WorldWideScience

Sample records for beta cell function

  1. Microculture system for studying monolayers of functional beta-cells.

    Science.gov (United States)

    Dobersen, M J; Scharff, J E; Notkins, A L

    1980-04-01

    A method is described for growing monolayers of newborn rat beta-cells in microculture trays. After disruption of the pancreas with collagenase, islets were isolated by Ficoll density gradient centrifugation, trypsinized to obtain individual cells, and plated in 96-well tissue culture trays. The cells were incubated for the first 3 days in growth medium containing 0.1 mM 3-isobutyl-1-methylxanthine to promote monolayer formation. The cultures could be maintained in a functional state, as defined by their responsiveness to known modulators of insulin secretion, for at least 2 weeks. As few as 1 X 10(3) islet cells/well gave results that were reproducible within +/- 10%. It is suggested that the microculture system for islet cells might prove to be a rapid and reproducible screening technique for studying drugs, viruses, or other agents that affect beta-cell function.

  2. Serum adipokines as biomarkers of beta-cell function in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Pham, Minh Nguyet; Kolb, Hubert; Mandrup-Poulsen, Thomas

    2013-01-01

    We investigated the adipokines adiponectin, leptin and resistin as serum biomarkers of beta-cell function in patients with type 1 diabetes.......We investigated the adipokines adiponectin, leptin and resistin as serum biomarkers of beta-cell function in patients with type 1 diabetes....

  3. The Fas pathway is involved in pancreatic beta cell secretory function

    DEFF Research Database (Denmark)

    Schumann, Desiree M; Maedler, Kathrin; Franklin, Isobel

    2007-01-01

    Pancreatic beta cell mass and function increase in conditions of enhanced insulin demand such as obesity. Failure to adapt leads to diabetes. The molecular mechanisms controlling this adaptive process are unclear. Fas is a death receptor involved in beta cell apoptosis or proliferation, depending...... on the activity of the caspase-8 inhibitor FLIP. Here we show that the Fas pathway also regulates beta cell secretory function. We observed impaired glucose tolerance in Fas-deficient mice due to a delayed and decreased insulin secretory pattern. Expression of PDX-1, a beta cell-specific transcription factor...... regulating insulin gene expression and mitochondrial metabolism, was decreased in Fas-deficient beta cells. As a consequence, insulin and ATP production were severely reduced and only partly compensated for by increased beta cell mass. Up-regulation of FLIP enhanced NF-kappaB activity via NF...

  4. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kover, Karen, E-mail: kkover@cmh.edu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Tasch, James; Hager, Melissa [Kansas City University Medical Biosciences, Kansas City, MO (United States); Clements, Mark; Moore, Wayne V. [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States)

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose

  5. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    International Nuclear Information System (INIS)

    Kover, Karen; Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu; Tasch, James; Hager, Melissa; Clements, Mark; Moore, Wayne V.

    2015-01-01

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H 2 O 2 assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H 2 O 2 levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP

  6. Effect of aerobic exercise on Pancreas Beta-cells function in adult obese males

    Directory of Open Access Journals (Sweden)

    Mojtaba Eizadi

    2014-08-01

    Conclusion: Aerobic exercise training increases beta cells function and decreases FBS in obese men. These findings support the hypothesis that regular physical activity postpones the occurrence of type 2 diabetes in adult obese subjects.

  7. Repetitive in vivo treatment with human recombinant interleukin-1 beta modifies beta-cell function in normal rats

    DEFF Research Database (Denmark)

    Wogensen, L D; Reimers, J; Nerup, J

    1992-01-01

    It is unknown whether interleukin-1 exerts a bimodal effect on Beta-cell function in vivo, and whether interleukin-1 has a diabetogenic action in normal animals. We therefore studied: (a) acute effects 2 h after an intraperitoneal bolus injection of 4 micrograms of recombinant human interleukin-1...

  8. Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells

    DEFF Research Database (Denmark)

    Andreasen, Susanne Ø; Thomsen, Allan R; Koteliansky, Victor E

    2003-01-01

    decreased responses were seen upon transfer of alpha(1)-deficient activated/memory T cells. Thus, expression of alpha(1)beta(1) and alpha(2)beta(1) integrins on activated T cells is directly functionally important for generation of inflammatory responses within tissues. Finally, the inhibitory effect......Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using...... this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of alpha(1...

  9. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function

    International Nuclear Information System (INIS)

    Woynillowicz, Amanda K.; Raha, Sandeep; Nicholson, Catherine J.; Holloway, Alison C.

    2012-01-01

    The goal of our study was to evaluate whether drugs currently used for smoking cessation (i.e., nicotine replacement therapy, varenicline [a partial agonist at nicotinic acetylcholine receptors (nAChR)] and bupropion [which acts in part as a nAChR antagonist]) can affect beta cell function and determine the mechanism(s) of this effect. INS-1E cells, a rat beta cell line, were treated with nicotine, varenicline and bupropion to determine their effects on beta cell function, mitochondrial electron transport chain enzyme activity and cellular/oxidative stress. Treatment of INS-1E cells with equimolar concentrations (1 μM) of three test compounds resulted in an ablation of normal glucose-stimulated insulin secretion by the cells. This disruption of normal beta cell function was associated with mitochondrial dysfunction since all three compounds tested significantly decreased the activity of mitochondrial electron transport chain enzyme activity. These results raise the possibility that the currently available smoking cessation pharmacotherapies may also have adverse effects on beta cell function and thus glycemic control in vivo. Therefore whether or not the use of nicotine replacement therapy, varenicline and bupropion can cause endocrine changes which are consistent with impaired pancreatic function warrants further investigation. -- Highlights: ► Smoking cessation drugs have the potential to disrupt beta cell function in vitro. ► The effects of nicotine, varenicline and bupropion are similar. ► The impaired beta cell function is mediated by mitochondrial dysfunction. ► If similar effects are seen in vivo, these drugs may increase the risk of diabetes.

  10. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function

    Energy Technology Data Exchange (ETDEWEB)

    Woynillowicz, Amanda K. [Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada L8N 3Z5 (Canada); Raha, Sandeep [Department of Pediatrics, McMaster University, Hamilton, ON, Canada L8N 3Z5 (Canada); Nicholson, Catherine J. [Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada L8N 3Z5 (Canada); Holloway, Alison C., E-mail: hollow@mcmaster.ca [Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada L8N 3Z5 (Canada)

    2012-11-15

    The goal of our study was to evaluate whether drugs currently used for smoking cessation (i.e., nicotine replacement therapy, varenicline [a partial agonist at nicotinic acetylcholine receptors (nAChR)] and bupropion [which acts in part as a nAChR antagonist]) can affect beta cell function and determine the mechanism(s) of this effect. INS-1E cells, a rat beta cell line, were treated with nicotine, varenicline and bupropion to determine their effects on beta cell function, mitochondrial electron transport chain enzyme activity and cellular/oxidative stress. Treatment of INS-1E cells with equimolar concentrations (1 μM) of three test compounds resulted in an ablation of normal glucose-stimulated insulin secretion by the cells. This disruption of normal beta cell function was associated with mitochondrial dysfunction since all three compounds tested significantly decreased the activity of mitochondrial electron transport chain enzyme activity. These results raise the possibility that the currently available smoking cessation pharmacotherapies may also have adverse effects on beta cell function and thus glycemic control in vivo. Therefore whether or not the use of nicotine replacement therapy, varenicline and bupropion can cause endocrine changes which are consistent with impaired pancreatic function warrants further investigation. -- Highlights: ► Smoking cessation drugs have the potential to disrupt beta cell function in vitro. ► The effects of nicotine, varenicline and bupropion are similar. ► The impaired beta cell function is mediated by mitochondrial dysfunction. ► If similar effects are seen in vivo, these drugs may increase the risk of diabetes.

  11. The Importance of REST for Development and Function of Beta Cells

    DEFF Research Database (Denmark)

    Martin, David; Grapin-Botton, Anne

    2017-01-01

    that are crucial for both neuronal and pancreatic endocrine function, through the recruitment of multiple transcriptional and epigenetic co-regulators. REST targets include genes encoding transcription factors, proteins involved in exocytosis, synaptic transmission or ion channeling, and non-coding RNAs. REST......Beta cells are defined by the genes they express, many of which are specific to this cell type, and ensure a specific set of functions. Beta cells are also defined by a set of genes they should not express (in order to function properly), and these genes have been called forbidden genes. Among...... these, the transcriptional repressor RE-1 Silencing Transcription factor (REST) is expressed in most cells of the body, excluding most populations of neurons, as well as pancreatic beta and alpha cells. In the cell types where it is expressed, REST represses the expression of hundreds of genes...

  12. Determination of Insulin Resistance and Beta Cell Function in Healthy Obese and Non-obese Individuals

    International Nuclear Information System (INIS)

    Kazmi, A.; Sattar, A.; Tariq, K. M.; Najamussahar; Hashim, R.; Almani, M. I.

    2013-01-01

    Objective: To determine insulin resistance and beta cell function in healthy obese and nonobese individuals of the local population. Study Design: Case control study. Place and Duration of Study: AFIP Rawalpindi in collaboration with department of medicine military hospital(MH) Rawalpindi, from Aug 2008 to Mar 2009. Methods: Eighty obese(n=40) and non-obese(n=40) subjects were selected by non-probability convenience sampling. Plasma insulin, glucose, and serum total cholestrol were estimated in fasting state. Insulin resistance was calculated by HOMA-IR and beta cell function by HOMA- equation. Results: Significant differences were observed between obese and non-obese individuals regarding insulin resistance, beta cell function, and BMI and serum total cholesterol. Mean insulin resistance in obese group was found to be 11.1 +- 5.1(range 7.0-16.2) and in non-obese group it was 0.9+-0.4 (range 0.5-1.3). This difference was highly significant (p=0.001). There was a highly significant difference between the two groups in term of beta cell function with mean rank 60.1 for obese group and 20.9 non obese groups (Asym sig. 2 tailed 0.000). Also the correlation (r = 0.064) between insulin resistance and beta cell function in obese group is highly significant (p = 0.000). Mean serum leptin levels were lower (6.3 ng/ml) in non-obese, and high (57.2 ng/ml) in the obese group. Conclusions: Insulin resistance is found higher in obese individuals. Beta cell function is significantly different between obese and non-obese groups. (author)

  13. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    International Nuclear Information System (INIS)

    Pi Jingbo; Zhang Qiang; Fu Jingqi; Woods, Courtney G.; Hou Yongyong; Corkey, Barbara E.; Collins, Sheila; Andersen, Melvin E.

    2010-01-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H 2 O 2 , act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.

  14. Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass

    DEFF Research Database (Denmark)

    Gelling, Richard W; Vuguin, Patricia M; Du, Xiu Quan

    2009-01-01

    in vivo, we generated mice overexpressing the Gcgr specifically on pancreatic beta-cells (RIP-Gcgr). In vivo and in vitro insulin secretion in response to glucagon and glucose was increased 1.7- to 3.9-fold in RIP-Gcgr mice compared with controls. Consistent with the observed increase in insulin release...

  15. MicroRNAs as regulators of beta-cell function and dysfunction

    DEFF Research Database (Denmark)

    Osmai, Mirwais; Osmai, Yama; Bang-Berthelsen, Claus Heiner

    2016-01-01

    , recent studies have demonstrated that miRNAs are important regulators of the islet transcriptome, controlling apoptosis, differentiation and proliferation, as well as regulating unique islet and beta-cell functions and pathways such as insulin expression, processing and secretion. Furthermore, a large...

  16. Effect of iron on pancreatic beta cell function and insulin resistance ...

    African Journals Online (AJOL)

    Background: Increase in total body iron store has been reported in the aetiology and development of diabetes mellitus. The effect of iron supplementation in female with respect to the incidence of diabetes mellitus was investigated on the pancreatic beta cell function and insulin resistance in normal female rats. Methods: ...

  17. Impact of fetal and neonatal environment on beta cell function and development of diabetes

    DEFF Research Database (Denmark)

    Nielsen, Jens H; Haase, Tobias N; Jaksch, Caroline

    2014-01-01

    on the beta cells in both the mother and the fetus and how various conditions like diabetes, obesity, overnutrition and undernutrition during and after pregnancy may influence the ability of the offspring to adapt to changes in insulin demand later in life. The influence of environmental factors including...... that the intrauterine environment during pregnancy has an impact on the gene expression that may persist until adulthood and cause metabolic diseases like obesity and type 2 diabetes. As the pancreatic beta cells are crucial in the regulation of metabolism this article will describe the influence of normal pregnancy...... nutrients and gut microbiota on appetite regulation, mitochondrial activity and the immune system that may affect beta cell growth and function directly and indirectly is discussed. The possible role of epigenetic changes in the transgenerational transmission of the adverse programming may be the most...

  18. Effect of long-term transfusion therapy on the glycometabolic status and pancreatic beta cell function in patients with beta Thalassemia major

    Directory of Open Access Journals (Sweden)

    Kamalakshi G Bhat

    2014-01-01

    Full Text Available Background: Diabetes mellitus is a major complication of iron overload in patients with beta thalassemia major. Design: This is a descriptive study conducted in a Tertiary Care Teaching Hospital to analyze beta cell function and insulin resistance, and their relation to iron overload status in beta thalassemia major. Fasting glucose, two-hour post load glucose, fasting insulin, alanine amino transaminase (ALT, and ferritin were used as outcome measures. The homeostatic model assessment (HOMA model was used to calculate the beta cell function and insulin resistance index. Results: Of the 30 cases, 20% had impaired fasting glucose, 3.3% had impaired glucose tolerance, and none had diabetes. Fasting glucose was not significant between the cases and controls (P = 0.113. Fasting insulin (P = 0.001, ferritin (P = 0.001, and ALT (P = 0.001 levels were significantly high in the cases. Insulin resistance index was significantly higher in the cases (P = 0.001 as also the beta cell function (P = 0.001. With increase in age and the number of units transfused there is a decline in beta cell function, fasting insulin, and insulin resistance after attaining the maximum level. This suggests that initial insulin resistance is followed by insulin depletion due to loss of beta cell function, leading to diabetes mellitus. Conclusion: Impaired glucose tolerance (IGT and insulin resistance precede the onset of insulin-dependent diabetes and adequate chelation therapy is essential for delaying the onset or for prevention of diabetes.

  19. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells

    DEFF Research Database (Denmark)

    Massumi, Mohammad; Pourasgari, Farzaneh; Nalla, Amarnadh

    2016-01-01

    developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems......The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have...... positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux...

  20. Maternal Rat Diabetes Mellitus Deleteriously Affects Insulin Sensitivity and Beta-Cell Function in the Offspring

    Directory of Open Access Journals (Sweden)

    Abdel-Baset M. Aref

    2013-01-01

    Full Text Available This study was designed to assess the effect of maternal diabetes in rats on serum glucose and insulin concentrations, insulin resistance, histological architecture of pancreas and glycogen content in liver of offspring. The pregnant rat females were allocated into two main groups: normal control group and streptozotocin-induced diabetic group. After birth, the surviving offspring were subjected to biochemical and histological examination immediately after delivery and at the end of the 1st and 2nd postnatal weeks. In comparison with the offspring of normal control dams, the fasting serum glucose level of offspring of diabetic mothers was significantly increased at the end of the 1st and 2nd postnatal weeks. Serum insulin level of offspring of diabetic dams was significantly higher at birth and decreased significantly during the following 2 postnatal weeks, while in normal rat offspring, it was significantly increased with progress of time. HOMA Insulin Resistance (HOMA-IR was significantly increased in the offspring of diabetic dams at birth and after 1 week than in normal rat offspring, while HOMA insulin sensitivity (HOMA-IS was significantly decreased. HOMA beta-cell function was significantly decreased at all-time intervals in offspring of diabetic dams. At birth, islets of Langerhans as well as beta cells in offspring of diabetic dams were hypertrophied. The cells constituting islets seemed to have a high division rate. However, beta-cells were degenerated during the following 2 post-natal weeks and smaller insulin secreting cells predominated. Vacuolation and necrosis of the islets of Langerhans were also observed throughout the experimental period. The carbohydrate content in liver of offspring of diabetic dams was at all-time intervals lower than that in control. The granule distribution was more random. Overall, the preexisting maternal diabetes leads to glucose intolerance, insulin resistance, and impaired insulin sensitivity and β-cell

  1. Islet autoantibodies and residual beta cell function in type 1 diabetes children followed for 3-6 years

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sand; Vaziri-Sani, Fariba; Maziarz, M

    2012-01-01

    To test if islet autoantibodies at diagnosis of type 1 diabetes (T1DM) and after 3-6 years with T1D predict residual beta-cell function (RBF) after 3-6 years with T1D.......To test if islet autoantibodies at diagnosis of type 1 diabetes (T1DM) and after 3-6 years with T1D predict residual beta-cell function (RBF) after 3-6 years with T1D....

  2. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells.

    Directory of Open Access Journals (Sweden)

    Mohammad Massumi

    Full Text Available The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25-30 days to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs. We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function.

  3. Functional labeling of insulin receptor subunits in live cells. Alpha 2 beta 2 species is the major autophosphorylated form

    International Nuclear Information System (INIS)

    Le Marchand-Brustel, Y.; Ballotti, R.; Gremeaux, T.; Tanti, J.F.; Brandenburg, D.; Van Obberghen, E.

    1989-01-01

    Both receptor subunits were functionally labeled in order to provide methods allowing, in live cells and in broken cell systems, concomitant evaluation of the insulin receptor dual function, hormone binding, and kinase activity. In cell-free systems, insulin receptors were labeled on their alpha-subunit with 125I-photoreactive insulin, and on their beta-subunit by autophosphorylation. Thereafter, phosphorylated receptors were separated from the complete set of receptors by means of anti-phosphotyrosine antibodies. Using this approach, a subpopulation of receptors was found which had bound insulin, but which were not phosphorylated. Under nonreducing conditions, receptors appeared in three oligomeric species identified as alpha 2 beta 2, alpha 2 beta, and alpha 2. Mainly the alpha 2 beta 2 receptor species was found to be phosphorylated while insulin was bound to alpha 2 beta 2, alpha 2 beta, and alpha 2 forms. In live cells, biosynthetic labeling of insulin receptors was used. Receptors were first labeled with [35S]methionine. Subsequently, the addition of insulin led to receptor autophosphorylation by virtue of the endogenous ATP pool. The total amount of [35S]methionine-labeled receptors was precipitated with antireceptor antibodies, whereas with anti-phosphotyrosine antibodies, only the phosphorylated receptors were isolated. Using this approach we made the two following key findings: (1) Both receptor species, alpha 2 beta 2 and alpha 2 beta, are present in live cells and in comparable amounts. This indicates that the alpha 2 beta form is not a degradation product of the alpha 2 beta 2 form artificially generated during receptor preparation. (2) The alpha 2 beta 2 species is the prevalently autophosphorylated form

  4. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice.

    Science.gov (United States)

    Qin, Kunhua; Zhang, Ning; Zhang, Zhao; Nipper, Michael; Zhu, Zhenxin; Leighton, Jake; Xu, Kexin; Musi, Nicolas; Wang, Pei

    2018-04-01

    Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability

  6. High Glucose Aggravates the Detrimental Effects of Pancreatic Stellate Cells on Beta-Cell Function

    Directory of Open Access Journals (Sweden)

    Min Zha

    2014-01-01

    Full Text Available Background and Aims. We here assess the effects of PSCs on β-cell function and apoptosis in vivo and in vitro. Materials and Methods. PSCs were transplanted into Wistar and Goto-Kakizaki (GK rats. Sixteen weeks after transplantation, β-cell function, apoptosis, and islet fibrosis were assessed. In vitro the effects of PSCs conditioned medium (PSCs-CM and/or high concentration of glucose on INS-1 cell function was assessed by measuring insulin secretion, INS-1 cell survival, apoptosis, and endoplasmic reticulum stress (ER stress associated CHOP expression. Results. PSCs transplantation exacerbated the impaired β-cell function in GK rats, but had no significant effects in Wistar rats. In vitro, PSCs-CM caused impaired INS-1 cell viability and insulin secretion and increased apoptosis, which were more pronounced in the presence of high glucose. Conclusion. Our study demonstrates that PSCs induce β-cell failure in vitro and in vivo.

  7. CISH has no non-redundant functions in glucose homeostasis or beta cell proliferation during pregnancy in mice.

    Science.gov (United States)

    Jiao, Yang; Rieck, Sebastian; Le Lay, John; Kaestner, Klaus H

    2013-11-01

    Increased beta cell proliferation during pregnancy is mediated by the Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5) signalling pathway in response to increased lactogen levels. Activation of the pathway leads to transcriptional upregulation of Cish (encoding cytokine-inducible SH2 domain-containing protein), a member of the suppressor of cytokine signalling (SOCS) family of genes, forming a negative-feedback loop. Here, we examined whether conditional gene ablation of Cish in the pancreas improves beta cell proliferation and beta cell function during pregnancy in mice. We derived mice with a novel, conditional loxP allele for Cish. Pancreas-specific ablation of Cish was achieved by crossing Cish (loxP/loxP) mice with Pdx1-Cre (Early) mice. Beta cell proliferation was quantified by BrdU labelling. Glucose homeostasis was examined with glucose tolerance tests and determination of plasma insulin levels. The expression of other Socs genes and target genes of p-STAT5 related to beta cell function and beta cell proliferation was determined by quantitative PCR. There was no difference in beta cell proliferation or glucose homeostasis between the Cish mutant group and the control group. The p-STAT5 protein level was the same in Cish mutant and control mice. Socs2 gene expression was higher in Cish mutant than control mice at pregnancy day 9.5. The expression of other Socs genes was the same between control and mutant mice. Our results show that CISH has no non-redundant functions in beta cell proliferation or glucose homeostasis during pregnancy in mice. Socs2 might compensate for the loss of Cish during pregnancy.

  8. The Role of Helicobacter pylori Seropositivity in Insulin Sensitivity, Beta Cell Function, and Abnormal Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Lou Rose Malamug

    2014-01-01

    Full Text Available Infection, for example, Helicobacter pylori (H. pylori, has been thought to play a role in the pathogenesis of type 2 diabetes mellitus (T2DM. Our aim was to determine the role of H. pylori infection in glucose metabolism in an American cohort. We examined data from 4,136 non-Hispanic white (NHW, non-Hispanic black (NHB, and Mexican Americans (MA aged 18 and over from the NHANES 1999-2000 cohort. We calculated the odds ratios for states of glucose tolerance based on the H. pylori status. We calculated and compared homeostatic model assessment insulin resistance (HOMA-IR and beta cell function (HOMA-B in subjects without diabetes based on the H. pylori status. The results were adjusted for age, body mass index (BMI, poverty index, education, alcohol consumption, tobacco use, and physical activity. The H. pylori status was not a risk factor for abnormal glucose tolerance. After adjustment for age and BMI and also adjustment for all covariates, no difference was found in either HOMA-IR or HOMA-B in all ethnic and gender groups except for a marginally significant difference in HOMA-IR in NHB females. H. pylori infection was not a risk factor for abnormal glucose tolerance, nor plays a major role in insulin resistance or beta cell dysfunction.

  9. Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies.

    Science.gov (United States)

    Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela

    2009-04-15

    Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.

  10. Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus.

    Science.gov (United States)

    Hillman, Kristin L; Doze, Van A; Porter, James E

    2005-08-01

    Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists

  11. Analysis of the effect of diabetes type 2 duration on beta cell secretory function and insulin resistance

    Directory of Open Access Journals (Sweden)

    Popović Ljiljana

    2006-01-01

    Full Text Available Diabetes type 2 is a chronic metabolic disorder. Pathogenesis of diabetes type 2 results from the impaired insulin secretion, impaired insulin action and increased endogenous glucose production. Diabetes evolves through several phases characterized by qualitative and quantitative changes of beta cell secretory function. The aim of our study was to analyze the impact of diabetes duration on beta cell secretory function and insulin resistance. The results indicated significant negative correlation of diabetes duration and fasting insulinemia, as well as beta cell secretory function assessed by HOMA β index. Our study also found significant negative correlation of diabetes duration and insulin resistance assessed by HOMA IR index. Significant positive correlation was established between beta cell secretory capacity (fasting insulinemia and HOMA β and insulin resistance assessed by HOMA IR index, independently of diabetes duration. These results indicate that: beta cell secretory capacity, assessed by HOMA β index, significantly decreases with diabetes duration. In parallel with decrease of fasting insulinemia, reduction of insulin resistance assessed by HOMA IR index was found as well.

  12. Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function.

    Directory of Open Access Journals (Sweden)

    Harald Staiger

    Full Text Available BACKGROUND: Type 2 diabetes arises when insulin resistance-induced compensatory insulin secretion exhausts. Insulin resistance and/or beta-cell dysfunction result from the interaction of environmental factors (high-caloric diet and reduced physical activity with a predisposing polygenic background. Very recently, genetic variations within four novel genetic loci (SLC30A8, HHEX, EXT2, and LOC387761 were reported to be more frequent in subjects with type 2 diabetes than in healthy controls. However, associations of these variations with insulin resistance and/or beta-cell dysfunction were not assessed. METHODOLOGY/PRINCIPAL FINDINGS: By genotyping of 921 metabolically characterized German subjects for the reported candidate single nucleotide polymorphisms (SNPs, we show that the major alleles of the SLC30A8 SNP rs13266634 and the HHEX SNP rs7923837 associate with reduced insulin secretion stimulated by orally or intravenously administered glucose, but not with insulin resistance. In contrast, the other reported type 2 diabetes candidate SNPs within the EXT2 and LOC387761 loci did not associate with insulin resistance or beta-cell dysfunction, respectively. CONCLUSIONS/SIGNIFICANCE: The HHEX and SLC30A8 genes encode for proteins that were shown to be required for organogenesis of the ventral pancreas and for insulin maturation/storage, respectively. Therefore, the major alleles of type 2 diabetes candidate SNPs within these genetic loci represent crucial alleles for beta-cell dysfunction and, thus, might confer increased susceptibility of beta-cells towards adverse environmental factors.

  13. Effects of methyl mercury exposure on pancreatic beta cell development and function.

    Science.gov (United States)

    Schumacher, Lauren; Abbott, Louise C

    2017-01-01

    Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Study of beta-cell function (by HOMA model) in metabolic syndrome.

    Science.gov (United States)

    Garg, M K; Dutta, M K; Mahalle, Namita

    2011-07-01

    The clustering of cardiovascular risk factors is termed the metabolic syndrome (MS), which strongly predict risk of diabetes and cardiovascular disease. Many studies implicate insulin resistance (IR) in the development of diabetes, but ignore the contribution of beta-cell dysfunction. Hence, we studied beta-cell function, as assessed by HOMA model, in subjects with MS. We studied 50 subjects with MS diagnosed by IDF criteria and 24 healthy age- and sex-matched controls. Clinical evaluation included anthropometry, body fat analysis by bioimpedance, biochemical, and insulin measurement. IR and secretion were calculated by HOMA model. Subjects with MS had more IR (HOMA-IR) than controls (3.35 ± 3.14 vs. 1.76 ± 0.53, P = 0.029) and secreted less insulin (HOMA-S) than controls (66.80 ± 69.66 vs. 144.27 ± 101.61, P = 0.0003), although plasma insulin levels were comparable in both groups (10.7 ± 10.2 vs. 8.2 ± 2.38, P = 0.44). HOMA-IR and HOMA-S were related with number of metabolic abnormalities. HOMA-IR was positively associated with body mass index, waist hip ratio, body fat mass, and percent body fat. HOMA-S was negatively associated with waist hip ratio, fasting plasma glucose and total cholesterol and positively with basal metabolic rate. Percent body fat was an independent predictor of HOMA-IR and waist hip ratio of HOMA-S in multiple regression analysis. Subjects with MS have increased IR and decreased insulin secretion compared with healthy controls. Lifestyle measures have been shown to improve IR, insulin secretion, and various components and effects of MS. Hence, there is an urgent need for public health measures to prevent ongoing epidemic of diabetes and cardiovascular disease.

  15. Pancreatic beta cell function increases in a linear dose-response manner following exercise training in adults with prediabetes

    DEFF Research Database (Denmark)

    Malin, Steven K; Solomon, Thomas; Blaszczak, Alecia

    2013-01-01

    While some studies suggest that a linear dose-response relationship exists between exercise and insulin sensitivity, the exercise dose required to enhance pancreatic beta-cell function is unknown. Thirty-five older, obese adults with prediabetes underwent a progressive 12-week supervised exercise...

  16. Beta-cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to Type 2 diabetes

    Science.gov (United States)

    Using the hyperglycemic and euglycemic clamp, we demonstrated impaired Beta-cell function in obese youth with increasing dysglycemia. Herein we describe oral glucose tolerance test (OGTT)-modeled Beta-cell function and incretin effect in obese adolescents spanning the range of glucose tolerance. Bet...

  17. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  18. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    2016-01-01

    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades...... in the expansion of the beta cell mass in human pregnancy, and the relative roles of endocrine factors and nutrients....

  19. Longitudinal Changes in Insulin Resistance, Beta-Cell Function and Glucose Regulation Status in Prediabetes.

    Science.gov (United States)

    Kim, Chul-Hee; Kim, Hong-Kyu; Kim, Eun-Hee; Bae, Sung-Jin; Choe, Jaewon; Park, Joong-Yeol

    2018-01-01

    The changes in insulin resistance and insulin secretion and their association with changes in glucose regulation status in Asians with prediabetes remain uncertain. We included Korean adults (aged 20-79 years) with prediabetes who underwent routine medical check-ups at a mean interval of 5 years. Prediabetes was defined as fasting plasma glucose (FPG) 5.6-6.9mmol/l or HbA1c 5.7-6.4% (39-46mmol/mol). Insulin resistance (HOMA-IR) and beta-cell function (HOMA-%B) indices were assessed by homeostasis model assessment. Incident diabetes was defined as FPG ≥ 7.0mmol/l, HbA1c ≥ 6.5% (48mmol/mol), or initiation of antidiabetic medications. Among the 7,208 participants with prediabetes, 4,410 (61.2%) remained as prediabetes (control group), 2,123 (29.5%) reverted to normal glucose regulation (regressors), and 675 (9.4%) progressed to type 2 diabetes (progressors) after 5 years. Compared with the control group, the progressors had higher baseline HOMA-IR (2.48 ± 1.45 versus 2.06 ± 1.20, P prediabetes, longitudinal change in insulin resistance was the predominant factor in Koreans. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  20. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Science.gov (United States)

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  1. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Andreia V Pinho

    Full Text Available Sirtuin 1 (Sirt1 has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear.This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas.We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r as well as a marked down regulation of endoplasmic reticulum (ER chaperones that participate in the Unfolded Protein Response (UPR pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas.This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  2. Characterization of GLP-1 effects on beta-cell function after meal ingestion in humans

    DEFF Research Database (Denmark)

    Ahrén, Bo; Holst, Jens Juul; Mari, Andrea

    2003-01-01

    OBJECTIVE: Glucagon-like peptide 1 (GLP-1) is an incretin that augments insulin secretion after meal intake and is developed for treatment of type 2 diabetes. As a novel therapeutic agent, characteristics of its beta-cell effects are important to establish. Previously, beta-cell effects of GLP-1...... have been characterized in humans during graded intravenous infusions of glucose, whereas its effects after more physiological stimuli, like meal intake, are not known. RESEARCH DESIGN AND METHODS: Eight women (aged 69 years, fasting glucose 3.7-10.3 mmol/l, BMI 22.4-43.9 kg/m(2)) who had fasted...... meal augments insulin secretion in humans by a dose...

  3. EPConDB: a web resource for gene expression related to pancreatic development, beta-cell function and diabetes.

    Science.gov (United States)

    Mazzarelli, Joan M; Brestelli, John; Gorski, Regina K; Liu, Junmin; Manduchi, Elisabetta; Pinney, Deborah F; Schug, Jonathan; White, Peter; Kaestner, Klaus H; Stoeckert, Christian J

    2007-01-01

    EPConDB (http://www.cbil.upenn.edu/EPConDB) is a public web site that supports research in diabetes, pancreatic development and beta-cell function by providing information about genes expressed in cells of the pancreas. EPConDB displays expression profiles for individual genes and information about transcripts, promoter elements and transcription factor binding sites. Gene expression results are obtained from studies examining tissue expression, pancreatic development and growth, differentiation of insulin-producing cells, islet or beta-cell injury, and genetic models of impaired beta-cell function. The expression datasets are derived using different microarray platforms, including the BCBC PancChips and Affymetrix gene expression arrays. Other datasets include semi-quantitative RT-PCR and MPSS expression studies. For selected microarray studies, lists of differentially expressed genes, derived from PaGE analysis, are displayed on the site. EPConDB provides database queries and tools to examine the relationship between a gene, its transcriptional regulation, protein function and expression in pancreatic tissues.

  4. Insulin resistance and beta-cell function in different ethnic groups in Kenya: the role of abdominal fat distribution

    DEFF Research Database (Denmark)

    Christensen, D.L.; Faurholt-Jepsen, D.; Faerch, K.

    2014-01-01

    Little is known about the pathophysiology of diabetes in Africans. Thus, we assessed whether insulin resistance and beta-cell function differed by ethnicity in Kenya and whether differences were modified by abdominal fat distribution. A cross-sectional study in 1,087 rural Luo (n = 361), Kamba (n...... to the Luo and Kamba, respectively. Adjustments of SAT (range 0.1–7.1 cm) and VAT (range 1.5–14.2 cm) largely explained these inter-group differences with the Maasai having the highest combined abdominal fat accumulation. The Maasai had the highest insulin resistance and secretion, but the lowest relative...... beta-cell function compared to the Luo and Kamba. These differences were primarily explained by abdominal fat distribution....

  5. [Associations of insulin resistance and pancreatic beta-cell function with plasma glucose level in type 2 diabetes].

    Science.gov (United States)

    Nian, Xiaoping; Sun, Gaisheng; Dou, Chunmei; Hou, Hongbo; Fan, Xiuping; Yu, Hongmei; Ma, Ling; He, Bingxian

    2002-06-10

    To investigate the influence of insulin resistance and pancreatic beta-cell function on plasma glucose level in type 2 diabetes so as to provide theoretical basis for reasonable selection of hypoglycemic agents. The plasma non-specific insulin (NSINS), true insulin (TI) and glucose in eight-one type 2 diabetics, 38 males and 43 females, with a mean age of 53 years, were examined 0, 30, 60 and 120 minutes after they had 75 grams of instant noodles. The patients were divided into two groups according to their fasting plasma glucose (FPG): group A (FPG = 8.89 mmol/L). The insulin resistance was evaluated by HOMA-IR, the beta-cell function was evaluated by HOMA-beta formula and the formula deltaI(30)/deltaG(30) = (deltaI(30)-deltaI(0))/(deltaG(30)-deltaG(0)). The insulin area under curve (INSAUC) was evaluated by the formula INSAUC=FINS/2+INS(30)+INS(60)+INS(120)/2. The mean FPG was 6.23 mmol/L in group A and 12.6 mmol/L in group B. PG2H was 11.7 mmol/L in group A and 19.2 mmol/L in group B. The TI levels in group B at 0, 30, 60, 120 min during standard meal test were significantly higher than those in group A: 6.15 +/- 1.06 vs 4.77 +/- 1.06, 9.76 +/- 1.1 vs 5.88 +/- 1.1,14.68 +/- 1.11 vs 6.87 +/- 1.1 and 17.13 +/- 1.12 vs 8.0 +/- 1.1 microU/dl (all P< 0.01). The NSINS showed the same trend. The insulin resistance in group B was 1.5 times that in group A. With the insulin resistance adjusted, the beta cell function in group A was 5 to 6 times that in group B. The INSAUC in group A was 1.66 times larger than that in group B, especially the INSAUC for true insulin (2 times larger). The contribution of insulin resistance and beta cell function to PG2H was half by half in group A and 1:8 in group B. beta cell function calculated by insulin (Homa-beta) explained 41% of the plasma glucose changes in group A and 54% of the plasma glucose changes in group B. The contribution of insulin deficiency to plasma glocose was 3.3.times that of insulin resistance in group A and was 9

  6. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    Science.gov (United States)

    Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe

    2005-01-01

    KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first time, to our knowledge, the characterization of KLF11 as a glucose-inducible regulator of the insulin gene. A combination of random oligonucleotide binding, EMSA, luciferase reporter, and chromatin immunoprecipitation assays shows that KLF11 binds to the insulin promoter and regulates its activity in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting a role in free radical clearance that may render beta cells more sensitive to oxidative stress. Thus, both functional and genetic analyses reveal that KLF11 plays a role in the regulation of pancreatic beta cell physiology, and its variants may contribute to the development of diabetes. PMID:15774581

  7. **-Postprandial pancreatic ["1"1C]methionine uptake after pancreaticoduodenectomy mirrors basal beta cell function and insulin release

    International Nuclear Information System (INIS)

    Steiner, Emanuel; Kazianka, Lukas; Breuer, Robert; Miholic, Johannes; Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus; Stimpfl, Thomas; Reiter, Birgit; Karanikas, Georgios

    2017-01-01

    [S-methyl-"1"1C]-L-methionine (["1"1C]MET) uptake in the pancreas might be a central indicator of beta cell function. Since gastric emptying was recently shown to influence glycemic control in subjects after pancreaticoduodenectomy (PD, the surgical treatment of neoplasms of the pancreas head), we looked for imaginable relationships between gastric emptying, pre- and postprandial insulin concentrations, and ["1"1C]MET uptake. Nineteen tumor-free survivors after PD (age mean ± SD: 61 ± 8.7 yrs.; 10 male, 9 female) and 10 healthy controls (age: 27 ± 8.7 yrs.; 7 male, 3 female) were given a mixed test meal. One gram of paracetamol was ingested with the meal to evaluate the speed of gastric emptying. Insulin, glucose, and paracetamol plasma concentrations were measured before and over 180 minutes after ingestion. Beta cell function was calculated from fasting glucose and insulin plasma concentrations. Simultaneously, 800 MBq of ["1"1C]MET were administered and the activity (maximum tissue standardized uptake values [SUVmax]) over the pancreas was measured at 15, 30, and 60 minutes after injection. Total integrated SUVmax (area under the curve [AUC]) and incremental SUVmax were calculated. The uptake of ["1"1C]MET in the pancreas was significantly higher (p < 0.0001) in controls compared to the PD group. Gastric emptying was significantly slower in controls compared to pancreatectomy subjects (p < 0.0001). Paracetamol AUC_3_0 correlated with the SUVmax increment between 15 and 30 minutes (R"2 = 0.27, p = 0.0263), suggesting a relationship between gastric emptying and the uptake of ["1"1C]MET. Total integrated SUVmax correlated with insulin AUC_6_0 (R"2 = 0.66,p < 0.0001) in patients after PD. Multivariate regression analysis revealed insulin AUC_6_0 and beta cell function, calculated from the fasting insulin to glucose ratio, as independent predictors of "1"1C-methionine uptake, i.e. total integrated SUVmax, in patients after PD (R"2 = 0.78, p < 0.0001). Postprandial

  8. **-Postprandial pancreatic [{sup 11}C]methionine uptake after pancreaticoduodenectomy mirrors basal beta cell function and insulin release

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Emanuel; Kazianka, Lukas; Breuer, Robert; Miholic, Johannes [Medical University of Vienna, Department of Surgery, Vienna (Austria); Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Vienna (Austria); Stimpfl, Thomas; Reiter, Birgit [Medical University of Vienna, Clinical Institute of Laboratory Medicine, Forensic Toxicology, Vienna (Austria); Karanikas, Georgios [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Divisional Head PET-PET/CT (Nuclear Medicine), Vienna (Austria)

    2017-03-15

    [S-methyl-{sup 11}C]-L-methionine ([{sup 11}C]MET) uptake in the pancreas might be a central indicator of beta cell function. Since gastric emptying was recently shown to influence glycemic control in subjects after pancreaticoduodenectomy (PD, the surgical treatment of neoplasms of the pancreas head), we looked for imaginable relationships between gastric emptying, pre- and postprandial insulin concentrations, and [{sup 11}C]MET uptake. Nineteen tumor-free survivors after PD (age mean ± SD: 61 ± 8.7 yrs.; 10 male, 9 female) and 10 healthy controls (age: 27 ± 8.7 yrs.; 7 male, 3 female) were given a mixed test meal. One gram of paracetamol was ingested with the meal to evaluate the speed of gastric emptying. Insulin, glucose, and paracetamol plasma concentrations were measured before and over 180 minutes after ingestion. Beta cell function was calculated from fasting glucose and insulin plasma concentrations. Simultaneously, 800 MBq of [{sup 11}C]MET were administered and the activity (maximum tissue standardized uptake values [SUVmax]) over the pancreas was measured at 15, 30, and 60 minutes after injection. Total integrated SUVmax (area under the curve [AUC]) and incremental SUVmax were calculated. The uptake of [{sup 11}C]MET in the pancreas was significantly higher (p < 0.0001) in controls compared to the PD group. Gastric emptying was significantly slower in controls compared to pancreatectomy subjects (p < 0.0001). Paracetamol AUC{sub 30} correlated with the SUVmax increment between 15 and 30 minutes (R{sup 2} = 0.27, p = 0.0263), suggesting a relationship between gastric emptying and the uptake of [{sup 11}C]MET. Total integrated SUVmax correlated with insulin AUC{sub 60} (R{sup 2} = 0.66,p < 0.0001) in patients after PD. Multivariate regression analysis revealed insulin AUC{sub 60} and beta cell function, calculated from the fasting insulin to glucose ratio, as independent predictors of {sup 11}C-methionine uptake, i.e. total integrated SUVmax, in

  9. Minor long-term changes in weight have beneficial effects on insulin sensitivity and beta-cell function in obese subjects

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Hendel, Helle Westergren; Rasmussen, M H

    2002-01-01

    To evaluate the long-term effect of changes in body composition induced by weight loss on insulin sensitivity (SI), non-insulin mediated glucose disposal, glucose effectiveness (SG)and beta-cell function.......To evaluate the long-term effect of changes in body composition induced by weight loss on insulin sensitivity (SI), non-insulin mediated glucose disposal, glucose effectiveness (SG)and beta-cell function....

  10. Association of NEFA composition with insulin sensitivity and beta cell function in the Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort.

