WorldWideScience

Sample records for beta decay search

  1. The search for neutrinoless double beta decay

    CERN Document Server

    Gomez-Cadenas, J J; Mezzetto, M; Monrabal, F; Sorel, M

    2011-01-01

    In the last few years the search for neutrinoless double beta decay has evolved from being almost a marginal activity in neutrino physics to one of the highest priorities for understanding neutrinos and the origin of mass. There are two main reasons for this paradigm shift: the discovery of neutrino oscillations, which clearly established the existence of massive neutrinos; and the existence of an unconfirmed, but not refuted, claim of evidence for neutrinoless double decay in 76Ge. As a consequence, a new generation of experiments, employing different detection techniques and {\\beta}{\\beta} isotopes, is being actively promoted by experimental groups across the world. In addition, nuclear theorists are making remarkable progress in the calculation of the neutrinoless double beta decay nuclear matrix elements, thus eliminating a substantial part of the theoretical uncertainties affecting the particle physics interpretation of this process. In this report, we review the main aspects of the double beta decay pro...

  2. Why search for double beta decay?

    International Nuclear Information System (INIS)

    Searching for neutrinoless double beta decay is the only known practical method for trying to determine whether neutrinos are their own antiparticles. The theoretical motivation for supposing that they may indeed be their own antiparticles is described. The reason that it is so difficult to ascertain experimentally whether they are or are not is explained, as is the special sensitivity of neutrinoless double beta decay. The potential implications of the observation of this reaction for neutrino mass and for the physics of neutrinos is discussed

  3. Search for Neutrinoless Double-Beta Decay

    CERN Document Server

    Tornow, Werner

    2014-01-01

    After the pioneering work of the Heidelberg-Moscow (HDM) and International Germanium Experiment (IGEX) groups, the second round of neutrinoless double-$\\beta$ decay searches currently underway has or will improve the life-time limits of double-$\\beta$ decay candidates by a factor of two to three, reaching in the near future the $T_{1/2} = 3 \\times 10^{25}$ yr level. This talk will focus on the large-scale experiments GERDA, EXO-200, and KamLAND-Zen, which have reported already lower half-life time limits in excess of $10^{25}$ yr. Special emphasis is given to KamLAND-Zen, which is expected to approach the inverted hierarchy regime before future 1-ton experiments probe completely this life-time or effective neutrino-mass regime, which starts at $\\approx 2 \\times 10^{26}$ yr or $\\approx 50$ meV.

  4. Neutrinoless double beta decay search with SNO+

    OpenAIRE

    Lozza V.

    2014-01-01

    The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.’s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB) in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te), it is e...

  5. Neutrinoless double beta decay search with SNO+

    Science.gov (United States)

    Lozza, V.

    2014-01-01

    The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.'s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB) in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te), it is expected to reach a sensitivity on the effective Majorana neutrino mass of about 100 meV after several years of data taking. Designed as a general purpose neutrino experiment, other exciting physical goals can be explored, like the measurement of reactor neutrino oscillations and geo-neutrinos in a geologically-interesting location, watch of supernova neutrinos and studies of solar neutrinos. A first commissioning phase with water filled detector will start at the end of 2013, while the double beta decay phase will start in 2015.

  6. Neutrinoless double beta decay search with SNO+

    Directory of Open Access Journals (Sweden)

    Lozza V.

    2014-01-01

    Full Text Available The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.’s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te, it is expected to reach a sensitivity on the effective Majorana neutrino mass of about 100 meV after several years of data taking. Designed as a general purpose neutrino experiment, other exciting physical goals can be explored, like the measurement of reactor neutrino oscillations and geo-neutrinos in a geologically-interesting location, watch of supernova neutrinos and studies of solar neutrinos. A first commissioning phase with water filled detector will start at the end of 2013, while the double beta decay phase will start in 2015.

  7. Searches for neutrinoless double beta decay

    Science.gov (United States)

    Schwingenheuer, Bernhard

    2012-07-01

    Neutrinoless double beta decay is a lepton number violating process whose observation would also establish that neutrinos are their own anti-particles. There are many experimental efforts with a variety of techniques. Some (EXO, Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has reported the first measurement of the half life for the double beta decay with two neutrinos of 136Xe. The sensitivities of the different proposals are reviewed.

  8. Searches for neutrinoless double beta decay

    CERN Document Server

    Schwingenheuer, B

    2012-01-01

    Neutrinoless double beta decay is a lepton number violating process whose observation would also establish that neutrinos are their own anti-particles. There are many experimental efforts with a variety of techniques. Some (EXO, Kamland-Zen, GERDA phase I and CANDLES) started take data in 2011 and EXO has reported the first measurement of the half life for the double beta decay with two neutrinos of $^{136}$Xe. The sensitivities of the different proposals are reviewed.

  9. Status and Perspectives of Double Beta Decay Searches

    Science.gov (United States)

    Zuber, K.

    2015-11-01

    Double beta decay is an extremely rare process and requires half-life measurements around 1020 years for the neutrino accompanied and well beyond that for the neutrinoless mode. The current status of the search will be discussed.

  10. Search for neutrinoless double beta decay with DCBA

    International Nuclear Information System (INIS)

    A project called DCBA (Drift Chamber Beta-ray Analyzer) is in progress at KEK in order to search for the events of neutrinoless double beta decay. For investigating technical problems, a test apparatus called DCBA-T has been constructed. The preliminary results of its engineering run are described together with the simulation studies of backgrounds originating from 214Bi and 208Tl

  11. NEXT, a HPGXe TPC for neutrinoless double beta decay searches

    CERN Document Server

    Granena, F; Nova, F; Rico, J; Sánchez, F; Nygren, D R; Barata, J A S; Borges, F I G M; Conde, C A N; Dias, T H V T; Fernandes, L M P; Freitas, E D C; Lopes, J A M; Monteiro, C M B; Santos, J M F dos; Santos, F P; Tavora, L M N; Veloso, J F C A; Calvo, E; Gil-Botella, I; Novella, P; Palomares, C; Verdugo, A; Giomataris, Yu; Ferrer-Ribas, E; Hernando-Morata, J A; Martínez, D; Cid, X; Ball, M; Carcel, S; Cervera-Villanueva, Anselmo; Díaz, J; Gil, A; Gómez-Cadenas, J J; Martín-Albo, J; Monrabal, F; Munoz-Vidal, J; Serra, L; Sorel, M; Yahlali, N; Bosch, R Esteve; Lerche, C W; Martinez, J D; Mora, F J; Sebastiá, A; Tarazona, A; Toledo, J F; Lazaro, M; Perez, J L; Ripoll, L; Carmona, J M; Cebrián, S; Dafni, T; Galan, J; Gomez, H; Iguaz, F J; Irastorza, I G; Luzón, G; Morales, J; Rodríguez, A; Ruz, J; Tomas, A; Villar, J A

    2009-01-01

    We propose a novel detection concept for neutrinoless double-beta decay searches. This concept is based on a Time Projection Chamber (TPC) filled with high-pressure gaseous xenon, and with separated-function capabilities for calorimetry and tracking. Thanks to its excellent energy resolution, together with its powerful background rejection provided by the distinct double-beta decay topological signature, the design discussed in this Letter Of Intent promises to be competitive and possibly out-perform existing proposals for next-generation neutrinoless double-beta decay experiments. We discuss the detection principles, design specifications, physics potential and R&D plans to construct a detector with 100 kg fiducial mass in the double-beta decay emitting isotope Xe(136), to be installed in the Canfranc Underground Laboratory.

  12. Status and prospects of searches for neutrinoless double beta decay

    CERN Document Server

    Schwingenheuer, Bernhard

    2012-01-01

    The simultaneous beta decay of two neutrons in a nucleus without the emission of neutrinos (called neutrinoless double beta decay) is a lepton number violating process which is not allowed in the Standard Model of particle physics. More than a dozen experiments using different candidate isotopes and a variety of detection techniques are searching for this decay. Some (EXO-200, Kamland-Zen, GERDA) started to take data recently. EXO and Kamland-Zen have reported first limits of the half life $T_{1/2}^{0\

  13. New particle searches by double beta decay

    International Nuclear Information System (INIS)

    So far, neutrinoless double beta decay has not been observed, but the lifetime limit (3-10/sup 23/ years) is such a stringent one that its non-observation can set the best upper limit for the mass of the electron neutrino (if it is a Majorana particle) and the best lower limit on the mass of a heavy Majorana neutrino for a given coupling to the electron neutrino, ν/sub e/. In addition it provides the best limit on the coupling of light bosons, such as Majorons, to ν/sub e/, and also the best limit on the existence of right-handed currents in the case in which all right-handed Majorana neutrinos are heavier than all left-handed leptons. The apparatus has to have such low backgrounds even in the keV energy region that it also can be used to set the best terrestrial limits on the mass of solar axions and of other dark matter candidates

  14. Status and perspectives of double beta decay searches

    International Nuclear Information System (INIS)

    Double beta decay is a very rare nuclear decay characterised by a change of 2 units the ordering number Z while leaving the mass number A constant. It can basically occur in two modes, with the emission of two electrons and two anti-neutrinos or the emission of two electrons only. The neutrinoless double beta decay of nuclei is not allowed in the Standard Model and is of outstanding importance for neutrino physics. It can only occur if a neutrino is its own antiparticle and if it has a non-vanishing rest mass. After a general introduction into double beta decay, the talk focusses on the current experimental searches and results and their implications for particle physics. An outlook towards future projects and the involved challenges is given. This includes a discussion on nuclear matrix elements and possible supporting experimental activities.

  15. Status and perspectives of double beta decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, Kai [Inst. fuer Kern- und Teilchenphysik, TU Dresden (Germany)

    2011-07-01

    Double beta decay is a very rare nuclear decay characterised by a change of 2 units the ordering number Z while leaving the mass number A constant. It can basically occur in two modes, with the emission of two electrons and two anti-neutrinos or the emission of two electrons only. The neutrinoless double beta decay of nuclei is not allowed in the Standard Model and is of outstanding importance for neutrino physics. It can only occur if a neutrino is its own antiparticle and if it has a non-vanishing rest mass. After a general introduction into double beta decay, the talk focusses on the current experimental searches and results and their implications for particle physics. An outlook towards future projects and the involved challenges is given. This includes a discussion on nuclear matrix elements and possible supporting experimental activities.

  16. Status and perspectives of double beta decay searches

    International Nuclear Information System (INIS)

    Double beta decay is an extremely rare process and requires half-live measurements around 1020 years for the neutrino accompanied mode, while for the neutrino-less mode much longer half-lives have to be explored. The various experimental approaches, currently considered for the search of this process, results will be presented

  17. Searches for massive neutrinos in nuclear beta decay

    International Nuclear Information System (INIS)

    The status of searches for massive neutrinos in nuclear beta decay is reviewed. The claim by an ITEP group that the electron antineutrino mass > 17eV has been disputed by all the subsequent experiments. Current measurements of the tritium beta spectrum limit mbarνe < 10 eV. The status of the 17 keV neutrino is reviewed. The strong null results from INS Tokyo and Argonne, and deficiencies in the experiments which reported positive effects, make it unreasonable to ascribe the spectral distortions seen by Simpson, Hime, and others to a 17keV neutrino. Several new ideas on how to search for massive neutrinos in nuclear beta decay are discussed

  18. The Majorana Demonstrator search for neutrinoless double beta decay

    CERN Document Server

    Cuesta, C; Detwiler, J A; Gruszko, J; Guinn, I S; Leon, J; Robertson, R G H; Abgrall, N; Bradley, A W; Chan, Y-D; Mertens, S; Poon, A W P; Vetter, K; Arnquist, I J; Hoppe, E W; Kouzes, R T; Orrell, J L; Avignone, F T; Barabash, A S; Konovalov, S I; Yumatov, V; Bertrand, F E; Galindo-Uribarri, A; Radford, D C; Varner, R L; Yu, C -H; Brudanin, V; Shirchenko, M; Vasilyev, S; Yakushev, E; Zhitnikov, I; Busch, M; Caldwell, T S; Gilliss, T; Henning, R; Howe, M A; MacMullin, J; Meijer, S J; O'Shaughnessy, C; Rager, J; Shanks, B; Trimble, J E; Vorren, K; Xu, W; Christofferson, C D; Dunagan, C; Suriano, A M; Chu, P -H; Elliott, S R; Massarczyk, R; Rielage, K; White, B R; Efremenko, Yu; Lopez, A M; Ejiri, H; Fullmer, A; Giovanetti, G K; Green, M P; Guiseppe, V E; Tedeschi, D; Wiseman, C; Jasinski, B R; Keeter, K J; Kidd, M F; Martin, R D; Romero-Romero, E; Wilkerson, J F

    2016-01-01

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44.8-kg (29.7 kg enriched >88% in Ge-76) to search for neutrinoless double beta decay in Ge-76. The next generation of tonnescale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First data taken with the DEMONSTRATOR are introduced here.

  19. New generation of experiments searching for neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Full text: The search for neutrinoless double beta decay is one of the central research topics in fundamental physics. In fact, the observation of neutrinoless double beta decay would not only establish the Majorana nature of the neutrino but also provide a measurement of its effective mass ee> as well as fix the hierarchy of neutrino spectrum. The next generation of experiments aims to probe the effective Majorana neutrino mass down to few 10 MeV, as predicted by oscillation experiments in case of the inverse mass hierarchy. In this talk the most part of the upcoming experiments are reviewed. The sensitivity of the upcoming experiments depend therefore primarily on the available mass of double beta isotopes and the experimental conditions. In particular, the achievable background suppression and the detection efficiency will be decisive for their success. Experimental consideration as detection efficiency and background suppression will determine the final sensitivity of the different experimental approaches. The first of the next generation experiments, such as GERDA at LNGS, Italy, EXO at WIPP, USA and KamLAND-Zen in Japan, became operational recently. New projects like SuperNEMO, MAJORANA, CUORE and others will start in the nearest future. The future development of the field will strongly depend on the results of the upcoming experiments. If neutrinoless double beta decay is observed at the 1 eV scale, as claimed by part of the Heidelberg Moscow experiment, the decay could be studied with high precision with many different isotopes and different techniques. The effective mass could be measured with accuracy and the leading term governing the decay mode identified. In case that the claim is refuted, at least two experiments with about one ton of isotopes and zero background in the region of interest for several year x ton of exposure are required to cover the full mass range down to 10 MeV predicted by oscillation experiments for the inverse mass hierarchy

  20. CdWO4 bolometers for Double Beta Decay search

    CERN Document Server

    Gironi, L; Capelli, S; Cremonesi, O; Pavan, M; Pessina, G; Pirro, S

    2008-01-01

    In the field of Double Beta Decay (DBD) searches the possibility to have high resolution detectors in which background can be discriminated is very appealing. This very interesting possibility can be largely fulfilled in the case of a scintillating bolometer containing a Double Beta Decay emitter whose transition energy exceeds the one of the natural gamma line of 208Tl. We present the latest results obtained in the development of such a kind of scintillating bolometer. For the first time an array of five CdWO4 (116Cd has a Double Beta Decay transition energy of 2805 keV) crystals is tested. The array consists of a plane of four 3x3x3 cm3 crystals and a second plane consisting of a single 3x3x6 cm3 crystal. This setup is mounted in hall C of the National Laboratory of Gran Sasso inside a lead shielding in order to reduce as far as possible the environmental background. The aim of this test is to demonstrate the technical feasibility of this technique through an array of detectors and perform a long background...

  1. Search for neutrinoless double beta decay in 124Sn

    Directory of Open Access Journals (Sweden)

    Nanal Vandana

    2014-03-01

    Full Text Available The mass and nature of neutrinos play an important role in theories beyond the standard model. The nuclear β decay and double beta decay can provide the information on absolute effective mass of the neutrinos, which would represent a major advance in our understanding of particle physics. At present, neutrinoless double beta decay (0νββ is perhaps the only experiment that can tell us whether the neutrino is a Dirac or a Majorana particle. Given the significance of the 0νββ, there is a widespread interest for these rare event studies employing a variety of novel techniques. An essential criterion for detector design is the high energy resolution for a precision measurement of the sum energy of two electrons emitted in 0νββ decay. The low temperature bolometric detectors are ideally suited for this purpose. In India, efforts have been initiated to search for 0νββ in 124Sn at the upcoming underground facility of India based Neutrino Observatory (INO. A custom built cryogen free dilution refrigerator has been installed at TIFR, Mumbai for the development of Sn prototype bolometer. A base temperature of 10 mK has been achieved in this setup. This paper gives a brief description of efforts towards Sn bolometer development.

  2. Search of Neutrinoless Double Beta Decay with the GERDA Experiment

    CERN Document Server

    Benato, Giovanni

    2015-01-01

    The Gerda experiment designed to search for the neutrinoless double beta decay in 76Ge has successfully completed the first data collection. No signal excess is found, and a lower limit on the half life of the process is set, with T1/2 > 2.1x10^25 yr (90% CL). After a review of the experimental setup and of the main Phase I results, the hardware upgrade for Gerda Phase II is described, and the physics reach of the new data collection is reported.

  3. Semiconductor-based experiments for neutrinoless double beta decay search

    Science.gov (United States)

    Barnabé Heider, Marik; Gerda Collaboration

    2012-08-01

    Three experiments are employing semiconductor detectors in the search for neutrinoless double beta (0νββ) decay: COBRA, Majorana and GERDA. COBRA is studying the prospects of using CdZnTe detectors in terms of achievable energy resolution and background suppression. These detectors contain several ββ emitters and the most promising for 0νββ-decay search is 116Cd. Majorana and GERDA will use isotopically enriched high purity Ge detectors to search for 0νββ-decay of 76Ge. Their aim is to achieve a background ⩽10-3 counts/(kgṡyṡkeV) at the Q improvement compared to the present state-of-art. Majorana will operate Ge detectors in electroformed-Cu vacuum cryostats. A first cryostat housing a natural-Ge detector array is currently under preparation. In contrast, GERDA is operating bare Ge detectors submerged in liquid argon. The construction of the GERDA experiment is completed and a commissioning run started in June 2010. A string of natural-Ge detectors is operated to test the complete experimental setup and to determine the background before submerging the detectors enriched in 76Ge. An overview and a comparison of these three experiments will be presented together with the latest results and developments.

  4. COBRA - Double beta decay searches using CdTe detectors

    OpenAIRE

    Zuber, K.

    2001-01-01

    A new approach (called COBRA) for investigating double beta decay using CdTe (CdZnTe) semiconductor detectors is proposed. It follows the idea that source and detector are identical. This will allow simultaneous measurements of 5 $\\beta^-\\beta^-$ - and 4 $\\beta^+\\beta^+$ - emitters at once. Half-life limits for neutrinoless double beta decay of Cd-116 and Te-130 can be improved by more than one order of magnitude with respect to current limits and sensitivities on the effective Majorana neutr...

  5. Three-dimensional drift chambers of the DCBA experiment for neutrinoless double beta decay search

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, T., E-mail: ishikawat@hakone.phys.metro-u.ac.j [Tokyo Metropolitan University, Hachioji, Tokyo 192-0398 (Japan); Igarashi, H.; Sumiyoshi, T. [Tokyo Metropolitan University, Hachioji, Tokyo 192-0398 (Japan); Ishihara, N.; Iwai, G.; Iwase, H.; Kato, Y.; Kawai, M.; Kondou, Y.; Haruyama, T.; Inagaki, T.; Makida, Y.; Ohama, T.; Takahashi, K.; Yamada, Y. [High Energy Accel, Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Tashiro, E.; Ishizuka, T. [Shizuoka University, Naka, Hamamatsu, Shizuoka 432-8011 (Japan); Kitamura, S. [Nihon Institute of Medical Science, Iruma-gun, Saitama 350-0435 (Japan); Teramoto, Y. [Osaka City University, Sumiyoshi, Osaka 558-8585 (Japan); Nakano, I. [Okayama University, Okayama 700-8530 (Japan)

    2011-02-01

    The aim of the DCBA (Drift Chamber Beta-ray Analyzer) experiment is to search for neutrinoless double beta decay (0{nu}{beta}{beta}). The half-life of 0{nu}{beta}{beta} is expected to give us the information of Majorana nature and the absolute mass scale of neutrinos. A prototype test apparatus DCBA-T2 has the energy resolution of about 150 keV (FWHM) around 1 MeV. In order to check the detector performance, engineering runs detecting double beta decay of {sup 100}Mo started in May 2009 using natural Mo, which contains 9.6% of {sup 100}Mo. Ten candidates of the double beta decay ({beta}{beta}) have been detected so far. It has been found that the background events due to {sup 214}Bi decay are distinguishable from the double beta decays by detecting {alpha}-particles from {sup 214}Po.

  6. Search for the Neutrino Less Double Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    Efremenko, Yuri [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy

    2016-07-11

    During the past few years our understanding of neutrino properties has reached a new level, with experiments such as Super-K, SNO, KamLAND, and others obtaining exciting results. Major questions such as “Do neutrinos have mass?” and “Do neutrinos oscillate?” now have positive answers. However, an extensive program of neutrino research remains. Undoubtedly, the most important of these is the question pointed out by the National Research Council in its February 2002 report “Connecting Quarks with the Cosmos”, specifically: What are the masses of neutrinos and how have they shaped the evolution of the Universe? The MAJORANA collaboration has proposed to build the world’s most sensitive one-ton scale experiment to search for neutrino less double beta decay to answer this question. In its initial stage, the collaboration is building a prototype MAJORANA DEMONSTRATOR (MJD) experiment consisting of detectors made out of enriched Ge76 with a total sensitive mass of ~30 kg. This will accomplish two goals. First, it will test not yet confirmed claim for observation of neutrino-less double beta decay. Second, it will establish that the selected technology is capable of extension to a one-ton experiment with sufficient sensitivity to measure neutrino mass mββ down to 10 meV. To achieve the last goal, collaboration must demonstrate that a background level of 1 count per year per 4 keV per ton of detector is achievable. The University of Tennessee (UT) neutrino group has made a major commitment to the MJD. P.I. accepted the responsibility for one of the major tasks of the experiment, “Materials and Assay Task” which is crucial to the achievement of low background levels required for the experiment. In addition, the UT group is committed to construct, commission, and operate the MJD active veto system. Those activities were supported by NP-DOE via program funding for “Search for the Neutrino Less Double Beta Decay” at the University

  7. LUCIFER: Neutrinoless Double Beta decay search with scintillating bolometers

    International Nuclear Information System (INIS)

    One of the fundamental open questions in elementary particle physics is the value of the neutrino mass and its nature of Dirac or Majorana particle. Neutrinoless double beta decay (DBD0ν) is a key tool for investigating these neutrino properties and for finding answers to the open questions concerning mass hierarchy and absolute scale. Experimental techniques based on the calorimetric approach with cryogenic particle detectors are proved to be suitable for the search of this rare decay, thanks to high energy resolution and large mass of the detectors. One of the main issues to access an increase of the experimental sensitivity is strictly related to background reduction, trying to perform possibly a zero background experiment. The LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) project, funded by the European Research Council, aims at building a background-free DBD0ν experiment, with a discovery potential comparable with the present generation experiments. The idea of LUCIFER is to measure, simultaneously, heat and scintillation light with ZnSe bolometers. Detector features and operational procedures are reviewed. The expected performances and sensitivity are also discussed.

  8. Search for beta plus/EC double beta decay of 120Te

    CERN Document Server

    Andreotti, E; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Brofferio, C; Bryant, A; Bucci, C; Canonica, L; Capelli, S; Carbone, L; Carrettoni, M; Clemenza, M; Cremonesi, O; Creswick, R J; Di Domizio, S; Dolinski, M J; Ejzak, L; Faccini, R; Farach, H A; Ferri, E; Fiorini, E; Foggetta, L; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Guardincerri, E; Haller, T D Gutierrez E E; Kazkaz, K; Kraft, S; Kogler, L; Maiano, C; Maruyama, R H; Martinez, C; Martinez, M; Mizouni, L; Newman, S; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Orio, F; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Rusconi, C; Salvioni, C; Sangiorgio, S; Schaeffer, D; Scielzo, N D; Sisti, M; Smith, A R; Tomei, C; Ventura, G; Vignati, M

    2010-01-01

    We present a search for beta plus/EC double beta decay of 120Te performed with the CUORICINO experiment, an array of TeO2 cryogenic bolometers. After collecting 0.0573 kg y of 120Te, we see no evidence of a signal and therefore set the following limits on the half-life: T1/2 (0nu) > 1.9 10^{21} y at 90% C.L. for the 0 neutrino mode and T1/2 (2nu) > 7.6 10^{19} y at 90% C.L. for the two neutrino mode. These results improve the existing limits by almost three orders of magnitude (four in the case of 0 neutrino mode). Moreover the limit on zero neutrino beta plus/EC represents the most stringent half-life limit ever achieved for this decay mode for any isotope.

  9. A search for double beta decay of 136Xe

    International Nuclear Information System (INIS)

    An experiment on double beta decay of 136Xe has been performed at the Gran Sasso Underground Laboratory (L.N.G.S.). From 6210 h of run with xenon enriched to 64% in 136Xe a 90% C.L. lower limit was derived for neutrinoless double beta decay of 2.0x1022y and 6.5x1021y, for the 0+→0+ and 0+→2+ transitions, respectively. From a comparison between enriched xenon and cleaned xenon a lower limit for the two neutrinos double beta decay of 1.4x1020y at 90% C.L. is also obtained (author) 7 refs., 1 fig., 1 tab

  10. The Gerda search for neutrinoless double beta decay

    Science.gov (United States)

    O'Shaughnessy, Christopher; Gerda Collaboration

    2013-10-01

    The Germanium Detector Array (Gerda) is a search for the neutrinoless double beta decay of 76Ge. High Purity Germanium (HPGe) detectors enriched in the isotope-76 are operated bare in liquid argon (LAr). LAr is used for both cooling of the HPGe diodes to their operating temperatures and for shielding from external radiation sources. From the measurements of the first phase that began data taking on 1 Nov. 2011 it is expected to have a sensitivity on the level of T1/2>2E25 yr at a 90% CL after 15 kġyr. The goal of this phase will be to probe the claim of an observation by part of the Heidelberg-Moscow collaboration. Efforts will then focus on increasing the sensitivity of the experiment by deploying additional enriched detectors that are in an advanced stage of production and by reducing the background index further by making use of pulse shape discrimination techniques as well as an active LAr veto. While the 0νββ region of interest continues to remain blinded, here the status of Phase-I data taking is presented along with the work towards improving the experimental sensitivity.

  11. GERDA: a germanium detector array to search for neutrinoless double beta decay

    International Nuclear Information System (INIS)

    The GERDA, a new experiment to search for the double beta decay of 76Ge, is being installed at Laboratori Nazionali del Gran Sasso. The potentialities of this experiment as well the status of the project are reviewed

  12. Neutrinoless double beta decay search with cuoricino and cuore experiments

    International Nuclear Information System (INIS)

    Cuoricino is a bolometric experiment on Neutrinoless Double Beta Decay (ον-DBD) . With its 40.7 kg mass of TeO2 it is the most massive (ον)-DBD presently running and it has proven the feasibility of the CUORE experiment, whose aim is to be sensitive to the effective neutrino mass down to few tens of me V. We report here latest Cuoricino results and prospects for the future CUORE experiment

  13. Search for beta sup - and beta sup -beta sup - decays of sup 4 sup 8 Ca

    CERN Document Server

    Bakalyarov, A; Barabash, A; Briançon, C; Brudanin, V; Egorov, V; Hubert, F; Hubert, P; Kovalik, A; Lebedev, V I; Rukhadze, N I; Stekl, I; Umatov, V; Vylov, T D

    2002-01-01

    A sup 4 sup 8 CaCO sub 3 powder sample containing 20.18 g of sup 4 sup 8 Ca was measured for 797 h with a 400 cm sup 3 low-background HPGe detector. New limits on decays of sup 4 sup 8 Ca were obtained. For single beta transitions to sup 4 sup 8 Sc the limits are equal to 0.71x10 sup 2 sup 0 y, 1.1x10 sup 2 sup 0 y, and 0.82x10 sup 2 sup 0 y for transitions to the ground state, excited 5 sup + and 4 sup + states, respectively. The new limits on double beta decay to excited states of sup 4 sup 8 Ti are equal to 0.47x10 sup 2 sup 0 y, 1.1x10 sup 2 sup 0 y, and 0.90x10 sup 2 sup 0 y for transitions to the first 2 sup + , second 2 sup + and first 0 sup + excited states, respectively. All limits are given at the 90% CL.

  14. Present and future strategies for neutrinoless double beta decay searches

    Indian Academy of Sciences (India)

    C Brofferio

    2010-08-01

    The renewed interest shown in these days towards neutrinoless double beta decay, a lepton number violating process which can take place only if neutrinos are Majorana particles ($ = \\bar{}$) with a nonvanishing mass, is justified by the fact that the Majorana nature of neutrinos is expected in many theories beyond the Standard Model. We also now know, thanks to the neutrino oscillation experiments, that neutrinos are in fact massive, as expected in these theories and not requested in the Standard Model. Moreover, since neutrino oscillation experiments measure only the absolute value of the difference of the square of the neutrino masses, the discovery of neutrinoless double beta decay would help to disentangle questions that still remain unsolved: what is the absolute mass scale of the neutrinos and which mass hierarchy (normal, inverted or quasi-degenerate) is the correct one? The scope of this paper is not only to review the present results reached in the field by the different groups and technologies worldwide, but also to illustrate and comment on the (near and long-term) future strategies that experimentalists are trying to pursue to reach the needed sensitivity required to explore the inverted hierarchy neutrino mass scale.

  15. Searches for heavy neutrinos from 35S, 14C, and 63Ni beta decay

    International Nuclear Information System (INIS)

    We have searched for the effect of a neutrino of mass 17 keV/c2 in the beta decay of 35S with an apparatus incorporating a high resolution solid state detector and a super conducting solenoid. The experimental mixing probability of the 17keV neutrino is consistent with zero. The experimental sensitivity is verified by measurements with a mixed source of 35S and 14C, which artificially produces a distortion in the beta spectrum similar to that expected from the massive neutrino. Recently, we have performed similar searches in the beta decay of 14C and 63Ni. Results of these new measurements will be presented

  16. Search for Neutrinoless Double-Beta Decay in $^{136}$Xe with EXO-200

    CERN Document Server

    Auger, M; Barbeau, P S; Beauchamp, E; Belov, V; Benitez-Medina, C; Breidenbach, M; Brunner, T; Burenkov, A; Cleveland, B; Cook, S; Daniels, T; Danilov, M; Davis, C G; Delaquis, S; deVoe, R; Dobi, A; Dolinski, M J; Dolgolenko, A; Dunford, M; Fairbank, W; Farine, J; Feldmeier, W; Fierlinger, P; Franco, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Hall, C; Hall, K; Hargrove, C; Herrin, S; Hughes, M; Johnson, A; Johnson, T N; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K S; Leonard, D S; Leonard, F; Mackay, D; MacLellan, R; Marino, M; Mong, B; Diez, M Montero; Muller, A R; Neilson, R; Nelson, R; Odian, A; Ostrovskiy, I; O'Sullivan, K; Ouellet, C; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rowson, P C; Russell, J J; Sabourov, A; Sinclair, D; Slutsky, S; Stekhanov, V; Tolba, T; Tosi, D; Twelker, K; Vogel, P; Vuilleumier, J -L; Waite, A; Walton, T; Weber, M; Wichoski, U; Wodin, J; Wright, J D; Yang, L; Yen, Y -R; Zeldovich, O Ya

    2012-01-01

    We report on a search for neutrinoless double-beta decay of $^{136}$Xe with EXO-200. No signal is observed for an exposure of 32.5 kg-yr, with a background of ~1.5 x 10^{-3} /(kg yr keV) in the $\\pm 1\\sigma$ region of interest. This sets a lower limit on the half-life of the neutrinoless double-beta decay $T_{1/2}^{0\

  17. LUCIFER: scintillating bolometers for neutrinoless double-beta decay searches

    Science.gov (United States)

    Pattavina, Luca

    2014-09-01

    In the field of fundamental particle physics, the nature of the neutrino, if it is a Dirac or a Majorana particle, plays a crucial role not only in neutrino physics, but also in the overall framework of fundamental particle interactions and in cosmology. Neutrinoless double-beta decay (0vDBD) is the key tool for the investigation of this nature. Experimental techniques based on the calorimetric approach with cryogenic particle detectors have demonstrated suitability for the investigation of rare nuclear processes, profiting from excellent energy resolution and scalability to large masses. Unfortunately, the most relevant issue is related to background suppression. In fact, bolometers being fully-active detectors struggle to reach extremely low background level. The LUCIFER project aims to deploy the first array of enriched scintillating bolometers. Thanks to the double read-out - heat and scintillation light produced by scintillating bolometers - a highly efficient background identification and rejection is guaranteed, leading to a background-free experiment. We show the potential of such technology in ZnMoO4 and ZnSe prototypes. We describe the current status of the project, including results of the recent R&D activity.

  18. The Gerda experiment for the search of 0{nu}{beta}{beta} decay in {sup 76}Ge

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, K.H.; Altmann, M.; Becerici-Schmidt, N.; Caldwell, A.; Cossavella, F.; Lenz, D.; Liao, H.; Majorovits, B.; Mayer, S.; O' Shaughnessy, C.; Schubert, J.; Schulz, O.; Seitz, H.; Stelzer, F.; Vogt, S.; Volynets, O. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Nisi, S.; Pandola, L. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Denisov, A.; Gurentsov, V.; Kianovsky, S.; Kusminov, V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barnabe Heider, M. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); CEGEP St-Hyacinthe, Quebec (Canada); Baudis, L.; Benato, G.; Ferella, A.; Froborg, F.; Guthikonda, K.K.; Tarka, M.; Walter, M. [Physik Institut der Universitaet Zuerich, Zuerich (Switzerland); Bauer, C.; Hampel, W.; Heisel, M.; Heusser, G.; Hofmann, W.; Kankanyan, R.; Kihm, T.; Kiko, J.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Lubashevskiy, A.; Machado, A.A.; Maneschg, W.; Oehm, J.; Salathe, M.; Schreiner, J.; Schwan, U.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milano (Italy); INFN Milano Bicocca, Milano (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padova (Italy); INFN Padova, Padova (Italy); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C. [INFN Milano Bicocca, Milano (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Chkvorets, O. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Laurentian University, Sudbury (Canada); D' Andragora, A. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Brookhaven National Laboratory, Upton, NY (United States); Di Vacri, A. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); University ' ' G. d' Annunzio' ' di Chieti-Pescara, Department of Neurosciences and Imaging, Chieti (Italy); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Niedermeier, L.; Schmitt, C.; Sturm, K. von [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gasparro, J. [Institute for Reference Materials and Measurements, Geel (Belgium); National Physical Laboratory, Teddigton (United Kingdom); Gazzana, S. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Gonzalez de Orduna, R.; Hult, M.; Marissens, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Kroeninger, K. [Max-Planck-Institut fuer Physik, Muenchen (Germany); U. Goettingen, II. Physikalisches Institut, Goettingen (Germany); U. Siegen, Department Physik, Siegen (Germany); Lippi, I.; Rossi Alvarez, C.; Stanco, L.; Ur, C.A. [INFN Padova, Padova (Italy); Liu, J. [Max-Planck-Institut fuer Physik, Muenchen (Germany); University of Tokyo, Kavli IPMU, Tokyo (Japan); Liu, X. [Shanghai Jiaotong University, Shanghai (China); Meierhofer, G. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); TUeV-SUeD, Muenchen (Germany); Peiffer, P. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano (Italy); INFN Milano, Dipartimento di Fisica, Milano (Italy); Ritter, F. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Robert Bosch GmbH, Reutlingen (Germany); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Trunk, U. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); DESY, Photon-Science Detector Group, Hamburg (Germany); Zavarise, P. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); University of L' Aquila, Dipartimento di Fisica, L' Aquila (Italy)

    2013-03-15

    The Gerda collaboration is performing a search for neutrinoless double beta decay of {sup 76}Ge with the eponymous detector. The experiment has been installed and commissioned at the Laboratori Nazionali del Gran Sasso and has started operation in November 2011. The design, construction and first operational results are described, along with detailed information from the R and D phase. (orig.)

  19. The Majorana Demonstrator: A Search for Neutrinoless Double-beta Decay of 76Ge

    CERN Document Server

    Xu, W; Avignone, F T; Barabash, A S; Bertrand, F E; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Cuesta, C; Detwiler, J A; Efremenko, Yu; Ejiri, H; Elliott, S R; Galindo-Uribarri, A; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guinn, I; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; MacMullin, J; Martin, R D; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Overman, N R; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Ronquest, M C; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Yakushev, E; Yu, C-H; Yumatov, V

    2015-01-01

    Neutrinoless double-beta decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the Majorana Demonstrator, a 40-kg modular germanium detector array, to search for the Neutrinoless double-beta decay of 76Ge and to demonstrate a background rate at or below 3 counts/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for 76Ge Neutrinoless double-beta decay. In this paper, we discuss the physics of neutrinoless double beta decay and...

  20. First results of the search of neutrinoless double beta decay with the NEMO 3 detector

    CERN Document Server

    Arnold, R; Baker, J; Barabash, A; Broudin, G; Brudanin, V; Caffrey, A J; Caurier, E; Egorov, V; Errahmane, K; Etienvre, A I; Guyonnet, J L; Hubert, F; Hubert, P; Jollet, C; Jullian, S; Kochetov, O; Kovalenko, V; Konovalov, S; Lalanne, D; Leccia, F; Longuemare, C; Lutter, G; Marquet, C; Mauger, F; Nowacki, F; Ohsumi, H; Piquemal, F; Reyss, J L; Saakyan, R; Sarazin, X; Simard, L; Simkovic, F; Shitov, Y; Smolnikov, A A; Stekl, I; Suhonen, J; Sutton, C S; Szklarz, G; Thomas, J; Timkin, V; Tretyak, V; Umatov, V; Vàla, L; Vanyushin, I A; Vasilyev, V; Vorobel, V; Vylov, T D

    2005-01-01

    The NEMO 3 detector, which has been operating in the Frejus underground laboratory since February 2003, is devoted to the search for neutrinoless double beta decay (bb0nu). Half-lives of the two neutrino double beta decays (bb2nu) have been measured for 100Mo and 82Se. After 389 effective days of data collection from February 2003 until September 2004 (Phase I), no evidence for neutrinoless double beta decay was found from ~7kg of 100Mo and ~1 kg of 82Se. The corresponding lower limits for the half-lives are 4.6 x 10^23 years for 100Mo and 1.0 x10^23 years for 82Se (90% C.L.). Depending on the nuclear matrix elements calculation, limits for the effective Majorana neutrino mass are < 1.7-4.9 eV for 82Se

  1. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    CERN Document Server

    Schubert, A G; Avignone, F T; Back, H O; Barabash, A S; Bergevin, M; Bertrand, F E; Boswell, M; Brudanin, V; Busch, M; Chan, Y-D; Christofferson, C D; Collar, J I; Combs, D C; Cooper, R J; Detwiler, J A; Leon, J; Doe, P J; Efremenko, Yu; Egorov, V; Ejiri, H; Elliott, S R; Esterline, J; Fast, J E; Fields, N; Finnerty, P; Fraenkle, F M; Gehman, V M; Giovanetti, G K; Green, M P; Guiseppe, V E; Gusey, K; Hallin, A L; Hazama, R; Henning, R; Hime, A; Hoppe, E W; Horton, M; Howard, S; Howe, M A; Johnson, R A; Keeter, K J; Keillor, M E; Keller, C; Kephart, J D; Kidd, M F; Knecht, A; Kochetov, O; Konovalov, S I; Kouzes, R T; LaFerriere, B; LaRoque, B H; Leviner, L E; Loach, J C; MacMullin, S; Marino, M G; Martin, R D; Mei, D -M; Merriman, J; Miller, M L; Mizouni, L; Nomachi, M; Orrell, J L; Overman, N; Phillips, D G; Poon, A W P; Perumpilly, G; Prior, G; Radford, D C; Rielage, K; Robertson, R G H; Ronquest, M C; Shima, T; Shirchenko, M; Snavely, K J; Sobolev, V; Steele, D; Strain, J; Thomas, K; Timkin, V; Tornow, W; Vanyushin, I; Varner, R L; Vetter, K; Vorren, K; Wilkerson, J F; Wolfe, B A; Yakushev, E; Young, A R; Yu, C ?H; Yumatov, V; Zhan, C

    2011-01-01

    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76-Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76-Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76-Ge neutrinoless double-beta decay Q-value of 2039 keV.

  2. Search for Neutrinoless Double-Beta Decay of $^{130}$Te with CUORE-0

    CERN Document Server

    Alfonso, K; Avignone, F T; Azzolini, O; Balata, M; Banks, T I; Bari, G; Beeman, J W; Bellini, F; Bersani, A; Biassoni, M; Brofferio, C; Bucci, C; Caminata, A; Canonica, L; Cao, X G; Capelli, S; Cappelli, L; Carbone, L; Cardani, L; Casali, N; Cassina, L; Chiesa, D; Chott, N; Clemenza, M; Copello, S; Cosmelli, C; Cremonesi, O; Creswick, R J; Cushman, J S; Dafinei, I; Dally, A; Dell'Oro, S; Deninno, M M; DiDomizio, S; DiVacri, M L; Drobizhev, A; Ejzak, L; Fang, D Q; Faverzani, M; Fernandes, G; Ferri, E; Ferroni, F; Fiorini, E; Freedman, S J; Fujikawa, B K; Giachero, A; Gironi, L; Giuliani, A; Gorla, P; Gotti, C; Gutierrez, T D; Haller, E E; Han, K; Hansen, E; Heeger, K M; Hennings-Yeomans, R; Hickerson, K P; Huang, H Z; Kadel, R; Keppel, G; Kolomensky, Yu G; Lim, K E; Liu, X; Ma, Y G; Maino, M; Martinez, M; Maruyama, R H; Mei, Y; Moggi, N; Morganti, S; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; O'Donnell, T; Orio, F; Orlandi, D; Ouellet, J L; Pagliarone, C E; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pettinacci, V; Piperno, G; Pirro, S; Pozzi, S; Previtali, E; Rosenfeld, C; Rusconi, C; Sala, E; Sangiorgio, S; Santone, D; Scielzo, N D; Sisti, M; Smith, A R; Taffarello, L; Tenconi, M; Terranova, F; Tomei, C; Trentalange, S; Ventura, G; Vignati, M; Wagaarachchi, S L; Wang, B S; Wang, H W; Wielgus, L; Wilson, J; Winslow, L A; Wise, T; Zanotti, L; Zarra, C; Zhang, G Q; Zhu, B X; Zucchelli, S

    2015-01-01

    We report the results of a search for neutrinoless double-beta decay in a 9.8~kg$\\cdot$yr exposure of $^{130}$Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are $5.1\\pm 0.3{\\rm~keV}$ FWHM and $0.058 \\pm 0.004\\,(\\mathrm{stat.})\\pm 0.002\\,(\\mathrm{syst.})$~counts/(keV$\\cdot$kg$\\cdot$yr), respectively. The median 90%~C.L. lower-limit sensitivity of the experiment is $2.9\\times 10^{24}~{\\rm yr}$ and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of $^{130}$Te and place a Bayesian lower bound on the decay half-life, $T^{0\

  3. Searching for neutrinoless double-beta decay of {sup 130}Te with CUORE

    Energy Technology Data Exchange (ETDEWEB)

    CUORE,; Artusa, D. R.; Avignone III, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Datskov, V.; Biasi, A. De; Deninno, M. M.; Domizio, S. Di; Vacri, M. L. di; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Goett, J.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O' Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhu, B. X.; Zucchelli, S.

    2014-02-24

    Neutrinoless double-beta (0{nu}{beta}{beta}) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for 0{nu}{beta}{beta} decay of {sup 130}Te using an array of 988 TeO{sub 2} crystal bolometers operated at 10 mK. The detector will contain 206 kg of {sup 130}Te and have an average energy resolution of 5 keV; the projected 0{nu}{beta}{beta} decay half-life sensitivity after five years of live time is 1.6 x 10{sup 26} y at 1{sigma} (9.5x10{sup 25} y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). In this paper we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.

  4. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma I-00185 (Italy) and INFN - Sezione di Roma, Roma I-00185 (Italy)

    2012-11-20

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

  5. Signal and background studies for the search of neutrinoless double beta decay in GERDA

    International Nuclear Information System (INIS)

    The GERDA experiment searches for the neutrinoless double beta decay in Ge-76, by operating bare HPGe detectors in ultra-pure liquid Ar. This dissertation presents a first decomposition of the background measured in the current data-taking phase. The background at the energy of interest was found to be dominated by 214Bi, 208Tl and 42K gamma-rays, with secondary contributions from 42K and 214Bi beta-rays, and 210Po alpha-rays. For the forthcoming upgrade of the apparatus, a new HPGe detector design (BEGe) has been studied, with focus on its capability of suppressing the identified backgrounds through pulse shape analysis. This included the development of a comprehensive modeling of the detectors and the experimental characterization of their response to surface interactions. The achieved results show that GERDA can improve the present limit on the neutrinoless double beta decay half-life by an order of magnitude.

  6. Status of the GERDA experiment aimed to search for neutrinoless double beta decay of 76Ge

    OpenAIRE

    Smolnikov, Anatoly A.; Collaboration, for the GERDA

    2008-01-01

    The progress in the development of the new international Gerda (GErmanium Detector Array) experiment is presented. Main purpose of the experiment is to search for the neutrinoless double beta decay of 76Ge. The experimental set up is under construction in the underground laboratory of LNGS. Gerda will operate with bare germanium semiconductor detectors (enriched in 76Ge) situated in liquid argon. In the Phase I the existing enriched detectors from the previous Heidelberg-Moscow and IGEX exper...

  7. Characterization of a ZnSe scintillating bolometer prototype for neutrinoless double beta decay search

    OpenAIRE

    Tenconi M.; Giuliani A.; Nones C.; Pessina G.; Plantevin O.; Rusconi C.

    2014-01-01

    As proposed in the LUCIFER project, ZnSe crystals are attractive materials to realize scintillating bolometers aiming at the search for neutrinoless double beta decay of the promising isotope 82Se. However, the optimization of the ZnSe-based detectors is rather complex and requires a wide-range investigation of the crystal features: optical properties, crystalline quality, scintillation yields and bolometric behaviour. Samples tested up to now show problems in the reproducibility of crucial a...

  8. SNO+ status and plans for double beta decay search and other neutrino studies

    Science.gov (United States)

    Andringa, S.; SNO+ Collaboration

    2016-01-01

    SNO+ is a multi-purpose Neutrino Physics experiment, succeeding to the Sudbury Neutrino Observatory by replacing heavy water with liquid scintillator, which can also be loaded with large quantities of double-beta decaying isotope. The scientific goals of SNO+ are the search for neutrinoless double-beta decay, the study of solar neutrinos and of anti-neutrinos from nuclear reactors and the Earth's natural radioactivity, as well as supernovae neutrinos. The installation of the detector at SNOLAB is being completed and commissioning has already started with a dry run. The detector will soon be filled with water and, later, with scintillator. Here we highlight the main detector developments and address the several Physics analysis being prepared for the several planned SNO+ runs.

  9. First Search for Lorentz and CPT Violation in Double Beta Decay with EXO-200

    CERN Document Server

    :,; Barbeau, P S; Beck, D; Belov, V; Breidenbach, M; Brunner, T; Burenkov, A; Cao, G F; Chambers, C; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Danilov, M; Daugherty, S J; Davis, C G; Davis, J; Delaquis, S; Der Mesrobian-Kabakian, A; DeVoe, R; Díaz, J S; Didberidze, T; Dilling, J; Dolgolenko, A; Dolinski, M J; Dunford, M; Fairbank, W; Farine, J; Feyzbkhsh, S; Feldmeier, W; Fierlinger, P; Fudenberg, D; Gornea, R; Graham, K; Gratta, G; Hall, C; Homiller, S; Hughes, M; Jewell, M J; Jiang, X S; Johnson, A; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Krücken, R; Kuchenkov, A; Kumar, K S; Leonard, D S; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Mong, B; Moore, D; Nelson, R; Njoya, O; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Prescott, C Y; Retiére, F; Rowson, P C; Russell, J J; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Tsang, R; Twelker, K; Vuilleumier, J -L; Vogel, P; Waite, A; Walton, J; Walton, T; Weber, M; Wen, L J; Wichoski, U; Wood, J; Yang, L; Yen, Y -R; Zeldovich, O Ya

    2016-01-01

    A search for Lorentz- and CPT-violating signals in the double beta decay spectrum of $^{136}$Xe has been performed using an exposure of 100 kg$\\cdot$yr with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lorentz-violation was found, and a two-sided limit of $-2.65 \\times 10^{-5 } \\; \\textrm{GeV} < \\mathring{a}^{(3)}_{\\text{of}} < 7.60 \\times 10^{-6} \\; \\textrm{GeV}$ is placed on the relevant coefficient within the Standard-Model Extension (SME). This is the first experimental study of the effect of the SME-defined oscillation-free and momentum-independent neutrino coupling operator on the double beta decay process.

  10. Experiment TGV-2. Search for double beta decay of 106Cd

    Science.gov (United States)

    Rukhadze, N. I.; Bakalyarov, A. M.; Briançon, Ch; Brudanin, V. B.; Čermák, P.; Egorov, V. G.; Klimenko, A. A.; Kovalik, A.; Lebedev, V. I.; Rukhadze, E. N.; Mamedov, F.; Shitov, Yu A.; Šimkovic, F.; Štekl, I.; Timkin, V. V.; Zhukov, S. V.

    2012-07-01

    The search for double beta decay of 106Cd was performed at the Modane underground laboratory (France, 4800 m.w.e.) using the multi-detector spectrometer TGV-2. 16 samples (~13.6 g) of 106Cd with an enrichment of 75% were installed between neighbouring HPGe detectors and measured during 12900 h. New half-life limits (at 90% CL) were obtained for 2νEC/EC decay of 106Cd to the ground state of 106Pd - T1/2 > 4.2 × 1020 y, and for OνEC/EC resonant decay of 106Cd to 2741 keV and 2718 keV excited states of 106Pd - T1/2 > 1.8 × 1020y and T1/2 > 1.6 × 1020y respectively.

  11. Experiment TGV-2. Search for double beta decay of 106Cd

    International Nuclear Information System (INIS)

    The search for double beta decay of 106Cd was performed at the Modane underground laboratory (France, 4800 m.w.e.) using the multi-detector spectrometer TGV-2. 16 samples (∼13.6 g) of 106Cd with an enrichment of 75% were installed between neighbouring HPGe detectors and measured during 12900 h. New half-life limits (at 90% CL) were obtained for 2νEC/EC decay of 106Cd to the ground state of 106Pd - T1/2 > 4.2 × 1020 y, and for OνEC/EC resonant decay of 106Cd to 2741 keV and 2718 keV excited states of 106Pd - T1/2 > 1.8 × 1020y and T1/2 > 1.6 × 1020y respectively.

  12. Double beta decay searches of 134Xe, 126Xe and 124Xe with large scale Xe detectors

    International Nuclear Information System (INIS)

    The sensitivity for double beta decay studies of 134Xe and 124Xe is investigated assuming a potential large scale Xe experiment developed for dark matter searches depleted in 136Xe. The opportunity for an observation of the 2νββ - decay of 134Xe is explored for various scenarios. A positive observation should be possible for all calculated nuclear matrix elements. The detection of 2ν ECEC of 124Xe can be probed in all scenarios covering the theoretical predicted half-life uncertainties and a potential search for 126Xe is discussed. The sensitivity to β+EC decay of 124Xe is discussed and a positive observation might be possible, while β+β+ decay still remains unobservable. The performed studies take into account solar pp–neutrino interactions, 85Kr beta decay and remaining 136Xe double beta decay as background components in the depleted detector. (paper)

  13. A search for various double beta decay modes of Cd, Te, and Zn isotopes

    International Nuclear Information System (INIS)

    Various double beta decay modes of Cd, Zn, and Te isotopes are explored with the help of CdTe and CdZnTe semiconductor detectors. The data set is splitted in an energy range below 1 MeV having a statistics of 134.5 g d and one above 1 MeV resulting in 532 g d. No signals were observed in all channels under investigation. New improved limits for the neutrinoless double beta decay of 70Zn of T1/2>1.3x1016 yrs (90% CL), the longest standing limit of all double beta isotopes, and 0νβ+EC of 120Te of T1/2>2.2x1016 yrs (90% CL) are given. For the first time a limit on the half-life of the 2νECEC of 120Te of T1/2>9.4x1015 yrs (90% CL) is obtained. In addition, limits on 2νECEC for ground state transitions of 106Cd, 108Cd, and 64Zn are improved. The obtained results even under rough background conditions show the reliability of CdTe semiconductor detectors for rare nuclear decay searches

  14. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    International Nuclear Information System (INIS)

    The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0) is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed

  15. Double Beta Decay and Dark Matter Search - Window to New Physics now, and in future (GENIUS)

    OpenAIRE

    Klapdor-Kleingrothaus, H. V.

    1998-01-01

    Nuclear double beta decay provides an extraordinarily broad potential to search for beyond Standard Model physics, probing already now the TeV scale, on which new physics should manifest itself. These possibilities are reviewed here. First, the results of present generation experiments are presented. The most sensitive one of them -- the Heidelberg-Moscow experiment in the Gran Sasso -- probes the electron mass now in the sub eV region and will reach a limit of $\\sim$ 0.1 eV in a few years. B...

  16. Neutrinoless double beta decay search for 130Te: cuoricino status and cuore prospects

    International Nuclear Information System (INIS)

    CUORE is a ∼ I-ton experiment to search for Neutrinoless Double Beta Decay of 130Te using 988 TeO2 bolometers. It aims at reaching a sensitivity of the order of few tens of MeV on the effective neutrino mass. CUORICINO, a single CUORE tower running since 2003 in the Gran Sasso Underground Laboratory (LNGS), plays an important role as a standing alone experiment and for developing the future CUORE setup. Present results already achieved and studies that are underway are presented and discussed

  17. AXEL: High pressure xenon gas Time Projection Chamber for neutrinoless double beta decay search

    Science.gov (United States)

    Pan, Sheng

    2016-05-01

    AXEL is a high pressure xenon gas TPC detector being developed for neutrinoless double-beta decay search. We use proportional scintillation mode with a new electroluminescence light detection scheme to achieve very high energy resolution with a large detector. The detector has a capability of tracking which can be used reduce background. The project is in a R&D phase, and we report current status of our prototype chamber with 10 L and 8 bar Xe gas. We also present the results of the photon detection efficiency measurement and the linearity test of silicon photomultiplier(SiPM).

  18. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    Science.gov (United States)

    Moggi, N.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Datskov, V.; Dell'oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Morganti, S.; Napolitano, T.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zucchelli, S.

    2015-03-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0) is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.

  19. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    Directory of Open Access Journals (Sweden)

    Moggi N.

    2015-01-01

    Full Text Available The Cryogenic Underground Observatory for Rare Events (CUORE is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0 is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.

