sheep CPT1B cDNA suggested a different promoter architecture when compared with previously characterized CPT1B genes. Northern blotting revealed differences in tissue distribution for both CPT1A and CPT1B transcripts compared with other species. In particular, ovine CPT1B mRNA was less tissue restricted, and the predominant transcript in the pancreas was CPT1B. Expression in yeast allowed kinetic characterization of the two native enzymes, and of a chimaera in which the distinctive N-terminal segment of ovine M-CPT 1 was replaced with that from rat M-CPT 1. The ovine N-terminal segment influences the kinetics of the enzyme for both its substrates, such that the K (m) for palmitoyl-CoA is decreased and that for carnitine is increased for the chimaera, relative to the

  3. The solution structure of the Mg2+ form of soybean calmodulin isoform 4 reveals unique features of plant calmodulins in resting cells


    Huang, Hao; Ishida, Hiroaki; Vogel, Hans J.


    Soybean calmodulin isoform 4 (sCaM4) is a plant calcium-binding protein, regulating cellular responses to the second messenger Ca2+. We have found that the metal ion free (apo-) form of sCaM4 possesses a half unfolded structure, with the N-terminal domain unfolded and the C-terminal domain folded. This result was unexpected as the apo-forms of both soybean calmodulin isoform 1 (sCaM1) and mammalian CaM (mCaM) are fully folded. Because of the fact that free Mg2+ ions are always present at high...

  4. Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5' exon usage and splicing.

    Directory of Open Access Journals (Sweden)

    Mari Sepp

    Full Text Available BACKGROUND: Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2 is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG. While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. PRINCIPAL FINDINGS: In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5' exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. CONCLUSIONS: Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence

  5. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to barley beta-glucan and lowering of blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following an application from Cargill Incorporated submitted pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of Belgium, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver an opinion on the scientific substantiation of a health claim...... intervention studies, two animal studies and one mechanistic study. In weighing the evidence, the Panel took into account that one meta-analysis including 11 RCTs and one additional RCT which investigated the effects of barley beta-glucans at doses of at least 3 g/day showed a decrease in total and LDL...... consumption of barley beta-glucans and the lowering of blood LDL-cholesterol concentrations. The following wording reflects the scientific evidence: “Barley beta-glucans have been shown to lower/reduce blood cholesterol. High cholesterol is a risk factor in the development of coronary heart disease”. At least...

  6. Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation. (United States)

    Ogbozor, Uchenna D; Opene, Michael; Renteria, Lissette S; McBride, Shaemion; Ibe, Basil O


    Platelet activating factor (PAF) modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR) in pulmonary vascular smooth muscle cells (PVSMC) to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a) PAF induces NF-kB p65 DNA binding and (b) NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway. PMID:26966681

  7. Mechanism by which nuclear factor-kappa beta (NF-kB regulates ovine fetal pulmonary vascular smooth muscle cell proliferation

    Directory of Open Access Journals (Sweden)

    Uchenna D. Ogbozor


    Full Text Available Platelet activating factor (PAF modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR in pulmonary vascular smooth muscle cells (PVSMC to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a PAF induces NF-kB p65 DNA binding and (b NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway.

  8. Differential induction of FosB isoforms throughout the brain by fluoxetine and chronic stress. (United States)

    Vialou, Vincent; Thibault, Mackenzie; Kaska, Sophia; Cooper, Sarah; Gajewski, Paula; Eagle, Andrew; Mazei-Robison, Michelle; Nestler, Eric J; Robison, A J