    Science.gov (United States)

    Johnston, Luke W; Harris, Stewart B; Retnakaran, Ravi; Giacca, Adria; Liu, Zhen; Bazinet, Richard P; Hanley, Anthony J

    2018-04-01

    Our aim was to determine the longitudinal associations of individual NEFA with the pathogenesis of diabetes, specifically with differences in insulin sensitivity and beta cell function over 6 years in a cohort of individuals who are at risk for diabetes. In the Prospective Metabolism and Islet Cell Evaluation (PROMISE) longitudinal cohort, 477 participants had serum NEFA measured at the baseline visit and completed an OGTT at three time points over 6 years. Outcome variables were calculated using the OGTT values. At each visit, insulin sensitivity was assessed using the HOMA2 of insulin sensitivity (HOMA2-%S) and the Matsuda index, while beta cell function was assessed using the insulinogenic index over HOMA-IR (IGI/IR) and the insulin secretion-sensitivity index-2 (ISSI-2). Generalised estimating equations were used, adjusting for time, waist, sex, ethnicity, baseline age, alanine aminotransferase (ALT) and physical activity. NEFA were analysed as both concentrations (nmol/ml) and proportions (mol%) of the total fraction. Participants' (73% female, 70% with European ancestry) insulin sensitivity and beta cell function declined by 14-21% over 6 years of follow-up. In unadjusted models, several NEFA (e.g. 18:1 n-7, 22:4 n-6) were associated with lower insulin sensitivity, however, nearly all of these associations were attenuated in fully adjusted models. In adjusted models, total NEFA, 16:0, 18:1 n-9 and 18:2 n-6 (as concentrations) were associated with 3.7-8.0% lower IGI/IR and ISSI-2, while only 20:5 n-3 (as mol%) was associated with 7.7% higher HOMA2-%S. Total NEFA concentration was a strong predictor of lower beta cell function over 6 years. Our results suggest that the association with beta cell function is due to the absolute size of the serum NEFA fraction, rather than the specific fatty acid composition.

  11. Reactive hypoglycemia in lean young women with PCOS and correlations with insulin sensitivity and with beta cell function.

    Science.gov (United States)

    Altuntas, Yuksel; Bilir, Muammer; Ucak, Sema; Gundogdu, Sadi

    2005-04-01

    Reactive hypoglycemia (RH), which is a postprandial hypoglycemic state, occurs within 2-5 h after food intake. It is classified as idiopathic, alimentary, or diabetic reactive hypoglycemia. We studied the incidence of reactive hypoglycemia and looked for any correlations between it and the presence of insulin sensitivity and/or beta cell function in young lean polycystic ovary syndrome (PCOS) patients. This study was designed as a cross-sectional study in 64 lean young women with PCOS (BMI lean young women with PCOS. DHEA-S and PRL levels were found to be lower in subjects with RH (P 0.05, respectively). Beta cell function indices such as the insulinogenic index (at 120 min), CIR (at 120 min) and HOMA beta cell index were found to be insignificantly higher in the RH group than the nonreactive hypoglycemia (NRH) group. The 4 h glucose level, but not the 3 h glucose level, was significantly correlated with insulin resistance indices, such as fasting insulin level, HOMA-IR, Quicky index, and FIRI in the RH group. Significantly decreased DHEA-S levels were an interesting finding. In conclusion, there is an urgent need to investigate RH in lean young women with PCOS. Our results indicate that more definite insulin resistance occurs in subjects with RH in the fourth hour of the OGTT than those with RH in the third hour. In addition, RH in the fourth hour together with a low DHEA-S level may be predictive of future diabetes in young women with PCOS even when they are not obese.

  12. Observation on beta-cell function in patients with type 2 diabetic patients

    International Nuclear Information System (INIS)

    Liao Yu; Chen Xingwen; Jiang Feilong

    2009-01-01

    Objective: o study the pancreatic islets β-cell function in type 2 diabitic patients through the changes of parameters of β-cell function and the effects of plasma glucose levels on insulin secretion function in subjects with different blood glucos levels. ethods:A total of 172 patients with type 2 diabetes and 30 controls were enrolled to take oral 75g glucose tolerance test and insulin releasing test (TRT). These patients were of four groups based upon their fasting insulin levels group A fasting low insulin ( 30 /ΔG 30 ). Basic insulin secretion index (HOMA β) and modified β-cell function index (MBCI) were calculated. Results:Insulin levels in group A, B, C, D were significantly different from those of controls (P 30 /ΔG 30 ) between group A and group B. There were significant difference in MBCI between group C and group D. There was significant difference in HOMA β between group A and group B as well as between group C and group D. The ΔI 30 /ΔG 30 was positively correlated with HOMA β in all groups however, ΔI 30 /ΔG 30 was not correlated with BCI. Conclusion:ΔI 30 /ΔG 30 , MBCI and HOMA β may be used to evaluate β-cell function. Both the insulin release test and glucose tolerance test should be performed before treatment in patients with type 2 diabetes mellitus. (authors)

  13. Development of biomarker specific of pancreatic beta cells (incretin radiolabelled) for image of beta functional mass in diabetic and obese: study in animal model

    International Nuclear Information System (INIS)

    Seo, Daniele

    2017-01-01

    Increased prevalence of obesity worldwide, has become a vast concern, stimulating investigations focusing prevention and therapy of this condition. The association of type 2 diabetes or insulin resistance aggravates the prognosis of obesity. Even patients successfully submitted to bariatric or metabolic surgery, may not be cured of diabetes, as improvement of circulating values of glucose and insulin not necessarily reflects recovery of pancreatic beta cell mass. There is no consensus about how to estimate beta cell mass in vivo. Available tools suffer from low sensitivity and specificity, often being as well cumbersome and expensive. Radiolabeled incretins, such as glucagon-like-peptide 1 (GLP-1) analogs, seem to be promising options for the measurement of beta cell mass in diabetes and insulinoma. The objective of this study was the development of two conjugates of GLP-1 analog, radiolabeled with 99m Technetium, as a noninvasive imaging method for the estimation of pancreatic beta cell mass, in the presence of obesity. Animal models were selected, including hyperlipidic diet-induced obesity, diet restricted obesity, and as controls, alloxan diabetes. Results indicated that both radiotracers achieved over 97% radiochemical yield. The most successful product was 99m Tc-HYNIC-βAla-Exendin-4. Low beta cell mass uptake occurred in diet-induced obesity. Diet-restricted obesity, with substantial shedding of excess body weight, was followed by remarkable decrease of fasting blood glucose, however beta cell mass uptake was only mildly improved. Future studies are recommended in obesity, type 2 diabetes, and dieting, including bariatric and metabolic operations. (author)

  14. Derivatives of the Incomplete Beta Function

    Directory of Open Access Journals (Sweden)

    Robert J. Boik

    1998-03-01

    Full Text Available The incomplete beta function is defined as where Beta(p, q is the beta function. Dutka (1981 gave a history of the development and numerical evaluation of this function. In this article, an algorithm for computing first and second derivatives of Ix,p,q with respect to p and q is described. The algorithm is useful, for example, when fitting parameters to a censored beta, truncated beta, or a truncated beta-binomial model.

  15. Arsenic exposure and calpain-10 polymorphisms impair the function of pancreatic beta-cells in humans: a pilot study of risk factors for T2DM.

    Directory of Open Access Journals (Sweden)

    Andrea Díaz-Villaseñor

    Full Text Available The incidence of type 2 diabetes mellitus (T2DM is increasing worldwide and diverse environmental and genetic risk factors are well recognized. Single nucleotide polymorphisms (SNPs in the calpain-10 gene (CAPN-10, which encodes a protein involved in the secretion and action of insulin, and chronic exposure to inorganic arsenic (iAs through drinking water have been independently associated with an increase in the risk for T2DM. In the present work we evaluated if CAPN-10 SNPs and iAs exposure jointly contribute to the outcome of T2DM. Insulin secretion (beta-cell function and insulin sensitivity were evaluated indirectly through validated indexes (HOMA2 in subjects with and without T2DM who have been exposed to a gradient of iAs in their drinking water in northern Mexico. The results were analyzed taking into account the presence of the risk factor SNPs SNP-43 and -44 in CAPN-10. Subjects with T2DM had significantly lower beta-cell function and insulin sensitivity. An inverse association was found between beta-cell function and iAs exposure, the association being more pronounced in subjects with T2DM. Subjects without T2DM who were carriers of the at-risk genotype SNP-43 or -44, also had significantly lower beta-cell function. The association of SNP-43 with beta-cell function was dependent on iAs exposure, age, gender and BMI, whereas the association with SNP-44 was independent of all of these factors. Chronic exposure to iAs seems to be a risk factor for T2DM in humans through the reduction of beta-cell function, with an enhanced effect seen in the presence of the at-risk genotype of SNP-43 in CAPN-10. Carriers of CAPN-10 SNP-44 have also shown reduced beta-cell function.

  16. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow

    DEFF Research Database (Denmark)

    Potocnik, A J; Brakebusch, C; Fässler, R

    2000-01-01

    hematolymphoid differentiation potential in vitro and in fetal organ cultures but were unable to seed fetal and adult hematopoietic tissues. Adult beta1 integrin null HSCs isolated from mice carrying loxP-tagged beta1 integrin alleles and ablated for beta1 integrin expression by retroviral cre transduction......Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had...

  17. Relationship of Soluble RAGE with Insulin Resistance and Beta Cell Function during Development of Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Subrata Kumar Biswas

    2015-01-01

    Full Text Available This study examined whether circulating levels of soluble receptor for advanced glycation end products (sRAGE alter in prediabetes and correlate with insulin resistance (IR and beta cell function in prediabetes and newly diagnosed type 2 diabetes mellitus (T2DM. Subjects without previous history of diabetes were recruited and grouped as control, prediabetes, and newly diagnosed T2DM. The control subjects (n=40 and people with prediabetes (n=52 and diabetes (n=66 were similar in terms of age, sex, BMI, systolic and diastolic BP, and fasting insulin level. HOMA-IR was found significantly higher in people with diabetes than control subjects (p<0.001 and people with prediabetes (p=0.005; and HOMA-%B was found significantly deteriorated in people with diabetes (p<0.001 compared to control subjects and people with prediabetes. However, serum sRAGE levels did not show any significant alteration in people with prediabetes compared to control subjects. Moreover, univariate and multivariate analyses did not identify any significant correlation and statistical association of sRAGE with HOMA-IR and HOMA-%B in people with prediabetes and newly diagnosed T2DM. Our data suggest that serum sRAGE levels do not alter in people with prediabetes compared to control subjects and do not correlate or associate with IR and beta cell function during development of T2DM.

  18. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Samandari, Nasim; Mirza, Aashiq H; Nielsen, Lotte B

    2017-01-01

    AIMS/HYPOTHESIS: We aimed to identify circulating microRNA (miRNA) that predicts clinical progression in a cohort of 123 children with new-onset type 1 diabetes mellitus. METHODS: Plasma samples were prospectively obtained at 1, 3, 6, 12 and 60 months after diagnosis from a subset of 40 children......RNAs revealed significant enrichment for pathways related to gonadotropin-releasing hormone receptor and angiogenesis pathways. CONCLUSIONS/INTERPRETATION: The miRNA hsa-miR-197-3p at 3 months was the strongest predictor of residual beta cell function 1 year after diagnosis in children with type 1 diabetes...... from the Danish Remission Phase Cohort, and profiled for miRNAs. At the same time points, meal-stimulated C-peptide and HbA1c levels were measured and insulin-dose adjusted HbA1c (IDAA1c) calculated. miRNAs that at 3 months after diagnosis predicted residual beta cell function and glycaemic control...

  19. Functional isotypes are not encoded by the constant region genes of the beta subunit of the T cell receptor for antigen/major histocompatibility complex

    OpenAIRE

    1984-01-01

    Human T cell clones and a cDNA probe specific for constant regions of the beta subunit of the antigen/major histocompatibility complex (MHC) receptor, TiC beta 1 and TiC beta 2, were employed to determine whether these genes were differentially used by functional classes of T lymphocytes. DNA from 10 interleukin-2-dependent T cell clones including class I and class II MHC-specific cytotoxic T lymphocytes (n = 6), T4+ inducer T lymphocytes (n = 2), and T8+ suppressor T lymphocytes (n = 2) show...

  20. Generation of Functional Beta-Like Cells from Human Exocrine Pancreas.

    Directory of Open Access Journals (Sweden)

    Maria J Lima

    Full Text Available Transcription factor mediated lineage reprogramming of human pancreatic exocrine tissue could conceivably provide an unlimited supply of islets for transplantation in the treatment of diabetes. Exocrine tissue can be efficiently reprogrammed to islet-like cells using a cocktail of transcription factors: Pdx1, Ngn3, MafA and Pax4 in combination with growth factors. We show here that overexpression of exogenous Pax4 in combination with suppression of the endogenous transcription factor ARX considerably enhances the production of functional insulin-secreting β-like cells with concomitant suppression of α-cells. The efficiency was further increased by culture on laminin-coated plates in media containing low glucose concentrations. Immunocytochemistry revealed that reprogrammed cultures were composed of ~45% islet-like clusters comprising >80% monohormonal insulin+ cells. The resultant β-like cells expressed insulin protein levels at ~15-30% of that in adult human islets, efficiently processed proinsulin and packaged insulin into secretory granules, exhibited glucose responsive insulin secretion, and had an immediate and prolonged effect in normalising blood glucose levels upon transplantation into diabetic mice. We estimate that approximately 3 billion of these cells would have an immediate therapeutic effect following engraftment in type 1 diabetes patients and that one pancreas would provide sufficient tissue for numerous transplants.

  1. Central infusion of leptin improves insulin resistance and suppresses beta-cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model.

    Science.gov (United States)

    Park, Sunmin; Ahn, Il Sung; Kim, Da Sol

    2010-06-05

    We investigated whether hypothalamic leptin alters beta-cell function and mass directly via the sympathetic nervous system (SNS) or indirectly as the result of altered insulin resistant states. The 90% pancreatectomized male Sprague Dawley rats had sympathectomy into the pancreas by applying phenol into the descending aorta (SNSX) or its sham operation (Sham). Each group was divided into two sections, receiving either leptin at 300ng/kgbw/h or artificial cerebrospinal fluid (aCSF) via intracerebroventricular (ICV) infusion for 3h as a short-term study. After finishing the infusion study, ICV leptin (3mug/kg bw/day) or ICV aCSF (control) was infused in rats fed 30 energy % fat diets by osmotic pump for 4weeks. At the end of the long-term study, glucose-stimulated insulin secretion and islet morphometry were analyzed. Acute ICV leptin administration in Sham rats, but not in SNSX rats, suppressed the first- and second-phase insulin secretion at hyperglycemic clamp by about 48% compared to the control. Regardless of SNSX, the 4-week administration of ICV leptin improved glucose tolerance during oral glucose tolerance tests and insulin sensitivity at hyperglycemic clamp, compared to the control, while it suppressed second-phase insulin secretion in Sham rats but not in SNSX rats. However, the pancreatic beta-cell area and mass were not affected by leptin and SNSX, though ICV leptin decreased individual beta-cell size and concomitantly increased beta-cell apoptosis in Sham rats. Leptin directly decreases insulin secretion capacity mainly through the activation of SNS without modulating pancreatic beta-cell mass.

  2. The enteroinsular axis and endocrine pancreatic function in chronic alcohol consumers: evidence for early beta-cell hypofunction.

    Science.gov (United States)

    Patto, R J; Russo, E K; Borges, D R; Neves, M M

    1993-09-01

    Chronic alcohol consumers may have, as judged by functional criteria, exocrine as well as endocrine pancreatic dysfunction, the latter represented by a decreased insulin response to an oral glucose load. To investigate whether this decreased insulin response was due to an ethanol-induced beta-cell dysfunction or to an ethanol-induced dysfunction of the enteroinsular axis, we determined glucose, insulin, and C-peptide plasma concentrations following an oral and an intravenous glucose load in 16 healthy volunteer nonalcohol consumers and in 10 chronic alcohol consumers. In each group, total integrated response for glucose did not significantly change whether glucose was given orally or intravenously, indicating isoglycemic glucose loads. The total integrated response values for insulin in the alcoholic group following both glucose loads as well as C-peptide plasma concentrations were significantly lower than in the control group. Moreover, in both groups the insulin TIR values following the oral glucose load were significantly greater than the values obtained following the intravenous glucose load, indicating an incretin effect. These results indicate that the decreased insulin response observed in alcoholics was not caused by a dysfunction of the enteroinsular axis because it also occurred following an intravenous glucose load, but by an ethanol-induced beta-cell dysfunction because C-peptide and insulin were proportionally decreased in this group.

  3. Fetal pancreatic beta-cell function in pregnancies complicated by maternal diabetes mellitus: relationship to fetal acidemia and macrosomia.

    Science.gov (United States)

    Salvesen, D R; Brudenell, J M; Proudler, A J; Crook, D; Nicolaides, K H

    1993-05-01

    Our purpose was to investigate the relationship between fetal pancreatic beta-cell function and fetal acidemia and macrosomia in pregnancies complicated by maternal diabetes mellitus. A cross-sectional study at the Harris Birthright Research Centre for Fetal Medicine, London, was performed. In 32 pregnancies complicated by maternal diabetes mellitus cordocentesis was performed at 36 to 39 weeks' gestation for the measurement of umbilical venous blood pH, PO2, PCO2, lactate, and glucose concentration; plasma insulin immunoreactivity; and insulin/glucose ratio. A reference range for plasma insulin and insulin/glucose ratio was constructed by studying fetal blood samples from 80 women who did not have diabetes mellitus. Mean umbilical venous blood pH was significantly lower and plasma insulin immunoreactivity and insulin/glucose ratio were significantly higher than the appropriate normal mean for gestation. There were significant associations between (1) maternal and fetal blood glucose concentrations (r = 0.95, p < 0.0001), (2) fetal blood glucose and plasma insulin immunoreactivity (r = 0.57, p < 0.01), (3) fetal plasma insulin immunoreactivity and blood pH (r = -0.39, p < 0.05), and (4) fetal insulin/glucose ratio and degree of macrosomia (r = 0.76, p < 0.0001). Fetal pancreatic beta-cell hyperplasia is implicated in the pathogenesis of both fetal acidemia and macrosomia.

  4. Induction of cell scattering by expression of beta1 integrins in beta1-deficient epithelial cells requires activation of members of the rho family of GTPases and downregulation of cadherin and catenin function

    DEFF Research Database (Denmark)

    Gimond, C; van Der Flier, A; van Delft, S

    1999-01-01

    different beta1-null cell lines, epithelial GE11 and fibroblast-like GD25 cells. Expression of beta1A or the cytoplasmic splice variant beta1D, induced the disruption of intercellular adherens junctions and cell scattering in both GE11 and GD25 cells. In GE11 cells, the morphological change correlated...... for a complete morphological transition towards the spindle-shaped fibroblast-like phenotype. The expression of an interleukin-2 receptor (IL2R)-beta1A chimera and its incorporation into focal adhesions also induced the disruption of cadherin-based adhesions and the reorganization of ECM-cell contacts...

  5. Beta-cell function is associated with metabolic syndrome in Mexican subjects

    Directory of Open Access Journals (Sweden)

    Pérez-Fuentes

    2010-08-01

    Full Text Available Blanca G Baez-Duarte1,3, María Del Carmen Sánchez-Guillén3†, Ricardo Pérez-Fuentes2,3, Irma Zamora-Ginez1,3, Bertha Alicia Leon-Chavez1, Cristina Revilla-Monsalve4, Sergio Islas-Andrade41Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, México; 2Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, México; 3Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Atlixco, Puebla, México; 4Multidiciplinary Research Group on Diabetes (José Sánchez-Corona, Fernando Guerrero-Romero, Martha Rodriguez-Moran, Agustin Madero, Jorge Escobedo-de-la-Peña, Silvia Flores-Martinez, Esperanza, Martinez-Abundis, Manuel Gonzalez-Ortiz, Alberto Rascon-Pacheco, Margarita Torres-Tamayo, Instituto Mexicano del Seguro Social, México, Distrito Federal, México; †María Del Carmen Sánchez-Guillén passed away on 27 November 2009.Aims: The clinical diagnosis of metabolic syndrome does not find any parameters to evaluate the insulin sensitivity (IS or β-cell function. The evaluation of these parameters would detect early risk of developing metabolic syndrome. The aim of this study is to determine the relationship between β-cell function and presence of metabolic syndrome in Mexican subjects.Material and methods: This study is part of the Mexican Survey on the Prevention of Diabetes (MexDiab Study with headquarters in the city of Puebla, Mexico. The study comprised of 444 subjects of both genders, aged between 18 and 60 years and allocated into two study groups: (1 control group of individuals at metabolic balance without metabolic syndrome and (2 group composed of subjects with metabolic syndrome and diagnosed according to the criteria of the Third Report of the National Cholesterol Education Program Expert Panel on Defection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Anthropometric, biochemical, and clinical assessments were carried out.Results: Average age of the

  6. TGF-beta1 inhibits Cx43 expression and formation of functional syncytia in cultured smooth muscle cells from human detrusor.

    Science.gov (United States)

    Neuhaus, Jochen; Heinrich, Marco; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2009-02-01

    Human detrusor smooth muscle cells (hBSMCs) are coupled by connexin 43 (Cx43)-positive gap junctions to form functional syncytia. Gap junctional communication likely is necessary for synchronised detrusor contractions and is supposed to be altered in voiding disturbances. Other authors have shown that the pleiotropic cytokine TGF-beta1 upregulates Cx43 expression in human aortic smooth muscle cells. In this study, we examined the TGF-beta1 effects on Cx43 expression in cultured hBSMCs. hBSMC cultures, established from patients undergoing cystectomy, were treated with recombinant human TGF-beta1. Cx43 expression was then examined by Western blotting, real-time PCR, and immunocytochemistry. Dye-injection experiments were used to study the size of functional syncytia. Dye-coupling experiments revealed stable formation of functional syncytia in passaged cell cultures (P1-P4). Stimulation with TGF-beta1 led to significant reduction of Cx43 immunoreactivity and coupling. Cx43 protein expression was significantly downregulated and Cx43 mRNA was only 30% of the control level. Interestingly, low phosphorylation species of Cx43 were particularly affected. Our experiments demonstrated a significant down regulation of connexin 43 by TGF-beta1 in cultured hBSMCs. These findings support the view that TGF-beta1 is involved in the pathophysiology of urinary bladder dysfunction.

  7. Assessment of Beta-Cell Function During Pregnancy and after Delivery

    Directory of Open Access Journals (Sweden)

    Genova M. P.

    2014-06-01

    Full Text Available The aim of the present study was to assess β-cell function using homeostasis model (HOMA-B and disposition index (DI in pregnant women with/without gestational diabetes, and after delivery. A total of 102 pregnant women between 24-28 gestational weeks (53 with gestational diabetes mellitus (GDM and 49 with normal glucose tolerance (NGT and 22 GDM postpartum women (8-12 weeks after delivery were included in the study. All postpartum women had a history of GDM. HOMA indexes (insulin resistance - HOMA-IR and HOMA-B for assessing β-cell function were calculated from fasting glucose and insulin concentrations. To estimate insulin secretion independent of insulin sensitivity, DI was calculated using glucose and insulin levels at 0 and 60 min during the course of a 2 h 75g oral glucose tolerance test (OGTT. In GDM pregnant women HOMA-B was significantly lower compared to NGT women (p = 0.017, but there was no significant difference compared to women after birth (NS. There was difference between NGT and postpartum women (p < 0.05. DI was significantly lower for GDM pregnant women in comparison to NGT and postpartum women (p < 0.0001; p = 0.011, between NGT and women after birth (p < 0.04. In our study, comparison of НОМА-В in NGT and GDM pregnant women demonstrated that the OR of developing GDM was 0.989 (95% CI, 0.980-0.998, P = 0.013, and comparison of DI in healthy pregnant and GDM showed that the OR of developing GDM was 0.967 (95% CI, 0.947-0.988, P = 0.002. Therefore, HOMA-B and DI appear to be protective factors in the risk of developing GDM. According to our results, assessment of β-cell function, using HOMA-B and DI, showed that they are lower in GDM than NGT group and postpartum women. It is important to note that HOMA-B did not show significant difference between GDM pregnant and women after delivery with a history for GDM. We assume that pregnant women with GDM have a pancreatic β-cell defect that remains after birth. These women

  8. The dipeptidyl peptidase-4 inhibitor vildagliptin improves beta-cell function and insulin sensitivity in subjects with impaired fasting glucose

    DEFF Research Database (Denmark)

    Utzschneider, Kristina M; Tong, Jenny; Montgomery, Brenda

    2007-01-01

    OBJECTIVE: To evaluate the effect of treatment with the dipeptidyl peptidase (DPP)-4 inhibitor vildagliptin on insulin sensitivity and beta-cell function in subjects with impaired fasting glucose (IFG). RESEARCH DESIGN AND METHODS: A total of 22 subjects with IFG (11 female and 11 male, mean +/- SD...... age 59.6 +/- 11.5 years) were treated orally with 100 mg vildagliptin once daily in a single-blind study. Subjects received placebo for 2 weeks (run-in) followed by vildagliptin for 6 weeks (treatment) and then placebo for 2 weeks (washout). A frequently sampled intravenous glucose tolerance test....... RESULTS: Fasting plasma glucose did not change after 6 weeks of vildagliptin treatment. With treatment, mean +/- SEM AIR(g) increased from 224 +/- 44 to 286 +/- 52 pmol/l (P

  9. The species origin of the cellular microenvironment influences markers of beta cell fate and function in EndoC-βH1 cells.

    Science.gov (United States)

    Jeffery, N; Richardson, S; Beall, C; Harries, L W

    2017-12-15

    Interaction between islet cell subtypes and the extracellular matrix influences beta-cell function in mammals. The tissue architecture of rodent islets is very different to that of human islets; cell-to-cell communication and interaction with the extracellular matrix may vary between species. In this work, we have compared the responses of the human EndoC-βH1 cell line to non-human and human-derived growth matrices in terms of growth morphology, gene expression and glucose-stimulated insulin secretion (GSIS). EndoC-βH1 cells demonstrated a greater tendency to form cell clusters when cultured in a human microenvironment and exhibited reduced alpha cell markers at the mRNA level; mean expression difference - 0.23 and - 0.51; p = 0.009 and 0.002 for the Aristaless-related homeobox (ARX) and Glucagon (GCG) genes respectively. No differences were noted in the protein expression of mature beta cell markers such as Pdx1 and NeuroD1 were noted in EndoC-βH1 cells grown in a human microenvironment but cells were however more sensitive to glucose (4.3-fold increase in insulin secretion following glucose challenge compared with a 1.9-fold increase in cells grown in a non-human microenvironment; p = 0.0003). Our data suggests that the tissue origin of the cellular microenvironment has effects on the function of EndoC-βH1 cells in vitro, and the use of a more human-like culture microenvironment may bring benefits in terms of increased physiological relevance. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Clinical characteristics and beta cell function in Chinese patients with newly diagnosed type 2 diabetes mellitus with different levels of serum triglyceride.

    Science.gov (United States)

    Zheng, Shuang; Zhou, Huan; Han, Tingting; Li, Yangxue; Zhang, Yao; Liu, Wei; Hu, Yaomin

    2015-04-29

    To explore clinical characteristics and beta cell function in Chinese patients with newly diagnosed drug naive type 2 diabetes mellitus (T2DM) with different levels of serum triglyceride (TG). Patients with newly diagnosed T2DM (n = 624) were enrolled and divided into different groups according to levels of serum TG. All patients underwent oral glucose tolerance tests and insulin releasing tests. Demographic data, lipid profiles, glucose levels, and insulin profiles were compared between different groups. Basic insulin secretion function index (homeostasis model assessment for beta cell function index, HOMA-β), modified beta cell function index (MBCI), glucose disposition indices (DI), and early insulin secretion function index (insulinogenic index, IGI) were used to evaluate the beta cell function. Patients of newly diagnosed T2DM with hypertriglyceridemia were younger, fatter and had worse lipid profiles, glucose profiles, and high insulin levels than those with normal TG. There is no difference in early phase insulin secretion among groups of newly diagnosed T2DM patients with different TG levels. The basal beta cell function (HOMA-β and MBCI) initially increased along rising TG levels and then decreased as the TG levels rose further. The insulin sensitivity was relatively high in patients with a low level of TG and low with a high level of TG. Hypertriglyceridemia influences clinical characteristics and β cell function of Chinese patients with newly diagnosed T2DM. A better management of dyslipidemia may, to some extent, reduce the effect of lipotoxicity, thereby improving glucose homeostasis in patients with newly diagnosed T2DM.

  11. Age-related mitochondrial DNA depletion and the impact on pancreatic Beta cell function.

    Science.gov (United States)

    Nile, Donna L; Brown, Audrey E; Kumaheri, Meutia A; Blair, Helen R; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M; Payne, Brendan; Chinnery, Patrick F; Brown, Louise; Gunn, David A; Walker, Mark

    2014-01-01

    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes.

  12. Stevioside improves pancreatic beta-cell function during glucotoxicity via regulation of acetyl-CoA carboxylase.

    Science.gov (United States)

    Chen, Jianguo; Jeppesen, Per Bendix; Nordentoft, Iver; Hermansen, Kjeld

    2007-06-01

    Chronic hyperglycemia is detrimental to pancreatic beta-cells, causing impaired insulin secretion and beta-cell turnover. The characteristic secretory defects are increased basal insulin secretion (BIS) and a selective loss of glucose-stimulated insulin secretion (GSIS). Several recent studies support the view that the acetyl-CoA carboxylase (ACC) plays a pivotal role for GSIS. We have shown that stevioside (SVS) enhances insulin secretion and ACC gene expression. Whether glucotoxicity influences ACC and whether this action can be counteracted by SVS are not known. To investigate this, we exposed isolated mouse islets as well as clonal INS-1E beta-cells for 48 h to 27 or 16.7 mM glucose, respectively. We found that 48-h exposure to high glucose impairs GSIS from mouse islets and INS-1E cells, an effect that is partly counteracted by SVS. The ACC dephosphorylation inhibitor okadaic acid (OKA, 10(-8) M), and 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR, 10(-4) M), an activator of 5'-AMP protein kinase that phosphorylates ACC, eliminated the beneficial effect of SVS. 5-Tetrade-cyloxy-2-furancarboxylic acid (TOFA), the specific ACC inhibitor, blocked the effect of SVS as well. During glucotoxity, ACC gene expression, ACC protein, and phosphorylated ACC protein were increased in INS-1E beta-cells. SVS pretreatment further increased ACC gene expression with strikingly elevated ACC activity and increased glucose uptake accompanied by enhanced GSIS. Our studies show that glucose is a potent stimulator of ACC and that SVS to some extent counteracts glucotoxicity via increased ACC activity. SVS possesses the potential to alleviate negative effects of glucotoxicity in beta-cells via a unique mechanism of action.

  13. Toll-Like Receptor 2 Activation by beta 2 -> 1-Fructans Protects Barrier Function of T84 Human Intestinal Epithelial Cells in a Chain Length-Dependent Manner

    NARCIS (Netherlands)

    Vogt, Leonie M.; Meyer, Diederick; Pullens, Gerdie; Faas, Marijke M.; Venema, Koen; Ramasamy, Uttara; Schols, Henk A.; de Vos, Paul

    Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear. We hypothesized that beta 2 -> 1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2

  14. Differences in beta-cell function and insulin secretion in Black vs. White obese adolescents: Do incretin hormones play a role?

    Science.gov (United States)

    Black youth are at higher risk for type 2 diabetes (T2D) than their White peers. Previously we demonstrated that for the same degree of insulin sensitivity, Black youth have an upregulated beta-cell function and insulin hypersecretion, in response to intravenous (IV) glucose, compared with Whites. T...

  15. Beta cell function following 1 year vildagliptin or placebo treatment and after 12 week washout in drug-naive patients with type 2 diabetes and mild hyperglycaemia: a randomised controlled trial

    NARCIS (Netherlands)

    Foley, J.E.; Bunck, M.C.M.; Moller-Goede, D.L.; Poelma, M.; Nijpels, G.; Eekhoff, E.M.; Schweizer, A.; Heine, R.J.; Diamant, M.

    2011-01-01

    Aims/hypothesis: Traditional blood glucose lowering agents do not prevent the progressive loss of beta cell function in patients with type 2 diabetes. The dipeptidylpeptidase (DPP)-4 inhibitor vildagliptin improves beta cell function both acutely and chronically (up to 2 years). Whether this effect

  16. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  17. Beta Cell Workshop 2013 Kyoto

    DEFF Research Database (Denmark)

    Heller, R Scott; Madsen, Ole D; Nielsen, Jens Høiriis

    2013-01-01

    The very modern Kyoto International Conference Center provided the site for the 8th workshop on Beta cells on April 23-26, 2013. The preceding workshops were held in Boston, USA (1991); Kyoto, Japan (1994); Helsingør, Denmark (1997); Helsinki, Finland (2003); El Perello, Spain (2006); Peebles...

  18. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    DEFF Research Database (Denmark)

    Neve, Bernadette; Fernandez-Zapico, Martin E; Ashkenazi-Katalan, Vered

    2005-01-01

    in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1......,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter...... and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting...

  19. Preservation of beta cell function in adult human pancreatic islets for several months in vitro

    DEFF Research Database (Denmark)

    Brunstedt, J; Andersson, A; Frimodt-Møller, C

    1979-01-01

    Islets of Langerhans were isolated from four human kidney donors, aged 16 to 21 years by the collagenase method described for isolation of rodent islets. So far the human islets have been kept in tissue culture, without attachment, in medium RPMI 1640 supplemented with 10% calf serum for more tha...... technique presents a valuable tool for studying chronic effects of metabolites and hormones on islet function, as well as for islet storage prior to transplantation into humans.......Islets of Langerhans were isolated from four human kidney donors, aged 16 to 21 years by the collagenase method described for isolation of rodent islets. So far the human islets have been kept in tissue culture, without attachment, in medium RPMI 1640 supplemented with 10% calf serum for more than...

  20. Chronology of endocrine differentiation and beta-cell neogenesis.

    Science.gov (United States)

    Miyatsuka, Takeshi

    2016-01-01

    Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo.

  1. Improved function and proliferation of adult human beta cells engrafted in diabetic immunodeficient NOD-scid IL2rγnull mice treated with alogliptin

    Directory of Open Access Journals (Sweden)

    Jurczyk A

    2013-12-01

    Full Text Available Agata Jurczyk,1 Philip diIorio,1 Dean Brostowin,1 Linda Leehy,1 Chaoxing Yang,1 Fumihiko Urano,2 David M Harlan,3 Leonard D Shultz,4 Dale L Greiner,1 Rita Bortell1 1Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 2Department of Medicine, Washington University School of Medicine, St Louis, MO, 3Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 4The Jackson Laboratory, Bar Harbor, ME, USA Purpose: Dipeptidyl-peptidase-4 (DPP-4 inhibitors are known to increase insulin secretion and beta cell proliferation in rodents. To investigate the effects on human beta cells in vivo, we utilize immunodeficient mice transplanted with human islets. The study goal was to determine the efficacy of alogliptin, a DPP-4 inhibitor, to enhance human beta cell function and proliferation in an in vivo context using diabetic immunodeficient mice engrafted with human pancreatic islets. Methods: Streptozotocin-induced diabetic NOD-scid IL2rγnull (NSG mice were transplanted with adult human islets in three separate trials. Transplanted mice were treated daily by gavage with alogliptin (30 mg/kg/day or vehicle control. Islet graft function was compared using glucose tolerance tests and non-fasting plasma levels of human insulin and C-peptide; beta cell proliferation was determined by bromodeoxyuridine (BrdU incorporation. Results: Glucose tolerance tests were significantly improved by alogliptin treatment for mice transplanted with islets from two of the three human islet donors. Islet-engrafted mice treated with alogliptin also had significantly higher plasma levels of human insulin and C-peptide compared to vehicle controls. The percentage of insulin+BrdU+ cells in human islet grafts from alogliptin-treated mice was approximately 10-fold more than from vehicle control mice, consistent with a significant increase in human beta cell proliferation. Conclusion: Human islet-engrafted immunodeficient mice

  2. Phenotypical and functional characterization of double-negative (CD4-CD8-) alpha beta T-cell receptor positive cells from an immunodeficient patient

    DEFF Research Database (Denmark)

    Illum, N; Ralfkiaer, E; Pallesen, G

    1991-01-01

    We have characterized CD4-CD8- double-negative (DN) alpha beta TCR+ T cells from a patient with immunodeficiency, lymphocytosis, lymphadenopathy, and hepatosplenomegaly. The majority of peripheral blood lymphocytes were DN alpha beta TCR+ T cells as evaluated by FACS and biochemical analysis...... (MoAbs) indicated a polyclonal T-cell expansion. Thymic biopsy showed normal histology, whereas lymph node biopsy samples showed altered histological and immunohistological patterns with markedly expanded paracortical areas containing the DN T cells of the same phenotype as found in peripheral blood T...

  3. Effect of atorvastatin on pancreatic Beta-cell function and insulin resistance in type 2 diabetes mellitus patients: a randomized pilot study.

    Science.gov (United States)

    Goyal, Aman; Singh, Surender; Tandon, Nikhil; Gupta, Nandita; Gupta, Yogendra Kumar

    2014-12-01

    Statins are commonly used for the management of dyslipidemia in type 2 diabetes mellitus patients. We hypothesized that atorvastatin could modulate the beta-cell function by altering the levels of proapoptotic and antiapoptotic lipoproteins and could also have an effect on insulin resistance. The aim of the present pilot study was to assess the effect of atorvastatin 10 mg on pancreatic beta-cell function and insulin resistance in patients with hyperlipidemia and type 2 diabetes by using the homeostasis model assessment-2 (HOMA2) index. Fifty-one type 2 diabetes patients receiving oral antidiabetes drugs, not taking statins, with baseline low-density lipoprotein cholesterol between 2.6 mmol/L and 4.1 mmol/L were included. Forty-three patients (21 in placebo group and 22 in atorvastatin group) completed the study and were taken up for final analysis. Fasting blood samples were obtained at baseline and at 12 weeks to determine levels of blood glucose, lipid profile, insulin, C-peptide and glycosylated hemoglobin (A1C). Atorvastatin nonsignificantly increased fasting serum insulin (+14.29%, p=0.18), accompanied by marginal nonsignificant increases in fasting plasma glucose and A1C. There was a decrease in HOMA2 percent beta-cell function (-2.9%, p=0.72) and increase in HOMA2 insulin resistance (+14%, p=0.16) in the atorvastatin group as compared with baseline, but the difference was not statistically significant. Atorvastatin in the dose used failed to produce significant change in pancreatic beta-cell function and insulin resistance in type 2 diabetes patients as assessed by the HOMA2 index. The possible explanations include absence of lipotoxicity at prevailing levels of dyslipidemia at baseline or inadequacy of statin dose used in the study. (Clinical Trials Registry-India: CTRI/2008/091/000099). Copyright © 2014 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  4. Improved pancreatic beta-cell function in type 2 diabetic patients after lifestyle-induced weight loss is related to glucose-dependent insulinotropic polypeptide

    DEFF Research Database (Denmark)

    Solomon, Thomas; Haus, Jacob M; Kelly, Karen R

    2010-01-01

    Restoration of insulin secretion is critical for the treatment of type 2 diabetes. Exercise and diet can alter glucose-induced insulin responses, but whether this is due to changes in beta-cell function per se is not clear. The mechanisms by which lifestyle intervention may modify insulin secretion...... in type 2 diabetes have also not been examined but may involve the incretin axis....

  5. A Plant-Based Dietary Intervention Improves Beta-Cell Function and Insulin Resistance in Overweight Adults: A 16-Week Randomized Clinical Trial.

    Science.gov (United States)

    Kahleova, Hana; Tura, Andrea; Hill, Martin; Holubkov, Richard; Barnard, Neal D

    2018-02-09

    The aim of this study was to test the effect of a plant-based dietary intervention on beta-cell function in overweight adults with no history of diabetes. Participants ( n = 75) were randomized to follow a low-fat plant-based diet ( n = 38) or to make no diet changes ( n = 37) for 16 weeks. At baseline and 16 weeks, beta-cell function was quantified with a mathematical model. Using a standard meal test, insulin secretory rate was calculated by C-peptide deconvolution. The Homeostasis Model Assessment (HOMA-IR) index was used to assess insulin resistance while fasting. A marked increase in meal-stimulated insulin secretion was observed in the intervention group compared with controls (interaction between group and time, Gxt, p effect -1.0 (95% CI, -1.2 to -0.8); Gxt, p = 0.004). Changes in HOMA-IR correlated positively with changes in body mass index (BMI) and visceral fat volume ( r = 0.34; p = 0.009 and r = 0.42; p = 0.001, respectively). The latter remained significant after adjustment for changes in BMI ( r = 0.41; p = 0.002). Changes in glucose-induced insulin secretion correlated negatively with BMI changes ( r = -0.25; p = 0.04), but not with changes in visceral fat. Beta-cell function and insulin sensitivity were significantly improved through a low-fat plant-based diet in overweight adults.

  6. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Mari, A; Sallas, W M; He, Y L

    2005-01-01

    in diabetic patients, suggesting that more sophisticated measures are necessary to ascertain the influence of vildagliptin on beta-cell function. METHODS: This study examined the effects of 28-d treatment with vildagliptin (100 mg, twice daily; n = 9) vs. placebo (n = 11) on beta-cell function in diabetic...... and other factors. RESULTS: Vildagliptin significantly increased the insulin secretory rate at 7 mmol/liter glucose (secretory tone), calculated from the dose response; the difference in least squares mean (deltaLSM) was 101 +/- 51 pmol.min(-1).m(-2) (P = 0.002). The slope of the beta-cell dose response......, the derivative component, and the potentiation factor were not affected. Vildagliptin also significantly decreased mean prandial glucose (deltaLSM, -1.2 +/- 0.4 mmol/liter; P = 0.01) and glucagon (deltaLSM, -10.7 +/- 4.8 ng/liter; P = 0.03) levels and increased plasma levels of intact GLP-1 (deltaLSM, +10...

  7. Limitations of the HOMA-B score for assessment of beta-cell functionality in interventional trials-results from the PIOglim study.