  20. Double beta decay searches of Xe-134, Xe-126 and Xe-124 with large scale Xe detectors

    CERN Document Server

    Barros, N; Zuber, K

    2014-01-01

    The sensitivity for double beta decay studies of Xe-134 and Xe-124 is investigated assuming a potential large scale Xe experiment developed for dark matter searches depleted in Xe-136. The opportunity for an observation of the 2nu double beta decay of Xe-134 is explored for various scenarios. A positive observation should be possible for all calculated nuclear matrix elements. The detection of 2$\

  1. Search for double beta decay of 106Cd in TGV-2 experiment

    International Nuclear Information System (INIS)

    Search for double beta decay (β+β+, β+/EC, EC/EC) of 106Cd was performed at the Modane underground laboratory (4800 m w.e.) using a spectrometer TGV-2 with 32 HPGe detectors. New limits on the half-lives of 0vEC/EC resonant decay - T1/2 ≥ 1.6 x 1020 y, and on 2vEC/EC decay of 106Cd - T1/2 ≥ 4.1 x 1020 y (at 90% CL) were obtained from preliminary calculations of experimental data accumulated for 12900 h of measurement of ∼13.6 g of 106Cd with enrichment of 75%. The limits on 2vEC/EC decay of 106Cd to the 2+,512 keV and 0+1,1334 keV excited states of 106Pd and on 2vβ+β+ and 2vβ+/EC decay of 106Cd were improved

  2. Search for double beta decay of 106Cd in TGV-2 experiment

    Science.gov (United States)

    Rukhadze, N. I.; Briançon, Ch; Brudanin, V. B.; Čermák, P.; Egorov, V. G.; Klimenko, A. A.; Kovalik, A.; Shitov, Yu A.; Štekl, I.; Timkin, V. V.; Vylov, Ts

    2010-01-01

    Search for double beta decay (β+β+, β+/EC, EC/EC) of 106Cd was performed at the Modane underground laboratory (4800 m w.e.) using a spectrometer TGV-2 with 32 HPGe detectors. New limits on the half-lives of 0vEC/EC resonant decay - T1/2 >= 1.6 × 1020 y, and on 2vEC/EC decay of 106Cd - T1/2 >= 4.1 × 1020 y (at 90% CL) were obtained from preliminary calculations of experimental data accumulated for 12900 h of measurement of ~13.6 g of 106Cd with enrichment of 75%. The limits on 2vEC/EC decay of 106Cd to the 2+,512 keV and 0+1,1334 keV excited states of 106Pd and on 2vβ+β+ and 2vβ+/EC decay of 106Cd were improved

  3. Signal and background studies for the search of neutrinoless double beta decay in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo

    2013-04-24

    The GERDA experiment searches for the neutrinoless double beta decay in Ge-76, by operating bare HPGe detectors in ultra-pure liquid Ar. This dissertation presents a first decomposition of the background measured in the current data-taking phase. The background at the energy of interest was found to be dominated by {sup 214}Bi, {sup 208}Tl and {sup 42}K gamma-rays, with secondary contributions from {sup 42}K and {sup 214}Bi beta-rays, and {sup 210}Po alpha-rays. For the forthcoming upgrade of the apparatus, a new HPGe detector design (BEGe) has been studied, with focus on its capability of suppressing the identified backgrounds through pulse shape analysis. This included the development of a comprehensive modeling of the detectors and the experimental characterization of their response to surface interactions. The achieved results show that GERDA can improve the present limit on the neutrinoless double beta decay half-life by an order of magnitude.

  4. First Search for Lorentz and CPT Violation in Double Beta Decay with EXO-200

    CERN Document Server

    Kaufman, L J

    2016-01-01

    This proceedings contribution reports the first experimental search for Lorentz- and CPT-violating signals specifically studying the effect of the Standard-Model Extension (SME) oscillation-free momentum-independent neutrino coupling operator in the double beta decay process. The search has been performed using an exposure of 100 kg yr of $^{136}$Xe with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lorentz violation was found. A two-sided limit of $-2.65 \\times 10^{-5}$ GeV $<$ $\\mathring{a}_{\\mathrm{of}}^{(3)}$ $< 7.60 \\times 10^{-6}$ GeV (90% C.L.) is placed on the relevant coefficient within the SME.

  5. Future perspectives of double beta decay and dark matter search - GENIUS

    International Nuclear Information System (INIS)

    The recent results from the HEIDELBERG-MOSCOW experiment have demonstrated the large potential of double beta decay to search for new physics beyond the standard model. To increase by a major step the present sensitivity for double beta decay and dark matter search, much bigger source strengths and much lower backgrounds are needed than used in experiments under operation at present or under construction. We describe here a project which would operate one tonne of 'naked' enriched germanium-detectors in liquid nitrogen as shielding in an underground set-up (GENIUS). It improves the sensitivity of neutrino masses to 0.01 eV. A 10 tonne version would probe neutrino masses even down to 10-3 eV. The first version would allow us to test the atmospheric neutrino problem, the second at least part of the solar neutrino problem. Both versions would allow, in addition, significant contributions to testing several classes of GUT models. These are especially tests of R-parity breaking and conserving supersymmetry models - including sneutrino masses - leptoquark masses and mechanism and right-handed W-boson masses comparable with LHC. The second issue of the experiment is the search for dark matter in the universe. The full MSSM parameter space for the prediction of neutralinos as dark matter particles could be covered already in a first step of the full experiment using only 100 kg of 76Ge or even of natural Ge making the experiment competitive with LHC in the search for supersymmetry. (author)

  6. A search for various double beta decay modes of tin isotopes

    International Nuclear Information System (INIS)

    For the first time an extensive search for various double beta decay modes of 124Sn and 112Sn has been performed. A total exposure of 43.29 kg days has been accumulated. New half-life limits of 124Sn into excited states of 124Te have been obtained; the lower half-life limit for the first excited 2+ state at 602.7 keV is T1/2>3.1x1018 yr (90% CL) and for the first excited 0+ state T1/2>7.7x1018 yr (90% CL). For the very first time, ground state and excited state transitions of 112Sn have been experimentally explored. The obtained half-life limits for EC/EC and β+/EC into the first excited 2+ state of 112Cd are both T1/2>1.4x1018 yr (90% CL). A resonance enhancement in the decay rate for 0νEC/EC might be expected for the 0+-state at 1870.9 keV due to degeneracy with the 112Sn ground state. No signal was found resulting in a lower half-life limit of T1/2>1.6x1018 yr (90% CL) for this decay. As all the excited state searches are based on gamma-lines, all half-life limits apply for both neutrino and neutrino-less modes. Neutrinoless ground state transitions were searched for in the EC/EC and β+/EC mode and a limit of T1/2>1.5x1018 yr (90% CL) was obtained for EC/EC decays of 112Sn, whilst the β+/EC mode results are inconclusive

  7. Purification of telluric acid for SNO+ neutrinoless double-beta decay search

    Energy Technology Data Exchange (ETDEWEB)

    Hans, S.; Rosero, R.; Hu, L. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Chkvorets, O. [Laurentian University, Sudbury (Canada); Chan, W.T.; Guan, S.; Beriguete, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Wright, A. [Queen University, Kingston (Canada); Ford, R. [SNOLAB, Creighton Mine, Sudbury (Canada); Chen, M.C. [Queen University, Kingston (Canada); Biller, S. [University of Oxford, Oxford OX1 3RH (United Kingdom); Yeh, M., E-mail: yeh@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    Tellurium-130 has the highest natural abundance of any double-beta decay isotopes. Recently it has been developed as a promising candidate for loading in liquid scintillator to explore the Majorana or Dirac nature of the neutrino through a search for neutrinoless double beta decay (0νββ). To this end, procedures have been developed to transfer tellurium ions into the organic liquid by a water-based loading technology. However, traces of naturally occurring radioactivity and cosmic-ray induced isotopes introduced into the scintillator with tellurium could produce undesirable contaminations in the {sup 130}Te 0νββ region. Measurements using various elemental spikes prepared from different chemical forms indicate that the uses of self-scavenging as well as acid and thermal recrystallization prior to the preparation of a tellurium-loaded liquid scintillator can deplete U and Th and several cosmic-activated isotopes from Te feedstock by a factor of 10{sup 2}–10{sup 3} in a single pass. The process is also found to improve the optical transmission in the blue region, sensible to the photomultiplier tube, by removing traces of colored impurities. In addition to the scintillator-based experiments, this cleansing scheme has potential applications to the production of radiopure tellurium crystals for other rare-event experiments.

  8. GERDA and the search for neutrinoless double beta decay: first results and perspectives

    International Nuclear Information System (INIS)

    Neutrinoless double beta decay is a lepton-number-violating nuclear transition predicted by several extensions of the Standard Model. The Gerda experiment searches for this transition in 76Ge by operating bare Ge detectors in liquid Ar. The talk focuses on the results of data acquired during Phase I of the experiment, in which 21.6 kg.yr of exposure were accumulated with a background index of about 0.01 cts/(keV.kg.yr). No signal was observed and a lower limit was derived for the half-life of neutrinoless double beta decay of 76Ge, T1/2 > 2.1 . 1025 yr (90% C.L.). The experiment is currently undergoing a major upgrade in preparation for the next phase of data taking. Thanks to an increased target mass, an improved energy resolution and the introduction of novel background reduction techniques, the sensitivity of Gerda will increase of about one order of magnitude in a few years of operation.

  9. GERDA and the search for neutrinoless double beta decay: first results and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo [Physik Department and Excellence Cluster Universe, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    Neutrinoless double beta decay is a lepton-number-violating nuclear transition predicted by several extensions of the Standard Model. The Gerda experiment searches for this transition in {sup 76}Ge by operating bare Ge detectors in liquid Ar. The talk focuses on the results of data acquired during Phase I of the experiment, in which 21.6 kg.yr of exposure were accumulated with a background index of about 0.01 cts/(keV.kg.yr). No signal was observed and a lower limit was derived for the half-life of neutrinoless double beta decay of {sup 76}Ge, T{sub 1/2} > 2.1 . 10{sup 25} yr (90% C.L.). The experiment is currently undergoing a major upgrade in preparation for the next phase of data taking. Thanks to an increased target mass, an improved energy resolution and the introduction of novel background reduction techniques, the sensitivity of Gerda will increase of about one order of magnitude in a few years of operation.

  10. LUCIFER: Scintillating bolometers for the search of Neutrinoless Double Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    Vignati, M. [Sapienza Universita di Roma and INFN Sezione di Roma, Roma, I-00185 (Italy)

    2012-08-15

    The nature of neutrino mass is one of the frontier problems of particle physics. Neutrinoless Double Beta Decay (0{nu}DBD) is a powerful tool to measure the neutrino mass and to test possible extensions of the Standard Model. Bolometers are excellent detectors to search for this rare decay, thanks to their good energy resolution and to the low background conditions in which they can operate. The current challenge consists in the reduction of the background, represented by environmental {gamma}'s and {alpha}'s, in view of a zero background experiment. We present the LUCIFER R and D, funded by an European grant, in which the background can be reduced by an order of magnitude with respect to the present generation experiments. The technique is based on the simultaneous bolometric measurement of the heat and of the scintillation light produced by a particle, that allows to discriminate between {beta} and {alpha} particles. The {gamma} background is reduced by choosing 0{nu}DBD candidate isotopes with transition energy above the environmental {gamma}'s spectrum. The prospect of this R and D are discussed.

  11. The AMoRE: Search for neutrinoless double beta decay of {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Park, HyangKyu, E-mail: hkpark@ibs.re.kr [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of)

    2015-10-28

    The AMoRE (Advanced Mo-based Rare process Experiment) collaboration is using calcium molybdate ({sup dep48}Ca {sup 100}MoO{sub 4}) crystals enriched in {sup 100}Mo and depleted in {sup 48}Ca to search for neutrinoless double-beta decay (DBD) of {sup 100}Mo using at the underground laboratory in Korea. Metallic magnetic calorimeters operating a milliKelvin temperatures are used as temperature sensors to measure heat and light signals from the crystals. The simultaneous and fast detection capabilities for both phonons and photons, and their excellent energy resolution provide powerful methods for identifying DBD signals and rejecting background events, which are mainly due to random coincidences between two uncorrelated two-neutrino-double-beta decays of {sup 100}Mo. The AMoRE-Pilot experiment that is currently underway uses a 1.5 kg, five-element array of {sup dep48}Ca {sup 100}MoO{sub 4} crystals. The ultimate goal is a ∼200 kg array of crystals and a half-life sensitivity of order 10{sup 26} years, which will access the inverted hierarchy region for effective Majorana neutrino masses, i.e., 0.02 to 0.05 eV. In this talk, we present recent progress on the development of low-background calcium molybdate detectors and results from room- and milli-Kelvin temperatures. Sensitivities based on GEANT4 simulations that incorporate measured background are reported.

  12. Double beta decay: present status

    OpenAIRE

    Barabash, A. S.

    2008-01-01

    The present status of double beta decay experiments (including the search for $2\\beta^{+}$, EC$\\beta^{+}$ and ECEC processes) are reviewed. The results of the most sensitive experiments are discussed. Average and recommended half-life values for two-neutrino double beta decay are presented. Conservative upper limits on effective Majorana neutrino mass and the coupling constant of the Majoron to the neutrino are established as $ < 0.75$ eV and $ < 1.9 \\cdot 10^{-4}$, respectively. Proposals fo...

  13. Search for double beta decay of 106Cd in the TGV-2 experiment

    Science.gov (United States)

    Rukhadze, N. I.; Brudanin, V. B.; Egorov, V. G.; Klimenko, A. A.; Kovalik, A.; Kouba, P.; Piquemal, F.; Rozov, S. V.; Rukhadze, E.; Salamatin, A. V.; Šimkovic, F.; Shitov, Yu A.; Štekl, I.; Timkin, V. V.; Yakushev, E. A.

    2016-05-01

    A new experimental run of searching for double beta decay of 106Cd was performed at the Modane underground laboratory (LSM, France, 4800 m w.e.) using the TGV-2 spectrometer, consisting of 32 planar type HPGe detectors with a total sensitive volume of ~400 cm3. 16 foils of 106Cd with an enrichment of 99.57% and a total mass of ~ 23.2 g were inserted between the entrance windows of face-to-face detectors. The limit on 2vEC/EC decay of 106Cd - T1/2 > 3.7 × 1020 y at 90% C.F was obtained from the preliminary calculation of experimental data accumulated for 8198 h of measurement. The limits on the resonance OvEC/EC decay of 106Cd were obtained from the measurement of ~23.2 g of 106Cd with the low-background HPGe spectrometer Obelix lasted 395 h -T1/2 (KF, 2741 keV) > 0.9 × 1020 y and T1/2 (KK, 2718 keV) > 1.4 × 1020 y at 90% C.L.

  14. Searching for Neutrinoless Double-Beta Decay of 130Te with CUORE

    Directory of Open Access Journals (Sweden)

    D. R. Artusa

    2015-01-01

    Full Text Available Neutrinoless double-beta (0νββ decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE is an upcoming experiment designed to search for 0νββ decay of 130Te using an array of 988 TeO2 crystal bolometers operated at 10 mK. The detector will contain 206 kg of 130Te and have an average energy resolution of 5 keV; the projected 0νββ decay half-life sensitivity after five years of livetime is 1.6 × 1026 y at 1σ (9.5 × 1025 y at the 90% confidence level, which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV. In this paper, we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.

  15. Exploration of Pixelated detectors for double beta decay searches within the COBRA experiment

    International Nuclear Information System (INIS)

    The aim of the COBRA experiment is the search for neutrinoless double beta decay events in Cadmium Zinc Telluride (CdZnTe) room temperature semiconductor detectors. The development of pixelated detectors provides the potential for clear event identification and thus major background reduction. The tracking option of a semiconductor is a unique approach in this field. For initial studies, several possible detector systems are considered with a special regard for low background applications: the large volume system Polaris with a pixelated CdZnTe sensor, Timepix detectors with Si and enriched CdTe sensor material and a CdZnTe pixel system developed at the Washington University in St. Louis, USA. For all detector systems first experimental background measurements taken at underground laboratories (Gran Sasso Underground Laboratory in Italy, LNGS and the Niederniveau Messlabor Felsenkeller in Dresden, Germany) and additionally for the Timepix detectors simulation results are presented.

  16. Status of the GERDA experiment aimed to search for neutrinoless double beta decay of 76Ge

    CERN Document Server

    Smolnikov, Anatoly A

    2008-01-01

    The progress in the development of the new international Gerda (GErmanium Detector Array) experiment is presented. Main purpose of the experiment is to search for the neutrinoless double beta decay of 76Ge. The experimental set up is under construction in the underground laboratory of LNGS. Gerda will operate with bare germanium semiconductor detectors (enriched in 76Ge) situated in liquid argon. In the Phase I the existing enriched detectors from the previous Heidelberg-Moscow and IGEX experiments are employed, in the Phase II the new segmented detectors made from recently produced enriched material will be added. Novel concepts for background suppression including detector segmentation and anti-coincidence with LAr scintillation are developed.

  17. Phase II Upgrade of the GERDA Experiment for the Search of Neutrinoless Double Beta Decay

    Science.gov (United States)

    Majorovits, B.

    Observation of neutrinoless double beta decay could answer the question regarding the Majorana or Dirac nature of neutrinos. The GERDA experiment utilizes HPGe detectors enriched with the isotope 76Ge to search for this process. Recently the GERDA collaboration has unblinded data of Phase I of the experiment. In order to further improve the sensitivity of the experiment, additionally to the coaxial detectors used, 30 BEGe detectors made from germanium enriched in 76Ge will be deployed in GERDA Phase II. BEGe detectors have superior PSD capability, thus the background can be further reduced. The liquid argon surrounding the detector array will be instrumented in order to reject background by detecting scintillation light induced in the liquid argon by radiation. After a short introduction the hardware preparations for GERDA Phase II as well as the processing and characterization of the 30 BEGe detectors are discussed.

  18. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    Science.gov (United States)

    Bellini, F.

    2012-11-01

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0νββ), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0νββ search will be given as well as an overview of present status and future perpectives of experiments.

  19. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    International Nuclear Information System (INIS)

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0νββ), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0νββ search will be given as well as an overview of present status and future perpectives of experiments.

  20. First array of enriched Zn$^{82}$Se bolometers to search for double beta decay

    CERN Document Server

    Artusa, D R; Beeman, J W; Bellini, F; Biassoni, M; Brofferio, C; Camacho, A; Capelli, S; Cardani, L; Carniti, P; Casali, N; Cassina, L; Clemenza, M; Cremonesi, O; Cruciani, A; D'Addabbo, A; Dafinei, I; Di Domizio, S; di Vacri, M L; Ferroni, F; Gironi, L; Giuliani, A; Gotti, C; Keppel, G; Maino, M; Mancuso, M; Martinez, M; Morganti, S; Nagorny, S; Nastasi, M; Nisi, S; Nones, C; Orio, F; Orlandi, D; Pagnanini, L; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pessina, G; Pettinacci, V; Pirro, S; Pozzi, S; Previtali, E; Puiu, A; Rusconi, C; Schaeffner, K; Tomei, C; Vignati, M; Zolotarova, A

    2016-01-01

    The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in $^{82}$Se, the Zn$^{82}$Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn$^{82}$Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0.

  1. First array of enriched Zn^{82}Se bolometers to search for double beta decay

    Science.gov (United States)

    Artusa, D. R.; Balzoni, A.; Beeman, J. W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Cruciani, A.; D'Addabbo, A.; Dafinei, I.; Di Domizio, S.; di Vacri, M. L.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Keppel, G.; Maino, M.; Mancuso, M.; Martinez, M.; Morganti, S.; Nagorny, S.; Nastasi, M.; Nisi, S.; Nones, C.; Orio, F.; Orlandi, D.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.; Zolotarova, A.

    2016-07-01

    The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in ^{82}Se, the Zn^{82}Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn^{82}Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0.

  2. Exploration of Pixelated detectors for double beta decay searches within the COBRA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schwenke, M., E-mail: schwenke@asp.tu-dresden.de [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany); Zuber, K.; Janutta, B. [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany); He, Z.; Zeng, F. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Anton, G.; Michel, T.; Durst, J.; Lueck, F.; Gleixner, T. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Goessling, C.; Schulz, O.; Koettig, T. [Technische Universitaet Dortmund, Physik E IV, 44221 Dortmund (Germany); Krawczynski, H.; Martin, J. [Department of Physics, Washington University in St. Louis, Campus Box 1105, One Brookings Drive, St. Louis, MO 63130-4899 (United States); Stekl, I.; Cermak, P. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague (Czech Republic)

    2011-09-11

    The aim of the COBRA experiment is the search for neutrinoless double beta decay events in Cadmium Zinc Telluride (CdZnTe) room temperature semiconductor detectors. The development of pixelated detectors provides the potential for clear event identification and thus major background reduction. The tracking option of a semiconductor is a unique approach in this field. For initial studies, several possible detector systems are considered with a special regard for low background applications: the large volume system Polaris with a pixelated CdZnTe sensor, Timepix detectors with Si and enriched CdTe sensor material and a CdZnTe pixel system developed at the Washington University in St. Louis, USA. For all detector systems first experimental background measurements taken at underground laboratories (Gran Sasso Underground Laboratory in Italy, LNGS and the Niederniveau Messlabor Felsenkeller in Dresden, Germany) and additionally for the Timepix detectors simulation results are presented.

  3. A high-resolution CMOS imaging detector for the search of neutrinoless double beta decay in $^{82}$Se

    CERN Document Server

    Chavarria, A E; Li, X; Rowlands, J A

    2016-01-01

    We introduce a new technology of detectors for the search of the neutrinoless double beta decay of $^{82}$Se. Based on the present literature, imaging devices from amorphous $^{82}$Se evaporated on a complementary metal-oxide-semiconductor (CMOS) active pixel array are expected to have the energy and spatial resolution to produce two-dimensional images of ionizing tracks of utmost quality, effectively akin to an electronic bubble chamber in the double beta decay energy regime. Still to be experimentally demonstrated, a detector consisting of a large array of these devices could have very low backgrounds, possibly reaching $10^{-7}$/(kg y) in the neutrinoless decay region of interest (ROI), as it may be required for the full exploration of the neutrinoless double beta decay parameter space in the most unfavorable condition of a strongly quenched nucleon axial coupling constant.

  4. First results of neutrinoless double beta decay search with the GERmanium Detector Array "GERDA"

    Science.gov (United States)

    Janicskó Csáthy, József

    2014-06-01

    The study of neutrinoless double beta decay is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of the lepton number violating neutrinoless double beta decay would establish the Majorana nature of the neutrino. Until now neutrinoless double beta decay was not observed. The GERmanium Detector Array, GERDA is a double beta decay experiment located at the INFN Gran Sasso National Laboratory, Italy. GERDA operates bare Ge diodes enriched in 76Ge in liquid argon supplemented by a water shield. The exposure accumulated adds up to 21.6 kg· yr with a background level of 1.8 · 10-2 cts/(keV·kg·yr). The results of the Phase I of the experiment are presented and the preparation of the Phase II is briefly discussed.

  5. Results on neutrinoless double beta decay search in GERDA. Background modeling and limit setting

    Energy Technology Data Exchange (ETDEWEB)

    Becerici Schmidt, Neslihan

    2014-07-22

    The search for the neutrinoless double beta decay (0νββ) process is primarily motivated by its potential of revealing the possible Majorana nature of the neutrino, in which the neutrino is identical to its antiparticle. It has also the potential to yield information on the intrinsic properties of neutrinos, if the underlying mechanism is the exchange of a light Majorana neutrino. The Gerda experiment is searching for 0νββ decay of {sup 76}Ge by operating high purity germanium (HPGe) detectors enriched in the isotope {sup 76}Ge (∝ 87%), directly in ultra-pure liquid argon (LAr). The first phase of physics data taking (Phase I) was completed in 2013 and has yielded 21.6 kg.yr of data. A background index of B∼10{sup -2} cts/(keV.kg.yr) at Q{sub ββ}=2039 keV has been achieved. A comprehensive background model of the Phase I energy spectrum is presented as the major topic of this dissertation. Decomposition of the background energy spectrum into the individual contributions from different processes provides many interesting physics results. The specific activity of {sup 39}Ar has been determined. The obtained result, A=(1.15±0.11) Bq/kg, is in good agreement with the values reported in literature. The contribution from {sup 42}K decays in LAr to the background spectrum has yielded a {sup 42}K({sup 42}Ar) specific activity of A=(106.2{sub -19.2}{sup +12.7}) μBq/kg, for which only upper limits exist in literature. The analysis of high energy events induced by α decays in the {sup 226}Ra chain indicated a total {sup 226}Ra activity of (3.0±0.9) μBq and a total initial {sup 210}Po activity of (0.18±0.01) mBq on the p{sup +} surfaces of the enriched semi-coaxial HPGe detectors. The half life of the two-neutrino double beta (2νββ) decay of {sup 76}Ge has been determined as T{sub 1/2}{sup 2ν}=(1.926±0.094).10{sup 21} yr, which is in good agreement with the result that was obtained with lower exposure and has been published by the Gerda collaboration

  6. Results on neutrinoless double beta decay search in GERDA. Background modeling and limit setting

    International Nuclear Information System (INIS)

    The search for the neutrinoless double beta decay (0νββ) process is primarily motivated by its potential of revealing the possible Majorana nature of the neutrino, in which the neutrino is identical to its antiparticle. It has also the potential to yield information on the intrinsic properties of neutrinos, if the underlying mechanism is the exchange of a light Majorana neutrino. The Gerda experiment is searching for 0νββ decay of 76Ge by operating high purity germanium (HPGe) detectors enriched in the isotope 76Ge (∝ 87%), directly in ultra-pure liquid argon (LAr). The first phase of physics data taking (Phase I) was completed in 2013 and has yielded 21.6 kg.yr of data. A background index of B∼10-2 cts/(keV.kg.yr) at Qββ=2039 keV has been achieved. A comprehensive background model of the Phase I energy spectrum is presented as the major topic of this dissertation. Decomposition of the background energy spectrum into the individual contributions from different processes provides many interesting physics results. The specific activity of 39Ar has been determined. The obtained result, A=(1.15±0.11) Bq/kg, is in good agreement with the values reported in literature. The contribution from 42K decays in LAr to the background spectrum has yielded a 42K(42Ar) specific activity of A=(106.2-19.2+12.7) μBq/kg, for which only upper limits exist in literature. The analysis of high energy events induced by α decays in the 226Ra chain indicated a total 226Ra activity of (3.0±0.9) μBq and a total initial 210Po activity of (0.18±0.01) mBq on the p+ surfaces of the enriched semi-coaxial HPGe detectors. The half life of the two-neutrino double beta (2νββ) decay of 76Ge has been determined as T1/22ν=(1.926±0.094).1021 yr, which is in good agreement with the result that was obtained with lower exposure and has been published by the Gerda collaboration. According to the model, the background in Qββ±5 keV window is resulting from close-by decays of 214Bi, 228Th

  7. Characterization of a ZnSe scintillating bolometer prototype for neutrinoless double beta decay search

    Science.gov (United States)

    Tenconi, M.; Giuliani, A.; Nones, C.; Pessina, G.; Plantevin, O.; Rusconi, C.

    2014-01-01

    As proposed in the LUCIFER project, ZnSe crystals are attractive materials to realize scintillating bolometers aiming at the search for neutrinoless double beta decay of the promising isotope 82Se. However, the optimization of the ZnSe-based detectors is rather complex and requires a wide-range investigation of the crystal features: optical properties, crystalline quality, scintillation yields and bolometric behaviour. Samples tested up to now show problems in the reproducibility of crucial aspects of the detector performance. In this work, we present the results obtained with a scintillating bolometer operated aboveground at about 25 mK. The detector energy absorber was a single 1 cm3 ZnSe crystal. The good energy resolution of the heat channel (about 14 keV at 1460 keV) and the excellent alpha/beta discrimination capability are very encouraging for a successful realization of the LUCIFER program. The bolometric measurements were completed by optical tests on the crystal (optical transmission and luminescence measurements down to 10 K) and investigation of the crystalline structure. The work here described provides a set of parameters and procedures useful for a complete pre-characterization of ZnSe crystals in view of the realization of highly performing scintillating bolometers.

  8. Searches for massive neutrino emission in 14C beta and 55Fe electron-capture decays

    International Nuclear Information System (INIS)

    In 1985 Simpson reported evidence for the emission of a 17 keV mass neutrino in a small fraction of tritium beta decays. An experimental controversy ensued in which a number of both positive and negative results were reported. The beta spectrum of 14C was collected in a unique 14C-doped planar germanium detector and a distortion was observed that initially confirmed Simpson's result. Further tests linked this distortion to a splitting of the collected charge between the central detector and the surrounding guard ring in a fraction of the events. A second 14C measurement showed no evidence for emission of a 17 keV mass neutrino. In a related experiment, a high statistics electron-capture internal-bremsstrahlung photon spectrum of 55Fe was collected with a coaxial germanium detector. A local search for departures from a smooth shape near the endpoint was performed, using a second-derivative technique. An upper limit of 0.65% (95% C.L.) for the mixing Of a neutrino in the mass range 5--25 keV was established. The upper limit on the mixing of a 17 keV mass neutrino was 0.14% (95% C.L.)

  9. Characterization of a ZnSe scintillating bolometer prototype for neutrinoless double beta decay search

    Directory of Open Access Journals (Sweden)

    Tenconi M.

    2014-01-01

    Full Text Available As proposed in the LUCIFER project, ZnSe crystals are attractive materials to realize scintillating bolometers aiming at the search for neutrinoless double beta decay of the promising isotope 82Se. However, the optimization of the ZnSe-based detectors is rather complex and requires a wide-range investigation of the crystal features: optical properties, crystalline quality, scintillation yields and bolometric behaviour. Samples tested up to now show problems in the reproducibility of crucial aspects of the detector performance. In this work, we present the results obtained with a scintillating bolometer operated aboveground at about 25 mK. The detector energy absorber was a single 1 cm3 ZnSe crystal. The good energy resolution of the heat channel (about 14 keV at 1460 keV and the excellent alpha/beta discrimination capability are very encouraging for a successful realization of the LUCIFER program. The bolometric measurements were completed by optical tests on the crystal (optical transmission and luminescence measurements down to 10 K and investigation of the crystalline structure. The work here described provides a set of parameters and procedures useful for a complete pre-characterization of ZnSe crystals in view of the realization of highly performing scintillating bolometers.

  10. Search for an admixture of sterile neutrino in the electron spectrum from tritium $\\beta$-decay

    CERN Document Server

    Abdurashitov, D; Likhovid, N; Lokhov, A; Tkachev, I; Yants, V

    2014-01-01

    We propose an experiment intended for search for an admixture of sterile neutrino with mass m$_s$ in the range of 1-8 keV that may be detected as specific distortion of the electron energy spectrum during tritium decay. The distortion is spread over large part of the spectrum so to reveal it one can use a detector with relatively poor (near 10-15%) energy resolution. A classic proportional counter is a simple natural choice for a tritium $\\beta$-decay detector. The method we are proposing is original in two respects. First, the counter is produced as a whole from fully-fused quartz tube allowing to measure current pulse directly from anode while providing high stability for a long time. Second, a modern digital acquisition technique can be used in measurements at ultrahigh count rate - up to 10$^6$ Hz. As a result an energy spectrum of tritium electrons containing up to 10$^{12}$ counts may be collected in a month of live time measurements. Due to high statistics an upper limit down to 10$^{-3}$..10$^{-5}$ ca...

  11. LUCIFER: Scintillating bolometers for the search of Neutrinoless Double Beta Decay

    International Nuclear Information System (INIS)

    The nature of neutrino mass is one of the frontier problems of particle physics. Neutrinoless Double Beta Decay (0νDBD) is a powerful tool to measure the neutrino mass and to test possible extensions of the Standard Model. Bolometers are excellent detectors to search for this rare decay, thanks to their good energy resolution and to the low background conditions in which they can operate. The current challenge consists in the reduction of the background, represented by environmental γ's and α's, in view of a zero background experiment. We present the LUCIFER R and D, funded by an European grant, in which the background can be reduced by an order of magnitude with respect to the present generation experiments. The technique is based on the simultaneous bolometric measurement of the heat and of the scintillation light produced by a particle, that allows to discriminate between β and α particles. The γ background is reduced by choosing 0νDBD candidate isotopes with transition energy above the environmental γ's spectrum. The prospect of this R and D are discussed.

  12. LUCIFER: Scintillating bolometers for the search of Neutrinoless Double Beta Decay

    Science.gov (United States)

    Vignati, M.

    2012-08-01

    The nature of neutrino mass is one of the frontier problems of particle physics. Neutrinoless Double Beta Decay (0νDBD) is a powerful tool to measure the neutrino mass and to test possible extensions of the Standard Model. Bolometers are excellent detectors to search for this rare decay, thanks to their good energy resolution and to the low background conditions in which they can operate. The current challenge consists in the reduction of the background, represented by environmental γ's and α's, in view of a zero background experiment. We present the LUCIFER R&D, funded by an European grant, in which the background can be reduced by an order of magnitude with respect to the present generation experiments. The technique is based on the simultaneous bolometric measurement of the heat and of the scintillation light produced by a particle, that allows to discriminate between β and α particles. The γ background is reduced by choosing 0νDBD candidate isotopes with transition energy above the environmental γ's spectrum. The prospect of this R&D are discussed.

  13. Double beta decay experiments

    OpenAIRE

    Barabash, A. S.

    2011-01-01

    The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.

  14. A Novel Point Contact HPGe Detector for Searching for Neutrinoless Double-Beta Decay

    Science.gov (United States)

    Gehman, Victor M.

    2008-10-01

    The Majo-ra-na collaboration is investigating a new design for high-purity germanium (HPGe) detectors that could increase the physics reach and decrease the cost of our next generation neutrinoless double-beta decay (0νββ) search. The p-type, point-contact (PPC) HPGe detector (that is, a detector with a very compact central contact geometry), has a number of very attractive characteristics which could do much to help the field of 0νββ, as well as the search for many other types of rare events. This new detector design allows for very low energy thresholds (potentially as low as 0.1 keV), and powerful background rejection through comparatively simple pulse shape analysis algorithms using only the digitized signal from the central contact. As with any new technology however, the PPC detectors must be characterized for reliability, robustness and reproducible fabrication. We present the current status of our efforts, with emphasis on one such detector, ``MJ70'' procured for the Majo-ra-na collaboration from PHDs Co. This detector is currently undergoing careful evaluation. This presentation will focus on the characterization program for PPCs, as well as how these detectors fit into the broader Majo-ra-na R&D program.

  15. The NEXT-100 experiment for neutrinoless double beta decay searches (Conceptual Design Report)

    CERN Document Server

    Álvarez, V; Batallé, M; Bayarri, J; Borges, F I G; Cárcel, S; Carmona, J M; Castel, J; Catalá, J M; Cebrián, S; Cervera-Villanueva, A; Chan, D; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferrer-Ribas, E; Ferreira, A L; Freitas, E D C; Gil, A; Giomataris, I; Goldschmidt, A; Gómez, E; Gómez, H; Gómez-Cadenas, J J; Gónzález, K; Gutiérrez, R M; Hernando-Morata, J A; Herrera, D C; Herrero, V; Iguaz, F; Irastorza, I G; Kalinnikov, V; Kustov, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Martín-Albo, J; Méndez, A; Miller, T; Moisenko, A; Mols, J P; Monrabal, F; Monteiro, C M B; Monzó, J M; Mora, F J; Muñoz-Vidal, J; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez-Aparicio, J L; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Sofka, C; Sorel, M; Spieler, H; Toledo, J F; Tomás, A; Tsamalaidze, Z; Vázquez, D; Velicheva, E; Veloso, J F C A; Villar, J A; Webb, R; Weber, T; White, J; Yahlali, N

    2011-01-01

    We propose an EASY (Electroluminescent ApparatuS of high Yield) and SOFT (Separated Optimized FuncTion) time-projection chamber for the NEXT experiment, that will search for neutrinoless double beta decay (bb0nu) in Xe-136. Our experiment must be competitive with the new generation of bb0nu searches already in operation or in construction. This requires a detector with very good energy resolution (<1%), very low background con- tamination (1E-4 counts/(keV \\bullet kg \\bullet y)) and large target mass. In addition, it needs to be operational as soon as possible. The design described here optimizes energy resolution thanks to the use of proportional electroluminescent amplification (EL); it is compact, as the Xe gas is under high pressure; and it allows the measurement of the topological signature of the event to further reduce the background contamination. The SOFT design uses different sensors for tracking and calorimetry. We propose the use of SiPMs (MPPCs) coated with a suitable wavelength shifter for th...

  16. GraXe, graphene and xenon for neutrinoless double beta decay searches

    CERN Document Server

    Gomez-Cadenas, J J; Fogler, M M; Katsnelson, M I; Martin-Albo, J; Monrabal, F; Muñoz-Vidal, J

    2011-01-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in Xe-136. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. Our baseline design of GraXe is a balloon made of graphene (possibly held together with a very thin structure made of radiopure fiber) and filled with xenon enriched in the Xe-136 isotope. The balloon is immersed in a large tank containing 20 tons of natural liquid xenon and instrumented with large photomultipliers. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, an impermeable to the xenon. External backgrounds would be shielded by the buffer liquid xenon, and the inner volume has virtually zero background. Industrial graphene can be manufactured at a competitive cost to produce the inner balloon, and there is already near one ton of enriched Xenon available in the world...

  17. The Potential of Hybrid Pixel Detectors in the Search for the Neutrinoless Double-Beta Decay of Cd-116

    OpenAIRE

    Michel, Thilo; Gleixner, Thomas; Durst, Jürgen; Filipenko, Mykhaylo; Geisselsoeder, Stefan

    2013-01-01

    We investigated the potential of the energy resolving hybrid pixel detector Timepix contacted to a CdTe sensor layer for the search for the neutrinoless double-beta decay of Cd-116. We found that a CdTe sensor layer with 3 mm thickness and 165 mu m pixel pitch is optimal with respect to the effective Majorana neutrino mass (m(beta beta)) sensitivity. In simulations, we were able to demonstrate a possible reduction of the background level caused by single electrons by approximately 75% at a sp...

  18. Measurement of the Double-Beta Decay Half-Life and Search for the Neutrinoless Double-Beta Decay of $^{48}{\\rm Ca}$ with the NEMO-3 Detector

    CERN Document Server

    :,; Augier, C; Bakalyarov, A M; Baker, J D; Barabash, A S; Basharina-Freshville, A; Blondel, S; Blot, S; Bongrand, M; Brudanin, V; Busto, J; Caffrey, A J; Calvez, S; Cascella, M; Cerna, C; Cesar, J P; Chapon, A; Chauveau, E; Chopra, A; Duchesneau, D; Durand, D; Egorov, V; Eurin, G; Evans, J J; Fajt, L; Filosofov, D; Flack, R; Garrido, X; Gómez, H; Guillon, B; Guzowski, P; Hodák, R; Huber, A; Hubert, P; Hugon, C; Jullian, S; Klimenko, A; Kochetov, O; Konovalov, S I; Kovalenko, V; Lalanne, D; Lang, K; Lebedev, V I; Lemière, Y; Noblet, T Le; Liptak, Z; Liu, X R; Loaiza, P; Lutter, G; Mamedov, F; Marquet, C; Mauger, F; Morgan, B; Mott, J; Nemchenok, I; Nomachi, M; Nova, F; Nowacki, F; Ohsumi, H; Pahlka, R B; Perrot, F; Piquemal, F; Povinec, P; Přidal, P; Ramachers, Y A; Remoto, A; Reyss, J L; Richards, B; Riddle, C L; Rukhadze, E; Rukhadze, N I; Saakyan, R; Salazar, R; Sarazin, X; Shitov, Yu; Simard, L; Šimkovic, F; Smetana, A; Smolek, K; Smolnikov, A; Söldner-Rembold, S; Soulé, B; Štekl, I; Suhonen, J; Sutton, C S; Szklarz, G; Thomas, J; Timkin, V; Torre, S; Tretyak, Vl I; Tretyak, V I; Umatov, V I; Vanushin, I; Vilela, C; Vorobel, V; Waters, D; Zhukov, S V; Žukauskas, A

    2016-01-01

    The NEMO-3 experiment at the Modane Underground Laboratory has investigated the double-$\\beta$ decay of $^{48}{\\rm Ca}$. Using $5.25$\\,yr of data recorded with a $6.99\\,{\\rm g}$ sample of $^{48}{\\rm Ca}$, approximately $150$ double-$\\beta$ decay candidate events have been selected with a signal-to-background ratio greater than $3$. The half-life for the two-neutrino double-$\\beta$ decay of $^{48}{\\rm Ca}$ has been measured to be \\mbox{$T^{2\

  19. Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of $^{48}{\\rm Ca}$ with the NEMO-3 detector

    OpenAIRE

    Collaboration, NEMO-3; :; Arnold, R.; Augier, C.; Bakalyarov, A. M.; Baker, J. D.; Barabash, A. S.; Basharina-Freshville, A.; Blondel, S.; Blot, S; Bongrand, M.; Brudanin, V.(Joint Institute for Nuclear Research, Dubna, Russia); Busto, J.; Caffrey, A. J.; S. Calvez

    2016-01-01

    The NEMO-3 experiment at the Modane Underground Laboratory has investigated the double-$\\beta$ decay of $^{48}{\\rm Ca}$. Using $5.25$ yr of data recorded with a $6.99\\,{\\rm g}$ sample of $^{48}{\\rm Ca}$, approximately $150$ double-$\\beta$ decay candidate events have been selected with a signal-to-background ratio greater than $3$. The half-life for the two-neutrino double-$\\beta$ decay of $^{48}{\\rm Ca}$ has been measured to be $T^{2\

  20. A first search of excited states double beta and double electron capture decays of Pd110 and Pd102

    CERN Document Server

    Lehnert, Bjoern

    2011-01-01

    A search for double beta decays of the palladium isotopes Pd110 and Pd102 into excited states of their daughters was performed. New half-life limits for the 2nubb and 0nubb decays into first excited 0+ and 2+ states of 2.54e19 yr and 2.14e19 yr (95% CL) for the Pd110 decay were obtained improving limits by two orders of magnitude. The corresponding half-lives for double electron capture transition of Pd102 are 1.73e18 yr and 2.54e18 yr (95% CL) respectively. These are the first measurements for Pd102.

  1. A first search of excited states double beta and double electron capture decays of 110Pd and 102Pd

    International Nuclear Information System (INIS)

    A search for double beta decays of the palladium isotopes 110Pd and 102Pd into excited states of their daughters was performed and first half-life limits for the 2νββ and 0νββ decays into first excited 0+ and 2+ states of 5.89x1019 yr and 4.40x1019 yr (95% CL) for the 110Pd decay were obtained. The half-life limits for the corresponding double electron capture transition of 102Pd are 7.64x1018 yr and 2.68x1018 yr (95% CL) respectively. These are the first measurements for 102Pd.

  2. Search for Majoron-emitting modes of double-beta decay of $^{136}$Xe with EXO-200

    CERN Document Server

    :,; Auty, D J; Barbeau, P S; Beauchamp, E; Beck, D; Belov, V; Benitez-Medina, C; Breidenbach, M; Brunner, T; Burenkov, A; Cao, G F; Chambers, C; Chaves, J; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Danilov, M; Daugherty, S J; Davis, C G; Davis, J; DeVoe, R; Delaquis, S; Didberidze, T; Dolgolenko, A; Dolinski, M J; Dunford, M; Fairbank, W; Farine, J; Feldmeier, W; Fierlinger, P; Fudenberg, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Hall, C; Herrin, S; Hughes, M; Jewell, M J; Jiang, X S; Johnson, A; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Kuchenkov, A; Kumar, K S; Leonard, D S; Leonard, F; Licciardi, C; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Mong, B; Moore, D; Nelson, R; Odian, A; Ostrovskiy, I; Ouellet, C; Piepke, A; Pocar, A; Prescott, C Y; Rivas, A; Rowson, P C; Rozo, M P; Russell, J J; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Tosi, D; Tsang, R; Twelker, K; Vogel, P; Vuilleumier, J -L; Waite, A; Walton, J; Walton, T; Weber, M; Wen, L J; Wichoski, U; Yang, L; Yen, Y -R; Zeldovich, O Ya

    2014-01-01

    EXO-200 is a single phase liquid xenon detector designed to search for neutrinoless double-beta decay of $^{136}$Xe. Here we report on a search for various Majoron-emitting modes based on 100 kg$\\cdot$yr exposure of $^{136}$Xe. A lower limit of $T^{^{136}Xe}_{1/2} >1.2...10^{24}$ yr at 90% C.L. on the half-life of the spectral index = 1 Majoron decay was obtained, corresponding to a constraint on the Majoron-neutrino coupling constant of $||<$ (0.8-1.7)...10$^{-5}$.

  3. Search for double beta decay of 48Ca in the TGV experiment

    Science.gov (United States)

    Brudanin, V. B.; Rukhadze, N. I.; Briançon, C.; Egorov, V. G.; Kovalenko, V. E.; Kovalik, A.; Salamatin, A. V.; Štekl, I.; Tsoupko-Sitnikov, V. V.; Vylov, T.; Čermák, P.

    2000-12-01

    This Letter describes a collaborative TGV (Telescope Germanium Vertical) study of the double beta decay of 48Ca with a low-background and high sensitivity Ge multi-detector spectrometer. The results of T1/22νββ=(4.2+3.3- 1.3)×1019 years and T1/20νββ>1.5×1021 years (90% CL) for double beta decay of 48Ca were found after processing experimental data obtained after 8700 hours of measuring time, using approximately 1 gramme of 48Ca. The features of a TGV-2 experiment are also presented.

  4. Pattern recognition techniques to reduce backgrounds in the search for the 136Xe double beta decay with gaseous TPCs

    CERN Document Server

    Iguaz, F J; Dafni, T; Gomez, H; Herrera, D C; Irastorza, I G; Luzon, G; Segui, L; Tomas, A

    2013-01-01

    The observation of the neutrinoless double beta decay may provide essential information on the nature of neutrinos. Among the current experimental approaches, a high pressure gaseous TPC is an attractive option for the search of double beta decay due to its good energy resolution and the detailed topological information of each event. We present in this talk a detailed study of the ionization topology of the 136Xe double beta decay events in a High Pressure Xenon TPC, as well as that of the typical competing backgrounds. We define some observables based on graph theory concepts to develop automated discrimination algorithms. Our criteria are able to reduce the background level by about three orders of magnitude in the region of interest of the 136Xe Qbb for a signal acceptance of 40%. This result provides a quantitative assessment of the benefit of topological information offered by gaseous TPCs for double beta decay search, and proves that it is a promising feature in view of future experiments in the field....

  5. The Search for Neutrinoless Double Beta Decay with 130Te with CUORE-0

    International Nuclear Information System (INIS)

    This thesis describes the design, operation and results of an experimental search for neutrinoless double beta decay (0νββ) of 130Te using the CUORE-0 detector. The discovery of 0νββ would have profound implications for particle physics and our understanding of the Universe. Its discovery would demonstrate the violation of lepton number and imply that neutrinos are Majorana fermions and therefore their own anti-particles. Combined with other experimental results, the discovery of 0νββ could also have implications for understanding the absolute neutrino mass scale as well as the presently unknown neutrino mass hierarchy. The CUORE experiment is a ton-scale search for 0νββ in 130Te expected to begin operation in late 2015. The first stage of this experiment is a smaller 39-kg active-mass detector called CUORE-0. This detector contains 11 kg of 130Te and operates in the Laboratori Nazionali del Gran Sasso lab in Italy from 2013-2015. The results presented here are based on a natTeO2 exposure of 35.2 kg·yr, or 9.8 kg·yr exposure of 130Te collected between 2013-2015. We see no evidence of 0νββ and place an upper limit on the 0νββ decay rate of Γ0νββ<0.25x1024 yr1 (90 % C.L.), corresponding to a lower limit on the half-life of T1/20ν>2.8x1024 yr (90 % C.L.). We combine the present result with the results of previous searches in 130Te. Combining it with the 1.2 kg·Te exposure from the Three Towers Test run we place a half-life limit of T1/203ν>3.3x1024 yr (90 % C.L.). And combining these results with the 19.75 kg·yr 130Te exposure from Cuoricino, we place the strongest limit on the 0νββ half-life of 130Te to date, at T1/20ν>4.5x1024 yr (90 % C.L.). Using the present nuclear matrix element calculations for 130Te, this result corresponds to a 90 % upper limit range on the effective Majorana mass of mββ<250-710 meV.

  6. GERDA, searching for the neutrinoless double beta decay in 76Ge

    International Nuclear Information System (INIS)

    Full text: The GERDA (GERmanium Detector Array) experiment is designed to search for the neutrino-less double beta decay of 76Ge, which could establish the nature of the neutrino (Dirac or Majorana) and provide information on the absolute neutrino mass. The experiment is currently under construction in the Gran Sasso National Laboratory, the commissioning phase is expected to start in fall 2009. In GERDA phase-I, about 18 kg of enriched-76Ge detectors, previously operated by the Heidelberg-Moscow and IGEX experiments, will be immersed directly in pure liquid Ar, which will act as the cooling medium and as shield against external backgrounds. In phase-II about 20 kg of new enriched detectors will be added. The aim is to collect an exposure of about 100 kg · y with a background of 10-3 counts/(kg · y · keV) at the Q-value of 2039 keV. The status and science prospects of the project will be presented. (author)

  7. Neutrinoless Double Beta Decay Experiments

    OpenAIRE

    Zuber, K.

    2014-01-01

    Neutrinoless double beta decay is the only process known so far able to test the neutrino intrinsic nature: its experimental observation would imply that the lepton number is violated by two units and prove that neutrinos have a Majorana mass components, being their own anti-particle. While several experiments searching for such a rare decay have been performed in the past, a new generation of experiments using different isotopes and techniques have recently released their results or are taki...

  8. Neutrinoless double beta decay

    International Nuclear Information System (INIS)

    The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given. (author)

  9. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    Kai Zuber

    2012-10-01

    The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

  10. Experiment TGV-2 - Search for double beta decay of 106Cd

    Science.gov (United States)

    Rukhadze, N. I.; Briançon, Ch.; Brudanin, V. B.; Čermák, P.; Egorov, V. G.; Klimenko, A. A.; Kovalík, A.; Rukhadze, E. N.; Shitov, Yu. A.; Šimkovic, F.; Štekl, I.; Timkin, V. V.

    2012-08-01

    New limits (at 90% C.L.) on double beta decay of Cd106-T(0νEC/EC)>1.7×1020 yr and T(2νEC/EC)>4.2×1020 yr were obtained in a preliminary calculation of data accumulated for 12900 h on the TGV-2 spectrometer.

  11. Experiment TGV-2 – Search for double beta decay of 106Cd

    International Nuclear Information System (INIS)

    New limits (at 90% C.L.) on double beta decay of 106Cd−T1/2(0νEC/EC)>1.7×1020yr and T1/2(2νEC/EC)>4.2×1020yr were obtained in a preliminary calculation of data accumulated for 12900 h on the TGV-2 spectrometer.

  12. A CaMoO4 Crystal Low Temperature Detector for the AMoRE Neutrinoless Double Beta Decay Search

    International Nuclear Information System (INIS)

    We report the development of a CaMoO4 crystal low temperature detector for the AMoRE neutrinoless double beta decay (0νββ) search experiment. The prototype detector cell was composed of a 216 g CaMoO4 crystal and a metallic magnetic calorimeter. An overground measurement demonstrated FWHM resolution of 6–11 keV for full absorption gamma peaks. Pulse shape discrimination was clearly demonstrated in the phonon signals, and 7.6 σ of discrimination power was found for the α and β/γ separation. The phonon signals showed rise-times of about 1 ms. It is expected that the relatively fast rise-time will increase the rejection efficiency of two-neutrino double beta decay pile-up events which can be one of the major background sources in 0νββ searches

  13. Search for 2{\\beta} decay of 116Cd with the help of enriched 116CdWO4 crystal scintillators

    CERN Document Server

    Poda, D V; Belli, P; Bernabei, R; Cappella, F; Caracciolo, V; Castellano, S; Chernyak, D M; Cerulli, R; Danevich, F A; d'Angelo, S; Incicchitti, A; Kobychev, V V; Konovalov, S I; Laubenstein, M; Podviyanuk, R B; Polischuk, O G; Shlegel, V N; Tretyak, V I; Umatov, V I; Vasiliev, Ya V

    2014-01-01

    Cadmium tungstate crystal scintillators enriched in $^{116}$Cd to 82% ($^{116}$CdWO$_4$, total mass of $\\approx$1.2 kg) are used to search for 2$\\beta$ decay of $^{116}$Cd deep underground at the Gran Sasso National Laboratory of the INFN (Italy). The radioactive contamination of the $^{116}$CdWO$_4$ crystals has been studied carefully to reconstruct the background of the detector. The measured half-life of $^{116}$Cd relatively to 2$\

  14. Searching for the Dirac Nature of Neutrinos: Combining Neutrinoless Double Beta Decay and Neutrino Mass Measurements

    International Nuclear Information System (INIS)

    We studied the neutrinoless double beta decay process to tackle the issue about the nature of neutrino. Establishing the nature of neutrinos, whether they are Dirac or Majorana particles is one of the fundamental questions we need to answer in particle physics, and is related to the conservation of lepton number. Neutrinoless double beta decay ((ββ)0ν) is the tool of choice for testing the Majorana nature of neutrinos. However, up to now, this process has not been observed, but a wide experimental effort is taking place worldwide and soon new results will become available. Different mechanisms can induce (ββ)0ν-decay and might interfere with each other, potentially leading to suppressed contributions to the decay rate. This possibility would become of great interest if upcoming neutrino mass measurements from KATRIN and cosmological observations found that mν>0.2eV but no positive signal was observed in (ββ)0ν-decay experiments. We focus on the possible interference between light Majorana neutrino exchange with other mechanisms, such as heavy sterile neutrinos and R-parity violating supersymmetric models. We show that in some cases the use of different nuclei would allow to disentangle the different contributions and allow to test the hypothesis of destructive interference. Finally, we present a model in which such interference can emerge and we discuss the range of parameters which would lead to a significant suppression of the decay rate

  15. Double Beta Decay in Xenon-136. Measuring the Neutrino-Emitting Mode and Searching for Majoron-Emitting Modes

    Energy Technology Data Exchange (ETDEWEB)

    Herrin, Steven [Stanford Univ., CA (United States)

    2013-06-01

    Observations of neutrino flavor oscillations have demonstrated that neutrinos have mass. Since the discovery of these oscillations, much progress has been made at mea- suring the neutrino mass-squared differences and lepton mixing angles that character- ize them. However, the origin and absolute scale of neutrino masses remain unknown. Unique among fermions, neutrinos can be Majorana particles, which could provide an explanation for neutrino masses. Discovery of a hypothetical process known as neutrinoless double beta decay would show that neutrinos are Majorana particles and determine the mass scale for neutrinos. The Enriched Xenon Observatory (EXO) is a series of experiments searching for the neutrinoless double beta decay of 136Xe. The first experiment, EXO-200, began operation in 2011 and makes use of 200 kg of xenon enriched to 80.6% in 136Xe. The analysis presented here makes use of data from EXO-200 to obtain a more precise measurement of the half-life for the two-neutrino-emitting mode of double beta decay than previously reported. The analysis also sets limits on the half-lives for exotic, Majoron-emitting modes of neutrinoless double beta decay. Data from EXO-200 is also used to produce a measurement of the cosmic muon flux at the WIPP under- ground site where EXO-200 is located.