    Major depressive disorder is thought to arise in part from dysfunction of the brain's "reward circuitry", consisting of the mesolimbic dopamine system and the glutamatergic and neuromodulatory inputs onto this system. Both chronic stress and antidepressant treatment regulate gene transcription in many of the brain regions that make up these circuits, but the exact nature of the transcription factors and target genes involved in these processes remain unclear. Here, we demonstrate induction of the FosB family of transcription factors in ∼25 distinct regions of adult mouse brain, including many parts of the reward circuitry, by chronic exposure to the antidepressant fluoxetine. We further uncover specific patterns of FosB gene product expression (i.e., differential expression of full-length FosB, ΔFosB, and Δ2ΔFosB) in brain regions associated with depression--the nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus--in response to chronic fluoxetine treatment, and contrast these patterns with differential induction of FosB isoforms in the chronic social defeat stress model of depression with and without fluoxetine treatment. We find that chronic fluoxetine, in contrast to stress, causes induction of the unstable full-length FosB isoform in the NAc, PFC, and hippocampus even 24 h following the final injection, indicating that these brain regions may undergo chronic activation when fluoxetine is on board, even in the absence of stress. We also find that only the stable ΔFosB isoform correlates with behavioral responses to stress. These data suggest that NAc, PFC, and hippocampus may present useful targets for directed intervention in mood disorders (ie, brain stimulation or gene therapy), and that determining the gene targets of FosB-mediated transcription in these brain regions in response to fluoxetine may yield novel inroads for pharmaceutical intervention in depressive disorders. PMID:26164345

  9. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takahiro; Itoh, Kyoko, E-mail:; Yaoi, Takeshi; Fushiki, Shinji


    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH{sub 2}-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  10. Temperature Stress at Grain Filling Stage Mediates Expression of Three Isoform Genes Encoding Starch Branching Enzymes in Rice Endosperm

    Institute of Scientific and Technical Information of China (English)

    WEI Ke-su; CHENG Fang-min; ZHANG Qi-fang; LIU Kui-gang


    An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32oC for high temperature and 22oC for optimum temperature) at the grain filling stage in plant growth chambers, and the different expressions of three isoform genes (SBEI, SBEIII and SBEIV) encoding starch branching enzyme (SBE) in the endosperms were studied by the real-time fluorescence quantitative PCR (FQ-PCR) method. Effects of high temperature on the SBE expression in developing rice endosperms were isoform-dependent. High temperature significantly down-regulated the expressions of SBEI and SBEIII, while up-regulated the expression of SBEIV. Compared with SBEIV and SBEIII, the expression of SBEI gene in Zhefu 49 rice endosperms was more sensitive to temperature variation at the grain filling stage. This study indicates that changes in weather/climate conditions especially temperature stress influence rice grain formation and its quality as evidenced by isoform expression.

  11. APPRIS: annotation of principal and alternative splice isoforms. (United States)

    Rodriguez, Jose Manuel; Maietta, Paolo; Ezkurdia, Iakes; Pietrelli, Alessandro; Wesselink, Jan-Jaap; Lopez, Gonzalo; Valencia, Alfonso; Tress, Michael L


    Here, we present APPRIS (, a database that houses annotations of human splice isoforms. APPRIS has been designed to provide value to manual annotations of the human genome by adding reliable protein structural and functional data and information from cross-species conservation. The visual representation of the annotations provided by APPRIS for each gene allows annotators and researchers alike to easily identify functional changes brought about by splicing events. In addition to collecting, integrating and analyzing reliable predictions of the effect of splicing events, APPRIS also selects a single reference sequence for each gene, here termed the principal isoform, based on the annotations of structure, function and conservation for each transcript. APPRIS identifies a principal isoform for 85% of the protein-coding genes in the GENCODE 7 release for ENSEMBL. Analysis of the APPRIS data shows that at least 70% of the alternative (non-principal) variants would lose important functional or structural information relative to the principal isoform. PMID:23161672

  12. Comparison of liver oncogenic potential among human RAS isoforms (United States)

    Chung, Sook In; Moon, Hyuk; Ju, Hye-Lim; Kim, Dae Yeong; Cho, Kyung Joo; Ribback, Silvia; Dombrowski, Frank; Calvisi, Diego F.; Ro, Simon Weonsang