    Science.gov (United States)

    Pfützner, Andreas; Derwahl, Michael; Jacob, Stephan; Hohberg, Cloth; Blümner, Ernst; Lehmann, Ute; Fuchs, Winfried; Forst, Thomas

    2010-08-01

    Drugs with unspecific stimulating effects on beta-cell secretion increase the homeostasis model assessment (HOMA)-B score, indicating improved beta-cell "function." We investigated whether the beta-cell protection provided by adding pioglitazone (PIO) to glimepiride (GLIM) in comparison to up-titrating the GLIM dose alone is reflected by appropriate changes in several measures of beta-cell function, including HOMA-B score. This double-blind, parallel prospective 6-month study was performed with 82 patients (47 men, 35 women; age, 61 +/- 9 years; duration of disease, 5.3 +/- 4.4 years; body mass index, 32.6 +/- 6.0 kg/m(2); hemoglobin A1c [HbA1c], 7.3 +/- 0.7%) with GLIM monotherapy (1-3 mg). They were randomized to receive a GLIM + PIO combination with up-titration (2 mg + 30 mg/4 mg + 30 mg/4 mg + 4 mg) or to remain on GLIM (up-titration 4/5/6 mg). Observation parameters determined at baseline and end point included HOMA-B, HOMA-IR, HbA1c, glucose, insulin, and intact proinsulin. There was a slight increase in the HOMA-B score in the GLIM group but not in the GLIM + PIO arm (baseline/end point: for GLIM, 71 +/- 48/88 +/- 64; for PIO + GLIM, 74 +/- 56/69 +/- 52). Improvements in the other observation parameters were predominantly detected in the PIO + GLIM group (HbA1c, 7.20 +/- 0.61%/6.36 +/- 0.90%; HOMA-IR, 7.0 +/- 4.5/4.1 +/- 2.1; intact proinsulin, 12.4 +/- 10.3/7.6 +/- 4.8 pmol/L [all P HOMA-IR, 7.4 +/- 4.5/7.5 +/- 4.3 [not significant]; intact proinsulin, 17.3 +/- 21.6/16.3 +/- 15.5 pmol/L [not significant]). The PIO + GLIM combination led to overall improvement of laboratory biomarkers for beta-cell function, except for HOMA-B. Glimepiride up-titration had no such effects but increased the HOMA-B score. HOMA-B seems to provide misleading results when used as a diagnostic tool in patients treated with sulfonylurea drugs. A corrective term for consideration of proinsulin in the HOMA-B equation may address this limitation.

  8. Fasting and meal-stimulated residual beta cell function is positively associated with serum concentrations of proinflammatory cytokines and negatively associated with anti-inflammatory and regulatory cytokines in patients with longer term type 1 diabetes

    DEFF Research Database (Denmark)

    Pham, Minh-Long; Kolb, H; Battelino, T

    2013-01-01

    Cytokines may promote or inhibit disease progression in type 1 diabetes. We investigated whether systemic proinflammatory, anti-inflammatory and regulatory cytokines associated differently with fasting and meal-stimulated beta cell function in patients with longer term type 1 diabetes.......Cytokines may promote or inhibit disease progression in type 1 diabetes. We investigated whether systemic proinflammatory, anti-inflammatory and regulatory cytokines associated differently with fasting and meal-stimulated beta cell function in patients with longer term type 1 diabetes....

  9. Carriers of loss-of-function mutations in EXT display impaired pancreatic beta-cell reserve due to smaller pancreas volume.

    Directory of Open Access Journals (Sweden)

    Sophie J Bernelot Moens

    Full Text Available Exotosin (EXT proteins are involved in the chain elongation step of heparan sulfate (HS biosynthesis, which is intricately involved in organ development. Loss of function mutations (LOF in EXT1 and EXT2 result in hereditary exostoses (HME. Interestingly, HS plays a role in pancreas development and beta-cell function, and genetic variations in EXT2 are associated with an increased risk for type 2 diabetes mellitus. We hypothesized that loss of function of EXT1 or EXT2 in subjects with hereditary multiple exostoses (HME affects pancreatic insulin secretion capacity and development. We performed an oral glucose tolerance test (OGTT followed by hyperglycemic clamps to investigate first-phase glucose-stimulated insulin secretion (GSIS in HME patients and age and gender matched non-affected relatives. Pancreas volume was assessed with magnetic resonance imaging (MRI. OGTT did not reveal significant differences in glucose disposal, but there was a markedly lower GSIS in HME subjects during hyperglycemic clamp (iAUC HME: 0.72 [0.46-1.16] vs. controls 1.53 [0.69-3.36] nmol·l-1·min-1, p<0.05. Maximal insulin response following arginine challenge was also significantly attenuated (iAUC HME: 7.14 [4.22-10.5] vs. controls 10.2 [7.91-12.70] nmol·l-1·min-1 p<0.05, indicative of an impaired beta-cell reserve. MRI revealed a significantly smaller pancreatic volume in HME subjects (HME: 72.0±15.8 vs. controls 96.5±26.0 cm3 p = 0.04. In conclusion, loss of function of EXT proteins may affect beta-cell mass and insulin secretion capacity in humans, and render subjects at a higher risk of developing type 2 diabetes when exposed to environmental risk factors.

  10. Transgenic overexpression of active calcineurin in beta-cells results in decreased beta-cell mass and hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Ernesto Bernal-Mizrachi

    2010-08-01

    Full Text Available Glucose modulates beta-cell mass and function through an initial depolarization and Ca(2+ influx, which then triggers a number of growth regulating signaling pathways. One of the most important downstream effectors in Ca(2+ signaling is the calcium/Calmodulin activated serine threonine phosphatase, calcineurin. Recent evidence suggests that calcineurin/NFAT is essential for beta-cell proliferation, and that in its absence loss of beta-cells results in diabetes. We hypothesized that in contrast, activation of calcineurin might result in expansion of beta-cell mass and resistance to diabetes.To determine the role of activation of calcineurin signaling in the regulation of pancreatic beta-cell mass and proliferation, we created mice that expressed a constitutively active form of calcineurin under the insulin gene promoter (caCn(RIP. To our surprise, these mice exhibited glucose intolerance. In vitro studies demonstrated that while the second phase of Insulin secretion is enhanced, the overall insulin secretory response was conserved. Islet morphometric studies demonstrated decreased beta-cell mass suggesting that this was a major component responsible for altered Insulin secretion and glucose intolerance in caCn(RIP mice. The reduced beta-cell mass was accompanied by decreased proliferation and enhanced apoptosis.Our studies identify calcineurin as an important factor in controlling glucose homeostasis and indicate that chronic depolarization leading to increased calcineurin activity may contribute, along with other genetic and environmental factors, to beta-cell dysfunction and diabetes.

  11. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H

    2011-01-01

    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture...

  12. Insulin sensitivity and beta-cell function after carbohydrate oral loading in hip replacement surgery: a double-blind, randomised controlled clinical trial.

    Science.gov (United States)

    Ljunggren, Stefan; Hahn, Robert G; Nyström, Thomas

    2014-06-01

    Surgery initiates a series of physiological stress processes in the body, inducing transient insulin resistance. Preoperative carbohydrate treatment can reduce the latter phenomenon. We investigated the effects of carbohydrate loading on insulin sensitivity and beta-cell function after elective hip replacement. Twenty-three nondiabetic patients (mean age of 68 years) who underwent elective hip replacement surgery participated in this double-blind controlled study. The patients were randomised to a nutrition group, which ingested a carbohydrate-rich fluid (50 kcal/100 ml) (Preop(®)), or a control group (tap water flavoured with lemon) 800 ml + 400 ml before the surgery. The insulin response (beta-cell function) and the insulin sensitivity were measured with an intravenous glucose tolerance test (IVGTT) and a hyperinsulinaemic euglycaemic glucose clamp, respectively, one day before and two days after the surgery. Insulin sensitivity decreased by 51% (median; 25-75th percentiles 35-61) after ingesting Preop(®) and by 39% (21-51) after ingesting in the control group (n.s.). The postoperative IVGTT in the nutrition group was followed by a significantly larger area under the curve (AUC) for plasma insulin (+54% versus the preoperative IVGTT) compared to the control group (+7%). This difference was already apparent during the first phase (0-10 min) of insulin secretion (+20 and -21%, respectively; P water prior to the surgery demonstrated a significant but similar decrease in insulin sensitivity. The carbohydrates increased the beta-cell function as a compensatory response to the disposition index, resulting in a smaller reduction in surgery-induced insulin resistance compared to the tap water. The study was registered at http://www.clinicaltrials.gov (NCT01774084). Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. A Plant-Based Dietary Intervention Improves Beta-Cell Function and Insulin Resistance in Overweight Adults: A 16-Week Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Hana Kahleova

    2018-02-01

    Full Text Available The aim of this study was to test the effect of a plant-based dietary intervention on beta-cell function in overweight adults with no history of diabetes. Participants (n = 75 were randomized to follow a low-fat plant-based diet (n = 38 or to make no diet changes (n = 37 for 16 weeks. At baseline and 16 weeks, beta-cell function was quantified with a mathematical model. Using a standard meal test, insulin secretory rate was calculated by C-peptide deconvolution. The Homeostasis Model Assessment (HOMA-IR index was used to assess insulin resistance while fasting. A marked increase in meal-stimulated insulin secretion was observed in the intervention group compared with controls (interaction between group and time, Gxt, p < 0.001. HOMA-IR index fell significantly (p < 0.001 in the intervention group (treatment effect −1.0 (95% CI, −1.2 to −0.8; Gxt, p = 0.004. Changes in HOMA-IR correlated positively with changes in body mass index (BMI and visceral fat volume (r = 0.34; p = 0.009 and r = 0.42; p = 0.001, respectively. The latter remained significant after adjustment for changes in BMI (r = 0.41; p = 0.002. Changes in glucose-induced insulin secretion correlated negatively with BMI changes (r = −0.25; p = 0.04, but not with changes in visceral fat. Beta-cell function and insulin sensitivity were significantly improved through a low-fat plant-based diet in overweight adults.

  14. Mixed-meal tolerance test versus glucagon stimulation test for the assessment of beta-cell function in therapeutic trials in type 1 diabetes

    DEFF Research Database (Denmark)

    Greenbaum, Carla J; Mandrup-Poulsen, Thomas; McGee, Paula Friedenberg

    2008-01-01

    OBJECTIVE: Beta-cell function in type 1 diabetes clinical trials is commonly measured by C-peptide response to a secretagogue in either a mixed-meal tolerance test (MMTT) or a glucagon stimulation test (GST). The Type 1 Diabetes TrialNet Research Group and the European C-peptide Trial (ECPT) Study...... Group conducted parallel randomized studies to compare the sensitivity, reproducibility, and tolerability of these procedures. RESEARCH DESIGN AND METHODS: In randomized sequences, 148 TrialNet subjects completed 549 tests with up to 2 MMTT and 2 GST tests on separate days, and 118 ECPT subjects...

  15. The effect of the deterioration of insulin sensitivity on beta-cell function in growth-hormone-deficient adults following 4-month growth hormone replacement therapy

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Fisker, S; Hilsted, J

    1999-01-01

    The purpose of the present study was to evaluate the combined effect of GH treatment on body composition and glucose metabolism, with special focus on beta-cell function in adult GHD patients. In a double-blind placebo-controlled design, 24 GHD adults (18M/6F), were randomized to 4 months treatment...... with biosynthetic GH 2 IU/m2s.c. daily (n =13) or placebo (n =11). At inclusion and 4 months later an oral glucose tolerance test (OGTT), a frequently sampled intravenous glucose tolerance test (FSIGT) and dual-energy X-ray absorptiometry (DXA) whole-body scanning were performed. During the study period, body...

  16. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H

    2011-01-01

    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture...... microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators....

  17. The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Glondu, Murielle; Filloux, Chantal

    2004-01-01

    insulin signaling is required for the optimal beta-cell function, we assessed the effect of IL-1beta on the insulin pathway in a rat pancreatic beta-cell line. We show that IL-1beta decreases insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS...

  18. Levels of betatrophin decrease during pregnancy despite increased insulin resistance, beta-cell function and triglyceride levels.

    Science.gov (United States)

    Zielińska, A; Maciulewski, R; Siewko, K; Popławska-Kita, A; Lipińska, D; Kozłowska, G; Górska, M; Szelachowska, M

    2016-12-01

    Evidence in support of an association between betatrophin and insulin resistance (IR) is mounting, with studies demonstrating that betatrophin is elevated in patients with type 2 diabetes, obesity and gestational diabetes. The aim of this study was to evaluate the role of betatrophin in IR and physiological proliferation of beta cells during pregnancy in healthy women. Eighty healthy pregnant women were examined at each trimester [T1 (first), T2 (second), T3 (third)], with a subgroup (n=45) that was also examined at 3 months postpartum (3MPP). The controls comprised 30 non-pregnant healthy women (HW) of reproductive age. Also measured were levels of betatrophin (ELISA), glucose (enzymatic method with hexokinase), insulin (IRMA), C-peptide (EASIA) and HbA 1c (HPLC), while HOMA-IR and HOMA-β scores were calculated. Betatrophin concentration was highest at T1, and differed significantly from T2 and T3 (1.84 [Q 1 =1.16, Q 3 =2.67]ng/mL vs 1.46 [Q 1 =0.96, Q 3 =2.21]ng/mL; Pindex scores increased during gestation, peaking at T3 (2.3 [Q 1 =1.66, Q 3 =2.72] and 227.7 [Q 1 =185.49, Q 3 =326.31], respectively) and returning to levels similar to those of HW at 3MPP (1.53 [Q 1 =1.12, Q 3 =2.41] and 88.86 [Q 1 =62.73, Q 3 =130.45] vs 1.35 [Q 1 =1.02, Q 3 =1.62] and 92.5 [Q 1 =74.20, Q 3 =111.47], respectively). Concentrations of betatrophin decrease during pregnancy, suggesting that the hormone does not play a significant role in the expansion of beta-cell mass and IR during pregnancy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. On the coherent behavior of pancreatic beta cell clusters

    Energy Technology Data Exchange (ETDEWEB)

    Loppini, Alessandro, E-mail: a.loppini@unicampus.it [Nonlinear Physics and Mathematical Modeling Lab, University Campus Bio-Medico, Via A. del Portillo 21, I-00128 Rome (Italy); Capolupo, Antonio, E-mail: capolupo@sa.infn.it [Physics Department, University of Salerno, Fisciano, 84084 (Italy); Cherubini, Christian, E-mail: c.cherubini@unicampus.it [Nonlinear Physics and Mathematical Modeling Lab, University Campus Bio-Medico, Via A. del Portillo 21, I-00128 Rome (Italy); International Center for Relativistic Astrophysics, University Campus Bio-Medico, Via A. del Portillo 21, I-00128, Rome (Italy); Gizzi, Alessio, E-mail: a.gizzi@unicampus.it [Nonlinear Physics and Mathematical Modeling Lab, University Campus Bio-Medico, Via A. del Portillo 21, I-00128 Rome (Italy); Bertolaso, Marta, E-mail: m.bertolaso@unicampus.it [Faculty of Engineering and Institute of Philosophy of Scientific and Technological Practice, University Campus Bio-Medico, Via A. del Portillo 21, I-00128 Rome (Italy); Filippi, Simonetta, E-mail: s.filippi@unicampus.it [Nonlinear Physics and Mathematical Modeling Lab, University Campus Bio-Medico, Via A. del Portillo 21, I-00128 Rome (Italy); International Center for Relativistic Astrophysics, University Campus Bio-Medico, Via A. del Portillo 21, I-00128, Rome (Italy); Vitiello, Giuseppe, E-mail: vitiello@sa.infn.it [Physics Department, University of Salerno, Fisciano, 84084 (Italy)

    2014-09-12

    Beta cells in pancreas represent an example of coupled biological oscillators which via communication pathways, are able to synchronize their electrical activity, giving rise to pulsatile insulin release. In this work we numerically analyze scale free self-similarity features of membrane voltage signal power density spectrum, through a stochastic dynamical model for beta cells in the islets of Langerhans fine tuned on mouse experimental data. Adopting the algebraic approach of coherent state formalism, we show how coherent molecular domains can arise from proper functional conditions leading to a parallelism with “phase transition” phenomena of field theory. - Highlights: • Beta cells in pancreas are coupled oscillators able to synchronize their activity. • We analyze scale free self-similarity features for beta cells. • We adopt the algebraic approach of coherent state formalism. • We show that coherent molecular domains arise from functional conditions.

  20. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    NARCIS (Netherlands)

    Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe

    2005-01-01

    KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first

  1. Mixed-meal tolerance test versus glucagon stimulation test for the assessment of beta-cell function in therapeutic trials in type 1 diabetes.

    Science.gov (United States)

    Greenbaum, Carla J; Mandrup-Poulsen, Thomas; McGee, Paula Friedenberg; Battelino, Tadej; Haastert, Burkhard; Ludvigsson, Johnny; Pozzilli, Paolo; Lachin, John M; Kolb, Hubert

    2008-10-01

    Beta-cell function in type 1 diabetes clinical trials is commonly measured by C-peptide response to a secretagogue in either a mixed-meal tolerance test (MMTT) or a glucagon stimulation test (GST). The Type 1 Diabetes TrialNet Research Group and the European C-peptide Trial (ECPT) Study Group conducted parallel randomized studies to compare the sensitivity, reproducibility, and tolerability of these procedures. In randomized sequences, 148 TrialNet subjects completed 549 tests with up to 2 MMTT and 2 GST tests on separate days, and 118 ECPT subjects completed 348 tests (up to 3 each) with either two MMTTs or two GSTs. Among individuals with up to 4 years' duration of type 1 diabetes, >85% had measurable stimulated C-peptide values. The MMTT stimulus produced significantly higher concentrations of C-peptide than the GST. Whereas both tests were highly reproducible, the MMTT was significantly more so (R(2) = 0.96 for peak C-peptide response). Overall, the majority of subjects preferred the MMTT, and there were few adverse events. Some older subjects preferred the shorter duration of the GST. Nausea was reported in the majority of GST studies, particularly in the young age-group. The MMTT is preferred for the assessment of beta-cell function in therapeutic trials in type 1 diabetes.

  2. Is serum zinc associated with pancreatic beta cell function and insulin sensitivity in pre-diabetic and normal individuals? Findings from the Hunter Community Study.

    Directory of Open Access Journals (Sweden)

    Khanrin P Vashum

    Full Text Available AIM: To determine if there is a difference in serum zinc concentration between normoglycaemic, pre-diabetic and type-2 diabetic groups and if this is associated with pancreatic beta cell function and insulin sensitivity in the former 2 groups. METHOD: Cross sectional study of a random sample of older community-dwelling men and women in Newcastle, New South Wales, Australia. Beta cell function, insulin sensitivity and insulin resistance were calculated for normoglycaemic and prediabetes participants using the Homeostasis Model Assessment (HOMA-2 calculator. RESULT: A total of 452 participants were recruited for this study. Approximately 33% (N = 149 had diabetes, 33% (N = 151 had prediabetes and 34% (N = 152 were normoglycaemic. Homeostasis Model Assessment (HOMA parameters were found to be significantly different between normoglycaemic and prediabetes groups (p<0.001. In adjusted linear regression, higher serum zinc concentration was associated with increased insulin sensitivity (p = 0.01 in the prediabetic group. There was also a significant association between smoking and worse insulin sensitivity. CONCLUSION: Higher serum zinc concentration is associated with increased insulin sensitivity. Longitudinal studies are required to determine if low serum zinc concentration plays a role in progression from pre-diabetes to diabetes.

  3. Correlation Between Glycated Hemoglobin and Homa Indices in Type 2 Diabetes Mellitus: Prediction of Beta-Cell Function from Glycated Hemoglobin.

    Science.gov (United States)

    Al-Hakeim, Hussein Kadhem; Abdulzahra, Mohammed Saied

    2015-04-01

    The present study aimed to determine the most efficient insulin resistance function related to glycemic control expressed as glycated hemoglobin (HbA1c) in type 2 diabetes mellitus patients (T2DM). The other aim is to derive equations for the prediction of beta cell functions containing HbA1c as a parameter in addition to fasting glucose and insulin. T2DM Patients were grouped according to the following: (1) degree of control (good, fair, and poor control) and (2) insulin resistance as observed in obtained data and significant differences revealed by the homeostasis model assessment (HOMA) of related parameters (insulin resistance = HOMA2IR, beta-cell function = HOMA%B, and insulin sensitivity = HOMA%S) among groups. Correlations and forecasting regression analysis were calculated. HbA1c was found to be correlated with insulin resistance parameters in T2DM subgroups. This correlation was also significantly correlated with HOMA%B and the quantitative insulin sensitivity check index (QUICKI) in fair and poor control groups. Regression analysis was used to predict the forecasting equations for HOMA%B. The best applicable equations were derived for healthy control (HOMA2%B=-1.76*FBG+5.00*Insulin+4.69*HbA1c+189.84) and poor control groups (HOMA2%B=0.001* FBG+0.5*Insulin-8.67*HbA1c+101.96). These equations could be used to predict β-cell function (HOMA%B) after FBG, insulin and HbA1c values were obtained for healthy and poor control groups. In the good and fair control groups, the applicability of the HOMA model fails to yield appropriate results. Beta-cell function is correlated with QUICKI and HbA1c and could be predicted properly from HbA1c, insulin, and glucose in the healthy and poor control groups. New regression equations were established that involve HbA1c.

  4. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function.

    Science.gov (United States)

    Wang, Yanyan; Huang, Gonghua; Vogel, Peter; Neale, Geoffrey; Reizis, Boris; Chi, Hongbo

    2012-02-07

    Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c(+) cells induced markedly elevated apoptosis, leading to the depletion of DC populations, especially the CD8(+) and CD103(+) DC subsets in lymphoid and nonlymphoid tissues, respectively. TAK1 also contributed to DC development by promoting the generation of DC precursors. Prosurvival signals from Toll-like receptors, CD40 and receptor activator of nuclear factor-κB (RANK) are integrated by TAK1 in DCs, which in turn mediated activation of downstream NF-κB and AKT-Foxo pathways and established a gene-expression program. TAK1 deficiency in DCs caused a myeloid proliferative disorder characterized by expansion of neutrophils and inflammatory monocytes, disrupted T-cell homeostasis, and prevented effective T-cell priming and generation of regulatory T cells. Moreover, TAK1 signaling in DCs was required to prevent myeloid proliferation even in the absence of lymphocytes, indicating a previously unappreciated regulatory mechanism of DC-mediated control of myeloid cell-dependent inflammation. Therefore, TAK1 orchestrates a prosurvival checkpoint in DCs that affects the homeostasis and function of the immune system.

  5. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH...... and activation of the tyrosine kinase JAK2 and the transcription factors STAT1 and 3. The activation of the insulin gene however also requires the distal part of the receptor and activation of calcium uptake and STAT5. In order to identify putative autocrine growth factors or targets for growth factors we have...

  6. Foodborne cereulide causes beta-cell dysfunction and apoptosis.

    Directory of Open Access Journals (Sweden)

    Roman Vangoitsenhoven

    Full Text Available To study the effects of cereulide, a food toxin often found at low concentrations in take-away meals, on beta-cell survival and function.Cell death was quantified by Hoechst/Propidium Iodide in mouse (MIN6 and rat (INS-1E beta-cell lines, whole mouse islets and control cell lines (HepG2 and COS-1. Beta-cell function was studied by glucose-stimulated insulin secretion (GSIS. Mechanisms of toxicity were evaluated in MIN6 cells by mRNA profiling, electron microscopy and mitochondrial function tests.24 h exposure to 5 ng/ml cereulide rendered almost all MIN6, INS-1E and pancreatic islets apoptotic, whereas cell death did not increase in the control cell lines. In MIN6 cells and murine islets, GSIS capacity was lost following 24 h exposure to 0.5 ng/ml cereulide (P<0.05. Cereulide exposure induced markers of mitochondrial stress including Puma (p53 up-regulated modulator of apoptosis, P<0.05 and general pro-apoptotic signals as Chop (CCAAT/-enhancer-binding protein homologous protein. Mitochondria appeared swollen upon transmission electron microscopy, basal respiration rate was reduced by 52% (P<0.05 and reactive oxygen species increased by more than twofold (P<0.05 following 24 h exposure to 0.25 and 0.50 ng/ml cereulide, respectively.Cereulide causes apoptotic beta-cell death at low concentrations and impairs beta-cell function at even lower concentrations, with mitochondrial dysfunction underlying these defects. Thus, exposure to cereulide even at concentrations too low to cause systemic effects appears deleterious to the beta-cell.

  7. Studies of the variability of the hepatocyte nuclear factor-1beta (HNF-1beta / TCF2) and the dimerization cofactor of HNF-1 (DcoH / PCBD) genes in relation to type 2 diabetes mellitus and beta-cell function

    DEFF Research Database (Denmark)

    Ek, J; Grarup, N; Urhammer, S A

    2001-01-01

    Mutations in the homeodomain-containing transcription factor hepatocyte nuclear factor-1beta (HNF-1beta) are known to cause a rare subtype of maturity-onset diabetes of the young (MODY5), which is associated with early-onset progressive non-diabetic renal dysfunction. To investigate whether...... mutations in HNF-1 are implicated in the pathogenesis of MODY or late-onset diabetes with and without nephropathy in Danish Caucasians we examined the HNF-1beta (TCF2) and the dimerization cofactor of HNF-1 (DCoH, PCBD) genes for mutations in 11 MODY probands, 28 type 2 diabetic patients with nephropathy...... comprising the DCoH gene revealed a previously described A-->G polymorphism located in the 3' untranslated region, which was not investigated further. In conclusion, mutations in HNF-1beta and DCoH are not a major cause of MODY or late onset type 2 diabetes in Danish Caucasian subjects....

  8. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....... that transferrin is the only obligatory factor whereas growth hormone, epidermal growth factor, fibroblast growth factor, and TRH had modulating effects. A heat-labile heparin binding serum factor which stimulated thymidine incorporation but not cell proliferation was demonstrated in human serum. Measurements...

  9. cGMP may have trophic effects on beta cell function comparable to those of cAMP, implying a role for high-dose biotin in prevention/treatment of diabetes.

    Science.gov (United States)

    McCarty, Mark F

    2006-01-01

    Incretin hormones have trophic effects on beta cell function that can aid prevention and treatment of diabetes. cAMP is the primary mediator of these effects, and has been shown to potentiate glucose-stimulated insulin secretion, promote proper beta cells differentiation by increasing expression of the crucial transcription factor PDX-1, and prevent beta cell apoptosis. cGMP's role in beta cell function has received far less scrutiny, but there is emerging evidence that it may have a trophic impact on beta cell function analogous to that of cAMP. An increase in plasma glucose boosts beta cell production of cGMP, which acts as a feed-forward mediator to enhance glucose-stimulated insulin secretion. cGMP also has an anti-apoptotic effect in beta cells, and there is now indirect evidence that it promotes expression of PDX-1. Supraphysiological concentrations of biotin can directly activate guanylate cyclase, and there is limited evidence that high intakes of this vitamin can be therapeutically beneficial in diabetics and in rodent models of diabetes. Beneficial effects of cGMP on muscle insulin sensitivity and on control of hepatic glucose output may contribute to biotin's utility in diabetes. The fact that nitric oxide/cGMP exert a range of favorable effects on vascular health should further encourage exploration of biotin's preventive and therapeutic potential. If an appropriate high-dose biotin regimen could achieve a modest systemic increase in guanylate cyclase activity, without entailing unacceptable side effects or risks, such a regimen might have considerable potential for promoting vascular health and preventing or managing diabetes.

  10. Ins1 Cre knock-in mice for beta cell-specific gene recombination

    OpenAIRE

    Thorens Bernard; Tarussio David; Maestro Miguel Angel; Maestro Miguel Angel; Rovira Meritxell; Rovira Meritxell; Heikkilä Eija; Ferrer Jorge; Ferrer Jorge; Ferrer Jorge

    2013-01-01

    Aims/hypothesis Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cel...

  11. Beta-Cell Replacement: Pancreas and Islet Cell Transplantation.

    Science.gov (United States)

    Niclauss, Nadja; Meier, Raphael; Bédat, Benoît; Berishvili, Ekaterine; Berney, Thierry

    2016-01-01

    Pancreas and islet transplantation are 2 types of beta-cell replacement therapies for type 1 diabetes mellitus. Since 1966, when pancreas transplantation was first performed, it has evolved to become a highly efficient procedure with high success rates, thanks to advances in surgical technique and immunosuppression. Pancreas transplantation is mostly performed as simultaneous pancreas-kidney transplantation in patients with end-stage nephropathy secondary to diabetes. In spite of its efficiency, pancreas transplantation is still a major surgical procedure burdened by high morbidity, which called for the development of less invasive and hazardous ways of replacing beta-cell function in the past. Islet transplantation was developed in the 1970s as a minimally invasive procedure with initially poor outcomes. However, since the report of the 'Edmonton protocol' in 2000, the functional results of islet transplantation have substantially and constantly improved and are about to match those of whole pancreas transplantation. Islet transplantation is primarily performed alone in nonuremic patients with severe hypoglycemia. Both pancreas transplantation and islet transplantation are able to abolish hypoglycemia and to prevent or slow down the development of secondary complications of diabetes. Pancreas transplantation and islet transplantation should be seen as two complementary, rather than competing, therapeutic approaches for beta-cell replacement that are able to optimize organ donor use and patient care. © 2016 S. Karger AG, Basel.

  12. Development of biomarker specific of pancreatic beta cells (incretin radiolabelled) for image of beta functional mass in diabetic and obese: study in animal model; Desenvolvimento de biomarcador específico de células beta pancreáticas (incretina radiomarcada) para imagem da massa beta funcional em diabéticos e obesos: estudo em modelo animal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Daniele

    2017-07-01

    Increased prevalence of obesity worldwide, has become a vast concern, stimulating investigations focusing prevention and therapy of this condition. The association of type 2 diabetes or insulin resistance aggravates the prognosis of obesity. Even patients successfully submitted to bariatric or metabolic surgery, may not be cured of diabetes, as improvement of circulating values of glucose and insulin not necessarily reflects recovery of pancreatic beta cell mass. There is no consensus about how to estimate beta cell mass in vivo. Available tools suffer from low sensitivity and specificity, often being as well cumbersome and expensive. Radiolabeled incretins, such as glucagon-like-peptide 1 (GLP-1) analogs, seem to be promising options for the measurement of beta cell mass in diabetes and insulinoma. The objective of this study was the development of two conjugates of GLP-1 analog, radiolabeled with {sup 99m} Technetium, as a noninvasive imaging method for the estimation of pancreatic beta cell mass, in the presence of obesity. Animal models were selected, including hyperlipidic diet-induced obesity, diet restricted obesity, and as controls, alloxan diabetes. Results indicated that both radiotracers achieved over 97% radiochemical yield. The most successful product was {sup 99m}Tc-HYNIC-βAla-Exendin-4. Low beta cell mass uptake occurred in diet-induced obesity. Diet-restricted obesity, with substantial shedding of excess body weight, was followed by remarkable decrease of fasting blood glucose, however beta cell mass uptake was only mildly improved. Future studies are recommended in obesity, type 2 diabetes, and dieting, including bariatric and metabolic operations. (author)

  13. Role of MicroRNAs in Islet Beta-Cell Compensation and Failure during Diabetes

    Directory of Open Access Journals (Sweden)

    Valérie Plaisance

    2014-01-01

    Full Text Available Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cell mass expansion and that protect cells against death, is a key therapeutic target for diabetes. In this respect, several recent studies have emphasized the instrumental role of microRNAs in the control of beta-cell function. MicroRNAs are negative regulators of gene expression, and are pivotal for the control of beta-cell proliferation, function, and survival. On the one hand, changes in specific microRNA levels have been associated with beta-cell compensation and are triggered by hormones or bioactive peptides that promote beta-cell survival and function. Conversely, modifications in the expression of other specific microRNAs contribute to beta-cell dysfunction and death elicited by diabetogenic factors including, cytokines, chronic hyperlipidemia, hyperglycemia, and oxidized LDL. This review underlines the importance of targeting the microRNA network for future innovative therapies aiming at preventing the beta-cell decline in diabetes.

  14. Quantification of beta-cell function during IVGTT in Type II and non-diabetic subjects: assessment of insulin secretion by mathematical methods

    DEFF Research Database (Denmark)

    Kjems, L L; Vølund, A; Madsbad, Sten

    2001-01-01

    AIMS/HYPOTHESIS: We compared four methods to assess their accuracy in measuring insulin secretion during an intravenous glucose tolerance test in patients with Type II (non-insulin-dependent) diabetes mellitus and with varying beta-cell function and matched control subjects. METHODS: Eight control...... subjects and eight Type II diabetic patients underwent an intravenous glucose tolerance test with tolbutamide and an intravenous bolus injection of C-peptide to assess C-peptide kinetics. Insulin secretion rates were determined by the Eaton deconvolution (reference method), the Insulin SECretion method...... (ISEC) based on population kinetic parameters as well as one-compartment and two-compartment versions of the combined model of insulin and C-peptide kinetics. To allow a comparison of the accuracy of the four methods, fasting rates and amounts of insulin secreted during the first phase (0-10 min...

  15. Pancreatic beta-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity

    DEFF Research Database (Denmark)

    Solomon, Thomas; Malin, Steven K; Karstoft, Kristian

    2013-01-01

    glucose-stimulated insulin secretion (GSIS), and disposition index (DI) were measured following 12-16-weeks of aerobic exercise training. Regression analyses were used to identify relationships between variables.ResultsFollowing training, 86% of subjects increased VO2max and lost weight. HbA1c, fasting......ContextUnderstanding inter-subject variability in glycemic control following exercise training will help individualize treatment.ObjectiveTo determine whether this variability is related to training-induced changes in insulin sensitivity or pancreatic beta-cell function.Design, Setting....... Training increased first- and second-phase DI in 83% and 74% of subjects. Training-induced changes in glycemic control were related to changes in GSIS (P...

  16. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action.

    Directory of Open Access Journals (Sweden)

    Inês Barroso

    2003-10-01

    Full Text Available Type 2 diabetes is an increasingly common, serious metabolic disorder with a substantial inherited component. It is characterised by defects in both insulin secretion and action. Progress in identification of specific genetic variants predisposing to the disease has been limited. To complement ongoing positional cloning efforts, we have undertaken a large-scale candidate gene association study. We examined 152 SNPs in 71 candidate genes for association with diabetes status and related phenotypes in 2,134 Caucasians in a case-control study and an independent quantitative trait (QT cohort in the United Kingdom. Polymorphisms in five of 15 genes (33% encoding molecules known to primarily influence pancreatic beta-cell function-ABCC8 (sulphonylurea receptor, KCNJ11 (KIR6.2, SLC2A2 (GLUT2, HNF4A (HNF4alpha, and INS (insulin-significantly altered disease risk, and in three genes, the risk allele, haplotype, or both had a biologically consistent effect on a relevant physiological trait in the QT study. We examined 35 genes predicted to have their major influence on insulin action, and three (9%-INSR, PIK3R1, and SOS1-showed significant associations with diabetes. These results confirm the genetic complexity of Type 2 diabetes and provide evidence that common variants in genes influencing pancreatic beta-cell function may make a significant contribution to the inherited component of this disease. This study additionally demonstrates that the systematic examination of panels of biological candidate genes in large, well-characterised populations can be an effective complement to positional cloning approaches. The absence of large single-gene effects and the detection of multiple small effects accentuate the need for the study of larger populations in order to reliably identify the size of effect we now expect for complex diseases.

  17. Proton microprobe analysis of pancreatic. beta. cells

    Energy Technology Data Exchange (ETDEWEB)

    Lindh, U [Uppsala Univ. (Sweden). Gustaf Werner Inst.; Juntti-Berggren, L; Berggren, P O; Hellman, B [Uppsala Univ. (Sweden)

    1985-01-01

    Freeze-dried pancreas sections from obese hyperglycemic mice were subjected to proton bombardment and the elemental contents in the ..beta.. cells and the exocrine part were obtained from the characteristic X-rays emitted. Quantitative data were provided for 18 different elements. The mole ratio between K and Na exceeded 10, implying that neither the sample preparation nor the irradiation had induced significant diffuse changes. With the demonstration of this high K/Na ratio it seems likely that also the ..beta.. cells are equipped with an efficient Na/sup +//K/sup +/ pump. The ..beta.. cells contained about 70 mmoles Cl per litre cell water. Observed amounts of Ca and Mg were equivalent to those previously recorded by electrothermal atomic absorption spectroscopy. The significant role of Zn for the storage of insulin was emphasized by the demonstration of 3 times as much of this element in the ..beta.. cells as compared with the exocrine pancreas. In addition, the sensitivity of the proton microprobe enabled measurements of various trace elements such as Rb, Cr, Cu, Al and Pb not previously demonstrated in the pancreatic ..beta.. cells.

  18. Outpatient versus inpatient mixed meal tolerance and arginine stimulation testing yields comparable measures of variability for assessment of beta cell function

    Directory of Open Access Journals (Sweden)

    Sudha S. Shankar

    2018-06-01

    Full Text Available Standard practice to minimize variability in beta cell function (BCF measurement is to test in inpatient (IP settings. IP testing strains trial subjects, investigators, and budgets. Outpatient (OP testing may be a solution although there are few reports on OP BCF testing variability. We compared variability metrics between OP and IP from a standardized mixed meal tolerance test (MMTT and arginine stimulation test (AST in two separate type 2 diabetes (T2DM cohorts (OP, n = 20; IP n = 22 in test-retest design. MMTT variables included: insulin sensitivity (Si; beta cell responsivity (Φtot; and disposition index (DItot = Si* Φtot following 470 kCal meal. AST variables included: acute insulin response to arginine (AIRarg and during hyperglycemia (AIRargMAX. Results: Baseline characteristics were well-matched. Between and within subject variance for each parameter across cohorts, and intraclass correlation coefficients (ICC-a measure of reproducibility across parameters were generally comparable for OP to IP. Table summarizes the ICC results for each key parameter and cohort.Test/ParameterOutpatient (95% CIInpatient (95% CIMMTT: Si0.49(0,0.690.28(0,0.60MMTT: Φtot0.65(0.16,0.890.81(0.44,0.93MMTT: DI0.67(0,0.830.36(0,0.69AST: AIR Arg0.96(0.88,0.980.84(0.59,0.94AST: AIR Arg Max0.97(0.90,0.990.95(0.86,0.97AST: ISR0.93(0.77,0.970.93(0.82,0.96In conclusion, the variability (reproducibility of BCF measures from standardized MMTT and AST is comparable between OP and IP settings. These observations have significant implications for complexity and cost of metabolic studies.

  19. Genetic analysis of beta1 integrin function: confirmed, new and revised roles for a crucial family of cell adhesion molecules

    DEFF Research Database (Denmark)

    Brakebusch, C; Hirsch, E; Potocnik, A

    1997-01-01

    Integrins are heterodimeric cell adhesion proteins connecting the extracellular matrix to the cytoskeleton and transmitting signals in both directions. These integrins are suggested to be involved in many different biological processes such as growth, differentiation, migration, and cell death. O...

  20. Beta 2-adrenergic receptors on eosinophils. Binding and functional studies

    International Nuclear Information System (INIS)

    Yukawa, T.; Ukena, D.; Kroegel, C.; Chanez, P.; Dent, G.; Chung, K.F.; Barnes, P.J.

    1990-01-01

    We have studied the binding characteristics and functional effects of beta-adrenoceptors on human and guinea pig eosinophils. We determined the binding of the beta-antagonist radioligand [125I]pindolol (IPIN) to intact eosinophils obtained from the peritoneal cavity of guinea pigs and from blood of patients with eosinophilia. Specific binding was saturable, and Scatchard analysis showed a single binding site with a dissociation constant (Kd) of 24.6 pM and maximal number of binding sites (Bmax) of 7,166 per cell. ICI 118,551, a beta 2-selective antagonist, inhibited IPIN binding with a Ki value of 0.28 nM and was approximately 5,000-fold more effective than the beta 1-selective antagonist, atenolol. Isoproterenol increased cAMP levels about 5.5-fold above basal levels (EC50 = 25 microM); albuterol, a beta 2-agonist, behaved as a partial agonist with a maximal stimulation of 80%. Binding to human eosinophils gave similar results with a Kd of 25.3 pM and a Bmax corresponding to 4,333 sites per cell. Incubation of both human and guinea pig eosinophils with opsonized zymosan (2 mg/ml) or with phorbol myristate acetate (PMA) (10(-8) and 10(-6) M) resulted in superoxide anion generation and the release of eosinophil peroxidase; albuterol (10(-7) to 10(-5) M) had no inhibitory effect on the release of these products. Thus, eosinophils from patients with eosinophilia and from the peritoneal cavity of guinea pigs possess beta-receptors of the beta 2-subtype that are coupled to adenylate cyclase; however, these receptors do not modulate oxidative metabolism or degranulation. The possible therapeutic consequences of these observations to asthma are discussed

  1. Involvement of F-Actin in Chaperonin-Containing t-Complex 1 Beta Regulating Mouse Mesangial Cell Functions in a Glucose-Induction Cell Model

    Directory of Open Access Journals (Sweden)

    Jin-Shuen Chen

    2011-01-01

    Full Text Available The aim of this study is to investigate the role of chaperonin-containing t-complex polypeptide 1 beta (CCT2 in the regulation of mouse mesangial cell (mMC contraction, proliferation, and migration with filamentous/globular-(F/G- actin ratio under high glucose induction. A low CCT2 mMC model induced by treatment of small interference RNA was established. Groups with and without low CCT2 induction examined in normal and high (H glucose conditions revealed the following major results: (1 low CCT2 or H glucose showed the ability to attenuate F/G-actin ratio; (2 groups with low F/G-actin ratio all showed less cell contraction; (3 suppression of CCT2 may reduce the proliferation and migration which were originally induced by H glucose. In conclusion, CCT2 can be used as a specific regulator for mMC contraction, proliferation, and migration affected by glucose, which mechanism may involve the alteration of F-actin, particularly for cell contraction.