  16. Search for the l-forbidden beta decay /sup 207/Tl→/sup 207/Pb(570 keV)

    International Nuclear Information System (INIS)

    We have searched for the l-forbidden beta decay of /sup 207/Tl to the first excited state of /sup 207/Pb by looking for 570-keV γ rays following the decay of /sup 207/Tl. We find a branching ratio of (2.4 +- 5.6) x 10/sup -7/ per /sup 207/Tl decay. This limit could provide a test for calculations of core polarization, meson exchange, and Δ excitation effects. We also find a branch of (0.54 +- 0.05)% for the l-forbidden M1 transition /sup 207/Pb(898,(3/2-→570,(5/2-) and measure the intensities of γ rays emitted following the decay of /sup 211/Pb

  17. Wavelet Approach to Search for Sterile Neutrinos in Tritium $\\beta$-Decay Spectra

    CERN Document Server

    Mertens, S; Korzeczek, M; Glueck, F; Groh, S; Martin, R D; Poon, A W P; Steidl, M

    2014-01-01

    Sterile neutrinos in the mass range of a few keV are candidates for both cold and warm dark matter. An ad-mixture of a heavy neutrino mass eigenstate to the electron neutrino would result in a minuscule distortion - a 'kink' - in a $\\beta$-decay spectrum. In this paper we show that a wavelet transform is a very powerful shape analysis method to detect this signature. For a tritium source strength, similar to what is expected from the KATRIN experiment, a statistical sensitivity to active-to-sterile neutrino mixing down to $\\sin^2 \\theta= 10^{-6}$ ($90\\%$ CL) can be obtained after 3 years of measurement time. It is demonstrated that the wavelet approach is largely insensitive to systematic effects that result in smooth spectral modifications. To make full use of this analysis technique a high resolution measurement (FWHM of $\\sim100$~eV) of the tritium $\\beta$-decay spectrum is required.

  18. Sensitivity of experiment on double beta decay of 150Nd search

    International Nuclear Information System (INIS)

    The possibility of using big area scintillation plates on the basis of polystyrene for creation of the detector of neutrinoless 150Nd double beta decay with sensitivity to half-life period of 1025 years is investigated. The estimations of necessary isotope mass depending on the energy resolution are demonstrated. It is shown that the given sensitivity can be realized by means of such a detector at an isotope mass about 85 kg

  19. Search for $\\beta^+$EC and ECEC processes in $^{112}$Sn and $\\beta^-\\beta^-$ decay of $^{124}$Sn to the excited states of $^{124}$Te

    CERN Document Server

    Barabash, A S; Nachab, A; Konovalov, S I; Vanyushin, I A; Umatov, V I

    2008-01-01

    Limits on $\\beta^+$EC and ECEC processes in $^{112}$Sn and on $\\beta^-\\beta^-$ decay of $^{124}$Sn to the excited states of $^{124}$Te have been obtained using a 380 cm$^3$ HPGe detector and an external source consisting of natural tin. A limit with 90% C.L. on the $^{112}$Sn half-life of $0.92\\times 10^{20}$ y for the ECEC(0$\

  20. Double beta decay experiments

    International Nuclear Information System (INIS)

    The great sensitivity of double beta decay to neutrino mass and right handed currents has motivated many new and exciting attempts to observe this elusive nuclear phenomenon directly. Experiments in operation and other coming on line in the next one or two years are expected to result in order-of-magnitude improvements in detectable half lives for both the two-neutrino and no-neutrino modes. A brief history of double beta decay experiments is presented together with a discussion of current experimental efforts, including a gas filled time projection chamber being used to study selenium-82. (author)

  1. Results of a search for 2\\beta-decay of Xe-136 with high pressure copper proportional counters in Baksan Neutrino Observatory INR RAS

    CERN Document Server

    Gavriljuk, Ju M; Kazalov, V V; Kuzminov, V V; Panasenko, S I; Ratkevich, S S; Zhantudueva, D A; Yakimenko, S P

    2011-01-01

    Search for \\beta \\beta -decay of Xe-136 with two high pressure proportional counters is carried out in Baksan Neutrino Observatory. The experiment is based on comparision of spectra measured with natural and enriched xenon. The measured halfe life is equal to T_{1/2}=5.5^{+4.6}_{-1.7} \\cdot 10^{21} yrs (67% C.L.) for \\beta \\beta 2\

  2. Searching for the Dirac nature of neutrinos: combining neutrinoless double beta decay and neutrino mass measurements

    International Nuclear Information System (INIS)

    Establishing the nature of neutrinos, whether they are Dirac or Majorana particles, is one of the fundamental questions we need to answer in particle physics as it is related to the conservation of the lepton number. Neutrinoless double beta decay (ββ0ν) is the tool of choice for testing the Majorana nature of neutrinos. Up to now, this process has not been observed, but a wide experimental effort is taking place worldwide and soon new results will become available. Different mechanisms can induce (ββ0ν) decay and might interfere with each other, potentially leading to suppressed contributions to the decay rate. This possibility would become of great interest if upcoming neutrino mass measurements from KATRIN and cosmological observations found that mν > 0.2 eV but no positive signal was observed in (ββ0ν)-decay experiments. We focus on the possible interference between light Majorana neutrino exchange with other mechanisms, such as heavy sterile neutrinos. We show that in some cases the use of different nuclei would allow the disentanglement of the different contributions and allow us to test the hypothesis of destructive interference. For example, if an exact cancellation takes place in the decay of 76Ge, 130Te is suggested to be a good candidate for testing the contribution of lepton-number violating mechanisms in ββ0ν decay, while the use of 82Se would not provide additional information. Finally, we present a model in which such interference can emerge and we discuss the range of parameters which would lead to a significant suppression of the decay rate. (authors)

  3. Neutrinoless Double Beta Decay

    CERN Document Server

    Päs, Heinrich

    2015-01-01

    We review the potential to probe new physics with neutrinoless double beta decay $(A,Z) \\to (A,Z+2) + 2 e^-$. Both the standard long-range light neutrino mechanism as well as short-range mechanisms mediated by heavy particles are discussed. We also stress aspects of the connection to lepton number violation at colliders and the implications for baryogenesis.

  4. Search for neutrinoless double-beta decay of Ge-76 with GERDA

    OpenAIRE

    Knoepfle, Karl-Tasso

    2008-01-01

    GERDA, the GERmanium Detector Array experiment, is a new double beta-decay experiment which is currently under construction in the INFN National Gran Sasso Laboratory (LNGS), Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of GERDA is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than re...

  5. Search for neutrinoless double-beta decay of Ge-76 with GERDA

    CERN Document Server

    Knoepfle, Karl-Tasso

    2008-01-01

    GERDA, the GERmanium Detector Array experiment, is a new double beta-decay experiment which is currently under construction in the INFN National Gran Sasso Laboratory (LNGS), Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of GERDA is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments. The paper discusses motivation, physics reach, design and status of construction of GERDA, and presents some R&D results.

  6. Beta and muon decays

    International Nuclear Information System (INIS)

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  7. The Potential of Hybrid Pixel Detectors in the Search for the Neutrinoless Double-Beta Decay of 116Cd

    OpenAIRE

    Mykhaylo Filipenko; Stefan Geißelsöder; Jürgen Durst; Thomas Gleixner; Thilo Michel

    2013-01-01

    We investigated the potential of the energy resolving hybrid pixel detector Timepix contacted to a CdTe sensor layer for the search for the neutrinoless double-beta decay of Cd. We found that a CdTe sensor layer with 3 mm thickness and 165 μm pixel pitch is optimal with respect to the effective Majorana neutrino mass (mββ) sensitivity. In simulations, we were able to demonstrate a possible reduction of the background level caused by single electrons by approximately 75% at a specific backgrou...

  8. Cryogen-free dilution refrigerator for bolometric search of neutrinoless double beta decay (0 ) in 124Sn

    Indian Academy of Sciences (India)

    V Singh; S Mathimalar; N Dokania; V Nanal; R G Pillay; S Ramakrishnan

    2013-10-01

    The feasibility study for searching neutrinoless double beta decay in 124Sn using cryogenic bolometer has been initiated. For this purpose, a custom-built cryogen-free dilution refrigerator, having a large cooling power of 1.4 mW at 120 mK, has been installed at TIFR, India. This paper describes the design, installation and performance of a cryogen-free dilution refrigerator (CFDR-1200). The performance of CFDR-1200 has been analysed using Takano’s model developed for conventional (wet) dilution refrigerators.

  9. Technique for 136Xe double beta decay search by means of wall-less high pressure proportional counters

    International Nuclear Information System (INIS)

    The methodology of the experiment for search of the double beta-decay of the 136Xe isotope through the multiple thread wall-less proportional high-pressure counters is described. The characteristics of the counters and low-background facility are presented. The methodology for decreasing the counters background in the 0.5-3.5 MeV energies area through discrimination events by a coordinate along the anode thread and by the pulses growth-time is considered. The results of the background components analysis by the events type and source position are presented

  10. Search for double beta decay with HPGe detectors at the Gran Sasso underground laboratory

    CERN Document Server

    Chkvorets, Oleg

    2008-01-01

    Neutrinoless double-beta decay is practically the only way to establish the Majorana nature of the neutrino mass and its decay rate provides a probe of an effective neutrino mass. Double beta experiments are long-running underground experiments with specific challenges concerning the background reduction and the long term stability. These problems are addressed in this work for the Heidelberg-Moscow (HdM), GENIUS Test Facility (TF) and GERDA experiments. The HdM experiment collected data with enriched 76Ge high purity (HPGe) detectors from 1990 to 2003. An improved analysis of HdM data is presented, exploiting new calibration and spectral shape measurements with the HdM detectors. GENIUS-TF was a test-facility that verified the feasibility of using bare germanium detectors in liquid nitrogen. The first year results of this experiment are discussed. The GERDA experiment has been designed to further increase the sensitivity by operating bare germanium detectors in a high purity cryogenic liquid, which simultane...

  11. Search for neutrinoless double beta decay of Ge-76 with the GERmanium Detector Array '' GERDA ''

    International Nuclear Information System (INIS)

    The study of neutrinoless double beta decay (DBD) is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of neutrinoless DBD would not only establish the Majorana nature of the neutrino but also represent a determination of its effective mass if the nuclear matrix element is given. So far, the most sensitive results have been obtained with Ge-76, and the group of Klapdor-Kleingrothaus has made a claim of discovery. Future experiments have to reduce radioactive backgrounds to increase the sensitivity. '' GERDA '' is a new double beta-decay experiment which is currently under construction in the INFN Gran Sasso National Laboratory, Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of '' GERDA '' is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments, increasing the sensitive mass and reaching exposure of 100 kg yr. It be will discuss design, physics reach, and status of construction of '' GERDA '', and present results from various R efforts including long term stability of bare Ge diodes in cryogenic liquids, material screening, cryostat performance, detector segmentation, cryogenic precision electronics, safety aspects, and Monte Carlo simulations. (author)

  12. Status and future prospect of 48Ca double beta decay search in CANDLES

    Science.gov (United States)

    Iida, T.; Nakajima, K.; Ajimura, S.; Batpurev, T.; Chan, W. M.; Fushimi, K.; Hazama, R.; Kakubata, H.; Khai, B. T.; Kishimoto, T.; Li, X.; Maeda, T.; Masuda, A.; Matsuoka, K.; Morishita, K.; Nakatani, N.; Nomachi, M.; Noshiro, S.; Ogawa, I.; Ohata, T.; Osumi, H.; Suzuki, K.; Tamagawa, Y.; Tesuno, K.; Trang, V. T. T.; Uehara, T.; Umehara, S.; Yoshida, S.

    2016-05-01

    The observation of neutrino-less double beta decay (0vßß) would be the most practical way to prove the Majorana nature of the neutrino and lepton number violation. CANDLES studies 48Ca double beta decay using CaF2 scintillator. The main advantage of 48Ca is that it has the highest Q-value (4.27 MeV) among all the isotope candidates for 0vßß. The CANDLES III detector is currently operating with 300kg CaF2 crystals in the Kamioka underground observatory, Japan. In 2014, a detector cooling system and a magnetic cancellation coil was installed with the aim to increase light emission of CaF2 scintillator and photo-electron collection efficiency of the photo-multipliers. After this upgrade, light yield was increased to 1000 p.e./MeV which is 1.6 times larger than before. According to data analysis and simulation, main background source in CANDLES is turned out to be high energy external gamma-ray originating neutron capture on the surrounding materials, so called (n,γ). Upgrading the detector by installing neutron and gamma-ray shield can reduce the remaining main backgrounds by two order magnitude. In this report, we discuss the detail of (n,γ) and background reduction by additional shielding.

  13. Symmetry violations in nuclear and neutron $\\beta$ decay

    CERN Document Server

    Vos, K K; Timmermans, R G E

    2015-01-01

    The role of $\\beta$ decay as a low-energy probe of physics beyond the Standard Model is reviewed. Traditional searches for deviations from the Standard Model structure of the weak interaction in $\\beta$ decay are discussed in the light of constraints from the LHC and the neutrino mass. Limits on the violation of time-reversal symmetry in $\\beta$ decay are compared to the strong constraints from electric dipole moments. Novel searches for Lorentz symmetry breaking in the weak interaction in $\\beta$ decay are also included, where we discuss the unique sensitivity of $\\beta$ decay to test Lorentz invariance. We end with a roadmap for future $\\beta$-decay experiments.

  14. GERDA, searching for the neutrinoless double beta decay in 76Ge

    International Nuclear Information System (INIS)

    The observation of the neutrinoless double beta decay (0ν2β) would verify the commonly assumed Majorana nature of the neutrino. For a Majorana neutrino this process is possible as the neutrino oscillations proof their non-vanishing mass. Consequently, one needs to extended the Standard Model as the lepton number conservation is violated. Discovery of the 0ν2β decay could possibly resolve the hierarchy problem and set the mass scale for neutrinos. 0ν2β decay is a very rare process (T1/2> 1025 y) which therefore requires extremely low background experimental conditions. 76Ge is well suited for the calorimetric approach where source and detector are identical. The GERDA collaboration has available ∝18 kg of enriched detectors from the previous 0ν2β experiments HdM and IGEX. In contrast to these the GERDA setup relies on a different concept of background suppression: operating the bare diodes in lAr with a large water buffer around, all located at the underground laboratory LNGS. Only screened high purity material after screening is used. The setup will be completed and the measurements start in 2009.

  15. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    CERN Document Server

    Nakajima, Y; Matis, H S; Nygren, D; Oliveira, C; Renner, J

    2015-01-01

    Liquid Xe TPCs are among the most popular choices for double beta decay and WIMP dark matter searches. Gaseous Xe has intrinsic advantages when compared to Liquid Xe, specifically, tracking capability and better energy resolution for double beta decay searches. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which are expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). These features may provide better tracking and energy resolution for double-beta decay searches. They are also expected to enhance columnar recombination for nuclear recoils, which can be used for searches for WIMP dark matter with directional sensitivity. We constructed a test ionization chamber and successfully measured scintillation and ionization yields at high precision with various Xe and TMA mixtu...

  16. Weak decays and double beta decay

    International Nuclear Information System (INIS)

    Work to measure the Σ+ 0 degree differential cross section in the reaction K-p → Σ+π- at several incident K- momenta between 600 and 800 MeV/c as well as the asymmetries in the decays of polarized Σ+'s into protons and neutral pions and of polarized Σ-'s into neutrons and negative pions in collaboration with experimenters from Yale, Brookhaven, and the University of Pittsburgh (Brookhaven experiment 702) has been completed. Data from this experiment is currently being analyzed at Yale. Work is currently underway to develop and construct an experiment to search for neutrinoless double beta decay in thin foils of Mo100 in collaboration with experimenters from Lawrence Berkeley Laboratory. Development work on the solid state silicon detectors should be complete in the next six months and construction should e well underway within the next year

  17. Beta decay for pedestrians

    CERN Document Server

    Lipkin, Harry Jeannot

    1962-01-01

    The ""pedestrian approach"" was developed to describe some essentially simple experimental results and their theoretical implications in plain language. In this graduate-level text, Harry J. Lipkin presents simply, but without oversimplification, the aspects of beta decay that can be understood without reference to the formal theory; that is, the reactions that follow directly from conservation laws and elementary quantum mechanics.The pedestrian treatment is neither a substitute for a complete treatment nor a watered-down version.

  18. Lucifer:. AN Experimental Breakthrough in the Search for Neutrinoless Double Beta Decay

    Science.gov (United States)

    Dafinei, I.; Ferroni, F.; Giuliani, A.; Pirro, S.; Previtali, E.

    2011-03-01

    LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) is a new project for the study of neutrinoless Double Beta Decay, based on the technology of the scintillating bolometers. These devices promise a very efficient rejection of the a background, opening the way to a virtually background-free experiment if candidates with a transition energy higher than 2615 keV are investigated. The baseline candidate for LUCIFER is 82Se. This isotope will be embedded in ZnSe crystals grown with enriched selenium and operated as scintillating bolometers in a low-radioactivity underground dilution refrigerator. In this paper, the LUCIFER concept will be introduced and the sensitivity and the prospects related to this project will be discussed.

  19. LUCIFER, a potentially background-free approach to the search for neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Nones, C. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Bat. 108 Orsay Campus - Orsay (France)

    2011-08-15

    LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) is a new project for the study of neutrinoless Double Beta Decay, based on the technology of scintillating bolometers. These devices promise a very efficient rejection of the alpha background, opening the way to a virtual background-free experiment if candidates with a transition energy higher than 2615 keV are investigated. The baseline candidate for LUCIFER is {sup 82}Se. This isotope will be embedded in ZnSe crystals grown with enriched selenium and operated as scintillating bolometers in a low-radioactivity underground dilution refrigerator. In this paper, the LUCIFER concept will be introduced. The sensitivity and the very promising prospects related to this project will be discussed.

  20. LUCIFER, a potentially background-free approach to the search for neutrinoless double beta decay

    Science.gov (United States)

    Nones, C.; Lucifer Group

    2011-08-01

    LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) is a new project for the study of neutrinoless Double Beta Decay, based on the technology of scintillating bolometers. These devices promise a very efficient rejection of the alpha background, opening the way to a virtual background-free experiment if candidates with a transition energy higher than 2615 keV are investigated. The baseline candidate for LUCIFER is 82Se. This isotope will be embedded in ZnSe crystals grown with enriched selenium and operated as scintillating bolometers in a low-radioactivity underground dilution refrigerator. In this paper, the LUCIFER concept will be introduced. The sensitivity and the very promising prospects related to this project will be discussed.

  1. LUCIFER, a potentially background-free approach to the search for neutrinoless double beta decay

    International Nuclear Information System (INIS)

    LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) is a new project for the study of neutrinoless Double Beta Decay, based on the technology of scintillating bolometers. These devices promise a very efficient rejection of the alpha background, opening the way to a virtual background-free experiment if candidates with a transition energy higher than 2615 keV are investigated. The baseline candidate for LUCIFER is 82Se. This isotope will be embedded in ZnSe crystals grown with enriched selenium and operated as scintillating bolometers in a low-radioactivity underground dilution refrigerator. In this paper, the LUCIFER concept will be introduced. The sensitivity and the very promising prospects related to this project will be discussed.

  2. LUCIFER: a scintillating bolometer array for the search of neutrinoless double beta decay

    International Nuclear Information System (INIS)

    In spite of the high precision achieved in the field of neutrino oscillations, there are some fundamental questions that can not be addressed by a study of ths phenomenon. We do not know in fact the absolute mass of neutrino and weather it is a Dirac or a Majorana particle. The LUCIFER experiment, financed by the ERC-AdG, will play an important role in this field. This project aims to push beyond the actual technological limits the possibility of observation of the Neutrinoless Double Beta Decay (0νDBD). The detection of this extremely rare decay would indeed demonstrate that neutrino is a Majorana particle and, at the same time, would allow to set its absolute mass scale. LUCIFER will study the 0νDBD do 82Se through ZnSe scintillating bolometers. Thanks to the simultaneous red-out of the heat and light produced by an interaction in the crystal, the background rate in the region of interest will be lower than 10-3 counts/kg/keV/years. In the following, the expected performance of LUCIFER are discussed.

  3. Background discrimination in neutrinoless double beta decay search with $\\textrm{TeO}_{2}$ bolometers using Neganov-Luke amplified cryogenic light detectors

    CERN Document Server

    Willers, M; Giuliani, A; Gütlein, A; Münster, A; Lanfranchi, J -C; Oberauer, L; Potzel, W; Roth, S; Schönert, S; Sivers, M v; Wawoczny, S; Zöller, A

    2014-01-01

    We demonstrate that Neganov-Luke amplified cryogenic light detectors with Transition Edge Sensor read-out can be applied for the background suppression in cryogenic experiments searching for the neutrinoless double beta decay of $^{130}\\text{Te}$ with $\\text{TeO}_{2}$ based bolometers. Electron and gamma induced events can be discriminated from $\\alpha$ events by detecting the Cherenkov light produced by the $\\beta$ particles emitted in the decay. We use the Cherenkov light produced by events in the full energy peak of $^{208}\\text{Tl}$ and by events from a $^{147}\\text{Sm}$ source to show that at the Q-value of the neutrinoless double beta decay of $^{130}\\text{Te}$ ($Q_{\\beta \\beta} = 2.53 \\,\\text{MeV}$), a separation of $e^{-}/\\gamma$ events from $\\alpha$ events can be achieved on an event-by-event basis with practically no reduction in signal acceptance.

  4. A first search of excited states double beta and double electron capture decays of {sup 110}Pd and {sup 102}Pd

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, B., E-mail: Bjoern.Lehnert@mailbox.tu-dresden.de [Inst. fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, 01069 Dresden (Germany); Zuber, K., E-mail: Zuber@physik.tu-dresden.de [Inst. fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, 01069 Dresden (Germany)

    2011-11-03

    A search for double beta decays of the palladium isotopes {sup 110}Pd and {sup 102}Pd into excited states of their daughters was performed and first half-life limits for the 2{nu}{beta}{beta} and 0{nu}{beta}{beta} decays into first excited 0{sup +} and 2{sup +} states of 5.89x10{sup 19} yr and 4.40x10{sup 19} yr (95% CL) for the {sup 110}Pd decay were obtained. The half-life limits for the corresponding double electron capture transition of {sup 102}Pd are 7.64x10{sup 18} yr and 2.68x10{sup 18} yr (95% CL) respectively. These are the first measurements for {sup 102}Pd.

  5. Review of modern double beta decay experiments

    International Nuclear Information System (INIS)

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈mν〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈gee〉 < 1.3 · 10−5) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to 〈mν〉 at the level of ∼ 0.01-0.1 eV are discussed

  6. Review of modern double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, A. S., E-mail: barabash@itep.ru [Institute of Theoretical and Experimental Physics (NRC ”Kurchatov Institute”), B. Cheremushkinskaya 25, Moscow (Russian Federation)

    2015-10-28

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T{sub 1/2}(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈m{sub ν}〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈g{sub ee}〉 < 1.3 · 10{sup −5}) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to 〈m{sub ν}〉 at the level of ∼ 0.01-0.1 eV are discussed.

  7. Review of modern double beta decay experiments

    Science.gov (United States)

    Barabash, A. S.

    2015-10-01

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( at the level of ˜ 0.01-0.1 eV are discussed.

  8. Search for Neutrinoless Double Beta Decay of 76Ge with the GERmanium Detector Array "gerda"

    Science.gov (United States)

    Garfagnini, Alberto

    2011-10-01

    The study of neutrinoless double beta decay (DBD) is the only presently known approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of neutrinoless DBD would not only establish the Majorana nature of the neutrino but also represent a determination of its effective mass if the nuclear matrix element is given. So far, the most sensitive results have been obtained with 76Ge, and the group of Klapdor-Kleingrothaus has made a claim of discovery. Future experiments have to reduce radioactive backgrounds to increase the sensitivity. GERDA is a new DBD experiment which is currently under construction in the INFN Gran Sasso National Laboratory, Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in 76Ge - in high purity liquid argon supplemented by a water shield. The aim of GERDA is to scrutinize the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments, increasing the sensitive mass and reaching an exposure of 100 kg yr. The paper will discuss design, physics reach, and status of construction of GERDA.

  9. Signal modeling of high-purity Ge detectors with a small read-out electrode and application to {sup 76}Ge double beta decay search

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo; Schoenert, Stefan [Lehrstuhl fuer Experimentelle Physik und Astroteilchenphysik E15, Physikdepartment, Technischen Universitaet, Muenchen (Germany); Budjas, Dusan [Max-Planck-Institut fuer Kernphysik (Germany); Ur, Calin A. [INFN, Padova (Italy)

    2011-07-01

    The GERDA experiment searches for neutrinoless double beta (0{nu}{beta}{beta}) decay of {sup 76}Ge using high-purity germanium detectors enriched in {sup 76}Ge. The analysis of the time structure of the signal provides a powerful tool to identify 0{nu}{beta}{beta} decay events and to discriminate them from background. The enhanced pulse shape discrimination capabilities of Broad Energy Germanium (BE Ge) detectors with a small read-out electrode have been recently reported. The full simulation of a thick-window BE Ge detector response including the Monte Carlo modeling of radiation interaction and subsequent signal shape calculation is discussed. A pulse shape discrimination method based on a cut on the ratio (A/E) between the maximum current signal amplitude (A) and the event energy (E) applied to the simulated data shows quantitative agreement with the experimental data acquired with calibration sources. The simulation has been used to study the survival probabilities of decays which occur inside the detector volume and which are difficult to assess experimentally. This includes the cosmogenic radio-isotopes {sup 68}Ge and {sup 60}Co and the 0{nu}{beta}{beta} decay of {sup 76}Ge.

  10. Searches for massive neutrino emission in {sup 14}C beta and {sup 55}Fe electron-capture decays

    Energy Technology Data Exchange (ETDEWEB)

    Wietfeldt, F.E. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1994-05-01

    In 1985 Simpson reported evidence for the emission of a 17 keV mass neutrino in a small fraction of tritium beta decays. An experimental controversy ensued in which a number of both positive and negative results were reported. The beta spectrum of {sup 14}C was collected in a unique {sup 14}C-doped planar germanium detector and a distortion was observed that initially confirmed Simpson`s result. Further tests linked this distortion to a splitting of the collected charge between the central detector and the surrounding guard ring in a fraction of the events. A second {sup 14}C measurement showed no evidence for emission of a 17 keV mass neutrino. In a related experiment, a high statistics electron-capture internal-bremsstrahlung photon spectrum of {sup 55}Fe was collected with a coaxial germanium detector. A local search for departures from a smooth shape near the endpoint was performed, using a second-derivative technique. An upper limit of 0.65% (95% C.L.) for the mixing Of a neutrino in the mass range 5--25 keV was established. The upper limit on the mixing of a 17 keV mass neutrino was 0.14% (95% C.L.).

  11. LUMINEU: a search for neutrinoless double beta decay based on ZnMoO$_4$ scintillating bolometers

    CERN Document Server

    Armengaud, E; Augier, C; Benoit, A; Berge, L; Boiko, R S; Bergmann, T; Blumer, J; Broniatowski, A; Brudanin, V; Camus, P; Cazes, A; Chapellier, M; Charlieux, F; Chernyak, D M; Coron, N; Coulter, P; Danevich, F A; de Boissiere, T; Decourt, R; De Jesus, M; Devoyon, L; Drillien, A -A; Dumoulin, L; Eitel, K; Enss, C; Filosofov, D; Fleischmann, A; Foerster, N; Fourches, N; Gascon, J; Gastaldo, L; Gerbier, G; Giuliani, A; Gray, D; Gros, M; Hehn, L; Henry, S; Herve, S; Heuermann, G; Humbert, V; Ivanov, I M; Juillard, A; Kefelian, C; Kleifges, M; Kluck, H; Kobychev, V V; Koskas, F; Kozlov, V; Kraus, H; Kudryavtsev, V A; Sueur, H Le; Loidl, M; Magnier, P; Makarov, E P; Mancuso, M; de Marcillac, P; Marnieros, S; Marrache-Kikuchi, C; Menshikov, A; Nasonov, S G; Navick, X -F; Nones, C; Olivieri, E; Pari, P; Paul, B; Penichot, Y; Pessina, G; Piro, M C; Plantevin, O; Poda, D V; Redon, T; Robinson, M; Rodrigues, M; Rozov, S; Sanglard, V; Schmidt, B; Shlegel, S Scorza V N; Siebenborn, B; Strazzer, O; Tcherniakhovski, D; Tenconi, M; Torres, L; Tretyak, V I; Vagneron, L; Vasiliev, Ya V; Velazquez, M; Viraphong, O; Walker, R J; Weber, M; Yakushev, E; Zhang, X; Zhdankov, V N

    2016-01-01

    The LUMINEU is designed to investigate the possibility to search for neutrinoless double beta decay in $^{100}$Mo by means of a large array of scintillating bolometers based on ZnMoO$_4$ crystals enriched in $^{100}$Mo. High energy resolution and relatively fast detectors, which are able to measure both the light and the heat generated upon the interaction of a particle in a crystal, are very promising for the recognition and rejection of background events. We present the LUMINEU concepts and the experimental results achieved aboveground and underground with large-mass natural and enriched crystals. The measured energy resolution, the $\\alpha/\\beta$ discrimination power and the radioactive internal contamination are all within the specifications for the projected final LUMINEU sensitivity. Simulations and preliminary results confirm that the LUMINEU technology can reach zero background in the region of interest (around 3 MeV) with exposures of the order of hundreds kg$\\times$years, setting the bases for a nex...

  12. LUMINEU: a search for neutrinoless double beta decay based on ZnMoO4 scintillating bolometers

    Science.gov (United States)

    Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Benoît, A.; Boiko, L. Bergé S.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; Coron, N.; Coulter, P.; Danevich, F. A.; de Boissiére, T.; Decourt, R.; De Jesus, M.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Eitel, K.; Enss, C.; Filosofov, D.; Fleischmann, A.; Foerster, N.; Fourches, N.; Gascon, J.; Gastaldo, L.; Gerbier, G.; Giuliani, A.; Gray, D.; Gros, M.; Hehn, L.; Henry, S.; Hervé, S.; Heuermann, G.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kéfélian, C.; Kleifges, M.; Kluck, H.; Kobychev, V. V.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le Sueur, H.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Menshikov, A.; Nasonov, S. G.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Penichot, Y.; Pessina, G.; Piro, M. C.; Plantevin, O.; Poda, D. V.; Redon, T.; Robinson, M.; Rodrigues, M.; Rozov, S.; Sanglard, V.; Schmidt, B.; Scorza, S.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vagneron, L.; Vasiliev, Ya V.; Velazquez, M.; Viraphong, O.; Walker, R. J.; Weber, M.; Yakushev, E.; Zhang, X.; Zhdankov, V. N.

    2016-05-01

    The LUMINEU is designed to investigate the possibility to search for neutrinoless double beta decay in 100 Mo by means of a large array of scintillating bolometers based on ZnMoO4 crystals enriched in 100 Mo. High energy resolution and relatively fast detectors, which are able to measure both the light and the heat generated upon the interaction of a particle in a crystal, are very promising for the recognition and rejection of background events. We present the LUMINEU concepts and the experimental results achieved aboveground and underground with large-mass natural and enriched crystals. The measured energy resolution, the α/β discrimination power and the radioactive internal contamination are all within the specifications for the projected final LUMINEU sensitivity. Simulations and preliminary results confirm that the LUMINEU technology can reach zero background in the region of interest (around 3 MeV) with exposures of the order of hundreds kgxyears, setting the bases for a next generation 0v2β decay experiment capable to explore the inverted hierarchy region of the neutrino mass pattern.

  13. Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge-76

    International Nuclear Information System (INIS)

    The GERDA experiment searches for the neutrinoless double beta decay of 76Ge using high-purity germanium detectors enriched in 76Ge. The analysis of the signal time structure provides a powerful tool to identify neutrinoless double beta decay events and to discriminate them from gamma-ray induced backgrounds. Enhanced pulse shape discrimination capabilities of Broad Energy Germanium detectors with a small read-out electrode have been recently reported. This paper describes the full simulation of the response of such a detector, including the Monte Carlo modeling of radiation interaction and subsequent signal shape calculation. A pulse shape discrimination method based on the ratio between the maximum current signal amplitude and the event energy applied to the simulated data shows quantitative agreement with the experimental data acquired with calibration sources. The simulation has been used to study the survival probabilities of the decays which occur inside the detector volume and are difficult to assess experimentally. Such internal decay events are produced by the cosmogenic radio-isotopes 68Ge and 60Co and the neutrinoless double beta decay of 76Ge. Fixing the experimental acceptance of the double escape peak of the 2.614 MeV photon to 90%, the estimated survival probabilities at Qββ = 2.039 MeV are (86±3)% for 76Ge neutrinoless double beta decays, (4.5±0.3)% for the 68Ge daughter 68Ga, and (0.9+0.4-0.2)% for 60Co decays.

  14. Search for $\\beta$-transitions with the lowest decay energy for a determination of the neutrino mass

    CERN Multimedia

    From a variety of $\\beta$-transitions only those with decay energies of a few keV and smaller are considered suitable for a determination of the neutrino mass on a sub-eV level. The decay energy of a transition can be very small, if, e.g., in an allowed $\\beta$-decay or electron-capture transition, a nuclear excited state of the daughter nuclide is populated whose energy is very close to the mass difference of the transition nuclides. Investigation of these transitions can also be useful for the assessment of a validity of the current $\\beta$-decay theory in the region of vanishingly small decay energies. The authors of this proposal have found several such $\\beta$-transitions whose decay energies are expected to be extremely small. In order to assess the suitability of these $\\beta$-transitions for the determination of the neutrino mass, measurements of the mass differences of the transition nuclides must be carried out with a sub-keV uncertainty. Presently, only high-precision Penning-trap mass spectrometry...

  15. Challenges in Double Beta Decay

    Directory of Open Access Journals (Sweden)

    Oliviero Cremonesi

    2014-01-01

    Full Text Available In the past ten years, neutrino oscillation experiments have provided the incontrovertible evidence that neutrinos mix and have finite masses. These results represent the strongest demonstration that the electroweak Standard Model is incomplete and that new Physics beyond it must exist. In this scenario, a unique role is played by the Neutrinoless Double Beta Decay searches which can probe lepton number conservation and investigate the Dirac/Majorana nature of the neutrinos and their absolute mass scale (hierarchy problem with unprecedented sensitivity. Today Neutrinoless Double Beta Decay faces a new era where large-scale experiments with a sensitivity approaching the so-called degenerate-hierarchy region are nearly ready to start and where the challenge for the next future is the construction of detectors characterized by a tonne-scale size and an incredibly low background. A number of new proposed projects took up this challenge. These are based either on large expansions of the present experiments or on new ideas to improve the technical performance and/or reduce the background contributions. In this paper, a review of the most relevant ongoing experiments is given. The most relevant parameters contributing to the experimental sensitivity are discussed and a critical comparison of the future projects is proposed.

  16. Neutrinoless double beta decay from lattice QCD

    CERN Document Server

    Nicholson, Amy; Chang, Chia Cheng; Clark, M A; Joo, Balint; Kurth, Thorsten; Rinaldi, Enrico; Tiburzi, Brian; Vranas, Pavlos; Walker-Loud, Andre

    2016-01-01

    While the discovery of non-zero neutrino masses is one of the most important accomplishments by physicists in the past century, it is still unknown how and in what form these masses arise. Lepton number-violating neutrinoless double beta decay is a natural consequence of Majorana neutrinos and many BSM theories, and many experimental efforts are involved in the search for these processes. Understanding how neutrinoless double beta decay would manifest in nuclear environments is key for understanding any observed signals. In these proceedings we present an overview of a set of one- and two-body matrix elements relevant for experimental searches for neutrinoless double beta decay, describe the role of lattice QCD calculations, and present preliminary lattice QCD results.

  17. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    Science.gov (United States)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Nygren, D.; Oliveira, C.; Renner, J.

    2015-11-01

    Liquid Xe TPCs are among the most popular choices for double beta decay and WIMP dark matter searches. Gaseous Xe has intrinsic advantages when compared to Liquid Xe, specifically, tracking capability and better energy resolution for double beta decay searches. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which are expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). These features may provide better tracking and energy resolution for double-beta decay searches. They are also expected to enhance columnar recombination for nuclear recoils, which can be used for searches for WIMP dark matter with directional sensitivity. We constructed a test ionization chamber and successfully measured scintillation and ionization yields at high precision with various Xe and TMA mixtures and pressures. We observed the Penning effect and an increase in recombination with the addition of TMA. However, many undesired features for dark matter searches, such as strong suppression of the scintillation light and no sign of recombination light, were also found. This work has been carried out within the context of the NEXT collaboration.

  18. Search for double beta decay of $^{116}$Cd with enriched $^{116}$CdWO$_4$ crystal scintillators (Aurora experiment)

    CERN Document Server

    Danevich, F A; Belli, P; Bernabei, R; Cappella, F; Caracciolo, V; Cerulli, R; Chernyak, D M; d'Angelo, S; Incicchitti, A; Kobychev, V V; Konovalov, S I; Laubenstein, M; Mokina, V M; Poda, D V; Polischuk, O G; Shlegel, V N; Tretyak, V I; Umatov, V I

    2016-01-01

    The Aurora experiment to investigate double beta decay of $^{116}$Cd with the help of 1.162 kg cadmium tungstate crystal scintillators enriched in $^{116}$Cd to 82\\% is in progress at the Gran Sasso Underground Laboratory. The half-life of $^{116}$Cd relatively to the two neutrino double beta decay is measured with the highest up-to-date accuracy $T_{1/2}=(2.62\\pm0.14)\\times10^{19}$ yr. The sensitivity of the experiment to the neutrinoless double beta decay of $^{116}$Cd to the ground state of $^{116}$Sn is estimated as $T_{1/2} \\geq 1.9\\times10^{23}$ yr at 90\\% CL, which corresponds to the effective Majorana neutrino mass limit $\\langle m_{\

  19. Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge-76

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M; Schoenert, S [Physikdepartment E15, Technischen Universitaet Muenchen, Muenchen (Germany); Ur, C A; Brugnera, R; Garfagnini, A [INFN Padova, Padova (Italy); Budjas, D [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bellotti, E; Cattadori, C M [INFN Milano Bicocca, Milano (Italy); Vacri, A di; Pandola, L, E-mail: matteo.agostini@ph.tum.de [INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2011-03-01

    The GERDA experiment searches for the neutrinoless double beta decay of {sup 76}Ge using high-purity germanium detectors enriched in {sup 76}Ge. The analysis of the signal time structure provides a powerful tool to identify neutrinoless double beta decay events and to discriminate them from gamma-ray induced backgrounds. Enhanced pulse shape discrimination capabilities of Broad Energy Germanium detectors with a small read-out electrode have been recently reported. This paper describes the full simulation of the response of such a detector, including the Monte Carlo modeling of radiation interaction and subsequent signal shape calculation. A pulse shape discrimination method based on the ratio between the maximum current signal amplitude and the event energy applied to the simulated data shows quantitative agreement with the experimental data acquired with calibration sources. The simulation has been used to study the survival probabilities of the decays which occur inside the detector volume and are difficult to assess experimentally. Such internal decay events are produced by the cosmogenic radio-isotopes {sup 68}Ge and {sup 60}Co and the neutrinoless double beta decay of {sup 76}Ge. Fixing the experimental acceptance of the double escape peak of the 2.614 MeV photon to 90%, the estimated survival probabilities at Q{sub {beta}{beta}} = 2.039 MeV are (86{+-}3)% for {sup 76}Ge neutrinoless double beta decays, (4.5{+-}0.3)% for the {sup 68}Ge daughter {sup 68}Ga, and (0.9{sup +0.4}{sub -0.2})% for {sup 60}Co decays.

  20. Energy Calibration for a Sensitive Search for Neutrinoless Double-Beta Decay: Using the Cuoricino Experience to Prepare for CUORE

    Science.gov (United States)

    Ejzak, Larissa M.

    Neutrinos, which were long believed to be massless particles, are now known to have a tiny finite mass. A thorough understanding of the properties of their masses may provide vital clues to the history of the development of the universe as we know it. An intensive experimental search is underway for evidence of a Majorana mass component to the neutrino via many current and upcoming detectors seeking to observe the rare nuclear process neutrinoless double-beta decay (0nubetabeta). These detectors must be able to achieve very low backgrounds and a precise understanding of their energy scales. This paper presents the experimental approach of one of these 0nubetabeta experiments, the Cryogenic Underground Observatory for Rare Events (CUORE), and the attendant challenges of achieving excellent energy calibration performance in the detector from the perspectives of both hardware design and analysis. Experience and data from Cuoricino, the predecessor of CUORE, have been extensively leveraged to prepare optimized operational procedures for CUORE. The expected sensitivity profile of CUORE as a function of time is also presented and compared with those of other leading 0nubetabeta experiments.

  1. Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0νββ) search

    Science.gov (United States)

    Freitas, E. D. C.; Monteiro, C. M. B.; Ball, M.; Gómez-Cadenas, J. J.; Lopes, J. A. M.; Lux, T.; Sánchez, F.; dos Santos, J. M. F.

    2010-02-01

    The search for neutrinoless double beta decay (0νββ) is an important topic in contemporary physics with many active experiments. New projects are planning to use high-pressure xenon gas as both source and detection medium. The secondary scintillation processes available in noble gases permit large amplification with negligible statistical fluctuations, offering the prospect of energy resolution approaching the Fano factor limit. This Letter reports results for xenon secondary scintillation yield, at room temperature, as a function of electric field in the gas scintillation gap for pressures ranging from 2 to 10 bar. A Large Area Avalanche Photodiode (LAAPD) collected the VUV secondary scintillation produced in the gas. X-rays directly absorbed in the LAAPD are used as a reference for determining the number of charge carriers produced by the scintillation pulse and, hence, the number of photons impinging the LAAPD. The number of photons produced per drifting electron and per kilovolt, the so-called scintillation amplification parameter, displays a small increase with pressure, ranging from 141±6 at 2 bar to 170±10 at 8 bar. In our setup, this parameter does not increase above 8 bar due to non-negligible electron attachment. The results are in good agreement with those presented in the literature in the 1 to 3 bar range. The increase of the scintillation amplification parameter with pressure for high gas densities has been also observed in former work at cryogenic temperatures.

  2. Performance of a large TeO2 crystal as a cryogenic bolometer in searching for neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Bolometers are ideal devices in the search for neutrinoless Double Beta Decay (0ν DBD). Enlarging the mass of individual detectors would simplify the construction of a large experiment, but would also decrease the background per unit mass induced by α-emitters located close to the surfaces and background arising from external and internal γ's. We present the very promising results obtained with a 2.13 kg TeO2 crystal. This bolometer, cooled down to a temperature of 10.5 mK in a dilution refrigerator located deep underground in the Gran Sasso National Laboratories, represents the largest thermal detector ever operated. The detector exhibited an energy resolution spanning a range from 3.9 keV (at 145 keV) to 7.8 keV (at the 2615 γ-line of 208Tl) FWHM. We discuss the decrease in the background per unit mass that can be achieved increasing the mass of a bolometer.

  3. A Search for $0^+$ States in $^{50}$Cr: Implications for the Superallowed $\\beta$-decay of $^{50}$Mn

    CERN Document Server

    Leach, K G; Ball, G C; Bender, P C; Bildstein, V; Brown, B A; Burbadge, C; Faestermann, T; Hadinia, B; Holt, J D; Laffoley, A T; Jamieson, D S; Jigmeddorj, B; Radich, A J; Rand, E T; Stroberg, S R; Svensson, C E; Towner, I S; Wirth, H -F

    2016-01-01

    A $^{52}$Cr$(p,t)$$^{50}$Cr two-neutron pickup reaction was performed using the Q3D magnetic spectrograph at the Maier-Leibnitz-Laboratorium in Garching, Germany. Excited states in $^{50}$Cr were observed up to an excitation energy of 5.3 MeV. Despite significantly increased sensitivity and resolution over previous work, no evidence of the previously assigned first excited $0^+$ state was found. As a result, the $0^+_2$ state is reassigned at an excitation energy of $E_x=3895.0(5)$ keV in $^{50}$Cr. This reassignment directly impacts direct searches for a non-analogue Fermi $\\beta^+$ decay branch in $^{50}$Mn. These results also show better systematic agreement with the theoretical predictions for the $0^+$ state spectrum in $^{50}$Cr using the same formalism as the isospin-symmetry-breaking correction calculations for superallowed nuclei. The experimental data are also compared to $ab$-$initio$ shell-model predictions using the IM-SRG formalism based on $NN$ and $3N$ forces from chiral-EFT in the $pf$-shell ...

  4. Helicity and nuclear $\\beta$ decay correlations

    CERN Document Server

    Hong, Ran; García, Alejandro

    2016-01-01

    We present simple derivations of nuclear $\\beta$-decay correlations with an emphasis on the special role of helicity. This provides a good opportunity to teach students about helicity and chirality in particle physics through exercises using simple aspects of quantum mechanics. In addition, this paper serves as an introduction to nuclear $\\beta$-decay correlations from both a theoretical and experimental vantage. This article can be used to introduce students to ongoing experiments searching for hints of new physics in the low-energy precision frontier.

  5. Search for 2\\beta\\ decays of 96Ru and 104Ru by ultra-low background HPGe gamma spectrometry at LNGS: final results

    CERN Document Server

    Belli, P; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, S; Incicchitti, A; Kovtun, G P; Kovtun, N G; Laubenstein, M; Poda, D V; Polischuk, O G; Shcherban, A P; Solopikhin, D A; Suhonen, J; Tretyak, V I

    2013-01-01

    An experiment to search for double beta decay processes in 96Ru and 104Ru, which are accompanied by gamma rays, has been realized in the underground Gran Sasso National Laboratories of the I.N.F.N. (Italy). Ruthenium samples with masses of about (0.5-0.7) kg were measured with the help of ultra-low background high purity Ge gamma ray spectrometry. After 2162 h of data taking the samples were deeply purified to reduce the internal contamination of 40K. The last part of the data has been accumulated over 5479 h. New improved half life limits on 2\\beta+/\\epsilon \\beta+/2\\epsilon\\ processes in 96Ru have been established on the level of 10^{20} yr, in particular for decays to the ground state of 96Mo: T1/2(2\

  6. Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge-76

    CERN Document Server

    Agostini, M; Budjá\\vs, D; Bellotti, E; Brugnera, R; Cattadori, C M; di Vacri, A; Garfagnini, A; Pandola, L; Schönert, S

    2010-01-01

    The GERDA experiment searches for the neutrinoless double beta decay of Ge-76 using high-purity germanium detectors enriched in Ge-76. The analysis of the signal time structure provides a powerful tool to identify neutrinoless double beta decay events and to discriminate them from gamma-ray induced backgrounds. Enhanced pulse shape discrimination capabilities of "Broad Energy Germanium" detectors with a small read-out electrode have been recently reported. This paper describes the full simulation of the response of such a detector, including the Monte Carlo modeling of radiation interaction and subsequent signal shape calculation. A pulse shape discrimination method based on the ratio between the maximum current signal amplitude and the event energy applied to the simulated data shows quantitative agreement with the experimental data acquired with calibration sources. The simulation has been used to study the survival probabilities of the decays which occur inside the detector volume and are difficult to asse...

  7. Double beta radioactivity and physics of the neutrino. Study of the background noise at 3 MeV in the search of 100Mo beta beta decay

    International Nuclear Information System (INIS)

    Double beta decay without neutrino emission provides a test of the mass and nature of neutrinos (Majorana or Dirac). Experimental proof would be the observation of a peak at the transition energy in the spectrum of the two emitted electrons. The expected half-life of the process is extremely long (about 1025 years for 100Mo). So, being thus, it is very important to get a good knowledge of the origins and contributions of background noise in the region where the signal could occur. The main origins of the background noise in the region where the signal could occur. The main origins of the background noise are found to be e+ - e- pairs induced by heavy energy gamma rays. These gamma rays follow the thermal neutron capture by the components of the detector. Another factor in the production of background noise is natural radio-activity. For example, the presence of Radon in the laboratory has been observed to produce deposits of 214Bi on the sides of the detector. Data taken with the NEMO 2 prototype and an enriched molybdenum source foil indicates that the background limit reached is of the order of 1 event per year in the 3 MeV region. Results of this work have proven the necessity to have a magnetic field in NEMO 3 in order to reject e+ - e-pairs. (author)

  8. Search for double beta decay processes in 106Cd with the help of 106CdWO4 crystal scintillator

    CERN Document Server

    Belli, P; Boiko, R S; Brudanin, V B; Cappella, F; Caracciolo, V; Cerulli, R; Chernyak, D M; Danevich, F A; d'Angelo, S; Galashov, E N; Incicchitti, A; Kobychev, V V; Laubenstein, M; Mokina, V M; Poda, D V; Podviyanuk, R B; Polischuk, O G; Shlegel, V N; Stenin, Yu G; Suhonen, J; Tretyak, V I; Vasiliev, Ya V

    2011-01-01

    A search for the double beta processes in 106Cd was realized at the Gran Sasso National Laboratories of the INFN (Italy) with the help of a 106CdWO4 crystal scintillator (215 g) enriched in 106Cd up to 66%. After 6590 h of data taking, new improved half-life limits on the double beta processes in 106Cd were established at the level of 10^{19}-10^{21} yr; in particular, T_{1/2}(2\

  9. Search for $2\\beta$ decay of $^{106}$Cd with enriched $^{106}$CdWO$_4$ crystal scintillator in coincidence with four HPGe detectors

    CERN Document Server

    Belli, P; Brudanin, V B; Cappella, F; Caracciolo, V; Cerulli, R; Chernyak, D M; Danevich, F A; d'Angelo, S; Di Marco, A; Incicchitti, A; Laubenstein, M; Mokina, V M; Poda, D V; Polischuk, O G; Tretyak, V I; Tupitsyna, I A

    2016-01-01

    A radiopure cadmium tungstate crystal scintillator, enriched in $^{106}$Cd to 66%, with mass of 216 g ($^{106}$CdWO$_4$), was used to search for double beta decay processes in $^{106}$Cd in coincidence with four ultra-low background high purity germanium detectors in a single cryostat. New improved limits on the double beta processes in $^{106}$Cd have been set on the level of $10^{20}- 10^{21}$ yr after 13085 h of data taking. In particular, the half-life limit on the two neutrino electron capture with positron emission, $T_{1/2}^{2\

  10. In-trap decay spectroscopy for {beta}{beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Thomas

    2011-01-18

    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge

  11. Predicting Neutrinoless Double Beta Decay

    CERN Document Server

    Hirsch, M; Valle, J W F; Moral, A V; Ma, Ernest

    2005-01-01

    We give predictions for the neutrinoless double beta decay rate in a simple variant of the A_4 family symmetry model. We show that there is a lower bound for the neutrinoless double beta decay amplitude even in the case of normal hierarchical neutrino masses, corresponding to an effective mass parameter |m_{ee}| >= 0.17 \\sqrt{\\Delta m^2_{ATM}}. This result holds both for the CP conserving and CP violating cases. In the latter case we show explicitly that the lower bound on |m_{ee}| is sensitive to the value of the Majorana phase. We conclude therefore that in our scheme, neutrinoless double beta decay may be accessible to the next generation of high sensitivity experiments.

  12. Beta decay of 31Ar

    International Nuclear Information System (INIS)

    A complete study of 31Ar beta decay has been made by high-resolution charged-particle and gamma-ray spectroscopy. Beta-delayed radiation was detected by an array of three charged-particle detectors and a large-volume germanium detector. Fifteen new energy levels were discovered in 31Cl. The beta-strength distribution, measured to 14.5 MeV, is compared with a shell-model calculation in the full sd space. The quenching of the Gamow-Teller strength and the isospin impurity of the IAS in 31Cl are discussed. (orig.)

  13. Experiments on double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Busto, J. [Neuchatel Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  14. Search for the decay

    Science.gov (United States)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Matthieu, K.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-08-01

    A search for decays is performed using 3 .0 fb1- of pp collision data recorded by the LHCb experiment during 2011 and 2012. The f 0(980) meson is reconstructed through its decay to the π + π - final state in the mass window 900 MeV /c 2 1080 MeV /c 2. No significant signal is observed. The first upper limits on the branching fraction of are set at 90 % (95 %) confidence level. [Figure not available: see fulltext.

  15. Constraining neutrinoless double beta decay

    International Nuclear Information System (INIS)

    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  16. LHC dijet constraints on double beta decay

    CERN Document Server

    Helo, J C

    2015-01-01

    We use LHC dijet data to derive constraints on neutrinoless double beta decay. Upper limits on cross sections for the production of "exotic" resonances, such as a right-handed W boson or a diquark, can be converted into lower limits on the double beta decay half-life for fixed choices of other parameters. Constraints derived from run-I data are already surprisingly strong and complementary to results from searches using same-sign dileptons plus jets. For the case of the left-right symmetric model, in case no new resonance is found in future runs of the LHC and assuming $g_L=g_R$, we estimate a lower limit on the double beta decay half-live larger than $10^{27}$ ys can be derived from future dijet data, except in the window of relatively light right-handed neutrino masses in the range $0.5$ MeV to $50$ GeV. Part of this mass window will be tested in the upcoming SHiP experiment. We also discuss current and future limits on possible scalar diquark contributions to double beta decay that can be derived from dije...

  17. Neutrino Mass Ordering in Future Neutrinoless Double Beta Decay Experiments

    CERN Document Server

    Zhang, Jue

    2016-01-01

    Motivated by recent intensive experimental efforts on searching for neutrinoless double beta decays, we present a detailed quantitative analysis on the prospect of resolving neutrino mass ordering in the next generation $^{76}$Ge-type experiments.

  18. Tests of Lorentz Symmetry in Single Beta Decay

    International Nuclear Information System (INIS)

    Low-energy experiments studying single beta decay can serve as sensitive probes of Lorentz invariance that can complement interferometric searches for deviations from this spacetime symmetry. Experimental signatures of a dimension-three operator for Lorentz violation which are unobservable in neutrino oscillations are described for the decay of polarized and unpolarized neutrons as well as for measurements of the spectral endpoint in beta decay

  19. NEMO 3 double beta decay experiment: latest results

    CERN Document Server

    Barabash, A S

    2008-01-01

    The double beta decay experiment NEMO~3 has been taking data since February 2003. The aim of this experiment is to search for neutrinoless decay and investigate two neutrino double beta decay in seven different enriched isotopes ($^{100}$Mo,$^{82}$Se, $^{48}$Ca, $^{96}$Zr, $^{116}$Cd, $^{130}$Te and $^{150}$Nd). After analysis of the data corresponding to 693 days, no evidence for $0\

  20. The 76Ge(n,p)76Ga reaction and its relevance to searches for the neutrino-less double-beta decay of 76Ge

    Science.gov (United States)

    Tornow, W.; Bhike, Megha; Fallin, B.; Krishichayan, Fnu

    2015-10-01

    The 76Ge(n,p)76Ga reaction and the subsequent β decay of 76Ga to 76Ge has been used to excite the 3951.9 keV state of 76Ge, which decays by emission of a 2040.7 keV γ ray. Using HPGe detectors, the associated pulse-height signal may be undistinguishable from the potential signal produced in neutrino-less double-beta decay of 76Ge with its Q-value of 2039.0 keV. In the neutron energy range between 10 and 20 MeV the production cross section of the 2040.7 keV γ ray is approximately 0.1 mb. In the same experiment γ rays of energy 2037.9 keV resulting from the 76Ge(n, γ)77Ge reaction were clearly observed. Adding the 76Ge(n,n' γ)76Ge reaction, which also produces the 2040.7 keV γ ray with a cross section value of the order of 0.1 mb clearly shows that great care has to be taken to eliminate neutron-induced backgrounds in searches for neutrino-less double-beta decay of 76Ge. This work was supported by the U.S. DOE under Grant NO. DE-FG02-97ER41033.

  1. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    Science.gov (United States)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nygren, D. R.; Oliveira, C. A. B.; Renner, J.

    2016-03-01

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibility of the performance improvements with TMA, we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. This work has been carried out within the context of the NEXT collaboration.