    Mutation in one of three RAS genes (i.e., HRAS, KRAS, and NRAS) leading to constitutive activation of RAS signaling pathways is considered a key oncogenic event in human carcinogenesis. Whether activated RAS isoforms possess different oncogenic potentials remains an unresolved question. Here, we compared oncogenic properties among RAS isoforms using liver-specific transgenesis in mice. Hydrodynamic transfection was performed using transposons expressing short hairpin RNA downregulating p53 and an activated RAS isoform, and livers were harvested at 23 days after gene delivery. No differences were found in the hepatocarcinogenic potential among RAS isoforms, as determined by both gross examination of livers and liver weight per body weight ratio (LW/BW) of mice expressing HRASQ61L, KRAS4BG12V and NRASQ61K. However, the tumorigenic potential differed significantly between KRAS splicing variants. The LW/BW ratio in KRAS4AG12V mice was significantly lower than in KRAS4BG12V mice (p mice lived significantly longer than KRRAS4BG12V mice (p mice displayed higher expression of the p16INK4A tumor suppressor when compared with KRAS4BG12V tumors. Forced overexpression of p16INK4A significantly reduced tumor growth in KRAS4BG12V mice, suggesting that upregulation of p16INK4A by KRAS4AG12V presumably delays tumor development driven by the latter oncogene. PMID:26799184

  13. Cloning, expression and alternative splicing of the novel isoform of hTCP11 gene

    DEFF Research Database (Denmark)

    Ma, Yong-xin; Zhang, Si-zhong; Wu, Qia-qing;


    To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing.......To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing....

  14. Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children

    NARCIS (Netherlands)

    Lundh, M.; Christensen, D.P.; Damgaard Nielsen, M.; Richardson, S.J.; Dahllof, M.S.; Skovgaard, T.; Berthelsen, J.; Dinarello, C.A.; Stevenazzi, A.; Mascagni, P.; Grunnet, L.G.; Morgan, N.G.; Mandrup-Poulsen, T.


    AIMS/HYPOTHESIS: Histone deacetylases (HDACs) are promising pharmacological targets in cancer and autoimmune diseases. All 11 classical HDACs (HDAC1-11) are found in the pancreatic beta cell, and HDAC inhibitors (HDACi) protect beta cells from inflammatory insults. We investigated which HDACs mediat

  15. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    Energy Technology Data Exchange (ETDEWEB)

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen


    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.

  16. RegulatING chromatin regulators

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Nabbi, Arash; Riabowol, Karl


    The five human ING genes encode at least 15 splicing isoforms, most of which affect cell growth, differentiation and apoptosis through their ability to alter gene expression by epigenetic mechanisms. Since their discovery in 1996, ING proteins have been classified as type II tumour suppressors on...... the basis of reports describing their down-regulation and mislocalization in a variety of cancer types. In addition to their regulation by transcriptional mechanisms, understanding the range of PTMs (post-translational modifications) of INGs is important in understanding how ING functions are fine...... stresses. We also describe the ING PTMs that have been identified by several unbiased MS-based PTM enrichment techniques and subsequent proteomic analysis. Among the ING PTMs identified to date, a subset has been characterized for their biological significance and have been shown to affect processes...

  17. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors

    DEFF Research Database (Denmark)

    Khan, N.; Jeffers, M.; Kumar, S.;


    ) against a panel of rhHDAC (recombinant human HDAC) isoforms. Eight rhHDACs were expressed using a baculoviral system, and a Fluor de Lystrade mark (Biomol International) HDAC assay was optimized for each purified isoform. The potency and selectivity of ten HDACs on class I isoforms (rhHDAC1, rhHDAC2, rh...