  2. Adipose Tissue-Derived Mesenchymal Stem Cells Exert In Vitro Immunomodulatory and Beta Cell Protective Functions in Streptozotocin-Induced Diabetic Mice Model

    Directory of Open Access Journals (Sweden)

    Hossein Rahavi

    2015-01-01

    Full Text Available Regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs might be applied for type 1 diabetes mellitus (T1DM treatment. Thus, we proposed in vitro assessment of adipose tissue-derived MSCs (AT-MSCs immunomodulation on autoimmune response along with beta cell protection in streptozotocin- (STZ- induced diabetic C57BL/6 mice model. MSCs were extracted from abdominal adipose tissue of normal mice and cultured to proliferate. Diabetic mice were prepared by administration of multiple low-doses of streptozotocin. Pancreatic islets were isolated from normal mice and splenocytes prepared from normal and diabetic mice. Proliferation, cytokine production, and insulin secretion assays were performed in coculture experiments. AT-MSCs inhibited splenocytes proliferative response to specific (islet lysate and nonspecific (PHA triggers in a dose-dependent manner (P<0.05. Decreased production of proinflammatory cytokines, such as IFN-γ, IL-2, and IL-17, and increased secretion of regulatory cytokines such as TGF-β, IL-4, IL-10, and IL-13 by stimulated splenocytes were also shown in response to islet lysate or PHA stimulants (P<0.05. Finally, we demonstrated that AT-MSCs could effectively sustain viability as well as insulin secretion potential of pancreatic islets in the presence of reactive splenocytes (P<0.05. In conclusion, it seems that MSCs may provide a new horizon for T1DM cell therapy and islet transplantation in the future.

  3. Restoring Mitochondrial Function: A Small Molecule-mediated Approach to Enhance Glucose Stimulated Insulin Secretion in Cholesterol Accumulated Pancreatic beta cells

    Science.gov (United States)

    Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A.; Ghosh, Partha Pratim; Mitra, Prasenjit

    2016-06-01

    Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation.

  4. Sample size requirements for studies of treatment effects on beta-cell function in newly diagnosed type 1 diabetes.

    Science.gov (United States)

    Lachin, John M; McGee, Paula L; Greenbaum, Carla J; Palmer, Jerry; Pescovitz, Mark D; Gottlieb, Peter; Skyler, Jay

    2011-01-01

    Preservation of β-cell function as measured by stimulated C-peptide has recently been accepted as a therapeutic target for subjects with newly diagnosed type 1 diabetes. In recently completed studies conducted by the Type 1 Diabetes Trial Network (TrialNet), repeated 2-hour Mixed Meal Tolerance Tests (MMTT) were obtained for up to 24 months from 156 subjects with up to 3 months duration of type 1 diabetes at the time of study enrollment. These data provide the information needed to more accurately determine the sample size needed for future studies of the effects of new agents on the 2-hour area under the curve (AUC) of the C-peptide values. The natural log(x), log(x+1) and square-root (√x) transformations of the AUC were assessed. In general, a transformation of the data is needed to better satisfy the normality assumptions for commonly used statistical tests. Statistical analysis of the raw and transformed data are provided to estimate the mean levels over time and the residual variation in untreated subjects that allow sample size calculations for future studies at either 12 or 24 months of follow-up and among children 8-12 years of age, adolescents (13-17 years) and adults (18+ years). The sample size needed to detect a given relative (percentage) difference with treatment versus control is greater at 24 months than at 12 months of follow-up, and differs among age categories. Owing to greater residual variation among those 13-17 years of age, a larger sample size is required for this age group. Methods are also described for assessment of sample size for mixtures of subjects among the age categories. Statistical expressions are presented for the presentation of analyses of log(x+1) and √x transformed values in terms of the original units of measurement (pmol/ml). Analyses using different transformations are described for the TrialNet study of masked anti-CD20 (rituximab) versus masked placebo. These results provide the information needed to accurately

  5. Sample size requirements for studies of treatment effects on beta-cell function in newly diagnosed type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    John M Lachin

    Full Text Available Preservation of β-cell function as measured by stimulated C-peptide has recently been accepted as a therapeutic target for subjects with newly diagnosed type 1 diabetes. In recently completed studies conducted by the Type 1 Diabetes Trial Network (TrialNet, repeated 2-hour Mixed Meal Tolerance Tests (MMTT were obtained for up to 24 months from 156 subjects with up to 3 months duration of type 1 diabetes at the time of study enrollment. These data provide the information needed to more accurately determine the sample size needed for future studies of the effects of new agents on the 2-hour area under the curve (AUC of the C-peptide values. The natural log(x, log(x+1 and square-root (√x transformations of the AUC were assessed. In general, a transformation of the data is needed to better satisfy the normality assumptions for commonly used statistical tests. Statistical analysis of the raw and transformed data are provided to estimate the mean levels over time and the residual variation in untreated subjects that allow sample size calculations for future studies at either 12 or 24 months of follow-up and among children 8-12 years of age, adolescents (13-17 years and adults (18+ years. The sample size needed to detect a given relative (percentage difference with treatment versus control is greater at 24 months than at 12 months of follow-up, and differs among age categories. Owing to greater residual variation among those 13-17 years of age, a larger sample size is required for this age group. Methods are also described for assessment of sample size for mixtures of subjects among the age categories. Statistical expressions are presented for the presentation of analyses of log(x+1 and √x transformed values in terms of the original units of measurement (pmol/ml. Analyses using different transformations are described for the TrialNet study of masked anti-CD20 (rituximab versus masked placebo. These results provide the information needed to

  6. IFN-beta inhibits T cell activation capacity of central nervous system APCs

    DEFF Research Database (Denmark)

    Teige, Ingrid; Liu, Yawei; Issazadeh-Navikas, Shohreh

    2006-01-01

    We have previously investigated the physiological effects of IFN-beta on chronic CNS inflammation and shown that IFN-beta(-/-) mice develop a more severe experimental autoimmune encephalomyelitis than their IFN-beta(+/-) littermates. This result was shown to be associated with a higher activation...... state of the glial cells and a higher T cell cytokine production in the CNS. Because this state suggested a down-regulatory effect of IFN-beta on CNS-specific APCs, these results were investigated further. We report that IFN-beta pretreatment of astrocytes and microglia (glial cells) indeed down......-modulate their capacity to activate autoreactive Th1 cells. First, we investigated the intrinsic ability of glial cells as APCs and report that glial cells prevent autoreactive Th1 cells expansion while maintaining Ag-specific T cell effector functions. However, when the glial cells are treated with IFN-beta before...

  7. Enhanced Glucose Tolerance and Pancreatic Beta Cell Function by Low Dose Aspirin in Hyperglycemic Insulin-Resistant Type 2 Diabetic Goto-Kakizaki (GK Rats

    Directory of Open Access Journals (Sweden)

    Layla Amiri

    2015-07-01

    Full Text Available Background/Aim: Type 2 diabetes is the most common metabolic disorder, characterized by insulin resistance and pancreatic islet beta-cell failure. The most common complications associated with type 2 diabetes are hyperinsulinemia, hyperglycemia, hyperlipidemia, increased inflammatory and reduced insulin response. Aspirin (ASA and other non-steroidal anti-inflammatory drugs (NSAIDs have been associated with the prevention of diabetes, obesity and related cardiovascular disorders. Aspirin has been used in many clinical and experimental trials for the prevention of diabetes and associated complications. Methods: In this study, five month old Goto-Kakizaki (GK rats, which showed signs of mild hyperglycemia (fasting blood glucose 80-95 mg/dl vs 55-60 mg/dl Wistar control rats were used. Two subgroups of GK and Wistar control rats were injected intraperitoneally with 100 mg aspirin/kg body weight/ day for 5 weeks. Animals were sacrificed and blood and tissues were collected after performing glucose tolerance (2 h post 2g IP glucose ingestion tests in experimental and control groups. Results: Aspirin caused a moderate decrease in hyperglycemia. However, we observed a significant improvement in glucose tolerance after ASA treatment in GK rats compared to the nondiabetic Wistar rats. Also, the ASA treated GK rats exhibited a significant decrease in insulinemia. ASA treatment also caused a marked reduction in the pro-inflammatory prostaglandin, PGE2, which was significantly higher in GK rats. On the other hand, no significant organ toxicity was observed after ASA treatment at this dose and time period. However, the total cholesterol and lipoprotein levels were significantly increased in GK rats, which decreased after ASA treatment. Immunofluorescence staining for insulin/glucagon secreting pancreatic cells showed improved beta-cell structural and functional integrity in ASA-treated rats which was also confirmed by SDS-PAGE and Western blot analysis

  8. Re-exposure to beta cell autoantigens in pancreatic allograft recipients with preexisting beta cell autoantibodies.

    Science.gov (United States)

    Mujtaba, Muhammad Ahmad; Fridell, Jonathan; Book, Benita; Faiz, Sara; Sharfuddin, Asif; Wiebke, Eric; Rigby, Mark; Taber, Tim

    2015-11-01

    Re-exposure to beta cell autoantigens and its relevance in the presence of donor-specific antibodies (DSA) in pancreatic allograft recipients is not well known. Thirty-three patients requiring a pancreas transplant were enrolled in an IRB approved study. They underwent prospective monitoring for DSA and beta cell autoantibody (BCAA) levels to GAD65, insulinoma-associated antigen 2 (IA-2), insulin (micro-IAA [mIAA]), and islet-specific zinc transporter isoform-8 (ZnT8). Twenty-five (75.7%) had pre-transplant BCAA. Twenty had a single antibody (mIAA n = 15, GAD65 n = 5); five had two or more BCAA (GAD65 + mIAA n = 2, GAD65 + mIAA+IA-2 n = 2, GA65 + mIAA+IA-2 + ZnT8 = 1). No changes in GAD65 (p > 0.29), IA-2 (>0.16), and ZnT8 (p > 0.07) were observed between pre-transplant and post-transplant at 6 or 12 months. A decrease in mIAA from pre- to post-6 months (p BCAA was observed at one yr. Seven (21.0%) developed de novo DSA. The incidence of DSA was 24% in patients with BCAA vs. 25% in patients without BCAA (p = 0.69). Pancreatic allograft function of patients with vs. without BCAA, and with and without BCAA + DSA was comparable until last follow-up (three yr). Re-exposure to beta cell autoantigens by pancreas transplant may not lead to increased levels or development of new BCAA or pancreatic allograft dysfunction. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Redox Homeostasis in Pancreatic beta Cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Dlasková, Andrea; Plecitá-Hlavatá, Lydie

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 932838 ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204 Institutional support: RVO:67985823 Keywords : beta cells * reactive oxygen species homeostasis * mitochondria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.393, year: 2012

  10. The type 2 diabetes risk allele of TMEM154-rs6813195 associates with decreased beta cell function in a study of 6,486 Danes.

    Directory of Open Access Journals (Sweden)

    Marie Neergaard Harder

    traits suggest the diabetogenic impact of the C-allele of TMEM154-rs6813195 is mediated through reduced beta cell function. The impact of the diabetes risk G-allele of FAF1-rs17106184 on increased 2-hour insulin levels is however unexplained.

  11. Pancreatic Fat Is Associated With Metabolic Syndrome and Visceral Fat but Not Beta-Cell Function or Body Mass Index in Pediatric Obesity.

    Science.gov (United States)

    Staaf, Johan; Labmayr, Viktor; Paulmichl, Katharina; Manell, Hannes; Cen, Jing; Ciba, Iris; Dahlbom, Marie; Roomp, Kirsten; Anderwald, Christian-Heinz; Meissnitzer, Matthias; Schneider, Reinhard; Forslund, Anders; Widhalm, Kurt; Bergquist, Jonas; Ahlström, Håkan; Bergsten, Peter; Weghuber, Daniel; Kullberg, Joel

    2017-03-01

    Adolescents with obesity have increased risk of type 2 diabetes and metabolic syndrome (MetS). Pancreatic fat has been related to these conditions; however, little is known about associations in pediatric obesity. The present study was designed to explore these associations further. We examined 116 subjects, 90 with obesity. Anthropometry, MetS, blood samples, and oral glucose tolerance tests were assessed using standard techniques. Pancreatic fat fraction (PFF) and other fat depots were quantified using magnetic resonance imaging. The PFF was elevated in subjects with obesity. No association between PFF and body mass index-standard deviation score (BMI-SDS) was found in the obesity subcohort. Pancreatic fat fraction correlated to Insulin Secretion Sensitivity Index-2 and Homeostatic Model Assessment of Insulin Resistance in simple regression; however, when using adjusted regression and correcting for BMI-SDS and other fat compartments, PFF correlated only to visceral adipose tissue and fasting glucose. Highest levels of PFF were found in subjects with obesity and MetS. In adolescents with obesity, PFF is elevated and associated to MetS, fasting glucose, and visceral adipose tissue but not to beta-cell function, glucose tolerance, or BMI-SDS. This study demonstrates that conclusions regarding PFF and its associations depend on the body mass features of the cohort.

  12. Characterization of a Commercial Silicon Beta Cell

    International Nuclear Information System (INIS)

    Foxe, Michael P.; Hayes, James C.; Mayer, Michael F.; McIntyre, Justin I.; Sivels, Ciara B.; Suarez, Rey

    2016-01-01

    Silicon detectors are of interest for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) due to their enhanced energy resolution compared to plastic scintillators beta cells. Previous work developing a figure-of-merit (FOM) for comparison of beta cells suggests that the minimum detectable activity (MDA) could be reduced by a factor of two to three with the use of silicon detectors. Silicon beta cells have been developed by CEA (France) and Lares Ltd. (Russia), with the PIPSBox developed by CEA being commercially available from Canberra for approximately $35k, but there is still uncertainty about the reproducibility of the capabilities in the field. PNNL is developing a high-resolution beta-gamma detector system in the shallow underground laboratory, which will utilize and characterize the operation of the PIPSBox detector. Throughout this report, we examine the capabilities of the PIPSBox as developed by CEA. The lessons learned through the testing and use of the PIPSBox will allow PNNL to strategically develop a silicon detector optimized to better suit the communities needs in the future.

  13. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study

    DEFF Research Database (Denmark)

    Zander, Mette; Madsbad, Sten; Madsen, Jan Lysgaard

    2002-01-01

    subcutaneous infusion of GLP-1 (n=10) or saline (n=10) for 6 weeks. Before (week 0) and at weeks 1 and 6, they underwent beta-cell function tests (hyperglycaemic clamps), 8 h profiles of plasma glucose, insulin, C-peptide, glucagon, and free fatty acids, and appetite and side-effect ratings on 100 mm visual...... analogue scales; at weeks 0 and 6 they also underwent dexascanning, measurement of insulin sensitivity (hyperinsulinaemic euglycaemic clamps), haemoglobin A(1c), and fructosamine. The primary endpoints were haemoglobin A(1c) concentration, 8-h profile of glucose concentration in plasma, and beta......-cell function (defined as the first-phase response to glucose and the maximum insulin secretory capacity of the cell). Analyses were per protocol. FINDINGS: One patient assigned saline was excluded because no veins were accessible. In the remaining nine patients in that group, no significant changes were...

  14. Adjusting the IP $\\beta$ Functions in RHIC

    CERN Document Server

    Wittmer, W; Pilat, F; Ptitsyn, V; Van Zeijts, J

    2004-01-01

    The beta functions at the IP can be adjusted without perturbation of other optics functions via several approaches. In this paper we describe a scheme based on a vector knob, which assigns fixed values to the different tuning quadrupoles and scales them by a common multiplier. The values for the knob vector were calculated for a lattice without any errors using MADX. Previous studies for the LHC [1] have shown that this approach can meet the design goals. A specific feature of the RHIC lattice is the nested power supply system. To cope with the resulting problems a detailed response matrix analysis has been carried out and different sets of knobs were calculated and compared. The knobs were tested at RHIC during the 2004 run and preliminary results are discussed. Simultaneously a new approach to measure the beam sizes of both colliding beams at the IP, based on the tunability provided by the knobs, was developed and tested.

  15. Thymosin {beta}4 promotes the migration of endothelial cells without intracellular Ca{sup 2+} elevation

    Energy Technology Data Exchange (ETDEWEB)

    Selmi, Anna [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Malinowski, Mariusz [Institute of Medical Biology, Polish Academy of Sciences, Lodz (Poland); Brutkowski, Wojciech [Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw (Poland); Bednarek, Radoslaw [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Cierniewski, Czeslaw S., E-mail: czeslaw.cierniewski@umed.lodz.pl [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Institute of Medical Biology, Polish Academy of Sciences, Lodz (Poland)

    2012-08-15

    Numerous studies have demonstrated the effects of T{beta}4 on cell migration, proliferation, apoptosis and inflammation after exogenous treatment, but the mechanism by which T{beta}4 functions is still unclear. Previously, we demonstrated that incubation of endothelial cells with T{beta}4 induced synthesis and secretion of various proteins, including plasminogen activator inhibitor type 1 and matrix metaloproteinases. We also showed that T{beta}4 interacts with Ku80, which may operate as a novel receptor for T{beta}4 and mediates its intracellular activity. In this paper, we provide evidence that T{beta}4 induces cellular processes without changes in the intracellular Ca{sup 2+} concentration. External treatment of HUVECs with T{beta}4 and its mutants deprived of the N-terminal tetrapeptide AcSDKP (T{beta}4{sub AcSDKPT/4A}) or the actin-binding sequence KLKKTET (T{beta}4{sub KLKKTET/7A}) resulted in enhanced cell migration and formation of tubular structures in Matrigel. Surprisingly, the increased cell motility caused by T{beta}4 was not associated with the intracellular Ca{sup 2+} elevation monitored with Fluo-4 NW or Fura-2 AM. Therefore, it is unlikely that externally added T{beta}4 induces HUVEC migration via the surface membrane receptors known to generate Ca{sup 2+} influx. Our data confirm the concept that externally added T{beta}4 must be internalized to induce intracellular mechanisms supporting endothelial cell migration.

  16. Dysregulation of Dicer1 in Beta Cells Impairs Islet Architecture and Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Amitai D. Mandelbaum

    2012-01-01

    Full Text Available microRNAs (miRNAs play important roles in pancreas development and in regulation of insulin expression in the adult. Here we show that loss of miRNAs activity in beta-cells during embryonic development results in lower beta-cell mass and in impaired glucose tolerance. Dicer1-null cells initially constitute a significant portion of the total beta-cell population. However, during postnatal development, Dicer1-null cells are depleted. Furthermore, wild-type beta cells are repopulating the islets in complex compensatory dynamics. Because loss of Dicer1 is also associated with changes in the distribution of membranous E-cadherin, we hypothesized that E-cadherin activity may play a role in beta cell survival or islet architecture. However, genetic loss of E-cadherin function does not impair islet architecture, suggesting that miRNAs likely function through other or redundant effectors in the endocrine pancreas.

  17. Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1993-01-01

    A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor beta receptors (TGF beta-r) and the expression of TGF beta mRNAs. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. scatchard analysis......(r) = 65,000 and 90,000 and the betaglycan (type III) with M(r) = 280,000. Northern blotting showed expression of TGF beta 1 mRNA in ten, TGF beta 2 mRNA in two and TGF beta 3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell...... lines express TGF beta-receptors and also produce TGF beta mRNAs....

  18. Multinational study in children and adolescents with newly diagnosed type 1 diabetes: association of age, ketoacidosis, HLA status, and autoantibodies on residual beta-cell function and glycemic control 12 months after diagnosis

    DEFF Research Database (Denmark)

    Mortensen, H.B.; Swift, P.G.F.; Holl, R.W.

    2010-01-01

    .005), and by stimulated C-peptide (p IA; p = 0.02) and glutamic acid decarboxylase antibodies (GADA; p = 0.0004) at 1 month. HbA1c at 12 months was predicted by HbA1c at diagnosis (p ... (p = 0.002). Conclusions: Younger age, ketoacidosis at diagnosis, and IA and GADA 1 month after diagnosis were the strongest explanatory factors for residual beta-cell function at 12 months. Glycemic control at 12 months was influenced predominantly by ethnicity, HbA1c at diagnosis, and GADA at 1......Objective: To identify predictors of residual beta-cell function and glycemic control during the first 12 months after the diagnosis of type 1 diabetes (T1D). Subjects and Methods: Clinical information and blood samples were collected from 275 children. HbA1c, antibodies, HLA typing and mixed meal...

  19. Characterization of beta cell and incretin function in patients with MODY1 (HNF4A MODY) and MODY3 (HNF1A MODY) in a Swedish patient collection.

    Science.gov (United States)

    Ekholm, E; Shaat, N; Holst, J J

    2012-10-01

    The aim of this study was to evaluate the beta cell and incretin function in patients with HNF4A and HNF1A MODY during a test meal. Clinical characteristics and biochemical data (glucose, proinsulin, insulin, C-peptide, GLP-1 and GIP) during a test meal were compared between MODY patients from eight different families. BMI-matched T2D and healthy subjects were used as two separate control groups. The early phase of insulin secretion was attenuated in HNF4A, HNF1A MODY and T2D (AUC0-30 controls: 558.2 ± 101.2, HNF4A MODY: 93.8 ± 57.0, HNF1A MODY: 170.2 ± 64.5, T2D: 211.2 ± 65.3, P MODY compared to T2D and that tended to be so also in HNF1A MODY (HNF4A MODY: 3.7 ± 1.2, HNF1A MODY: 8.3 ± 3.8 vs. T2D: 26.6 ± 14.3). Patients with HNF4A MODY had similar total GLP-1 and GIP responses as controls (GLP-1 AUC: (control: 823.9 ± 703.8, T2D: 556.4 ± 698.2, HNF4A MODY: 1,257.0 ± 999.3, HNF1A MODY: 697.1 ± 818.4) but with a different secretion pattern. The AUC insulin during the test meal was strongly correlated with the GIP secretion (Correlation coefficient 1.0, P MODY showed an attenuated early phase of insulin secretion similar to T2Ds. AUC insulin during the test meal was strongly correlated with GIP secretion, whereas no such correlation was seen for insulin and GLP-1. Thus, GIP may be a more important factor for insulin secretion than GLP-1 in MODY patients.

  20. Activation of Beta-Catenin Signaling in Androgen Receptor–Negative Prostate Cancer Cells

    Science.gov (United States)

    Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W.; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S.; Troncoso, Patricia; Maity, Sankar N.; Navone, Nora M.

    2012-01-01

    Purpose To study Wnt/beta-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the beta-catenin–androgen receptor (AR) interaction. Experimental Design We performed beta-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of beta-catenin–mediated transcription), and sequenced the beta-catenin gene in MDA PCa 118a, MDA PCa 118b, MDA PCa 2b, and PC-3 prostate cancer (PCa) cells. We knocked down beta-catenin in AR-negative MDA PCa 118b cells and performed comparative gene-array analysis. We also immunohistochemically analyzed beta-catenin and AR in 27 bone metastases of human CRPCs. Results Beta-catenin nuclear accumulation and TOP-flash reporter activity were high in MDA PCa 118b but not in MDA PCa 2b or PC-3 cells. MDA PCa 118a and 118b cells carry a mutated beta-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA PCa 118b cells with downregulated beta-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant beta-catenin. Finally, we found nuclear localization of beta-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher’s exact test), suggesting that reduced AR expression enables Wnt/beta-catenin signaling. Conclusion We identified a previously unknown downstream target of beta-catenin, HAS2, in PCa, and found that high beta-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone-metastatic PCa. These findings may guide physicians in managing these patients. PMID:22298898

  1. A transmembrane polar interaction is involved in the functional regulation of integrin alpha L beta 2.

    Science.gov (United States)

    Vararattanavech, Ardcharaporn; Chng, Choon-Peng; Parthasarathy, Krupakar; Tang, Xiao-Yan; Torres, Jaume; Tan, Suet-Mien

    2010-05-14

    Integrins are heterodimeric transmembrane (TM) receptors formed by noncovalent associations of alpha and beta subunits. Each subunit contains a single alpha-helical TM domain. Inside-out activation of an integrin involves the separation of its cytoplasmic tails, leading to disruption of alphabeta TM packing. The leukocyte integrin alpha L beta 2 is required for leukocyte adhesion, migration, proliferation, cytotoxic function, and antigen presentation. In this study, we show by mutagenesis experiments that the packing of alpha L beta 2 TMs is consistent with that of the integrin alpha IIb beta 3 TMs. However, molecular dynamics simulations of alpha L beta 2 TMs in lipids predicted a polar interaction involving the side chains of alpha L Ser1071 and beta2 Thr686 in the outer-membrane association clasp (OMC). This is supported by carbonyl vibrational shifts observed in isotope-labeled alpha L beta 2 TM peptides that were incorporated into lipid bilayers. Molecular dynamics studies simulating the separation of alpha L beta 2 tails showed the presence of polar interaction during the initial perturbation of the inner-membrane association clasp. When the TMs underwent further separation, the polar interaction was disrupted. OMC polar interaction is important in regulating the functions of beta2 integrins because mutations that disrupt the OMC polar interaction generated constitutively activated alpha L beta 2, alpha M beta 2, and alpha X beta 2 in 293T transfectants. We also show that the expression of mutant beta2 Thr686Gly in beta2-deficient T cells rescued cell adhesion to intercellular adhesion molecule 1, but the cells showed overt elongated morphologies in response to chemokine stromal-cell-derived factor 1 alpha treatment as compared to wild-type beta2-expressing cells. These two TM polar residues are totally conserved in other members of the beta2 integrins in humans and across different species. Our results provide an example of the stabilizing effect of polar

  2. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    DEFF Research Database (Denmark)

    Cortijo, Cedric; Gouzi, Mathieu; Tissir, Fadel

    2012-01-01

    glucose clearance. Loss of Celsr2 and 3 leads to a reduction of Jun phosphorylation in progenitors, which, in turn, reduces beta cell differentiation from endocrine progenitors. These results highlight the importance of the PCP pathway in cell differentiation in vertebrates. In addition, they reveal.......5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased...

  3. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins.

    Science.gov (United States)

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R

    2016-06-01

    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  4. Pancreatic Beta-Cell Purification by Altering FAD and NAD(PH Metabolism

    Directory of Open Access Journals (Sweden)

    P. de Vos

    2008-07-01

    Full Text Available Isolation of primary beta cells from other cells within in the pancreatic islets is of importance for many fields of islet research. However, up to now, no satisfactory method has been developed that gained high numbers of viable beta cells, without considerable alpha-cell contamination. In this study, we investigated whether rat beta cells can be isolated from nonbeta endocrine cells by manipulating the flavin adenine dinucleotide (FAD and nicotinamide-adenine dinucleotide phosphate (NAD(PH autofluorescence. Beta cells were isolated from dispersed islets by flow cytometry, based on their high FAD and NAD(PH fluorescence. To improve beta cell yield and purity, the cellular FAD and NAD(PH contents were altered by preincubation in culture media containing varying amounts of D-glucose and amino acids. Manipulation of the cellular FAD and NAD(PH fluorescence improves beta cell yield and purity after sorting. This method is also a fast and reliable method to measure beta cell functional viability. A conceivable application is assessing beta cell viability before transplantation.

  5. AGS vertical beta function measurements for Run 15

    Energy Technology Data Exchange (ETDEWEB)

    Harper, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ahrens, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-10-07

    One key parameter for running the AGS efficiently is by maintaining a low emittance. To measure emittance, one needs to measure the beta function throughout the cycle. This can be done by measuring the beta function at the ionization profile monitors (IPM) in the AGS. This tech note delves into the motivation, the measurement, and some strides that were made throughout Run15.

  6. What are the potential benefits of clinical beta-cell imaging in diabetes mellitus?

    Science.gov (United States)

    Göke, Burkhard

    2010-05-01

    Previously, studies of the endocrine pancreatic beta-cell were mainly performed ex vivo by morphological means. This data supported the analysis of pathophysiological changes in the pancreatic islet during insults such as diabetes mellitus. Metabolic testing of the pancreatic islet by assaying hormone parameters such als plasma insulin or C-peptide combined with more or less sophisticated calculations allowed conclusions about states of insulin resistance or secretory failure. It also allowed certain correlations of endocrine function with beta-cell mass. Today, with firmer pathophysiological concepts about beta-cell failure, modern protocols of islet transplantation, and drugs on the market coming with promises of preservation or even expansion of beta-cell mass in diabetes mellitus it has become very attractive to search for tools measuring beta-cell mass, if possible even repeatingly in the same organism in vivo. From a clinical point of view, the potential of pancreatic beta-cell mass imaging technologies is looked upon with high expectations. Methodologically, the decisive question is whether it is likely that future beta-cell imaging will provide significant advantages over the metabolic methods already in hand. With new in vivo tools, studies of beta-cell mass and function may offer even new approaches stratifying patients to anti-diabetic therapies.

  7. Discriminatory ability of simple OGTT-based beta cell function indices for prediction of prediabetes and type 2 diabetes: the CODAM study.

    Science.gov (United States)

    den Biggelaar, Louise J C J; Sep, Simone J S; Eussen, Simone J P M; Mari, Andrea; Ferrannini, Ele; van Greevenbroek, Marleen M J; van der Kallen, Carla J H; Schalkwijk, Casper G; Stehouwer, Coen D A; Dagnelie, Pieter C

    2017-03-01

    The hyperglycaemic clamp technique and the frequently sampled IVGTT are unsuitable techniques to assess beta cell function (BCF) in large cohorts. Therefore, the aim of this study was to evaluate the discriminatory ability of simple OGTT-based BCF indices for prediction of prediabetes (meaning impaired fasting glucose and/or impaired glucose tolerance) and type 2 diabetes. Glucose metabolism status was assessed by 2 h 75 g OGTT at baseline (n = 476, mean age 59.2 years, 38.7% women) and after 7 years of follow-up (n = 416) in the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study (1999-2009). Baseline plasma glucose, insulin and C-peptide values during OGTTs were used to calculate 21 simple indices of BCF. Disposition indices (BCF index × Matsuda index), to compensate for the prevailing level of insulin resistance, were calculated for the BCF indices with the best discriminatory abilities. The discriminatory ability of the BCF indices was estimated by the area under the receiver operating characteristics curve (ROC AUC) with an outcome of incident prediabetes (n = 73) or type 2 diabetes (n = 60 and n = 18 cases, respectively, in individuals who were non-diabetic or had normal glucose metabolism at baseline). For incident prediabetes (n = 73), all ROC AUCs were less than 70%, whereas for incident type 2 diabetes, I 30 /I 0 , CP 30 /CP 0 , ΔI 30 /ΔG 30 , ΔCP 30 /ΔG 30 (where I, CP and G are the plasma concentrations of insulin, C-peptide and glucose, respectively, at the times indicated), and corrected insulin response at 30 min had ROC AUCs over 70%. In at-baseline non-diabetic individuals, disposition indices ΔI 30 /ΔG 30 , ΔCP 30 /ΔG 30 and corrected insulin response at 30 min had ROC AUCs of over 80% for incident type 2 diabetes. Moreover, these BCF disposition indices had significantly better discriminatory abilities for incident type 2 diabetes than the Matsuda index alone. BCF indices reflecting early

  8. Antibody Response to Serpin B13 Induces Adaptive Changes in Mouse Pancreatic Islets and Slows Down the Decline in the Residual Beta Cell Function in Children with Recent Onset of Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Kryvalap, Yury; Lo, Chi-Wen; Manuylova, Ekaterina; Baldzizhar, Raman; Jospe, Nicholas; Czyzyk, Jan

    2016-01-01

    Type 1 diabetes mellitus (T1D) is characterized by a heightened antibody (Ab) response to pancreatic islet self-antigens, which is a biomarker of progressive islet pathology. We recently identified a novel antibody to clade B serpin that reduces islet-associated T cell accumulation and is linked to the delayed onset of T1D. As natural immunity to clade B arises early in life, we hypothesized that it may influence islet development during that time. To test this possibility healthy young Balb/c male mice were injected with serpin B13 mAb or IgG control and examined for the number and cellularity of pancreatic islets by immunofluorescence and FACS. Beta cell proliferation was assessed by measuring nucleotide analog 5-ethynyl-2'-deoxyuridine (5-EdU) incorporation into the DNA and islet Reg gene expression was measured by real time PCR. Human studies involved measuring anti-serpin B13 autoantibodies by Luminex. We found that injecting anti-serpin B13 monoclonal Ab enhanced beta cell proliferation and Reg gene expression, induced the generation of ∼80 pancreatic islets per animal, and ultimately led to increase in the beta cell mass. These findings are relevant to human T1D because our analysis of subjects just diagnosed with T1D revealed an association between baseline anti-serpin activity and slower residual beta cell function decline in the first year after the onset of diabetes. Our findings reveal a new role for the anti-serpin immunological response in promoting adaptive changes in the endocrine pancreas and suggests that enhancement of this response could potentially help impede the progression of T1D in humans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    Science.gov (United States)

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  10. Enhancing pancreatic Beta-cell regeneration in vivo with pioglitazone and alogliptin.

    Directory of Open Access Journals (Sweden)

    Hao Yin

    Full Text Available Pancreatic beta-cells retain limited ability to regenerate and proliferate after various physiologic triggers. Identifying therapies that are able to enhance beta-cell regeneration may therefore be useful for the treatment of both type 1 and type 2 diabetes.In this study we investigated endogenous and transplanted beta-cell regeneration by serially quantifying changes in bioluminescence from beta-cells from transgenic mice expressing firefly luciferase under the control of the mouse insulin I promoter. We tested the ability of pioglitazone and alogliptin, two drugs developed for the treatment of type 2 diabetes, to enhance beta-cell regeneration, and also defined the effect of the immunosuppression with rapamycin and tacrolimus on transplanted islet beta mass.Pioglitazone is a stimulator of nuclear receptor peroxisome proliferator-activated receptor gamma while alogliptin is a selective dipeptidyl peptidase IV inhibitor. Pioglitazone alone, or in combination with alogliptin, enhanced endogenous beta-cell regeneration in streptozotocin-treated mice, while alogliptin alone had modest effects. In a model of syngeneic islet transplantation, immunosuppression with rapamycin and tacrolimus induced an early loss of beta-cell mass, while treatment with insulin implants to maintain normoglycemia and pioglitazone plus alogliptin was able to partially promote beta-cell mass recovery.These data highlight the utility of bioluminescence for serially quantifying functional beta-cell mass in living mice. They also demonstrate the ability of pioglitazone, used either alone or in combination with alogliptin, to enhance regeneration of endogenous islet beta-cells as well as transplanted islets into recipients treated with rapamycin and tacrolimus.

  11. Beta-1-Selective Beta-Blockers and Cognitive Functions in Patients With Coronary Artery Disease: A Cross-Sectional Study.

    Science.gov (United States)

    Burkauskas, Julius; Noreikaite, Aurelija; Bunevicius, Adomas; Brozaitiene, Julija; Neverauskas, Julius; Mickuviene, Narseta; Bunevicius, Robertas

    2016-01-01

    The association between current beta-1-selective beta-blocker use and cognitive function was evaluated in 722 patients with coronary artery disease without dementia. Beta-1-selective beta-blocker use was associated with worse incidental learning independently of sociodemographic characteristics, clinical coronary artery disease severity, and depression/anxiety.

  12. Gestational Diabetes Mellitus Worsens the Profile of Cardiometabolic Risk Markers and Decrease Indexes of Beta-Cell Function Independently of Insulin Resistance in Nondiabetic Women with a Parental History of Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Alina Sokup

    2014-01-01

    Full Text Available Background. Women with a history of both parental type 2 diabetes (pt2DM and previous gestational diabetes (pGDM represent a group at high risk of cardiovascular events. We hypothesized that pGDM changes cardiometabolic risk markers levels as well as theirs associations with glucose indices in nondiabetic pt2DM women. Methods. Anthropometric parameters, glucose regulation (OGTT, insulin resistance (HOMA-IR, beta-cell function, lipid levels, parameters of endothelial dysfunction, and inflammation were evaluated in 55 women with pt2DM, 40 with both pt2DM and pGDM 2–24 months postpartum, and 35 controls. Results. Prediabetes was diagnosed more frequently in women with both pt2DM and pGDM in comparison with women with only pt2DM (10 versus 8, P=0.04. The pGDM group had higher LDL-cholesterol, sICAM-1, tPa Ag, fibrinogen, and lower beta-cell function after adjustment for HOMA-IR, in comparison with pt2DM group. In pt2DM group postchallenge glucose correlated independently with hsCRP and in pGDM group fasting glucose with HOMA-IR. Conclusions. pGDM exerts a combined effect on cardiometabolic risk markers in women with pt2DM. In these women higher LDL-cholesterol, fibrinogen, sICAM-1, tPa Ag levels and decreased beta cell function are associated with pGDM independently of HOMA-IR index value. Fasting glucose is an important cardiometabolic risk marker and is independently associated with HOMA-IR.

  13. Proliferation of sorted human and rat beta cells

    DEFF Research Database (Denmark)

    Parnaud, G; Bosco, D; Berney, T

    2008-01-01

    The aim of the study was to determine whether purified beta cells can replicate in vitro and whether this is enhanced by extracellular matrix (ECM) and growth factors.......The aim of the study was to determine whether purified beta cells can replicate in vitro and whether this is enhanced by extracellular matrix (ECM) and growth factors....

  14. The islet beta-cell: fuel responsive and vulnerable.

    Science.gov (United States)

    Nolan, Christopher J; Prentki, Marc

    2008-10-01

    The pancreatic beta-cell senses blood nutrient levels and is modulated by neurohormonal signals so that it secretes insulin according to the need of the organism. Nutrient sensing involves marked metabolic activation, resulting in the production of coupling signals that promote insulin biosynthesis and secretion. The beta-cell's high capacity for nutrient sensing, however, necessitates reduced protection to nutrient toxicity. This potentially explains why in susceptible individuals, chronic fuel surfeit results in beta-cell failure and type 2 diabetes. Here we discuss recent insights into first, the biochemical basis of beta-cell signaling in response to glucose, amino acids and fatty acids, and second, beta-cell nutrient detoxification. We emphasize the emerging role of glycerolipid/fatty acid cycling in these processes.

  15. Progress in molecular nuclear medicine imaging of pancreatic beta cells

    International Nuclear Information System (INIS)

    Wu Haifei; Yin Hongyan; Liu Shuai; Zhang Yifan

    2010-01-01

    Diabetes mellitus is a common and frequently occurring disease which seriously threaten the health of human beings. Type 1 and type 2 diabetes respectively results from being destroyed and insufficient beta-cell mass. The associated symptoms appear until 50%-60% decrease of beta-cell mass. Because pancreas is deeply located in the body, with few beta-cell mass, the current methods of clinical diagnosis are invasive and late. So diagnosis of metabolism disease of beta-cell early non-invasively becomes more and more popular, imaging diagnosis of diabetes mellitus becomes the focus of researches, but how to estimate the mass of beta-cell still an important subject in imaging technology. (authors)

  16. Synthetic alleles at position 121 define a functional domain of human interleukin-1 beta.

    Science.gov (United States)

    Ambrosetti, D C; Palla, E; Mirtella, A; Galeotti, C; Solito, E; Navarra, P; Parente, L; Melli, M

    1996-06-01

    The non-conservative substitution of the tyrosine residue at position 121 of human interleukin-1 beta (IL-1 beta) generates protein mutants showing strong reduction of the capacity to induce (a) prostaglandin E2 (PGE2) release from fibroblasts and smooth muscle cells, (b) murine T-cells proliferation and (c) activation of interleukin-6 (IL-6) gene expression. It is generally accepted that these functions are mediated by the type-I interleukin-1 receptor (IL-1RI). However, the mutant proteins maintain the binding affinity to the types-I and II IL-1 receptors, which is the same as the control IL-1 beta, suggesting that this amino acid substitution does not alter the structure of the molecule, except locally. Thus we have identified a new functional site of IL-1 beta different from the known receptor binding region, responsible for fundamental IL-1 beta functions. Moreover, we show that the same mutants maintain at least two hypothalamic functions, that is, the in vitro short-term PGE2 release from rat hypothalamus and the induction of fever in rabbits. This result suggests that there is yet another site of the molecule responsible for the hypothalamic functions, implying that multiple active sites on the IL-1 beta molecule, possibly binding to more than one receptor chain, trigger different signals.

  17. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    Science.gov (United States)

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  18. Effects of transforming growth factor beta 1 on the regulation of osteoclastic development and function

    International Nuclear Information System (INIS)

    Hattersley, G.; Chambers, T.J.

    1991-01-01

    Transforming growth factor (TGF) beta 1 is a multifunctional cytokine with powerful effects on osteoblastic cells. Its role in the regulation of osteoclast generation and function, however, is unclear. It has been reported both to stimulate and to inhibit resorption in organ culture and to inhibit multinuclear cell formation in bone marrow cultures. We tested the effects of TGF-beta 1 on bone resorption by osteoclasts isolated from neonatal rat long bones. We found potent stimulation of osteoclastic bone resorption, mediated by osteoblastic cells, with an EC50 of 10 pg/ml, considerably lower than that of well-documented osteotropic hormones. Stimulation was not mediated by Swiss mouse 3T3 cells, a nonosteoblastic cell line. TGF-beta 1 strongly inhibited the generation of calcitonin receptor (CTR)-positive cells in mouse bone marrow cultures, but as for isolated osteoclasts, bone resorption per CTR-positive cell was increased. The inhibition of CTR-positive cell formation was associated with suppression of maturation of other bone marrow derivatives and may be related more to the known ability of TGF-beta 1 to suppress the proliferation of primitive hematopoietic cells than to a specific role of TGF-beta 1 in osteoclast generation

  19. Low Horizontal Beta Function In Long Straights Of The NSLS-II Lattice

    International Nuclear Information System (INIS)

    Fanglei, L.; Bengtsson, J.; Guo, W.; Krinsky, S.; Li, Y.; Yang, L.

    2011-01-01

    The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 short straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this paper, we explore the possibility of maintaining three long straights with large horizontal beta function while providing the other 12 long straights with smaller horizontal beta function to optimize the brightness of insertion devices. Our study considers the possible linear lattice solutions as well as characterizing the nonlinear dynamics. Results are reported on optimization of dynamic aperture required for good injection efficiency and adequate Touschek lifetime. This paper discusses dynamic aperture optimization for the NSLS-II lattice with alternate high and low horizontal beta function in the long straights, which is proposed for the optimization of the brightness of insertion devices. The linear optics is optimized to meet the requirements of lattice function and source properties. Nonlinear optimization for a lattice with working point at (37.18, 16.2) is performed. Considering the realistic magnets errors and physical apertures, we calculate the frequency maps and plot the tune footprint. The results show that the lattice with high-low beta function has adequate dynamic aperture for good injection efficiency and sufficient Touschek lifetime.