  2. Cryogen-free dilution refrigerator for bolometric search of neutrinoless double beta decay (0νββ) in 124Sn

    International Nuclear Information System (INIS)

    The feasibility study for searching neutrinoless double beta decay in 124Sn using cryogenic bolometer has been initiated. For this purpose, a custom-built cryogen-free dilution refrigerator, having a large cooling power of 1.4 mW at 120 mK, has been installed at TIFR, India. This paper describes the design, installation and performance of a cryogen-free dilution refrigerator (CFDR-1200). The performance of CFDR-1200 has been analysed using Takano's model developed for conventional (wet) dilution refrigerators. (author)

  3. Scalar-mediated double beta decay and LHC

    CERN Document Server

    Gonzales, L; Hirsch, M; Kovalenko, S G

    2016-01-01

    The decay rate of neutrinoless double beta decay could be dominated by short-range diagrams involving heavy scalar particles ("topology-II" diagrams). Examples are diagrams with diquarks, leptoquarks or charged scalars. Here, we compare the discovery potential for lepton number violating signals at the LHC with constraints from dijet and leptoquark searches and the sensitivity of double beta decay experiments, using three example models. We note that already with 20/fb the LHC will test interesting parts of the parameter space of these models, not excluded by current limits on double beta decay.

  4. Measurement of the beta asymmetry in neutron beta decay

    International Nuclear Information System (INIS)

    Neutron beta decay is the simplest semi-leptonic weak decay and described accurately by the standard model using the first CKM-matrix element and the ratio of vector and axial vector couplings, λ. With more than a dozen observables it is a sensitive probe for investigating the nature of weak interaction and to search for physics beyond the standard model. In the past, measuring the beta asymmetry A in polarized neutron decay has been the most precise way of determining λ and nowadays it allows - together with other observables - to derive limits on non-standard model interactions, such as scalar and tensor couplings. The neutron decay spectrometer Perkeo III was installed at the PF1B cold neutron beam site at the Institut Laue-Langevin to measure the beta asymmetry. By using a pulsed beam combined with an improved detector design a significant reduction of several systematic uncertainties has been achieved compared to the predecessor, Perkeo II. In this talk recent results of the measurements with Perkeo III will be presented. In particular, we show the energy distribution of the electrons together with the calibration tools for the detectors.

  5. Bound beta-decay: BOB

    International Nuclear Information System (INIS)

    For many years exotic decay modes of the neutron have been investigated as possible doorways to the exploration of new physics. The bound beta-decay (BOB) of the neutron into a hydrogen atom and an anti-neutrino offers a very elegant method to study neutrino helicities. However, this rare decay has not yet been observed for the free neutron, owing to the challenge of measuring a decay involving only electrically neutral particles and with an estimated branching ratio of only a few 106 of the three-body decay mode. During the past few years scientists from the TUM E18 Group have developed a novel experimental scheme which addresses all necessary problems associated with the observation of this two-body neutron decay in a very coherent way. The BOB experiment shall be installed at a tangential beam tube of a powerful research reactor such as the SR6 at the FRMII in Garching or H6-H7 beam tube at ILL. This talk will provide insights and ideas on how such an experiment is to be performed.

  6. Pion beta decay at PILAC

    International Nuclear Information System (INIS)

    The proposal to build PILAC presents the possibility of making an improved measurement of the pion beta decay rate. The rate for the decay π+ → π0e+νe is predicted by the Standard Model (SM) to be R(π+ → π0e+νe) = 0.3999 ± 0.0005 s-1. The best experimental number, from LAMPF Experiment 32, using in-flight decays, is R(π+ → π0e+νe) = 0.394 ± 0.0015 s-1. A precise measurement would test the SM by testing the unitarity of the Cabibbo- Kobayashi-Maskawa matrix, for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Thus an experiment at the 0. 2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required. 23 refs., 2 figs., 2 tabs

  7. First test of an enriched $^{116}$CdWO$_4$ scintillating bolometer for neutrinoless double-beta-decay searches

    CERN Document Server

    Danevich, F A; Giuliani, A; Konovalov, S I; Mancuso, M; de Marcillac, P; Marnieros, S; Novati, V; Pessina, G; Poda, D V; Polischuk, O G; Shlegel, V N; Tretyak, V I; Umatov, V I; Zolotarova, A S

    2016-01-01

    For the first time, a cadmium tungstate crystal scintillator enriched in $^{116}$Cd has been succesfully tested as a scintillating bolometer. The measurement was performed above ground at a temperature of 18 mK. The crystal mass was 34.5 g and the enrichment level ~82 %. Despite a substantial pile-up effect due to above-ground operation, the detector demonstrated a high energy resolution (2-7 keV FWHM in 0.2-2.6 MeV $\\gamma$ energy range), a powerful particle identification capability and a high level of internal radiopurity. These results prove that cadmium tungstate is an extremely promising detector material for a next-generation neutrinoless double-beta decay bolometric experiment, like that proposed in the CUPID project (CUORE Upgrade with Particle IDentification).

  8. Tables of double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Tretyak, V.I. [AN Ukrainskoj SSR, Kiev (Ukraine)]|[Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Zdesenko, Y.G. [AN Ukrainskoj SSR, Kiev (Ukraine)

    1995-12-31

    A compilation of experimental data on double beta decay is presented. The tables contain the most stringent known experimental limits or positive results of 2{beta} transitions of 69 natural nuclides to ground and excited states of daughter nuclei for different channels (2{beta}{sup -}; 2{beta}{sup +}; {epsilon}{beta}{sup +}; 2{epsilon}) and modes (0{nu}; 2{nu}; 0{nu}M) of decay. (authors). 189 refs., 9 figs., 3 tabs.

  9. HALF-LIVES OF LONG-LIVED ALPHA DECAY, BETA DECAY, ELECTRON CAPTURE DECAY, BETA BETA-DECAY, PROTON DECAY AND SPONTANEOUS FISSION DECAY NUCLIDES.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN, H.E.

    2003-08-08

    In his review of radionuclides for dating purposes, Roth noted that there were a large number of nuclides, normally considered ''stable'' but which are radioactive with a very long half-life. Roth suggested that I review the data on the half-life values of these long-lived nuclides for the 2001 Atomic Weights Commission meeting in Brisbane. I provided a report, BNL-NCS-68377, to fulfill Roth's request. Peiser has now made a similar suggestion that I review these data for our next Commission meeting in Ottawa for their possible inclusion in our Tables. These half-life values for long-lived nuclides include those due to various decay modes, {alpha}-decay, {beta}-decay, electron capture decay, {beta}{beta}-decay, proton decay and spontaneous fission decay. This data review (post Brisbane) provides an update to the recommendation of the 2001 review.

  10. Nuclear Data Compilation for Beta Decay Isotope

    Science.gov (United States)

    Olmsted, Susan; Kelley, John; Sheu, Grace

    2015-10-01

    The Triangle Universities Nuclear Laboratory nuclear data group works with the Nuclear Structure and Decay Data network to compile and evaluate data for use in nuclear physics research and applied technologies. Teams of data evaluators search through the literature and examine the experimental values for various nuclear structure parameters. The present activity focused on reviewing all available literature to determine the most accurate half-life values for beta unstable isotopes in the A = 3-20 range. This analysis will eventually be folded into the ENSDF (Evaluated Nuclear Structure Data File). By surveying an accumulated compilation of reference articles, we gathered all of the experimental half-life values for the beta decay nuclides. We then used the Visual Averaging Library, a data evaluation software package, to find half-life values using several different averaging techniques. Ultimately, we found recommended half-life values for most of the mentioned beta decay isotopes, and updated web pages on the TUNL webpage to reflect these evaluations. To summarize, we compiled and evaluated literature reports on experimentally determined half-lives. Our findings have been used to update information given on the TUNL Nuclear Data Evaluation group website. This was an REU project with Triangle Universities Nuclear Laboratory.

  11. Double beta decay experiments: beginning of a new era

    CERN Document Server

    Barabash, A S

    2012-01-01

    The review of current experiments on search and studying of double beta decay processes is done. Results of the most sensitive experiments are discussed and values of modern limits on effective Majorana neutrino mass ($) are given. New results on two neutrino double beta decay are presented. The special attention is given to new current experiments with mass of studied isotopes more than 100 kg, EXO--200 and KamLAND--Zen. These experiments open a new era in research of double beta decay. In the second part of the review prospects of search for neutrinoless double beta decay in new experiments with sensitivity to $$ at the level of $\\sim 0.01-0.1$ eV are discussed. Parameters and characteristics of the most perspective projects (CUORE, GERDA, MAJORANA, SuperNEMO, EXO, KamLAND--Zen, SNO+) are given.

  12. Experiments on double beta decay

    International Nuclear Information System (INIS)

    The Double Beta Decay, and especially (ββ)0ν mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 104 in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs

  13. Search for double-beta decay of 136Xe to excited states of 136Ba with the KamLAND-Zen experiment

    Science.gov (United States)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Otani, M.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2016-02-01

    A search for double-beta decays of 136Xe to excited states of 136Ba has been performed with the first phase data set of the KamLAND-Zen experiment. The 01+, 21+ and 22+ transitions of 0 νββ decay were evaluated in an exposure of 89.5 kg ṡyr of 136Xe, while the same transitions of 2 νββ decay were evaluated in an exposure of 61.8 kg ṡyr. No excess over background was found for all decay modes. The lower half-life limits of the 21+ state transitions of 0 νββ and 2 νββ decay were improved to T1/20ν (0+ → 21+) > 2.6 ×1025 yr and T1/22ν (0+ → 21+) > 4.6 ×1023 yr (90% C.L.), respectively. We report on the first experimental lower half-life limits for the transitions to the 01+ state of 136Xe for 0 νββ and 2 νββ decay. They are T1/20ν (0+ → 01+) > 2.4 ×1025 yr and T1/22ν (0+ → 01+) > 8.3 ×1023 yr (90% C.L.). The transitions to the 22+ states are also evaluated for the first time to be T1/20ν (0+ → 22+) > 2.6 ×1025 yr and T1/22ν (0+ → 22+) > 9.0 ×1023 yr (90% C.L.). These results are compared to recent theoretical predictions.

  14. Characterization of a broad energy germanium detector and application to neutrinoless double beta decay search in {sup 76}Ge

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M; Brugnera, R; Garfagnini, A [Dipartimento di Fisica ' G. Galilei' , Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Bellotti, E; Cattadori, C M [INFN, Sezione di Milano Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); D' Andragora, A; Vacri, A di; Laubenstein, M; Pandola, L [INFN, Laboratori Nazionali del Gran Sasso, S.S. 17 bis km 18-910, I-67100 Assergi, L' Aquila (Italy); Ur, C A, E-mail: pandola@lngs.infn.it [INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2011-04-01

    The performance of a 630 g commercial broad energy germanium (BEGe) detector has been systematically investigated. Energy resolution, linearity, stability vs. high-voltage (HV) bias, thickness and uniformity of dead layers have been measured and found to be excellent. Special attention has been dedicated to the study of the detector response as a function of bias HV. The recommended bias voltage being 3500 V, the detector shows a peculiar behavior for biases around 2000 V: in a narrow range of about 100 V the charge collection is strongly reduced. The detector seems to be composed by two parts: a small volume around the HV contact where charges are efficiently collected as at higher voltage, and a large volume where charges are poorly collected. A qualitative explanation of this behavior is presented. However such a behavior does not affect the expected performance in the normal working conditions, being the detector operated at much higher bias HV than the anomalous region. An event-by-event pulse shape analysis based on A/E (maximum amplitude of the current pulse over the total energy released in the detector) has been applied to events in different energy regions and found very effective in rejecting non localized events. In conclusion, BEGe detectors are excellent candidates for the second phase of GERDA, an experiment devoted to neutrinoless double beta decay of {sup 76}Ge.

  15. Theoretical aspects of double beta decay

    International Nuclear Information System (INIS)

    Considerable effort has been expended recently in theoretical studies of double beta decay. Much of this work has focussed on the constraints this process places on gauge theories of the weak interaction, in general, and on the neutrino mass matrix, in particular. In addition, interesting nuclear structure questions have arisen in studies of double beta decay matrix elements. After briefly reviewing the theory of double beta decay, some of the progress that has been made in these areas is summarized. 25 references

  16. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    CERN Document Server

    Nakajima, Y; Matis, H S; Miller, T; Nygren, D R; Oliveira, C A B; Renner, J

    2015-01-01

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibility of the performance improvements with TMA, we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light wi...

  17. Aboveground test of an advanced Li$_2$MoO$_4$ scintillating bolometer to search for neutrinoless double beta decay of $^{100}$Mo

    CERN Document Server

    Bekker, T B; Danevich, F A; Degoda, V Ya; Giuliani, A; Grigorieva, V D; Ivannikova, N V; Mancuso, M; de Marcillac, P; Moroz, I M; Nones, C; Olivieri, E; Pessina, G; Poda, D V; Shlegel, V N; Tretyak, V I; Velazquez, M

    2014-01-01

    Large lithium molybdate (Li$_2$MoO$_4$) crystal boules were produced by using the low thermal gradient Czochralski growth technique from deeply purified molybdenum. A small sample from one of the boules was preliminary characterized in terms of X-ray-induced and thermally-excited luminescence. A large cylindrical crystalline element (with a size of $\\oslash 40\\times40$ mm) was used to fabricate a scintillating bolometer, which was operated aboveground at $\\sim 15$ mK by using a pulse-tube cryostat housing a high-power dilution refrigerator. The excellent detector performance in terms of energy resolution and $\\alpha$ background suppression along with preliminary positive indications on the radiopurity of this material show the potentiality of Li$_2$MoO$_4$ scintillating bolometers for low-counting experiment to search for neutrinoless double beta decay of $^{100}$Mo.

  18. Experimental setup and commissioning baseline study in search of time-variations in beta-decay half-lives

    Science.gov (United States)

    Goddard, Braden; Hitt, George W.; Solodov, Alexander A.; Bridi, Dorian; Isakovic, A. F.; El-Khazali, Reyad; Abulail, Ayman

    2016-03-01

    Recently there have been a number of investigations into whether the decay constant of a radioactive isotope can be influenced by external factors, such as the Earth-Sun distance or Solar flare activity. Positive claims suggest that annual oscillations of ~0.1% and accelerations of ~0.4% in the relative activity of beta-emitters coincide with the Earth-Sun distance and solar flare activity, respectively. Results from replication experiments have so far been conflicting. The main criticism of the measurements used to trace and quantify these effects is that the data is of poor quality or limited in scope. Data have often been collected as part of short duration weekly calibration measurements, measured with a single type of low precision detector, only using one isotope, and having no environmental conditions information (temperature, pressure, humidity) accompanying the radiation measurements. This paper describes the setup of a series of counting experiments commissioned for addressing these criticisms. Six dedicated detector systems (four different types) measuring six different isotopes (14C, 54Mn, 60Co, 90Sr, 204Tl, and 226Ra) have been continuously collecting source activity synchronously with environmental data for a period of one month (April 2014). The results of this baseline commissioning study show that there are correlations between activity and environmental conditions for some detector types which are then quantified. The results also show that the one sigma counting uncertainties in all the detectors are less than 0.024% for a given 24 h period. After accounting for propagated uncertainties from corrections against correlations with environmental data, the ability to resolve 0.1% activity changes varies, from 8 min to 1.6 days, depending on the specific detector. All six experiments therefore, will have sufficient precision over the upcoming year to scrutinize claims of both annual activity oscillations and solar flare activity changes.

  19. Broad resonances and beta-decay

    DEFF Research Database (Denmark)

    Riisager, K.; Fynbo, H. O. U.; Hyldegaard, S.;

    2015-01-01

    Beta-decay into broad resonances gives a distorted lineshape in the observed energy spectrum. Part of the distortion arises from the phase space factor, but we show that the beta-decay matrix element may also contribute. Based on a schematic model for p-wave continuum neutron states it is argued...

  20. Neutrinoless double beta decay in Gerda

    Science.gov (United States)

    Grabmayr, Peter; Gerda Collaboration

    2015-10-01

    The Germanium Detector Array (Gerda) experiment searches for the neutrinoless double beta decay in 76Ge. This lepton number violating process is predicted by extensions of the standard model. Gerda follows a staged approach by increasing mass and lowering the background level from phase to phase. Gerda is setup at the Gran Sasso underground laboratory of INFN, Italy. An array of high-purity germanium detectors is lowered directly in liquid argon for shielding and cooling. Further background reduction is achieved by an instrumented water buffer. In Phase I an exposure of 21.6 kg yr was collected at a background level of 10-2 cts/(keV kg yr). The lower limit on the half-life of 76Ge > 2 . 1 .1025 yr (90% C.L.) has been published. Further analyses search for decay into excited states or the accompanied Majoron decay. Presently, Phase II is in preparation which intends to reach a background level of 10-3 cts/(keV kg yr) and to increase the exposure to 100 kg yr. About 20 kg of novel thick-window BEGe (Broad Energy Germanium) detectors will be added and the liquid argon will be instrumented. The status of Phase II preparation and results from the commissioning runs will be presented as well as some further results from Phase I.

  1. $\\beta$-decay study of $^{77}$Cu

    CERN Document Server

    Patronis, N; Górska, M; Huyse, M; Kruglov, K; Pauwels, D; Van de Vel, K; Van Duppen, P; Van Roosbroeck, J; Thomas, J-C; Franchoo, S; Cederkäll, J; Fedosseev, V; Fynbo, H; Georg, U; Jonsson, O; Köster, U; Materna, T; Mathieu, L; Serot, O; Weissman, L; Müller, W F; Mishin, V I; Fedorov, D

    2009-01-01

    A beta-decay study of Cu-77 has been performed at the ISOLDE mass separator with the aim to deduce its beta-decay properties and to obtain spectroscopic information on Zn-77. Neutron-rich copper isotopes were produced by means of proton- or neutron-induced fission reactions on U-238. After the production, Cu-77 was selectively laser ionized, mass separated and sent to different detection systems where beta-gamma and beta-n coincidence data were collected. We report on the deduced half-live, decay scheme, and possible spin assignment of 77Cu.

  2. Beta decay of highly charged ions

    International Nuclear Information System (INIS)

    Ion storage rings and ion traps provide the very first opportunity to address nuclear beta decay under conditions prevailing in hot stellar plasmas during nucleosynthesis, i.e. at high atomic charge states. Experiments are summarized that were performed in this field during the last decade at the ion storage-cooler ring ESR in Darmstadt. Special emphasis is given to the first observation of bound-state beta decay, where the created electron remains bound in an inner orbital of the daughter atom. The impact of this specific 'stellar' decay mode for s-process nucleosynthesis as well as for nuclear 'eon clocks' is outlined. Finally, a new technique, single-ion decay spectroscopy, is presented, where one observes two-body beta decay characteristics (i.e. orbital electron capture or bound-state beta decay) of highly charged, single ions for well-defined nuclear and atomic quantum states of both the mother - and the daughter - ion.

  3. First forbidden beta decay in light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Millener, D.J.; Warburton, E.K.

    1984-01-01

    Beta decay matrix elements for the operators sigma dot del and sigma dot r are calculated for eight J/sup +/ ..-->.. J/sup -/ or J/sup -/ ..-->.. J/sup +/ beta transitions. Results using harmonic oscillator wave functions differ markedly from those using more realistic Woods-Saxon wave functions. A substantial contribution to the sigma dot del matrix elements from pion exchange currents is required to reproduce the experimental beta decay rates. 15 references.

  4. First forbidden beta decay in light nuclei

    International Nuclear Information System (INIS)

    Beta decay matrix elements for the operators sigma dot del and sigma dot r are calculated for eight J+ → J- or J- → J+ beta transitions. Results using harmonic oscillator wave functions differ markedly from those using more realistic Woods-Saxon wave functions. A substantial contribution to the sigma dot del matrix elements from pion exchange currents is required to reproduce the experimental beta decay rates. 15 references

  5. Double beta decay: A theoretical overview

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P.

    1988-01-01

    This paper reviews the theoretical possibility of double beta decay. The titles of the main sections of this paper are: Nuclear physics setting; Particle physics requirements; Kinematical features of the decay modes; Nuclear matrix elements; the Shell model and two-neutrino decay; Quasi-particle random phase approximation; and Future considerations. 18 refs., 7 tabs. (LSP)

  6. Sensitivity of NEXT-100 to neutrinoless double beta decay

    CERN Document Server

    Martín-Albo, J; Ferrario, P.; Nebot-Guinot, M.; Gomez-Cadenas, J.J.; Alvarez, V.; Azevedo, C.D.R.; Borges, F.I.G.; Carcel, S.; Cebrian, S.; Cervera, A.; Conde, C.A.N.; Diaz, J.; Diesburg, M.; Esteve, R.; Fernandes, L.M.P.; Ferreira, A.L.; Freitas, E.D.C.; Gehman, V.M.; Goldschmidt, A.; Gonzalez-Diaz, D.; Gutierrez, R.M.; Hauptman, J.; Henriques, C.A.O.; Hernando Morata, J.A.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Losada, M.; Mari, A.; Martinez-Lema, G.; Martinez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C.M.B.; Mora, F.J.; Moutinho, L.M.; Novella, P.; Nygren, D.; Para, A.; Perez, J.; Perez Aparicio, J.L.; Querol, M.; Renner, J.; Ripoll, L.; Rodriguez, J.; Santos, F.P.; dos Santos, J.M.F.; Serra, L.; Shuman, D.; Simon, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J.F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J.F.C.A.; Villar, J.A.; Webb, R.; White, J.T.; Yahlali, N.; Yepes-Ramirez, H.

    2016-01-01

    NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta decay of Xe-136. The detector possesses two features of great value in neutrinoless double beta decay searches: very good energy resolution (better than 1% FWHM at the Q value of Xe-136) and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Detailed Monte Carlo detector simulations and material-screening measurements predict a background rate for NEXT-100 of at most 0.0004 counts/(keV kg yr). Accordingly, the detector will reach a sensitivity to the neutrinoless double beta decay half-life of 6.E25 years after running for 3 effective years.

  7. Neutron bound {beta}- decay- BOB

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, M.; Berger, M.; Emmerich, R.; Faestermann, T.; Gutsmiedl, E.; Hartmann, F.J.; Paul, S.; Ruschel, S.; Schoen, J.; Schott, W.; Schubert, U.; Trautner, A. [Physik-Department, TUM, 85748 Garching (Germany); Engels, R. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Fierlinger, P. [Excellence Cluster Universe, TUM, 85748 Garching (Germany); Hertenberger, R. [Sektion Physik, LMU, 85748 Garching (Germany); Roehrmoser, R. [FRM2, TUM, 85748 Garching (Germany); Udem, T. [Max-Planck-Institut fuer Quantenphysik, 85748 Garching (Germany)

    2011-07-01

    The bound neutron {beta}-decay(BOB) into a hydrogen atom and an electron antineutrino is investigated.The hyper-fine-state population of the monoenergetic hydrogen atoms (326.3 eV) yields the neutrino left-handed-ness or a possible right-handed admixture and possible small scalar and tensor contributions to the weak force. Preexperiments to measure the BOB H(2s) atoms have been done or are being set up using ionizer and RF discharge proton sources, a Wien filter, Cs and Ar cells, a spin filter, electric counter and accelerating fields, a double focusing magnet and a solar blind PM for the Lyman-{alpha} photons. In a first experiment, the charge exchange of the H(2s) atoms into H{sup -}, offering a selective method to discriminate these states against background, is investigated. In a second step the number of background H(2s) resulting from protons interacting with the walls of the experimental setup are determined. For this a quenching E field and a solar blind PM are used.

  8. Falsifying Baryogenesis with Neutrinoless Double Beta Decay

    CERN Document Server

    Graf, Lukas

    2016-01-01

    We discuss the relation between lepton number violation at high and low energies, particularly, the constraints on baryogenesis models, which would be implied by an observation of neutrinoless double beta decay. The primordial baryon asymmetry can be washed out by effective lepton number violating operators triggering neutrinoless double beta decay in combination with sphaleron processes. A generic conclusion is that popular models of baryogenesis are excluded if a non-standard mechanism of neutrinoless double beta decay, i.e., other than the standard light neutrino exchange, is observed. Apart from the effective field approach, we also outline the possible extension of our arguments to a general UV-completed model.

  9. Neutrinoless Double Beta Decay with SNO+

    CERN Document Server

    Hartnell, J

    2012-01-01

    SNO+ will search for neutrinoless double beta decay by loading 780 tonnes of linear alkylbenzene liquid scintillator with O(tonne) of neodymium. Using natural Nd at 0.1% loading will provide 43.7 kg of 150Nd given its 5.6% abundance and allow the experiment to reach a sensitivity to the effective neutrino mass of 100-200 meV at 90% C.L in a 3 year run. The SNO+ detector has ultra low backgrounds with 7000 tonnes of water shielding and self-shielding of the scintillator. Distillation and several other purification techniques will be used with the aim of achieving Borexino levels of backgrounds. The experiment is fully funded and data taking with light-water will commence in 2012 with scintillator data following in 2013.

  10. Momentum analyzers DCBA for neutrinoless double beta decay experiments

    International Nuclear Information System (INIS)

    Momentum analyzers called Drift Chamber Beta-ray Analyzer (DCBA) are being developed at KEK in order to search for neutrinoless double beta decays of nuclei. A test prototype, DCBA-T2, has been constructed to confirm the principle detecting electron tracks in a uniform magnetic field. Another prototype, DCBA-T3, is now under construction to improve the energy resolution. The test results and the present statuses of these prototypes are presented.

  11. Momentum analyzers DCBA for neutrinoless double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Nobuhiro, E-mail: nobuhiro.ishihara@kek.j [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-11-01

    Momentum analyzers called Drift Chamber Beta-ray Analyzer (DCBA) are being developed at KEK in order to search for neutrinoless double beta decays of nuclei. A test prototype, DCBA-T2, has been constructed to confirm the principle detecting electron tracks in a uniform magnetic field. Another prototype, DCBA-T3, is now under construction to improve the energy resolution. The test results and the present statuses of these prototypes are presented.

  12. Results on neutrinoless double beta decay from GERDA phase I

    CERN Document Server

    CERN. Geneva

    2013-01-01

    After motivating searches of double beta decay and lepton number violation details about the construction, operation and analysis of GERDA will be given. Results of the recently completed phase I of data taking will then be presented and interpreted. Finally an outlook on future plans will be given.

  13. Neutrino potential for neutrinoless double beta decay

    CERN Document Server

    Iwata, Yoritaka

    2016-01-01

    Neutrino potential for neutrinoless double beta decay is studied with focusing on its statistical property. The statistics provide a gross view of understanding amplitude of constitutional components of the nuclear matrix element.

  14. Beta-decay of nuclei around Se-90. Search for signatures of a N=56 sub-shell closure relevant the r-process

    CERN Document Server

    Quinn, M; Pereira, J; Surman, R; Arndt, O; Baumann, T; Becerril, A; Elliot, T; Estrade, A; Galaviz, D; Ginter, T; Hausmann, M; Hennrich, S; Kessler, R; Kratz, K -L; Lorusso, G; Mantica, P F; Matos, M; Moller, P; Montes, F; Pfeiffer, B; Portillo, M; Hennrich, S; Schatz, H; Schertz, F; Schnorrenberger, L; Smith, E; Stolz, A; Walters, W B; Wohr, A

    2011-01-01

    Nuclear structure plays a significant role on the rapid neutron capture process (r-process) since shapes evolve with the emergence of shells and sub-shells. There was some indication in neighboring nuclei that we might find examples of a new N=56 sub-shell, which may give rise to a doubly magic Se-90 nucleus. Beta-decay half lives of nuclei around Se-90 have been measured to determine if this nucleus has in fact a doubly-magic character. The fragmentation of Xe-136 beam at the National Superconducting Cyclotron Laboratory at Michigan State University was used to create a cocktail of nuclei in the A=90 region. We have measured the half lives of twenty-two nuclei near the r-process path in the A=90 region. The half lives of As-88 and Se-90 have been measured for the first time. The values were compared with theoretical predictions in the search for nuclear-deformation signatures of a N=56 sub-shell, and its possible role in the emergence of a potential doubly-magic Se-90. The impact of such hypothesis on the sy...

  15. Nuclear physics issues in double beta decay

    International Nuclear Information System (INIS)

    A number of issues in double beta decay are discussed: shell model estimates of 2nu matrix elements, a sum rule for the double Gamow-Teller operator, a comparison of shell model and quasiparticle RPA results, Pontecorvo's Te ratio argument, neutrinoless ββ decay mediated by heavy neutrinos, and the structure of O+ states in Ge isotopes. 24 refs., 3 figs

  16. Searching for Displaced Higgs Decays

    CERN Document Server

    Csaki, Csaba; Lombardo, Salvator; Slone, Oren

    2015-01-01

    We study a simplified model of the SM Higgs boson decaying to a degenerate pair of scalars which travel a macroscopic distance before decaying to SM particles. This is the leading signal for many well-motivated solutions to the hierarchy problem that do not propose additional light colored particles. Bounds for displaced Higgs decays below $10$ cm are found by recasting existing tracker searches from Run I. New tracker search strategies, sensitive to the characteristics of these models and similar decays, are proposed with sensitivities projected for Run II at $\\sqrt{s} = 13 $ TeV. With 20 fb$^{-1}$ of data, we find that Higgs branching ratios down to $7 \\times 10^{-4}$ can be probed for centimeter decay lengths.

  17. Single electron sensitive GridPix TPCs and their application in Dark Matter search and v-less Double Beta Decay Experiments

    International Nuclear Information System (INIS)

    The industrial production of monolithic GridPix pixel chips for the digital readout of primary electrons in a TPC is under study at IZM-Fraunhofer, Berlin. With future low-cost chips, new applications are foreseen in TPCs for bi-phase Ar/Xe dark matter experiments, and for v-less double beta decay experiments.

  18. The Enriched Xenon Observatory (EXO) for double beta decay

    International Nuclear Information System (INIS)

    The Enriched Xenon Observatory (EXO) is an experimental program designed to search for the neutrinoless double beta decay (0νββ) of Xe-136. of 0nbb would determine an absolute mass scale for neutrinos and answer the question about their Majorana nature. The current phase of the experiment, EXO-200, uses 200 kg of liquid xenon with 80% enrichment in Xe-136. The double beta decay of xenon is detected in an ultra-low background time projection chamber by collecting both, the scintillation light and the ionization charge. The detector has provided the first measurement of two neutrino double beta decay and continues to take data for a neutrinoless analysis.

  19. Q value of the 100Mo Double-Beta Decay

    CERN Document Server

    Rahaman, S; Eronen, T; Hakala, J; Jokinen, A; Julin, J; Kankainen, A; Saastamoinen, A; Suhonen, J; Weber, C; Äystö, J

    2007-01-01

    Penning trap measurements using mixed beams of 100Mo - 100Ru and 76Ge - 76Se have been utilized to determine the double-beta decay Q-values of 100Mo and 76Ge with uncertainties less than 200 eV. The value for 76Ge, 2039.04(16) keV is in agreement with the published SMILETRAP value. The new value for 100Mo, 3034.40(17) keV is 30 times more precise than the previous literature value, sufficient for the ongoing neutrinoless double-beta decay searches in 100Mo. Moreover, the precise Q-value is used to calculate the phase-space integrals and the experimental nuclear matrix element of double-beta decay.

  20. EXO the Enriched Xenon Observatory for Double Beta Decay

    CERN Document Server

    Wamba, K

    2002-01-01

    EXO is a search for neutrinoless double beta decay in 136Xe. An active R&D program for a 10 ton, enriched 136Xe liquid phase detector is now underway. Current research projects are: decay product extraction, Xe purity studies, energy resolution studies, and Ba+ ion laser-tagging. By extracting and laser-tagging the Xe decay product (136Ba) and optimizing the energy resolution in liquid Xe, half lives of up to 5.0x10^28yr will be ultimately probed, corresponding to a sensitivity to Majorana n masses > ~10meV.

  1. Recent double beta decay results

    Energy Technology Data Exchange (ETDEWEB)

    Balysh, A. (Kurchatov Institute, 123 182 Moscow (Russian Federation)); Beck, M. (Max-Planck-Institut fuer Kernphysik, W-6900 Heidelberg (Germany)); Belyaev, S.T. (Kurchatov Institute, 123 182 Moscow (Russian Federation)); Bensch, F.; Bockholt, J. (Max-Planck-Institut fuer Kernphysik, W-6900 Heidelberg (Germany)); Demehin, A.; Gurov, A. (Kurchatov Institute, 123 182 Moscow (Russian Federation)); Heusser, G.; Hirsch, M.; Klapdor-Kleingrothaus, H.V. (Max-Planck-Institut fuer Kernphysik, W-6900 Heidelberg (Germany)); Kondratenko, I.; Lebedev, V.I. (Kurchatov Institute, 123 182 Moscow (Russian Federation)); Maier, B. (Max-Planck-Institut fuer Kernphysik, W-6900 Heidelberg (Germany)); Mueller, A. (Istituto Nazionale di Fisica Nucleare LNGS, 67010 Assergi (Italy)); Petry, F.; Piepke, A.; Strecker, H.; Voellinger, M.; Zuber, K. (Max-Planck-Institut fuer Kernphysik, W-6900 Heidelberg (Germany))

    1992-02-01

    The status and recent results of second generation [beta][beta]-experiments using isotopically enriched source materials are described. These experiments are at present the most sensitive tools to distinguish Dirac from Majorana neutrinos. The at present most advanced experimental techniques, namely the use of high-resolution calorimetric detectors and of time projection chambers are compared. New limits on the Majorana neutrino mass as well as for the Majoron-neutrino coupling are presented.

  2. Beta decay of polarized nuclei and the decay asymmetry of 8Li

    International Nuclear Information System (INIS)

    Under certain conditions, it is possible to produce vector-polarized radioactive nuclei in reactions with a polarized projectile and an unpolarized target. Using the intense polarized beams at the University of Wisconsin, the authors have begun a program to study the weak interaction through the beta decay of polarized nuclei produced in this way. Such experiments bear on tests of CVC in light nuclei, sensitive searches for second-class weak currents, and measurements of the weak vector-coupling constant. One may also deduce the values of certain matrix elements. Our effort is presently centering on a study of the energy dependence of the beta-decay asymmetry of 8Li

  3. Development of new techniques for three dimensional tracking of charged particles for possible applications in the search for neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Since its prediction in 1937, several generations of experimental physicists have tried to confirm the neutrinoless double beta decay. An observation would have fundamental consequences for the understanding of particle physics. However, the experimental requirements are very demanding wherefore the race is still ongoing between many collaborations. The main challenge in this field is the reduction of background. Any decay in the natural decay chain is orders of magnitude more likely than the neutrinoless double beta decay. The half-life of this decay is known to be longer than 1025 years. Therefore, any detector will see a vast majority of events which are not signal events. Such events have to be identified and rejected. Primarily, this is done by measuring the kinetic energy of the decay products but also the trajectory of the particles resulting from the decay can be used for identification. Within the scope of this thesis different techniques were developed and tested which can be used to record such trajectories. It was shown that trajectories can be used indeed to identify and distinguish different types of events. The hybrid semiconductor detector named Timepix was used to record two-dimensional tracks of Compton-scattered electrons and electron-positron pairs in a 1mm thick cadmium-telluride sensor layer. Artificial neural networks could successfully be employed to distinguish both event types. Furthermore, a ''proof-of-principle'' experiment was successfully performed where three dimensional trajectories of high energetic electrons could be reconstructed from data recorded with a similar Timepix detector. Also, a new concept, where three dimensional trajectories of ionizing particles are imaged by scintillation light, was developed and successfully tested. In a ''proof-of-principle'' experiment three dimensional trajectories of high energetic electrons through a scintillator were reconstructed from data taken with a

  4. Double-Beta Decay at TUNL

    Science.gov (United States)

    Kidd, Mary

    2007-10-01

    Studying double-beta decay at Triangle Universities Nuclear Laboratory (TUNL) is perhaps one of the most promising ways to pinpoint the neutrino mass. What they do not mention is that to study double-beta decay, you probably have to become a certified miner, and if you have a fear of goats, you should stay away. In this talk, I will tell you some of my experiences as a TUNL graduate student, and how I am now nearly qualified for a job in the mining industry.

  5. Microscopic calculations for rare beta decays

    OpenAIRE

    Mustonen, Mika

    2010-01-01

    In this thesis consisting of six publications and an overview part, three cases of rare beta decays are studied using microscopic nuclear models. Firstly, the half-lives and electron spectra of 113Cd and 115In fourth-forbidden nonunique ground-state-to-ground-state beta decays are studied using two closely related nuclear models: The microscopic quasiparticle-phonon model (MQPM) and the proton-neutron MQPM (pnMQPM), which has been developed as a part of this thesis work. Our...

  6. Nuclear beta decay after Les Houches

    International Nuclear Information System (INIS)

    Wilkinson's 1977 Les Houches lectures summarized in detail how nuclear beta decay can be used to investigate fundamental nuclear phenomena and the achievements of this utilization up to that time. In this short talk the subsequent activity is briefly summarized and one area of high activity, namely first-forbidden beta decay, is singled out for more lengthy discussion. Specifically, the subject of interest is the very large meson exchange contribution to the time-like component of the axial current and the efforts to isolate this enhancement by means of careful shell-model calculations. 19 refs., 4 figs., 2 tabs

  7. Tables of double beta decay data

    International Nuclear Information System (INIS)

    A compilation of experimental data on double beta decay is presented. The tables contain the most stringent known experimental limits or positive results of 2β transitions of 69 natural nuclides to ground and excited states of daughter nuclei for different channels (2β-; 2β+; εβ+; 2ε) and modes (0ν; 2ν; 0νM) of decay. (authors). 189 refs., 9 figs., 3 tabs

  8. High-pressure Xenon Gas Electroluminescent TPC Concept for Simultaneous Searches for Neutrino-less Double Beta Decay & WIMP Dark Matter

    Science.gov (United States)

    Nygren, David

    2013-04-01

    Xenon is an especially attractive candidate for both direct WIMP and 0- decay searches. Although the current trend has exploited the liquid phase, gas phase xenon offers some remarkable performance advantages for energy resolution, topology visualization, and discrimination between electron and nuclear recoils. The NEXT-100 experiment, now beginning construction in the Canfranc Underground Laboratory, Spain, will operate at 12 bars with 100 kg of ^136Xe for the 0- decay search. I will describe recent results with small prototypes, indicating that NEXT-100 can provide about 0.5% FWHM energy resolution at the decay 2457.83 keV Q-value, as well as rejection of -rays by topology. However, sensitivity goals for WIMP dark matter and 0- decay searches indicate the need for ton-scale active masses; NEXT-100 provides the springboard to reach this scale with xenon gas. I describe a scenario for performing both searches in a single high-pressure ton-scale xenon gas detector, without significant compromise to either. In addition, -- even in a single, ton-scale, high-pressure xenon gas TPC, an intrinsic sensitivity to the nuclear recoil direction may exist -- plausibly offering an advance of more than two orders of magnitude relative to current low-pressure TPC concepts. I argue that, in an era of deepening fiscal austerity, such a dual-purpose detector may be possible, at acceptable cost, within the time frame of interest, and deserves our collective attention.

  9. Imperfect World of beta beta-decay Nuclear Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Pritychenko, B. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2015-01-03

    The precision of double-beta ββ-decay experimental half lives and their uncertainties is reanalyzed. The method of Benford's distributions has been applied to nuclear reaction, structure and decay data sets. First-digit distribution trend for ββ-decay T2v1/2 is consistent with large nuclear reaction and structure data sets and provides validation of experimental half-lives. A complementary analysis of the decay uncertainties indicates deficiencies due to small size of statistical samples, and incomplete collection of experimental information. Further experimental and theoretical efforts would lead toward more precise values of-decay half-lives and nuclear matrix elements.

  10. Double-beta decay in gauge theories

    International Nuclear Information System (INIS)

    The double-beta decay in gauge theories is considered. The review of the 76Ge, 82Se, 96Zr, 100Cd, 128Te, 130Te, 136Xe and 150Nd experimental nuclear targets is presented. The mechanism of the Majorana intermediate neutrino is considered. The R-parity of the violation of the contribution to the 0νββ decay is studied. The effective nucleon currents in dependence on the momentum are discussed. The extraction of the lepton number, violating the double-β decay parameters is presented

  11. Semiconductor detectors and double beta decay

    International Nuclear Information System (INIS)

    The underlying theory of double beta decay is discussed as well as some experimental observations. A class of second generation 76Ge detector experiments is then discussed. The design and physics considerations involved in the system used by LBL are explained, particularly the means of rejecting background activity. 24 references, 18 figures, 3 tables

  12. Lepton nonconservation and double beta decay

    International Nuclear Information System (INIS)

    This paper reviews the status of double beta decay as a test of lepton number conservation. Present limits on the mass of a Majorana neutrino are in the range of 10 to 50 eV. Experiments now in progress should substantially improve these limits

  13. Long term prospects for double beta decay

    OpenAIRE

    Zuber, K.

    2010-01-01

    In rather general terms the long term perspective of double beta decay is discussed. All important experimental parameters are investigated as well as the status of nuclear matrix element issues. The link with other neutrino physics results and options to disentangle the underlying physics process are presented.

  14. Beyond low beta-decay Q values

    Science.gov (United States)

    Mustonen, M. T.; Suhonen, J.

    2010-11-01

    Beta decays with low Q values can be utilized in the quest to determine the neutrino mass scale. This is being realized in two experiments, KATRIN and MARE, using tritium and 187Re, respectively. The beta-decay of 187Re had the lowest known Q value until 2005, when the beta decay of 115In to the first excited state of 115Sn was discovered in Gran Sasso underground laboratory. Last year two independent ion trap measurements confirmed that this decay breaks the former record by an order of magnitude. Our theoretical study on this tiny decay channel complemented the experimental effort by the JYFLTRAP group in Finland and HADES underground laboratory in Belgium. A significant discrepancy between the experimental and theoretical results was found. This might be explained by various atomic contributions known to grow larger as the Q value decreases. However, the traditional recipes for taking these effects into account break down on this new ultra-low Q value regime, providing new challenges for theorists on the borderline between nuclear and atomic physics.

  15. The MAJORANA Neutrinoless Double-Beta Decay Experiment

    International Nuclear Information System (INIS)

    Majorana collaboration paper for the IEEE Nuclear Science Symposium held in Dresden, Germany. It includes many authors from 17 institutions. Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The MAJORANA Collaboration proposes to assemble an array of HPGe detectors to search for neutrinoless double-beta decay in 76Ge. Our proposed method uses the well-established technique of searching for neutrinoless double-beta decay in high purity Ge-diode radiation detectors that play both roles of source and detector. The technique is augmented with recent improvements in signal processing and detector design, and advances in controlling intrinsic and external backgrounds. Initially, MAJORANA aims to construct a prototype module containing 60 kg of Ge detectors to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype Demonstrator module will be presented. This paper will also discuss detector optimization and low-background requirements, such as material purity, background rejection, and identification of rare backgrounds required to reach the sensitivity goals of the MAJORANA experiment.

  16. The GERDA Neutrinoless Double Beta-Decay Experiment

    International Nuclear Information System (INIS)

    Neutrinoless double beta (0νββ)-decay is the key process to gain understanding of the nature of neutrinos. The GErmanium Detector Array (GERDA) is designed to search for 0νββ-decay of the isotope 76Ge. Germanium crystals enriched in 76Ge, acting as source and detector simultaneously, will be submerged directly into an ultra pure cooling medium that also serves as a radiation shield. This concept will allow for a reduction of the background by up to two orders of magnitudes with respect to earlier experiments

  17. Analysis method for the search for neutrinoless double beta decay in the NEMO3 experiment: study of the background and first results

    International Nuclear Information System (INIS)

    The NEMO3 detector, installed in the Frejus Underground Laboratory, is dedicated to the study of neutrinoless double beta decay: the observation of this process would sign the massive and Majorana nature of neutrino. The experiment consists in very thin central source foils (the total mass is equal to 10 kg), a tracking detector made of drift cells operating in Geiger mode, a calorimeter made of plastic scintillators associated to photomultipliers, a coil producing a 30 gauss magnetic field and two shields, dedicated to the reduction of the γ-ray and neutron fluxes. In the first part, I describe the implications of several mechanisms, related to trilinear R-parity violation, on double beta decay. The second part is dedicated to a detailed study of the tracking detector of the experiment: after a description of the different working tests, I present the determination of the characteristics of the tracking reconstruction (transverse and longitudinal resolution, by Geiger cell and precision on vertex determination, charge recognition). The last part corresponds to the analysis of the data taken by the experiment. On the one hand, an upper limit on the Tl208 activity of the sources has been determined: it is lower than 68 mBq/kg, at 90% of confidence level. On the other hand, I have developed and tested on these data a method in order to analyse the neutrinoless double beta decay signal; this method is based on a maximum of likelihood using all the available information. Using this method, I could determine a first and very preliminary upper limit on the effective mass of the neutrino. (author)

  18. Double beta decay and neutrino mass models

    CERN Document Server

    Helo, J C; Ota, T; Santos, F A Pereira dos

    2015-01-01

    Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.

  19. Isospin mixing and beta decay

    International Nuclear Information System (INIS)

    In this work, we are interested in the breaking of the isospin symmetry in the N ≅ Z nuclei and in its effect on the matrix element of super-allowed 0+ → 0+ Fermi β transitions in the case of the β+ decay of the 50Mn. Within the framework of the Highly Truncated Diagonalization microscopic Approach (HTDA), dedicated to the description of correlations beyond the mean field and conserving explicitly the particle number, we have studied (in particular) the role played by pairing correlations in the breaking mechanisms of this symmetry in the ground state of N ≅ Z nuclei. A sensitivity study of the isospin mixing, as a function of the strength of the residual interaction describing the pairing correlations in HTDA, has been carried out and an interpretation of the mechanisms at work has been proposed in terms of an approximation developed in this work. This study has pointed out the complexity of a good treatment of the isospin symmetry, in the description of the breaking sources as well as in the reduction of model biases. We have also paid attention to the necessity of a very fine description of the correlated wave functions in such a problem. More precisely, we have obtained a value for the isospin mixing correction δC to the Fermi transition matrix element of (0.2 ± 0.1)%. This value has been compared to those obtained in other approaches. Taking account of the neglected effects in our work, our value of δC is expected to be a lower bound. (author)

  20. Exchange effects in double beta decay

    International Nuclear Information System (INIS)

    Over the past decade there has been very impressive progress in the laboratory study of double beta decay with very precise limits on 0-neutrino decay in /sup 76/Ge, the imminent prospect of the observation of 2-neutrino decay in /sup 100/Mo and the first laboratory observation of 2-neutrino decay in /sup 82/Se. For the last case, the laboratory rate is in essential agreement with geochemical results and in reasonable agreement with theoretical predictions based on a full shell model calculation. The motivation underlying the resurgence of interest in double beta decay is the hope that the observation of, or limits on the 0-neutrino mode will provide information about the nature of the neutrino. This clearly requires confidence in the nuclear matrix elements involved in the transition. The shell model calculations do not agree well with the geochemical values for /sup 130/Te, which has led to a spate of papers offering specific fixes for the problem. In this contribution we shall not comment on any of the specific nuclear calculations, rather we make some remarks which should be relevant to any model calculation. 11 refs., 1 tab

  1. Double-beta decay in deformed nuclei

    International Nuclear Information System (INIS)

    A brief review of theoretical results for the double-beta decay and the double-electron capture in heavy deformed nuclei is presented. The ββ half life of 160Gd is evaluated using an extended version of the pseudo SU(3) model. While the 2ν mode is forbidden when the most probable occupations are considered, states with different occupation numbers can be mixed through the pairing interaction. The amount of this mixing is calculated using perturbation theory. The possibility of observing the ββ decay in 160Gd is discussed for both the 2ν and 0ν modes. (author)

  2. Beta decay of 187Re and cosmochronology

    Science.gov (United States)

    Ashktorab, K.; Jänecke, J. W.; Becchetti, F. D.

    1993-06-01

    Uncertainties which limit the use of the 187-187Os isobaric pair as a cosmochronometer for the age of the galaxy and the universe include those of the partial half-lives of the continuum and bound-state decays of 187Re. While the total half-life of the decay is well established, the partial half-life for the continuum decay is uncertain, and several previous measurements are not compatible with each other. A high-temperature quartz proportional counter has been used in this work to remeasure the continuum decay of 187Re by introducing a metallo-organic rhenium compound into the counting gas. The measured beta end-point energy for the continuum decay of neutral 187Re to singly ionized 187Os of 2.70+/-0.09 keV agrees with earlier results. However, the present half-life measurement of (45+/-3) Gyr agrees within the quoted uncertainties only with the earlier measurement of Payne [Ph.D. thesis, University of Glasgow, 1965 (unpublished)] and Drever (private communication). The new half-life for the continuum decay and the total half-life of (43.5+/-1.3) Gyr, as reported by Linder et al. [Nature (London) 320, 246 (1986)] yield a branching ratio for the bound-state decay into discrete atomic states of (3+/-6)%. This is in agreement with the most recent calculated theoretical branching ratio of approximately 1%.

  3. JUNO and neutrinoless double beta decay

    Science.gov (United States)

    Ge, Shao-Feng; Rodejohann, Werner

    2015-11-01

    We study the impact of the precision determination of oscillation parameters in the JUNO experiment on half-life predictions for neutrinoless double beta decay. We show that the solar neutrino mixing angle can be measured by JUNO with below 1% uncertainty. This implies in particular that the minimal value of the effective mass in the inverted mass ordering will be known essentially without uncertainty. We demonstrate that this reduces the range of half-life predictions in order to test this value by a factor of 2. The remaining uncertainty is caused by nuclear matrix elements. This has important consequences for future double beta decay experiments that aim at ruling out the inverted mass ordering or the Majorana nature of neutrinos.

  4. JUNO and Neutrinoless Double Beta Decay

    CERN Document Server

    Ge, Shao-Feng

    2015-01-01

    We study the impact of the precision determination of oscillation parameters in the JUNO experiment on half-life predictions for neutrinoless double beta decay. We show that the solar neutrino mixing angle can be measured by JUNO with below 1% uncertainty. This implies in particular that the minimal value of the effective mass in the inverted mass ordering will be known essentially without uncertainty. We demonstrate that this reduces the range of half-life predictions in order to test this value by a factor of two. The remaining uncertainty is caused by nuclear matrix elements. This has important consequences for future double beta decay experiments that aim at ruling out the inverted mass ordering or the Majorana nature of neutrinos.

  5. Importance of neutrinoless double beta decay

    CERN Document Server

    Sarkar, Utpal

    2007-01-01

    A natural explanation for the smallness of the neutrino mass requires them to be Majorana particles violating lepton number by two units. Since lepton number violation can have several interesting consequences in particle physics and cosmology, it is of utmost importance to find out if there is lepton number violation in nature and what is its magnitude. The neutrinoless double beta decay experiment can answer these questions: if there is lepton number violation and if neutrinos are Majorana particles. In addition, the magnitude of neutrinoless double beta decay will constrain any other lepton number violating processes. This lepton number violation may also be relatd to the matter-antimatter asymmetry of the universe, dark matter and cosmological constant.

  6. Applications of TAGS data in beta decay energies and decay heat calculations

    OpenAIRE

    Pham, N. S.; 片倉 純一

    2007-01-01

    The recent data of beta-decay intensity measured by using the total absorption gamma-ray spectrometer (TAGS), for several fission products (FP), has been applied for calculations of the average energies and spectra, and decay heat summations. The calculations were performed based on the Gross theory of beta decay, in which the beta strength functions were experimentally derived from TAGS data. The deviations of decay heat power predictions from the original decay data of JENDL Decay Data File...

  7. JUNO and Neutrinoless Double Beta Decay

    OpenAIRE

    Ge, Shao-Feng; Rodejohann, Werner

    2015-01-01

    We study the impact of the precision determination of oscillation parameters in the JUNO experiment on half-life predictions for neutrinoless double beta decay. We show that the solar neutrino mixing angle can be measured by JUNO with below 1% uncertainty. This implies in particular that the minimal value of the effective mass in the inverted mass ordering will be known essentially without uncertainty. We demonstrate that this reduces the range of half-life predictions in order to test this v...

  8. NEUTRINOLESS DOUBLE BETA DECAY: AN EXTREME CHALLENGE

    OpenAIRE

    Fernando Ferroni

    2013-01-01

    Neutrino-less Double Beta Decay is the only known way to possibly resolve the nature of neutrino mass. The chances to cover the mass region predicted by the inverted hierarchy require a step forward in detector capability. A possibility is to make use of scintillating bolometers. These devices shall have a great power in distinguishing signals from alfa particles from those induced by electrons. This feature might lead to an almost background-free experiment. Here the Lucifer concept will be ...

  9. A combined limit for neutrinoless double-beta decay

    CERN Document Server

    Guzowski, Pawel

    2015-01-01

    The search for neutrinoless double-beta decay is important in determining the Majorana nature of the neutrino, and also in establishing if lepton number is violated. In this work, we combine the published data from five independent neutrinoless double-beta decay experiments: CUORICINO, EXO, GERDA, KamLAND-Zen and NEMO-3. As these experiments use different isotope sources, the relative signal normalisation between them depends on the Nuclear Matrix Element (NME) calculations used. The combined limits for the Majorana neutrino mass for 5 different NME models range from 130-310 meV. The combined mass limits can offer an improvement over the individual experiments of up to 25%, depending on the NME model.

  10. Simulation in double-beta decay experiments

    International Nuclear Information System (INIS)

    A detailed understanding of background radiation sources is a key to interpretation and enhanced sensitivity of double-beta decay experiments. Improvement of several techniques will be discussed. An implementation of the EGS4 code was developed to improve the accuracy of detector simulations, in particular for a 100Mo double-beta decay experiment. The efficiency modification due to the angular dependence of the 539 keV - 590 keV gamma-ray coincidence was successfully determined. The success of the 100Mo effort led to the modeling of uranium-thorium backgrounds found in an electroformed copper shield built for a 76Ge experiment. The large copper mass increased our sensitivity to contaminants present in copper produced this way, and led to changes in our cryostat electroforming technique. The original goal was the determination of the 210Pb content of the 450 year old lead shield previously used in 71Ge two-neutrino double-beta decay measurements. The results pertaining to low background materials and fabrication techniques will also be discussed

  11. Weak interaction studies from nuclear beta decay

    International Nuclear Information System (INIS)

    The studies performed at the theoretical nuclear physics division of the Laboratory of Nuclear Studies, Osaka University, are reported. Electron spin density and internal conversion process, nuclear excitation by electron transition, beta decay, weak charged current, and beta-ray angular distributions in oriented nuclei have been studied. The relative intensity of internal conversion electrons for the case in which the radial wave functions of orbital electrons are different for electron spin up and down was calculated. The calculated value was in good agreement with the experimental one. The nuclear excitation following the transition of orbital electrons was studied. The calculated probability of the nuclear excitation of Os189 was 1.4 x 10-7 in conformity with the experimental value 1.7 x 10-7. The second class current and other problems on beta-decay have been extensively studied, and described elsewhere. Concerning weak charged current, the effects of all induced terms, the time component of main axial vector, all partial waves of leptons, Coulomb correction for the electrons in finite size nuclei, and radiative correction were studied. The beta-ray angular distribution for the 1+ -- 0+ transition in oriented B12 and N12 was investigated. In this connection, investigation on the weak magnetism to include all higher order corrections for the evaluation of the spectral shape factors was performed. Other works carried out by the author and his collaborators are also explained. (Kato, T.)