  18. Molecular cloning, genomic organization, and expression of a testicular isoform of hormone-sensitive lipase

    Energy Technology Data Exchange (ETDEWEB)

    Holst, L.S.; Laurell, H.; Holm, C. [Lund Univ. (Sweden)] [and others


    By catalyzing the rate-limiting step in adipose tissue lipolysis, hormone-sensitive lipase (HSL) is an important regulator of energy homeostasis. The role and importance of HSL in tissues other than adipose are poorly understood. We report here the cloning and expression of a testicular isoform, designated HSL{sub tes}. Due to an addition of amino acids at the NH{sub 2}-termini, rat and human HSL{sub tes} consist of 1068 and 1076 amino acids, respectively, compared to the 768 and 775 amino acids, respectively, of the adipocyte isoform (HSL{sub adi}). A novel exon of 1.2 kb, encoding the human testis-specific amino acids, was isolated and mapped to the HSL gene, 16 kb upstream of the exons encoding HSL{sub adi}. The transcribed mRNA of 3.9 kb was specifically expressed in testis. No significant similarity with other known proteins was found for the testis-specific sequence. The amino acid composition differs from the HSL{sub adi} sequence, with a notable hydrophilic character and a high content of prolines and glutamines. COS cells, transfected by the 3.9-kb human testis cDNA, expressed a protein of the expected molecular mass (M{sub r} {approximately}120,000) that exhibited catalytic activity similar to that of HSL{sub adi}. Immunocytochemistry localized HSL to elongating spermatids and spermatozoa; HSL was not detected in interstitial cells. 34 refs., 5 figs.

  19. High-throughput proteomics detection of novel splice isoforms in human platelets.

    LENUS (Irish Health Repository)

    Power, Karen A


    Alternative splicing (AS) is an intrinsic regulatory mechanism of all metazoans. Recent findings suggest that 100% of multiexonic human genes give rise to splice isoforms. AS can be specific to tissue type, environment or developmentally regulated. Splice variants have also been implicated in various diseases including cancer. Detection of these variants will enhance our understanding of the complexity of the human genome and provide disease-specific and prognostic biomarkers. We adopted a proteomics approach to identify exon skip events - the most common form of AS. We constructed a database harboring the peptide sequences derived from all hypothetical exon skip junctions in the human genome. Searching tandem mass spectrometry (MS\\/MS) data against the database allows the detection of exon skip events, directly at the protein level. Here we describe the application of this approach to human platelets, including the mRNA-based verification of novel splice isoforms of ITGA2, NPEPPS and FH. This methodology is applicable to all new or existing MS\\/MS datasets.

  20. Koedam {beta} factors revisited

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, J.E. [Physics Department, University of Wisconsin, Madison, WI (United States); Doughty, D.A. [Perkin-Elmer Optoelectronics, Santa Clara, CA (United States); Lister, G.G. [OSRAM SYLVANIA Inc., Beverly, MA (United States)


    A Koedam {beta} factor makes it possible to compute the total output power in line radiation from a positive column discharge using a single radiance measurement normal to an aperture in the wall. The results of analytic derivations of {beta} factors are presented for columns with uniform ({beta}=1.0) and parabolic ({beta}=0.75) excitation rates per unit volume and with negligible opacity. A Monte Carlo code for simulating radiation trapping with a spatially uniform density of absorbing atoms is then used to determine {beta} factors as a function of opacity. The code includes partial frequency redistribution and a Voigt line shape with radiative broadening, resonance collisional broadening, and Doppler broadening. The resulting {beta} factors are found to be nearly independent of opacity over a wide range of column radii for spectral line shapes dominated by Doppler broadening or by resonance collisional broadening. Additional Monte Carlo simulations are used to study {beta} factors as a function of a non-uniform density of absorbing atoms from radial cataphoresis with line shapes dominated by Doppler broadening, foreign gas broadening, and resonance collisional broadening. Radial cataphoresis is found to increase {beta} factors in all cases. Geometrical effects, refraction, and imperfect transmission at the glass wall are studied and found to decrease {beta} factors. (author)