  20. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells

    DEFF Research Database (Denmark)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe

    2009-01-01

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell......-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However......, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell...

  1. Failure to preserve beta-cell function with mycophenolate mofetil and daclizumab combined therapy in patients with new- onset type 1 diabetes.

    Science.gov (United States)

    Gottlieb, Peter A; Quinlan, Scott; Krause-Steinrauf, Heidi; Greenbaum, Carla J; Wilson, Darrell M; Rodriguez, Henry; Schatz, Desmond A; Moran, Antoinette M; Lachin, John M; Skyler, Jay S

    2010-04-01

    This trial tested whether mycophenolate mofetil (MMF) alone or with daclizumab (DZB) could arrest the loss of insulin-producing beta-cells in subjects with new-onset type 1 diabetes. A multi-center, randomized, placebo-controlled, double-masked trial was initiated by Type 1 Diabetes TrialNet at 13 sites in North America and Europe. Subjects diagnosed with type 1 diabetes and with sufficient C-peptide within 3 months of diagnosis were randomized to either MMF alone, MMF plus DZB, or placebo, and then followed for 2 years. The primary outcome was the geometric mean area under the curve (AUC) C-peptide from the 2-h mixed meal tolerance test. One hundred and twenty-six subjects were randomized and treated during the trial. The geometric mean C-peptide AUC at 2 years was unaffected by MMF alone or MMF plus DZB versus placebo. Adverse events were more frequent in the active therapy groups relative to the control group, but not significantly. Neither MMF alone nor MMF in combination with DZB had an effect on the loss of C-peptide in subjects with new-onset type 1 diabetes. Higher doses or more targeted immunotherapies may be needed to affect the autoimmune process.

  2. The Finnish Diabetes Risk Score is associated with insulin resistance but not reduced beta-cell function, by classical and model-based estimates

    NARCIS (Netherlands)

    Brodovicz, K.G.; Dekker, J.M.; Rijkelijkhuizen, J.M.; Rhodes, T.; Mari, A.; Alssema, M.J.; Nijpels, G.; Williams-Herman, D.E.; Girman, C.J.

    2011-01-01

    Aims The Finnish Diabetes Risk Score (FINDRISC) is widely used for risk stratification in Type2 diabetes prevention programmes. Estimates of β-cell function vary widely in people without diabetes and reduced insulin secretion has been described in people at risk for diabetes. The aim of this

  3. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  4. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    International Nuclear Information System (INIS)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-01-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  5. A comparison of heart function and arrhythmia in clinically asymptomatic patients with beta thalassemia intermedia and beta thalassemia major.

    Science.gov (United States)

    Amoozgar, Hamid; Zeighami, Samaneh; Haghpanah, Sezaneh; Karimi, Mehran

    2017-01-01

    The goal of this study was to compare heart function and arrhythmia in clinically asymptomatic patients with beta thalassemia intermedia and beta thalassemia major. In this cross-sectional study, 60 patients with beta thalassemia major and 60 patients with beta thalassemia intermedia who had clinically no symptoms of arrhythmia and clinically normal heart function were evaluated using 24-hour ambulatory electrocardiogram monitoring and echocardiography. For data analysis SPSS ver.20 software was used. A P-value of less than 0.05 was considered statistically significant. The mean age of the beta thalassemia intermedia patients was 24.18 ± 7.9 years and the mean age in beta thalassemia major was 24.38 ± 7.7 years (P>0.05). Premature atrial contractions (PACs) were observed in 14 (23.3%) patients with beta thalassemia intermedia and in 22 (36.6%) beta thalassemia major patients. Premature ventricular contractions (PVCs) were detected in 8 (13.3%) patients in the beta thalassemia intermediate group and 16 (26.6) patients in the beta thalassemia major group, respectively. The left ventricular diastolic dimension, end-diastolic volume, and stroke volume were significantly higher in beta thalassemia intermedia group (Pintermedia group. Both atrial and ventricular arrhythmias were more common in the beta thalassemia major group. Higher end-diastolic volume and stroke volume were detected in the beta thalassemia intermedia group. Pulmonary acceleration time was lower in the beta thalassemia intermedia group, which can be an indicator of higher pulmonary pressure.

  6. Imaging the Beta-cell mass: why and how

    DEFF Research Database (Denmark)

    Saudek, Frantisek; Brogren, Carl-Henrik; Manohar, Srirang

    2008-01-01

    is called dihydrotetrabenazine (DTBZ), antibodies to zinc transporter (ZnT-8) and the monoclonal antibody IC2. While DTBZ and antibodies to ZnT-8 showed binding activities to more than beta-cells, the anti-IC2 monoclonal antibody showed binding properties exclusively to insulin-producing beta...

  7. A Simple Matter of Life and Death—The Trials of Postnatal Beta-Cell Mass Regulation

    Directory of Open Access Journals (Sweden)

    Elena Tarabra

    2012-01-01

    Full Text Available Pancreatic beta-cells, which secrete the hormone insulin, are the key arbiters of glucose homeostasis. Defective beta-cell numbers and/or function underlie essentially all major forms of diabetes and must be restored if diabetes is to be cured. Thus, the identification of the molecular regulators of beta-cell mass and a better understanding of the processes of beta-cell differentiation and proliferation may provide further insight for the development of new therapeutic targets for diabetes. This review will focus on the principal hormones and nutrients, as well as downstream signalling pathways regulating beta-cell mass in the adult. Furthermore, we will also address more recently appreciated regulators of beta-cell mass, such as microRNAs.

  8. Four weeks of treatment with liraglutide reduces insulin dose without loss of glycemic control in type 1 diabetic patients with and without residual beta-cell function

    DEFF Research Database (Denmark)

    Kielgast, Urd; Krarup, Thure; Holst, Jens Juul

    2011-01-01

    OBJECTIVE To investigate the effect of 4 weeks of treatment with liraglutide on insulin dose and glycemic control in type 1 diabetic patients with and without residual ß-cell function. RESEARCH DESIGN AND METHODS Ten type 1 diabetic patients with residual ß-cell function (C-peptide positive) and 19.......1]; P Treatment with liraglutide in type 1 diabetic patients reduces insulin dose with improved or unaltered glycemic control....... activity was performed before (week 0) and during (week 4) treatment. Differences in insulin dose; HbA(1c); time spent with blood glucose 10, and 3.9-9.9 mmol/L; and body weight were evaluated. RESULTS Insulin dose decreased from 0.50 ± 0.06 to 0.31 ± 0.08 units/kg per day (P

  9. Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Nintasen, Rungrat [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Riches, Kirsten; Mughal, Romana S. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Viriyavejakul, Parnpen; Chaisri, Urai; Maneerat, Yaowapa [Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Turner, Neil A. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Porter, Karen E., E-mail: medkep@leeds.ac.uk [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there

  10. Age-dependent decline of beta-cell function in type 1 diabetes after diagnosis: a multi-centre longitudinal study

    DEFF Research Database (Denmark)

    Barker, A.; Lauria, A.; Schloot, N.

    2014-01-01

    C-peptide secretion is currently the only available clinical biomarker to measure residual β-cell function in type 1 diabetes. However, the natural history of C-peptide decline after diagnosis can vary considerably dependent upon several variables. We investigated the shape of C-peptide decline...... over time from type 1 diabetes onset in relation to age at diagnosis, HbA1c levels and insulin dose....

  11. Isolation of beta-glucan from the cell wall of Saccharomyces cerevisiae.

    Science.gov (United States)

    Shokri, Hojjatollah; Asadi, Farzad; Khosravi, Ali Reza

    2008-03-20

    Beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae (S. cerevisiae), has been found to enhance immune functions. At present study, we developed an optimal procedure to extract and purify beta-glucan. At first, yeast cells were grown in sabouraud dextrose agar and then cultured in yeast extract-peptone-glucose (YPG) broth. After incubation, cells were harvested, washed and disrupted by means of sonication method. The obtained cell walls were used to prepare alkali-soluble beta-glucan (glucan-S1). In this regard, 2% sodium hydroxide (NaOH) and 3% acetic acid were used in alkaline-acid extraction, respectively. This preparation contained 2.4% protein. In the next step, DEAE sephacel chromatography was used to remove remaining proteins (glucan-S2). Subsequently this preparation was applied into concanavalin-A sepharose column to remove manann. Finally, beta-glucan free of mannoprotein complexes was prepared (glucan-S3).

  12. Evaluation of beta-decay III. The complex gamma function

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1993-05-01

    Two real, analytical, approximations for the square of the modulus of the complex gamma function as it appears in F(Z, W), the Fermi function for beta-decay, are evaluated; an accuracy bettering 10 -4 % can easily be achieved for all electron energies throughout the periodic table. (author). 3 refs., 1 tab., 7 figs

  13. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  14. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Group B streptococcal beta-hemolysin/cytolysin directly impairs cardiomyocyte viability and function.

    Directory of Open Access Journals (Sweden)

    Mary E Hensler

    Full Text Available BACKGROUND: Group B Streptococcus (GBS is a leading cause of neonatal sepsis where myocardial dysfunction is an important contributor to poor outcome. Here we study the effects of the GBS pore-forming beta-hemolysin/cytolysin (Bh/c exotoxin on cardiomyocyte viability, contractility, and calcium transients. METHODOLOGY/PRINCIPAL FINDINGS: HL-1 cardiomyocytes exposed to intact wild-type (WT or isogenic Deltabeta h/c mutant GBS, or to cell-free extracts from either strain, were assessed for viability by trypan blue exclusion and for apoptosis by TUNEL staining. Functionality of exposed cardiomyocytes was analyzed by visual quantitation of the rate and extent of contractility. Mitochondrial membrane polarization was measured in TMRE-loaded cells exposed to GBS beta h/c. Effects of GBS beta h/c on calcium transients were studied in fura-2AM-loaded primary rat ventricular cardiomyocytes. Exposure of HL-1 cardiomyocytes to either WT GBS or beta h/c extracts significantly reduced both rate and extent of contractility and later induced necrotic and apoptotic cell death. No effects on cardiomyocyte viability or function were observed after treatment with Deltabeta h/c mutant bacteria or extracts. The beta h/c toxin was associated with complete and rapid loss of detectable calcium transients in primary neonatal rat ventricular cardiomyocytes and induced a loss of mitochondrial membrane polarization. These effects on viability and function were abrogated by the beta h/c inhibitor, dipalmitoyl phosphatidylcholine (DPPC. CONCLUSIONS/SIGNIFICANCE: Our data show a rapid loss of cardiomyocyte viability and function induced by GBS beta h/c, and these deleterious effects are inhibited by DPPC, a normal constituent of human pulmonary surfactant.. These findings have clinical implications for the cardiac dysfunction observed in neonatal GBS infections.

  16. Assessment of affinities of beta-CIT, beta-CIT-FE, and beta-CIT-FP for monoamine transporters permanently expressed in cell lines

    International Nuclear Information System (INIS)

    Okada, Tomoya; Fujita, Masahiro; Shimada, Shoichi; Sato, Kohji; Schloss, Patrick; Watanabe, Yoshiyuki; Itoh, Yasushi; Tohyama, Masaya; Nishimura, Tsunehiko

    1998-01-01

    We investigated the effects of three cocaine analogs, beta-CIT (2-beta-carbomethoxy-3-beta-(4-iodophenyl)-tropane), beta-CIT-FE (2-beta-carbomethoxy-3-beta-(4-iodophenyl)-N-(2-fluoroethyl)-nortropane), and beta-CIT-FP (2-beta-carbomethoxy-3-beta-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane), on the uptake of [ 3 H]dopamine(DA), serotonin(5-HT), and 1-norepinephrine (NE) using cell lines permanently expressing DA, 5-HT, and NE transporters, respectively, to determine their affinities for these three transporters. We generated cell lines stably expressing DA, 5-HT, and NE transporters, respectively, by the Chen-Okayama method, and then tested the abilities of (-)cocaine, beta-CIT, beta-CIT-FE, beta-CIT-FP, and clomipramine to inhibit the uptake of [ 3 H]DA, 5-HT, and 1-NE. Ki values of beta-CIT, beta-CIT-FE, and beta-CIT-FP for [ 3 H]DA, 5-HT, 1-NE uptake were 6, 29, and 33 nM, 91, 133, and 130 nM, and 28, 113 and 70 nM, respectively, whereas those of cocaine and clomipramine were 316, 581, and 176 nM and > 10,000, 437, and 851 nM, respectively. Beta-CIT, beta-CIT-FE, and beta-CIT-FP were shown to be potent DA, 5-HT, and NE uptake inhibitors. Beta-CIT and beta-CIT-FP were highly potent and selective dopamine uptake inhibitors, and therefore might be useful for imaging of DA transporter with single photon emission computed tomography (SPECT) or positron emission tomography (PET)

  17. Arginylglycylaspartic Acid-Surface-Functionalized Doxorubicin-Loaded Lipid-Core Nanocapsules as a Strategy to Target Alpha(V) Beta(3) Integrin Expressed on Tumor Cells

    Science.gov (United States)

    Antonow, Michelli B.; Franco, Camila; Prado, Willian; Beckenkamp, Aline; Silveira, Gustavo P.; Buffon, Andréia; Guterres, Sílvia S.

    2017-01-01

    Doxorubicin (Dox) clinical use is limited by dose-related cardiomyopathy, becoming more prevalent with increasing cumulative doses. Previously, we developed Dox-loaded lipid-core nanocapsules (Dox-LNC) and, in this study, we hypothesized that self-assembling and interfacial reactions could be used to obtain arginylglycylaspartic acid (RGD)-surface-functionalized-Dox-LNC, which could target tumoral cells overexpressing αvβ3 integrin. Human breast adenocarcinoma cell line (MCF-7) and human glioblastoma astrocytoma (U87MG) expressing different levels of αvβ3 integrin were studied. RGD-functionalized Dox-LNC were prepared with Dox at 100 and 500 mg·mL−1 (RGD-MCMN (Dox100) and RGD-MCMN (Dox500)). Blank formulation (RGD-MCMN) had z-average diameter of 162 ± 6 nm, polydispersity index of 0.11 ± 0.04, zeta potential of +13.2 ± 1.9 mV and (6.2 ± 1.1) × 1011 particles mL−1, while RGD-MCMN (Dox100) and RGD-MCMN (Dox500) showed respectively 146 ± 20 and 215 ± 25 nm, 0.10 ± 0.01 and 0.09 ± 0.03, +13.8 ± 2.3 and +16.4 ± 1.5 mV and (6.9 ± 0.6) × 1011 and (6.1 ± 1.0) × 1011 particles mL−1. RGD complexation was 7.73 × 104 molecules per nanocapsule and Dox loading were 1.51 × 104 and 7.64 × 104 molecules per nanocapsule, respectively. RGD-functionalized nanocapsules had an improved uptake capacity by U87MG cells. Pareto chart showed that the cell viability was mainly affected by the Dox concentration and the period of treatment in both MCF-7 and U87MG. The influence of RGD-functionalization on cell viability was a determinant factor exclusively to U87MG. PMID:29271920

  18. TGF-beta and 'adaptive' Foxp3(+) regulatory T cells.

    Science.gov (United States)

    Chen, Wanjun; Konkel, Joanne E

    2010-02-01

    In naïve T cells transforming growth factor-beta (TGF-beta) induces Foxp3, a transcription factor essential for programming and developing T regulatory cells (Treg cells). This finding reveals a physiological factor which can turn on the Foxp3 gene and establishes an experimental approach to induce antigen-specific Treg cells as a potential therapy for human diseases. While this role for TGF-beta is well confirmed, several critical questions remain largely unanswered and await further investigation. In this regard, it is imperative to understand the molecular pathways by which TGF-beta signaling initiates and regulates Foxp3 expression. It is also important to elucidate which factors and/or cytokines influence the TGF-beta-mediated conversion of naïve T cells and how to create an immunologically regulatory milieu to facilitate Treg cell generation in vivo. In this short article, we will highlight the key findings and recent progress in the field, discuss the molecular mechanisms underlying the TGF-beta-mediated induction of Foxp3, and attempt to outline the challenges ahead.

  19. Six-month exenatide improves HOMA hyperbolic product in type 2 diabetic patients mostly by enhancing beta-cell function rather than insulin sensitivity.

    Science.gov (United States)

    Preumont, V; Hermans, M-P; Brichard, S; Buysschaert, M

    2010-09-01

    This study aimed to determine whether or not the improvement of glycaemic control with 6-month exenatide therapy in type 2 diabetic patients with secondary failure to combined oral therapy is related to amelioration of β-cell function and/or insulin sensitivity and their combined product. Thirty-three patients with type 2 diabetes were investigated. Their β-cell function and insulin sensitivity were measured using Homoeostasis Model Assessment [HOMA-B, HOMA-S and HOMA hyperbolic product (BxS)]. Additional endpoints included changes in weight, HbA(1c) and plasma adiponectin, as well as baseline clinical and biological characteristics, as potential predictors of HbA(1c) response. After 6 months, unadjusted HOMA-B increased from 33 ± 24% to 43 ± 23% (P=0.0210), whereas there was no significant change in HOMA-S (from 58 ± 35% to 61 ± 40%). The hyperbolic product increased by a relative 70% (from 15 ± 7% to 22 ± 15%; P=0.0055). Body mass index decreased from 32.2 ± 5.1 kg/m(2) to 31.0 ± 4.8 kg/m(2) (PHOMA-B and hyperbolic product over a 6-month treatment period with no overall change in insulin sensitivity, despite weight loss. Thus, improved β-cell function rather than increased insulin sensitivity accounts for the bulk of HbA(1c) reduction following 6 months of exenatide treatment. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  20. Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1beta.

    Science.gov (United States)

    Engelke, Michael; Friedrich, Olaf; Budde, Petra; Schäfer, Christina; Niemann, Ursula; Zitt, Christof; Jüngling, Eberhard; Rocks, Oliver; Lückhoff, Andreas; Frey, Jürgen

    2002-07-17

    Transient receptor potential proteins (TRP) are supposed to participate in the formation of store-operated Ca(2+) influx channels by co-assembly. However, little is known which domains facilitate the interaction of subunits. Contribution of the N-terminal coiled-coil domain and ankyrin-like repeats and the putative pore region of the mouse TRP1beta (mTRP1beta) variant to the formation of functional cation channels were analyzed following overexpression in HEK293 (human embryonic kidney) cells. MTRP1beta expressing cells exhibited enhanced Ca(2+) influx and enhanced whole-cell membrane currents compared to mTRP1beta deletion mutants. Using a yeast two-hybrid assay only the coiled-coil domain facilitated homodimerization of the N-terminus. These results suggest that the N-terminus of mTRP1beta is required for structural organization thus forming functional channels.

  1. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  2. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression.

    LENUS (Irish Health Repository)

    Andrews, E J

    2012-02-03

    BACKGROUND: Recent studies have demonstrated that metastatic disease develops from tumor cells that adhere to endothelial cells and proliferate intravascularly. The beta-1 integrin family and its ligand laminin have been shown to be important in tumor-to-endothelial cell adhesion. Lipopolysaccharide (LPS) has been implicated in the increased metastatic tumor growth that is seen postoperatively. We postulated that LPS increases tumor cell expression of beta-1 integrins and that this leads to increased adhesion. METHODS: The human metastatic colon cancer cell line LS174T was labeled with an enhanced green fluorescent protein (eGFP) using retroviral transfection. Cell cultures were treated with LPS for 1, 2, and 4 h (n = 6 each) and were subsequently cocultured for 30 or 120 min with confluent human umbilical vein endothelial cells (HUVECs), to allow adherence. Adherent tumor cells were counted using fluorescence microscopy. These experiments were carried out in the presence or absence of a functional blocking beta-1 integrin monoclonal antibody (4B4). Expression of beta-1 integrin and laminin on tumor and HUVECs was assessed using flow cytometric analysis. Tumor cell NF-kappaB activation after incubation with LPS was measured. RESULTS: Tumor cell and HUVEC beta-1 integrin expression and HUVEC expression of laminin were significantly (P < 0.05) enhanced after incubation with LPS. Tumor cell adhesion to HUVECs was significantly increased. Addition of the beta-1 integrin blocking antibody reduced tumor cell adhesion to control levels. LPS increased tumor cell NF-kappaB activation. CONCLUSIONS: Exposure to LPS increases tumor cell adhesion to the endothelium through a beta-1 integrin-mediated pathway that is NF-kappaB dependent. This may provide a target for immunotherapy directed at reducing postoperative metastatic tumor growth.

  3. Interactions between beta subunits of the KCNMB family and Slo3: beta4 selectively modulates Slo3 expression and function.

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Yang

    2009-07-01

    Full Text Available The pH and voltage-regulated Slo3 K(+ channel, a homologue of the Ca(2+- and voltage-regulated Slo1 K(+ channel, is thought to be primarily expressed in sperm, but the properties of Slo3 studied in heterologous systems differ somewhat from the native sperm KSper pH-regulated current. There is the possibility that critical partners that regulate Slo3 function remain unidentified. The extensive amino acid identity between Slo3 and Slo1 suggests that auxiliary beta subunits regulating Slo1 channels might coassemble with and modulate Slo3 channels. Four distinct beta subunits composing the KCNMB family are known to regulate the function and expression of Slo1 Channels.To examine the ability of the KCNMB family of auxiliary beta subunits to regulate Slo3 function, we co-expressed Slo3 and each beta subunit in heterologous expression systems and investigated the functional consequences by electrophysiological and biochemical analyses. The beta4 subunit produced an 8-10 fold enhancement of Slo3 current expression in Xenopus oocytes and a similar enhancement of Slo3 surface expression as monitored by YFP-tagged Slo3 or biotin labeled Slo3. Neither beta1, beta2, nor beta3 mimicked the ability of beta4 to increase surface expression, although biochemical tests suggested that all four beta subunits are competent to coassemble with Slo3. Fluorescence microscopy from beta4 KO mice, in which an eGFP tag replaced the deleted exon, revealed that beta4 gene promoter is active in spermatocytes. Furthermore, quantitative RT-PCR demonstrated that beta4 and Slo3 exhibit comparable mRNA abundance in both testes and sperm.These results argue that, for native mouse Slo3 channels, the beta4 subunit must be considered as a potential interaction partner and, furthermore, that KCNMB subunits may have functions unrelated to regulation of the Slo1 alpha subunit.

  4. PET measures of pre- and post-synaptic cardiac beta adrenergic function

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Stratton, John R.; Levy, Wayne; Poole, Jeanne E.; Shoner, Steven C.; Stuetzle, Werner; Caldwell, James H. E-mail: jcald@u.washington.edu

    2003-11-01

    Positron Emission Tomography was used to measure global and regional cardiac {beta}-adrenergic function in 19 normal subjects and 9 congestive heart failure patients. [{sup 11}C]-meta-hydroxyephedrine was used to image norepinephrine transporter function as an indicator of pre-synaptic function and [{sup 11}C]-CGP12177 was used to measure cell surface {beta}-receptor density as an indicator of post-synaptic function. Pre-synaptic, but not post-synaptic, function was significantly different between normals and CHF patients. Pre-synaptic function was well matched to post-synaptic function in the normal hearts but significantly different and poorly matched in the CHF patients studied. This imaging technique can help us understand regional sympathetic function in cardiac disease.

  5. The SU(3) beta function from numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Bonn Univ. (Germany). Helmholtz Inst. fuer Strahlen- und Kernphysik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G.; Schiller, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-09-15

    The SU(3) beta function is derived from Wilson loops computed to 20th order in numerical stochastic perturbation theory. An attempt is made to include massless fermions, whose contribution is known analytically to 4th order. The question whether the theory admits an infrared stable fixed point is addressed.

  6. Effects of ethanol on pancreatic beta-cell death: interaction with glucose and fatty acids.

    Science.gov (United States)

    Dembele, Korami; Nguyen, K Hoa; Hernandez, Tiffany A; Nyomba, B L Grégoire

    2009-04-01

    Western lifestyle plays an important role in the prevalence of type 2 diabetes by causing insulin resistance and pancreatic beta-cell dysfunction, a prerequisite for the development of diabetes. High fat diet and alcohol are major components of the western diet. The aim of the present study was to investigate the effects of ethanol and fatty acids on beta-cell survival and metabolism. We treated the rat beta-cell line RINm5F with ethanol, a mixture of palmitic and oleic acids, or both. Reactive oxygen species (ROS) were determined by (5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate) (CM-H2DCFDA) fluorescence assay, and mitochondrial activity was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) reduction assay and by determining ATP production. Cell viability was assessed with a cell counter and trypan blue exclusion, and the mode of cell death by Hoechst33342 and propidium iodide staining. With both ethanol and fatty acid treatments, MTT reduction and ATP production decreased, whereas ROS production increased. Ethanol treatment had no effect on cell number, whereas fatty acid treatment reduced the cell number. Cell incubation with ethanol, fatty acids, or both increased the number of Hoechst 33342-positive nuclei. However, the majority of nuclei from fatty acid-treated cells were stained with propidium iodide, indicating a loss of plasma membrane integrity. We conclude that both ethanol and fatty acids generate cellular oxidative stress, and affect mitochondrial function in RINm5F beta-cells. However, ethanol causes beta-cell death by apoptosis, whereas fatty acids cause cell death predominantly by necrosis. It is not known whether these results are applicable to human beta-cells.

  7. The physiology of rodent beta-cells in pancreas slices.

    Science.gov (United States)

    Rupnik, M

    2009-01-01

    Beta-cells in pancreatic islets form complex syncytia. Sufficient cell-to-cell electrical coupling seems to ensure coordinated depolarization pattern and insulin release that can be further modulated by rich innervation. The complex structure and coordinated action develop after birth during fast proliferation of the endocrine tissue. These emergent properties can be lost due to various reasons later in life and can lead to glucose intolerance and diabetes mellitus. Pancreas slice is a novel method of choice to study the physiology of beta-cells still embedded in their normal cellulo-social context. I present major advantages, list drawbacks and provide an overview on recent advances in our understanding of the physiology of beta-cells using the pancreas slice approach.

  8. New Therapeutic Approaches to Prevent or Delay Beta-Cell Failure in Diabetes

    Directory of Open Access Journals (Sweden)

    Ionica Floriana Elvira

    2015-09-01

    Full Text Available Background and aims: The most recent estimates of International Diabetes Federation indicate that 382 million people have diabetes, and the incidence of this disease is increasing. While in type 1 diabetes mellitus (T1DM beta-cell death is autoimmunemediated, type 2 diabetes mellitus (T2DM results from an interaction between genetic and environmental factors that impair beta-cell function and insulin action. Many people with T2DM remain unaware of their illness for a long time because symptoms may take years to appear or be recognized, while the body is affected by excess blood glucose. These patients are often diagnosed only when diabetes complications have already developed. The aim of this article was to perform a review based on literature data on therapeutic modalities to prevent/delay beta cell function decline. Material and Methods: We searched MEDLINE from 2000 to the present to identify the therapeutic approaches to prevent or delay beta-cell failure in patients with T2DM. Results and conclusions: Several common polymorphisms in genes linked to monogenic forms of diabetes appear to influence the response to T2DM pharmacotherapy. Recent studies report the role of the G protein coupled receptor 40 (GPR40, also known as Free Fatty Acids Receptor 1 (FFAR1 in the regulation of beta-cell function- CNX-011-67 (a GPR40 agonist has the potential to provide good and durable glycemic control in T2DM patients.

  9. A human beta cell line with drug inducible excision of immortalizing transgenes

    Science.gov (United States)

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  10. Strain-dependent differences in sensitivity of rat beta-cells to interleukin 1 beta in vitro and in vivo

    DEFF Research Database (Denmark)

    Reimers, J I; Andersen, H U; Mauricio, D

    1996-01-01

    /kg) or vehicle for 5 days. All the strains investigated were susceptible to IL-1 beta-induced changes in body weight, food intake, temperature, and plasma glucagon and corticosterone. However, IL-1 beta induced hyperglycemia and impairment of beta-cell glucose responsiveness in WK/Mol and LS/Mol rats...

  11. The time has come to test the beta cell preserving effects of exercise in patients with new onset type 1 diabetes

    DEFF Research Database (Denmark)

    Narendran, Parth; Solomon, Thomas; Kennedy, Amy

    2015-01-01

    Type 1 diabetes is characterised by immune-mediated destruction of insulin-producing beta cells. Significant beta cell function is usually present at the time of diagnosis with type 1 diabetes, and preservation of this function has important clinical benefits. The last 30 years have seen a number...... for physical exercise as a therapy for the preservation of beta cell function in patients with newly diagnosed type 1 diabetes. We highlight possible mechanisms by which exercise could preserve beta cell function and then present evidence from other models of diabetes that demonstrate that exercise preserves...... beta cell function. We conclude by proposing that there is now a need for studies to explore whether exercise can preserve beta cell in patients newly diagnosed with type 1 diabetes....

  12. Genetic models rule out a major role of beta cell glycogen in the control of glucose homeostasis.

    Science.gov (United States)

    Mir-Coll, Joan; Duran, Jordi; Slebe, Felipe; García-Rocha, Mar; Gomis, Ramon; Gasa, Rosa; Guinovart, Joan J

    2016-05-01

    Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.

  13. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Cedric Cortijo

    2012-12-01

    Full Text Available Planar cell polarity (PCP refers to the collective orientation of cells within the epithelial plane. We show that progenitor cells forming the ducts of the embryonic pancreas express PCP proteins and exhibit an active PCP pathway. Planar polarity proteins are acquired at embryonic day 11.5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased glucose clearance. Loss of Celsr2 and 3 leads to a reduction of Jun phosphorylation in progenitors, which, in turn, reduces beta cell differentiation from endocrine progenitors. These results highlight the importance of the PCP pathway in cell differentiation in vertebrates. In addition, they reveal that tridimensional organization and collective communication of cells are needed in the pancreatic epithelium in order to generate appropriate numbers of endocrine cells.

  14. Identification of beta-2 as a key cell adhesion molecule in PCa cell neurotropic behavior: a novel ex vivo and biophysical approach.

    Science.gov (United States)

    Jansson, Keith H; Castillo, Deborah G; Morris, Joseph W; Boggs, Mary E; Czymmek, Kirk J; Adams, Elizabeth L; Schramm, Lawrence P; Sikes, Robert A

    2014-01-01

    Prostate cancer (PCa) is believed to metastasize through the blood/lymphatics systems; however, PCa may utilize the extensive innervation of the prostate for glandular egress. The interaction of PCa and its nerve fibers is observed in 80% of PCa and is termed perineural invasion (PNI). PCa cells have been observed traveling through the endoneurium of nerves, although the underlying mechanisms have not been elucidated. Voltage sensitive sodium channels (VSSC) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two auxiliary beta (β) subunits with inherent cell adhesion molecule (CAM) functions. The beta-2 isoform (gene SCN2B) interacts with several neural CAMs, while interacting putatively with other prominent neural CAMs. Furthermore, beta-2 exhibits elevated mRNA and protein levels in highly metastatic and castrate-resistant PCa. When overexpressed in weakly aggressive LNCaP cells (2BECFP), beta-2 alters LNCaP cell morphology and enhances LNCaP cell metastasis associated behavior in vitro. We hypothesize that PCa cells use beta-2 as a CAM during PNI and subsequent PCa metastasis. The objective of this study was to determine the effect of beta-2 expression on PCa cell neurotropic metastasis associated behavior. We overexpressed beta-2 as a fusion protein with enhanced cyan fluorescence protein (ECFP) in weakly aggressive LNCaP cells and observed neurotropic effects utilizing our novel ex vivo organotypic spinal cord co-culture model, and performed functional assays with neural matrices and atomic force microscopy. With increased beta-2 expression, PCa cells display a trend of enhanced association with nerve axons. On laminin, a neural CAM, overexpression of beta-2 enhances PCa cell migration, invasion, and growth. 2BECFP cells exhibit marked binding affinity to laminin relative to LNECFP controls, and recombinant beta-2 ectodomain elicits more binding events to laminin than BSA control. Functional overexpression of VSSC

  15. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells.

    Science.gov (United States)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed

    2009-08-07

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.

  16. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway.

    Science.gov (United States)

    Liu, Haiyan; Javaheri, Ali; Godar, Rebecca J; Murphy, John; Ma, Xiucui; Rohatgi, Nidhi; Mahadevan, Jana; Hyrc, Krzysztof; Saftig, Paul; Marshall, Connie; McDaniel, Michael L; Remedi, Maria S; Razani, Babak; Urano, Fumihiko; Diwan, Abhinav

    2017-01-01

    Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.

  17. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus.

    Science.gov (United States)

    Gerber, Philipp A; Rutter, Guy A

    2017-04-01

    Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn 2+ concentrations and thus susceptibility to hypoxia and oxidative stress. Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.

  18. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    Science.gov (United States)

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  19. String beta function equations from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We derive the \\sigma-model tachyon \\beta-function equation of 2-dimensional string theory, in the background of flat space and linear dilaton, working entirely within the c=1 matrix model. The tachyon \\beta-function equation is satisfied by a \\underbar{nonlocal} and \\underbar{nonlinear} combination of the (massless) scalar field of the matrix model. We discuss the possibility of describing the `discrete states' as well as other possible gravitational and higher tensor backgrounds of 2-dimensional string theory within the c=1 matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory. The present work reinforces the viewpoint that a nonlocal (and nonlinear) transform is required to extract the space-time physics of 2-dimensional string theory from the c=1 matrix model.

  20. A GUI tool for beta function measurement using MATLAB

    International Nuclear Information System (INIS)

    Chen Guangling; Tian Shunqiang; Liu Guimin; Jiang Bocheng

    2009-01-01

    The beta function measurement is used to detect the shift in the betatron tune as the strength of an individual quadrupole magnet is varied. A GUI (graphic user interface) tool for the beta function measurement is developed using the MATLAB program language in the Linux environment, which facilitates the commissioning of the Shanghai Synchrotron Radiation Facility (SSRF) storage ring. In this paper, we describe the design of the application and give some measuring results and discussions about the definition of the measurement. The program has been optimized to solve some restrictions of the AT tracking code. After the correction with LOCO (linear optics from closed orbits), the horizontal and the vertical root mean square values (rms values) can be reduced to 0.12 and 0.10. (authors)

  1. Dynamics and Synchrony of Pancreatic beta-cells and Islets

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram

    2006-01-01

    description of these processes and their interactions would provide important input in the search for a better treatment of the disease. The thesis describes several aspects of mathematical modeling of beta-cells relevant for the understanding of glucose stimulated insulin secretion. It consists...... and the synchronized behavior of many coupled beta-cells as well as to the synchrony of islets. Rather than developing new biophysical models, the thesis investigates existing models, their integration and simplifications, and analyzed the corresponding dynamics, in order to use these models for investigating...

  2. On Fuzzy {beta}-I-open sets and Fuzzy {beta}-I-continuous functions

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Aynur [Department of Mathematics, Faculty of Science and Arts, Selcuk University, Campus, 42075 Konya (Turkey)], E-mail: akeskin@selcuk.edu.tr

    2009-11-15

    In this paper, first of all we obtain some properties and characterizations of fuzzy {beta}-I-open sets. After that, we also define the notion of {beta}-I-closed sets and obtain some properties. Lastly, we introduce the notions of fuzzy {beta}-I-continuity with the help of fuzzy {beta}-I-open sets to obtain decomposition of fuzzy continuity.

  3. High fat programming of beta cell compensation, exhaustion, death and dysfunction.

    Science.gov (United States)

    Cerf, Marlon E

    2015-03-01

    Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Functional inhibition of NF-kappa B signal transduction in alpha v alpha beta 3 integrin expressing endothelial cells by using RGD-PEG-modified adenovirus with a mutant I kappa B gene

    NARCIS (Netherlands)

    Ogawara, K; Kuldo, JM; Oosterhuis, K; Kroesen, BJ; Rots, MG; Trautwein, C; Kimura, T; Haisma, HJ; Molema, G

    2006-01-01

    In order to selectively block nuclear factor kappa B (NF-kappa B)-dependent signal transduction in angiogenic endothelial cells, we constructed an alpha v beta 3 integrin specific adenovirus encoding dominant negative I kappa B (dnI kappa B) as a therapeutic gene. By virtue of RGD modification of

  5. Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression

    DEFF Research Database (Denmark)

    Nielsen, Lotte B.; Wang, Cheng; Sorensen, Kaspar

    2012-01-01

    This study aims to identify key miRNAs in circulation, which predict ongoing beta-cell destruction and regeneration in children with newly diagnosed Type 1 Diabetes (T1D). We compared expression level of sera miRNAs from new onset T1D children and age-matched healthy controls and related the miRN...

  6. Studies of the Ala/Val98 polymorphism of the hepatocyte nuclear factor-1alpha gene and the relationship to beta-cell function during an OGTT in glucose-tolerant women with and without previous gestational diabetes mellitus

    DEFF Research Database (Denmark)

    Lauenborg, J; Damm, P; Ek, J

    2004-01-01

    In pregnancies complicated by gestational diabetes mellitus (GDM) an increased demand for insulin is not met due to beta-cell dysfunction. An Ala/Val polymorphism at codon 98 of the hepatocyte nuclear factor-1alpha (HNF-1alpha) gene has been associated with decreased serum insulin and C-peptide r...

  7. Dual role of proapoptotic BAD in insulin secretion and beta cell survival.

    Science.gov (United States)

    Danial, Nika N; Walensky, Loren D; Zhang, Chen-Yu; Choi, Cheol Soo; Fisher, Jill K; Molina, Anthony J A; Datta, Sandeep Robert; Pitter, Kenneth L; Bird, Gregory H; Wikstrom, Jakob D; Deeney, Jude T; Robertson, Kirsten; Morash, Joel; Kulkarni, Ameya; Neschen, Susanne; Kim, Sheene; Greenberg, Michael E; Corkey, Barbara E; Shirihai, Orian S; Shulman, Gerald I; Lowell, Bradford B; Korsmeyer, Stanley J

    2008-02-01

    The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.

  8. A Figure-of-Merit for Beta Cell Detector Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Foxe, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Brian W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suarez, Rey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-02

    In order to decrease the minimum detectable activities (MDAs) of beta-gamma radioxenon detectors, it is important to increase the ability to resolve the individual isotopes. One proposed method for doing this is to increase the energy resolution of the beta cell through the use of silicon detectors. While silicon detectors can improve the energy resolution, it is accompanied with a decrease in detection efficiency compared to plastic scintillator beta cells. Due to the uncertainty on the impact of the competing variables, we have developed a figure-of-merit (FOM) capable of determining the impact of detector parameters on the MDAs. By utilizing the FOM to analyze different detectors, we are able to directly compare current and future detectors and estimate their impact on the radioxenon MDAs.

  9. Hypothyroidism in utero stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation.

    Science.gov (United States)

    Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J

    2017-06-01

    Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose-dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas. Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T 3 ), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic

  10. Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets

    DEFF Research Database (Denmark)

    Maedler, Kathrin; Størling, Joachim; Sturis, Jeppe

    2004-01-01

    Increasing evidence indicates that a progressive decrease in the functional beta-cell mass is the hallmark of both type 1 and type 2 diabetes. The underlying causes, beta-cell apoptosis and impaired secretory function, seem to be partly mediated by macrophage production of interleukin (IL)-1beta ...

  11. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  12. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, TB

    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling

  13. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, Th B.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  14. Loss of function of ATXN1 increases amyloid beta-protein levels by potentiating beta-secretase processing of beta-amyloid precursor protein.

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Child, Daniel; Divito, Jason R; Stevenson, Jesse A; Tanzi, Rudolph E

    2010-03-19

    Alzheimer disease (AD) is a devastating neurodegenerative disease with complex and strong genetic inheritance. Four genes have been established to either cause familial early onset AD (APP, PSEN1, and PSEN2) or to increase susceptibility for late onset AD (APOE). To date approximately 80% of the late onset AD genetic variance remains elusive. Recently our genome-wide association screen identified four novel late onset AD candidate genes. Ataxin 1 (ATXN1) is one of these four AD candidate genes and has been indicated to be the disease gene for spinocerebellar ataxia type 1, which is also a neurodegenerative disease. Mounting evidence suggests that the excessive accumulation of Abeta, the proteolytic product of beta-amyloid precursor protein (APP), is the primary AD pathological event. In this study, we ask whether ATXN1 may lead to AD pathogenesis by affecting Abeta and APP processing utilizing RNA interference in a human neuronal cell model and mouse primary cortical neurons. We show that knock-down of ATXN1 significantly increases the levels of both Abeta40 and Abeta42. This effect could be rescued with concurrent overexpression of ATXN1. Moreover, overexpression of ATXN1 decreased Abeta levels. Regarding the underlying molecular mechanism, we show that the effect of ATXN1 expression on Abeta levels is modulated via beta-secretase cleavage of APP. Taken together, ATXN1 functions as a genetic risk modifier that contributes to AD pathogenesis through a loss-of-function mechanism by regulating beta-secretase cleavage of APP and Abeta levels.

  15. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro.