  12. An ionization chamber for coincidence experiments in a search for double beta positron decay and electron positron conversion of 78Kr

    International Nuclear Information System (INIS)

    A search for double positron decay and electron capture with positron emission in the transition 78Kr(0+gs)→78Se(0+gs) has been carried out by using a high pressure ionization chamber surrounded by a set of NaI detectors. Coincidences between the emitted positron(s) and the two (four) consequent annihilation gammas have been looked for as signature(s) of the process(es). The ionization chamber of krypton gas (enriched up to 94.08% in the 78 isotope) registers the positron energy, whereas the set of sodium iodide scintillators searches for the annihilation gamma rays. The features and performances of the experimental device are presented and the results obtained for the half-life limits of the processes investigated are reported. ((orig.))

  13. Nuclear responses for neutrinos and neutrino studies by double beta decays and inverse beta decays

    Indian Academy of Sciences (India)

    H Ejiri

    2001-08-01

    This is a brief report on recent studies of nuclear responses for neutrinos () by charge exchange reactions, masses by double beta () decays and of solar and supernova ’s by inverse decays. Subjects discussed include (1) studies in nuclear micro-laboratories, (2) masses studied by decays of 100Mo and nuclear responses for -, (3) solar and supernova ’s by inverse decays and responses for 71Ga and 100Mo, and (4) MOON (molybdenum observatory of neutrinos) for spectroscopic studies of Majorana masses with sensitivity of ∼ 0.03 eV by decays of 100Mo and real-time studies of low energy solar and supernova ’s by inverse decays of 100Mo.

  14. Optical, luminescence and thermal properties of radiopure ZnMoO{sub 4} crystals used in scintillating bolometers for double beta decay search

    Energy Technology Data Exchange (ETDEWEB)

    Chernyak, D.M. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); Centre de Sciences Nucléaires et de Sciences de la Matière, 91405 Orsay (France); Danevich, F.A. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); Degoda, V.Ya.; Dmitruk, I.M. [Kyiv National Taras Shevchenko University, MSP 03680 Kyiv (Ukraine); Ferri, F. [Dipartimento di Scienza e Alta Tecnologia dell' Università dell' Insubria, Como I-22100 (Italy); Galashov, E.N. [Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk (Russian Federation); Giuliani, A., E-mail: Andrea.Giuliani@csnsm.in2p3.fr [Centre de Sciences Nucléaires et de Sciences de la Matière, 91405 Orsay (France); Dipartimento di Scienza e Alta Tecnologia dell' Università dell' Insubria, Como I-22100 (Italy); Sezione INFN di Milano-Bicocca, I-20126 Italy (Italy); Ivanov, I.M. [Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk (Russian Federation); Kobychev, V.V. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); Mancuso, M.; Marnieros, S. [Centre de Sciences Nucléaires et de Sciences de la Matière, 91405 Orsay (France); Dipartimento di Scienza e Alta Tecnologia dell' Università dell' Insubria, Como I-22100 (Italy); Mokina, V.M. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); Nones, C.; Olivieri, E. [Service de Physique des Particules, CEA-Saclay, F-91191 Gif sur Yvette (France); Pessina, G. [Sezione INFN di Milano-Bicocca, I-20126 Italy (Italy); Rusconi, C. [Dipartimento di Scienza e Alta Tecnologia dell' Università dell' Insubria, Como I-22100 (Italy); Sezione INFN di Milano-Bicocca, I-20126 Italy (Italy); and others

    2013-11-21

    Zinc molybdate (ZnMoO{sub 4}) crystals are an excellent candidate material to fabricate scintillating bolometers for the study of neutrinoless double beta decay of {sup 100}Mo, provided that the crystal quality meets strict optical, thermal and radiopurity requirements. This paper addresses the characterization of improved crystalline samples grown by the low-thermal-gradient Czochralski technique. Transmittance measurements confirm significant improvement of the material with respect to previously developed samples. Luminescence properties (emission spectra, dependence of intensity on temperature, thermally stimulated luminescence and phosphorescence) have been studied under X-ray excitation from liquid-helium to room temperature. The index of refraction was measured in the wavelength interval 406–655 nm. Samples of ZnMoO{sub 4} crystals with masses of 5.07 g and 23.8 g were operated as scintillating bolometers at temperatures below 30 mK, with simultaneous detection of scintillation and heat signals, confirming an excellent alpha/beta rejection power. Background measurements allowed encouraging radiopurity level estimations. The light collection from ZnMoO{sub 4} scintillators was Monte Carlo simulated, analysing different crystal size, shape and surface properties and different photodetector sizes.

  15. Double beta decay with large scale Yb-loaded scintillators

    OpenAIRE

    Zuber, K.

    2000-01-01

    The potential of large scale Yb-loaded liquid scintillators as proposed for solar neutrino spectroscopy are investigated with respect to double beta decay. The potential for beta-beta- - decay of 176Yb as well as the beta+/EC - decay for 168Yb is discussed. Not only getting for the first time an experimental half-life limit on 176Yb - decay, this will even be at least comparable or better than existing ones from other isotopes. Also for the first time a realistic chance to detect beta+/EC - d...

  16. A background free double beta decay experiment

    CERN Document Server

    Giomataris, Ioannis

    2010-01-01

    We present a new detection scheme for rejecting backgrounds in neutrino less double beta decay experiments. It relies on the detection of Cherenkov light emitted by electrons in the MeV region. The momentum threshold is tuned to reach a good discrimination between background and good events. We consider many detector concepts and a range of target materials. The most promising is a high-pressure 136Xe emitter for which the required energy threshold is easily adjusted. Combination of this concept and a high pressure Time Projection Chamber could provide an optimal solution. A simple and low cost effective solution is to use the Spherical Proportional Counter that provides two delayed signals from ionization and Cherenkov light. In solid-state double beta decay emitters, because of their higher density, the considered process is out of energy range. An alternative solution could be the development of double decay emitters with lower density by using for instance the aerogel technique. It is surprising that a te...

  17. Analysis of the data from the NEMO3 experiment and search for neutrinoless double beta decay - Study of systematic bias of the calorimeter and development of analysis tools

    International Nuclear Information System (INIS)

    The NEMO3 experiment was researching the neutrinoless double-β (0ndb) decay by using various sources of double beta decay isotopes (mainly 100Mo, 82Se, 116Cd and 130Te for about 10 kg in total). The detector was located in the underground laboratory of Modane (Italy) in the halfway point of the Frejus tunnel. This experiment demonstrated that the 'tracko-calo' technology is really competitive and, in addition, it gives new results for the 2-neutrinos double-β (2ndb) decay and the (0ndb) decays research. Moreover it opened an new way for its successor SuperNEMO, which aim is to reach a mass of 100 kg of 82Se (for a sensitivity of 1026 years). The main goal of the thesis is to measure the 2ndb and 0ndb decay of the 100Mo to the excited state 01+ of the 100Ru thanks to the whole NEMO3 data, with new original methods of analysis and through the development of the collaboration analysis software. The results obtained for the ground states (gs) and excited states 2ndb of the 100Mo are for the half-lives: T(2nbd, gs)=[7.05±0.01(stat)±0.54(syst)]*1018 years and T(2ndb, 01+)=[6.15±1.1(sta)±0.78]*1020 years. Those results are compatibles with the last ones published by the collaboration. For the 0ndb(01+), this work gave a half-life of T(0ndb, 01+) > 2.6*1023 years, improving significantly the last published results. Furthermore those methods also allowed to present a new and more exhaustive background noise model for this experiment. The second point of this work was to measure the systematics errors of the NEMO3 calorimeter, among others due to the wavelength of the NEMO3 calibration systems. This work was done using a new test bench based on LED. This bench also allowed to contribute to the development of the SuperNEMO calorimeter, especially in the time characteristic and the energy linearity measurement of the photomultiplier intended to the demonstrator of the experiments. (author)

  18. Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations

    CERN Document Server

    Cremonesi, Oliviero

    2010-01-01

    Two most outstanding questions are puzzling the world of neutrino Physics: the possible Majorana nature of neutrinos and their absolute mass scale. Direct neutrino mass measurements and neutrinoless double beta decay (0nuDBD) are the present strategy to solve the puzzle. Neutrinoless double beta decay violates lepton number by two units and can occurr only if neutrinos are massive Majorana particles. A positive observation would therefore necessarily imply a new regime of physics beyond the standard model, providing fundamental information on the nature of the neutrinos and on their absolute mass scale. After the observation of neutrino oscillations and given the present knowledge of neutrino masses and mixing parameters, a possibility to observe 0nuDBDD at a neutrino mass scale in the range 10-50 meV could actually exist. This is a real challenge faced by a number of new proposed projects. Present status and future perpectives of neutrinoless double-beta decay experimental searches is reviewed. The most impo...

  19. The background in the neutrinoless double beta decay experiment GERDA

    CERN Document Server

    Agostini, M; Andreotti, E; Bakalyarov, A M; Balata, M; Barabanov, I; Heider, M Barnabe; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Brudanin, V; Brugnera, R; Budjas, D; Caldwell, A; Cattadori, C; Chernogorov, A; Cossavella, F; Demidova, E V; Domula, A; Egorov, V; Falkenstein, R; Ferella, A; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Gotti, C; Grabmayr, P; Gurentsov, V; Gusev, K; Guthikonda, K K; Hampel, W; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Ioannucci, L; Csathy, J Janicsko; Jochum, J; Junker, M; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knoepfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Liu, X; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Machado, A A; Majorovits, B; Maneschg, W; Nemchenok, I; Nisi, S; O'Shaughnessy, C; Palioselitis, D; Pandola, L; Pelczar, K; Pessina, G; Pullia, A; Riboldi, S; Sada, C; Salathe, M; Schmitt, C; Schreiner, J; Schulz, O; Schwingenheuer, B; Schoenert, S; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Strecker, H; Tarka, M; Ur, C A; Vasenko, A A; Volynets, O; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wojcik, M; Yanovich, E; Zavarise, P; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2014-01-01

    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta decay of 76Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the Q-value of the decay, Q_bb. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around Q_bb. The main parameters needed for the neutrinoless double beta decay analysis are described. A background model was developed to describe the observed energy spectrum. The model contains several contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around Q_bb with a background index ranging from 17.6 to 23.8*10^{-3} counts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model...

  20. NEUTRINOLESS DOUBLE BETA DECAY: AN EXTREME CHALLENGE

    Directory of Open Access Journals (Sweden)

    Fernando Ferroni

    2013-12-01

    Full Text Available Neutrino-less Double Beta Decay is the only known way to possibly resolve the nature of neutrino mass. The chances to cover the mass region predicted by the inverted hierarchy require a step forward in detector capability. A possibility is to make use of scintillating bolometers. These devices shall have a great power in distinguishing signals from alfa particles from those induced by electrons. This feature might lead to an almost background-free experiment. Here the Lucifer concept will be introduced and the prospects related to this project will be discussed.

  1. The Majorana Ge-76 Double-Beta Decay Project

    CERN Document Server

    Aalseth, C E; Barabash, A S; Bowyer, T W; Brodzinski, R L; Brudanin, V B; Collar, J I; Doe, P J; Egorov, S; Elliott, S R; Farach, H A; Gaitskell, R J; Jordan, D; Kochetov, O I; Konovalov, S V; Kouzes, R T; Miley, H S; Pitts, W K; Reeves, J H; Robertson, R G H; Sandukovsky, V G; Smith, E; Stekhanov, V; Thompson, R C; Tornow, W; Umatov, V I; Warner, R A; Webb, J; Wilkerson, J F; Young, A

    2002-01-01

    The Majorana Experiment is a next-generation Ge-76 double-beta decay search. It will employ 500 kg of Ge, isotopically enriched to 86% in Ge-76, in the form of 200 detectors in a close-packed array for high granularity. Each crystal will be electronically segmented, with each region fitted with pulse-shape analysis electronics. A half-life sensitivity is predicted of 4.2e27 y or < 0.02-0.07 eV, depending on the nuclear matrix elements used to interpret the data.

  2. Testing the importance of collective correlations in neutrinoless $\\beta\\beta$ decay

    CERN Document Server

    Menéndez, J; Engel, J; Martínez-Pinedo, G; Rodríguez, T R

    2016-01-01

    We investigate the extent to which theories of collective motion can capture the physics that determines the nuclear matrix elements governing neutrinoless double-beta decay. To that end we calculate the matrix elements for a series of isotopes in the full $pf$ shell, omitting no spin-orbit partners. With the inclusion of isoscalar pairing, a separable collective Hamiltonian that is derived from the shell model effective interaction reproduces the full shell-model matrix elements with good accuracy. A version of the generator coordinate method that includes the isoscalar pairing amplitude as a coordinate also reproduces the shell model results well, an encouraging result for theories of collective motion, which can include more single-particle orbitals than the shell model. We briefly examine heavier nuclei relevant for experimental double-beta decay searches, in which shell-model calculations with all spin-orbit partners are not feasible; our estimates suggest that isoscalar pairing also plays a significant ...

  3. Isospin and quarks in nuclear beta-decay

    International Nuclear Information System (INIS)

    This paper exposes in some detail the technical problems relating to the extraction of the vector coupling constant from the beta decay of complex nuclei. It also considers the extraction of the axial coupling constant from the beta-decay of the neutron. The internal consistency of all data relating to beta-decay, including that of the muon, is also examined, within the standard model, with a view to the possible intervention of WR. (Author) 52 refs., 4 figs., 2 tabs

  4. Search for the rare decay B to pi l+ l-

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2007-03-16

    The authors have performed a search for the flavor-changing neutral-current decays B {yields} {pi}{ell}{sup +}{ell}{sup -}, where {ell}{sup +}{ell}{sup -} is either e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -}, using a sample of 230 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector. They observe no evidence of a signal and measure the upper limit on the isospin-averaged branching fraction to be {Beta}(B {yields} {pi}{ell}{sup +}{ell}{sup -}) < 9.1 x 10{sup -8} at 90% confidence level. They also search for the lepton-flavor-violating decays B {yields} {pi}e{sup {+-}} {mu}{sup {-+}} and measure an upper limit on the isospin-averaged branching fraction of {Beta}(B {yields} {pi}e{sup {+-}} {mu}{sup {-+}}) < 9.2 x 10{sup -8} at 90% confidence level.

  5. Semiconductor detectors and double beta decay

    International Nuclear Information System (INIS)

    Theoretical physicists have devoted great effort to developing an adequate theory for linking the weak, electromagnetic, and strong forces of nature. Recent theoretical studies and observations of the stability of galaxies have strongly indicated the presence of large amounts of invisible mass. One element in the uncertainty associated with missing mass is the question of whether the neutrino has rest mass. A better understanding of the neutrino, explored in this paper by the possibility of double beta decay in the germanium 76 isotope, could perhaps provide some answers. Nuclear transitions are only energetically possible where the final nucleus is more tightly bound than its parent. The decay of germanium 76 to arsenic 76 is not energetically possible because the arsenic isotope is about 0.9 MeV less tightly bound than the germanium. The selenium 76 isotope, on the other hand, is about 2 MeV more tightly bound; therefore, a transition involving emission of two electrons by a germanium 76 nucleus to form a selenium 76 nucleus is energetically possible. The total energy release in kinetic energy of the beta particles and corresponding neutrinos from the excited daughter product is determined by the energy difference. This energetically possible event, if observed, will provide a breakthrough in understanding the universe. This paper discusses the underlying theory and a germanium detector experiment which could make such a contribution to the resolution of this question

  6. The NEXT double beta decay experiment

    Science.gov (United States)

    Laing, A.; NEXT Collaboration

    2016-05-01

    NEXT (Neutrino Experiment with a Xenon TPC) is a neutrinoless double-beta (ββ0v) decay experiment at Laboratorio Subterraneo de Canfranc (LSC). It is an electroluminescent Time Projection Chamber filled with high pressure 136Xe gas with separated function capabilities for calorimetry and tracking. Energy resolution and background suppression are the two key features of any neutrinoless double beta decay experiment. NEXT has both good energy resolution (handle for background identification provided by track reconstruction. We expect a background rate of 4 × 10-4 counts keV-1 kg-1 yr-1, and a sensitivity to the Majorana neutrino mass of between 80-160 meV (depending on NME) after a run of 3 effective years of the 100 kg scale NEXT-100 detector. The initial phase of NEXT-100, called NEW, is currently being commissioned at LSC. It will validate the NEXT background rate expectations and will make first measurements of the two neutrino ββ2v mode of 136Xe. Furthermore, the NEXT technique can be extrapolated to the tonne scale, thus allowing the full exploration of the inverted hierarchy of neutrino masses. These proceedings review NEXT R&D results, the status of detector commissioning at LSC and the NEXT physics case.

  7. Theory of neutrinoless double-beta decay - a brief review

    International Nuclear Information System (INIS)

    Neutrinoless double-beta decay (0νββ-decay) is a unique probe for lepton number conservation and neutrino properties. This is a process with long and interesting history with important implications for particle physics and cosmology, but its observation is still elusive. The search for the 0νββ-decay represents the new frontiers of neutrino physics, allowing one to determine the Majorana nature of neutrinos and to fix the neutrino mass scale and possible CP-violation effects, which could explain the matter-antimatter asymmetry in the Universe. At present, a complete theory is missing and, thus, to motivate and guide the experiments, the mechanism mediated by light neutrinos is mostly considered. The subject of interest is an effective mass of Majorana neutrinos, which can be deduced from the measured half-life, once this process is definitely observed. The accuracy of the determination of this quantity is mainly determined by our knowledge of the nuclear matrix elements. There is a request to evaluate them with high precision, accuracy and reliability. Recently, there is an increased interest in the resonant neutrinoless double-electron capture, which may also establish the Majorana nature of neutrinos. This possibility is considered as alternative and complementary to searches for the 0νββ-decay

  8. Beta decay properties from a statistical model

    International Nuclear Information System (INIS)

    The present work assumes that any intrinsic structure in the nuclei involved is not important. Only spin, parity, and energy are considered. Quantities such as half-life, average beta energy, or average gamma energy can be obtained by integrals over the beta strength function weighted by kinematic and other factors. The beta strength function is proportional to the level density multiplied by a reduced transition probability. Delayed neutron emission is calculated by assuming that the daughter is a compound nucleus which then statistically decays as in the Hauser-Feshbach approach. Using the ENDF/B-V fission product file which contains 877 nuclei, energy-dependent reduced transition probabilities were found for allowed 0+ → 1+ transitions (50 cases) and for other allowed transitions (over 600 cases), corresponding to log ft values of 4.3 and 5.6 respectively. No dependence on either transition energy or on mass was found. A reduced transition probability corresponding to log ft of 7.1 was used for first forbidden transitions. Some results are presented and discussed

  9. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Aguayo, Estanislao; Avignone, Frank T.; Barabash, Alexander S.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O' Shaughnessy, C.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Steele, David; Strain, J.; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Williams, T.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-06-01

    The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta (ββ(0ν)) decay of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The DEMONSTRATOR is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the DEMONSTRATOR and the details of its design.

  10. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Aguayo, Estanislao; Avignone, III, F. T.; Barabash, A.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O' Shaughnessy, Mark D.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Steele, David; Strain, J.; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Williams, T.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-01-01

    The Majorana Demonstrator will search for the neutrinoless double-beta (ββ (0ν)) decay of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. TheDemonstrator is being assembled at the 4850-foot level of the SanfordUnderground Research Facility in Lead, SouthDakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the Demonstrator and the details of its design.

  11. Results on $\\beta\\beta$ decay with emission of two neutrinos or Majorons in $^{76}$Ge from GERDA Phase I

    CERN Document Server

    Agostini, M; Bakalyarov, A M; Balata, M; Barabanov, I; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Borowicz, D; Brudanin, V; Brugnera, R; Budjáš, D; Caldwell, A; Cattadori, C; Chernogorov, A; D'Andrea, V; Demidova, E V; di Vacri, A; Domula, A; Doroshkevich, E; Egorov, V; Falkenstein, R; Fedorova, O; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Grabmayr, P; Gurentsov, V; Gusev, K; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Csáthy, J Janicskó; Jochum, J; Junker, M; Kazalov, V; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Majorovits, B; Maneschg, W; Medinaceli, E; Misiaszek, M; Moseev, P; Nemchenok, I; Palioselitis, D; Panas, K; Pandola, L; Pelczar, K; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salathe, M; Schmitt, C; Schreiner, J; Schulz, O; Schwingenheuer, B; Schönert, S; Selivanenko, O; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Stepaniuk, M; Ur, C A; Vanhoefer, L; Vasenko, A A; Veresnikova, A; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wilsenach, H; Wojcik, M; Yanovich, E; Zavarise, P; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2015-01-01

    A search for neutrinoless $\\beta\\beta$ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were searched for. No signals were found and lower limits of the order of 10$^{23}$ yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with $^{76}$Ge. A new result for the half-life of the neutrino-accompanied $\\beta\\beta$ decay of $^{76}$Ge with significantly reduced uncertainties is also given, resulting in $T^{2\

  12. Neutrinoless double beta decay and heavy sterile neutrinos

    International Nuclear Information System (INIS)

    The experimental rate of neutrinoless double beta decay can be saturated by the exchange of virtual sterile neutrinos, that mix with the ordinary neutrinos and are heavier than 200 MeV. Interestingly, this hypothesis is subject only to marginal experimental constraints, because of the new nuclear matrix elements. This possibility is analyzed in the context of the Type I seesaw model, performing also exploratory investigations of the implications for heavy neutrino mass spectra, rare decays of mesons as well as neutrino-decay search, LHC, and lepton flavor violation. The heavy sterile neutrinos can saturate the rate only when their masses are below some 10 TeV, but in this case, the suppression of the light-neutrino masses has to be more than the ratio of the electroweak scale and the heavy-neutrino scale; i.e., more suppressed than the naive seesaw expectation. We classify the cases when this condition holds true in the minimal version of the seesaw model, showing its compatibility (1) with neutrinoless double beta rate being dominated by heavy neutrinos and (2) with any light neutrino mass spectra. The absence of excessive fine-tunings and the radiative stability of light neutrino mass matrices, together with a saturating sterile neutrino contribution, imply an upper bound on the heavy neutrino masses of about 10 GeV. We extend our analysis to the Extended seesaw scenario, where the light and the heavy sterile neutrino contributions are completely decoupled, allowing the sterile neutrinos to saturate the present experimental bound on neutrinoless double beta decay. In the models analyzed, the rate of this process is not strictly connected with the values of the light neutrino masses, and a fast transition rate is compatible with neutrinos lighter than 100 meV.

  13. Search for hadronic b→u decays

    International Nuclear Information System (INIS)

    Using the ARGUS detector at the e+e- storgage ring DORIS II at DESY, we searched for b→u transitions in exclusive hadronic B meson decays. A systematic analysis of B decays into pions has been performed for decay modes with 2-7 pions in the final state. In none of the decays a positive signal was observed. The upper limits obtained on various branching ratios are consistent with the current model predictions. (orig.)

  14. Study of 193Os beta- decay

    International Nuclear Information System (INIS)

    In this work, the excited levels of 193Ir populated by the beta- decay of 193Os (T1/2 ∼ 30h) were investigated. For that purpose, ∼ 5 mg samples of 99%-enriched 192Os were irradiated under a thermal neutron flux of ∼ 1012 s-1 and then analysed both using single gamma spectroscopy and a 4-detector multi parametric acquisition facility, which provided data for both a gamma gamma coincidence analysis and a directional angular correlation gamma gamma (θ ) study. From these data, 28 transitions were added to this decay scheme, 11 of which were previously known from nuclear reactions and 17 observed for the first time. Eight excited levels were also added to the decay scheme, 3 of which were known from nuclear reaction studies - the remaining 5 are suggested for the first time. Moreover, it was possible to confirm suspicions found in reference that the levels at 848.93 keV and 849.093 keV are indeed the same; it was also possible to confirm the existence of an excited level at 806.9 keV, which had been inferred, but not experimentally confirmed in beta decay studies to date. The angular correlation analysis allowed for the definition of the spin of the excited level at 874 keV as 5/2+; moreover, the results showed a 79% probability that the spin of the 1078 keV level is 5/2/'-, and also restricted the spin possibilities for the new excited level at 960 keV to two values (1/2 or 3/2). It was also possible to measure the multipolarity mixing ratio (δLn+1/Ln) for 43 transitions - 19 of them for the first time and most of the others with a better precision than previously known. Finally, an attempt was made to understand the low-lying levels structure for this nucleus using a theoretical model, which reproduced the ground state and the two lowest-lying excited levels in 193Ir. (author)

  15. Neutrinoless Double Beta Decay: 2015 Review

    Directory of Open Access Journals (Sweden)

    Stefano Dell’Oro

    2016-01-01

    Full Text Available The discovery of neutrino masses through the observation of oscillations boosted the importance of neutrinoless double beta decay (0νββ. In this paper, we review the main features of this process, underlining its key role from both the experimental and theoretical point of view. In particular, we contextualize the 0νββ in the panorama of lepton number violating processes, also assessing some possible particle physics mechanisms mediating the process. Since the 0νββ existence is correlated with neutrino masses, we also review the state of the art of the theoretical understanding of neutrino masses. In the final part, the status of current 0νββ experiments is presented and the prospects for the future hunt for 0νββ are discussed. Also, experimental data coming from cosmological surveys are considered and their impact on 0νββ expectations is examined.

  16. A massive neutrino in nuclear beta decay?

    International Nuclear Information System (INIS)

    We have continued our studies of the p-spectrum of 14C using a germanium detector doped with 14C. There is a feature in the β-spectrum 17 keV below the endpoint which could be explained by the hypothesis that there is a heavy neutrino emitted in the β-decay of 14C with a mass of 17±1 keV and an emission probability of 1.26±0.25%. However, we also have performed a high statistics measurement of the inner bremsstrahlung spectrum of 55Fe and find no indication of the emission of a 17-keV neutrino. We conclude that the origin of the ''kink'' that has been observed in some recent beta spectral measurements is not a neutrino

  17. A massive neutrino in nuclear beta decay?

    International Nuclear Information System (INIS)

    We have continued our studies of the β-spectrum of 14C using a germanium detector doped with l4C. There is a feature in the β-spectrum 17 keV below the endpoint which could be explained by the hypothesis that there is a heavy neutrino emitted in the β-decay of 14C with a mass of 17±1 keV and an emission probability of 1.26±0.25%. However, we also have performed a high statistics measurement of the inner bremsstrahlung spectrum of 55Fe and find no indication of the emission of a 17-keV neutrino. We conclude that the origin of the ''kink'' that has been observed in some recent beta spectral measurements is not a neutrino

  18. A massive neutrino in nuclear beta decay?

    International Nuclear Information System (INIS)

    We have continued our studies of the β-spectrum of 14C using a germanium detector doped with 14C. There is a feature in the β-spectrum 17 keV below the endpoint which could be explained by the hypothesis that there is a heavy neutrino emitted in the β-decay of 14C with a mass of 17±1 keV and an emission probability of 1.26±0.25%. However, we also have performed a high statistics measurement of the inner bremsstrahlung spectrum of 55Fe and find no indication of the emission of a 17-keV neutrino. We conclude that the origin of the ''kink'' that has been observed in some recent beta spectral measurements is not a neutrino

  19. Status of LUMINEU program to search for neutrinoless double beta decay of 100Mo with cryogenic ZnMoO4 scintillating bolometers

    Science.gov (United States)

    Danevich, F. A.; Bergé, L.; Boiko, R. S.; Chapellier, M.; Chernyak, D. M.; Coron, N.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Giuliani, A.; Gray, D.; Gros, M.; Hervé, S.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kobychev, V. V.; Koskas, F.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Navick, X.-F.; Nones, C.; Olivieri, E.; Paul, B.; Penichot, Y.; Pessina, G.; Plantevin, O.; Poda, D. V.; Redon, T.; Rodrigues, M.; Shlegel, V. N.; Strazzer, O.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.

    2015-10-01

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of 100Mo using radiopure ZnMoO4 crystals enriched in 100Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO4 crystal scintillators (˜ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in 100Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ˜ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.

  20. Status of LUMINEU program to search for neutrinoless double beta decay of 100Mo with cryogenic ZnMoO4 scintillating bolometers

    International Nuclear Information System (INIS)

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of 100Mo using radiopure ZnMoO4 crystals enriched in 100Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO4 crystal scintillators (∼ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in 100Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ∼ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern

  1. Status of LUMINEU program to search for neutrinoless double beta decay of {sup 100}Mo with cryogenic ZnMoO{sub 4} scintillating bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Danevich, F. A., E-mail: danevich@kinr.kiev.ua; Boiko, R. S.; Chernyak, D. M.; Kobychev, V. V. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); Bergé, L.; Chapellier, M.; Drillien, A.-A.; Dumoulin, L.; Humbert, V.; Marcillac, P. de; Marnieros, S.; Marrache-Kikuchi, C.; Olivieri, E.; Plantevin, O.; Tenconi, M. [Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS/IN2P3, Université Paris-Sud, 91405 Orsay (France); Coron, N.; Redon, T.; Torres, L. [IAS, CNRS, Université Paris-Sud, 91405 Orsay (France); Devoyon, L.; Koskas, F. [CEA, Centre d’Etudes Saclay, Orphée, 91191 Gif-Sur-Yvette Cedex (France); and others

    2015-10-28

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of {sup 100}Mo using radiopure ZnMoO{sub 4} crystals enriched in {sup 100}Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO{sub 4} crystal scintillators (∼ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in {sup 100}Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ∼ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.

  2. Neutron bound beta-decay: BOB

    International Nuclear Information System (INIS)

    An experiment to observe the bound beta-decay (BOB) of the free neutron into a hydrogen atom and an electron anti-neutrino is described. The hyperfine spin state population of the monoenergetic hydrogen atom yields the neutrino left-handedness or possible right-handed admixture as well as possible small scalar and tensor contributions to the weak force. The BOB H(2s) hyperfine states can be separated with a Lamb-Shift Spin Filter. These monoenergetic H(2s) atoms are ionised into H− by charge exchanging within an argon cell. These ions are then separated using an adaptation of a MAC-E Filter. A first experiment is proposed at the FRMII high thermal-neutron flux beam reactor SR6 through-going beam tube, where we will seek to observe this rare neutron decay-mode for the first time and determine the branching ratio. After successful completion, the hyperfine spin state population will be determined, possibly at the ILL high-flux beam reactor through-going beam tube H6–H7, where the thermal neutron flux is a factor of four larger.

  3. Double beta decay of 128Te and RIS

    International Nuclear Information System (INIS)

    The paper considers the use of Resonance Ionization Spectroscopy (RIS) in the determination of the electron neutrino mass via the double beta decay of 128Te. An outline is given of the theoretical background to the electron neutrino restmass, and the importance of the neutrino properties in Grand Unification Theories. The detection method for double beta decay is described; the discussion is restricted to tellurium ores and the decays 128Te → 128Xe, and 130Te → 130Xe. A consideration of existing data on double beta decay of 128Te indicates that most aspects of the detection could benefit from RIS. (U.K.)

  4. Neutron beta decay studies at the Institut Laue-Langevin

    International Nuclear Information System (INIS)

    In the frame of the electroweak Standard Model of particle physics, neutron beta decay is described by only two parameters: the element Vud of the weak quark mixing matrix (CKM matrix) and the ratio λ=gA/gV of the weak coupling constants of the neutron. Experimentally, a larger number of neutron decay parameters are accessible. These are the lifetime and various correlation coefficients between the spins and momenta of the particles involved in neutron decay. Hence, the problem is strongly overdetermined, and many tests going beyond the Standard Model are possible. These comprise tests of the unitarity of the CKM matrix, tests for tensor and scalar admixtures, searches for right-handed currents within the frame of left-right symmetric models, as well as tests of time reversal symmetry. During the past years various groups working in this field have made considerable progress in neutron decay experimentation. In our presentation we shall give a survey on new experiments performed at the Institut Laue-Langevin, Grenoble, France, and on the results concerning the Standard Model

  5. Observation of Two-Neutrino Double-Beta Decay in Xe-136 with EXO-200

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, N.; /SLAC; Aharmim, B.; /Laurentian U.; Auger, M.; /Bern U.; Auty, D.J.; /Alabama U.; Barbeau, P.S.; Barry, K.; Bartoszek, L.; /Stanford U., Phys. Dept.; Beauchamp, E.; /Laurentian U.; Belov, V.; /Moscow, ITEP; Benitez-Medina, C.; /Colorado State U.; Breidenbach, M.; /SLAC; Burenkov, A.; /Moscow, ITEP; Cleveland, B.; /Laurentian U.; Conley, R.; Conti, E.; /SLAC; Cook, J.; /Massachusetts U., Amherst; Cook, S.; /Colorado State U.; Coppens, A.; /Carleton U.; Counts, I.; /Stanford U., Phys. Dept.; Craddock, W.; /SLAC; Daniels, T.; /Massachusetts U., Amherst /Moscow, ITEP /Maryland U. /Stanford U., Phys. Dept. /Alabama U. /Maryland U. /Moscow, ITEP /Stanford U., Phys. Dept. /Laurentian U. /Carleton U. /Colorado State U. /Laurentian U. /Munich, Tech. U. /Bern U. /SLAC /Bern U. /Carleton U. /Stanford U., Phys. Dept. /Carleton U. /Maryland U. /Colorado State U. /SLAC /Carleton U. /SLAC /Alabama U. /SLAC /Moscow, ITEP /Indiana U. /Stanford U., Phys. Dept. /Moscow, ITEP /Stanford U., Phys. Dept. /Massachusetts U., Amherst /Seoul U. /Carleton U. /Stanford U., Phys. Dept.; /more authors..

    2012-09-14

    We report the observation of two-neutrino double-beta decay in {sup 136}Xe with T{sub 1/2} = 2.11 {+-} 0.04(stat) {+-} 0.21(syst) x 10{sup 21} yr. This second-order process, predicted by the standard model, has been observed for several nuclei but not for {sup 136}Xe. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrinoless double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale.

  6. Neutrinoless double beta decay and lepton number violating new physics

    International Nuclear Information System (INIS)

    Neutrinoless double beta decay is a very promising experimental test for lepton number violation. The exchange of light Majorana neutrinos is the simplest realization of this decay, but other physics beyond the Standard Model may also mediate neutrinoless double beta decay. We discuss the interplay of different mechanisms and the influence such an interplay has on the extraction of parameters of the neutrino sector from experimental results.

  7. Tests of the standard electroweak model in beta decay

    International Nuclear Information System (INIS)

    We review the current status of precision measurements in allowed nuclear beta decay, including neutron decay, with emphasis on their potential to look for new physics beyond the standard electroweak model. The experimental results are interpreted in the framework of phenomenological model-independent descriptions of nuclear beta decay as well as in some specific extensions of the standard model. The values of the standard couplings and the constraints on the exotic couplings of the general beta decay Hamiltonian are updated. For the ratio between the axial and the vector couplings we obtain CA,/CV = -1.26992(69) under the standard model assumptions. Particular attention is devoted to the discussion of the sensitivity and complementarity of different precision experiments in direct beta decay. The prospects and the impact of recent developments of precision tools and of high intensity low energy beams are also addressed. (author)

  8. Tests of the standard electroweak model in beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Severijns, N.; Beck, M. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium); Naviliat-Cuncic, O. [Caen Univ., CNRS-ENSI, 14 (France). Lab. de Physique Corpusculaire

    2006-05-15

    We review the current status of precision measurements in allowed nuclear beta decay, including neutron decay, with emphasis on their potential to look for new physics beyond the standard electroweak model. The experimental results are interpreted in the framework of phenomenological model-independent descriptions of nuclear beta decay as well as in some specific extensions of the standard model. The values of the standard couplings and the constraints on the exotic couplings of the general beta decay Hamiltonian are updated. For the ratio between the axial and the vector couplings we obtain C{sub A},/C{sub V} = -1.26992(69) under the standard model assumptions. Particular attention is devoted to the discussion of the sensitivity and complementarity of different precision experiments in direct beta decay. The prospects and the impact of recent developments of precision tools and of high intensity low energy beams are also addressed. (author)

  9. A Search for Neutrinoless Tau Decays to Three Leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Jeffrey A.; /Oregon U. /SLAC

    2008-09-24

    Using approximately 350 million {tau}{sup +}{tau}{sup -} pair events recorded with the BaBar detector at the Stanford Linear Accelerator Center between 1999 and 2006, a search has been made for neutrinoless, lepton-flavor violating tau decays to three lighter leptons. All six decay modes consistent with conservation of electric charge and energy have been considered. With signal selection efficiencies of 5-12%, we obtain 90% confidence level upper limits on the branching fraction {Beta}({tau} {yields} {ell}{ell}{ell}) in the range (4-8) x 10{sup -8}.

  10. T violation in radiative $\\beta$ decay and electric dipole moments

    CERN Document Server

    Dekens, W G

    2015-01-01

    In radiative $\\beta$ decay, $T$ violation can be studied through a spin-independent $T$-odd correlation. We consider contributions to this correlation by beyond the standard model (BSM) sources of $T$-violation, arising above the electroweak scale. At the same time such sources, parametrized by dimension-6 operators, can induce electric dipole moments (EDMs). As a consequence, the manifestations of the $T$-odd BSM physics in radiative $\\beta$ decay and EDMs are not independent. Here we exploit this connection to show that current EDM bounds already strongly constrain the spin-independent $T$-odd correlation in radiative $\\beta$ decay.

  11. Nab: a precise study of unpolarized neutron beta decay

    Science.gov (United States)

    Pocanic, Dinko; Nab Collaboration

    2015-10-01

    Nab is a program of measurements of unpolarized neutron decays at the Spallation Neutron Source, Oak Ridge, TN. Nab aims to determine a, the e- ν correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb ~= 3 ×10-3 . The set of available observables overconstrains neutron beta decay in the Standard Model (SM), opening the door to searches for evidence of possible SM extensions. Projected Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, Nab may detect a discrepancy from SM predictions consistent with certain realizations of supersymmetry. A long asymmetric spectrometer, optimized to achieve the required narrow proton momentum response function, is currently under construction. The apparatus is to be used in follow-up measurements (ABba experiment) of asymmetry observables A and B in polarized neutron decay. Nab is planned for beam readiness in 2016. We discuss the experiment's motivation, expected reach, design and method, and update its status. Work supported by NSF Grants PHY-1126683, 1205833, 1307328, 1506320, and others.

  12. ZnWO_4 crystals as detectors for double beta decay and dark matter experiments

    CERN Document Server

    Danevich, F A; Nagorny, S S; Poda, D V; Tretyak, V I; Yurchenko, S S; Zdesenko, Y G; Zdesenko, Yu.G.

    2004-01-01

    Energy resolution, alpha/beta ratio, and the pulse shape discrimination ability of the ZnWO_4 crystal scintillators were studied. The radioactive contamination of a ZnWO_4 crystal was investigated in the Solotvina Underground Laboratory. Possibilities to apply ZnWO_4 crystals for the dark matter and double beta decay searches are discussed. New improved half-life limits on double beta decay in zinc isotopes were established, in particular, for EC\\beta^+ decay of 64-Zn as: T_1/2^2nu > 8.9 10^18 yr and T_1/2^0nu > 3.6 10^18 yr, both at 68% CL.

  13. Search for rare b-meson decays at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Philipp; /Karlsruhe U., EKP

    2007-10-01

    We report on the search for B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -}, B{sup 0}{sub d}{yields}{mu}{sup +}{mu}{sup -} decays and b{yields} s{mu}{sup +}{mu}{sup -} transitions in exclusive decays of B mesons using the CDF II detector at the Fermilab Tevatron Collider. Using 2 fb{sup -1} of Run II data we find upper limits on the branching fractions {beta}(B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -})<5.8 x 10{sup -8} and {beta}(B{sup 0}{sub d}{yields}{mu}{sup +}{mu}{sup -})<1.8 x 10{sup -8} at 95% confidence level. The results for the branching fractions of the b{yields} s{mu}{sup +}{mu}{sup -} transitions using 924 pb{sup -1} of Run II data are {beta}(B{sup +}{yields}{mu}{sup +}{mu}{sup -}K{sup +})=(0.60{+-}0.15{+-}0.04) x 10{sup -6}, {beta}(B{sup 0}{sub d}{yields}{mu}{sup +}{mu}{sup -}K{sup *0})=(0.82{+-}0.31{+-}0.10) x 10{sup -6} and {beta}(B{sup 0}{sub s}{yields} {mu}{sup +}{mu}{sup -}{phi})/{beta}(B{sup 0}{sub s}{yields}J/{psi}{phi}) < 2.61 x 10{sup -3} at 95% confidence level.

  14. First neutrinoless double beta decay results from CUORE-0

    International Nuclear Information System (INIS)

    The CUORE-0 experiment, a 52 bolometer array searching for neutrinoless double beta decay from 130Te, has started taking data in spring 2013 underground at the Laboratori Nazionali del Gran Sasso (LNGS). The excellent results obtained in terms of energy resolution and background level allowed this experiment to reach the sensitivity of Cuoricino in approximately half the runtime. Combining CUORE-0 data (9.8 kg·yr exposure of 130Te) with the 19.75 kg·yr exposure of the Cuoricino experiment, we obtain the most stringent limit to date on the half-life of this isotope (T1/2 > 4.0 × 1024 yr). In this article, we review the results from CUORE-0 and discuss the status and the physics potential of CUORE, a 19 times larger bolometer array that plans to begin operations by end of this year

  15. Improved estimate of the cross section for inverse beta decay

    CERN Document Server

    Ankowski, Artur M

    2016-01-01

    The hypothesis of the conserved vector current, relating the vector weak and isovector electromagnetic currents, plays a fundamental role in quantitative description of neutrino interactions. Despite being experimentally confirmed with great precision, it is not fully implemented in existing calculations of the cross section for inverse beta decay, the dominant mechanism of antineutrino scattering at energies below a few tens of MeV. In this article, I estimate the corresponding cross section and its uncertainty, ensuring conservation of the vector current. While converging to previous calculations at energies of several MeV, the obtained result is appreciably lower and predicts more directional positron production near the reaction threshold. These findings suggest that in the current estimate of the flux of geologically produced antineutrinos the 232Th and 238U components may be underestimated by 6.1 and 3.7%, respectively. The proposed search for light sterile neutrinos using a 144Ce--144Pr source is predi...

  16. Cryogenic Double Beta Decay Experiments: CUORE and CUORICINO

    CERN Document Server

    Maruyama, Reina

    2008-01-01

    Cryogenic bolometers, with their excellent energy resolution, flexibility in material, and availability in high purity, are excellent detectors for the search for neutrinoless double beta decay. Kilogram-size single crystals of TeO_2 are utilized in CUORICINO for an array with a total detector mass of 40.7 kg. CUORICINO currently sets the most stringent limit on the halflife of Te-130 of T > 2.4x10^{24} yr (90% C.L.), corresponding to a limit on the effective Majorana neutrino mass in the range of < 0.2-0.9 eV. Based on technology developed for CUORICINO and its predecessors, CUORE is a next-generation experiment designed to probe neutrino mass in the range of 10 - 100 meV. Latest results from CUORICINO and overview of the progress and current status of CUORE are presented.

  17. First neutrinoless double beta decay results from CUORE-0

    Science.gov (United States)

    Gironi, L.; Alduino, C.; Alfonso, K.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.

    2015-10-01

    The CUORE-0 experiment, a 52 bolometer array searching for neutrinoless double beta decay from 130Te, has started taking data in spring 2013 underground at the Laboratori Nazionali del Gran Sasso (LNGS). The excellent results obtained in terms of energy resolution and background level allowed this experiment to reach the sensitivity of Cuoricino in approximately half the runtime. Combining CUORE-0 data (9.8 kg.yr exposure of 130Te) with the 19.75 kg.yr exposure of the Cuoricino experiment, we obtain the most stringent limit to date on the half-life of this isotope (T1/2 > 4.0 × 1024 yr). In this article, we review the results from CUORE-0 and discuss the status and the physics potential of CUORE, a 19 times larger bolometer array that plans to begin operations by end of this year.

  18. First neutrinoless double beta decay results from CUORE-0

    Energy Technology Data Exchange (ETDEWEB)

    Gironi, L., E-mail: luca.gironi@mib.infn.it; Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Ferri, E.; Gotti, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Pozzi, S.; Sala, E.; Sisti, M.; Terranova, F.; Zanotti, L. [Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126 - Italy (Italy); INFN - Sezione di Milano Bicocca, Milano I-20126 - Italy (Italy); Alduino, C. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208 - USA (United States); and others

    2015-10-28

    The CUORE-0 experiment, a 52 bolometer array searching for neutrinoless double beta decay from {sup 130}Te, has started taking data in spring 2013 underground at the Laboratori Nazionali del Gran Sasso (LNGS). The excellent results obtained in terms of energy resolution and background level allowed this experiment to reach the sensitivity of Cuoricino in approximately half the runtime. Combining CUORE-0 data (9.8 kg·yr exposure of {sup 130}Te) with the 19.75 kg·yr exposure of the Cuoricino experiment, we obtain the most stringent limit to date on the half-life of this isotope (T{sub 1/2} > 4.0 × 10{sup 24} yr). In this article, we review the results from CUORE-0 and discuss the status and the physics potential of CUORE, a 19 times larger bolometer array that plans to begin operations by end of this year.

  19. Recent results from cosmology and neutrinoless double beta decay

    Science.gov (United States)

    Dell’Oro, Stefano; Marcocci, Simone

    2016-05-01

    We quantify the impact of cosmological surveys on the search for neutrinoless double beta decay (0vββ) within the hypothesis that the 0vββ rate is dominated by the Majorana mass of ordinary neutrinos. In particular, we exploit the potential relevance of the work of Palanque-Delabrouille et al. [JCAP 1502, 045 (2015)], whose result seems to favor the normal hierarchy spectrum for the light neutrino masses. The impact of our analysis for the future generation of 0vββ experiments is quite dramatic and motivates further cosmological studies, both theoretically and experimentally. In fact, the allowed values for the Majorana Effective Mass turn out to be < 75meV at 3σ C.L, lowering down to less than 20 meV at 1σ C.L.

  20. Searching for displaced Higgs boson decays

    Science.gov (United States)

    Csáki, Csaba; Kuflik, Eric; Lombardo, Salvator; Slone, Oren

    2015-10-01

    We study a simplified model of the Standard Model (SM) Higgs boson decaying to a degenerate pair of scalars which travel a macroscopic distance before decaying to SM particles. This is the leading signal for many well-motivated solutions to the hierarchy problem that do not propose additional light colored particles. Bounds for displaced Higgs boson decays below 10 cm are found by recasting existing tracker searches from Run I. New tracker search strategies, sensitive to the characteristics of these models and similar decays, are proposed with sensitivities projected for Run II at √{s }=13 TeV . With 20 fb-1 of data, we find that Higgs branching ratios down to 2 ×1 0-4 can be probed for centimeter decay lengths.

  1. Empirical formula for two neutrino double beta decay

    International Nuclear Information System (INIS)

    The double beta (2β) decay is a rare nuclear weak process in which two neutrons in the nucleus are converted into two protons, and two electrons and two electron antineutrinos are emitted. The process can be thought as a sum of 2β decays. For the double beta decay to be possible, the final nucleus must have a larger binding energy than the original nucleus. The present work aims to develop an empirical formula for computing two neutrino 2β decay half-lives

  2. Bonner Prize Talk -- First Laboratory Observation of Double Beta Decay

    Science.gov (United States)

    Moe, Michael

    2013-04-01

    Although we are awash in neutrinos, we remain ignorant of some of their fundamental properties. We don't know their masses. We don't know whether ``anti-neutrinos'' are really distinct particles. Double beta (ββ) decay offers a handle on these questions if we can observe the energy spectrum of the two emitted electrons, and determine whether or not they share their energy with two neutrinos. Seeing neutrinoless (0ν) decay would solve some enduring puzzles. The power of the process to elucidate the neutrino was recognized in the 1930's, but ββ decay would be exceedingly rare and difficult to detect. Unsuccessful laboratory searches had been going on for 25 years when the UC Irvine group began its first experiment with a cloud chamber in 1972. After some background for the non-expert, and a snapshot of the theoretical and experimental milieu at the time, the talk will begin with the reasons for choosing a cloud chamber, and the taming of its balky and idiosyncratic behavior. The talk will end with the first definitive observation of two-neutrino (2ν)ββ decay of ^82Se in the vastly superior time projection chamber (TPC) in 1987. Discouragement through the tortuous 15-year interval was relieved by occasional victories. Some I will illustrate with revealing cloud-chamber photographs. We learned many things from this primitive device, and after seven years we isolated an apparent ββ decay signal. But the efficiency of the trigger was small, and difficult to pin down. Estimating 2.2%, we were way low. The resulting ``short'' ^82Se half-life of 1 x 10^19 years was suspect. New technology came to the rescue with the invention of the TPC. Experience with the cloud chamber guided our design of a TPC specifically for ββ decay. The TPC was built from scratch. Its long, steep learning curve was also punctuated with little triumphs. A memorable moment was the first turn-on of a portion of the chamber. So long ago, this all seems rather quaint, but through ample use of

  3. New concepts for a gaseous Xenon detector for double beta decay

    International Nuclear Information System (INIS)

    Xenon gas is an attractive medium for the search for neutrinoless double beta decay because it offers the possibility of reasonable energy resolution, event topology reconstruction, very high intrinsic purity and background rejection through the identification of the daughter barium ion. This talk explores recent developments in the conceptual design of such a detector.

  4. Double Beta Decays into Excited States in $^{110}$Pd and $^{102}$Pd

    CERN Document Server

    Lehnert, B; Degering, D; Hult, M; Laubenstein, M; Wester, T; Zuber, K

    2016-01-01

    A search for double beta decays of $^{110}$Pd and $^{102}$Pd into excited states of the daughter nuclides has been performed using three ultra-low background gamma-spectrometry measurements in the Felsenkeller laboratory, Germany, the HADES laboratory, Belgium and at the LNGS, Italy. The combined Bayesian analysis of the three measurements sets improved half-life limits for the $2\

  5. New concepts for a gaseous Xenon detector for double beta decay

    Science.gov (United States)

    Sinclair, D.; Exo Collaboration

    2010-01-01

    Xenon gas is an attractive medium for the search for neutrinoless double beta decay because it offers the possibility of reasonable energy resolution, event topology reconstruction, very high intrinsic purity and background rejection through the identification of the daughter barium ion. This talk explores recent developments in the conceptual design of such a detector.

  6. Measurement of the two neutrino double beta decay half-life of Zr-96 and search for associated neutrinoless processes with the NEMO-3 detector

    CERN Document Server

    Argyriades, J; Augier, C; Baker, J; Barabash, A S; Bongrand, M; Broudin-Bay, G; Brudanin, V B; Caffrey, A J; Chapon, A; Chauveau, E; Daraktchieva, Z; Durand, D; Egorov, V G; Fatemi-Ghomi, N; Flack, R; Freshville, A; Guillon, B; Hubert, Ph; Jullian, S; Kauer, M; King, S; Kochetov, O I; Konovalov, S I; Kovalenko, V E; Lalanne, D; Lang, K; Lemiere, Y; Lutter, G; Mamedov, F; Marquet, Ch; Martín-Albo, J; Mauger, F; Nachab, A; Nasteva, I; Nemchenok, I B; Nova, F; Novella, P; Ohsumi, H; Pahlka, R B; Perrot, F; Piquemal, F; Reyss, J L; Ricol, J S; Saakyan, R; Sarazin, X; Simard, L; Shitov, Yu A; Smolnikov, A A; Snow, S; Söldner-Rembold, S; Stekl, I; Sutton, C S; Szklarz, G; Thomas, J; Timkin, V V; Tretyak, V I; Tretyak, Vl I; Umatov, V I; Vàla, L; Vanyushin, I A; Vasiliev, V A; Vorobel, V; Vylov, Ts

    2009-01-01

    Using 1221 days of data from the NEMO-3 detector, the measurement of Zr-96 2vbb decay half-life is [2.35 +/- 0.14(stat) +/- 0.19(syst)] x 10^19 yr. Different characteristics of the final state electrons have been studied, such as the energy sum, individual electron energy, and angular distribution. The 2v nuclear matrix element is extracted using the measured 2vbb half-life and is 0.049 +/- 0.003. A 90% CL limit is set on the 0vbb decay half-life of > 9.2 x 10^21 yr corresponding to a limit on the effective Majorana neutrino mass < 7.2 - 19.5 eV. Limits on other mechanisms of 0vbb decay have also been set.

  7. Neutrinoless double beta decay, solar neutrinos and mass scales

    OpenAIRE

    Osland, Per; Vigdel, Geir

    2001-01-01

    We obtain bounds for the neutrino masses by combining atmospheric and solar neutrino data with the phenomenology of neutrinoless double beta decay where hypothetical values of || are envisaged from future 0\

  8. Complementarity of Neutrinoless Double Beta Decay and Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott; Lykken, Joseph

    2014-03-20

    Neutrinoless double beta decay experiments constrain one combination of neutrino parameters, while cosmic surveys constrain another. This complementarity opens up an exciting range of possibilities. If neutrinos are Majorana particles, and the neutrino masses follow an inverted hierarchy, then the upcoming sets of both experiments will detect signals. The combined constraints will pin down not only the neutrino masses but also constrain one of the Majorana phases. If the hierarchy is normal, then a beta decay detection with the upcoming generation of experiments is unlikely, but cosmic surveys could constrain the sum of the masses to be relatively heavy, thereby producing a lower bound for the neutrinoless double beta decay rate, and therefore an argument for a next generation beta decay experiment. In this case as well, a combination of the phases will be constrained.

  9. New exotics in the double beta decay contributions zoo

    OpenAIRE

    Klapdor-Kleingrothaus, H. V.; Päs, H.; Sarkar, U.

    2000-01-01

    We discuss the potential of neutrinoless double beta decay for testing Lorentz invariance and the weak equivalence principle as well as contributions from dilaton exchange gravity in the neutrino sector. While neutrino oscillation bounds constrain the region of large mixing of the weak and gravitational eigenstates, we obtain new constraints on violations of Lorentz invariance and the equivalence principle from neutrinoless double beta decay, applying even in the case of no mixing. Double bet...

  10. Study of the $\\beta$-decay of $^{20}$Mg

    CERN Multimedia

    Cederkall, J A; Riisager, K; Garcia borge, M J; Madurga flores, M; Jonson, B N G; Fynbo, H O U; Koldste, G T; Giles, T J; Nilsson, T; Perea martinez, A

    We propose to perform a detailed study of the $\\beta$-decay of the dripline nucleus $^{20}$Mg. This will provide important information on resonances in $^{20}$Na relevant for the astrophysical rp-process as well as improved information for detailed comparison with state-of-the-art Shell-Model calculations and for comparison with the mirror $\\beta$-decay of $^{20}$O.

  11. Status of the COBRA double beta decay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, Kai, E-mail: zuber@physik.tu-dresden.d [Inst. fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, 01069 Dresden (Germany)

    2010-01-01

    The current status of the COBRA experiment is described. Results on the 4-fold forbidden beta decay of {sup 113}Cd and a variety of double beta decay limits of Cd, Zn and Te isotopes are presented based on 18 kg x days of exposure with an array of sixteen CdZnTe semiconductor detectors. A short description on the activities with pixelated detectors for tracking is given.

  12. Status of the COBRA double beta decay experiment

    International Nuclear Information System (INIS)

    The current status of the COBRA experiment is described. Results on the 4-fold forbidden beta decay of 113Cd and a variety of double beta decay limits of Cd, Zn and Te isotopes are presented based on 18 kg x days of exposure with an array of sixteen CdZnTe semiconductor detectors. A short description on the activities with pixelated detectors for tracking is given.