    Directory of Open Access Journals (Sweden)

    Holger A Russ

    Full Text Available Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT. Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells.Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2 using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation.These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug

  16. Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Maria Sara Remedi

    2008-10-01

    Full Text Available Pancreatic beta-cell ATP-sensitive potassium (K ATP channels are critical links between nutrient metabolism and insulin secretion. In humans, reduced or absent beta-cell K ATP channel activity resulting from loss-of-function K ATP mutations induces insulin hypersecretion. Mice with reduced K ATP channel activity also demonstrate hyperinsulinism, but mice with complete loss of K ATP channels (K ATP knockout mice show an unexpected insulin undersecretory phenotype. Therefore we have proposed an "inverse U" hypothesis to explain the response to enhanced excitability, in which excessive hyperexcitability drives beta-cells to insulin secretory failure without cell death. Many patients with type 2 diabetes treated with antidiabetic sulfonylureas (which inhibit K ATP activity and thereby enhance insulin secretion show long-term insulin secretory failure, which we further suggest might reflect a similar progression.To test the above hypotheses, and to mechanistically investigate the consequences of prolonged hyperexcitability in vivo, we used a novel approach of implanting mice with slow-release sulfonylurea (glibenclamide pellets, to chronically inhibit beta-cell K ATP channels. Glibenclamide-implanted wild-type mice became progressively and consistently diabetic, with significantly (p < 0.05 reduced insulin secretion in response to glucose. After 1 wk of treatment, these mice were as glucose intolerant as adult K ATP knockout mice, and reduction of secretory capacity in freshly isolated islets from implanted animals was as significant (p < 0.05 as those from K ATP knockout animals. However, secretory capacity was fully restored in islets from sulfonylurea-treated mice within hours of drug washout and in vivo within 1 mo after glibenclamide treatment was terminated. Pancreatic immunostaining showed normal islet size and alpha-/beta-cell distribution within the islet, and TUNEL staining showed no evidence of apoptosis.These results demonstrate that

  17. Regulation of laminin beta2 chain gene expression in human cancer cell lines

    DEFF Research Database (Denmark)

    Durkin, M E; Nielsen, F C; Loechel, F

    2001-01-01

    of the human laminin beta2 chain gene generates two isoforms of the 5' untranslated region of the beta2 chain mRNA. The translational efficiencies of the two laminin beta2 chain leaders did not differ significantly, when assayed by polysome profile analysis of endogenous clone A cell beta2 chain m......RNA, transient transfection of chimeric beta2 chain leader/luciferase expression plasmids in clone A cells, and translation of in vitro synthesized RNAs in rabbit reticulocyte lysates....

  18. Beta cell 5'-shifted isomiRs are candidate regulatory hubs in type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Jeanette Baran-Gale

    Full Text Available Next-generation deep sequencing of small RNAs has unveiled the complexity of the microRNA (miRNA transcriptome, which is in large part due to the diversity of miRNA sequence variants ("isomiRs". Changes to a miRNA's seed sequence (nucleotides 2-8, including shifted start positions, can redirect targeting to a dramatically different set of RNAs and alter biological function. We performed deep sequencing of small RNA from mouse insulinoma (MIN6 cells (widely used as a surrogate for the study of pancreatic beta cells and developed a bioinformatic analysis pipeline to profile isomiR diversity. Additionally, we applied the pipeline to recently published small RNA-seq data from primary human beta cells and whole islets and compared the miRNA profiles with that of MIN6. We found that: (1 the miRNA expression profile in MIN6 cells is highly correlated with those of primary human beta cells and whole islets; (2 miRNA loci can generate multiple highly expressed isomiRs with different 5'-start positions (5'-isomiRs; (3 isomiRs with shifted start positions (5'-shifted isomiRs are highly expressed, and can be as abundant as their unshifted counterparts (5'-reference miRNAs. Finally, we identified 10 beta cell miRNA families as candidate regulatory hubs in a type 2 diabetes (T2D gene network. The most significant candidate hub was miR-29, which we demonstrated regulates the mRNA levels of several genes critical to beta cell function and implicated in T2D. Three of the candidate miRNA hubs were novel 5'-shifted isomiRs: miR-375+1, miR-375-1 and miR-183-5p+1. We showed by in silico target prediction and in vitro transfection studies that both miR-375+1 and miR-375-1 are likely to target an overlapping, but distinct suite of beta cell genes compared to canonical miR-375. In summary, this study characterizes the isomiR profile in beta cells for the first time, and also highlights the potential functional relevance of 5'-shifted isomiRs to T2D.

  19. Genetic evidence that HNF-1alpha-dependent transcriptional control of HNF-4alpha is essential for human pancreatic beta cell function

    DEFF Research Database (Denmark)

    Hansen, Sara K; Párrizas, Marcelina; Jensen, Maria L

    2002-01-01

    Mutations in the genes encoding hepatocyte nuclear factor 4alpha (HNF-4alpha) and HNF-1alpha impair insulin secretion and cause maturity onset diabetes of the young (MODY). HNF-4alpha is known to be an essential positive regulator of HNF-1alpha. More recent data demonstrates that HNF-4alpha...... in human islets and exocrine cells is primarily mediated by the P2 promoter. Furthermore, we describe a G --> A mutation in a conserved nucleotide position of the HNF-1alpha binding site of the P2 promoter, which cosegregates with MODY. The mutation results in decreased affinity for HNF-1alpha...

  20. ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Sundberg, Christina; Kveiborg, Marie

    2003-01-01

    -100 from cells overexpressing ADAM12 than from control cells. Collectively, these results show that surface expression of ADAM12 impairs the function of beta1 integrins and, consequently, alters the organization of the actin cytoskeleton and extracellular matrix. These events may be necessary...

  1. Dual role of proapoptotic BAD in insulin secretion and beta cell survival

    OpenAIRE

    Danial, Nika N.; Walensky, Loren D.; Zhang, Chen-Yu; Choi, Cheol Soo; Fisher, Jill K.; Molina, Anthony J. A.; Datta, Sandeep Robert; Pitter, Kenneth L.; Bird, Gregory H.; Wikstrom, Jakob D.; Deeney, Jude T.; Robertson, Kirsten; Morash, Joel; Kulkarni, Ameya; Neschen, Susanne

    2008-01-01

    The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeab...

  2. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...... both to immortalize a rare cell type and to provide a selection for the maintenance of its differentiated phenotype....

  3. Zimmermann's forest formula, infrared divergences and the QCD beta function

    Directory of Open Access Journals (Sweden)

    Franz Herzog

    2018-01-01

    Full Text Available We review Zimmermann's forest formula, which solves Bogoliubov's recursive R-operation for the subtraction of ultraviolet divergences in perturbative Quantum Field Theory. We further discuss a generalisation of the R-operation which subtracts besides ultraviolet also Euclidean infrared divergences. This generalisation, which goes under the name of the R⁎-operation, can be used efficiently to compute renormalisation constants. We will discuss several results obtained by this method with focus on the QCD beta function at five loops as well as the application to hadronic Higgs boson decay rates at N4LO. This article summarizes a talk given at the Wolfhart Zimmermann Memorial Symposium.

  4. Hypoglycemic and beta cell protective effects of andrographolide analogue for diabetes treatment

    Directory of Open Access Journals (Sweden)

    Larrick James W

    2009-07-01

    Full Text Available Abstract Background While all anti-diabetic agents can decrease blood glucose level directly or indirectly, few are able to protect and preserve both pancreatic beta cell mass and their insulin-secreting functions. Thus, there is an urgent need to find an agent or combination of agents that can lower blood glucose and preserve pancreatic beta cells at the same time. Herein, we report a dual-functional andrographolide-lipoic acid conjugate (AL-1. The anti-diabetic and beta cell protective activities of this novel andrographolide-lipoic acid conjugate were investigated. Methods In alloxan-treated mice (a model of type 1 diabetes, drugs were administered orally once daily for 6 days post-alloxan treatment. Fasting blood glucose and serum insulin were determined. Pathologic and immunohistochemical analysis of pancreatic islets were performed. Translocation of glucose transporter subtype 4 in soleus muscle was detected by western blot. In RIN-m cells in vitro, the effect of AL-1 on H2O2-induced damage and reactive oxidative species production stimulated by high glucose and glibenclamide were measured. Inhibition of nuclear factor kappa B (NF-κB activation induced by IL-1β and IFN-γ was investigated. Results In alloxan-induced diabetic mouse model, AL-1 lowered blood glucose, increased insulin and prevented loss of beta cells and their dysfunction, stimulated glucose transport protein subtype 4 (GLUT4 membrane translocation in soleus muscles. Pretreatment of RIN-m cells with AL-1 prevented H2O2-induced cellular damage, quenched glucose and glibenclamide-stimulated reactive oxidative species production, and inhibited cytokine-stimulated NF-κB activation. Conclusion We have demonstrated that AL-1 had both hypoglycemic and beta cell protective effects which translated into antioxidant and NF-κB inhibitory activity. AL-1 is a potential new anti-diabetic agent.

  5. Targeting of beta 1 integrins impairs DNA repair for radiosensitization of head and neck cancer cells

    NARCIS (Netherlands)

    Dickreuter, E.; Eke, I.; Krause, M.; Borgmann, K.; van Vugt, M. A.; Cordes, N.

    2016-01-01

    beta 1 Integrin-mediated cell-extracellular matrix interactions allow cancer cell survival and confer therapy resistance. It was shown that inhibition of beta 1 integrins sensitizes cells to radiotherapy. Here, we examined the impact of beta 1 integrin targeting on the repair of radiation-induced

  6. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  7. Movement of beta-irradiated epidermal basal cells to the spinous-granular layers in the absence of cell division

    International Nuclear Information System (INIS)

    Etoh, H.; Taguchi, Y.H.; Tabachnick, J.

    1975-01-01

    Guinea-pig epidermis was irradiated with 3000 rad of beta rays 1 hr after two injections of [ 3 H]thymidine 5 hr apart (labeled cells in S phase and G 2 phase) or 18 hr after injection (labeled early G 1 cells). In nonirradiated epidermis labeled basal cells divided within 24 hr with daughter cells remaining in the basal layer, and approximately 50 percent of the labeled cells moved into the spinal layer by the 3rd day. Cell division in nonirradiated epidermis diluted the number of silver grains/nucleus, and lightly labeled cells were found in the granular layer by day 7. Beta irradiation inhibited cell division but it did not slow the rate of transit (ca 8 days) of irradiated labeled cells from basal to granular layer, some of these remaining heavily labeled. Although cell division may play some role in upward movement of basal cells in normal epidermis detachment of a basal cell from the basement membrane and its transit to the granular layer is unimpaired in the absence of cell division. These findings suggest that some radioresistant metabolic function(s), not cell division, is responsible for upward movement of basal cells. (auth)

  8. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Bani-Yaghoub, Mahmud [Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Taylor, Rod [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Johnston, Linda J., E-mail: Linda.Johnston@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Pezacki, John Paul, E-mail: John.Pezacki@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada)

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline, the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.

  9. Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass

    Directory of Open Access Journals (Sweden)

    Vivas Yurena

    2011-12-01

    Full Text Available Abstract Background The progression towards type 2 diabetes depends on the allostatic response of pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physiological and pathophysiological states associated to insulin resistance such as pregnancy, obesity or ageing, but the mechanisms mediating beta cell mass expansion in these scenarios are not well defined. We have recently shown that ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse failed to expand its beta cell mass. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Thus, comparison of these models islets particularly at early ages could provide some new insights on early PPARγ dependent transcriptional responses involved in the process of beta cell mass expansion Results Here we have investigated PPARγ dependent transcriptional responses occurring during the early stages of beta cell adaptation to insulin resistance in wild type, ob/ob, PPARγ2 KO and POKO mice. We have identified genes known to regulate both the rate of proliferation and the survival signals of beta cells. Moreover we have also identified new pathways induced in ob/ob islets that remained unchanged in POKO islets, suggesting an important role for PPARγ in maintenance/activation of mechanisms essential for the continued function of the beta cell. Conclusions Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with the activation of an immune response that fails to occur in POKO islets. We have also indentified other PPARγ dependent differentially regulated pathways including cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation.

  10. Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization

    DEFF Research Database (Denmark)

    Henry, M D; Satz, J S; Brakebusch, C

    2001-01-01

    Dystroglycan (DG) is a cell surface receptor for several extracellular matrix (ECM) molecules including laminins, agrin and perlecan. Recent data indicate that DG function is required for the formation of basement membranes in early development and the organization of laminin on the cell surface...... integrin-deficient ES cells, laminin-1 binds to the cell surface, but fails to organize into more morphologically complex structures. This result indicates that beta1 integrin function is required after DG function in the cell surface-mediated laminin assembly process. In perlecan-deficient ES cells......, the formation of complex laminin-1 structures is defective, implicating perlecan in the laminin matrix assembly process. Moreover, laminin and perlecan reciprocally modulate the organization of the other on the cell surface. Taken together, the data support a model whereby DG serves as a receptor essential...

  11. Perfluoroalkyl substances and beta cell deficient diabetes.

    Science.gov (United States)

    Conway, Baqiyyah; Innes, Karen E; Long, Dustin

    2016-08-01

    Perfluoroalkyl substances (PFAS) are synthetic hydrocarbons shown to preserve pancreatic islet cell viability and reduce islet cell hypoxia and apoptosis. We investigated the relationship of serum PFAS with diabetes, and whether this varied by diabetes type. 6,460 individuals with and 60,439 without diabetes from the C8 Health Project, were categorized into three groups: type 1 (n=820), type 2 (n=4,291), or uncategorized diabetes (n=1,349, missing data on diabetes type or diabetes based on blood sugar at study entry). Four PFAS were investigated: perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononaoic acid (PFNA). PFAS levels were significantly lower in those with diabetes, and lowest in those with type 1 diabetes. In age and sex adjusted analyses, ORs (CI) for type 1, type 2, and uncategorized diabetes compared to no diabetes were 0.59 (0.54-0.64), 0.74 (0.71-0.77), 0.84 (0.78-0.90), respectively for PFHxS; 0.69 (0.65-0.74), 0.87 (0.89-0.91), 0.92 (0.88-0.97), respectively for PFOA; 0.65 (0.61-0.70), 0.86 (0.82-0.90), 0.93 (0.86-1.03), respectively for PFOS; and 0.65 (0.57-0.74), 0.94 (0.88-1.00), 0.95 (0.85-1.06), respectively for PFNA. Further adjustment for eGFR and other covariates did not eliminate these inverse associations. PFAS levels were negatively associated with diabetes. This inverse relationship was strongest for type 1 diabetes, suggesting the relationship with serum PFAS may vary with the severity of islet cell deficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. WNT10B functional dualism: beta-catenin/Tcf-dependent growth promotion or independent suppression with deregulated expression in cancer.

    Science.gov (United States)

    Yoshikawa, Hirohide; Matsubara, Kenichi; Zhou, Xiaoling; Okamura, Shu; Kubo, Takahiko; Murase, Yaeko; Shikauchi, Yuko; Esteller, Manel; Herman, James G; Wei Wang, Xin; Harris, Curtis C

    2007-11-01

    We found aberrant DNA methylation of the WNT10B promoter region in 46% of primary hepatocellular carcinoma (HCC) and 15% of colon cancer samples. Three of 10 HCC and one of two colon cancer cell lines demonstrated low or no expression, and 5-aza-2'deoxycytidine reactivated WNT10B expression with the induction of demethylation, indicating that WNT10B is silenced by DNA methylation in some cancers, whereas WNT10B expression is up-regulated in seven of the 10 HCC cell lines and a colon cancer cell line. These results indicate that WNT10B can be deregulated by either overexpression or silencing in cancer. We found that WNT10B up-regulated beta-catenin/Tcf activity. However, WNT10B-overexpressing cells demonstrated a reduced growth rate and anchorage-independent growth that is independent of the beta-catenin/Tcf activation, because mutant beta-catenin-transduced cells did not suppress growth, and dominant-negative hTcf-4 failed to alleviate the growth suppression by WNT10B. Although WNT10B expression alone inhibits cell growth, it acts synergistically with the fibroblast growth factor (FGF) to stimulate cell growth. WNT10B is bifunctional, one function of which is involved in beta-catenin/Tcf activation, and the other function is related to the down-regulation of cell growth through a different mechanism. We suggest that FGF switches WNT10B from a negative to a positive cell growth regulator.

  13. Effects of transforming growth factor-beta on growth and differentiation of the continuous rat thyroid follicular cell line, FRTL-5

    International Nuclear Information System (INIS)

    Morris, J.C. III; Ranganathan, G.; Hay, I.D.; Nelson, R.E.; Jiang, N.S.

    1988-01-01

    Transforming growth factor-beta (TGF beta) has been shown to influence the growth and differentiation of many widely varied cell types in vitro, including some that are endocrinologically active. We have investigated the previously unknown effects of this unique growth factor in the differentiated rat thyroid follicular cell line FRTL-5. The cells demonstrated specific, high affinity binding of TGF beta, and as with other epithelial cells, the growth of these thyroid follicular cells was potently inhibited by addition of TGF beta to the culture medium. TGF beta caused a significant reduction in TSH-sensitive adenylate cyclase activity in the cells. The addition of (Bu)2cAMP along with the growth factor to cultures partially reversed the characteristic morphological changes seen with TGF beta, but did not reverse the growth inhibition. To further investigate the possible mechanisms of the effects of TGF beta on the cells, we measured the influence of the growth factor on [125I]TSH binding. TGF beta did not compete for specific TSH-binding sites; however, exposure of the cells to TGF beta for 12 or more h resulted in a dose-dependent down-regulation of TSH receptors that was fully reversible. While cellular proliferation was potently inhibited by TGF beta, differentiated function, as manifest by iodine-trapping ability, was stimulated by the growth factor. This stimulation of iodine uptake was independent of, and additive to, the stimulatory effects of TSH. Finally, FRTL-5 cells in serum-free medium and in response to TSH were shown to secrete TGF beta-like activity that competed for [125I]TGF beta in a RRA. These studies suggest that TGF beta may represent an autocrine mechanism of controlling the growth response to TSH in thyroid follicular cells, while allowing the continuance of differentiated function

  14. Visualizing pancreatic {beta}-cell mass with [{sup 11}C]DTBZ

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Norman Ray [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Souza, Fabiola [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Witkowski, Piotr [Department of Medicine, Columbia University Medical School, New York, NY 10032 (United States); Maffei, Antonella [Institute of Genetics and Biophysics ' Adriano Buzzati-Traverso' , CNR, Naples 80131 (Italy); Raffo, Anthony [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Herron, Alan [Center for Comparative Medicine and The Department of Pathology, Baylor College of Medicine, Houston, TX 77030 (United States); Kilbourn, Michael [Department of Radiology, University of Michigan, Ann Arbor, MI 48109-0638 (United States); Jurewicz, Agata [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Herold, Kevan [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Liu, Eric [Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, MD 20854 (United States); Hardy, Mark Adam [Department of Medicine, Columbia University Medical School, New York, NY 10032 (United States); Van Heertum, Ronald [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Harris, Paul Emerson [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States)]. E-mail: peh1@columbia.edu

    2006-10-15

    {beta}-Cell mass (BCM) influences the total amount of insulin secreted, varies by individual and by the degree of insulin resistance, and is affected by physiologic and pathologic conditions. The islets of Langerhans, however, appear to have a reserve capacity of insulin secretion and, overall, assessments of insulin and blood glucose levels remain poor measures of BCM, {beta}-cell function and progression of diabetes. Thus, novel noninvasive determinations of BCM are needed to provide a quantitative endpoint for novel therapies of diabetes, islet regeneration and transplantation. Built on previous gene expression studies, we tested the hypothesis that the targeting of vesicular monoamine transporter 2 (VMAT2), which is expressed by {beta} cells, with [{sup 11}C]dihydrotetrabenazine ([{sup 11}C]DTBZ), a radioligand specific for VMAT2, and the use of positron emission tomography (PET) can provide a measure of BCM. In this report, we demonstrate decreased radioligand uptake within the pancreas of Lewis rats with streptozotocin-induced diabetes relative to their euglycemic historical controls. These studies suggest that quantitation of VMAT2 expression in {beta} cells with the use of [{sup 11}C]DTBZ and PET represents a method for noninvasive longitudinal estimates of changes in BCM that may be useful in the study and treatment of diabetes.

  15. T cell precursor migration towards beta 2-microglobulin is involved in thymus colonization of chicken embryos

    DEFF Research Database (Denmark)

    Dunon, D; Kaufman, J; Salomonsen, J

    1990-01-01

    beta 2-microglobulin (beta 2m) attracts hemopoietic precursors from chicken bone marrow cells in vitro. The cell population responding to beta 2m increases during the second period of thymus colonization, which takes place at days 12-14 of incubation. The precursors from 13.5 day old embryos were...... isolated after migration towards beta 2m in vitro and shown to be able to colonize a 13 day old thymus in ovo, where they subsequently acquire thymocyte markers. In contrast these beta 2m responsive precursors did not colonize embryonic bursa, i.e. differentiate into B lymphocytes. During chicken...... embryogenesis, peaks of beta 2m transcripts and of free beta 2m synthesis can only be detected in the thymus. The peak of free beta 2m synthesis in the thymus and the increase of beta 2m responding bone marrow cells both occur concomitantly with the second wave of thymus colonization in chicken embryo, facts...

  16. Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection.

    Directory of Open Access Journals (Sweden)

    Joseph P Casazza

    2009-10-01

    Full Text Available Induction of a functional subset of HIV-specific CD4+ T cells that is resistant to HIV infection could enhance immune protection and decrease the rate of HIV disease progression. CMV-specific CD4+ T cells, which are less frequently infected than HIV-specific CD4+ T cells, are a model for such an effect. To determine the mechanism of this protection, we compared the functional response of HIV gag-specific and CMV pp65-specific CD4+ T cells in individuals co-infected with CMV and HIV. We found that CMV-specific CD4+ T cells rapidly up-regulated production of MIP-1alpha and MIP-1beta mRNA, resulting in a rapid increase in production of MIP-1alpha and MIP-1beta after cognate antigen stimulation. Production of beta-chemokines was associated with maturational phenotype and was rarely seen in HIV-specific CD4+ T cells. To test whether production of beta-chemokines by CD4+ T cells lowers their susceptibility to HIV infection, we measured cell-associated Gag DNA to assess the in vivo infection history of CMV-specific CD4+ T cells. We found that CMV-specific CD4+ T cells which produced MIP-1beta contained 10 times less Gag DNA than did those which failed to produce MIP-1beta. These data suggest that CD4+ T cells which produce MIP-1alpha and MIP-1beta bind these chemokines in an autocrine fashion which decreases the risk of in vivo HIV infection.

  17. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process

    Science.gov (United States)

    Ghosal, Abhisek; Sekar, Thillai V.

    2014-01-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na+-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na+-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS. PMID:24904078

  18. Bone morphogenetic protein 4 inhibits insulin secretion from rodent beta cells through regulation of calbindin1 expression and reduced voltage-dependent calcium currents

    DEFF Research Database (Denmark)

    Christensen, Gitte L.; Jacobsen, Maria L. B.; Wendt, Anna

    2015-01-01

    AIMS/HYPOTHESIS: Type 2 diabetes is characterised by progressive loss of pancreatic beta cell mass and function. Therefore, it is of therapeutic interest to identify factors with the potential to improve beta cell proliferation and insulin secretion. Bone morphogenetic protein 4 (BMP4) expression...

  19. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    Directory of Open Access Journals (Sweden)

    Gábor Lovas

    2012-07-01

    Full Text Available Transforming growth factor beta (TGF-β proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed.

  20. Fibronectin regulates the activation of THP-1 cells by TGF-beta1.

    Science.gov (United States)

    Wang, A C; Fu, L

    2001-03-01

    To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.

  1. Construction and functional characterization of double and triple mutants of parallel beta-bulge of ubiquitin.

    Science.gov (United States)

    Sharma, Mrinal; Prabha, C Ratna

    2011-12-01

    Ubiquitin, a small eukaryotic protein serving as a post-translational modification on many important proteins, plays central role in cellular homeostasis and cell cycle regulation. Ubiquitin features two beta-bulges, the second beta-bulge, located at the C-terminal region of the protein along with type II turn, holds 3 residues Glu64(1), Ser65(2) and Gln2(X). Percent frequency of occurrence of such a sequence in parallel beta-bulge is very low. However, the sequence and structure have been conserved in ubiquitin through out the evolution. Present study involves replacement of residues in unusual beta-bulge of ubiquitin by introducing mutations in combination through site directed mutagenesis, generating double and triple mutants and their functional characterization. Mutant ubiquitins cloned in yeast expression vector YEp96 tested for growth profile, viability assay and heat stress complementation study have revealed significant decrease in growth rate, loss of viability and non-complementation of heat sensitive phenotype with UbE64G-S65D and UbQ2N-E64G-S65D mutations. However, UbQ2N-S65D did not show any negative effects in the above assays. Present results show that, replacement of residues in beta-bulge of ubiquitin exerts severe effects on growth and viability in Saccharomyces cerevisiae due to functional failure of the mutant ubiquitins UbE64G-S65D and UbQ2N-E64G-S65D.

  2. The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to beta1 integrin-dependent cell spreading

    DEFF Research Database (Denmark)

    Iba, K; Albrechtsen, R; Gilpin, B

    2000-01-01

    The ADAMs (a disintegrin and metalloprotease) family of proteins is involved in a variety of cellular interactions, including cell adhesion and ecto- domain shedding. Here we show that ADAM 12 binds to cell surface syndecans. Three forms of recombinant ADAM 12 were used in these experiments......-dependent manner attach to ADAM 12 via members of the syndecan family. After binding to syndecans, mesenchymal cells spread and form focal adhesions and actin stress fibers. Integrin beta1 was responsible for cell spreading because function-blocking monoclonal antibodies completely inhibited cell spreading......, and chondroblasts lacking beta1 integrin attached but did not spread. These data suggest that mesenchymal cells use syndecans as the initial receptor for the ADAM 12 cysteine-rich domain-mediated cell adhesion, and then the beta1 integrin to induce cell spreading. Interestingly, carcinoma cells attached but did...

  3. Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase A2 (iPLA2beta ) indicate a signaling rather than a housekeeping role for iPLA2beta.

    Science.gov (United States)

    Ma, Z; Ramanadham, S; Wohltmann, M; Bohrer, A; Hsu, F F; Turk, J

    2001-04-20

    A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.

  4. Arachidonic Acid-Induced Expression of the Organic Solute and Steroid Transporter-beta (Ost-beta) in a Cartilaginous Fish Cell Line

    Science.gov (United States)

    Hwang, Jae-Ho; Parton, Angela; Czechanski, Anne; Ballatori, Nazzareno; Barnes, David

    2008-01-01

    The organic solute and steroid transporter (OST/Ost) is a unique membrane transport protein heterodimer composed of subunits designated alpha and beta, that transports conjugated steroids and prostaglandin E2 across the plasma membrane. Ost was first identified in the liver of the cartilaginous fish Leucoraja erinacea, the little skate, and subsequently was found in many other species, including humans and rodents. The present study describes the isolation of a new cell line, LEE-1, derived from an early embryo of L. erinacea, and characterizes the expression of Ost in these cells. The mRNA size and amino acid sequence of Ost-beta in LEE-1 was identical to that previously reported for Ost-beta from skate liver, and the primary structure was identical to that of the spiny dogfish shark (Squalus acanthias) with the exception of a single amino acid. Ost-beta was found both on the plasma membrane and intracellularly in LEE-1 cells, consistent with its localization in other cell types. Interestingly, arachidonic acid, the precursor to eiconsanoids, strongly induced Ost-beta expression in LEE-1 cells and a lipid mixture containing arachidonic acid also induced Ost-alpha. Overall, the present study describes the isolation of a novel marine cell line, and shows that this cell line expresses relatively high levels of Ost when cultured in the presence of arachidonic acid. Although the function of this transport protein in embryo-derived cells is unknown, it may play a role in the disposition of eicosanoids or steroid-derived molecules. PMID:18407792

  5. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    International Nuclear Information System (INIS)

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya; Hirose, Takahisa; Kawamori, Ryuzo; Fujitani, Yoshio; Watada, Hirotaka

    2009-01-01

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4 daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.

  6. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Hirose, Takahisa [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Kawamori, Ryuzo [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Center for Beta Cell Biology and Regeneration, Juntendo University School of Medicine, Tokyo (Japan); Sportology Center, Juntendo University School of Medicine, Tokyo (Japan); Fujitani, Yoshio, E-mail: fujitani@juntendo.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Watada, Hirotaka, E-mail: hwatada@juntendo.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Sportology Center, Juntendo University School of Medicine, Tokyo (Japan)

    2009-12-18

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4 daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.

  7. Avaliação da função das células beta pancreáticas através do modelo matemático de HOMA em portadoras de síndrome dos ovários policísticos: comparação entre obesas e não-obesas beta-cell function evaluation in patients with polycystic ovary syndrome using HOMA model: a comparison between obeses e nonobeses

    Directory of Open Access Journals (Sweden)

    Carolina Sales Vieira

    2007-03-01

    Full Text Available OBJETIVO: avaliar o efeito da obesidade sobre a função das célulasbeta pancreáticas de pacientes portadoras de síndrome dos ovários policísticos (SOP. MÉTODOS: estudo transversal no qual foram avaliadas 82 pacientes portadoras de SOP, selecionadas de forma consecutiva, no momento do diagnóstico de SOP. Pacientes com índice de massa corporal (IMC maior ou igual a 30 kg/m² foram consideradas SOP obesas (n=31. Valores de índice de massa corporal menores que este limite foram consideradas SOP não-obesas, o que correspondeu a 51 mulheres. Foram utilizadas a glicemia e a insulina de jejum para cálculo da função das células beta pancreáticas (HOMA-%beta-Cell e da resistência à insulina (HOMA-IR e QUICKI entre os grupos. Analisaram-se, também, variáveis secundárias como idade, idade da menarca, níveis séricos hormonais (testosterona, prolactina, LH e FSH e de colesterol total, triglicerídeos, HDL colesterol e LDL-colesterol. RESULTADOS: a idade da menarca das pacientes obesas com SOP (11,7±1,8 anos foi menor que as não-obesas (12,7±1,9 (pPURPOSE: to evaluate the effect of obesity on beta-cell function in patients with polycystic ovary syndrome (PCOS. METHODS: this cross-section study evaluated 82 patients with PCOS selected consecutively, at the moment of the diagnosis. We compared 31 PCOS obese women (BMI >30 kg/m² to 51 age-matched PCOS nonobese patients (BMI <30 kg/m². Using fasting glucose and insulin levels, homeostatic model assessment values for insulin resistance (HOMA-IR and QUICKI and percent beta-cell function (HOMA-%beta-cell were calculated. As secondary variables, the age at PCOS diagnosis, age of menarche, hormonal levels (testosterone, prolactin, FSH and LH, total cholesterol, triglycerides, HDL cholesterol and LDL cholesterol were also analyzed. RESULTS: menarche was significantly earlier in obese PCOS patients (11.7±1.8 years than in nonobese patients (12.67±1.86 years (p<0.05. Obese patients presented

  8. Dissociation between cardiomyocyte function and remodeling with beta-adrenergic receptor blockade in isolated canine mitral regurgitation.

    Science.gov (United States)

    Pat, Betty; Killingsworth, Cheryl; Denney, Thomas; Zheng, Junying; Powell, Pamela; Tillson, Michael; Dillon, A Ray; Dell'Italia, Louis J

    2008-12-01

    The low-pressure volume overload of isolated mitral regurgitation (MR) is associated with increased adrenergic drive, left ventricular (LV) dilatation, and loss of interstitial collagen. We tested the hypothesis that beta1-adrenergic receptor blockade (beta1-RB) would attenuate LV remodeling after 4 mo of MR in the dog. beta1-RB did not attenuate collagen loss or the increase in LV mass in MR dogs. Using MRI and three-dimensional (3-D) analysis, there was a 70% increase in the LV end-diastolic (LVED) volume-to-LV mass ratio, a 23% decrease in LVED midwall circumferential curvature, and a >50% increase in LVED 3-D radius/wall thickness in MR dogs that was not attenuated by beta1-RB. However, beta1-RB caused a significant increase in LVED length from the base to apex compared with untreated MR dogs. This was associated with an increase in isolated cardiomyocyte length (171+/-5 microm, P<0.05) compared with normal (156+/-3 microm) and MR (165+/-4 microm) dogs. Isolated cardiomyocyte fractional shortening was significantly depressed in MR dogs compared with normal dogs (3.73+/-0.31 vs. 5.02+/-0.26%, P<0.05) and normalized with beta1-RB (4.73+/-0.48%). In addition, stimulation with the beta-adrenergic receptor agonist isoproterenol (25 nM) increased cardiomyocyte fractional shortening by 215% (P<0.05) in beta1-RB dogs compared with normal (56%) and MR (50%) dogs. In summary, beta1-RB improved LV cardiomyocyte function and beta-adrenergic receptor responsiveness despite further cell elongation. The failure to attenuate LV remodeling associated with MR could be due to a failure to improve ultrastructural changes in extracellular matrix organization.

  9. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Goalstone, Marc [Department of Medicine, University of Colorado, VA Medical Center, Denver, CO 80220 (United States); Kamath, Vasudeva [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States); Kowluru, Anjaneyulu, E-mail: akowluru@med.wayne.edu [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States)

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  10. Acquired TGF beta 1 sensitivity and TGF beta 1 expression in cell lines established from a single small cell lung cancer patient during clinical progression

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K

    1996-01-01

    Three small cell lung cancer cell lines established from a single patient during longitudinal follow-up were examined for in vitro expression of TGF beta and TGF beta receptors, i.e. the components of an autocrine loop. GLC 14 was established prior to treatment, GLC 16 on relapse after chemotherapy...... was found in GLC 16 and GLC 19. These cell lines were also growth inhibited by exogenously administrated TGF beta 1. TGF beta 1 mRNA and protein in its latent form was only expressed in the radiotherapy-resistant cell line, GLC 19. The results indicate that disease progression in this patient was paralleled...... II receptor gene, as examined by Southern blotting. Also, the type I receptor could not be detected by ligand binding assay in this cell line, despite expression of mRNA for this receptor. This agrees with previous findings that type I receptor cannot bind TGF beta 1 without co-expression of the type...

  11. Hydroxyurea responses in clinically varied beta, HbE-beta thalassaemia and sickle cell anaemia patients of Eastern India.

    Science.gov (United States)

    Chatterjee, Tridip; Chakravarty, Amit; Chakravarty, Sudipa

    2018-05-01

    The haematological and clinical response to hydroxyurea was estimated in HbE-beta, beta thalassaemia and sickle cell anaemia patients of Eastern India, with variable clinical severity and transfusion requirement to determine whether hydroxyurea can help these patients to maintain their steady haemoglobin level without blood transfusions. Three hundred patients (189 HbE-beta thalassaemia, 95 beta thalassaemia and 16 other haemoglobinopathies including sickle cell anaemia) were selected for hydroxyurea therapy and were followed up for 48-60 months. Results suggest significant response to hydroxyurea therapy in 19 beta and 99 HbE-beta patients in the transfusion-dependent group (GR-I). All of them became transfusion-independent while on hydroxyurea therapy. The majority of responding patients were IVS1-5(G-C) in one of their alleles in HbE-beta cases (83 out of 119). Though IVS1-5(G-C) was found to be the commonest mutation in our selected patients, the mutational background of the patients does not found to have any significant correlation with the response category towards hydroxyurea as per the results observed in our study. But, the drug works pretty well in most of the transfusion-dependent patients, as these patients were withdrawn from regular blood transfusion. At the same time, partial or no response to the drug hydroxyurea was also recorded in our study.

  12. Inactivation of the transforming growth factor beta type II receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Nørgaard, P; Abrahamsen, N

    1999-01-01

    Transforming growth factor beta (TGF-beta) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-beta due to lack of type II receptor (RII) has been described in some cancer types including small cell lung...

  13. Coronin-1A links cytoskeleton dynamics to TCR alpha beta-induced cell signaling.

    Directory of Open Access Journals (Sweden)

    Bénédicte Mugnier

    Full Text Available Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR-induced immunological synapse (IS formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of alpha beta T cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-kappaB (I kappa B. Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts alpha beta T cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages.

  14. Beta Blockers Suppress Dextrose-Induced Endoplasmic Reticulum Stress, Oxidative Stress, and Apoptosis in Human Coronary Artery Endothelial Cells.

    Science.gov (United States)

    Haas, Michael J; Kurban, William; Shah, Harshit; Onstead-Haas, Luisa; Mooradian, Arshag D

    Beta blockers are known to have favorable effects on endothelial function partly because of their capacity to reduce oxidative stress. To determine whether beta blockers can also prevent dextrose-induced endoplasmic reticulum (ER) stress in addition to their antioxidative effects, human coronary artery endothelial cells and hepatocyte-derived HepG2 cells were treated with 27.5 mM dextrose for 24 hours in the presence of carvedilol (a lipophilic beta blockers with alpha blocking activity), propranolol (a lipophilic nonselective beta blockers), and atenolol (a water-soluble selective beta blockers), and ER stress, oxidative, stress and cell death were measured. ER stress was measured using the placental alkaline phosphatase assay and Western blot analysis of glucose regulated protein 78, c-Jun-N-terminal kinase (JNK), phospho-JNK, eukaryotic initiating factor 2α (eIF2α), and phospho-eIF2α and measurement of X-box binding protein 1 (XBP1) mRNA splicing using reverse transcriptase-polymerase chain reaction. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. Cell viability was measured by propidium iodide staining method. The ER stress, SO production, and cell death induced by 27.5 mM dextrose were inhibited by all 3 beta blockers tested. The antioxidative and ER stress reducing effects of beta blockers were also observed in HepG2 cells. The salutary effects of beta blockers on endothelial cells in reducing both ER stress and oxidative stress may contribute to the cardioprotective effects of these agents.

  15. CDK2 phosphorylation of Smad2 disrupts TGF-beta transcriptional regulation in resistant primary bone marrow myeloma cells.

    Science.gov (United States)

    Baughn, Linda B; Di Liberto, Maurizio; Niesvizky, Ruben; Cho, Hearn J; Jayabalan, David; Lane, Joseph; Liu, Fang; Chen-Kiang, Selina

    2009-02-15

    Resistance to growth suppression by TGF-beta1 is common in cancer; however, mutations in this pathway are rare in hematopoietic malignancies. In multiple myeloma, a fatal cancer of plasma cells, malignant cells accumulate in the TGF-beta-rich bone marrow due to loss of both cell cycle and apoptotic controls. Herein we show that TGF-beta activates Smad2 but fails to induce cell cycle arrest or apoptosis in primary bone marrow myeloma and human myeloma cell lines due to its inability to activate G(1) cyclin-dependent kinase (CDK) inhibitors (p15(INK4b), p21(CIP1/WAF1), p27(KIP1), p57(KIP2)) or to repress c-myc and Bcl-2 transcription. Correlating with aberrant activation of CDKs, CDK-dependent phosphorylation of Smad2 on Thr(8) (pT8), a modification linked to impaired Smad activity, is elevated in primary bone marrow myeloma cells, even in asymptomatic monoclonal gammopathy of undetermined significance. Moreover, CDK2 is the predominant CDK that phosphorylates Smad2 on T8 in myeloma cells, leading to inhibition of Smad2-Smad4 association that precludes transcriptional regulation by Smad2. Our findings provide the first direct evidence that pT8 Smad2 couples dysregulation of CDK2 to TGF-beta resistance in primary cancer cells, and they suggest that disruption of Smad2 function by CDK2 phosphorylation acts as a mechanism for TGF-beta resistance in multiple myeloma.

  16. Workshop on programming beta cell development, impairment and regeneration

    DEFF Research Database (Denmark)

    Heller, Scott; Nielsen, Jens Høiriis

    2012-01-01

    Helsingør, the city of Hamlet in Denmark, provided the site for the workshop "Programming Beta Cell Development, Impairment and Regeneration" on October 23-26th, 2011. The same location has held two EASD Islet study group meetings, while the previous three workshops were held in Helsinki, Finland...... (2003), El Perello, Spain (2006) and Peebles, Scotland (2009). The meeting drew 190 attendees from 12 different countries. There were 37 main oral presentations, and 68 posters covered virtually all aspects of the pancreas and provided a dynamic snapshot of the most interesting areas of current...

  17. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Laura Bravo

    2013-07-01

    Full Text Available Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  18. Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin

    DEFF Research Database (Denmark)

    Wu, Xunwei; Quondamatteo, Fabio; Lefever, Tine

    2006-01-01

    for differentiation of skin progenitor cells into HF lineage and that it regulates the turnover of beta-catenin. In the absence of Cdc42, degradation of beta-catenin was increased corresponding to a decreased phosphorylation of GSK3beta at Ser 9 and an increased phosphorylation of axin, which is known to be required...... for binding of beta-catenin to the degradation machinery. Cdc42-mediated regulation of beta-catenin turnover was completely dependent on PKCzeta, which associated with Cdc42, Par6, and Par3. These data suggest that Cdc42 regulation of beta-catenin turnover is important for terminal differentiation of HF...

  19. Quantum gravitational contributions to the beta function of quantum electrodynamics

    International Nuclear Information System (INIS)

    Felipe, Jean Carlos Coelho; Brito, Luis Cleber Tavares de; Nemes, Maria Carolina; Sampaio, Marcos

    2011-01-01

    Full text: Because of the negative mass dimension of the coupling constant perturbative Einstein quantum gravity (EQG) is nonrenormalizable. However, one can still make sense of EQG if it's interpreted as an effective field theory within a low energy expansion of a more fundamental theory. In an effective field theory all interactions compatible with its essential symmetry content are in principle allowed into the Lagrangian and thus it establishes a systematic framework to calculate quantum gravitational effects. This approach has been used to study the asymptotic behavior at high energies of quantum field theories that incorporate the gravitational field. Some studies analyze the asymptotic freedom for the coupling constants of some theories including gravitation near the Planck scale. For example, Robinson and Wilczek suggest that the gravitational field improve the asymptotic freedom of pure Yang-Mills near the Planck scale. Already , a similar calculation in the Maxwell-Einstein theory suggest that such conclusion is gauge dependence. This result was obtained by Pietrykowski. D. Toms say what the effective action is calculated in a gauge-condition independent version of the background field method using dimensional regularization it's argued that the gravitational field plays no role in the beta function of the Yang-Mills coupling. Another calculation done by Ebert, Plefka and Rodigast using conventional diagrammatic methods confirms the result obtained by Toms. In a recent publication, again published by Toms in 2010, claimed that quadratic divergent contributions were responsible to improve asymptotic freedom of fine structure constant by quantum gravity effects by using proper time cutoff regularization and effective action methods. However, the physical reality of the result in Tom's was questioned in recent work. This purpose of this work is to shed light on the origin of such controversies using only a diagrammatic analysis. As an effective model EQG is

  20. Implications for the offspring of circulating factors involved in beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Ringholm, Lene; Søstrup, Birgitte

    2014-01-01

    is able to stimulate proliferation of rat beta cells. We have identified several circulating factors that may contribute to beta cell adaptation to pregnancy. Further studies are needed to elucidate their possible role in glucose homeostasis in the mother and her offspring.......OBJECTIVE: Several studies have shown an increase in beta cell mass during pregnancy. Somatolactogenic hormones are known to stimulate the proliferation of existing beta cells in rodents whereas the mechanism in humans is still unclear. We hypothesize that in addition to somatolactogenic hormones...... there are other circulating factors involved in beta cell adaptation to pregnancy. This study aimed at screening for potential pregnancy-associated circulating beta cell growth factors. SAMPLES: Serum samples from nonpregnant and pregnant women. METHODS: The effect of serum from pregnant women...

  1. Semi-automated digital measurement as the method of choice for beta cell mass analysis.

    Directory of Open Access Journals (Sweden)

    Violette Coppens

    Full Text Available Pancreas injury by partial duct ligation (PDL activates beta cell differentiation and proliferation in adult mouse pancreas but remains controversial regarding the anticipated increase in beta cell volume. Several reports unable to show beta cell volume augmentation in PDL pancreas used automated digital image analysis software. We hypothesized that fully automatic beta cell morphometry without manual micrograph artifact remediation introduces bias and therefore might be responsible for reported discrepancies and controversy. However, our present results prove that standard digital image processing with automatic thresholding is sufficiently robust albeit less sensitive and less adequate to demonstrate a significant increase in beta cell volume in PDL versus Sham-operated pancreas. We therefore conclude that other confounding factors such as quality of surgery, selection of samples based on relative abundance of the transcription factor Neurogenin 3 (Ngn3 and tissue processing give rise to inter-laboratory inconsistencies in beta cell volume quantification in PDL pancreas.

  2. Dystroglycan loss disrupts polarity and beta-casein induction inmammary epithelial cells by perturbing laminin anchoring

    Energy Technology Data Exchange (ETDEWEB)

    Weir, M. Lynn; Oppizzi, Maria Luisa; Henry, Michael D.; Onishi,Akiko; Campbell, Kevin P.; Bissell, Mina J.; Muschler, John L.

    2006-02-17

    Precise contact between epithelial cells and their underlying basement membrane is critical to the maintenance of tissue architecture and function. To understand the role that the laminin receptor dystroglycan (DG) plays in these processes, we assayed cell responses to laminin-111 following conditional ablation of DG expression in cultured mammary epithelial cells (MECs). Strikingly, DG loss disrupted laminin-111-induced polarity and {beta}-casein production, and abolished laminin assembly at the step of laminin binding to the cell surface. DG re-expression restored these deficiencies. Investigations of mechanism revealed that DG cytoplasmic sequences were not necessary for laminin assembly and signaling, and only when the entire mucin domain of extracellular DG was deleted did laminin assembly not occur. These results demonstrate that DG is essential as a laminin-111 co-receptor in MECs that functions by mediating laminin anchoring to the cell surface, a process that allows laminin polymerization, tissue polarity, and {beta}-casein induction. The observed loss of laminin-111 assembly and signaling in DG-/-MECs provides insights into the signaling changes occurring in breast carcinomas and other cancers, where DG's laminin-binding function is frequently defective.

  3. Evaluation of pulmonary function in beta-thalassemia major patients

    International Nuclear Information System (INIS)

    Eidani, I.; Keikhaei, B.; Rahim, F.; Bagheri, A.

    2010-01-01

    Objective: To describe and quantify the functional change of the lung in patients with beta-thalassemia major (TM) and determine the correlation between pulmonary function test (PFT) results with hemoglobin, ferritin and age changes. Methodology: Pulmonary function tests were performed on 60 transfusion-dependent patients with TM, ranging in age from 10 to 45 years. Percent-predicted values for forced expiratory volume in one second (FEV1), and forced expiratory flows (FEF) 25-75% were significantly reduced, whereas forced expiratory vital capacity (FVC) and FEV1/FVC were closed to normal limits, indicating a restrictive disease. All factors including; FVC, FEV1, and FEV1/FVC, FEF 25-75% were negatively correlated with age and ferritin levels. In contrast, all factors including; FVC, FEV1, and FEV1/FVC, FEF 25-75% were positively correlated with hemoglobin (Hb). We performed linear regression analysis to study the simultaneous influence of the presence of age, ferritin, and Hb on obstructive PFT indexes. Results: Pulmonary function test results were normal in only 32 (53.3%) of 60 patients and the rest 28 cases (46.7%) showed abnormal pulmonary function. FEV1 and FEF 25% - 75% have significant negative correlation with age (r = - 0.64 p(r) = 0.003 and r = - 0.58 p(r) = 0.02 respectively), also have significant positive correlation with Hb (r = 0.31 p(r) = 0.015 and r = 0.33 p(r) = 0.01 respectively), and only FEF 25% - 75% has significant negative correlation with ferritin (r -0.26 p(r) = 0.04). Conclusion: The present study has shown that restrictive disease and reduced lung diffusing capacity are the predominant abnormalities of pulmonary function patients with TM. The low hemoglobin concentration and a fall in the diffusing capacity of the alveola - capillary membrane, together with the dependence of the reduced pulmonary diffusing capacity on age and serum ferritin levels, as well as of the entity of restrictive disease on age, suggests that pulmonary

  4. Effect of beta-carotene-rich tomato lycopene beta-cyclase ( tlcy-b) on cell growth inhibition in HT-29 colon adenocarcinoma cells.

    Science.gov (United States)

    Palozza, Paola; Bellovino, Diana; Simone, Rossella; Boninsegna, Alma; Cellini, Francesco; Monastra, Giovanni; Gaetani, Sancia

    2009-07-01

    Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arrest.

  5. Functions of Beta- and Gamma-Catenins in Prostate Cancer

    National Research Council Canada - National Science Library

    Reed, John

    2001-01-01

    .... We recently discovered that the protein Siah-1 interacts with the APC/catenin complex, and regulates the ubiquitin-dependent turnover of beta-catenin through a novel previously unidentified mechanism...

  6. Mast Cell Function

    Science.gov (United States)

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia

    2014-01-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998

  7. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation.

    Directory of Open Access Journals (Sweden)

    Nils Paulmann

    2009-10-01

    Full Text Available While serotonin (5-HT co-localization with insulin in granules of pancreatic beta-cells was demonstrated more than three decades ago, its physiological role in the etiology of diabetes is still unclear. We combined biochemical and electrophysiological analyses of mice selectively deficient in peripheral tryptophan hydroxylase (Tph1-/- and 5-HT to show that intracellular 5-HT regulates insulin secretion. We found that these mice are diabetic and have an impaired insulin secretion due to the lack of 5-HT in the pancreas. The pharmacological restoration of peripheral 5-HT levels rescued the impaired insulin secretion in vivo. These findings were further evidenced by patch clamp experiments with isolated Tph1-/- beta-cells, which clearly showed that the secretory defect is downstream of Ca(2+-signaling and can be rescued by direct intracellular application of 5-HT via the clamp pipette. In elucidating the underlying mechanism further, we demonstrate the covalent coupling of 5-HT by transglutaminases during insulin exocytosis to two key players in insulin secretion, the small GTPases Rab3a and Rab27a. This renders them constitutively active in a receptor-independent signaling mechanism we have recently termed serotonylation. Concordantly, an inhibition of such activating serotonylation in beta-cells abates insulin secretion. We also observed inactivation of serotonylated Rab3a by enhanced proteasomal degradation, which is in line with the inactivation of other serotonylated GTPases. Our results demonstrate that 5-HT regulates insulin secretion by serotonylation of GTPases within pancreatic beta-cells and suggest that intracellular 5-HT functions in various microenvironments via this mechanism in concert with the known receptor-mediated signaling.

  8. The putative imidazoline receptor agonist, harmane, promotes intracellular calcium mobilisation in pancreatic beta-cells.

    Science.gov (United States)

    Squires, Paul E; Hills, Claire E; Rogers, Gareth J; Garland, Patrick; Farley, Sophia R; Morgan, Noel G

    2004-10-06

    beta-Carbolines (including harmane and pinoline) stimulate insulin secretion by a mechanism that may involve interaction with imidazoline I(3)-receptors but which also appears to be mediated by actions that are additional to imidazoline receptor agonism. Using the MIN6 beta-cell line, we now show that both the imidazoline I(3)-receptor agonist, efaroxan, and the beta-carboline, harmane, directly elevate cytosolic Ca(2+) and increase insulin secretion but that these responses display different characteristics. In the case of efaroxan, the increase in cytosolic Ca(2+) was readily reversible, whereas, with harmane, the effect persisted beyond removal of the agonist and resulted in the development of a repetitive train of Ca(2+)-oscillations whose frequency, but not amplitude, was concentration-dependent. Initiation of the Ca(2+)-oscillations by harmane was independent of extracellular calcium but was sensitive to both dantrolene and high levels (20 mM) of caffeine, suggesting the involvement of ryanodine receptor-gated Ca(2+)-release. The expression of ryanodine receptor-1 and ryanodine receptor-2 mRNA in MIN6 cells was confirmed using reverse transcription-polymerase chain reaction (RT-PCR) and, since low concentrations of caffeine (1 mM) or thimerosal (10 microM) stimulated increases in [Ca(2+)](i), we conclude that ryanodine receptors are functional in these cells. Furthermore, the increase in insulin secretion induced by harmane was attenuated by dantrolene, consistent with the involvement of ryanodine receptors in mediating this response. By contrast, the smaller insulin secretory response to efaroxan was unaffected by dantrolene. Harmane-evoked changes in cytosolic Ca(2+) were maintained by nifedipine-sensitive Ca(2+)-influx, suggesting the involvement of L-type voltage-gated Ca(2+)-channels. Taken together, these data imply that harmane may interact with ryanodine receptors to generate sustained Ca(2+)-oscillations in pancreatic beta-cells and that this effect

  9. Flow cytometric analysis of expression of interleukin-2 receptor beta chain (p70-75) on various leukemic cells

    International Nuclear Information System (INIS)

    Hoshino, S.; Oshimi, K.; Tsudo, M.; Miyasaka, M.; Teramura, M.; Masuda, M.; Motoji, T.; Mizoguchi, H.

    1990-01-01

    We analyzed the expression of the interleukin-2 receptor (IL-2R) beta chain (p70-75) on various leukemic cells from 44 patients by flow cytometric analysis using the IL-2R beta chain-specific monoclonal antibody, designated Mik-beta 1. Flow cytometric analysis demonstrated the expression of the IL-2R beta chain on granular lymphocytes (GLs) from all eight patients with granular lymphocyte proliferative disorders (GLPDs), on adult T-cell leukemia (ATL) cells from all three patients with ATL, and on T-cell acute lymphoblastic leukemia (T-ALL) cells from one of three patients with T-ALL. Although GLs from all the GLPD patients expressed the IL-2R beta chain alone and not the IL-2R alpha chain (Tac-antigen: p55), ATL and T-ALL cells expressing the beta chain coexpressed the alpha chain. In two of seven patients with common ALL (cALL) and in both patients with B-cell chronic lymphocytic leukemia, the leukemic cells expressed the alpha chain alone. Neither the alpha chain nor the beta chain was expressed on leukemic cells from the remaining 28 patients, including all 18 patients with acute nonlymphocytic leukemia, five of seven patients with cALL, all three patients with multiple myeloma, and two of three patients with T-ALL. These results indicate that three different forms of IL-2R chain expression exist on leukemic cells: the alpha chain alone; the beta chain alone; and both the alpha and beta chains. To examine whether the results obtained by flow cytometric analysis actually reflect functional aspects of the expressed IL-2Rs, we studied the specific binding of 125I-labeled IL-2 (125I-IL-2) to leukemic cells in 18 of the 44 patients. In addition, we performed 125I-IL-2 crosslinking studies in seven patients. The results of IL-2R expression of both 125I-IL-2 binding assay and crosslinking studies were in agreement with those obtained by flow cytometric analysis

  10. Scalar 3-point functions in CFT: renormalisation, beta functions and anomalies

    Science.gov (United States)

    Bzowski, Adam; McFadden, Paul; Skenderis, Kostas

    2016-03-01

    We present a comprehensive discussion of renormalisation of 3-point functions of scalar operators in conformal field theories in general dimension. We have previously shown that conformal symmetry uniquely determines the momentum-space 3-point functions in terms of certain integrals involving a product of three Bessel functions (triple- K integrals). The triple- K integrals diverge when the dimensions of operators satisfy certain relations and we discuss how to obtain renormalised 3-point functions in all cases. There are three different types of divergences: ultralocal, semilocal and nonlocal, and a given divergent triple- K integral may have any combination of them. Ultralocal divergences may be removed using local counterterms and this results in new conformal anomalies. Semilocal divergences may be removed by renormalising the sources, and this results in CFT correlators that satisfy Callan-Symanzik equations with beta functions. In the case of non-local divergences, it is the triple- K representation that is singular, not the 3-point function. Here, the CFT correlator is the coefficient of the leading nonlocal singularity, which satisfies all the expected conformal Ward identities. Such correlators exhibit enhanced symmetry: they are also invariant under dual conformal transformations where the momenta play the role of coordinates. When both anomalies and beta functions are present the correlators exhibit novel analytic structure containing products of logarithms of momenta. We illustrate our discussion with numerous examples, including free field realisations and AdS/CFT computations.

  11. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.

    Science.gov (United States)

    Fenske, Rachel J; Kimple, Michelle E

    2018-03-01

    investigation of beta-cell therapeutic targets for the treatment and prevention of type 1 diabetes mellitus is fundamentally relevant and timely. This review summarizes the overall scope of research into novel type 1 diabetes mellitus therapeutics, highlighting weaknesses or caveats in current clinical trials as well as describing potential new targets to pursue. More specifically, signaling proteins that act as modulators of beta-cell function, survival, and replication, as well as immune infiltration may need to be targeted to develop the most efficient pharmaceutical interventions for type 1 diabetes mellitus. One such beta-cell signaling pathway, mediated by the alpha subunit of the heterotrimeric G z protein (Gα z ), is discussed in more detail. The work described here will be critical in moving the field forward as it emphasizes the central role of the beta-cell in type 1 diabetes mellitus disease pathology.

  12. Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons.

    Directory of Open Access Journals (Sweden)

    Agnès Petit-Paitel

    Full Text Available Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson's disease (PD. 1-methyl-4-phenylpyridinium iodide (MPP(+, the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3beta (GSK-3beta, a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3beta in modulating MPP(+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP(+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3beta, evidenced by the increased level of the active form of the kinase, i.e. GSK-3beta phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3beta partially localized within mitochondria in both neuronal cell models. Moreover, MPP(+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3beta labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP(+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3beta activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP(+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3beta is a critical mediator of MPTP/MPP(+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3beta activity might provide protection against

  13. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica; Baltrusch, Simone, E-mail: simone.baltrusch@med.uni-rostock.de

    2016-06-10

    Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 was down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. -- Highlights: •Down-regulation of Drp1 in INS1 cells reduces mitochondrial fusion protein expression. •Mitochondrial membrane potential in INS1 cells is diminished after Drp1 down-regulation. •Mitochondria become elongated after down-regulation of Drp1 in beta cells. •Down-regulation of

  14. Lactam hydrolysis catalyzed by mononuclear metallo-beta-lactamases: A density functional study

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Olsen, L.; Antony, J.

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  15. Cell specificity of the cytoplasmic Ca2+ response to tolbutamide is impaired in beta-cells from hyperglycemic mice

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Larsson-Nyrén, Gerd; Lindström, Per

    2006-01-01

    We recently reported that the timing and magnitude of the nutrient-induced Ca(2+) response are specific and reproducible for each isolated beta-cell. We have now used tolbutamide and arginine to test if the cell specificity exists also for the response to non-nutrient stimulation of beta-cells an...

  16. High normal fasting glucose level in obese youth: a marker for insulin resistance and beta cell dysregulation.

    LENUS (Irish Health Repository)

    O'Malley, G

    2010-06-01

    A high but normal fasting plasma glucose level in adults is a risk factor for future development of type 2 diabetes mellitus and cardiovascular disease. We investigated whether normal fasting plasma glucose levels (<5.60 mmol\\/l) are associated with decreases in insulin sensitivity and beta cell function, as well as an adverse cardiovascular profile in obese youth.

  17. Structure of the T cell receptor in a Ti alpha V beta 2, alpha V beta 8-positive T cell line

    DEFF Research Database (Denmark)

    Hou, X; Dietrich, J; Kuhlmann, J

    1994-01-01

    not known; however, it has been suggested that each TcR contains two Ti dimers. To gain insight into the structure of the TcR we constructed a Ti alpha V beta 2, alpha V beta 8-positive T cell line which expressed the endogenous human TiV beta 8 and the transfected mouse TiV beta 2 both in association......The T cell receptor (TcR) is composed of at least six different polypeptide chains consisting of the clonotypic Ti heterodimer (Ti alpha beta or Ti gamma delta) and the noncovalently associated CD3 chains (CD3 gamma delta epsilon zeta). The exact number of subunits constituting the TcR is still...... with the endogenous Ti alpha and CD3 chains at the cell surface. Preclearing experiments with radioiodinated cell lysate prepared with digitonin lysis buffer demonstrated that depleting the lysate of Ti alpha V beta 8 by immunoprecipitation with anti V beta 8 monoclonal antibody (mAb) did not reduce the amount of Ti...

  18. Contribution of alpha- and beta-defensins to lung function decline and infection in smokers: an association study

    Directory of Open Access Journals (Sweden)

    Anthonisen Nicholas R

    2006-05-01

    Full Text Available Abstract Background Alpha-defensins, which are major constituents of neutrophil azurophilic granules, and beta-defensins, which are expressed in airway epithelial cells, could contribute to the pathogenesis of chronic obstructive pulmonary disease by amplifying cigarette smoke-induced and infection-induced inflammatory reactions leading to lung injury. In Japanese and Chinese populations, two different beta-defensin-1 polymorphisms have been associated with chronic obstructive pulmonary disease phenotypes. We conducted population-based association studies to test whether alpha-defensin and beta-defensin polymorphisms influenced smokers' susceptibility to lung function decline and susceptibility to lower respiratory infection in two groups of white participants in the Lung Health Study (275 = fast decline in lung function and 304 = no decline in lung function. Methods Subjects were genotyped for the alpha-defensin-1/alpha-defensin-3 copy number polymorphism and four beta-defensin-1 polymorphisms (G-20A, C-44G, G-52A and Val38Ile. Results There were no associations between individual polymorphisms or imputed haplotypes and rate of decline in lung function or susceptibility to infection. Conclusion These findings suggest that, in a white population, the defensin polymorphisms tested may not be of importance in determining who develops abnormally rapid lung function decline or is susceptible to developing lower respiratory infections.

  19. Lycopene and Beta-Carotene Induce Growth Inhibition and Proapoptotic Effects on ACTH-Secreting Pituitary Adenoma Cells

    Science.gov (United States)

    Leite de Oliveira, Felipe; Soares, Nathália; de Mattos, Rômulo Medina; Hecht, Fábio; Dezonne, Rômulo Sperduto; Vairo, Leandro; Goldenberg, Regina Coeli dos Santos; Gomes, Flávia Carvalho Alcântara; de Carvalho, Denise Pires; Gadelha, Mônica R.; Nasciutti, Luiz Eurico; Miranda-Alves, Leandro

    2013-01-01

    Pituitary adenomas comprise approximately 10–15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2) and increased expression of p27kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing’s disease. PMID:23667519

  20. Lycopene and beta-carotene induce growth inhibition and proapoptotic effects on ACTH-secreting pituitary adenoma cells.

    Directory of Open Access Journals (Sweden)

    Natália F Haddad

    Full Text Available Pituitary adenomas comprise approximately 10-15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27(kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2 and increased expression of p27(kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27(kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing's disease.

  1. The PDZ protein tax-interacting protein-1 inhibits beta-catenin transcriptional activity and growth of colorectal cancer cells.

    Science.gov (United States)

    Kanamori, Mutsumi; Sandy, Peter; Marzinotto, Stefania; Benetti, Roberta; Kai, Chikatoshi; Hayashizaki, Yoshihide; Schneider, Claudio; Suzuki, Harukazu

    2003-10-03

    Wnt signaling is essential during development while deregulation of this pathway frequently leads to the formation of various tumors including colorectal carcinomas. A key component of the pathway is beta-catenin that, in association with TCF-4, directly regulates the expression of Wnt-responsive genes. To identify novel binding partners of beta-catenin that may control its transcriptional activity, we performed a mammalian two-hybrid screen and isolated the Tax-interacting protein (TIP-1). The in vivo complex formation between beta-catenin and TIP-1 was verified by coimmunoprecipitation, and a direct physical association was revealed by glutathione S-transferase pull-down experiments in vitro. By using a panel of deletion mutants of both proteins, we demonstrate that the interaction is mediated by the PDZ (PSD-95/DLG/ZO-1 homology) domain of TIP-1 and requires primarily the last four amino acids of beta-catenin. TIP-1 overexpression resulted in a dose-dependent decrease in the transcriptional activity of beta-catenin when tested on the TOP/FOPFLASH reporter system. Conversely, siRNA-mediated knock-down of endogenous TIP-1 slightly increased endogenous beta-catenin transactivation function. Moreover, we show that overexpression of TIP-1 reduced the proliferation and anchorage-independent growth of colorectal cancer cells. These data suggest that TIP-1 may represent a novel regulatory element in the Wnt/beta-catenin signaling pathway.

  2. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    Science.gov (United States)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  3. Suppressor of cytokine signalling (SOCS)-3 protects beta cells against IL-1beta-mediated toxicity through inhibition of multiple nuclear factor-kappaB-regulated proapoptotic pathways

    DEFF Research Database (Denmark)

    Karlsen, Allan Ertman; Heding, P E; Frobøse, H

    2004-01-01

    The proinflammatory cytokine IL-1beta induces apoptosis in pancreatic beta cells via pathways dependent on nuclear factor-kappaB (NF-kappaB), mitogen-activated protein kinase, and protein kinase C. We recently showed suppressor of cytokine signalling (SOCS)-3 to be a natural negative feedback reg...... regulator of IL-1beta- and IFN-gamma-mediated signalling in rat islets and beta cell lines, preventing their deleterious effects. However, the mechanisms underlying SOCS-3 inhibition of IL-1beta signalling and prevention against apoptosis remain unknown....

  4. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin.

    Directory of Open Access Journals (Sweden)

    Imane Song

    Full Text Available One week of treatment with EGF and gastrin (EGF/G was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of

  5. Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and beta-cell protection

    NARCIS (Netherlands)

    Christensen, D.P.; Gysemans, C.; Lundh, M.; Dahllof, M.S.; Noesgaard, D.; Schmidt, S.F.; Mandrup, S; Birkbak, N.; Workman, C.T.; Piemonti, L.; Blaabjerg, L.; Monzani, V.; Fossati, G.; Mascagni, P.; Paraskevas, S.; Aikin, R.A.; Billestrup, N.; Grunnet, L.G.; Dinarello, C.A.; Mathieu, C.; Mandrup-Poulsen, T.

    2014-01-01

    Type 1 diabetes is due to destruction of pancreatic beta-cells. Lysine deacetylase inhibitors (KDACi) protect beta-cells from inflammatory destruction in vitro and are promising immunomodulators. Here we demonstrate that the clinically well-tolerated KDACi vorinostat and givinostat revert diabetes

  6. Regulation of pancreatic beta-cell mass and proliferation by SOCS-3

    DEFF Research Database (Denmark)

    Lindberg, K; Rønn, S G; Tornehave, D

    2005-01-01

    Growth hormone and prolactin are important growth factors for pancreatic beta-cells. The effects exerted by these hormones on proliferation and on insulin synthesis and secretion in beta-cells are largely mediated through the Janus kinase (JAK)/signal transducer and activator of transcription (ST...

  7. Demonstration of interleukin-1 beta transcripts in acute myeloblastic leukemic cells by in situ hybridization.

    Science.gov (United States)

    Nakamura, M; Kanakura, Y; Furukawa, Y; Ernst, T J; Griffin, J D

    1990-07-01

    The cells from some patients with acute myeloblastic leukemia will secrete autostimulatory cytokines in tissue culture without the addition of stimulators such as phorbol 12-myristate 13-acetate. Production of interleukin-1 beta (IL-1 beta), for example, has been observed in up to 50% of cases. In order to investigate the nature of the cell secreting IL-1 beta in AML, we used an antisense RNA probe to detect specific IL-1 beta transcripts in individual leukemic cells by in situ hybridization. In fresh, uncultured cells, IL-1 beta transcripts were observed in 1-40% of undifferentiated leukemic blast cells in 17 of 19 cases. In situ hybridization was at least as sensitive as Northern blot analysis in detecting IL-1 beta transcripts. No correlation of IL-1 beta transcript expression with FAB classification was observed. Normal blood and bone marrow mononuclear cells did not contain cells expressing IL-1 beta transcripts. These results support the concept that the regulation of cytokine genes in AML cells is aberrant.

  8. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Rasmussen, D N

    2010-01-01

    Cytokine-induced beta cell toxicity is abrogated by non-selective inhibitors of lysine deacetylases (KDACs). The KDAC family consists of 11 members, namely histone deacetylases HDAC1 to HDAC11, but it is not known which KDAC members play a role in cytokine-mediated beta cell death. The aim...

  9. Ectopic production of beta-HCG by a maxillary squamous cell carcinoma.

    Science.gov (United States)

    Scholl, P D; Jurco, S; Austin, J R

    1997-12-01

    Paraneoplastic syndromes of the head and neck are rare. Hypercalcemia and leukocytosis have been described. The literature was reviewed, and a case of a squamous cell carcinoma of the maxilla producing beta human chorionic gonadotropin (beta-HCG) is presented. A 47-year-old white man with a T4N1M0 squamous cell carcinoma of the left maxilla was treated with a maxillectomy and neck dissection for an N1 positive neck. After completing his planned radiotherapy, he developed distant metastases, which included an axillary node that stained positive for human beta-HCG. Retrospective review of the primary specimen showed beta-HCG positivity in an anaplastic component of the tumor along with vascular invasion. The first case in the literature of a paraneoplastic syndrome with beta-HCG production in association with squamous cell carcinoma of the maxilla is presented. This case history fits the aggressive nature of beta HCG producing tumors elsewhere in the body.

  10. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    Directory of Open Access Journals (Sweden)

    Lisa Cadavez

    Full Text Available In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP. The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR, perturbing endoplasmic reticulum (ER homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP or protein disulfite isomerase (PDI, and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA or 4-phenylbutyrate (PBA, alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

  11. Mood states, sympathetic activity, and in vivo beta-adrenergic receptor function in a normal population.

    Science.gov (United States)

    Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G; Mills, Paul J; Dimsdale, Joel E

    2008-01-01

    The purpose of this study was to examine the relationship between mood states and beta-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or beta-adrenergic receptor function. Sixty-two participants aged 25-50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). Beta-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased beta-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of beta-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or beta-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) beta-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index.

  12. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy

    2010-01-01

    by the cytokines interleukin (IL)-1beta + interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha + IFN-gamma in primary rat beta-cells. RESEARCH DESIGN AND METHODS: Fluorescence-activated cell sorter-purified rat beta-cells were exposed to IL-1beta + IFN-gamma or TNF-alpha + IFN-gamma for 6 or 24 h......-cells, with temporal differences in the number of genes modulated by IL-1beta + IFNgamma or TNF-alpha + IFN-gamma. These cytokine combinations induced differential expression of inflammatory response genes, which is related to differential induction of IFN regulatory factor-7. Both treatments decreased the expression...... of genes involved in the maintenance of beta-cell phenotype and growth/regeneration. Cytokines induced hypoxia-inducible factor-alpha, which in this context has a proapoptotic role. Cytokines also modified the expression of >20 genes involved in RNA splicing, and exon array analysis showed cytokine...

  13. Multilayer network representation of membrane potential and cytosolic calcium concentration dynamics in beta cells

    International Nuclear Information System (INIS)

    Gosak, Marko; Dolenšek, Jurij; Markovič, Rene; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž

    2015-01-01

    Highlights: • Physiological processes within and among pancreatic beta cells are very complex. • We analyze the simultaneous recordings of membrane potential and calcium dynamics. • We represent the interaction patterns among beta cells as a multilayer network. • The nature of the intracellular dynamics is found to rely on the network structure. - Abstract: Modern theory of networks has been recognized as a very successful methodological concept for the description and analysis of complex systems. However, some complex systems are more complex than others. For instance, several real-life systems are constituted by interdependent subsystems and their elements are subjected to different types of interactions that can also change with time. Recently, the multilayer network formalism has been proposed as a general theoretical framework for the description and analysis of such multi-dimensional complex systems and is acquiring more and more prominence in terms of a new research direction. In the present study, we use this methodology for the description of functional connectivity patterns and signal propagation between pancreatic beta cells in an islet of Langerhans at the levels of membrane potential (MP) and cytosolic calcium concentration ([Ca"2"+]_c) dynamics to study the extent of overlap in the two networks and to clarify whether time lags between the two signals in individual cells are in any way dependent on the role these cells play in the functional networks. The two corresponding network layers are constructed on the basis of signal directions and pairwise correlations, whereas the interlayer connections represent the time lag between both measured signals. Our results confirm our previous finding that both MP and [Ca"2"+]_c change spread across an islet in the form of a depolarization and a [Ca"2"+]_c wave, respectively. Both types of waves follow nearly the same path and the networks in both layers have a similar but not entirely the same structure

  14. Do post-translational beta cell protein modifications trigger type 1 diabetes?

    DEFF Research Database (Denmark)

    Størling, Joachim; Overgaard, Anne Julie; Brorsson, Caroline Anna

    2013-01-01

    beta cell-specific neo-epitopes. We suggest that the current paradigm of type 1 diabetes as a classical autoimmune disease should be reconsidered since the immune response may not be directed against native beta cell proteins. A modified model for the pathogenetic events taking place in islets leading...... diabetes exists in the published literature. Furthermore, we report that cytokines change the expression levels of several genes encoding proteins involved in PTM processes in human islets, and that there are type 1 diabetes-associated polymorphisms in a number of these. In conclusion, data from...... the literature and presented experimental data support the notion that PTM of beta cell proteins may be involved in triggering beta cell destruction in type 1 diabetes. If the beta cell antigens recognised by the immune system foremost come from modified proteins rather than native ones, the concept of type 1...

  15. Beta1 integrin is not essential for hematopoiesis but is necessary for the T cell-dependent IgM antibody response

    DEFF Research Database (Denmark)

    Brakebusch, Cord; Fillatreau, Simon; Potocnik, Alexandre J

    2002-01-01

    Several experimental evidences suggested that beta1 integrin-mediated adhesion of hematopoietic stem cells (HSC) is important for their function in the bone marrow (BM). Using induced deletion of the beta1 integrin gene restricted to the hematopoietic system, we show that beta1 integrin...... is not essential for HSC retention in the BM, hematopoiesis, and trafficking of lymphocytes. However, immunization with a T cell-dependent antigen resulted in virtually no IgM production and an increased secretion of IgG in mutant mice, while the response to a T cell-independent type 2 antigen showed decreases...

  16. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jian-Yong [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Huang, Yi [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, 710032 Xi' an (China); Li, Ji-Peng [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhang, Xiang; Wang, Lei [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Meng, Yan-Ling [Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Yan, Bo [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Bian, Yong-Qian [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhao, Jing [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Wang, Wei-Zhong, E-mail: weichang@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); and others

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer miR-320a is downregulated in human colorectal carcinoma. Black-Right-Pointing-Pointer Overexpression of miR-320a inhibits colon cancer cell proliferation. Black-Right-Pointing-Pointer {beta}-Catenin is a direct target of miR-320a in colon cancer cells. Black-Right-Pointing-Pointer miR-320a expression inversely correlates with mRNA expression of {beta}-catenin's target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and {beta}-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and {beta}-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting {beta}-catenin, suggesting its application in prognosis prediction and cancer treatment.

  17. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells.

    Science.gov (United States)

    Tran, Dat Q; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M

    2009-08-11

    TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.

  18. Metabolic and functional effects of beta-hydroxy-beta-methylbutyrate (HMB) supplementation in skeletal muscle.

    Science.gov (United States)

    Pinheiro, Carlos Hermano da Justa; Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; de Souza, Alcione Lescano; Vitzel, Kaio Fernando; Nachbar, Renato Tadeu; Nunes, Maria Tereza; Curi, Rui

    2012-07-01

    Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.

  19. Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences.

    Science.gov (United States)

    Ford, Stephen P; Zhang, Liren; Zhu, Meijun; Miller, Myrna M; Smith, Derek T; Hess, Bret W; Moss, Gary E; Nathanielsz, Peter W; Nijland, Mark J

    2009-09-01

    Maternal obesity affects offspring weight, body composition, and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high-energy diet on fetal pancreatic development. Sixty days prior to breeding, ewes were assigned to control [100% of National Research Council (NRC) recommendations] or obesogenic (OB; 150% NRC) diets. At 75 days gestation, OB ewes exhibited elevated insulin-to-glucose ratios at rest and during a glucose tolerance test, demonstrating insulin resistance compared with control ewes. In fetal studies, ewes ate their respective diets from 60 days before to 75 days after conception when animals were euthanized under general anesthesia. OB and control ewes increased in body weight by approximately 43% and approximately 6%, respectively, from diet initiation until necropsy. Although all organs were heavier in fetuses from OB ewes, only pancreatic weight increased as a percentage of fetal weight. Blood glucose, insulin, and cortisol were elevated in OB ewes and fetuses on day 75. Insulin-positive cells per unit pancreatic area were 50% greater in fetuses from OB ewes as a result of increased beta-cell mitoses rather than decreased programmed cell death. Lambs of OB ewes were born earlier but weighed the same as control lambs; however, their crown-to-rump length was reduced, and their fat mass was increased. We conclude that increased systemic insulin in fetuses from OB ewes results from increased glucose exposure and/or cortisol-induced accelerated fetal beta-cell maturation and may contribute to premature beta-cell function loss and predisposition to obesity and metabolic disease in offspring.

  20. Three-loop SM beta-functions for matrix Yukawa couplings

    Directory of Open Access Journals (Sweden)

    A.V. Bednyakov

    2014-10-01

    Full Text Available We present the extension of our previous results for three-loop Yukawa coupling beta-functions to the case of complex Yukawa matrices describing the flavour structure of the SM. The calculation is carried out in the context of unbroken phase of the SM with the help of the MINCER program in a general linear gauge and cross-checked by means of MATAD/BAMBA codes. In addition, ambiguities in Yukawa matrix beta-functions are studied.

  1. The geometric $\\beta$-function in curved space-time under operator regularization

    OpenAIRE

    Agarwala, Susama

    2009-01-01

    In this paper, I compare the generators of the renormalization group flow, or the geometric $\\beta$-functions for dimensional regularization and operator regularization. I then extend the analysis to show that the geometric $\\beta$-function for a scalar field theory on a closed compact Riemannian manifold is defined on the entire manifold. I then extend the analysis to find the generator of the renormalization group flow for a conformal scalar-field theories on the same manifolds. The geometr...

  2. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  3. The effects of beta 2-agonists and methylxanthines on neutrophil function in vitro.

    Science.gov (United States)

    Llewellyn-Jones, C G; Stockley, R A

    1994-08-01

    Therapeutic agents which affect polymorphonuclear neutrophil (PMN) functions have the potential to reduce or increase PMN activation and, hence, influence the progression of lung inflammation. We have assessed the effects of the beta 2-agonist, terbutaline, and the methylxanthine, aminophylline, on PMN functions in vitro at both therapeutic and higher concentrations. At therapeutic levels, both agents increased PMN chemotaxis to formyl-methionyl-leucyl-phenylalanine (FMLP) in a dose-dependent manner from a control value of 22.5 +/- 3.58 cells.field-1 to 26.1 +/- 4.73 cells.field-1 with 4 mg.l-1 terbutaline, and to 26.3 +/- 4.49 cells.field-1 with 20 mg.l-1 aminophylline. When the cells were preincubated with higher doses of the agents in separate experiments there was inhibition of chemotaxis from a control value of 31.1 +/- 2.06 cells.field-1 to 18.3 +/- 0.82 cells.field-1 at 160 mg.l-1 terbutaline, and to 16.1 +/- 0.77 cells.field-1 at 400 mg.l-1 aminophylline. A similar effect was seen when the PMNs were preincubated with terbutaline and aminophylline prior to assessment of superoxide anion generation, with stimulation of superoxide release at therapeutic levels of the drugs and inhibition at higher doses (19% increase from resting control cells at terbutaline 4 mg.l-1 and 53% reduction at 160 mg.l-1; 28% increase with aminophylline 20 mg.l-1 and 22% reduction at 400 mg.l-1). Both terbutaline and aminophylline had no effect on PMN degranulation, as assessed by the degradation of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  5. The effect of interferon-{beta} on mouse neural progenitor cell survival and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Marek [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States); Knight, Julia [Neuroscience Department, University of Vermont College of Medicine, Burlington, VT (United States); Tobita, Mari; Soltys, John; Panitch, Hillel [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States); Mao-Draayer, Yang, E-mail: yang.mao-draayer@vtmednet.org [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States)

    2009-10-16

    Interferon-{beta} (IFN-{beta}) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-{beta} on the central nervous system (CNS) are not well understood. To determine whether IFN-{beta} has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-{beta} and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFN{alpha}/{beta} receptor (IFNAR). In response to IFN-{beta} treatment, no effect was observed on differentiation or proliferation. However, IFN-{beta} treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-{beta} treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-{beta} can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  6. Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter.

    Science.gov (United States)

    Jääskeläinen, Kirsi M; Kaukinen, Pasi; Minskaya, Ekaterina S; Plyusnina, Angelina; Vapalahti, Olli; Elliott, Richard M; Weber, Friedemann; Vaheri, Antti; Plyusnin, Alexander

    2007-10-01

    The S RNA genome segment of hantaviruses carried by Arvicolinae and Sigmodontinae rodents encodes the nucleocapsid (N) protein and has an overlapping (+1) open reading frame (ORF) for a putative nonstructural protein (NSs). The aim of this study was to determine whether the ORF is functional. A protein corresponding to the predicted size of Tula virus (TULV) NSs was detected using coupled in vitro transcription and translation from a cloned S segment cDNA, and a protein corresponding to the predicted size of Puumala virus (PUUV) NSs was detected in infected cells by Western blotting with an anti-peptide serum. The activities of the interferon beta (IFN-beta) promoter, and nuclear factor kappa B (NF-kappaB)- and interferon regulatory factor-3 (IRF-3) responsive promoters, were inhibited in COS-7 cells transiently expressing TULV or PUUV NSs. Also IFN-beta mRNA levels in IFN-competent MRC5 cells either infected with TULV or transiently expressing NSs were decreased. These data demonstrate that Tula and Puumala hantaviruses have a functional NSs ORF. The findings may explain why the NSs ORF has been preserved in the genome of most hantaviruses during their long evolution and why hantavirus-infected cells secrete relatively low levels of IFNs. (c) 2007 Wiley-Liss, Inc.

  7. Phenotypic and gene expression changes between low (glucose-responsive) and High (glucose non-responsive) MIN-6 beta cells

    DEFF Research Database (Denmark)

    O´Driscoll, L.; Gammell, p.; McKierman, E.

    2006-01-01

    The long-term potential to routinely use replacement beta cells/islets as cell therapy for type 1 diabetes relies on our ability to culture such cells/islets, in vitro, while maintaining their functional status. Previous beta cell studies, by ourselves and other researchers, have indicated...... that the glucose-stimulated insulin secretion (GSIS) phenotype is relatively unstable, in long-term culture. This study aimed to investigate phenotypic and gene expression changes associated with this loss of GSIS, using the MIN-6 cell line as model. Phenotypic differences between MIN-6(L, low passage) and MIN-6(H......, high passage) were determined by ELISA (assessing GSIS and cellular (pro)insulin content), proliferation assays, phase contrast light microscopy and analysis of alkaline phosphatase expression. Differential mRNA expression was investigated using microarray, bioinformatics and real-time PCR technologies...

  8. Occurrence of thymosin beta4 in human breast cancer cells and in other cell types of the tumor microenvironment

    DEFF Research Database (Denmark)

    Larsson, L.-I.; Holck, Susanne

    2007-01-01

    that there is a considerable heterogeneity in the cellular distribution of thymosin beta4 in breast cancer. In most tumors examined, cancer cells showed low or intermediate reactivity for thymosin beta4, whereas leukocytes and macrophages showed intense reactivity. In addition, endothelial cells showed variable reactivity...... to thymosin beta4, whereas myofibroblasts were negative. There was no correlation between the intensity of tumor cell staining and histological grade, whereas there was a tendency toward a correlation between endothelial cell staining and grade. These results demonstrate that multiple cell types within...

  9. Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion.

    Directory of Open Access Journals (Sweden)

    Aleksandra Piwko-Czuchra

    Full Text Available BACKGROUND: There is a major discrepancy between the in vitro and in vivo results regarding the role of beta1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of beta1 integrins suggested that epidermis can form and be maintained in their absence, while in vitro data have shown a fundamental role for these adhesion receptors in stem/progenitor cell expansion and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate this discrepancy we generated hypomorphic mice expressing reduced beta1 integrin levels on keratinocytes that developed similar, but less severe defects than mice with beta1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of beta1 integrin expression. A similar phenomenon was observed in aged mice with a complete, skin-specific ablation of the beta1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of beta1 integrin expressing keratinocytes was even further accelerated in situations of increased keratinocyte proliferation such as wound healing. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that expression of beta1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis.

  10. Co-culture of neural crest stem cells (NCSC and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death.

    Directory of Open Access Journals (Sweden)

    Anongnad Ngamjariyawat

    Full Text Available PURPOSE: Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death. PROCEDURES: Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry, nitrite production (Griess reagent, protein localization (immunofluorescence and protein phosphorylation (flow cytometry. RESULTS: We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii NCSC-derived laminin production; (iii decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv decreased beta-TC6 cell phosphorylation of ERK(T202/Y204, FAK(Y397 and FAK(Y576. Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs. CONCLUSION: In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta-cell

  11. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    Directory of Open Access Journals (Sweden)

    Tobias Boothe

    2016-05-01

    Full Text Available Objective: The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods: We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results: Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions: We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. Author Video: Author Video Watch what authors say about their articles Keywords: Insulin receptor internalization, Insulin resistance, Pancreatic islet beta-cells, Autocrine insulin signaling

  12. Alkali pH directly activates ATP-sensitive K+ channels and inhibits insulin secretion in beta-cells.

    Science.gov (United States)

    Manning Fox, Jocelyn E; Karaman, Gunce; Wheeler, Michael B

    2006-11-17

    Glucose stimulation of pancreatic beta-cells is reported to lead to sustained alkalization, while extracellular application of weak bases is reported to inhibit electrical activity and decrease insulin secretion. We hypothesize that beta-cell K(ATP) channel activity is modulated by alkaline pH. Using the excised patch-clamp technique, we demonstrate a direct stimulatory action of alkali pH on recombinant SUR1/Kir6.2 channels due to increased open probability. Bath application of alkali pH similarly activates native islet beta-cell K(ATP) channels, leading to an inhibition of action potentials, and hyperpolarization of membrane potential. In situ pancreatic perfusion confirms that these cellular effects of alkali pH are observable at a functional level, resulting in decreases in both phase 1 and phase 2 glucose-stimulated insulin secretion. Our data are the first to report a stimulatory effect of a range of alkali pH on K(ATP) channel activity and link this to downstream effects on islet beta-cell function.