  13. New Fluorescence Technique To Search For Neutrino Masses By Identification Of Double Beta Decay Barium-136 Ion Daughters In Liquid Xenon

    CERN Document Server

    Jeng, S

    2004-01-01

    This work presents the initial research on the development of a new fluorescence technique for laser tagging of single 136Ba+ daughters from 0νββ decay of 136Xe. 0νββ decay is the only probe which is able to reach the absolute neutrino mass scale with meV sensitivity. The next generation 0νββ experiments with meV sensitivity require new techniques for background rejection in order to gain the full benefit of large fiducial mass and long running time. By detecting the decay daughter Ba+ in liquid xenon at the observed position of the decay, we expect to suppress essentially all of the radioactive backgrounds. As a first step in realization this technique, the measurement of the mobility of Ba+ in liquid xenon is finished and the study of the optical spectra of Ba+ in liquid xenon is in progress. In this work, measurements of the mobility of alkaline earth ions, Mg +, Ca+, Sr+, and Ba+, in liquid xenon are presented for the first time....

  14. Search for Charged Lepton Violation in Narrow Upsilon Decays

    Energy Technology Data Exchange (ETDEWEB)

    Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /Bari U. /INFN, Bari; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /LBL, Berkeley /UC, Berkeley; Hawkes, C.M.; /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Columbus Supercond., Genova /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-08-19

    Charged lepton flavor violating processes are unobservable in the standard model, but they are predicted to be enhanced in several extensions to the standard model, including supersymmetry and models with leptoquarks or compositeness. We present a search for such processes in a sample of 99 x 10{sup 6} {Upsilon}(2S) decays and 117 x 10{sup 6} {Upsilon}(3S) decays collected with the BABAR detector. We place upper limits on the branching fractions {Beta}({Upsilon}(nS) {yields} e{sup {+-}}{tau}{sup {-+}}) and {Beta}({Upsilon}(nS) {yields} {mu}{sup {+-}}{tau}{sup {-+}}) (n = 2, 3) at the 10{sup -6} level and use these results to place lower limits of order 1 TeV on the mass scale of charged lepton flavor violating effective operators.

  15. New limit on the neutrinoless double beta decay of 100Mo

    International Nuclear Information System (INIS)

    A search for the neutrinoless double beta decay of 100Mo was conducted using thin Mo films and solid state Si detectors. The experiment has collected 3500 hours of data operating underground in a deep silver mine (3290 M.W.E.). Only one event was found to be consistent with neutrinoless double beta decay. Using this one event, a limit of ≥ 1 x 1022 years (1 σ) is set on the 100Mo half-life. This is approximately five times larger than the best previous 100Mo limit

  16. Simulation studies for Tin Bolometer Array for Neutrinoless Double Beta Decay

    CERN Document Server

    Singh, V; Mathimalar, S; Nanal, V; Pillay, R G

    2014-01-01

    It is important to identify and reduce the gamma radiation which can be a significant source of background for any double beta decay experiment. The TIN.TIN detector array, which is under development for the search of Neutrinoless Double Beta Decay in $^{124}$Sn, has the potential to utilize the hit multiplicity information to discriminate the gamma background from the events of interest. Monte Carlo simulations for optimizing the design of a Tin detector module has been performed by varying element sizes with an emphasis on the gamma background reduction capabilities of the detector array.

  17. Background capabilities of pixel detectors for double beta decay measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cermak, Pavel, E-mail: pavel.cermak@utef.cvut.cz [Institute of Experimental and Applied Physics, CTU in Prague, 12800 Prague (Czech Republic); Stekl, Ivan; Bocarov, Viktor; Jose, Joshy M.; Jakubek, Jan; Pospisil, Stanislav [Institute of Experimental and Applied Physics, CTU in Prague, 12800 Prague (Czech Republic); Fiederle, Michael; Fauler, Alex [Freiburger Materialforschungszentrum, Albert-Ludwigs-Universitaet Freiburg, D-79104 Freiburg (Germany); Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, 01069 Dresden (Germany); Loaiza, Pia [Laboratoire Souterrain de Modane, 73500 Modane (France); Shitov, Yuriy [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2011-05-15

    We discuss the possible use of a progressive detection technique based on pixel detectors for the study of double beta decay ({beta}{beta}) processes. A series of background measurements in various environments (surface laboratory, underground laboratory, with and without Pb shielding) was performed using the TimePix silicon hybrid pixel device. The pixel detector response to the natural background and intrinsic background properties measured by a low-background HPGe detector are presented.

  18. Neutrino mass, neutrinoless double electron capture and rare beta decays

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, M T; Suhonen, J, E-mail: jouni.suhonen@phys.jyu.f [Department of Physics, PO Box 35 (YFL), FI-40014 University of Jyvaeskylae (Finland)

    2010-01-01

    We present results of our theoretical calculations on three nuclei of interest from the neutrino-physics point of view: Firstly, we present the second-forbidden decay branch of {sup 115}In with the ultra-low Q value and theoretical open questions related to such decays. Secondly, we have calculated estimates for the half-lives of the single-beta decay channels of {sup 96}Zr and concluded that the possible contamination from those to the geochemical measurements of {sup 96}Zr double-beta-decay half-life is rather small. Thirdly, we have taken a look at the neutrinoless resonance double-electron-capture decay of {sup 112}Sn in the light of recent JYFLTRAP Q value measurements and discovered that the badly fulfilled resonance condition renders the decay unobservable.

  19. Search for neutrinoless τ decays

    International Nuclear Information System (INIS)

    Upper limits on branching ratios for six neutrinoless leptonic, 16 semileptonic, two radiative-leptonic, two radiative-hadronic and three purely hadronic τ decays have been determined. The results improve over previously published ones by about a factor of two. For the first time the lepton and baryon number violating decays τ-→anti pγ, τ-→anti pπ0 and τ-→anti pη have been investigated. The 90% confidence level (CL) limits for the corresponding branching ratios amount to 2.9x10-4, 6.6x10-4 and 1.3x10-3 respectively. (orig.)

  20. Search for radiative B meson decays

    International Nuclear Information System (INIS)

    The Crystal Ball detector at the ε+ε- storage ring DORIS-II has been used to search for radiative B meson decays, especially of the type b→sγ. No mono-energetic γ-lines have been found in the inclusive photon spectrum from Υ(4S) decays, and upper limits are obtained for radiative decays of B mesons to various strange mesons and to the D*. Integrating the photon spectrum over the corresponding energy range, we find BR(B→γX)-3 at 90% confidence level for the mass range 892 MeV≤MX≤2045 MeV. (orig.)

  1. The search for decaying Dark Matter

    OpenAIRE

    Abazajian, K.; Boyarsky, A.; Frenk, C.; Hansen, S; den Herder, J.W.; Jonker, P.; Kouveliotou, C.; Lesgourgues, J.; Neronov, A.; Ohashi, T.; Paerels, F.; Paltani, Stéphane; Piro, L.; Pohl, Martin; Ruchayskiy, O.

    2009-01-01

    We propose an X-ray mission called Xenia to search for decaying superweakly interacting Dark Matter particles (super-WIMP) with a mass in the keV range. The mission and its observation plan are capable of providing a major break through in our understanding of the nature of Dark Matter (DM). It will confirm, or reject, predictions of a number of particle physics models by increasing the sensitivity of the search for decaying DM by about two orders of magnitude through a wide-field imaging X-r...

  2. Lepton number violating new physics and neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Neutrinoless double beta decay is a very sensitive experimental probe for lepton number violating (ΔL=2) physics beyond the Standard Model. Whatever the new physics mechanism is that triggers the decay, according to the well known Schechter-Valle (or Black Box) theorem, it will induce a Majorana mass term for neutrinos. Neutrinoless double beta decay is therefore the only known possibility to ascertain in the foreseeable future whether the neutrino is a Dirac or a Majorana particle. We discuss the relation between various lepton number violating operators, Majorana neutrino masses, and future experiments.

  3. Nuclear transparency and double beta decay of molybdenum 100

    International Nuclear Information System (INIS)

    Work is continuing on two collaborative experiments. One, a search for double beta decay in molybdenum 100 is being carried out in the Consil silver mine in Osburn, Idaho with collaborators from the Lawrence Berkeley Laboratory, the University of New Mexico, and the Idaho National Engineering Laboratory. At this time the experiment is running with 62 foils, each with a mass of about .98 grams of isotopically enriched molybdenum 100. In approximately 1870 hours of data taking which began during the spring 1991 we have obtained a preliminary 1σ lower limit of .12 x 1023 years for the lifetime for O+ → O+ neutrionoless double beta decay in molybdenum 100 based on an estimate for the event detection efficiency of the upgraded detector. This lifetime limit is 3 times greater that the one we published previously in Physical Review Letters in 1989. Monte Carlo Efforts are currently underway to determine the event detector efficiency more precisely. The second experiment involves the construction of a cylindrically symmetrical detector at the Brookhaven National Laboratory AGS to study color transparency in nuclei from 6 to 20 GeV/c. This detector consists of a large superconducting solenoidal magnet, a cylinder of scintillating fibers, several cylinders of straw tubes, and an array of trigger plastic scintillator hodoscopes. Mount Holyoke has been principally involved in the design of phototube bases for the trigger hodoscopes for the EVA detector and in the design and construction of the scintillating fiber detector tracking detector. A prototype fiber detector consisting of 2 Hamamatsu multianode photomultiplier tubes with 256 channels each and approximately 650 1.5 meter long 1 mm diameter scintillating fibers broken up into two layers and supported by a 10 centimeter diameter carbon fiber tube was constructed for the spring high energy physics run at the AGS. Data from this run obtained from the detector is included in this report

  4. Systematic study of double beta decay to excited final states

    International Nuclear Information System (INIS)

    A systematic study of two-neutrino double beta (2νββ) decay to the final ground state and excited states is performed within a microscopic quasiparticle random phase approximation (QRPA) model. The excited states are assumed to have the structure of one or two QRPA phonons. This study of the 2νββ decay rates is complemented with the study of single-beta-decay feeding of the relevant nuclei taking part in the double beta process. The Woods-Saxon single-particle energies have been corrected near the Fermi surface by comparing the BCS quasi-particle energies with spectroscopic data of the relevant odd-mass nuclei. Pairing gaps, energy systematics of the Gamow-Teller-States and the available beta-decay data have been used to obtain effective, model-space adapted, two-body matrix elements starting from the G-matrix elements of the Bonn one-boson-exchange potential. This enables a parameter-free calculation of the double Gamow-Teller matrix elements and theoretical prediction of double-beta half lives. The harmonic two-phonon approximation has been used in the beta-decay analysis and the subsequent 2νββ calculations. (authors)

  5. Unique forbidden beta decays and neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Dvornický, Rastislav, E-mail: dvornicky@dnp.fmph.uniba.sk [Dzhelepov Laboratory of Nuclear Problems, JINR 141980 Dubna (Russian Federation); Comenius University, Mlynská dolina F1, SK-842 48 Bratislava (Slovakia); Šimkovic, Fedor [Comenius University, Mlynská dolina F1, SK-842 48 Bratislava (Slovakia); Boboliubov Laboratory of Theoretical Physics, JINR 141980 Dubna (Russian Federation); Czech Technical University in Prague, 128-00 Prague (Czech Republic)

    2015-10-28

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  6. Development of CaMoO4 crystal scintillators for double beta decay experiment with 100-Mo

    OpenAIRE

    Annenkov, A.N.; Buzanov, O. A.; Danevich, F. A.; Georgadze, A. Sh.; Kim, S K; Kim, H. J.; Kim, Y.D.(Center for Underground Physics, Institute for Basic Science (IBS), Daejon, 305-811, Korea); Kobychev, V. V.; Kornoukhov, V.N.; Korzhik, M.; Lee, J. I.; Missevitch, O; Mokina, V. M.; S. S. Nagorny(INR Kiev); Nikolaiko, A. S.

    2007-01-01

    Energy resolution, alpha/beta ratio, pulse-shape discrimination for gamma rays and alpha particles, temperature dependence of scintillation properties, and radioactive contamination were studied with CaMoO4 crystal scintillators. A high sensitivity experiment to search for neutrinoless double beta decay of 100-Mo by using CaMoO4 scintillators is discussed.

  7. Double Beta Decay Experiments: Present Status and Prospects for the Future

    Science.gov (United States)

    Barabash, A. S.

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino ( at the level of ∼ (0.01-0.1) eV are discussed. The main attention is paid to experiments of CUORE, GERDA, MAJORANA, EXO, KamLAND-Zen-2, SuperNEMO and SNO+. Possibilities of low-temperature scintillating bolometers on the basis of inorganic crystals (ZnSe, ZnMoO4, Li2MoO4, CaMoO4 and CdWO4) are considered too.

  8. Experimental study of double beta decay modes using a CdZnTe detector array

    CERN Document Server

    Dawson, J V; Janutta, B; Junker, M; Koettig, T; Münstermann, D; Rajek, S; Reeve, C; Schulz, O; Wilson, J R; Zuber, K

    2009-01-01

    An array of sixteen 1 cm^3 CdZnTe semiconductor detectors was operated at the Gran Sasso Underground Laboratory (LNGS) to further investigate the feasibility of double beta decay searches with such devices. As one of the double beta decay experiments with the highest granularity the 4 x 4 array accumulated an overall exposure of 18 kg days. The set-up and performance of the array is described. Half-life limits for various double beta decay modes of Cd, Zn and Te isotopes are obtained. No signal has been found, but several limits beyond 10^20 years have been performed. They are an order of magnitude better than those obtained with this technology before and comparable to most other experimental approaches for the isotopes under investigation.

  9. Weak decays and double beta decay. Annual progress report, January 1, 1982-December 31, 1982

    International Nuclear Information System (INIS)

    Work has continued in collaboration with experimenters from Yale, Brookhaven and Pittsburgh (Brookhaven experiment 702) to measure asymmetries in the decays of polarized Σ+'s into protons and neutral pions and of polarized Σ-'s into neutrons and negative pions. A short experiment was carried out in the Brookhaven AGS A2 test beam to measure the efficiency of a cylindrical shower counter essential for measuring the asymmetry parameter in the rare decay of polarized Σ+'s into protons and gammas. An electronic controller to stabilize the magnetic field of the superconducting, polarized target magnet was also designed and built at Mount Holyoke, and it functioned extremely well during a six week May to June run. Also, the design of an experiment to search for double beta decay in Molybdenum 100 is briefly described. A group consisting of five experimenters from LBL and two from Mount Holyoke hope to make a formal proposal in September to the LBL administration to begin work on this experiment late this year and during the next calendar year

  10. Neutrinoless Double Beta Decay and High-Scale Baryogenesis

    CERN Document Server

    Graf, Lukas; Huang, Wei-Chih

    2015-01-01

    The constraints on baryogenesis models obtained from an observation of neutrinoless double beta decay are discussed. The lepton number violating processes, which can underlie neutrinoless double beta decay, would together with sphaleron processes, which are effective in a wide range of energies, wash out any primordial baryon asymmetry of the universe. Typically, if a mechanism of neutrinoless double beta decay other than the standard light neutrino exchange is observed, typical scenarios of high-scale baryogenesis will be excluded. This can be achieved by different methods, e.g. through the observation in multiple isotopes or the measurement of the decay distribution. In addition, we will also highlight the connection with low energy lepton flavour violation and lepton number violation at the LHC.

  11. Beta-decay properties of $^{25}$Si and $^{26}$P

    CERN Document Server

    Thomas, J C; Äystö, J; Béraud, R; Blank, B; Canchel, G; Czajkowski, S; Dendooven, P; Ensallem, A; Giovinazzo, J; Guillet, N; Honkanen, J; Jokinen, A; Laird, A M; Lewitowicz, M; Longour, C; De Santos, F O; Peräjärvi, K; democrite-00023307, ccsd

    2004-01-01

    The $\\beta$-decay properties of the neutron-deficient nuclei $^{25}$Si and $^{26}$P have been investigated at the GANIL/LISE3 facility by means of charged-particle and $\\gamma$-ray spectroscopy. The decay schemes obtained and the Gamow-Teller strength distributions are compared to shell-model calculations based on the USD interaction. B(GT) values derived from the absolute measurement of the $\\beta$-decay branching ratios give rise to a quenching factor of the Gamow-Teller strength of 0.6. A precise half-life of 43.7 (6) ms was determined for $^{26}$P, the $\\beta$- (2)p decay mode of which is described.

  12. Nuclear matrix elements for double-{\\beta} decay

    CERN Document Server

    Barea, J; Iachello, F; 10.1103/PhysRevC.87.014315

    2013-01-01

    Background: Direct determination of the neutrino mass through double-$\\beta$ decay is at the present time one of the most important areas of experimental and theoretical research in nuclear and particle physics. Purpose: We calculate nuclear matrix elements for the extraction of the average neutrino mass in neutrinoless double-$\\beta$ decay. Methods: The microscopic interacting boson model (IBM-2) is used. Results: Nuclear matrix elements in the closure approximation are calculated for $^{48}$Ca, $^{76}$Ge, $^{82}$Se, $^{96}$Zr, $^{100}$Mo, $^{110}$Pd, $^{116}$Cd, $^{124}$Sn, $^{128}$Te, $^{130}$Te, $^{148}$Nd, $^{150}$Nd, $^{154}$Sm, $^{160}$Gd, and $^{198}$Pt decay. Conclusions: Realistic predictions for the expected half-lives in neutrinoless double-$\\beta$ decay with light and heavy neutrino exchange in terms of neutrino masses are made and limits are set from current experiments.

  13. The First Tests of a Large-Area Light Detector Equipped with Metallic Magnetic Calorimeters for Scintillating Bolometers for the LUMINEU Neutrinoless Double Beta Decay Search

    Science.gov (United States)

    Gray, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Hassel, C.; Hengstler, D.; Kempf, S.; Loidl, M.; Navick, X. F.; Rodrigues, M.

    2016-02-01

    Future rare-event searches using scintillating crystals need very low background levels for high sensitivity; however, unresolved pile-up can limit this. We present the design and fabrication of large-area photon detectors based on metallic magnetic calorimeters (MMCs), optimized for fast rise times to resolve close pile-up. The first prototypes have been characterized using Fe-55 X-rays and ZnMoO4 crystal scintillation light. A fast intrinsic rise time of 25-30 \\upmu s has been measured and has been compared to the 250 \\upmu s scintillation light pulse rise time constant. The difference indicates that the scintillation process limits the light pulse rise time. The fast rise time allows for a reduction of background due to close pile-up events as well as the study of the inherent crystal scintillation process. MMC-based photon detectors are shown to be a promising tool for scintillating crystal based rare event searches.

  14. Low background detector with enriched 116CdWO4 crystal scintillators to search for double beta decay of 116Cd

    CERN Document Server

    Barabash, A S; Bernabei, R; Boiko, R S; Cappella, F; Caracciolo, V; Chernyak, D M; Cerulli, R; Danevich, F A; Di Vacri, M L; Dossovitskiy, A E; Galashov, E N; Incicchitti, A; Kobychev, V V; Konovalov, S I; Kovtun, G P; Kudovbenko, V M; Laubenstein, M; Mikhlin, A L; Nisi, S; Poda, D V; Podviyanuk, R B; Polischuk, O G; Shcherban, A P; Shlegel, V N; Solopikhin, D A; Stenin, Yu G; Tretyak, V I; Umatov, V I; Vasiliev, Ya V; Virich, V D

    2011-01-01

    A cadmium tungstate crystal boule enriched in $^{116}$Cd to 82% with mass of 1868 g was grown by the low-thermal-gradient Czochralski technique. The isotopic composition of cadmium and the trace contamination of the crystal were estimated by High Resolution Inductively Coupled Plasma Mass-Spectrometry. The crystal scintillators produced from the boule were subjected to characterization that included measurements of transmittance and energy resolution. A low background scintillation detector with two $^{116}$CdWO$_4$ crystal scintillators (586 g and 589 g) was developed. The detector was running over 1727 h deep underground at the Gran Sasso National Laboratories of the INFN (Italy), which allowed to estimate the radioactive contamination of the enriched crystal scintillators. The radiopurity of a third $^{116}$CdWO$_4$ sample (326 g) was tested with the help of ultra-low background high purity germanium $\\gamma$ detector. Monte Carlo simulations of double $\\beta$ processes in $^{116}$Cd were used to estimate ...

  15. Sizeable beta-strength in 31Ar (beta 3p) decay

    DEFF Research Database (Denmark)

    T. Koldste, G.; Blank, B.; J. G. Borge, M.;

    2014-01-01

    We present for the first time precise spectroscopic information on the recently discovered decay mode beta-delayed 3p-emission. The detection of the 3p events gives an increased sensitivity to the high energy part of the Gamow-Teller strength distribution from the decay of 31Ar revealing that as...... much as 30% of the strength resides in the beta-3p decay mode. A simplified description of how the main decay modes evolve as the excitation energy increases in 31Cl is provided....

  16. Search for the Rare Decay B to pi l+ l-

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2006-09-26

    The authors present results of a search for the rare flavor-changing neutral-current decay B {yields} {pi}{ell}{sup +}{ell}{sup -}, based on a data sample corresponding to 209 fb{sup -1} of integrated luminosity collected with the BABAR detector at the PEP-II B Factory. They reconstruct the four exclusive B decay modes B{sup +} {yields} {pi}{sup +}{ell}{sup +}{ell}{sup -} and B{sup 0} {yields} {pi}{sup 0}{ell}{sup +}{ell}{sup -}, where {ell} is either an e or {mu}. They find no evidence for a signal, and they obtain the upper limit at 90% confidence level on the lepton-flavor-averaged branching fraction to be {Beta}(B{sup +} {yields} {pi}{sup +}{ell}{sup +}{ell}{sup -}) = 2 x {tau}B{sup +}/{tau}B{sup 0} {Beta}(B{sup 0} {yields} {pi}{sup 0}{ell}{sup +}{ell}{sup -}) < 7.9 x 10{sup -8}. The authors also obtain an upper limit at 90% confidence level on the lepton-flavor-violating decay B {yields} {pi}e{mu} of {Beta}(B {yields} {pi}e{mu}) < 9.8 x 10{sup -8}.

  17. Short-range correlations and neutrinoless double beta decay

    CERN Document Server

    Kortelainen, M; Suhonen, J; Toivanen, J

    2007-01-01

    In this work we report on the effects of short-range correlations upon the matrix elements of neutrinoless double beta decay. We focus on the calculation of the matrix elements of the neutrino-mass mode of neutrinoless double beta decays of 48Ca and 76Ge. The nuclear-structure components of the calculation, that is the participant nuclear wave functions, have been calculated in the shell-model scheme for 48Ca and in the proton-neutron quasiparticle random-phase approximation (pnQRPA) scheme for 76Ge. We compare the traditional approach of using the Jastrow correlation function with the more complete scheme of the unitary correlation operator method (UCOM). Our results indicate that the Jastrow method vastly exaggerates the effects of short-range correlations on the neutrinoless double beta decay nuclear matrix elements.

  18. Sensitivity of CUORE to Neutrinoless Double-Beta Decay

    CERN Document Server

    Alessandria, F; Ardito, R; Arnaboldi, C; Avignone, F T; Balata, M; Bandac, I; Banks, T I; Bari, G; Beeman, J; Bellini, F; Bersani, A; Biassoni, M; Bloxham, T; Brofferio, C; Bryant, A; Bucci, C; Cai, X Z; Canonica, L; Capelli, S; Carbone, L; Cardani, L; Carrettoni, M; Casali, N; Chott, N; Clemenza, M; Cosmelli, C; Cremonesi, O; Creswick, R J; Dafinei, I; Dally, A; De Biasi, A; Decowski, M P; Deninno, M M; de Waard, A; Di Domizio, S; Ejzak, L; Faccini, R; Fang, D Q; Farach, H A; Ferri, E; Ferroni, F; Fiorini, E; Foggetta, L; Franceschi, M A; Freedman, S J; Frossati, G; Fujikawa, B; Giachero, A; Gironi, L; Giuliani, A; Goett, J; Gorla, P; Gotti, C; Guardincerri, E; Gutierrez, T D; Haller, E E; Han, K; Heeger, K M; Huang, H Z; Ichimura, K; Kadel, R; Kazkaz, K; Keppel, G; Kogler, L; Kolomensky, Yu G; Kraft, S; Lenz, D; Li, Y L; Liu, X; Longo, E; Ma, Y G; Maiano, C; Maier, G; Maino, M; Mancini, C; Martinez, C; Martinez, M; Maruyama, R H; Moggi, N; Morganti, S; Napolitano, T; Newman, S; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Orio, F; Orlandi, D; Ouellet, J; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Rampazzo, V; Rimondi, F; Rosenfeld, C; Rusconi, C; Salvioni, C; Sangiorgio, S; Schaeffer, D; Scielzo, N D; Sisti, M; Smith, A R; Stivanello, F; Taffarello, L; Terenziani, G; Tian, W D; Tomei, C; Trentalange, S; Ventura, G; Vignati, M; Wang, B; Wang, H W; Whitten, C A; Wise, T; Woodcraft, A; Xu, N; Zanotti, L; Zarra, C; Zhu, B X; Zucchelli, S

    2011-01-01

    We study the sensitivity of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity are discussed and compared, and the formulas and parameters used in the estimation of the sensitivity are provided. Assuming a background rate of 10^-2 cts/(keV kg y), we find that, after 5 years of live time, CUORE has a 1 sigma sensitivity to the neutrinoless double-beta decay half-life of T_1/2 = 1.6 \\times 10^26 y and thus a potential to probe the effective Majorana neutrino mass down to 41-95 meV. This range is compared with the claim of observation of neutrinoless double-beta decay in 76Ge and the preferred range of the neutrino mass parameter space from oscillation results.

  19. Light stop decays: implications for LHC searches

    International Nuclear Information System (INIS)

    We investigate the flavour-changing neutral current decay of the lightest stop into a charm quark and the lightest neutralino and its four-body decay into the lightest neutralino, a down-type quark and a fermion pair. These are the relevant stop search channels in the low-mass region. The SUSY-QCD corrections to the two-body decay have been calculated for the first time and turn out to be sizeable. In the four-body decay both the contributions from diagrams with flavour-changing neutral current couplings and the mass effects of final state bottom quarks and τ leptons have been taken into account, which are not available in the literature so far. The resulting branching ratios are investigated in detail. We find that in either of the decay channels the branching ratios can deviate significantly from 1 in large parts of the allowed parameter range. Taking this into account, the experimental exclusion limits on the stop, which are based on the assumption of branching ratios equal to 1, are considerably weakened. This should be taken into account in future searches for light stops at the next run of the LHC, where the probed low stop mass region will be extended. (orig.)

  20. Light stop decays: implications for LHC searches

    Energy Technology Data Exchange (ETDEWEB)

    Groeber, R. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, Roma (Italy); Muehlleitner, M.M.; Wlotzka, A. [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Popenda, E. [Paul Scherrer Institut (PSI), Villigen (Switzerland)

    2015-09-15

    We investigate the flavour-changing neutral current decay of the lightest stop into a charm quark and the lightest neutralino and its four-body decay into the lightest neutralino, a down-type quark and a fermion pair. These are the relevant stop search channels in the low-mass region. The SUSY-QCD corrections to the two-body decay have been calculated for the first time and turn out to be sizeable. In the four-body decay both the contributions from diagrams with flavour-changing neutral current couplings and the mass effects of final state bottom quarks and τ leptons have been taken into account, which are not available in the literature so far. The resulting branching ratios are investigated in detail. We find that in either of the decay channels the branching ratios can deviate significantly from 1 in large parts of the allowed parameter range. Taking this into account, the experimental exclusion limits on the stop, which are based on the assumption of branching ratios equal to 1, are considerably weakened. This should be taken into account in future searches for light stops at the next run of the LHC, where the probed low stop mass region will be extended. (orig.)

  1. Neutrino Decay and Neutrinoless Double Beta Decay in a 3-3-1 Model

    OpenAIRE

    Dias, Alex G.; Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil); Pires, C. A. de S.; da Silva, P. S. Rodrigues

    2005-01-01

    In this work we show that the implementation of spontaneous breaking of the lepton number in the 3-3-1 model with right-handed neutrinos gives rise to fast neutrino decay with majoron emission and generates a bunch of new contributions to the neutrinoless double beta decay.

  2. Double beta decay of 100Mo

    International Nuclear Information System (INIS)

    Using a liquid argon ionization chamber, the 2νββ decay of 100 Mo was detected with its half-life of (7.5 ± 1.1(stat.) ± 1.5(syst.)) · 1018 y. The limits on half-lives for the 0ν and 0νχ0 decays of 100Mo were estimated as 9.3(5.0) · 1021 and 4.3(2.7) · 1020 y respectively at 68 % (90%) C.L. Available world data for the 2νββ decay of 100Mo lead to the average 'world' value of the half-life, T1/2 = (8.0 ± 0.7) · 1018 y, which corresponds to the nuclear matrix element, MGT = 0.118 ± 0.005

  3. On Gamow-Teller strength distributions for $\\beta\\beta$-decaying nuclei within continuum-QRPA

    CERN Document Server

    Igashov, S Yu; Faessler, Amand; Urin, M H

    2010-01-01

    An isospin-selfconsistent pn-continuum-QRPA approach is formulated and applied to describe the Gamow-Teller strength distributions for $\\beta\\beta$-decaying open-shell nuclei. The calculation results obtained for the pairs of nuclei $^{76}$Ge-Se, $^{100}$Mo-Ru, $^{116}$Cd-Sn, and $^{130}$Te-Xe are compared with available experimental data.

  4. Precision study of the $\\beta$-decay of $^{74}$Rb

    CERN Multimedia

    Van Duppen, P L E; Lunney, D

    2002-01-01

    We are proposing a high-resolution study of the $\\beta$-decay of $^{74}$Rb in order to extrapolate our precision knowledge of the superallowed $\\beta$-decays from the sd and fp shells towards the medium-heavy Z=N nuclei. The primary goal is to provide new data for testing the CVC hypothesis and the unitarity condition of the CKM matrix of the Standard Model. The presented programme would involve the careful measurements of the decay properties of $^{74}$Rb including the branching ratios to the excited states as well as the precise determination of the decay energy of $^{74}$Rb. The experimental methods readily available at ISOLDE include high-transmission conversion electron spectroscopy, $\\gamma$-ray spectroscopy as well as the measurements of the masses of $^{74}$Rb and $^{74}$Kr using two complementary techniques, ISOLTRAP and MISTRAL. The experiment would rely on a high-quality $^{74}$Rb beam available at ISOLDE with adequate intensity.

  5. Search for the Decay B0 -> ppbar

    CERN Document Server

    Aubert, B; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Le Clerc, C; Lynch, G; Merchant, A M; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, Michael T; Shelkov, V G; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Çuhadar-Dönszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; Zhang, J; Zhang, L; Chen, A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q L; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Sundermann, J E; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Schrenk, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Lavin, D; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, Erwin; Gamet, R; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Cormack, C M; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flächer, H U; Green, M G; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel, G; de Monchenault; Kozanecki, Witold; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Convery, M R; Cristinziani, M; De Nardo, Gallieno; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Elsen, E E; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cartaro, C; Cossutti, F; Della, G; Ricca; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Rubin, A E; Sekula, S J; Tan, P; Von Wimmersperg-Töller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-01-01

    We present the result of a search for the charmless two-body baryonic decay B^0 -> ppbar in a sample of 88 million Y(4S) -> BBbar decays collected by the BaBar detector at the SLAC PEP-II asymmetric-energy $B$ Factory. We use Cherenkov radiation to identify protons cleanly, and determine the signal yield with a maximum-likelihood fit technique using kinematic and topological information. We find no evidence for a signal and place a 90% confidence-level upper limit of BF(B^0 -> ppbar) < 2.7 x 10^-7.

  6. Possible background reductions in double beta decay experiments

    CERN Document Server

    Arnold, R; Baker, J; Barabash, A S; Bing, O; Brudanin, V B; Caffrey, A J; Caurier, E; Errahmane, K; Etienvre, A I; Guyonnet, J L; Hubert, F; Hubert, P; Jollet, C; Jullian, S; Kochetov, O I; Kovalenko, V; Lalanne, D; Leccia, F; Longuemare, C; Marquet, C; Mauger, F; Nicholson, H W; Ohsumi, H; Piquemal, F; Reyss, J L; Sarazin, X; Shitov, Yu P; Simard, L C; Stekl, I; Suhonen, J; Sutton, C S; Szklarz, G; Timkin, V; Tretyak, V I; Umatov, V I; Vàla, L; Vanyushin, I A; Vasilyev, V; Vorobel, V; Vylov, T D; Hubert, Ph.; Marquet, Ch.; Shitov, Yu.; Vylov, Ts.

    2003-01-01

    The background induced by radioactive impurities of $^{208}\\rm Tl$ and $^{214}\\rm Bi$ in the source of the double beta experiment NEMO-3 has been investigated. New methods of data analysis which decrease the background from the above mentioned contamination are identified. The techniques can also be applied to other double beta decay experiments capable of measuring independently the energies of the two electrons.

  7. Design of a self-triggered liquid xenon drift chamber for double-beta decay experiments

    International Nuclear Information System (INIS)

    Nuclear double-beta decay is one of the rarest processes in nature with the half life of 1019 - 1024 years. Such process takes place only when a nucleus cannot undergo ordinary beta decay due to energy conservation, or the very strong suppression of energetically allowed transition exists. This process proceeds through the channels of standard second order weak decay (two neutrinos double-beta decay) and lepton number nonconserving, neutrinoless double-beta decay. An isotope of 136Xe possesses attractive properties for the studies on the nuclei subjected to nutrinoless mode. Gaseous or liquid xenon is an excellent working medium for drift chambers, and it can act as both source and detector providing so called active source technique of experiment. In order to search for the neutrinoless mode of 136Xe, the liquid xenon drift chamber was designed, which is composed of three electrodes and four photomultipliers. This drift chamber is described. Th gas handling and vacuum system consisting of a xenon gas purifier, a high vacuum pumping facility and gas storage reservoirs is explained. Event identification, charge division method, the estimation of signal rate and the present state of this study are reported. (K.I.)

  8. Neutron beta decay and the right-handed current problem

    Energy Technology Data Exchange (ETDEWEB)

    Gaponov, Yu.V.; Shul' gina, N.B.; Spivak, P.E. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow (USSR). Inst. Atomnoj Ehnergii)

    1991-01-10

    The renormalization of the axial-vector coupling constant, {lambda}=g{sub A}/g{sub V}, extracted from the neutron lifeime ({lambda}{sub tau}) and from the neutron beta decay asymmetry ({lambda}{sub c}) is considered carefully in the standard model of the electroweak interaction {lambda}{sub tau} should be equal to {lambda}{sub c}. According to recent experimental data on neutron beta decay, {lambda}{sub tau} and {lambda}{sub c} seem to differ from each other. This fact is explained in the framework of the manifestly left-right symmetric model SU(2){sub L}xSU(2){sub R}xU(1). The possibility of the existence of the right-handed current in the neutron beta decay is pointed out. A joint analysis of neutron beta decay and muon decay is performed, the right-handed current parameters are estimated. The axial-vector constant renormalization ({lambda}{sub N}) by right-handed currents is evaluated. (orig.)D.

  9. Application of Hybrid Pixel Detectors for Searches of Rare Decays

    Energy Technology Data Exchange (ETDEWEB)

    Durst, J.; Anton, Gisela; Boehnel, Michael; Gleixner, Thomas; Lueck, Ferdinand; Michel, Thilo [Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Schwenke, Maria; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany)

    2011-06-15

    The new generation of hybrid pixel detectors like the Timepix detector provides access to the track information of the energy deposition in the used sensor, which allows better background discrimination in experiments for searches of rare decays. Due to the hybrid design several combinations of an ASIC with a sensor are possible. Assemblies are available with an attached Silicon sensor or CdTe sensor respectively. The detector measures the energy deposition using the time over threshold method. In this contribution we present simulation results of the detector response of the Timepix detector in applications for searches of rare decays. One application would be the search for the neutrinoless double beta decay of {sup 116}Cd using Timepix detectors with enriched CdTe as sensor material. In addition to the simulation results we present first experimental background measurements using a Timepix detector with Silicon sensor in the underground laboratory in Dresden. Using cluster analysis methods it is possible to categorise the single events.

  10. Perturbative description of nuclear double beta decay transitions

    OpenAIRE

    Bes, D. R.; Civitarese, O.; Scoccola, N.N.

    1998-01-01

    A consistent treatment of intrinsic and collective coordinates is applied to the calculation of matrix elements describing nuclear double beta decay transitions. The method, which was developed for the case of nuclear rotations, is adapted to include isospin and number of particles degrees of freedom. It is shown that the uncertainties found in most models, in dealing with these decay modes, are largely due to the mixing of physical and spurious effects in the treatment of isospin dependent i...

  11. Nuclear Structure Aspects of Neutrinoless Double Beta Decay

    CERN Document Server

    Brown, B A; Sen'kov, R A

    2014-01-01

    We decompose the neutrinoless double-beta decay matrix elements into sums of products over the intermediate nucleus with two less nucleons. We find that the sum is dominated by the J^pi=0^+ ground state of this intermediate nucleus for both the light and heavy neutrino decay processes. This provides a new theoretical tool for comparing and improving nuclear structure models. It also provides the connection to two-nucleon transfer experiments.

  12. The Standard Model and the neutron beta-decay

    CERN Document Server

    Abele, H

    2000-01-01

    This article reviews the relationship between the observables in neutron beta-decay and the accepted modern theory of particle physics known as the Standard Model. Recent neutron-decay measurements of various mixed American-British-French-German-Russian collaborations try to shed light on the following topics: the coupling strength of charged weak currents, the universality of the electroweak interaction and the origin of parity violation.

  13. Pions in nuclei and manifestations of supersymmetry in neutrinoless double beta decay

    International Nuclear Information System (INIS)

    We examine the pion realization of the short ranged supersymmetric (SUSY) mechanism of neutrinoless double beta decay (0νββ-decay). It originates from the R-parity violating quark-lepton interactions of the SUSY extensions of the standard model of the electroweak interactions. We argue that pions are dominant SUSY mediators in 0νββ-decay. The corresponding nuclear matrix elements for potentially 0νββ-decaying isotopes are calculated within the proton-neutron renormalized quasiparticle random phase approximation (pn-RQRPA). We define those isotopes which are most sensitive to the SUSY signal and outlook the present experimental situation with the 0νββ-decay searches for the SUSY. Upper limits on the R-parity violating 1st generation Yukawa coupling λ'111 are derived from various 0νββ - experiments

  14. Double beta decays and fundamental laws studied by ultra rare-decay nuclear spectroscopy

    International Nuclear Information System (INIS)

    Recent works on double beta decays and on fundamental laws, which are studied by means of the ultra rare-decay nuclear spectroscopy, are described. Subjects discussed here include unique features of the nuclear spectroscopic method for studying basic problems of nuclear and particle interactions, neutrinos and weak interactions studied by double-beta and gamma spectroscopy, weakly interacting dark matters studied by nuclear recoil spectroscopy, exotic K X-ray transitions and charge non-conservation, and exotic nuclear transitions associated with nucleon decays. (author)

  15. Beta-decay of 20Mg

    International Nuclear Information System (INIS)

    The β-decay of 20Mg was investigated. A secondary beam of 20Mg ions, produced in reactions between a 95 A x MeV 24Mg-beam and a nat.Ni-target, was isotopically separated by means of the LISE3 spectrometer at GANIL. This secondary beam was implanted into a silicon detector array surrounded by germanium γ-detectors. The β-delayed proton and γ-ray data, measured for this short-lived nucleus (T1/2=95±3 ms), were incorporated into an improved 20Mg→20Na decay scheme. The 2645 keV level in 20Na is of importance for the breakout from the astrophysical hot CNO-cycle and the onset of the rapid proton capture process via the reaction 19Ne(p,γ)20Na. An upper limit of 0.1% for the β-decay feeding of the 2645 keV level and a lower limit for the corresponding log ft value of 6.24 were determined. The implications of this result for the spin and parity assignment of the 2645 keV state are discussed. Concerning the isobaric multiplet mass equation no significant deviation from its quadratic form was found. By comparing the 20Mg β-decay into the proton-unbound 3001 keV state in 20Na and the isospin-mirrored decay into the particle-bound 3488 keV level in 20F, an asymmetry ft+/ft--1=1.69-0.65+0.86 was observed. (orig.)

  16. Measuring pion beta decay with high-energy pion beams

    International Nuclear Information System (INIS)

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay π+ → π0e+vε is predicted by the Standard Model (SM) to be R(π+ → π0e+vε) = 0.3999±0.0005 s-1. The best experimental number, obtained using in-flight decays, is R(π+ → π0e+vε) = 0.394 ± 0.015 s-1. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required

  17. Search for B+ Meson Decay to a1+ K*0

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2008-08-07

    We present the preliminary result of a search for the decay B{sup {+-}} {yields} a{sub 1}{sup {+-}} K*{sup 0}. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 465 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation at the {Upsilon}(4S) energy. The result for the branching fraction is: {Beta}(B{sup +} {yields} a{sub 1}{sup +}K*{sup 0}) x {Beta}(a{sub 1}{sup +} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup +}) = (0.7{sub -0.4-0.7}{sup +0.5+0.7}) x 10{sup -6}, corresponding to an upper limit at 90% confidence level of 1.6 x 10{sup -6}. The first error quoted is statistical, the second systematic.

  18. Theoretical and Experimental Considerations for Neutrinoless Double Beta Decay

    CERN Document Server

    Castillo, O; Grosse-Oetringhaus, J F; Lenzi, B; Panes, B; Tibbetts, M; Valenzuela, C; Yacoob, S; Yagues, A G; Zanetti, C

    2008-01-01

    In the rst part of this work we show some theoretical aspects of the generation of the neutrino mass by means of a direct extension of the Standard Model of particles, which include the presence of heavy right-handed neutrinos and large Majorana mass terms. From these two new ingredients, it is possible to nd a mass for the light neutrinos which is naturally of the order of 1 eV or less. The idea is to put these theoretical aspects in the context of the search for neutrino mass values by the study of the signal from the Neutrinoless Double Beta Decay Process (0 ). In the second part, a brief summary is given of the experimental considerations required for the measurement of effective Majorana neutrino mass using (0 ). Measurement strategies and background considerations are introduced and an outline of both active and passive methods is given. Finally, current results are discussed with particular emphasis on the Heidelberg–Moscow experiment. This note is based on the presentation given at the CERN–CLAF 4th...

  19. Search for invisible decay of orthopositronium

    International Nuclear Information System (INIS)

    Orthopositronium (o-Ps) decay or conversion into ''invisible'' final states is searched for by measuring the energy deposited in a hermetic photon detector for each positron produced from β+ decay of 22Na and stopped by an aerogel target. No invisible event is detected for a total of 108 stopping positrons, thereby giving an upper limit of 2.8x10-6 on the o-Ps branching ratio, which is 200 times more stringent than previous limits. This experiment excludes an invisible decay as the origin of the reported discrepancy on o-Ps lifetime, provides a limit of ε-8 on the photon--mirror-photon mixing, and rules out millicharged particles lighter than 500 keV

  20. Searches for very rare decays of kaons

    Energy Technology Data Exchange (ETDEWEB)

    Lang, K. [Univ. of Texas, Austin, TX (United States)

    1997-01-01

    The physics motivation for searches for very rare kaon decays, either forbidden or suppressed within the Standard Model, is briefly discussed. Simple arguments conclude that such searches probe possible new forces at a 200 TeV mass scale or constitute a precision test of the electroweak model. The examples of such process are decays of K{sub L}{sup 0} {yields} {mu} {sup {+-}}e{sup -+}, K{sup +} {yields} {pi}{sup +} {mu}{sup +} e{sup -}, K{sub L}{sup 0} {yields} {mu}{sup +} {mu}{sup -}, and K{sup +} {yields} {pi} {yields} {pi}{sup +}{nu}{bar {nu}}. We present the current experimental status and describe the new efforts to reach sensitivities down to one part in 10{sup 12}. The discussion is focused on the experimental program at the Alternating Gradient Synchrotron at Brookhaven National Laboratory, where intense beams make such studies possible.

  1. Ordinary muon capture as a probe of virtual transitions of $\\beta\\beta$ decay

    CERN Document Server

    Kortelainen, M

    2002-01-01

    A reliable theoretical description of double-beta-decay processes needs a possibility to test the involved virtual transitions against experimental data. Unfortunately, only the lowest virtual transition can be probed by the traditional electron-capture or $\\beta^-$-decay experiments. In this article we propose that calculated amplitudes for many virtual transitions can be probed by experiments measuring rates of ordinary muon capture (OMC) to the relevant intermediate states. The first results from such experiments are expected to appear soon. As an example we discuss the $\\beta\\beta$ decays of $^{76}$Ge and $^{106}$Cd and the corresponding OMC for the $^{76}$Se and $^{106}$Cd nuclei in the framework of the proton-neutron QRPA with realistic interactions. It is found that the OMC observables, just like the $2\

  2. The beta strength function structure in \\beta + decay of lutecium, thulium and cesium isotopes

    CERN Document Server

    Alkhazov, G D; Naumov, Yu V; Orlov, S Yu; Vitman, V D

    1981-01-01

    The spectra of total gamma -absorption in the decays of some lutetium, thulium and cesium isotopes have been measured. The probabilities for level population in the decay of the isotopes have been determined. The deduced beta strength functions reveal pronounced structure. Calculations of the strength functions using the Saxon-Woods potential and the residual Gamow-Teller interaction are presented. It is shown that in beta /sup +/ decay of light thulium and cesium isotopes the strength function comprises more than 70% of the Gamow-Teller excitations with mu /sub tau /=+1. This result is the first direct observation of the Gamov-Teller resonance in beta /sup +/ decay of nuclei with T/sub z/>0. (21 refs).

  3. Limits on fourth family neutrinos from searches for β decay and dark matter

    International Nuclear Information System (INIS)

    This paper states that while accelerator limits on fourth family neutrinos are well known, little-known nonaccelerator experiments also set useful limits on these particles, in some respect better than those yet reached by accelerators. The particular non-accelerator experiments considered here are the search for neutrinoless double beta decay (ov) and for dark matter (DM). These are both powerful means of looking for physics beyond the Standard Model, and hence they also constrain the fourth family. An is given to double beta decay, followed by a discussion of the experimental result, and concluding with its interpretation. The search for DM is then presented

  4. Latest results of NEXT-DEMO, the prototype of the NEXT 100 double beta decay experiment

    CERN Document Server

    Serra, L; Martin-Albo, J; Sorel, M; Gomez-Cadenas, J J

    2014-01-01

    NEXT-DEMO is a 1:4.5 scale prototype of the NEXT100 detector, a high-pressure xenon gas TPC that will search for the neutrinoless double beta decay of $^{136}$Xe. X-ray energy depositions produced by the de-excitation of Xenon atoms after the interaction of gamma rays from radioactive sources have been used to characterize the response of the detector obtaining the spatial calibration needed for close-to-optimal energy resolution. Our result, 5.5% FWHM at 30 keV, extrapolates to 0.6% FWHM at the Q value of $^{136}$Xe. Additionally, alpha decays from radon have been used to measure several detection properties and parameters of xenon gas such as electron-ion recombination, electron drift velocity, diffusion and primary scintillation light yield. Alpha spectroscopy is also used to quantify the activity of radon inside the detector, a potential source of background for most double beta decay experiments.

  5. Neutrinoless Double Beta Decay with CUORE-0: Physics Results and Detector Performance

    Science.gov (United States)

    Canonica, L.

    2016-01-01

    The CUORE-0 experiment searches for neutrinoless double beta decay in ^{130} Te. It consists of an array of 52 tellurium dioxide crystals, operated as bolometers at a temperature of 10 mK, with a total mass of about 39 kg of TeO_2 . CUORE-0 has been built to test the performance of the upcoming CUORE experiment and represents the largest ^{130} Te bolometric setup currently in operation. This experiment has been running in the Gran Sasso National Laboratory, Italy, since March 2013. We report the results of a search for neutrinoless double beta decay in 9.8 kg years ^{130} Te exposure, which allowed us to set the most stringent limit to date on this half-life. The performance of the detector in terms of background rate and energy resolution are also reported.

  6. Computer code for double beta decay QRPA based calculations

    International Nuclear Information System (INIS)

    The computer code developed by our group some years ago for the evaluation of nuclear matrix elements, within the QRPA and PQRPA nuclear structure models, involved in neutrino-nucleus reactions, muon capture and β± processes, is extended to include also the nuclear double beta decay

  7. Evaluation of beta-decay III. The complex gamma function

    International Nuclear Information System (INIS)

    Two real, analytical, approximations for the square of the modulus of the complex gamma function as it appears in F(Z, W), the Fermi function for beta-decay, are evaluated; an accuracy bettering 10-4% can easily be achieved for all electron energies throughout the periodic table. (author). 3 refs., 1 tab., 7 figs

  8. A cryogenic microcalorimeter for tritium beta decay experiments

    International Nuclear Information System (INIS)

    Recent tritium beta decay spectrometer experiments have produced puzzling results, making it desirable to perform a similar experiment with a completely different type of detector. Cryogenic microcalorimeters offer a possible detector technology for this type of experiment. Presented here is a design for, and results of experiments with, a cryogenic microcalorimeter designed for use in tritium beta decay experiments. The biggest challenge in designing a microcalorimeter for beta decay experiments is the speed at which the detector operates. A fast detector is essential to obtain the necessary statistics near the beta spectrum endpoint. .The detector was designed with a normal metal absorber and a bilayer super-conducting transition-edge sensor. These design elements are meant to minimize the pulse rise time and decay time, respectively. Two different detector designs were built and tested in order to determine their operating parameters. These operating parameters were compared to a model describing the operation of these devices and were shown to be in reasonable agreement with it. The model predicts that the detector properties can be improved to the point where a tritium neutrino mass experiment can be performed. Suggestions are given for design modifications that will allow this level of performance. (author)

  9. Forbidden unique beta-decays and neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Dvornický, Rastislav [Bogoliubov Laboratory of Theoretical Physics, JINR Dubna, 141980 Dubna, Moscow region, Russian Federation and Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1, SK-84215 Bratislava (Slovakia); Šimkovic, Fedor [Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1, SK-84215 Bratislava, Slovakia and IEAP, Czech Technical University, CZ-128 00 Prague (Czech Republic)

    2013-12-30

    The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of {sup 79}Se, {sup 107}Pd and {sup 187}Re. It is found that the p{sub 3/2}-wave emission dominates over the s{sub 1/2}-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of {sup 3}H.

  10. MeV neutrinos in double beta decay

    OpenAIRE

    Zuber, K.

    1996-01-01

    The effect of Majorana neutrinos in the MeV mass range on the double beta decay of various isotopes is studied on pure phenomenological arguments. By using only experimental half life data, limits on the mixing parameter $U_{eh}^2$ of the order 10$^{-7}$ can be derived. Also the possible achievements of upcoming experiments and some consequences are outlined.

  11. Warm dark matter sterile neutrinos in electron capture and beta decay spectra

    OpenAIRE

    Moreno, O.; de Guerra, E. Moya; Medrano, M. Ramón

    2016-01-01

    We briefly review the motivation to search for sterile neutrinos in the keV mass scale, as dark matter candidates, and the prospects to find them in beta decay or electron capture spectra. We describe the fundamentals of the neutrino flavor-mass eigenstate mismatch that opens the possibility of detecting sterile neutrinos in such ordinary nuclear processes. Results are shown and discussed for the effect of heavy neutrino emission in electron capture in Holmium 163 and in two isotopes of Lead,...

  12. Solar neutrino interactions with liquid scintillators used for double beta decay experiments

    CERN Document Server

    Ejiri, Hiroyasu

    2016-01-01

    Solar neutrinos interact with double beta decay detectors (DBD) and hence will contribute to backgrounds (BG) for DBD experiments. Background contributions due to solar neutrinos are evaluated for their interactions with atomic electrons and nuclei in liquid scintillation detectors used for DBD experiments. They are shown to be serious backgrounds for high sensitivity DBD experiments to search for the Majorana neutrino masses in the inverted and normal hierarchy regions.

  13. Inner shell ionization in beta decay

    International Nuclear Information System (INIS)

    The purpose of this paper is to examine various ways to resolve the discrepancy that exists between the theoretical calculations on K-shell autoionization probabilities in #betta# decay and the measured values. The chequered history of the subject may be traced through the reviews and papers of Freedman and co workers. Suffice it to say that Isozumi et al (ISM) found that the Law and Campbell (LC) model over counted the shake-off contribution by a factor of two; this correction thus destroys the remarkable agreement between theory and experiment

  14. Beta-delayed neutron decay of $^{33}$Na

    CERN Document Server

    Radivojevic, Z; Caurier, E; Cederkäll, J; Courtin, S; Dessagne, P; Jokinen, A; Knipper, A; Le Scornet, G; Lyapin, V G; Miehé, C; Nowacki, F; Nummela, S; Oinonen, M; Poirier, E; Ramdhane, M; Trzaska, W H; Walter, G; Äystö, J

    2002-01-01

    Beta-delayed neutron decay of /sup 33/Na has been studied using the on-line mass separator ISOLDE. The delayed neutron spectra were measured by time-of-flight technique using fast scintillators. Two main neutron groups at 800(60) and 1020(80) keV were assigned to the /sup 33/Na decay, showing evidence for strong feeding of states at about 4 MeV in /sup 33/Mg. By simultaneous beta - gamma -n counting the delayed neutron emission probabilities P/sub 1n/ = 47(6)% and P /sub 2n/ = 13(3)% were determined. The half-life value for /sup 33 /Na, T/sub 1/2/ = 8.0(3) ms, was measured by three different techniques, one employing identifying gamma transitions and two employing beta and neutron counting. (21 refs).

  15. Precision Study of the $\\beta$-decay of $^{62}$Ga

    CERN Multimedia

    2002-01-01

    It is proposed to perform a precision study of the $\\beta$-decay of $\\,^{62}$Ga taking advantage of recent developments of the ISOLDE Laser Ion Source. The goal is to eventually extend the high-precision knowledge of superallowed $\\beta$-decays beyond the nine decays that presently are used for extracting the V$_{ud}$ quark mixing matrix element of the CKM matrix. The scientific motivations are the current deviation of more than 2$\\sigma$ of the unitary condition of this matrix, which could be an indication of non-standard-model physics, and a test of the theoretical corrections applied to the experimental data. The experiment will utilise the Total Absorption $\\gamma$-ray (TAG) spectrometer in order to determine weak branchings to excited states in $^{62}$Zn and the ISOLDE spectroscopy station to perform half-life measurements and detailed spectroscopy of this nucleus.

  16. Measurement of double beta decay - experiments TGV and NEMO

    International Nuclear Information System (INIS)

    TGV and NEMO, two international collaboration projects are described. The TGV project deals with the double beta decay of 48Ca. In 1998, this project was augmented with the examination of the double beta decay of 106Cd - the β+β+, β+/EC, and EC/EC modes. The main objective of this experiment consists in recording the 2νEC/EC mode (0+ → 0+, ground state), giving rise to the emission of 2 gamma quanta of roughly 21 keV. The NEMO project deals with 100Mo. The main objective of the NEMO-3 experiment consists in the measurement of the half-life of the neutrinoless double decay of this nuclide (about 1025 years)

  17. Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment

    International Nuclear Information System (INIS)

    The double beta decay of 100Mo to the 01+ and 21+ excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 01+ state is measured to be T1/2(2ν)=[5.7-0.9+1.3(stat.)+/-0.8(syst.)]x1020 y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 01+ state has been found. The corresponding half-life limit is T1/2(0ν)(0+->01+)>8.9x1022 y (at 90% C.L.). The search for the double beta decay to the 21+ excited state has allowed the determination of limits on the half-life for the two neutrino mode T1/2(2ν)(0+->21+)>1.1x1021 y (at 90% C.L.) and for the neutrinoless mode T1/2(0ν)(0+->21+)>1.6x1023 y (at 90% C.L.)

  18. Status of double beta decay experiments using isotopes other than Xe-136

    CERN Document Server

    Pandola, Luciano

    2014-01-01

    Neutrinoless double beta decay is a lepton-number violating process predicted by many extensions of the standard model. It is actively searched for in several candidate isotopes within many experimental projects. The status of the experimental initiatives which are looking for the neutrinoless double beta decay in isotopes other than Xe-136 is reviewed, with special emphasis given to the projects that passed the R&D phase. The results recently released by the experiment GERDA are also summarized and discussed. The GERDA data give no positive indication of neutrinoless double beta decay of Ge-76 and disfavor in a model-independent way the long-standing observation claim on the same isotope. The lower limit reported by GERDA for the half-life of neutrinoless double beta decay of Ge-76 is T1/2 > 2.1e25 yr (90% C.L.), or T1/2 > 3.0e25 yr, when combined with the results of other Ge-76 predecessor experiments.

  19. Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment

    CERN Document Server

    Arnold, R; Baker, J; Barabash, A S; Bongrand, M; Broudin, G; Brudanin, V; Caffrey, A J; Egorov, V; Etienvre, A I; Fatemi-Ghomi, N; Hubert, F; Hubert, P; Jerie, J; Jollet, C; Jullian, S; King, S; Kochetov, O; Konovalov, S I; Kovalenko, V; Lalanne, D; Lamhamdi, T; Leccia, F; Lemière, Y; Longuemare, C; Lutter, G; Marquet, C; Mauger, F; Nachab, A; Ohsumi, H; Perrot, F; Piquemal, F; Reyss, J L; Ricol, J S; Saakyan, R; Sarazin, X; Shitov, Y; Simard, L; Simkovic, F; Smolnikov, A; Stekl, I; Suhonen, J; Sutton, C S; Szklarz, G; Söldner-Rembold, S; Thomas, J; Timkin, V; Tretyak, V; Umatov, V; Vanyushin, I A; Vasilev, V; Vorobel, V; Vylov, T; Vàla, L; Hubert, Ph.; Marquet, Ch.; Shitov, Yu.; Vylov, Ts.

    2007-01-01

    The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1 state is measured to be T^(2nu)_1/2 = [5.7^{+1.3}_{-0.9}(stat)+/-0.8(syst)]x 10^20 y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0^+_1 state has been found. The corresponding half-life limit is T^(0nu)_1/2(0^+ --> 0^+_1) > 8.9 x 10^22 y (at 90% C.L.). The search for the double beta decay to the 2^+_1 excited state has allowed the determination of limits on the half-life for the two neutrino mode T^(2nu)_1/2(0^+ --> 2^+_1) > 1.1 x 10^21 y (at 90% C.L.) and for the neutrinoless mode T^(0nu)_1/2(0^+ --> 2^+_1) > 1.6 x 10^23 y (at 90% C.L.).

  20. Results on neutrinoless double beta decay of 76Ge from GERDA Phase I

    Science.gov (United States)

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta (0νββ) decay of 76Ge by operating bare germanium diodes in liquid argon. GERDA is located at the Gran Sasso National Laboratory (LNGS) in Italy. During Phase I, a total exposure of 21.6 kg yrand a background index of 0.01 cts/(keVkg yr) were reached. No signal was observed and a lower limit of T0ν1/2 > 2.1 · 1025 yr(90% C.L.) is derived for the half life of the 0νββ decay of 76Ge.

  1. Kinematic sensitivity to the Fierz term of $\\beta$-decay differential spectra

    CERN Document Server

    Gonzalez-Alonso, Martin

    2016-01-01

    The current most stringent constraints on exotic scalar or tensor couplings in neutron and nuclear $\\beta$ decay, involving left-handed neutrinos, are obtained from the Fierz interference term. The sensitivity to this term in a correlation coefficient is usually driven by an energy-averaged kinematic factor that increases monotonically toward smaller values of the $\\beta$ endpoint energies. We first point out here that this property does not hold for certain differential observables that are directly sensitive to the Fierz term, such as the $\\beta$ or the recoil energy spectrum. This observation is relevant for the selection of sensitive transitions in searches for exotic couplings through spectrum shape measurements. We then point out previous errors in the exploitation of measurements of the $\\beta-\

  2. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    Science.gov (United States)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  3. Time reversal tests in nuclear and neutron beta decay

    International Nuclear Information System (INIS)

    Motivation for time reversal violation studies in nuclear and neutron weak decay is discussed with an emphasis on searches for the exotic tensor and scalar weak interaction. The results of the experiment with polarized 8Li are updated. A new experiment with the aim to determine the transverse polarization of electrons emitted by free, polarized neutrons, is proposed. A facility for neutron decay studies with polarized cold neutrons is under construction at the spallation source SINQ-PSI

  4. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, M J

    2008-09-24

    Neutrinoless double beta decay (0{nu}DBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0{nu}DBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0{nu}DBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0{nu}DBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0{nu}DBD of {sup 130}Te with a ton-scale array of unenriched TeO{sub 2} bolometers. By increasing mass and decreasing the background for 0{nu}DBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10{sup -6}. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0{nu}DBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by ({alpha},n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used

  5. Search for Rare Nuclear Decays with HPGe Detectors at the STELLA Facility of the LNGS

    CERN Document Server

    Belli, P; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, A; d'Angelo, S; Di Marco, A; Di Vacri, M L; Incicchitti, A; Kovtun, G P; Kovtun, N G; Laubenstein, M; Nisi, S; Poda, D V; Polischuk, O G; Shcherban, A P; Solopikhin, D A; Suhonen, J; Tolmachev, A V; Tretyak, V I; Yavetskiy, R P

    2013-01-01

    Results on the search for rare nuclear decays with the ultra low background facility STELLA at the LNGS using gamma ray spectrometry are presented. In particular, the best T1/2 limits were obtained for double beta processes in 96Ru and 104Ru. Several isotopes, which potentially decay through different double beta decay channels, including also possible resonant double electron captures, were investigated for the first time (156Dy, 158Dy, 184Os, 192Os, 190Pt, 198Pt). Search for resonant absorption of solar 7Li axions in a LiF crystal gave the best limit for the mass of 7Li axions (< 8.6 keV). Rare alpha decay of 190Pt to the first excited level of 186Os (Eexc = 137.2 keV) was observed for the first time.

  6. Neutrino masses from double-beta decay calculations

    CERN Document Server

    Stoica, S

    2002-01-01

    The neutrinoless double-beta decay (0 nu beta beta) matrix elements (ME) for the nuclei with A = 76, 82, 96, 100, 116, 128, 130 and 136 are compared with four different quasi random phase approximation (QRPA) - based method, i.e. the proton-neutron QRPA (pnQRPA), the renormalized proton-neutron QRPA (pnRQRPA), the full RQRPA and the second-QRPA (SQRPA) and using two single-particle basis. From a comparative analysis of the results we show that the uncertainties in the calculation of the ME can be limited to 50% from their values. Further, taking the most recent available limits for the neutrinoless half-lives, we deduce new upper limits for the neutrino mass parameter. Also, there are estimated for each nucleus scales for the (0 nu beta beta) decay half-lives that the experiments should reach for measuring neutrino masses around 0.39 eV. This value was derived from the first experimental evidence of this mode reported very recently by the Heidelberg-Moscow experiment. These estimation give us an indication on...

  7. Search for B -> phi pi decays

    OpenAIRE

    Belle collaboration; Kim, J. H.; M. Nakao; Adachi, I.; Adamczyk, K.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Bakich, A. M.; Belous, K.; Bhuyan, B.; Bischofberger, M.; Bondar, A.; Bonvicini, G.

    2012-01-01

    We report on a search for the charmless decays $B^{+} \\to\\phi\\pi^{+}$ and $B^{0} \\to\\phi \\pi^{0}$ that are strongly suppressed in the Standard Model. The analysis is based on a data sample of $657 \\times 10^6$ $B \\bar{B}$ pairs collected at the $\\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. We find no significant signal and set upper limits of $3.3 \\times 10^{-7}$ for $B^{+} \\to \\phi \\pi^{+}$ and $1.5 \\times 10^{-7}$ for $B^0 \\to \\phi \\pi^0$...

  8. Decay search in the OPERA experiment

    International Nuclear Information System (INIS)

    The CERN-Neutrinos-to-Gran Sasso project (CNGS) is devoted to prove unambiguously the νμ→ντ oscillation channel in the atmospheric sector. The high-energy and high-intensity CNGS muon neutrino beam, generated at CERN, is directed towards the Italian Gran Sasso National Laboratory (LNGS), where the OPERA long-baseline experiment searches for ντ appearance. In this paper, a review of the performance and physics potential of the experiment together with the description of dedicated strategies to observe events with decay topologies in the OPERA target will be given.

  9. Study of the ${\\beta}$-decay of $^{12}$B

    CERN Multimedia

    2002-01-01

    We propose to study the ${\\beta}$-decay of $^{12}$B with a modern segmented Si-detector array to get new and much improved information on states in $^{12}$C above the ${\\alpha}$-threshold. These states mainly decay into final states of three ${\\alpha}$-particles and their study therefore is a challenge for nuclear spectroscopy. The properties of these states is of high current interest for nuclear astrophysics and for the nuclear many-body problem in general. We ask for a total of 15 shifts.

  10. Sense and sensitivity of double beta decay experiments

    International Nuclear Information System (INIS)

    The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, mββ. In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a ''physics-motivated range'' (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and ββ isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that 136Xe-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses

  11. The Gerda experiment for the search of 0 νββ decay in 76Ge

    Science.gov (United States)

    Ackermann, K.-H.; Agostini, M.; Allardt, M.; Altmann, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barnabé Heider, M.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Chkvorets, O.; Cossavella, F.; D`Andragora, A.; Demidova, E. V.; Denisov, A.; di Vacri, A.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Froborg, F.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gasparro, J.; Gazzana, S.; Gonzalez de Orduna, R.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kankanyan, R.; Kianovsky, S.; Kihm, T.; Kiko, J.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knapp, M.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kröninger, K.; Kusminov, V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Lenz, D.; Liao, H.; Lindner, M.; Lippi, I.; Liu, J.; Liu, X.; Lubashevskiy, A.; Lubsandorzhiev, B.; Machado, A. A.; Majorovits, B.; Maneschg, W.; Marissens, G.; Mayer, S.; Meierhofer, G.; Nemchenok, I.; Niedermeier, L.; Nisi, S.; Oehm, J.; O'Shaughnessy, C.; Pandola, L.; Peiffer, P.; Pelczar, K.; Pullia, A.; Riboldi, S.; Ritter, F.; Rossi Alvarez, C.; Sada, C.; Salathe, M.; Schmitt, C.; Schönert, S.; Schreiner, J.; Schubert, J.; Schulz, O.; Schwan, U.; Schwingenheuer, B.; Seitz, H.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stelzer, F.; Strecker, H.; Tarka, M.; Trunk, U.; Ur, C. A.; Vasenko, A. A.; Vogt, S.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2013-03-01

    The Gerda collaboration is performing a search for neutrinoless double beta decay of 76Ge with the eponymous detector. The experiment has been installed and commissioned at the Laboratori Nazionali del Gran Sasso and has started operation in November 2011. The design, construction and first operational results are described, along with detailed information from the R&D phase.

  12. The GERDA experiment for the search of 0νββ decay in ^{76}Ge

    OpenAIRE

    GERDA Collaboration; Baudis, L.; Benato, G.; Ferella, A. D.; Froborg, Francis; Guthikonda, K. K.; Tarka, M.; Walter, M.; et al, ...

    2013-01-01

    The Gerda collaboration is performing a search for neutrinoless double beta decay of 76Ge with the eponymous detector. The experiment has been installed and commissioned at the Laboratori Nazionali del Gran Sasso and has started operation in November 2011. The design, construction and first operational results are described, along with detailed information from the R&D phase.

  13. Neutrinoless double $\\beta$ decay and low scale leptogenesis

    CERN Document Server

    Drewes, Marco

    2016-01-01

    The extension of the Standard Model by right handed neutrinos with masses in the GeV range can simultaneously explain the observed neutrino masses via the seesaw mechanism and the baryon asymmetry of the universe via leptogenesis. It has previously been claimed that the requirement for successful baryogenesis implies that the rate of neutrinoless double $\\beta$ decay in this scenario is always smaller than the standard prediction from light neutrino exchange alone. In contrast, we find that the rate for this process can also be enhanced due to a dominant contribution from heavy neutrino exchange. In a small part of the parameter space it even exceeds the current experimental limit, while the properties of the heavy neutrinos are consistent with all other experimental constraints and the observed baryon asymmetry is reproduced. This implies that neutrinoless double $\\beta$ decay experiments have already started to rule out part of the leptogenesis parameter space that is not constrained by any other experiment...

  14. Collective Effect Studies of a Beta Beam Decay Ring

    CERN Document Server

    Hansen, Christian

    2011-01-01

    The Beta Beam, the concept of generating a pure and intense (anti) neutrino beam by letting accelerated radioactive ions beta decay in a storage ring called the Decay Ring (DR), is the basis of one of the proposed next generation neutrino oscillation facilities, necessary for a complete study of the neutrino oscillation parameter space. Sensitivities of the unknown neutrino oscillation parameters depend on the DR's ion intensity and of its duty factor (the filled ratio of the ring). Different methods, including analytical calculations and multiparticle tracking simulations, were used to estimate the DR's potential to contain enough ions in as small a part of the ring as needed for the sensitivities. Studies of transverse blow up of the beams due to resonance wake fields show that a very challenging upper limit of the transverse broadband impedance is required to avoid instabilities and beam loss.

  15. Collective Effect Studies of a Beta Beam Decay Ring

    International Nuclear Information System (INIS)

    The Beta Beam, the concept of generating a pure and intense (anti) neutrino beam by letting accelerated radioactive ions beta decay in a storage ring called the Decay Ring (DR), is the basis of one of the proposed next generation neutrino oscillation facilities, necessary for a complete study of the neutrino oscillation parameter space. Sensitivities of the unknown neutrino oscillation parameters depend on the DR's ion intensity and of its duty factor (the filled ratio of the ring). Different methods, including analytical calculations and multiparticle tracking simulations, were used to estimate the DR's potential to contain enough ions in as small a part of the ring as needed for the sensitivities. Studies of transverse blow up of the beams due to resonance wake fields show that a very challenging upper limit of the transverse broadband impedance is required to avoid instabilities and beam loss.

  16. Nuclear Matrix Elements for the $\\beta\\beta$ Decay of the $^{76}$Ge

    CERN Document Server

    Brown, B A; Horoi, M

    2015-01-01

    The nuclear matrix elements for two-neutrino double-beta (2 n$\\beta\\beta$ ) and zero-neutrino double-beta (0 n$\\beta\\beta$) decay of 76 Ge are evaluated in terms of the configuration interaction (CI), quasiparticle random phase approximation (QRPA) and interacting boson model (IBM) methods. We show that the decomposition of the matrix elements in terms of interemediate states in 74 Ge is dominated by ground state of this nucleus. We consider corrections to the CI results that arise from configurations admixtures involving orbitals out-side of the CI configuration space by using results from QRPA, many-body-perturbation theory, and the connections to related observables. The CI two-neutrino matrix element is reduced due to the inclusion of spin-orbit partners, and to many-body correlations connected with Gamow-Teller beta decay. The CI zero-neutrino matrix element for the heavy neutrino is enhanced due to particle-particle correlations that are connected with the odd-even oscillations in the nuclear masse...

  17. BETA DECAY OPENS THE WAY TO WEAK INTERACTIONS

    OpenAIRE

    Amaldi, E.

    1982-01-01

    After a short introduction with some personal recollection, the author summarizes, in Sect 2, the main points of Fermi's theory of beta decay and of the neutrino hypothesis first proposed by Pauli. The successive Sections refer to : a few extensions and modifications of this theory (Sect 3), various experimental investigations carried out in the 30s for testing Pauli's hypothesis and Fermi's approach (Sect 4), further attempts, refinements and proposals (Sect 5) and a few fundamental step for...

  18. Beta Decay: A Physics Garden of Earthly Delights

    Science.gov (United States)

    Robertson, R. G. Hamish

    2014-03-01

    From the beginning, beta decay has tormented and delighted us with puzzles and enlightenment. A significant part of our present understanding of subatomic physics has emerged from the experimental and theoretical struggle with its mysteries. We reflect on several of the epic victories in this struggle, and look ahead to where ongoing research might lead us in the understanding of fundamental symmetries and neutrinos. Research supported under DOE grant DE-FG02-97ER41020.

  19. The search for decaying Dark Matter

    CERN Document Server

    Herder, J W den; Ruchayskiy, O; Abazajian, K; Frenk, C; Hansen, S; Jonker, P; Kouveliotou, C; Lesgourgues, J; Neronov, A; Ohashi, T; Paerels, F; Paltani, S; Piro, L; Pohl, M; Shaposhnikov, M; Silk, J; Valle, J

    2009-01-01

    We propose an X-ray mission called Xenia to search for decaying superweakly interacting Dark Matter particles (super-WIMP) with a mass in the keV range. The mission and its observation plan are capable of providing a major break through in our understanding of the nature of Dark Matter (DM). It will confirm, or reject, predictions of a number of particle physics models by increasing the sensitivity of the search for decaying DM by about two orders of magnitude through a wide-field imaging X-ray spectrometer in combination with a dedicated observation program. The proposed mission will provide unique limits on the mixing angle and mass of neutral leptons, right handed partners of neutrinos, which are important Dark Matter candidates. The existence of these particles is strongly motivated by observed neutrino flavor oscillations and the problem of baryon asymmetry of the Universe. In super-WIMP models, the details of the formation of the cosmic web are different from those of LambdaCDM. The proposed mission wil...

  20. $\\beta$-decay study of neutron-rich Tl and Pb isotopes

    CERN Multimedia

    It is proposed to study the structure of neutron-rich nuclei beyond $^{208}$Pb. The one-proton hole $^{211-215}$Tl and the semi magic $^{213}$Pb will be produced and studied via nuclear and atomic spectroscopy searching for long-lived isomers and investigating the $\\beta$-delayed $\\gamma$- emission to build level schemes. Information on the single particle structure in $^{211-215}$Pb, especially the position of the g$_{9/2}$ and i$_{11/2}$ neutron orbitals, will be extracted along with lifetimes. The $\\beta$-decay will be complemented with the higher spin selectivity that can be obtained by resonant laser ionization to single-out the decay properties of long-living isomers in $^{211,213}$Tl and $^{213}$Pb.

  1. Warm dark matter sterile neutrinos in electron capture and beta decay spectra

    CERN Document Server

    Moreno, O; Medrano, M Ramón

    2016-01-01

    We briefly review the motivation to search for sterile neutrinos in the keV mass scale, as dark matter candidates, and the prospects to find them in beta decay or electron capture spectra. We describe the fundamentals of the neutrino flavor-mass eigenstate mismatch that opens the possibility of detecting sterile neutrinos in such ordinary nuclear processes. Results are shown and discussed for the effect of heavy neutrino emission in electron capture in Holmium 163 and in two isotopes of Lead, 202 and 205, as well as in the beta decay of Tritium. Ratios of observables in different regions of the atomic de-excitation spectrum or of the charged lepton spectrum are defined that may guide the analysis of possible future measurements.

  2. The Effect of Cancellation in Neutrinoless Double Beta Decay

    CERN Document Server

    Pascoli, Silvia; Wong, Steven

    2013-01-01

    In light of recent experimental results, we carefully analyze the effects of interference in neutrinoless double beta decay, when more than one mechanism is operative. We assume a complete cancellation is at work for $^{136}\\rm{Xe}$, and find its implications on the half-life of other isotopes, such as $^{76}\\rm{Ge}$. For definiteness, we consider the role of light and heavy sterile neutrinos. In this case, the effective Majorana mass parameter can be redefined to take into account all contributions and its value gets suppressed. Hence, larger values of neutrino masses are required for the same half-life. The canonical light neutrino contribution can not saturate the present limits of half-lives or the positive claim of observation of neutrinoless double beta decay, once the stringent bounds from cosmology are taken into account. For the case of cancellation, where all the sterile neutrinos are heavy, the tension between the results from neutrinoless double beta decay and cosmology becomes more severe. We sho...

  3. Sensitivity of CUORE to Neutrinoless Double-Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    CUORE; Alessandria, F.; Andreotti, E.; Ardito, R.; Arnaboldi, C.; Avignone III, F. T.; Balata, M.; Bandac, I.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Bloxham, T.; Brofferio, C.; Bryant, A.; Bucci, C.; Cai, X. Z.; Canonica, L.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Biasi, A. De; Decowski, M. P.; Deninno, M. M.; Waard, A. de; Domizio, S. Di; Ejzak, L.; Faccini, R.; Fang, D. Q.; Farach, H. A.; Ferri, E.; Ferroni, F.; Fiorini, E.; Foggetta, L.; Franceschi, M. A.; Freedman, S. J.; Frossati, G.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Guardincerri, E.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Huang, H. Z.; Ichimura, K.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kogler, L.; Kolomensky, Yu. G.; Kraft, S.; Lenz, D.; Li, Y. L.; Liu, X.; Longo, E.; Ma, Y. G.; Maiano, C.; Maier, G.; Maino, M.; Mancini, C.; Martinez, C.; Martinez, M.; Maruyama, R. H.; Moggi, N.; Morganti, S.; Napolitano, T.; Newman, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rimondi, F.; Rosenfeld, C.; Rusconi, C.; Salvioni, C.; Sangiorgio, S.; Schaeffer, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Stivanello, F.; Taffarello, L.; Terenziani, G.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Whitten Jr., C. A.; Wise, T.; Woodcraft, A.; Xu, N.; Zanotti, L.; Zarra, C.; Zhu, B. X.; Zucchelli, S.

    2011-11-23

    In this paper, we study the sensitivity of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity are discussed and compared, and the formulas and parameters used in the sensitivity estimates are provided. Assuming a background rate of 10{sup -2} cts/(keV kg y), we find that, after 5 years of live time, CUORE will have a 1 {sigma} sensitivity to the neutrinoless double-beta decay half-life of {caret T{sup 0{nu}}{sub 1/2}}(1{sigma} ) = 1.6x 10{sup 26} y and thus a potential to probe the effective Majorana neutrino mass down to 41-95 meV; the sensitivity at 1.64{sigma} , which corresponds to 90% C.L., will be {caret T{sup 0{nu}}{sub 1/2}(1.64{sigma} }) = 9.5x10{sup 25} y. This range is compared with the claim of observation of neutrinoless double-beta decay in {sup 76}Ge and the preferred range in the neutrino mass parameter space from oscillation results.

  4. A Search for the Decays B^+ to e^+\

    Energy Technology Data Exchange (ETDEWEB)

    Klemetti, M

    2006-09-25

    The authors report on a search for the rare decay modes B{sup +} {yields} e{sup +}{nu}{sub e} and B{sup +} {yields} {mu}{sup +}{nu}{sub {mu}} with data collected from the BABAR detector at the PEP-II e{sup +}e{sup -} storage ring. This search utilizes a new technique in which they fully reconstruct the accompanying B{sup -} in {Upsilon}(4S) {yields} B{sup +}B{sup -} events, and look for a mono-energetic lepton in B{sup +} rest frame. No signal candidates observed in either of the channels, consistent with the expected background, in a data sample of approximately 229 million B{bar B} pairs. The branching-fraction upper limits are set at {Beta}(B{sup +} {yields} e{sup +}{nu}{sub e}) < 7.9 x 10{sup -6} and {Beta}(B{sup +} {yields} {mu}{sup +}{nu}{sub {mu}}) < 6.2 x 10{sup -6} at the 90% confidence level.

  5. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Artusa, D. R.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chiesa, D.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Datskov, V.; Biasi, A. De; Deninno, M. M.; Domizio, S. Di; Vacri, M. L. di; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Goett, J.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Norman, E. B.; Nucciotti, A.; O' Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhu, B. X.

    2014-10-15

    Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0{nu}{beta}{beta} decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0{nu}{beta}{beta} experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|m{sub ee}|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R&D program addressing them.

  6. Nuclear transparency and double beta decay of molybdenum 100. Annual report, February 1, 1995 - January 31, 1996

    International Nuclear Information System (INIS)

    This report describes progress in data analysis for a search for neutrinoless double-beta decay of molybdenum 100 and related work, Brookhaven National Laboratory's Experiment 850 on color transparency, and work on Brookhaven's EVA detector and the Stanford Linear Accelerator Center's B factory experiment. 6 refs

  7. Determination of neutrino mass ordering in future $^{76}$Ge-based neutrinoless double-beta decay experiments

    CERN Document Server

    Zhang, Jue

    2016-01-01

    Motivated by recent intensive experimental efforts on searching for neutrinoless double-beta decays, we perform a detailed analysis of the physics potential of the experiments based on $^{76}{\\rm Ge}$. Assuming no signals, current and future experiments could place a $90\\%$ lower limit on the half life $T^{0\

  8. Total absorption study of beta decays relevant for nuclear applications

    International Nuclear Information System (INIS)

    In this contribution we will present an overview of recent studies of the beta decay of nuclei relevant for the calculation of the decay heat in nuclear reactors as a continuation of the work presented in (1). The measurements are performed using the best available technique to detect the beta feeding probability, the total absorption technique (TAS). In our studies we have combined the TAS technique with the use of a Penning Trap (JYFLTRAP, Univ. of Jyvaeskylae) as a high-resolution isobaric separator in order to guarantee high purity of the sources. A brief summary of the latest results of the measurements using a new segmented total absorption spectrometer, the faced challenges depending of the particular nuclei as well as new developments of the techniques of analysis will be discussed. The impact of the measurements on summation calculations of the decay heat in reactors, and in possible non-proliferation applications will be addressed. Future plans and the development of a new modular TAS detector (DTAS) for the DEcay SPECtroscopy (DESPCE) experiment at FAIR will also presented. (author)

  9. Electron capture decay of {sup 116}In and nuclear structure of double {beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, M.; Garcia, A.; Ortiz, C.E.; Kaloskamis, N.I. [University of Notre Dame, Notre Dame, Indiana 46556 (United States); Hindi, M.M. [Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Norman, E.B. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Davids, C.N. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Civitarese, O. [Department of Physics, University of La Plata, C. C. 67, 1900-La Plata (Argentina); Suhonen, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, SF-40351, Jyvaeskylae (Finland)

    1998-08-01

    Quasiparticle-random-phase-approximation (QRPA) calculations of double {beta} decays have not been able to reproduce data in the A=100 system. We propose the A=116 system{emdash}because of its smaller deformation{emdash}as a simpler system to test QRPA calculations. We present results of two experiments we performed, which determine the electron-capture-decay branch of {sup 116}In to be (2.27{plus_minus}0.63){times}10{sup {minus}2}{percent}, from which we deduce logft=4.39{sub {minus}0.15}{sup +0.10}. We present QRPA calculations and compare their predictions to experimental data. Finally we use these calculations to predict the 2{nu} double-{beta}-decay rate of {sup 116}Cd to the ground and excited states of {sup 116}Sn. {copyright} {ital 1998} {ital The American Physical Society}

  10. An experimental investigation of double beta decay of 100Mo

    International Nuclear Information System (INIS)

    New limits on half-lives for several double beta decay modes of 100Mo were obtained with a novel experimental system which included thin source films interleaved with a coaxial array of windowless silicon detectors. Segmentation and timing information allowed backgrounds originating in the films to be studied in some detail. Dummy films containing 96Mo were used to assess remaining backgrounds. With 0.1 mole years of 100Mo data collected, the lower half-life limits at 90% confidence were 2.7 /times/ 1018 years for decay via the two-neutrino mode, 5.2 /times/1019 years for decay with the emission of a Majoron, and 1.6 /times/ 1020 years and 2.2 /times/ 1021 years for neutrinoless 0+ → 2+ and 0+ → 0+ transitions, respectively. 50 refs., 38 figs., 11 tabs

  11. First results of the experiment to search for double beta decay of 106Cd with 106CdWO4 crystal scintillator in coincidence with four crystals HPGe detector

    CERN Document Server

    Tretyak, V I; Bernabei, R; Brudanin, V B; Cappella, F; Caracciolo, V; Cerulli, R; Chernyak, D M; Danevich, F A; d'Angelo, S; Incicchitti, A; Laubenstein, M; Mokina, V M; Poda, D V; Polischuk, O G; Podviyanuk, R B; Tupitsyna, I A

    2013-01-01

    An experiment to search for double beta processes in 106Cd by using cadmium tungstate crystal scintillator enriched in 106Cd (106CdWO4) in coincidence with the four crystals HPGe detector GeMulti is in progress at the STELLA facility of the Gran Sasso underground laboratory of INFN (Italy). The 106CdWO4 scintillator is viewed by a low-background photomultiplier tube through a lead tungstate crystal light-guide produced from deeply purified archaeological lead to suppress gamma quanta from the photomultiplier tube. Here we report the first results of the experiment after 3233 hours of the data taking. A few new improved limits on double beta processes in 106Cd are obtained, in particular T1/2(2nuECb+) > 8.4e20 yr at 90% C.L.

  12. The low background spectrometer TGV II for double beta decay measurements

    Energy Technology Data Exchange (ETDEWEB)

    Benes, P. [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a/22, 128 00 Prague (Czech Republic); Cermak, P. [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a/22, 128 00 Prague (Czech Republic)]. E-mail: pavel.cermak@utef.cvut.cz; Gusev, K.N. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Klimenko, A.A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Kovalenko, V.E. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Kovalik, A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nuclear Physics Institute of the CAS, 25263 Rez near Prague (Czech Republic); Rukhadze, N.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Salamatin, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Simkovic, F. [Comenius University in Bratislava, SK-842 15 Bratislava (Slovakia); Stekl, I. [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a/22, 128 00 Prague (Czech Republic); Timkin, V.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Vylov, Ts. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2006-12-21

    The low-background multi-HPGe spectrometer TGVII installed in the Modane Underground Laboratory (France) is described in detail and the results of the background measurements are reported. The spectrometer is focused on the double beta decay measurements with two isotopes-{sup 106}Cd (2{nu}EC/EC mode) and {sup 48}Ca ({beta}{beta} mode). A basic summary of the physics of {beta}{beta} decay (especially EC/EC mode) is also given.

  13. Systematic study of the single-state dominance in 2 nu beta beta decay transitions

    CERN Document Server

    Civitarese, O

    1999-01-01

    The single-state-dominance hypothesis (SSDH) states that the decay rates of the two-neutrino double-beta decay are governed by a virtual two-step transition connecting the initial and final ground states through the first 1 sup + state, 1 sup + sub 1 , of the intermediate odd-odd nucleus, for those odd-odd nuclei where the 1 sup + sub 1 state is the ground state. To investigate the validity of the SSDH we have performed a systematical theoretical analysis of all known double-beta-decay transitions where the SSDH conditions are fulfilled. The calculations are based on the quasiparticle randon-phase approximation (QRPA) and the results have been obtained by using realistic single-particle bases and realistic interactions. We have studied the double beta sup - decays of sup 1 sup 0 sup 0 Mo, sup 1 sup 1 sup 0 Pd, sup 1 sup 1 sup 4 Cd, sup 1 sup 1 sup 6 Cd and sup 1 sup 2 sup 8 Te and the double electron-capture transitions in sup 1 sup 0 sup 6 Cd and sup 1 sup 3 sup 6 Ce. The analysis shows that the SSDH is real...

  14. $\\beta$ - decay asymmetry in mirror nuclei: A = 9

    CERN Multimedia

    Axelsson, L E; Smedberg, M

    2002-01-01

    Investigations of light nuclei close to the drip lines have revealed new and intriguing features of the nuclear structure. The occurrence of halo structures in loosely bound systems has had a great impact on the nuclear physics research in the last years. As intriguing but not yet solved is the nature of transitions with very large $\\beta$ - strength. \\\\ \\\\We report here on the investigation of this latter feature by an accurate measurement of the $\\beta$ - decay asymmetry between the mirror nuclei in the A=9 mass chain.\\\\ \\\\The possible asymmetry for the decay to the states around 12 MeV is interesting not only due to the fact that the individual B$_{GT}$ values are large (with large overlap in wave-functions, an unambiguous interpretation is much easier made), but also due to the special role played by this transition for the $^{9}$Li decay. It seems to belong to a class of high-B$_{GT}$ transitions observed at the neutron drip line and has been suggested to be due either to a lowering of the giant Gamow-Te...

  15. AMoRE: Collaboration for searches for the neutrinoless double-beta decay of the isotope of 100Mo with the aid of 40Ca100MoO4 as a cryogenic scintillation detector

    International Nuclear Information System (INIS)

    The AMoRE (Advanced Mo based Rare process Experiment) Collaboration is planning to employ 40Ca100MoO4 single crystals as a cryogenic Scintillation detector for studying the neutrinoless double-beta decay of the isotope 100Mo. A simultaneous readout of phonon and scintillation signals is performed in order to suppress the intrinsic background. The planned sensitivity of the experiment that would employ 100 kg of 40Ca100MoO4 over five years of data accumulation would be T1/20ν = 3 × 1026 yr, which corresponds to values of the effective Majorana neutrino mass in the range of 〈mν〉 ∼ 0.02–0.06 eV

  16. Results on neutrinoless double beta decay of 76Ge from GERDA Phase I

    CERN Document Server

    Agostini, M; Andreotti, E; Bakalyarov, A M; Balata, M; Barabanov, I; Heider, M Barnabé; Barros, N; Baudis, L; Bauer, C; Becerici-Schmidt, N; Bellotti, E; Belogurov, S; Belyaev, S T; Benato, G; Bettini, A; Bezrukov, L; Bode, T; Brudanin, V; Brugnera, R; Budjáš, D; Caldwell, A; Cattadori, C; Chernogorov, A; Cossavella, F; Demidova, E V; Domula, A; Egorov, V; Falkenstein, R; Ferella, A; Freund, K; Frodyma, N; Gangapshev, A; Garfagnini, A; Gotti, C; Grabmayr, P; Gurentsov, V; Gusev, K; Guthikonda, K K; Hampel, W; Hegai, A; Heisel, M; Hemmer, S; Heusser, G; Hofmann, W; Hult, M; Inzhechik, L V; Ioannucci, L; Csáthy, J Janicskó; Jochum, J; Junker, M; Kihm, T; Kirpichnikov, I V; Kirsch, A; Klimenko, A; Knöpfle, K T; Kochetov, O; Kornoukhov, V N; Kuzminov, V V; Laubenstein, M; Lazzaro, A; Lebedev, V I; Lehnert, B; Liao, H Y; Lindner, M; Lippi, I; Liu, X; Lubashevskiy, A; Lubsandorzhiev, B; Lutter, G; Macolino, C; Machado, A A; Majorovits, B; Maneschg, W; Misiaszek, M; Nemchenok, I; Nisi, S; O'Shaughnessy, C; Pandola, L; Pelczar, K; Pessina, G; Potenza, %F; Pullia, A; Riboldi, S; Rumyantseva, N; Sada, C; Salathe, M; Schmitt, C; Schreiner, J; Schulz, O; Schwingenheuer, B; Schönert, S; Shevchik, E; Shirchenko, M; Simgen, H; Smolnikov, A; Stanco, L; Strecker, H; Tarka, M; Ur, C A; Vasenko, A A; Volynets, O; von Sturm, K; Wagner, V; Walter, M; Wegmann, A; Wester, T; Wojcik, M; Yanovich, E; Zavarise, P; Zhitnikov, I; Zhukov, S V; Zinatulina, D; Zuber, K; Zuzel, G

    2013-01-01

    Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the Standard Model of particle physics. This Letter reports the results from Phase I of the GERmanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope 76Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kgyr. A blind analysis is performed. The background index is about 1.10^{-2} cts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of 76Ge, T_1/2 > 2.1 10^{25} yr (90% C.L.). The combination with the results from the previous experiments with 76Ge yields T_1/2 > 3.0 10^{25} yr (90% C.L.).

  17. Sensitivity of future liquid xenon experiments to the detection of double-beta decays of xenon

    International Nuclear Information System (INIS)

    Dark searches are one of the most active fields of physics in the recent years. A new generation of experiments using liquid xenon as active medium are currently under investigation to further increase the sensitivity. These will exceed the present limit of 1 t active mass. This development will allow to reach unprecedented sensitivities not only for dark matter searches, but also for half-life measurements of long living isotopes of xenon. Xenon itself has three candidates for double-beta decay, but only the 2nbb decay of 136Xe has been measured with a half-life of T1/2 = (2.38±0.11±0.05) x 1021 yr. In this talk studies of sensitivities for the detection of the yet unobserved remaining double beta decay modes of xenon by this new generation of experiments will be presented. A particular emphasis on the sensitivity for a measurement of the half-life of 134Xe will be performed, assuming different background models.

  18. Competition of $\\beta$-delayed protons and $\\beta$-delayed $\\gamma$ rays in $^{56}$Zn and the exotic $\\beta$-delayed $\\gamma$-proton decay

    CERN Document Server

    Orrigo, S E A; Fujita, Y; Blank, B; Gelletly, W; Agramunt, J; Algora, A; Ascher, P; Bilgier, B; Cáceres, L; Cakirli, R B; Fujita, H; Ganioglu, E; Gerbaux, M; Giovinazzo, J; Grévy, S; Kamalou, O; Kozer, H C; Kucuk, L; Kurtukian-Nieto, T; Molina, F; Popescu, L; Rogers, A M; Susoy, G; Stodel, C; Suzuki, T; Tamii, A; Thomas, J C

    2016-01-01

    Remarkable results have been published recently on the $\\beta$ decay of $^{56}$Zn. In particular, the rare and exotic $\\beta$-delayed $\\gamma$-proton emission has been detected for the first time in the $fp$ shell. Here we focus the discussion on this exotic decay mode and on the observed competition between $\\beta$-delayed protons and $\\beta$-delayed $\\gamma$ rays from the Isobaric Analogue State.

  19. Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

    CERN Document Server

    Brunner, T; Andreoiu, C; Brodeur, M; Delheji, P; Ettenauer, S; Frekers, D; Gallant, A T; Gernhäuser, R; Grossheim, A; Krücken, R; Lennarz, A; Lunney, D; Mücher, D; Ringle, R; Simon, M C; Simon, V V; Sjue, S K L; Zuber, K; Dilling, J

    2013-01-01

    A new technique has been developed at TRIUMF's TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of $\\beta\\beta$ decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of $^{124}$Cs.

  20. Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, T. [TRIUMF, Vancouver (Canada); Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Lapierre, A.; Delheji, P.; Grossheim, A.; Ringle, R.; Simon, M.C.; Sjue, S.K.L. [TRIUMF, Vancouver (Canada); Andreoiu, C. [Simon Fraser University, Department of Chemistry, Burnaby (Canada); Brodeur, M. [University of Notre Dame, Department of Physics, Notre Dame, IN (United States); Ettenauer, S.; Gallant, A.T.; Dilling, J. [TRIUMF, Vancouver (Canada); University of British Columbia, Department of Physics and Astronomy, Vancouver (Canada); Frekers, D. [Westfaelische Wilhelms-Universitaet Muenster, Muenster (Germany); Gernhaeuser, R.; Kruecken, R.; Muecher, D. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Lennarz, A. [TRIUMF, Vancouver (Canada); Westfaelische Wilhelms-Universitaet Muenster, Muenster (Germany); Lunney, D. [Universite de Paris Sud, CSNSM-IN2P3-CNRS, Orsay (France); Simon, V.V. [TRIUMF, Vancouver (Canada); Ruprecht-Karls-Universitaet Heidelberg, Fakulaet fuer Physik und Astronomie, Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany)

    2013-11-15

    A new technique has been developed at the TRIUMF's TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of {beta} {beta} decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of {sup 124}Cs. (orig.)

  1. Ground state occupation probabilities of neutrinoless double beta decay candidates

    Science.gov (United States)

    Kotila, Jenni; Barea, Jose

    2015-10-01

    A better understanding of nuclear structure can offer important constraints on the calculation of 0 νββ nuclear matrix elements. A simple way to consider differences between initial and final states of neutrinoless double beta decay candidates is to look at the ground state occupation probabilities of initial and final nuclei. As is well known, microscopic interacting boson model (IBM-2) has found to be very useful in the description of detailed aspects of nuclear structure. In this talk I will present results for ground state occupation probabilities obtained using IBM-2 for several interesting candidates of 0 νββ -decay. Comparison with recent experimental results is also made. This work was supported Academy of Finland (Project 266437) and Chilean Ministry of Education (Fondecyt Grant No. 1150564),

  2. Neutrinoless Double Beta Decay in Heavy Deformed Nuclei

    OpenAIRE

    Hirsch, Jorge G.; Castaños, O.; Hess, P. O.

    1994-01-01

    The zero neutrino mode of the double beta decay in heavy deformed nuclei is investigated in the framework of the pseudo SU(3) model, which has provided an accurate description of collective nuclear structure and predicted half-lives for the two neutrino mode in good agreement with experiments. In the case of $^{238}U$ the calculated zero neutrino half-life is at least three orders of magnitude greater than the two neutrino one, giving strong support of the identification of the radiochemicall...

  3. Values of the phase space factors for double beta decay

    International Nuclear Information System (INIS)

    We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed

  4. Neutrinoless Double Beta Decay and Lepton Flavor Violation

    OpenAIRE

    Cirigliano, V.; Kurylov, A.; Ramsey-Musolf, M. J.; Vogel, P.

    2004-01-01

    We point out that extensions of the standard model with low scale (~TeV) lepton number violation (LNV) generally lead to a pattern of lepton flavor violation (LFV) experimentally distinguishable from the one implied by models with grand unified theory scale LNV. As a consequence, muon LFV processes provide a powerful diagnostic tool to determine whether or not the effective neutrino mass can be deduced from the rate of neutrinoless double beta decay. We discuss the role of µ-->egamma and µ-->...

  5. LUCIFER: A new technique for Double Beta Decay

    OpenAIRE

    Ferroni, Fernando

    2011-01-01

    LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) is a new project aiming to study the neutrinoless Double Beta Decay. It will be based on the technology of the scintillating bolometers. These devices shall have a great power in distinguishing signals from α’s and β/γ’s promising a background-free experiment, provided that the Q value of the candidate isotope is higher than the 208Tl line. The baseline candidate for LUCIFER is 82Se. Here the LUCIFER concept will be...

  6. Impact of Neutrinoless Double Beta Decay on Models of Baryogenesis

    CERN Document Server

    Deppisch, Frank F; Huang, Wei-Chih

    2015-01-01

    Interactions that manifest themselves as lepton number violating processes at low energies in combination with sphaleron transitions typically erase any pre-existing baryon asymmetry of the Universe. We demonstrate in a model independent approach that the observation of neutrinoless double beta decay would impose a stringent constraint on mechanisms of high-scale baryogenesis, including leptogenesis scenarios. Further, we discuss the potential of the LHC to model independently exclude high-scale leptogenesis scenarios when observing lepton number violating processes. In combination with the observation of lepton flavor violating processes, we can further strengthen this argument, closing the loophole of asymmetries being stored in different lepton flavors.

  7. Nuclear Double Beta Decay, Fundamental Particle Physics, Hot Dark Matter, And Dark Energy

    CERN Document Server

    Klapdor-Kleingrothaus, Hans Volker

    2010-01-01

    Nuclear double beta decay, an extremely rare radioactive decay process, is - in one of its variants - one of the most exciting means of research into particle physics beyond the standard model. The large progress in sensitivity of experiments searching for neutrinoless double beta decay in the last two decades - based largely on the use of large amounts of enriched source material in "active source experiments" - has lead to the observation of the occurrence of this process in nature (on a 6.4 sigma level), with the largest half-life ever observed for a nuclear decay process (2.2 x 10^{25} y). This has fundamental consequences for particle physics - violation of lepton number, Majorana nature of the neutrino. These results are independent of any information on nuclear matrix elements (NME)*. It further leads to sharp restrictions for SUSY theories, sneutrino mass, right-handed W-boson mass, superheavy neutrino masses, compositeness, leptoquarks, violation of Lorentz invariance and equivalence principle in the...

  8. Measurement of the 2{nu}{beta}{beta} decay of {sup 100}Mo to the excited 0{sub 1}{sup +} state in the NEMO3 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vala, L

    2003-09-01

    The NEMO3 detector was designed for the study of double beta decay and in particular to search for the neutrinoless double beta decay process (0{nu}{beta}{beta}). The intended sensitivity in terms of a half-life limit for the 0{nu}{beta}{beta} decay is of the order of 10{sup 25} y which corresponds to an effective neutrino mass m{sub {nu}} on the level of (0.3 - 0.1) eV. The 0{nu}{beta}{beta} process is today the most promising test of the Majorana nature of the neutrino. The detector was constructed in the Modane Underground Laboratory (LSM) in France by an international collaboration including France, Russia, the Czech Republic, the USA, the UK, Finland, and Japan. The experiment has been taking data since May 2002. The quantity of {sup 100}Mo in the detector (7 kg) allows an efficient measurement of the two-neutrino double beta decay (2{nu}{beta}{beta}) of {sup 100}Mo to the excited 0{sub 1}{sup +} state (eeN{gamma} channel). Monte-Carlo simulations of the effect and of all the relative sources of background have been produced in order to define a set of appropriate selection criteria. Both Monte-Carlo simulations and special runs with sources of {sup 208}Tl and {sup 214}Bi showed that the only significant background in the eeN{gamma} channel comes from radon that penetrated inside the wire chamber of NEMO3. The experimental data acquired from May 2002 to May 2003 have been analysed in order to determine the signal from the 2{nu}{beta}{beta} decay of {sup 100}Mo to the excited 0{sub 1}{sup +} state and the corresponding background level. The physical result, which was obtained at the level of four standard deviations, is given in the form of an interval of half-life values at 95% confidence level: [5.84*10{sup 20}, 2.26*10{sup 21}] y for method A and [5.83*10{sup 20}, 1.71*10{sup 21}] y for method B. (author)

  9. Measurement of double-beta-decay--experiments TGV and NEMO

    International Nuclear Information System (INIS)

    A description of the aim and present status of the experiments NEMO and TGV are presented. The NEMO collaboration developed the detector NEMO-2 to investigate double-beta (ββ) decay of 100Mo, 116Cd, 82Se and 96Zr. The results obtained for the above mentioned isotopes are given. The new detector NEMO-3, which is approximately 20 times larger than NEMO-2, is under construction. The NEMO-3 detector should allow the study of 0νββ decays of 100Mo (or other isotopes) with half-life ∼1025 years, corresponding to neutrino masses of 0.1-0.3 eV. The TGV I collaboration has studied the ββ decay of 48Ca. The result T2νββ1/2=(4.2+3.3-1.3)x1019 years has been found. Experiment TGV II is devoted to measurement of the ββ decay (β+β+, β+/EC, EC/EC) of 106Cd, particularly the 2νEC/EC mode. (author)

  10. Status Update of the MAJORANA DEMONSTRATOR Neutrinoless Double Beta Decay Experiment

    CERN Document Server

    Gruszko, Julieta; Arnquist, Isaac; Avignone, Frank; Barabash, Alexander; Bertrand, Fred; Bradley, Adam; Brudanin, Viktor; Busch, Matthew; Buuck, Micah; Byram, Dana; Caldwell, Adam; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Chu, Pinghan; Cuesta, Clara; Detwiler, Jason; Dunagan, Colter; Efremenko, Yuri; Ejiri, Hiroyasu; Elliott, Steven; Galindo-Uribarri, Alfredo; Gilliss, Tom; Giovanetti, Graham K; Goett, Johnny; Green, Matthew P; Guinn, Ian; Guiseppe, Vince; Henning, Reyco; Hoppe, Eric; Howard, Stanley; Howe, Mark; Jasinski, Ben; Keeter, Kara; Kidd, Mary; Konovalov, Sergey; Kouzes, Richard T; LaFerriere, Brian; Leon, Jonathan; MacMullin, Jacqueline; Martin, Ryan; Massarczyk, Ralph; Meijer, Sam; Mertens, Susanne; OShaughnessy, Christopher; Orrell, John; Poon, Alan; Radford, David; Rager, Jamin; Rielage, Keith; Robertson, R G Hamish; Romero-Romero, Elisa; Shanks, Benjamin; Shirchenko, Mark; Snyder, Nathan; Suriano, Anne-Marie; Tedeschi, David; Trimble, Jim; Varner, Robert; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris; White, Brandon; Wilkerson, John F; Wiseman, Clint; Xu, Wenqin; Yakushev, E; Yu, Chang-Hong; Yumatov, Vladimir; Zhitnikov, Igor

    2015-01-01

    Neutrinoless double beta decay searches play a major role in determining neutrino properties, in particular the Majorana or Dirac nature of the neutrino and the absolute scale of the neutrino mass. The consequences of these searches go beyond neutrino physics, with implications for Grand Unification and leptogenesis. The \\textsc{Majorana} Collaboration is assembling a low-background array of high purity Germanium (HPGe) detectors to search for neutrinoless double-beta decay in $^{76}$Ge. The \\textsc{Majorana Demonstrator}, which is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota, will contain 44 kg (30 kg enriched in $^{76}$Ge) of HPGe detectors. Its primary goal is to demonstrate the scalability and background required for a tonne-scale Ge experiment. This is accomplished via a modular design and projected background of less than 3 cnts/tonne-yr in the region of interest. The experiment is currently taking data with the first of its enriched det...

  11. Status Update of the Majorana Demonstrator Neutrinoless Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gruzko, Julieta [Univ. of Washington, Seattle, WA (United States); Rielage, Keith Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Xu, Wenqin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Elliott, Steven Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Massarczyk, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goett, John Jerome III [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Pinghan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-10

    Neutrinoless double beta decay searches play a major role in determining neutrino properties, in particular the Majorana or Dirac nature of the neutrino and the absolute scale of the neutrino mass. The consequences of these searches go beyond neutrino physics, with implications for Grand Unification and leptogenesis. The Majorana Collaboration is assembling a low-background array of high purity Germanium (HPGe) detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator, which is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota, will contain 44 kg (30 kg enriched in 76Ge) of HPGe detectors. Its primary goal is to demonstrate the scalability and background required for a tonne-scale Ge experiment. This is accomplished via a modular design and projected background of less than 3 cnts/tonne-yr in the region of interest. The experiment is currently taking data with the first of its enriched detectors.

  12. Shell Model description of the {beta}{beta} decay of {sup 136}Xe

    Energy Technology Data Exchange (ETDEWEB)

    Caurier, E.; Nowacki, F. [IPHC, IN2P3-CNRS/Universite Louis Pasteur BP 28, F-67037 Strasbourg Cedex 2 (France); Poves, A., E-mail: alfredo.poves@uam.es [Departamento de Fisica Teorica, Universidad Autonoma de Madrid and Instituto de Fisica Teorica, UAM/CSIC, E-28049, Madrid (Spain)

    2012-05-01

    We study in this Letter the double beta decay of {sup 136}Xe with emission of two neutrinos which has been recently measured by the EXO-200 Collaboration. We use the same shell model framework, valence space, and effective interaction that we have already employed in our calculation of the nuclear matrix element (NME) of its neutrinoless double beta decay. Using the quenching factor of the Gamow-Teller operator which is needed to reproduce the very recent high resolution {sup 136}Xe ({sup 3}He, t) {sup 136}Cs data, we obtain a nuclear matrix element M{sup 2{nu}}=0.025 MeV{sup -1} compared with the experimental value M{sup 2{nu}}=0.019(2) MeV{sup -1}.

  13. Limit on Neutrinoless Double Beta Decay of 76Ge by GERDA

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Heider, M. Barabè; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Cossavella, F.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Ferella, A.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Guthikonda, K. K.; Hampel, W.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Machado, A. A.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; Shaughnessy, C. O.'.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Tarka, M.; Ur, C. A.; Vasenko, A. A.; Volynets, O.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    The Gerda experiment at the Laboratori Nazionali del Gran Sasso in Italy uses germanium detectors made from material with an enriched 76Ge isotope fraction to search for neutrinoless double beta decay of this nucleus. Applying a blind analysis we find no signal after an exposure of 21.6 kg·yr and a background of about 0.01 cts/(keV·kg·yr). A half-life limit of Tov1/2> 2.1 · 1025 yr (90% C.L.) is extracted. The previous claim of a signal for 76Ge is excluded with 99% probability in a model independent way.

  14. Explaining the CMS $eejj$ Excess With $\\mathcal{R}-$parity Violating Supersymmetry and Implications for Neutrinoless Double Beta Decay

    CERN Document Server

    Allanach, Ben; Mondal, Subhadeep; Mitra, Manimala

    2014-01-01

    The recent CMS searches for the right handed gauge boson $W_R$ reports an interesting deviation from the Standard Model. The search has been conducted in the $eejj$ channel and has shown an excess around $m_{eejj} \\sim 2$ TeV. In this work, we explain the reported CMS excess with R-parity violating supersymmetry (SUSY). We consider the resonant slepton and sneutrino production, followed by the three body decays of neutralino and chargino via R-parity violating coupling. These fit the excess for slepton and sneutrino masses around 2 TeV. This scenario can further be tested in neutrinoless double beta decay experiment ($0\

  15. Double beta decay versus cosmology: Majorana CP phases and nuclear matrix elements

    CERN Document Server

    Deppisch, F; Suhonen, J; Deppisch, Frank; P\\"as, Heinrich; Suhonen, Jouni

    2004-01-01

    We discuss the relation between the absolute neutrino mass scale, the effective mass measured in neutrinoless double beta decay, and the Majorana CP phases. Emphasis is placed on estimating the upper bound on the nuclear matrix element entering calculations of the double beta decay half life. Consequently, one of the Majorana CP phases can be constrained when combining the claimed evidence for neutrinoless double beta decay with the neutrino mass bound from cosmology.

  16. On the Proton Spectrum in Free Neutron beta-decay

    CERN Document Server

    Bunatian, G G

    2000-01-01

    We consider the calculations which are appropriate to acquire with a high precision, of ~1% or better, the general characteristics of weak interactions from the experiments on the free neutron beta-decay; the principle emphasis is placed on the phenomena associated with the recoil of protons. The part played by electromagnetic interactions in beta-decay is visualized, with special attention drawn to the influence of the gamma-radiation on the momentum distribution of the particles in the final state. The effect of electromagnetic interactions on the proton recoil spectrum is studied, in the light of the experiments which are carried out and planned for now. The results of the calculations, which are to be confronted with the experimental data, are presented upright in terms of the effective Lagrangian underlying the inquiry. Owing to electromagnetic interactions, the corrections to the energy distribution of protons prove to amount to the value of a few per cent. Nowadays, this is substantial to obtain with a...

  17. Large-scale shell-model analysis of the neutrinoless $\\beta\\beta$ decay of $^{48}$Ca

    CERN Document Server

    Iwata, Y; Otsuka, T; Utsuno, Y; Menendez, J; Honma, M; Abe, T

    2016-01-01

    We present the nuclear matrix element for the neutrinoless double-beta decay of $^{48}$Ca based on large-scale shell-model calculations including two harmonic oscillator shells ($sd$ and $pf$ shells). The excitation spectra of $^{48}$Ca and $^{48}$Ti, and the two-neutrino double-beta decay of $^{48}$Ca are reproduced in good agreement to experiment. We find that the neutrinoless double-beta decay nuclear matrix element is enhanced by about 30\\% compared to $pf$-shell calculations. This reduces the decay lifetime by almost a factor of two. The matrix-element increase is mostly due to pairing correlations associated with cross-shell $sd$-$pf$ excitations. We also investigate possible implications for heavier neutrinoless double-beta decay candidates.

  18. Double beta decay physics beyond the standard model now and in future (Genius)

    International Nuclear Information System (INIS)

    Nuclear double beta decay provides an extraordinarily broad potential to search for beyond standard model physics, probing already now the TeV scale, on which new physics should manifest itself. These possibilities are reviewed here. First, the results of present generation experiments are presented. The most sensitive one of them - the Heidelberg-Moscow experiment in the Gran Sasso - probes the electron mass now in the sub-eV region and will reach a limit of ∼ 0.1 eV in a few years. Basing to a large extent on the theoretical work of the Heidelberg Double Beta Group in the last two years, results are obtained also for SUSY models (R-parity breaking, sneutrino mass), leptoquarks (leptoquark-Higgs coupling), compositeness, right-handed W-boson mass and others

  19. Search for Rare Multi-Pion Decays of the Tau Lepton Using the BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Antonyan, Ruben

    2007-09-18

    A search for the decay of the {tau} lepton to rare multi-pion final states is performed using the BABAR detector at the PEP-II asymmetric-energy e+e- collider. The analysis uses 232 fb-1 of data at center-of-mass energies on or near the {Upsilon}(4S) resonance. In the search for the {tau}- {yields} 3{pi}-2{pi}+2{pi}{sup 0}{nu}{sub {tau}} decay, we observe 10 events with an expected background of 6.5{sup +2.0}{sub -1.4} events. In the absence of a signal, we calculate the decay branching ratio upper limit {beta}({tau}- {yields} 3{pi}-2{pi}+2{pi}{sup 0}{nu}{sub {tau}}) < 3.4 x 10{sup -6} at the 90% confidence level. This is more than a factor of 30 improvement over the previously established limit. In addition, we search for the exclusive decay mode {tau}- {yields} 2{omega}{pi}-{nu}{sub {tau}} with the further decay of {omega} {yields} {pi}-{pi}+{pi}{sup 0}. We observe 1 event, expecting 0.4{sup +1.0}{sub -0.4} background events, and calculate the upper limit {beta}{tau}-{yields} 2{omega}{pi}-{nu}{sub {tau}} < 5.4 x 10{sup -7} at the 90% confidence level. This is the first upper limit for this mode.

  20. Data Evaluation for 56Co epsilon + beta+ Decay

    Energy Technology Data Exchange (ETDEWEB)

    Baglin, Coral M.; MacMahon, T. Desmond

    2005-02-28

    Recommended values for nuclear and atomic data pertaining to the {var_epsilon} + {beta}{sup +} decay of {sup 56}Co are provided here, followed by comments on evaluation procedures and a summary of all available experimental data. {sup 56}Co is a radionuclide which is potentially very useful for Ge detector efficiency calibration because it is readily produced via the {sup 56}Fe(p,n) reaction, its half-life of 77.24 days is conveniently long, and it provides a number of relatively strong {gamma} rays with energies up to {approx}3500 keV. The transition intensities recommended here for the strongest lines will be included in the forthcoming International Atomic Energy Agency Coordinated Research Programme document ''Update of X- and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications'', and the analysis for all transitions along with relevant atomic data have been provided to the Decay Data Evaluation Project.

  1. Nuclear-structure aspects of double beta decay

    International Nuclear Information System (INIS)

    Neutrinoless double beta (0νββ) decay of nuclei is a process that requires the neutrino to be a massive Majorana particle and thus cannot proceed in the standard model of electro-weak interactions. Recent results of the neutrino-oscillation experiments have produced accurate information on the mixing of neutrinos and their squared mass differences. The 0νββ decay takes place in atomic nuclei where it can be observed, at least in principle, by underground neutrino experiments. The need of nuclei in observation of the 0νββ decay bears two facets: The nucleus serves as laboratory for detection but at the same time its complicated many-nucleon structure interferes strongly with the analysis of the experimental data. The information about the weak-interaction observables, like the neutrino mass, has to be filtered from the data through the nuclear matrix elements (NMEs). Hence, exact knowledge about the NMEs is of paramount importance in the analysis of the data provided by the expensive and time-consuming underground experiments.

  2. Results on neutrinoless double beta decay of 76Ge from the GERDA experiment

    Science.gov (United States)

    Palioselitis, Dimitrios

    2015-05-01

    The Germanium Detector Array (GERDA) experiment is searching for neutrinoless double beta (0νββ) decay of 76Ge, a lepton number violating nuclear process predicted by extensions of the Standard Model. GERDA is an array of bare germanium diodes immersed in liquid argon located at the Gran Sasso National Laboratory (LNGS) in Italy. The results of the GERDA Phase I data taking with a total exposure of 21.6 kg yr and a background index of 0.01 cts/(keV kg yr) are presented in this paper. No signal was observed and a lower limit of T1/20ν > 2.1×1025 yr (90% C.L.) was derived for the half-life of the 0νββ decay of 76Ge. Phase II of the experiment aims to reduce the background around the region of interest by a factor of ten.

  3. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    CERN Document Server

    Artusa, D R; Azzolini, O; Balata, M; Banks, T I; Bari, G; Beeman, J; Bellini, F; Bersani, A; Biassoni, M; Brofferio, C; Bucci, C; Cai, X Z; Camacho, A; Canonica, L; Cao, X G; Capelli, S; Carbone, L; Cardani, L; Carrettoni, M; Casali, N; Chiesa, D; Chott, N; Clemenza, M; Cosmelli, C; Cremonesi, O; Creswick, R J; Dafinei, I; Dally, A; Datskov, V; De Biasi, A; Deninno, M M; Di Domizio, S; di Vacri, M L; Ejzak, L; Fang, D Q; Farach, H A; Faverzani, M; Fernandes, G; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, M A; Freedman, S J; Fujikawa, B K; Giachero, A; Gironi, L; Giuliani, A; Goett, J; Gorla, P; Gotti, C; Gutierrez, T D; Haller, E E; Han, K; Heeger, K M; Hennings-Yeomans, R; Huang, H Z; Kadel, R; Kazkaz, K; Keppel, G; Kolomensky, Yu G; Li, Y L; Ligi, C; Liu, X; Ma, Y G; Maiano, C; Maino, M; Martinez, M; Maruyama, R H; Mei, Y; Moggi, N; Morganti, S; Napolitano, T; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; O'Donnell, T; Orio, F; Orlandi, D; Ouellet, J L; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pettinacci, V; Piperno, G; Pira, C; Pirro, S; Previtali, E; Rampazzo, V; Rosenfeld, C; Rusconi, C; Sala, E; Sangiorgio, S; Scielzo, N D; Sisti, M; Smith, A R; Taffarello, L; Tenconi, M; Terranova, F; Tian, W D; Tomei, C; Trentalange, S; Ventura, G; Vignati, M; Wang, B S; Wang, H W; Wielgus, L; Wilson, J; Winslow, L A; Wise, T; Woodcraft, A; Zanotti, L; Zarra, C; Zhu, B X; Zucchelli, S

    2014-01-01

    Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0nubb decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0nubb experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R&D program addressing them.

  4. Estimations of beta-decay energies through the nuclidic chart by using neural network

    International Nuclear Information System (INIS)

    One of the main characteristics of unstable nuclei is beta-decay energy (Qβ). It is determined by different methods such as beta endpoint measurements, counting in coincidence with annihilation radiation, electron capture (EC)/β+ ratio method, method of gamma absorption with X-ray coincidence. Beta-decay energy is a roughly linear function of atomic and mass numbers. Due to the fact that artificial neural network (ANN) is sufficient for nonlinear function approximation, in this study by using the nuclear masses from Hartree–Fock–BCS method, Qβ values have been obtained by ANN. It is seen that the estimations of the ANN are consistent with the calculated data within some deviation. - Highlights: • Beta decay energy is characteristic of unstable nuclei. • Atomic masses of nuclei can be calculated by using beta decay energy. • Artificial neural network is capable for the estimation of beta decay energy

  5. The search for 0νββ decay with the GERDA experiment: Status and prospects

    Science.gov (United States)

    Majorovits, B.

    2015-08-01

    The GERDA experiment is designed to search for neutrinoless double beta decay of 76Ge using HPGe detectors directly immersed into liquid argon. In its first phase the GERDA experiment has yielded a half life limit on this decay of T1/2 0 v>2.1 ṡ1025 . A background model has been developed. It explains the measured spectrum well, taking into account only components with distances to the detectors less then 2 cm. Competitive limits on Majoron accompanied double beta decay have been derived. Phase II of the experiment, now with additional liquid argon veto installed, is presently starting its commissioning phase. First commissioning spectra from calibration measurements are shown, proving that the liquid argon veto leads to a significant reduction of background events.

  6. The search for 0nbb decay with the GERDA experiment: status and prospects

    CERN Document Server

    Majorovits, B

    2015-01-01

    The GERDA experiment is designed to search for neutrinoless double beta decay of 76Ge using HPGe detectors directly immersed into liquid argon. In its first phase the GERDA experiment has yielded a half life limit on this decay of T_1/2 > 2.1*10^25 yr. A background model has been developed. It explains the measured spectrum well, taking into account only components with distances to the detectors less then 2 cm. Competitive limits on Majoron accompanied double beta decay have been derived. Phase II of the experiment, now with additional liquid argon veto installed, is presently starting its commissioning phase. First commissioning spectra from calibration measurements are shown, proving that the liquid argon veto leads to a significant reduction of background events.

  7. Search for the Decay B^0 -> a^\\pm_1 \\rho^\\mp

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2006-05-10

    The authors present a search for the rare B-meson decay B{sup 0} {yields} {alpha}{sub 1}{sup {+-}}{rho}{sup {-+}} with {alpha}{sub 1}{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup {+-}}. We use (110 {+-} 1.2) x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEp-II asymmetric-energy B Factory at SLAC. They obtain an upper limit of 30 x 10{sup -6} (90% C.L.) for the branching fraction product {Beta}(B{sup 0} {yields} {alpha}{sub 1}{sup {+-}}{rho}{sup {-+}}) {Beta}({alpha}{sub 1}{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup {+-}}), where they assume that the {alpha}{sub 1}{sup {+-}} decays exclusively to {rho}{sup 0}{pi}{sup {+-}}.

  8. Search for the decay of nature's rarest isotope $^{\\rm {180m}}$Ta

    CERN Document Server

    Lehnert, Björn; Lutter, Guillaume; Zuber, Kai

    2016-01-01

    $^{\\rm {180m}}$Ta is the rarest naturally occurring quasi-stable isotope and the longest lived metastable state which is known. Its possible decay via the $\\beta^-$ or the electron capture channel has never been observed. This article presents a search for the decay of $^{\\rm {180m}}$Ta with an ultra low background Sandwich HPGe gamma spectrometry setup in the HADES underground laboratory. No signal is observed and improved lower partial half-life limits are set with a Bayesian analysis to $5.8\\cdot10^{16}$ yr for the $\\beta^-$ channel and $2.0\\cdot10^{17}$ yr for the electron capture channel (90% credibility). The total half-life of $^{\\rm {180m}}$Ta is longer than $4.5\\cdot10^{16}$ yr. This is more than a factor of two improvement compared to previous searches.

  9. Beta-decay of the N=Z nucleus 72Kr

    International Nuclear Information System (INIS)

    The beta-decay of the N = Z, even-even nucleus 72Kr has been studied at the ISOLDE PSB facility at CERN. Measurements of βγ and βγγ coincidences have enriched the decay scheme of the daughter nucleus 72Br with 27 new low spin levels. A more precise half-life of T1/2 = 17.1(2) s has been determined. Strong feeding to the 72Br ground state is established yielding an unambiguous Jπ = 1+ assignment for this state. Candidates for the 72Br g.s. wave function are discussed in the framework of a self-consistent deformed mean-field calculation with SG2 Skyrme force and pairing correlations. A search for beta-delayed particle emission was made and an upper limit of 10-6 for this decay branch obtained. The cumulated experimental level density of 1+ states has been fitted with the constant temperature formula. The comparison indicates that most likely all 1+ levels up to 1.2 MeV have been observed in this investigation. The corresponding nearest-neighbour level spacing does not follow a Poisson distribution. The Gamow-Teller strength distribution is compared, in terms of nuclear deformation, with different calculations made in the framework of the quasiparticle random phase approximation. (orig.)

  10. Measurement of double beta decay - experiments TGV and NEMO

    International Nuclear Information System (INIS)

    The group of experimentalists of FNSPE CTU Prague takes part in two experiments connected with double beta (ββ) decay - TGV and NEMO. Both experimental set-ups are placed in the Modane underground laboratory (France). Experiment TGV has two phases. TGV I is a measurement of ββ decay of 48Ca (β-β-) and TGV II is a measurement with 106Cd (EC/EC, β+β+, β+/EC). The design and performances of the TGV I apparatus have been already detailed elsewhere. Measurements of the ββ decay of 48Ca have been started in August of 1996. The processing of the experimental data (still in progress), covering almost one year exposition (8700 hours), led to the following value of the half-life of 2νββ of 48Ca, T1/2 (4.2-1.3+3.3) . 1019 years and to an estimate of a limit on the half-life of 0νββ of 48Ca, T1/2 > 1.5 . 1021 years (90% CL). The aim of the project TGV II is the measurement of ββ decay of 106Cd particularly 2νEC/EC mode. This decay, up to now not measured, is characterized by the emission of two X-rays with energy approx. 23 keV. Project should give also information on the other modes - β+β+, β+/EC and EC/EC accompanied by the emission of a Majoron. TGV II is based on new spectrometer consisting of 32 HPGe detectors similar to the TGV I spectrometer. The background measurement is now in progress. The start of measurement with 106Cd is planned from the end of 2000. FNSPE CTU also participates in NEMO collaboration. The goal of the experiment NEMO-3 is to be sensitive to a 0.1 eV Majorana neutrino mass by looking for the 0νββ process of 100Mo. Two prototypes NEMO-1 and NEMO-2 have been built. The NEMO-2 gave (after 6 years of data taking) physical results for 2νββdecay of 100Mo, 116Cd, 82Se and 96Zr. The installation of NEMO-3 detector started in the Modane underground laboratory and should be ready in summer 2000. (author)

  11. Progress report on the Los Alamos tritium beta decay experiment

    International Nuclear Information System (INIS)

    Measurements near the endpoint of the tritium beta-decay spectrum using a gaseous molecular tritium source yield an essentially model-independent upper limit of 27 eV on the /ovr ν//sub e/ mass at the 95% confidence level. Since demonstrating from this initial measurement the successful operation of a gaseous source based system, most of our effort has been concentrated towards the upgrade and optimization of the experimental apparatus. The emphasis of this work has been to eliminate or further reduce effects that generate systematic errors. Based on realistic projections from our initial measurement, an ultimate sensitivity to neutrino mass of 10 eV is expected. 12 refs., 1 fig

  12. An electroweak basis for neutrinoless double $\\beta$ decay

    CERN Document Server

    Graesser, Michael L

    2016-01-01

    A discovery of neutrinoless double-$\\beta$ decay would be profound, providing the first direct experimental evidence of lepton number violating processes. While a natural explanation is provided by an effective Majorana neutrino mass, other new physics interpretations should be carefully evaluated. At low--energies such new physics could manifest itself in the form of color and $SU(2)_L \\times U(1)_{Y}$ invariant higher dimension operators. Here we determine a complete set of electroweak invariant dimension--9 operators, and our analysis supersedes those that only impose $U(1)_{em}$ invariance. Imposing electroweak invariance implies: 1) a significantly reduced set of leading order operators compared to only imposing $U(1)_{em}$ invariance; and 2) other collider signatures. Prior to imposing electroweak invariance we find 32 dimension-9 operators, which is reduced to 15 electroweak invariant operators at leading order in the expansion in the Higgs vacuum expectation value. We set up a systematic analysis of t...

  13. Neutrinoless double-beta decay in covariant density functional theory

    Science.gov (United States)

    Ring, P.; Yao, J. M.; Song, L. S.; Hagino, K.; Meng, J.

    2015-10-01

    We use covariant density functional theory beyond mean field in order to describe neutrinoless double-beta decay in a fully relativistic way. The dynamic effects of particle-number and angular-momentum conservations as well as shape fluctuations of quadrupole character are taken into account within the generator coordinate method for both initial and final nuclei. The calculations are based on the full relativistic transition operator. The nuclear matrix elements (NME's) for a large number of possible transitions are investigated. The results are compared with various non-relativistic calculations, in particular also with the density functional theory based on the Gogny force. We find that the non-relativistic approximation is justified and that the total NME's can be well approximated by the pure axial-vector coupling term. This corresponds to a considerable reduction of the computational effort.

  14. Neutrinoless double-beta decay in covariant density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ring, P., E-mail: ring@ph.tum.de [Physik-Department der Technischen Universität München, D-85748 Garching (Germany); State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking Univ., Beijing 100871 (China); Yao, J. M. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Song, L. S. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking Univ., Beijing 100871 (China); Hagino, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Meng, J. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking Univ., Beijing 100871 (China); School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Department of Physics, University of Stellenbosch, Stellenbosch 7602 (South Africa)

    2015-10-15

    We use covariant density functional theory beyond mean field in order to describe neutrinoless double-beta decay in a fully relativistic way. The dynamic effects of particle-number and angular-momentum conservations as well as shape fluctuations of quadrupole character are taken into account within the generator coordinate method for both initial and final nuclei. The calculations are based on the full relativistic transition operator. The nuclear matrix elements (NME’s) for a large number of possible transitions are investigated. The results are compared with various non-relativistic calculations, in particular also with the density functional theory based on the Gogny force. We find that the non-relativistic approximation is justified and that the total NME’s can be well approximated by the pure axial-vector coupling term. This corresponds to a considerable reduction of the computational effort.

  15. Neutrinoless double-beta decay in covariant density functional theory

    International Nuclear Information System (INIS)

    We use covariant density functional theory beyond mean field in order to describe neutrinoless double-beta decay in a fully relativistic way. The dynamic effects of particle-number and angular-momentum conservations as well as shape fluctuations of quadrupole character are taken into account within the generator coordinate method for both initial and final nuclei. The calculations are based on the full relativistic transition operator. The nuclear matrix elements (NME’s) for a large number of possible transitions are investigated. The results are compared with various non-relativistic calculations, in particular also with the density functional theory based on the Gogny force. We find that the non-relativistic approximation is justified and that the total NME’s can be well approximated by the pure axial-vector coupling term. This corresponds to a considerable reduction of the computational effort

  16. Transition-edge microcalorimeter for tritium beta decay

    International Nuclear Information System (INIS)

    We are conducting a new tritium beta-decay experiment using a cryogenic microcalorimeter. The microcalorimeter consists of a copper foil with an implanted tritium source. The foil is soldered to a thin film gold pad on a silicon wafer that is in thermal contact with an aluminum/silver bilayer transition-edge sensor. The device is voltage biased with current pulses read out using a SQUID magnetometer. The device has been tested with external sources as well as an implanted tritium source. The device is currently too slow to set a meaningful limit on the square of the neutrino mass, but can be made fast enough to set a limit on the order of 10 eV

  17. Beta-Decay Correlations in the LHC Era

    CERN Document Server

    Bodek, Kazimierz

    2016-01-01

    Neutron and nuclear beta decay correlation coefficients are linearly sensitive to the exotic scalar and tensor interactions that are not included in the Standard Model. The proposed experiment will measure simultaneously 11 neutron correlation coefficients ($a$, $A$, $B$, $D$, $H$, $L$, $N$, $R$, $S$, $U$, $V$) where 5 of them ($H$, $L$, $S$, $U$, $V$) were never addressed before. Silicon pixel detectors are considered as promising alternative to multi-wire gas chambers devoted for electron tracking in the original setup. The expected sensitivity limits for $\\epsilon_S$ and $\\epsilon_T$ -- EFT parameters describing the scalar and tensor contributions to be extracted from the transverse electron polarization related coefficients $H$, $L$, $N$, $R$, $S$, $U$, $V$ are discussed.

  18. Search for monoenergetic γ rays from psi (3684) decay

    International Nuclear Information System (INIS)

    Results are reported of a search for monoenergetic γ rays with energies above 50 MeV from psi (3684) decay using large NaI(Tl) spectrometers. No clear evidence for emission of such radiation was found

  19. Search for B Meson Decays to eta' eta' K

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2006-05-05

    The authors describe searches for decays of B mesons to the charmless final states {eta}'{eta}'K. The data consist of 228 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation, collected with the BABAR detector at the Stanford Linear Accelerator Center. The 90% confidence level upper limits for the branching fractions are {Beta}(B{sup 0} {yields} {eta}'{eta}'K{sup 0}) < 31 x 10{sup -6} and {Beta}(B{sup +} {yields} {eta}'{eta}'K{sup +}) < 25 x 10{sup -6}.

  20. Searches for exotic and rare Higgs decays in CMS

    International Nuclear Information System (INIS)

    The results on searches for Higgs-like particles beyond the Standard Model and rare Standard Model Higgs decays are presented. Searches are performed using the data collected by CMS experiment in proton-proton collision at LHC. Most recent results concerning light Higgses as predicted in the MSSM, NMSSM and fermio-phobic models are discussed. Decays of the 125 GeV Higgs-like particle to Zγ channel is also presented. (authors)

  1. Particle Physics Meets Cosmology -- The Search for Decaying Neutrinos.

    Science.gov (United States)

    Henry, Richard C.

    1982-01-01

    Detection of neutrino decay may have profound consequences for both particle physics and cosmology, providing a deep connection between physics of the very large and physics of the very small. Describes this link and discusses the nature and status of the search for decaying neutrinos. (Author/JN)

  2. Searches for CP violation in multibody D decays

    CERN Document Server

    Fu, J

    2014-01-01

    Multibody charm decays are a good place to search for $CP$ violation. The results of the LHCb collaboration in the decays of $D^+ \\to \\pi^- \\pi^+ \\pi^+$, $D^0 \\to \\pi^+ \\pi^- \\pi^+ \\pi^-$ and $D^0 \\to K^+ K^- \\pi^+ \\pi^-$ are presented.

  3. Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method

    Energy Technology Data Exchange (ETDEWEB)

    Doe, Peter J.; Kofron, Jared N.; MCBride, Lisa; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Doelman, S.; Rogers, Alan E.; Formaggio, Joseph; Furse, Daniel; Oblath, Noah S.; LaRoque, Benjamin; Leber, Michelle; Monreal, Ben; Bahr, Matthew; Asner, David M.; Jones, Anthony M.; Fernandes, Justin L.; VanDevender, Brent A.; Patterson, Ryan B.; Bradley, Rich; Thummler, Thomas

    2013-10-04

    A general description is given of Project 8, a new approach to measuring the neutrino mass scale via the beta decay of tritium. In Project 8, the energy of electrons emitted in beta decay is determined from the frequency of cyclotron radiation emitted as the electrons spiral in a uniform magnetic field

  4. Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method

    CERN Document Server

    Doe, P J; McBride, E L; Robertson, R G H; Rosenberg, L J; Rybka, G; Doelman, S; Rogers, A; Formaggio, J A; Furse, D; Oblath, N S; LaRoque, B H; Leber, M; Monreal, B; Bahr, M; Asner, D M; Jones, A M; Fernandes, J; VanDevender, B A; Patterson, R; Bradley, R; Thuemmler, T

    2013-01-01

    A general description is given of Project 8, a new approach to measuring the neutrino mass scale via the beta decay of tritium. In Project 8, the energy of electrons emitted in beta decay is determined from the frequency of cyclotron radiation emitted as the electrons spiral in a uniform magnetic field.

  5. $\\beta$3p- spectroscopy and P-$\\gamma$ width determination in the decay of $^{31}$Ar

    CERN Multimedia

    We propose to perform a detailed study of the $\\beta$-decay of the dripline nucleus $^{31}$Ar. This will allow a detailed study of the $\\beta$-delayed 3p-decay as well as provide important information on the resonances of $^{30}$S and $^{29}$P, in particular the ratio between the P- and $\\gamma$- partial widths relevant for astrophysics.

  6. The GT resonance revealed in beta sup + -decay using new experimental techniques

    CERN Document Server

    Algora, A; Rubio, B; Taín, J L; Agramunt, J; Blomqvist, J M; Batist, L; Borcea, R; Collatz, R; Gadea, A; Gerl, J; Gierlik, M; aGórska, M; Guilbaud, O; Grawe, H; Hellström, M; Hu, Z; Janas, Z; Karny, M; Kirchner, R; Kleinheinz, P; Liu, W; Martínez, T; Moroz, F; Plochocki, A; Rejmund, M; Roeckl, E; Rykaczewski, K; Shibata, M; Szerypo, J; Wittmann, V

    1999-01-01

    The GT beta decay of sup 1 sup 5 sup 0 Ho has been studied with a Total Absorption Spectrometer (TAS), with an array of 6 Euroball CLUSTER Ge detectors (the CLUSTER CUBE), and with an alpha detector. The three techniques complement each other. The results provide the first observation of an extremely sharp resonance in GT beta decay.

  7. $\\beta$-asymmetry measurements in nuclear $\\beta$-decay as a probe for non-standard model physics

    CERN Multimedia

    Roccia, S

    2002-01-01

    We propose to perform a series of measurements of the $\\beta$-asymmetry parameter in the decay of selected nuclei, in order to investigate the presence of possible time reversal invariant tensor contributions to the weak interaction. The measurements have the potential to improve by a factor of about four on the present limits for such non-standard model contributions in nuclear $\\beta$-decay.

  8. Novel nuclear structure aspects of the O{nu}{beta}{beta}-decay

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, J; Poves, A [Departamento de Fisica Teorica, and IFT, UAM-CSIC, Universidad Autonoma de Madrid, 28049-Madrid (Spain); Caurier, E; Nowacki, F, E-mail: alfredo.poves@uam.es [IPHC, IN2P3-CNRS/Universite Louis Pasteur, 67037-Strasbourg (France)

    2011-01-01

    We explore the influence of the deformation on the nuclear matrix elements of the neutrinoless double beta decay (NME), concluding that the difference in deformation -or more generally in the amount of quadrupole correlations- between parent and grand daughter nuclei quenches strongly the decay. We correlate these differences with the seniority structure of the nuclear wave functions. In this context, we examine the present discrepancies between the NME's obtained in the framework of the Interacting Shell Model and the Quasiparticle RPA. In our view, part of the discrepancy can be due to the limitations of the spherical QRPA in treating nuclei which have strong quadrupole correlations. We surmise that the NME's in a basis of generalized seniority are approximately model independent, i. e. they are 'universal'.

  9. Energy density functional study of nuclear matrix elements for neutrinoless $\\beta\\beta$ decay

    CERN Document Server

    Rodríguez, Tomás R

    2010-01-01

    We present an extensive study of nuclear matrix elements (NME) for the neutrinoless double beta decay of the nuclei $^{48}$Ca, $^{76}$Ge, $^{82}$Se, $^{96}$Zr, $^{100}$Mo, $^{124}$Sn, $^{128}$Te, $^{130}$Te, $^{136}$Xe, and $^{150}$Nd based on state-of-the-art energy density functional methods using the Gogny D1S functional. Beyond mean-field effects are included within the generating coordinate method with particle number and angular momentum projection for both initial and final ground states. We obtain a rather constant value for the NME's around 4.7 with the exception of $^{48}$Ca and $^{150}$Nd, where smaller values are found. We analyze the role of deformation and pairing in the evaluation of the NME and present detailed results for the decay of $^{150}$Nd.

  10. Search for CP violation in hyperon decays.

    Energy Technology Data Exchange (ETDEWEB)

    Zyla, Piotr; Chan, A.; Chen, Y.C.; Ho, C.; Teng, P.K.; Choong, W.S.; Gidal, G.; Fu, Y.; Gu, P.; Jones, T.D.; Luk, K.B.; Turko, B.; James, C.; Volk, J.; Felix, J.; Burnstein, R.A.; Chakrovorty, A.; Kaplan, D.M.; Lederman, L.M.; Luebke, W.; Rajaram, D.; Rubin, H.A.; Solomey, N.; Torun, Y.; White, C.G.; White, S.L.; Leros, N.; Perroud, J.P.; Gustafson, H.R.; Longo, M.J.; Lopez, F.; Park H.K.; Clark, K.; Jenkins, M.; Dukes, E.C.; Durandet, C.; Holmstrom, T.; Huang, M.; Lu, L.; Nelson, K.S.

    2002-10-25

    Direct CP violation in nonleptonic hyperon decays can be established by comparing the decays of hyperons and anti-hyperons. For {Xi} decay to {Lambda} {pi} followed by {Lambda} to p{pi}, the proton distribution in the rest frame of Lambda is governed by the product of the decay parameters {alpha}{sub {Xi}} {alpha}{sub {Lambda}}. The asymmetry A{sub {Xi}{Lambda}}, proportional to the difference of {alpha}{sub {Xi}}{alpha}{sub {Lambda}} of the hyperon and anti-hyperon decays, vanishes if CP is conserved. We report on an analysis of a fraction of 1997 and 1999 data collected by the Hyper CP (E871) collaboration during the fixed-target runs at Fermilab. The preliminary measurement of the asymmetry is {Alpha}{sub {Xi}{Lambda}} = [-7 {+-} 12(stat) {+-} 6.2(sys)] x 10{sup -4}, an order of magnitude better than the present limit.

  11. Purifications of calcium carbonate and molybdenum oxide powders for neutrinoless double beta decay experiment, AMoRE

    International Nuclear Information System (INIS)

    The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of 100Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders

  12. First results on double beta decay modes of Cd, Te and Zn isotopes with the COBRA experiment

    CERN Document Server

    Bloxham, T; Dawson, J; Dobos, D; Fox, S P; Freer, M; Fulton, B R; Gößling, C; Harrison, P F; Junker, M; Kiel, H; McGrath, J; Morgan, B; Münstermann, D; Nolan, P; Oehl, S; Ramachers, Y; Reeve, C; Stewart, D; Wadsworth, R; Wilson, J R; Zuber, K

    2007-01-01

    Four 1cm^3 CdZnTe semiconductor detectors were operated in the Gran Sasso National Laboratory to explore the feasibility of such devices for double beta decay searches as proposed for the COBRA experiment. The research involved background studies accompanied by measurements of energy resolution performed at the surface. Energy resolutions sufficient to reduce the contribution of two-neutrino double beta decay events to a negligible level for a large scale experiment have already been achieved and further improvements are expected. Using activity measurements of contaminants in all construction materials a background model was developed with the help of Monte Carlo simulations and major background sources were identified. A total exposure of 4.34 kg.days of underground data has been accumulated allowing a search for neutrinoless double beta decay modes of seven isotopes found in CdZnTe. Half-life limits (90% C.L.) are presented for decays to ground and excited states. Four improved lower limits have been obtai...

  13. Searching for supersymmetry in Z' decays

    International Nuclear Information System (INIS)

    I investigate production and decay of heavy neutral gauge bosons Z' in GUT-inspired U(1)' groups and in the Sequential Standard Model. In particular, decays into supersymmetric particles, such as slepton, chargino and neutralino pairs, as predicted in the MSSM, are accounted for, with a special interest in final states with leptons and missing energy. For a representative point of the parameter space, it is found that the inclusion of supersymmetric decay modes has an impact of 200-300 GeV on the Z' mass exclusion limits. (authors)

  14. Search for dinucleon decay into pions at Super-Kamiokande

    OpenAIRE

    Gustafson, J; Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.(University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan); Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.

    2015-01-01

    A search for dinucleon decay into pions with the Super-Kamiokande detector has been performed with an exposure of 282.1 kiloton-years. Dinucleon decay is a process that violates baryon number by two units. We present the first search for dinucleon decay to pions in a large water Cherenkov detector. The modes $^{16}$O$(pp) \\rightarrow$ $^{14}$C$\\pi^{+}\\pi^{+}$, $^{16}$O$(pn) \\rightarrow$ $^{14}$N$\\pi^{+}\\pi^{0}$, and $^{16}$O$(nn) \\rightarrow$ $^{14}$O$\\pi^{0}\\pi^{0}$ are investigated. No sign...

  15. 'aspect' - a new spectrometer for the measurement of the angular correlation coefficient a in neutron beta decay

    CERN Document Server

    Zimmer, O; Grinten, M G D; Heil, W; Glück, F

    2000-01-01

    The combination of the coefficient a of the antineutrino/electron angular correlation with the beta asymmetry of the neutron provides a sensitive test for scalar and tensor contributions to the electroweak Lagrangian, as well as for right-handed currents. A method is given for measuring a with high sensitivity from the proton recoil spectrum. The method is based on a magnetic spectrometer with electrostatic retardation potentials such as used for searches of the neutrino mass in tritium beta decay. The spectrometer can also be used for similar studies using radioactive nuclei.

  16. Large-scale calculations of the beta-decay rates and r-process nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Borzov, I.N.; Goriely, S. [Inst. d`Astronomie et d`Astrophysique, Univ. Libre de Bruxelles, Campus Plaine, Bruxelles (Belgium); Pearson, J.M. [Inst. d`Astronomie et d`Astrophysique, Univ. Libre de Bruxelles, Campus Plaine, Bruxelles (Belgium)]|[Lab. de Physique Nucleaire, Univ. de Montreal, Montreal (Canada)

    1998-06-01

    An approximation to a self-consistent model of the ground state and {beta}-decay properties of neutron-rich nuclei is outlined. The structure of the {beta}-strength functions in stable and short-lived nuclei is discussed. The results of large-scale calculations of the {beta}-decay rates for spherical and slightly deformed nuclides of relevance to the r-process are analysed and compared with the results of existing global calculations and recent experimental data. (orig.)

  17. Analysis method for the search for neutrinoless double beta decay in the NEMO3 experiment: study of the background and first results; Methode d'analyse pour la recherche de la double desintegration {beta} sans emission de neutrinos dans l'experience NEMO3. Etude du bruit de fond et premiers resultats

    Energy Technology Data Exchange (ETDEWEB)

    Etienvre, A.I

    2003-04-15

    The NEMO3 detector, installed in the Frejus Underground Laboratory, is dedicated to the study of neutrinoless double beta decay: the observation of this process would sign the massive and Majorana nature of neutrino. The experiment consists in very thin central source foils (the total mass is equal to 10 kg), a tracking detector made of drift cells operating in Geiger mode, a calorimeter made of plastic scintillators associated to photomultipliers, a coil producing a 30 gauss magnetic field and two shields, dedicated to the reduction of the {gamma}-ray and neutron fluxes. In the first part, I describe the implications of several mechanisms, related to trilinear R-parity violation, on double beta decay. The second part is dedicated to a detailed study of the tracking detector of the experiment: after a description of the different working tests, I present the determination of the characteristics of the tracking reconstruction (transverse and longitudinal resolution, by Geiger cell and precision on vertex determination, charge recognition). The last part corresponds to the analysis of the data taken by the experiment. On the one hand, an upper limit on the Tl{sup 208} activity of the sources has been determined: it is lower than 68 mBq/kg, at 90% of confidence level. On the other hand, I have developed and tested on these data a method in order to analyse the neutrinoless double beta decay signal; this method is based on a maximum of likelihood using all the available information. Using this method, I could determine a first and very preliminary upper limit on the effective mass of the neutrino. (author)

  18. Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO

    CERN Document Server

    Arnold, R; Baker, J; Barabash, A S; Basharina-Freshville, A; Bongrand, M; Brudanin, V; Caffrey, A J; Cebrián, S; Chapon, A; Chauveau, E; Dafni, Th; Deppisch, F F; Diaz, J; Durand, D; Egorov, V; Evans, J J; Flack, R; Fushima, K-I; Irastorza, I García; Garrido, X; Gómez, H; Guillon, B; Holin, A; Holy, K; Horkey, J J; Hubert, Ph; Hugon, C; Iguaz, F J; Ishihara, N; Jackson, C M; Jullian, S; Kauer, M; Kochetov, O; Konovalov, S I; Kovalenko, V; Lamhamdi, T; Lang, K; Lutter, G; Luzón, G; Mamedov, F; Marquet, Ch; Mauger, F; Monrabal, F; Nachab, A; Nasteva, I; Nemchenok, I; Nguyen, C H; Nomachi, M; Nova, F; Ohsumi, H; Pahlka, R B; Perrot, F; Piquemal, F; Povinec, P P; Richards, B; Ricol, J S; Riddle, C L; Rodríguez, A; Saakyan, R; Sarazin, X; Sedgbeer, J K; Serra, L; Shitov, Yu; Simard, L; Šimkovic, F; Söldner-Rembold, S; Štekl, I; Sutton, C S; Tamagawa, Y; Thomas, J; Timkin, V; Tretyak, V; Tretyak, Vl I; Umatov, V I; Vanyushin, I A; Vasiliev, R; Vasiliev, V; Vorobel, V; Waters, D; Yahlali, N; Žukauskas, A

    2010-01-01

    The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double beta decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double beta decay by measuring the decay half-life and the electron angular and energy distributions.

  19. Stellar $\\beta^{\\pm}$ decay rates of iron isotopes and its implications in astrophysics

    OpenAIRE

    Nabi, Jameel-Un

    2014-01-01

    $\\beta$-decay and positron decay are believed to play a consequential role during the late phases of stellar evolution of a massive star culminating in a supernova explosion. Recently the microscopic calculation of weak-interaction mediated rates on key isotopes of iron was introduced using the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory with improved model parameters. Here I discuss in detail the improved calculation of $\\beta^{\\pm}$ decay rates for iron isotopes...

  20. Search for the Decay $K^{+} \\to \\pi^{+} \\pi^{0} \

    CERN Document Server

    Adler, Stephen Louis; Ardebili, M; Atiya, M S; Bergbusch, P; Blackmore, E W; Bryman, D A; Chiang, I H; Convery, M R; Diwan, M V; Frank, J S; Haggerty, J S; Inagaki, T; Ito, M M; Kabe, S; Kettell, S H; Kishi, Y; Kitching, P; Kobayashi, M; Komatsubara, T K; Konaka, A; Kuno, Y; Kuriki, M; Kycia, T F; Li Kai Kong; Littenberg, L S; MacDonald, J A; McPherson, R A; Meyers, P D; Mildenberger, J L; Muramatsu, N; Nakano, T; Ng, C; Numao, T; Poutissou, J M; Poutissou, R; Redlinger, G; Sato, T; Shinkawa, T; Shoemaker, F C; Soluk, R A; Stone, J R; Strand, R C; Sugimoto, S; Witzig, C; Yoshimura, Y

    2001-01-01

    The first search for the decay K^+ -> pi^+ pi^0 nu nubar has been performed with the E787 detector at BNL. Based on zero events observed in the kinematical search region defined by 90 MeV/c pi^+ pi^0 nu nubar) < 4.3 x 10^{-5} at 90% confidence level is established.

  1. Search for the Decay K+ -> pi+ pi0 nu nubar

    OpenAIRE

    E; :; Adler, S.; Aoki, M; Ardebili, M.; Atiya, M. S.; Bergbusch, P. C.; Blackmore, E. W.; Bryman, D. A.; Chiang, I-H.; Convery, M. R.; Diwan, M. V.; Frank, J. S.; Haggerty, J. S.; Inagaki, T.

    2000-01-01

    The first search for the decay K^+ -> pi^+ pi^0 nu nubar has been performed with the E787 detector at BNL. Based on zero events observed in the kinematical search region defined by 90 MeV/c pi^+ pi^0 nu nubar) < 4.3 x 10^{-5} at 90% confidence level is established.

  2. High efficiency beta-decay spectroscopy using a planar germanium double-sided strip detector

    International Nuclear Information System (INIS)

    Beta-decay spectroscopy experiments are limited by the detection efficiency of ions and electrons in the experimental setup. While there is a variety of different experimental setups in use for beta-decay spectroscopy, one popular choice is silicon double-sided strip detectors (DSSD). The higher Z of Ge and greater availability of thicker detectors as compared to Si potentially offer dramatic increases in the detection efficiency for beta-decay electrons. In this work, a planar GeDSSD has been commissioned for use in beta-decay spectroscopy experiments at the National Superconducting Cyclotron Laboratory (NSCL). The implantation response of the detector and its beta-decay detection efficiency is discussed. -- Highlights: • A planar Ge double-sided strip detector is implemented for decay spectroscopy. • Dual range preamplifiers provide sensitivity to both heavy ions and beta-decay electrons. • Beta-decay electron detection efficiencies greater than 50% are demonstrated. • Based on comparisons with simulation, an efficiency of roughly 90% is expected

  3. Search for New Physics in rare decays at LHCb

    International Nuclear Information System (INIS)

    Rare heavy flavor decays provide stringent tests of the Standard Model of particle physics and allow to test for possible new Physics scenarios. The LHCb experiment at CERN is the ideal place for these searches as it has recorded the worlds largest sample of beauty mesons. The status of the rare decay analyses with 1 fb−1 of √(s)=7 TeV of pp-collisions collected by the LHCb experiment in 2011 is reviewed. The worlds most precise measurements of the angular structure of B0→K⁎0μ+μ− decays is discussed, as well as the isospin asymmetry measurement in B→K(⁎)μ+μ− decays. The most stringent upper exclusion limit on the branching fraction of Bs0→μ+μ− decays is shown, as well as searches for lepton number and lepton flavor violating processes

  4. Searches for CP violation in charm decays at BABAR

    CERN Document Server

    Neri, Nicola

    2013-01-01

    In the Standard Model \\CP violation in charm decays is expected to be very small, at the level of 0.1% or less. A significant excess of \\CP violation with respect to the Standard Model predictions would be a signature of new physics. We report on recent searches for \\CP violation in charm meson decays at \\babar, using a data sample corresponding to an integrated luminosity of about 470 \\invfb. In particular, we report on searches for \\CPV in the 3-body $\\Dp\\to\\Kp\\Km\\pip$ decay and for decay modes with a \\KS in the final state, such as $\\Dp\\to\\KS\\Kp$, $\\Ds\\to\\KS\\Kp$, $\\Ds\\to\\KS\\pip$. A lifetime ratio analysis of $\\Dz\\to\\Kp\\Km, \\pip\\pim$ with respect to $\\Dz\\to\\Km\\pip$ decays, which is sensitive to \\Dz-\\Dzb mixing and \\CP violation, is also presented here.

  5. Searches for long-lived particle decays in ATLAS

    CERN Document Server

    Salvatore, Daniela

    2015-01-01

    Searches for the decay of neutral, weakly interacting, long-lived particles (LLPs) using 20.3~$fb^{-1}$ of 2012 data collected at 8 TeV by the ATLAS detector at the LHC are presented. The first analysis is sensitive to LLPs that decay to Standard Model (SM) particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter (ECal) or inside the hadronic calorimeter (HCal). The second search employs techniques for reconstructing decay vertices of LLPs decaying to jets in the inner detector (ID) and muon spectrometer (MS). No significant excess of events over the expected background are found, and limits as a function of proper lifetime are reported for the decay of the Higgs boson and other scalar bosons to LLPs and for Z' and Stealth SUSY benchmark models.

  6. First Search for CP Violation in Tau Lepton Decay

    International Nuclear Information System (INIS)

    We have performed the first search for CP violation in tau lepton decay. CP violation in lepton decay does not occur in the minimal standard model but can occur in extensions such as the multi-Higgs doublet model. It appears as a characteristic difference between the τ- and τ+ decay angular distributions for the semileptonic decay modes such as τ-→K0π-ν . We define an observable asymmetry to exploit this and find no evidence for any CP violation. copyright 1998 The American Physical Society

  7. Search for the charged Higgs boson in Z0 decay

    International Nuclear Information System (INIS)

    We have searched for the pair produced charged Higgs particles in the decays of Z0 for the decay channels of H+H-→τ+ντ-anti ν, H+H-→τνcs and H+H-→canti santi cs. The data sample analyzed corresponds to approximately 50 000 hadronic decays of Z0. A lower limit of 36.5 GeV is obtained at the 95% confidence level for the mass of charged Higgs particle, independent of its decay branching ratio. (orig.)

  8. Search for New Physics in Rare Top Decays

    CERN Document Server

    Saha, Pratishruti

    2014-01-01

    Top physics provides a fertile ground for new-physics searches. At present, most top observables appear to be in good agreement with the respective Standard Model predictions. However, in the case of decay modes that are suppressed in the Standard Model, new-physics contributions of comparable magnitude may exist and yet go unnoticed because their impact on the total decay width is small. Hence it is interesting to probe rare top decays. This analysis focuses on the decay $t \\to b \\bar b c$. Useful observables are identified and prospects for measuring new-physics parameters are examined.

  9. Effective Majorana mass and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Benato, Giovanni, E-mail: gbenato@physik.uzh.ch [Physik Institut der Universität Zürich, Zurich (Switzerland)

    2015-11-28

    The probability distribution for the effective Majorana mass as a function of the lightest neutrino mass in the standard three neutrino scheme is computed via a random sampling from the distributions of the involved mixing angles and squared mass differences. A flat distribution in the [0,2π] range for the Majorana phases is assumed, and the dependence of small values of the effective mass on the Majorana phases is highlighted. The study is then extended with the addition of the cosmological bound on the sum of the neutrino masses. Finally, the prospects for 0νββ decay search with {sup 76}Ge, {sup 130}Te and {sup 136}Xe are discussed, as well as those for the measurement of the electron neutrino mass.

  10. Isospin breaking in the nucleon mass and the sensitivity of beta decays to new physics

    CERN Document Server

    González-Alonso, Martín

    2014-01-01

    We discuss the consequences of the approximate conservation of the vector and axial currents for the hadronic matrix elements appearing in beta decay if non-standard interactions are present. In particular the isovector (pseudo)scalar charge g_S(P) of the nucleon can be related to the difference (sum) of the nucleon masses in the absence of electromagnetic effects. Using recent determinations of these quantities from phenomenological and lattice QCD studies we obtain the accurate values g_S=1.02(11) and g_P=349(9) in the MS-bar scheme at mu=2 GeV. The consequences for searches of non-standard scalar interactions in nuclear beta decays are studied, finding epsilon_S=0.0012(24) at 90%CL, which is significantly more stringent than current LHC bounds and previous low-energy bounds using less precise g_S values. We argue that our results could be rapidly improved with updated computations and the direct calculation of certain ratios in lattice QCD. Finally we discuss the pion-pole enhancement of g_P, which makes b...

  11. On the spectrum of secondary electrons emitted during nuclear $\\beta^{-}$-decay in few-electron atoms

    CERN Document Server

    Frolov, Alexei M

    2015-01-01

    Ionization of light atoms and ions during nuclear $\\beta^{-}$-decay is considered. We determine the velocity/momentum spectrum of secondary electrons emitted during nuclear $\\beta^{-}$-decay in one-electron tritium atom. The same method can be applied to describe velocity/momentum distributions of secondary electrons emitted from $\\beta^{-}$-decaying few-electron atoms and molecules.

  12. Microscopic study of muon-capture transitions in nuclei involved in double-beta-decay processes

    CERN Document Server

    Kortelainen, M

    2003-01-01

    Total and partial ordinary muon-capture (OMC) rates to 1 sup + and 2 sup - states are calculated in the framework of the proton-neutron quasiparticle random-phase approximation (pnQRPA) for several nuclei involved in double-beta-decay processes. The aim is to obtain information on intermediate states involved in double-beta-decay transitions having these nuclei as either daughter or parent nuclei. It is found that the OMC observables, just like the 2 nu beta beta-decay amplitudes, strongly depend on the particle-particle part of the proton-neutron interaction. First experiments measuring the partial OMC rates for nuclei involved in double beta decays have recently been performed.

  13. Search for the Rare Decays $B^0\\to D_s^{(*)+} a_{0(2)}^-$

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.

    2006-01-09

    The authors have searched for the decays B{sup 0} {yields} D{sub s}{sup +}a{sub 0}{sup -}, B{sup 0} {yields} D*{sub s}{sup +} a{sub 0}{sup -}, B{sup 0} {yields} D{sub s}{sup +}a{sub 2}{sup -} and B{sup 0} {yields} D*{sub s}{sup +} a{sub 2}{sup -} in a sample of about 230 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. They find no evidence for these decays and set upper limits at 90% C.L. on the branching fractions: {Beta}(B{sup 0} {yields} D{sub s}{sup +} a{sub 0}{sup -}) < 1.9 x 10{sup -5}, {Beta}(B{sup 0} {yields} D*{sub s}{sup +} a{sub 0}{sup -}) < 3.6 x 10{sup -5}, {Beta}(B{sup 0} {yields} D{sub s}{sup +} a{sub 2}{sup -}) < 1.9 x 10{sup -4}, and {Beta}(B{sup 0} {yields} D*{sub s}{sup +} a{sub 2}{sup -}) < 2.0 x 10{sup -4}.

  14. Double beta decay of molybdenum 100: Annual progress report for period January 1, 1987-December 31, 1987

    International Nuclear Information System (INIS)

    Work is continuing on a collaborative experiment with experimenters from the Lawrence Berkeley Laboratory to search for neutrinoless and two neutrino double beta decays in 100Mo. Backgrounds in a detector stack consisting of 40 lithium-drifted, surface-barrier silicon detectors within a titanium cryostat shielded by 10 inches of lead, 2-4 inches of borated polyethylene, and 2 feet of wax 4000 feet underground have been studied with no 100Mo foils inserted, and, under these conditions, no background events simulating double beta decay candidates have survived cuts in an energy region extending from 2.55 to 3.5 MeV in approximately 1600 hours of running. In addition, using 20 100Mo foils from a second batch of 100Mo obtained from Oak Ridge comprising a total of approximately 1/6 mole (1.04 x 1023 atoms) of 100Mo, we have very recently obtained in only 400 hours of running a very preliminary one sigma lower limit on the lifetime estimate for zero neutrino double beta decay, based on one count, of greater than 2 x 1021 years (approximately 2 x 1022 years Ge equivalent) and an equally preliminary one sigma lower limit on the lifetime estimate for two neutrino double beta decay, based on excess counts in the 100Mo spectrum over the empty detector spectrum, of greater than 2 x 1019 years (approximately 1.5 x 1021 years Ge equivalent). In 400 hours, we have no candidates for majoron double beta decay. 2 figs

  15. Search for the β decay of 96Zr

    Science.gov (United States)

    Finch, S. W.; Tornow, W.

    2016-01-01

    96Zr and 48Ca are unique among double-β decay candidate nuclides in that they may also undergo single-β decay. In the case of 96Zr, the single-β decay mode is dominated by the fourth-forbidden β decay with a 119 keV Q value. A search was conducted for the β decay of 96Zr by observing the decay of the daughter 96Nb nucleus. Two coaxial high-purity germanium detectors were used in coincidence to detect the γ-ray cascade produced by the daughter nucleus as it de-excited to the ground state. The experiment was carried out at the Kimballton Underground Research Facility and produced 685.7 days of data with a 17.91 g enriched sample. No counts were seen above background, producing a limit of T1/2 > 2.4 ×1019 year. This is the first experimental search that is able to discern between the β decay and the double-β decay to an excited state of 96Zr.

  16. Tritium $\\beta$-decay in chiral effective field theory

    CERN Document Server

    Baroni, A; Kievsky, A; Marcucci, L E; Schiavilla, R; Viviani, M

    2016-01-01

    We evaluate the Fermi and Gamow-Teller (GT) matrix elements in tritium \\beta-decay by including in the charge-changing weak current the corrections up to one loop recently derived in nuclear chiral effective field theory (\\chi EFT). The trinucleon wave functions are obtained from hyperspherical-harmonics solutions of the Schrodinger equation with two- and three-nucleon potentials corresponding to either \\chi EFT (the N3LO/N2LO combination) or meson-exchange phenomenology (the AV18/UIX combination). We find that contributions due to loop corrections in the axial current are, in relative terms, as large as (and in some cases, dominate) those from one-pion exchange, which nominally occur at lower order in the power counting. We also provide values for the low-energy constants multiplying the contact axial current and three-nucleon potential, required to reproduce the experimental GT matrix element and trinucleon binding energies in the N3LO/N2LO and AV18/UIX calculations.

  17. Beta decay studies of r-process nuclei at the National Superconducting Cyclotron Laboratory

    CERN Document Server

    Pereira, J; Arndt, O; Becerril, A; Elliot, T; Estrade, A; Galaviz, D; Hennrich, S; Hosmer, P; Kessler, R; Kratz, K L; Lorusso, G; Mantica, P F; Matos, M; Montes, F; Santi, P; Pfeiffer, B; Quinn, M; Schatz, H; Schertz, F; Schnorrenberger, L; Smith, E; Tomlin, B E; Walters, W; Wöhr, A

    2009-01-01

    The impact of nuclear physics on astrophysical r-process models is discussed, emphasizing the importance of beta-decay properties of neutron-rich nuclei. Several r-process motivated beta-decay experiments performed at the National Superconducting Cyclotron Laboratory are presented. The experiments include the measurement of beta-decay half-lives and neutron emission probabilities of nuclei in regions around Ni-78; Se-90; Zr-106 and Rh-120, as well as spectroscopic studies of Pd-120. A summary on the different experimental techniques employed, data analysis, results and impact on model calculations is presented.

  18. Getting Information on |Ue3|2 from Neutrinoless Double Beta Decay

    Directory of Open Access Journals (Sweden)

    Alexander Merle

    2007-01-01

    neutrinoless double beta decay. We show that typically a lower limit on |Ue3| as a function of the smallest neutrino mass can be set. Furthermore, we give the values of the sum of neutrino masses and |Ue3| which are allowed and forbidden by an experimental upper limit on the effective mass. Alternative explanations for neutrinoless double beta decay, Dirac neutrinos or unexplained cosmological features would be required if future measurements showed that the values lie in the respective regions. Moreover, we show that a measurement of |Ue3| from neutrinoless double beta decay is very difficult due to the expected errors on the effective mass and the oscillation parameters.

  19. Review of Nucleon Decay Searches at Super-Kamiokande

    CERN Document Server

    Takhistov, Volodymyr

    2016-01-01

    Baryon number violation appears in many contexts. It is a requirement for baryogenesis and is a consequence of Grand Unified Theories (GUTs), which predict nucleon decay. Nucleon decay searches provide the most direct way to test baryon number conservation and also serve as a unique probe of GUT scale physics around $10^{14-16}$ GeV. Such energies cannot be reached directly by accelerators. However, they can be explored indirectly at large underground water Cherenkov (WC) experiments, which due to the size of their fiducial volume are highly sensitive to nucleon decays. We review searches for baryon number violating processes at the state of the art WC detector, the Super-Kamiokande. Analyses of the typically dominant non-SUSY and SUSY nucleon decay channels such as $p \\rightarrow (e^+, \\mu^+) \\pi^0$ and $p \\rightarrow \

  20. Current IGEX Results for Neutrinoless Double-Beta Decay of 76Ge

    International Nuclear Information System (INIS)

    The International Germanium Experiment (IGEX) is currently operating three 2-kg enriched germanium detectors in the Canfranc Underground Laboratory (Spain) at 2450 mwe, in a search for the neutrinoless double-beta decay of 76Ge. The detectors are equipped with Pulse Shape Analysis electronics. This implementation of Pulse Shape Discrimination results in a rejection of 60%-80% of the background in the 2.0-2.5 MeV energy interval. Analysis of 116.75 mole-years of data yields a lower bound ≥ 1.57 x 1025y (or T0ν1/2 ≥ 1.13 x 1025y without PSD) (90% C.L.) corresponding to (mν) < (0.33 - 1.31) eV, depending on the theoretical nuclear matrix elements used to extract the neutrino mass parameter