  13. Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with {beta}>1

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Chihiro [Graduate School of Bio-Application and System Engineering (BASE), Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 185-0054 (Japan); Panizza, Pascal [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Bordeaux I University, 351 Cours de la Liberation 33405 Talance (France); Rouch, Jacques [Centre de Physique Moleculaire Optique et Hertzienne (CPMOH), Bordeaux I University, 351 Cours de la Liberation 33405 Talance (France); Ushiki, Hideharu [Graduate School of Bio-Application and System Engineering (BASE), Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 185-0054 (Japan)

    2005-10-19

    A new analytical concept is applied to the kinetics of the shrinking process of poly(N-isopropylacrylamide) (PNIPA) gels. When PNIPA gels are put into hot water above the critical temperature, two-step shrinking is observed and the secondary shrinking of gels is fitted well by a stretched exponential function. The exponent {beta} characterizing the stretched exponential is always higher than one, although there are few analytical concepts for the stretched exponential function with {beta}>1. As a new interpretation for this function, we propose a superposition of step (Heaviside) function and a new distribution function of characteristic time is deduced.

  14. Immune-mediated beta-cell destruction in vitro and in vivo-A pivotal role for galectin-3

    DEFF Research Database (Denmark)

    Karlsen, Allan E; Størling, Zenia M; Sparre, Thomas

    2006-01-01

    Pro-apoptotic cytokines are toxic to the pancreatic beta-cells and have been associated with the pathogenesis of Type 1 diabetes (T1D). Proteome analysis of IL-1beta exposed isolated rat islets identified galectin-3 (gal-3) as the most up-regulated protein. Here analysis of human and rat islets a....... In summary, combined proteome-transcriptome-genome and functional analyses identify gal-3 as a candidate gene/protein in T1D susceptibility that may prove valuable in future intervention/prevention strategies....

  15. Effects of short-hairpin RNA-inhibited {beta}-catenin expression on the growth of human multiple myeloma cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wenqing, E-mail: liangwenqing_1234@126.com [Department of Orthopaedics, Shaoxing People' s Hospital, 568 Zhongxing North Road, Shaoxing 312000 (China); Yang, Chengwei [Department of Spinal Surgery, Lanzhou General Hospital, Lanzhou Military Area Command, 333 Nanbinhe Road, Lanzhou 730050 (China); Qian, Yu [Department of Orthopaedics, Shaoxing People' s Hospital, 568 Zhongxing North Road, Shaoxing 312000 (China); Fu, Qiang, E-mail: chyygklwq@hotmail.com [Department of Orthopaedics, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer {beta}-Catenin expression were markedly down-regulated by CTNNB1 shRNA. Black-Right-Pointing-Pointer CTNNB1 shRNA could inhibit the proliferation of RPMI8226 cells. Black-Right-Pointing-Pointer Significantly profound apoptotic cell death in CTNNB1 shRNA cells. Black-Right-Pointing-Pointer In vivo, CTNNB1 silence led to a growth inhibition of myeloma growth. Black-Right-Pointing-Pointer c-myc and {beta}-catenin in the expression cells of cleaved caspase-3 were increased. -- Abstract: Multiple myeloma (MM) is thrombogenic as a consequence of multiple hemostatic effects. Overexpression of {beta}-catenin has been observed in several types of malignant tumors, including MM. However, the relationship between {beta}-catenin expression and MM remains unclear. In the present study, RNA interference was used to inhibit {beta}-catenin expression in RPMI8226 cells. RT-PCR and Western blotting analyses showed that {beta}-catenin mRNA and protein expression were markedly down-regulated by CTNNB1 shRNA. Western blotting showed that the protein levels of cyclin D1 and glutamine synthetase were downregulated and supported the transcriptional regulatory function of {beta}-catenin. The MTT assay showed that CTNNB1 shRNA could have significant inhibitory effects on the proliferation of RPMI8226 cells. The TOPflash reporter assay demonstrated significant downregulation after CTNNB1 shRNA transfection in RPMI8226 cells. Flow cytometric analyses also showed significantly profound apoptosis in CTNNB1 shRNA cells. We found CTNNB1 silence led to growth inhibition of MM growth in vivo. Immunohistochemical analyses showed that c-myc and {beta}-catenin were reduced in CTNNB1 shRNA tumor tissues, but that expression of cleaved caspase-3 was increased. These results show that {beta}-catenin could be a new therapeutic agent that targets the biology of MM cells.

  16. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  17. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase

    DEFF Research Database (Denmark)

    Winzell, Maria Sörhede; Svensson, Håkan; Enerbäck, Sven

    2003-01-01

    Lipid perturbations associated with triglyceride overstorage in beta-cells impair insulin secretion, a process termed lipotoxicity. To assess the role of hormone-sensitive lipase, which is expressed and enzymatically active in beta-cells, in the development of lipotoxicity, we generated transgenic...... mice overexpressing hormone-sensitive lipase specifically in beta-cells. Transgenic mice developed glucose intolerance and severely blunted glucose-stimulated insulin secretion when challenged with a high-fat diet. As expected, both lipase activity and forskolin-stimulated lipolysis was increased...

  18. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W

    1999-01-01

    Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithe......-inhibiting antibodies, we provide evidence that LN5 and its two integrin receptors (alpha6beta4 and alpha3beta1) appear necessary for wound healing to occur in MCF-10A cell culture wounds. We propose a model for healing of wounded epithelial tissues based on these results....... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...... the wound site. A similar phenomenon is observed in human skin wounds, since we also detect expression of the unprocessed alpha3 laminin subunit at the leading tip of the sheet of epidermal cells that epithelializes skin wounds in vivo. In addition, using alpha3 laminin subunit and integrin function...

  19. Characterization of DNA polymerase. beta. mRNA: cell-cycle growth response in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Zmudzka, B Z; Fornace, A; Collins, J; Wilson, S H

    1988-10-25

    DNA polymerase ..beta.. (..beta..-polymerase) is a housekeeping enzyme involved in DNA repair in vertebrate cells. The authors used a cDNA probe to study abundance of ..beta..-polymerase mRNA in cultured human cells. The mRNA level in synchronized HeLa cells, representing different stages of the cell-cycle, varied only slightly. Contact inhibited fibroblasts AG-1522 contained the same level of mRNA as growing cells. The steady-state level of mRNA in fibroblasts is equivalent to 6 molecules per cell. The results indicate that the ..beta..-polymerase transcript is low abundance and is neither cell-cycles nor growth phase responsive.

  20. Subtleties in the beta-function calculation of N = 1 supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Cherchiglia, A.L. [ICEx, Universidade Federal de Minas Gerais, Departamento de Fisica, P.O. Box 702, Belo Horizonte, MG (Brazil); Universidad de Granada, Departamento de Fisica Teorica y del Cosmos and CAFPE, Granada (Spain); Sampaio, Marcos [ICEx, Universidade Federal de Minas Gerais, Departamento de Fisica, P.O. Box 702, Belo Horizonte, MG (Brazil); Hiller, B. [CFisUC, Universidade de Coimbra, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Coimbra (Portugal); Scarpelli, A.P.B. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Sao Paulo (Brazil)

    2016-02-15

    We investigate some peculiarities in the calculation of the two-loop beta function of N = 1 supersymmetric models which are intimately related to the so-called ''anomaly puzzle''. There is an apparent paradox when the computation is performed in the framework of the covariant derivative background field method. In this formalism, there is obtained a finite two-loop effective action, although a non-null coefficient for the beta function is achieved by means of the renormalized two-point function in the background field. We show that if the standard background field method is used, this two-point function has a divergent part which allows for the calculation of the beta function via the renormalization constants, as usual. Therefore, we conjecture that this paradox has its origin in the covariant supergraph formalism itself, possibly being an artifact of the rescaling anomaly. (orig.)

  1. Subtleties in the beta-function calculation of N = 1 supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Cherchiglia, A.L.; Sampaio, Marcos; Hiller, B.; Scarpelli, A.P.B.

    2016-01-01

    We investigate some peculiarities in the calculation of the two-loop beta function of N = 1 supersymmetric models which are intimately related to the so-called ''anomaly puzzle''. There is an apparent paradox when the computation is performed in the framework of the covariant derivative background field method. In this formalism, there is obtained a finite two-loop effective action, although a non-null coefficient for the beta function is achieved by means of the renormalized two-point function in the background field. We show that if the standard background field method is used, this two-point function has a divergent part which allows for the calculation of the beta function via the renormalization constants, as usual. Therefore, we conjecture that this paradox has its origin in the covariant supergraph formalism itself, possibly being an artifact of the rescaling anomaly. (orig.)

  2. Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1.

    Science.gov (United States)

    Siese, A; Jaros, P P; Willig, A

    1999-02-01

    In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.

  3. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    Science.gov (United States)

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-05

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Blockade of rat alpha3beta4 nicotinic receptor function by methadone, its metabolites, and structural analogs.

    Science.gov (United States)

    Xiao, Y; Smith, R D; Caruso, F S; Kellar, K J

    2001-10-01

    The opioid agonist properties of (+/-)-methadone are ascribed almost entirely to the (-)-methadone enantiomer. To extend our knowledge of the pharmacological actions of methadone at ligand-gated ion channels, we investigated the effects of the two enantiomers of methadone and its metabolites R-(+)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium perchlorate (EDDP) and R-(+)-2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline hydrochloride (EMDP), as well as structural analogs of methadone, including (-)-alpha-acetylmethadol hydrochloride (LAAM) and (+)-alpha-propoxyphene, on rat alpha3beta4 neuronal nicotinic acetylcholine receptors (nAChRs) stably expressed in a human embryonic kidney 293 cell line, designated KXalpha3beta4R2. (+/-)-methadone inhibited nicotine-stimulated 86Rb+ efflux from the cells in a concentration-dependent manner with an IC50 value of 1.9 +/- 0.2 microM, indicating that it is a potent nAChR antagonist. The (-)- and (+)-enantiomers of methadone have similar inhibitory potencies on nicotine-stimulated 86Rb+ efflux, with IC50 values of approximately 2 microM. EDDP, the major metabolite of methadone, is even more potent, with an IC50 value of approximately 0.5 microM, making it one of the most potent nicotinic receptor blockers reported. In the presence of (+/-)-methadone, EDDP, or LAAM, the maximum nicotine-stimulated 86Rb+ efflux was markedly decreased, but the EC50 value for nicotine stimulation was altered only slightly, if at all, indicating that these compounds block alpha3beta4 nicotinic receptor function by a noncompetitive mechanism. Consistent with a noncompetitive mechanism, (+/-)-methadone, its metabolites, and structural analogs have very low affinity for nicotinic receptor agonist binding sites in membrane homogenates from KXalpha3beta4R2 cells. We conclude that both enantiomers of methadone and its metabolites as well as LAAM and (+)-alpha-propoxyphene are potent noncompetitive antagonists of alpha3beta4 nAChRs.

  5. Insulin-like growth factor I enhances proenkephalin synthesis and dopamine. beta. -hydroxylase activity in adrenal chromaffin cells

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, S.P. (Univ. of South Carolina School of Medicine, Columbia (USA))

    1991-01-01

    Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin derived enkephalin-containing peptides and the activity of dopamine {beta}-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine {beta}-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was {approximately} 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1,000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of ({sup 35}S)proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function.

  6. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation.

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Vita

    Full Text Available BACKGROUND: The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-beta (TGF-beta in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-beta/Smad pathway in atherosclerosis and vascular cells. METHODOLOGY: In cultured vascular smooth muscle cells (VSMCs statins enhanced Smad pathway activation caused by TGF-beta. In addition, statins upregulated TGF-beta receptor type II (TRII, and increased TGF-beta synthesis and TGF-beta/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-beta induced apoptosis and increased TGF-beta-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-beta/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. CONCLUSIONS: Statins enhance TGF-beta/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-beta/Smad pathway is essential for statins-dependent actions in VSMCs.

  7. Transforming growth factor beta 1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis.

    Science.gov (United States)

    Merwin, J R; Anderson, J M; Kocher, O; Van Itallie, C M; Madri, J A

    1990-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) is angiogenic in vivo. In two-dimensional (2-D) culture systems microvascular endothelial cell proliferation is inhibited up to 80% by TGF-beta 1; however, in three-dimensional (3-D) collagen gels TGF-beta 1 is found to have no effect on proliferation while eliciting the formation of calcium and magnesium dependent tube-like structures mimicking angiogenesis. DNA analyses performed on 3-D cell cultures reveal no significant difference in the amount of DNA or cell number in control versus TGF-beta 1 treated cultures. In 2-D cultures TGF-beta 1 is known to increase cellular fibronectin accumulation; however, in 3-D cultures no difference is seen between control and TGF-beta 1 treated cells as established by ELISA testing for type IV collagen, fibronectin, and laminin. In 3-D cultures there is increased synthesis and secretion of type V collagen in both control and TGF-beta 1 treated cultures over 2-D cultures. Even though an equal amount of type V collagen is seen in both 3-D conditions, there is a reorganization of the protein with concentration along an organizing basal lamina in TGF-beta 1 treated cultures. EM morphological analyses on 3-D cultures illustrate quiescent, control cells lacking cell contacts. In contrast, TGF-beta 1 treated cells show increased pseudopod formation, cell-cell contact, and organized basal lamina-like material closely apposed to the "abluminal" plasma membranes. TGF-beta 1 treated cells also appear to form junctional complexes between adjoining cells. Immunofluorescence using specific antibodies to the tight junction protein ZO-1 results in staining at apparent cell-cell junctions in the 3-D cultures. Northern blots of freshly isolated microvascular endothelium, 2-D and 3-D cultures, using cDNA and cRNA probes specific for the ZO-1 tight junction protein, reveal the presence of the 7.8 kb mRNA. Western blots of rat epididymal fat pad endothelial cells (RFC) monolayer lysates probed with

  8. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage.

    Science.gov (United States)

    Yang, Jie; Swenson, Nathan G; Zhang, Guocheng; Ci, Xiuqin; Cao, Min; Sha, Liqing; Li, Jie; Ferry Slik, J W; Lin, Luxiang

    2015-08-03

    The relative degree to which stochastic and deterministic processes underpin community assembly is a central problem in ecology. Quantifying local-scale phylogenetic and functional beta diversity may shed new light on this problem. We used species distribution, soil, trait and phylogenetic data to quantify whether environmental distance, geographic distance or their combination are the strongest predictors of phylogenetic and functional beta diversity on local scales in a 20-ha tropical seasonal rainforest dynamics plot in southwest China. The patterns of phylogenetic and functional beta diversity were generally consistent. The phylogenetic and functional dissimilarity between subplots (10 × 10 m, 20 × 20 m, 50 × 50 m and 100 × 100 m) was often higher than that expected by chance. The turnover of lineages and species function within habitats was generally slower than that across habitats. Partitioning the variation in phylogenetic and functional beta diversity showed that environmental distance was generally a better predictor of beta diversity than geographic distance thereby lending relatively more support for deterministic environmental filtering over stochastic processes. Overall, our results highlight that deterministic processes play a stronger role than stochastic processes in structuring community composition in this diverse assemblage of tropical trees.

  9. The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans.

    Directory of Open Access Journals (Sweden)

    Deborah A Striegel

    2015-08-01

    Full Text Available Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets.

  10. The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans.

    Science.gov (United States)

    Striegel, Deborah A; Hara, Manami; Periwal, Vipul

    2015-08-01

    Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets.

  11. Spatial distribution function of electron-photon shower particles for different values of Esub(0)/. beta. in isothermal atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ivanenko, I P; Osipova, L N; Roganova, T M; Fedorova, G F [Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki

    1982-12-01

    Results of calculations of the spatial distribution function (SDF) of electron-photon shower particles for different values of the parameter E/sub 0//..beta.. in an isothermal atmosphere are given. Consideration of finiteness of the parameter E/sub 0//..beta.. leads to narrowing of SDF two times at E/sub 0//..beta.. approximately 10-100 as compared with the Nishimura, Kamata, Greisen SDF (E/sub 0//..beta.. = infinity). Atmosphere inhomogeneity results in SDF broadening in comparison with SDFsub(hom) (E/sub 0//..beta..) calculated for homogeneous atmosphere. SDFsub(inhom) (E/sub 0//..beta..) and SDFsub(hom) (E/sub 0//..beta..) depend on E/sub 0//..beta.. differently which is attributed to different contributions of shower prehistory to SDF formation. The larger is E/sub 0//..beta.., the wider is cascade curve and the higher is the effect of shower prehistory.

  12. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...... and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II m......RNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF...

  13. Innate-like control of human iNKT cell autoreactivity via the hypervariable CDR3beta loop.

    Directory of Open Access Journals (Sweden)

    Gediminas Matulis

    2010-06-01

    Full Text Available Invariant Natural Killer T cells (iNKT are a versatile lymphocyte subset with important roles in both host defense and immunological tolerance. They express a highly conserved TCR which mediates recognition of the non-polymorphic, lipid-binding molecule CD1d. The structure of human iNKT TCRs is unique in that only one of the six complementarity determining region (CDR loops, CDR3beta, is hypervariable. The role of this loop for iNKT biology has been controversial, and it is unresolved whether it contributes to iNKT TCR:CD1d binding or antigen selectivity. On the one hand, the CDR3beta loop is dispensable for iNKT TCR binding to CD1d molecules presenting the xenobiotic alpha-galactosylceramide ligand KRN7000, which elicits a strong functional response from mouse and human iNKT cells. However, a role for CDR3beta in the recognition of CD1d molecules presenting less potent ligands, such as self-lipids, is suggested by the clonal distribution of iNKT autoreactivity. We demonstrate that the human iNKT repertoire comprises subsets of greatly differing TCR affinity to CD1d, and that these differences relate to their autoreactive functions. These functionally different iNKT subsets segregate in their ability to bind CD1d-tetramers loaded with the partial agonist alpha-linked glycolipid antigen OCH and structurally different endogenous beta-glycosylceramides. Using surface plasmon resonance with recombinant iNKT TCRs and different ligand-CD1d complexes, we demonstrate that the CDR3beta sequence strongly impacts on the iNKT TCR affinity to CD1d, independent of the loaded CD1d ligand. Collectively our data reveal a crucial role for CDR3beta for the function of human iNKT cells by tuning the overall affinity of the iNKT TCR to CD1d. This mechanism is relatively independent of the bound CD1d ligand and thus forms the basis of an inherent, CDR3beta dependent functional hierarchy of human iNKT cells.

  14. Association of. beta. -glucosidase with intact cells of thermoactinomyces

    Energy Technology Data Exchange (ETDEWEB)

    Haegerdal, B; Harris, H; Pye, E K

    1979-03-01

    The location of the ..beta..-glucosidase activity in a whole culture broth of the thermophilic organism Thermoactinomyces has been studied. Little ..beta..-glucosidase activity was found in the culture filtrate, while the culture solids contained the major part of the activity of the whole culture broth. The activity does not appear to be adsorbed to the culture solids; rather there is evidence that it is an intracellular soluble enzyme(s). The pH and temperature optima for a crude ..beta..-glucosidase preparation were determined to be pH 6.5 and 50 to 55/sup 0/C. Enzyme activity studies indicate that the same enzyme(s) accounts for the ..beta..-glucosidase and the cellobiase activities. The validity of using the filter paper activity of culture filtrates from Thermoactinomyces to predict the total saccharification of cellulosic materials to glucose is discussed.

  15. Beta-endorphin Cell Therapy for Cancer Prevention

    OpenAIRE

    Zhang, Changqing; Murugan, Sengottuvelan; Boyadjieva, Nadka; Jabbar, Shaima; Shrivastava, Pallavi; Sarkar, Dipak K.

    2014-01-01

    Beta-endorphin (BEP) producing neuron in the hypothalamus plays a key role in brining the stress axis to a state of homeostasis and maintaining body immune defense system. Long-term delivery of BEP to obtain beneficial effect on chemoprevention is challenging, since the peptide rapidly develop tolerance. Using rats as animal model, we show here that transplantation of beta-endorphin neurons into the hypothalamus suppressed carcinogens- and hormone-induced cancers in various tissues and preven...

  16. Role of residual kidney function and convective volume on change in beta2-microglobulin levels in hemodiafiltration patients

    NARCIS (Netherlands)

    Penne, E. Lars; van der Weerd, Neelke C.; Blankestijn, Peter J.; van den Dorpel, Marinus A.; Grooteman, Muriel P. C.; Nubé, Menso J.; ter Wee, Piet M.; Lévesque, Renée; Bots, Michiel L.

    2010-01-01

    Removal of beta2-microglobulin (beta2M) can be increased by adding convective transport to hemodialysis (HD). The aim of this study was to investigate the change in beta2M levels after 6-mo treatment with hemodiafiltration (HDF) and to evaluate the role of residual kidney function (RKF) and the

  17. Fractional excretion of beta-2-microglobulin in the urine of patients with normal or reduced renal function and hepatic coma

    DEFF Research Database (Denmark)

    Hansen, P B; Dalhoff, K; Joffe, P

    1991-01-01

    The purpose of this prospective study was to evaluate beta-2-microglobulin (beta 2m) as a differential diagnostic indicator between hepatic nephropathy (HN) and acute tubulointerstitial nephropathy (ATIN) in patients with reduced renal function and hepatic coma, and to determine whether beta 2m e...

  18. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Morita, Ikuo [Section of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas

  19. Solved problems in analysis as applied to gamma, beta, Legendre and Bessel functions

    CERN Document Server

    Farrell, Orin J

    2013-01-01

    Nearly 200 problems, each with a detailed, worked-out solution, deal with the properties and applications of the gamma and beta functions, Legendre polynomials, and Bessel functions. The first two chapters examine gamma and beta functions, including applications to certain geometrical and physical problems such as heat-flow in a straight wire. The following two chapters treat Legendre polynomials, addressing applications to specific series expansions, steady-state heat-flow temperature distribution, gravitational potential of a circular lamina, and application of Gauss's mechanical quadrature

  20. Renal and cardiac function during alpha1-beta-blockade in congestive heart failure

    DEFF Research Database (Denmark)

    Heitmann, M; Davidsen, U; Stokholm, K H

    2002-01-01

    The kidney and the neurohormonal systems are essential in the pathogenesis of congestive heart failure (CHF) and the physiologic response. Routine treatment of moderate to severe CHF consists of diuretics, angiotensin-converting enzyme (ACE) inhibition and beta-blockade. The need for control...... of renal function during initiation of ACE-inhibition in patients with CHF is well known. The aim of this study was to investigate whether supplementation by a combined alpha1-beta-blockade to diuretics and ACE-inhibition might improve cardiac function without reducing renal function....

  1. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    Science.gov (United States)

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  2. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    Science.gov (United States)

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  3. Evaluation of beta-cell secretory capacity using glucagon-like peptide 1

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Nielsen, Mette Toft; Krarup, T

    2000-01-01

    Beta-cell secretory capacity is often evaluated with a glucagon test or a meal test. However, glucagon-like peptide 1 (GLP-1) is the most insulinotropic hormone known, and the effect is preserved in type 2 diabetic patients.......Beta-cell secretory capacity is often evaluated with a glucagon test or a meal test. However, glucagon-like peptide 1 (GLP-1) is the most insulinotropic hormone known, and the effect is preserved in type 2 diabetic patients....

  4. Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion

    DEFF Research Database (Denmark)

    Piwko-Czuchra, Aleksandra; Koegel, Heidi; Meyer, Hannelore

    2009-01-01

    BACKGROUND: There is a major discrepancy between the in vitro and in vivo results regarding the role of beta1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of beta1 integrins suggested that epidermis can form and be maintained in thei...... of increased keratinocyte proliferation such as wound healing. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that expression of beta1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis....... that developed similar, but less severe defects than mice with beta1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of beta1 integrin expression. A similar phenomenon...... was observed in aged mice with a complete, skin-specific ablation of the beta1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of beta1 integrin expressing keratinocytes was even further accelerated in situations...

  5. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Brandt, Berenice [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Wuensch, Annegret [Institute of Molecular Animal Breeding and Biotechnology, Ludwig Maximilians University, Munich (Germany); Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany)

    2010-09-03

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined

  6. The Cytotoxic Role of Intermittent High Glucose on Apoptosis and Cell Viability in Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-01-01

    Full Text Available Objectives. Glucose fluctuations are both strong predictor of diabetic complications and crucial factor for beta cell damages. Here we investigated the effect of intermittent high glucose (IHG on both cell apoptosis and proliferation activity in INS-1 cells and the potential mechanisms. Methods. Cells were treated with normal glucose (5.5 mmol/L, constant high glucose (CHG (25 mmol/L, and IHG (rotation per 24 h in 11.1 or 25 mmol/L for 7 days. Reactive oxygen species (ROS, xanthine oxidase (XOD level, apoptosis, cell viability, cell cycle, and expression of cyclinD1, p21, p27, and Skp2 were determined. Results. We found that IHG induced more significant apoptosis than CHG and normal glucose; intracellular ROS and XOD levels were more markedly increased in cells exposed to IHG. Cells treated with IHG showed significant decreased cell viability and increased cell proportion in G0/G1 phase. Cell cycle related proteins such as cyclinD1 and Skp2 were decreased significantly, but expressions of p27 and p21 were increased markedly. Conclusions. This study suggested that IHG plays a more toxic effect including both apoptosis-inducing and antiproliferative effects on INS-1 cells. Excessive activation of cellular stress and regulation of cyclins might be potential mechanism of impairment in INS-1 cells induced by IHG.

  7. beta. -endorphin augments the cytolytic activity and interferon production of natural killer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mandler, R.N.; Biddison, W.E.; Mandler, R.; Serrate, S.A.

    1986-02-01

    The in vitro effects of the neurohormone ..beta..-endorphin (b-end) on natural killer (NK) activity and interferon (IFN) production mediated by large granular lymphocytes (LGL) were investigated. LGL-enriched fractions from peripheral blood mononuclear cells (PBMC) from normal human volunteers were obtained by fractionation over discontinuous Percoll gradients. LGL were preincubated with or without various concentrations of b-end or the closely related peptides ..cap alpha..-endorphin (a-end), ..gamma..-endorphin (g-end), or D-ALA/sub 2/-..beta..-endorphin (D-ALA/sub 2/-b-end), a synthetic b-end analogue. NK activity was assayed on /sup 51/Cr-labeled K562 target cells. Preincubation of LGL effectors (but not K562 targets) for 2 to 18 hr with concentrations of b-end between 10/sup -7/ M and 10/sup -10/ M produced significant augmentation of NK cytolytic activity (mean percentage increase: 63%). The classic opiate antagonist naloxone blocked the enhancing effect when used at a 100-fold molar excess relative to b-end. These findings demonstrate that b-end enhances NK activity and IFN production of purified LGL, and suggests that b-end might bind to an opioid receptor on LGL that can be blocked by naloxone. These results lend support to the concepts of regulation of the immune response by neurohormones and the functional relationship between the nervous and immune systems.

  8. IKKβ inhibition prevents fat-induced beta cell dysfunction in vitro and in vivo in rodents.

    Science.gov (United States)

    Ivovic, Aleksandar; Oprescu, Andrei I; Koulajian, Khajag; Mori, Yusaku; Eversley, Judith A; Zhang, Liling; Nino-Fong, Rodolfo; Lewis, Gary F; Donath, Marc Y; Karin, Michael; Wheeler, Michael B; Ehses, Jan; Volchuk, Allen; Chan, Catherine B; Giacca, Adria

    2017-10-01

    We have previously shown that oxidative stress plays a causal role in beta cell dysfunction induced by fat. Here, we address whether the proinflammatory kinase inhibitor of (nuclear factor) κB kinase β (IKKβ), which is activated by oxidative stress, is also implicated. Fat (oleate or olive oil) was infused intravenously in Wistar rats for 48 h with or without the IKKβ inhibitor salicylate. Thereafter, beta cell function was evaluated in vivo using hyperglycaemic clamps or ex vivo in islets isolated from fat-treated rats. We also exposed rat islets to oleate in culture, with or without salicylate and 4(2'-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline; BMS-345541 (BMS, another inhibitor of IKKβ) and evaluated beta cell function in vitro. Furthermore, oleate was infused in mice treated with BMS and in beta cell-specific Ikkb-null mice. 48 h infusion of fat impaired beta-cell function in vivo, assessed using the disposition index (DI), in rats (saline: 1.41 ± 0.13; oleate: 0.95 ± 0.11; olive oil [OLO]: 0.87 ± 0.15; p < 0.01 for both fats vs saline) and in mice (saline: 2.51 ± 0.39; oleate: 1.20 ± 0.19; p < 0.01 vs saline) and ex vivo (i.e., insulin secretion, units are pmol insulin islet -1  h -1 ) in rat islets (saline: 1.51 ± 0.13; oleate: 1.03 ± 0.10; OLO: 0.91 ± 0.13; p < 0.001 for both fats vs saline) and the dysfunction was prevented by co-infusion of salicylate in rats (oleate + salicylate: 1.30 ± 0.09; OLO + salicylate: 1.33 ± 0.23) or BMS in mice (oleate + BMS: 2.25 ± 0.42) in vivo and by salicylate in rat islets ex vivo (oleate + salicylate: 1.74 ± 0.31; OLO + salicylate: 1.54 ± 0.29). In cultured islets, 48 h exposure to oleate impaired beta-cell function ([in pmol insulin islet -1  h -1 ] control: 0.66 ± 0.12; oleate: 0.23 ± 0.03; p < 0.01 vs saline), an effect prevented by both inhibitors (oleate + salicylate: 0.98 ± 0.08; oleate + BMS: 0.50 ± 0.02). Genetic

  9. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  10. Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs

    Directory of Open Access Journals (Sweden)

    Jonathan L. S. Esguerra

    2014-11-01

    Full Text Available Increased blood glucose after a meal is countered by the subsequent increased release of the hypoglycemic hormone insulin from the pancreatic beta cells. The cascade of molecular events encompassing the initial sensing and transport of glucose into the beta cell, culminating with the exocytosis of the insulin large dense core granules (LDCVs is termed “stimulus-secretion coupling.” Impairment in any of the relevant processes leads to insufficient insulin release, which contributes to the development of type 2 diabetes (T2D. The fate of the beta cell, when exposed to environmental triggers of the disease, is determined by the possibility to adapt to the new situation by regulation of gene expression. As established factors of post-transcriptional regulation, microRNAs (miRNAs are well-recognized mediators of beta cell plasticity and adaptation. Here, we put focus on the importance of comprehending the transcriptional regulation of miRNAs, and how miRNAs are implicated in stimulus-secretion coupling, specifically those influencing the late stages of insulin secretion. We suggest that efficient beta cell adaptation requires an optimal balance between transcriptional regulation of miRNAs themselves, and miRNA-dependent gene regulation. The increased knowledge of the beta cell transcriptional network inclusive of non-coding RNAs such as miRNAs is essential in identifying novel targets for the treatment of T2D.

  11. The effect of suppressor of cytokine signaling 3 on GH signaling in beta-cells

    DEFF Research Database (Denmark)

    Rønn, Sif G; Hansen, Johnny A; Lindberg, Karen

    2002-01-01

    GH is an important regulator of cell growth and metabolism. In the pancreas, GH stimulates mitogenesis as well as insulin production in beta-cells. The cellular effects of GH are exerted mainly through activation of the Janus kinase-signal transducer and activator of transcription (STAT) pathway...... stable transfection of the beta-cell lines with plasmids expressing SOCS-3 under the control of an inducible promoter, a time- and dose-dependent expression of SOCS-3 in the cells was obtained. EMSA showed that SOCS-3 is able to inhibit GH-induced DNA binding of both STAT3 and STAT5 in RIN-5AH cells...

  12. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells.

    Science.gov (United States)

    Pavlikova, Nela; Smetana, Pavel; Halada, Petr; Kovar, Jan

    2015-10-01

    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    Jelena Marković

    Full Text Available Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12 transcription. The roles of poly(ADP-ribose polymerase-1 (PARP-1 and transcription factor Yin Yang 1 (YY1 in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the

  14. Association of arsenobetaine with beta-cell function assessed by homeostasis model assessment (HOMA) in nondiabetic Koreans: data from the fourth Korea National Health and Nutrition Examination Survey (KNHANES) 2008-2009.

    Science.gov (United States)

    Baek, Kiook; Lee, Namhoon; Chung, Insung

    2017-01-01

    Arsenic is known as an endocrine disruptor that people are exposed to through various sources such as drinking water and indigestion of marine products. Although some epidemiological and animal studies have reported a correlation between arsenic exposure and diabetes development, there are limited studies regarding the toxic effects of organic arsenic including arsenobetaine on the human body. Here, we analyzed the association between urine arsenobetaine and the homeostasis model assessment of β-cell function (HOMA-β), which is an index for predicting diabetes development and reflecting the function of pancreatic β-cells. In the fourth Korea National Health and Nutrition Examination Survey (KNHANES), health and nutrition surveys and screening tests were performed. Of the total survey population, people with confirmed values for urine total arsenic and arsenobetaine were included, and known diabetic patients were excluded. A total 369 participants were finally included in the study. We collected surveys on health, height, body weight, body mass index, blood mercury level, fasting glucose level, and serum insulin level and calculated HOMA index. Owing to sexual discrepancy, we performed sexually stratified analysis. Urine total arsenic and total arsenic minus arsenobetaine was not associated with HOMA-IR and HOMA-β in univariate analysis or in sexually stratified analysis. However, urine arsenobetaine showed a statistically significant relationship with HOMA-β in univariate analysis, and only male participants showed a significant correlation in sexually stratified analysis. In the analysis adjusted for age, BMI, smoking, alcohol drinking, physical activity and blood mercury, the HOMA-β value in the group below the 25th percentile of arsenobetaine was significantly higher than the group between 50 and 75th percentile, while no difference was shown for HOMA-IR. In sexually stratified analysis, The value of HOMA-β was significantly higher in male participants

  15. Interleukin-1 beta inhibits rat thyroid cell function in vivo and in vitro by an NO-independent mechanism and induces hypothyroidism and accelerated thyroiditis in diabetes-prone BB rats

    DEFF Research Database (Denmark)

    Reimers, J I; Rasmussen, A K; Karlsen, A E

    1996-01-01

    Interleukin-1 beta has been implicated as a pathogenic factor in the development of autoimmune thyroiditis. When given for 5 days to normal non-diabetes-prone Wistar Kyoto rats, it decreased plasma concentrations of total tri-iodothyronine and thyroxine and increased plasma TSH. These effects were...

  16. Effect on pancreatic beta cells and nerve cells by low let x-ray

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Hun [Dept. of Nuclear Medicine, Kyungbuk National University Hospital, Daegu (Korea, Republic of); Kim, Kgu Hwan [Dept. of Radiological Technology, Daegu health College, Daegu (Korea, Republic of)

    2014-03-15

    Cultured pancreatic beta cells and nerve cells, it is given normal condition of 10% FBS (fetal bovine serum), 11.1 mM glucose and hyperglycemia condition of 1% FBS, 30 mM glucose. For low LET X-ray irradiated with 0.5 Gy/hr dose-rate(total dose: 0.5 to 5 Gy). Survival rates were measured by MTT assay. When non irradiated, differentiated in the pancreatic beta cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a small reduction. However increasing the total dose of X-ray, the survival rate of normal conditions decreased slightly compared to the survival rate of hyperglycemia conditions, the synergistic effect was drastically reduced. When non irradiated, undifferentiated in the nerve cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a large reduction. As the cumulative dose of X-ray normal conditions and hyperglycemia were all relatively rapid cell death. But the rate of decreased survivals by almost parallel to the reduction proceed and it didn't show synergistic effect.

  17. Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α.

    Science.gov (United States)

    Ocaña, Gail J; Pérez, Liliana; Guindon, Lynette; Deffit, Sarah N; Evans-Molina, Carmella; Thurmond, Debbie C; Blum, Janice S

    2017-06-01

    A major obstacle in predicting and preventing the development of autoimmune type 1 diabetes (T1D) in at-risk individuals is the lack of well-established early biomarkers indicative of ongoing beta cell stress during the pre-clinical phase of disease. Recently, serum levels of the α cytoplasmic isoform of heat-shock protein 90 (hsp90) were shown to be elevated in individuals with new-onset T1D. We therefore hypothesized that hsp90α could be released from beta cells in response to cellular stress and inflammation associated with the earliest stages of T1D. Here, human beta cell lines and cadaveric islets released hsp90α in response to stress induced by treatment with a combination of pro-inflammatory cytokines including interleukin-1β, tumour necrosis factor-α and interferon-γ. Mechanistically, hsp90α release was found to be driven by cytokine-induced endoplasmic reticulum stress mediated by c-Jun N-terminal kinase (JNK), a pathway that can eventually lead to beta cell apoptosis. Cytokine-induced beta cell hsp90α release and JNK activation were significantly reduced by pre-treating cells with the endoplasmic reticulum stress-mitigating chemical chaperone tauroursodeoxycholic acid. The hsp90α release by cells may therefore be a sensitive indicator of stress during inflammation and a useful tool in assessing therapeutic mitigation of cytokine-induced cell damage linked to autoimmunity. © 2017 John Wiley & Sons Ltd.

  18. CRFR1 is expressed on pancreatic beta cells, promotes beta cell proliferation, and potentiates insulin secretion in a glucose-dependent manner

    DEFF Research Database (Denmark)

    Huising, Mark O; van der Meulen, Talitha; Vaughan, Joan M

    2009-01-01

    Corticotropin-releasing factor (CRF), originally characterized as the principal neuroregulator of the hypothalamus-pituitary-adrenal axis, has broad central and peripheral distribution and actions. We demonstrate the presence of CRF receptor type 1 (CRFR1) on primary beta cells and show that acti...

  19. The Synthesis of N-Acetyllactosamine Functionalized Dendrimers, and the Functionalization of Silica Surfaces Using Tunable Dendrons and beta-Cyclodextrins

    Science.gov (United States)

    Ennist, Jessica Helen

    Galectin-3 is beta-galactoside binding protein which is found in many healthy cells. In cancer, the galectin-3/tumor-associated Thomsen-Friedenreich antigen (TF antigen) interaction has been implicated in heterotypic and homotypic cellular adhesion and apoptotic signaling pathways. However, a stronger mechanistic understanding of the role of galectin-3 in these processes is needed. N-acetyllactosamine (LacNAc) is a non-native ligand for galectin-3 which binds with comparable affinity to the TF antigen and therefore an important ligand to study galectin-3 mediated processes. To study galectin-3 mediated homotypic cellular aggregation, four generations of polyamidoamine (PAMAM) dendrimers were functionalized with N-acetyllactosamine using a four-step chemoenzymatic route. The enzymatic step controlled the regiochemistry of the galactose addition to N-acetylglucosamine functionalized dendrimers using a recombinant beta-1,4-Galactosyltransferase-/UDP-4'-Gal Epimerase Fusion Protein (lgtB-galE). Homotypic cellular aggregation, which is promoted by the presence of galectin-3 as it binds to glycosides at the cell surface, was studied using HT-1080 fibrosarcoma, A549 lung, and DU-145 prostate cancer cell lines. In the presence of small LacNAc functionalized PAMAM dendrimers, galectin-3 induced cancer cellular aggregation was inhibited. However, the larger glycodendrimers induced homotypic cellular aggregation. Additionally, novel poly(aryl ether) dendronized silica surfaces designed for reversible adsorbtion of targeted analytes were synthesized, and characterization using X-ray Photoelectron Spectroscopy (XPS) was performed. Using a Cu(I) mediated cycloaddition "click" reaction, beta-cyclodextrin was appended to dendronized surfaces via triazole formation and also to a non-dendronized surface for comparison purposes. First generation G(1) dendrons have more than 6 times greater capacity to adsorb targeted analytes than slides functionalized with monomeric beta

  20. Diagnostic significance of red cell indices in beta-thalassaemia trait

    International Nuclear Information System (INIS)

    Hussain, Z.; Malik, N.; Chughtai, A.S.

    2005-01-01

    The purpose of this study was to evaluate the formulae for the diagnosis of beta-thalassemia trait cases in settings where electrophoreses is not available. The study included 50 cases of beta-thalassaemia trait already diagnosed by Hb electrophoresis. CBC samples were analyzed on Sysmex K4500 and red cell indices were used to evaluate formulae for differentiating beta thalassaemia trait from iron deficiency anemia. The formula MCV/RBC and MCH/RBC identified 56% of the cases. Formula MCV - (5 x Hb)- RBC - 8.4 identified 54% of beta thalassemia trait cases. The formula MCV x MCH identified 92% of cases. RBC indices given by 100 electronic counters can be used to differentiate iron deficiency anemia from beta-thalassaemia trait at least provisionally in areas where Hb electrophoresis is not available. (author)

  1. Non-linear variation of the beta function with momentum

    International Nuclear Information System (INIS)

    Parzen, G.

    1983-07-01

    A theory is presented for computing the non-linear dependence of the β-functions on momentum. Results are found for the quadratic term. The results of the theory are compared with computed results. A procedure is proposed for computing the strengths of the sextupole correctors to correct the dependence of the β-function on momentum

  2. The Drosophila melanogaster DmCK2beta transcription unit encodes for functionally non-redundant protein isoforms.

    Science.gov (United States)

    Jauch, Eike; Wecklein, Heike; Stark, Felix; Jauch, Mandy; Raabe, Thomas

    2006-06-07

    Genes encoding for the two evolutionary highly conserved subunits of a heterotetrameric protein kinase CK2 holoenzyme are present in all examined eukaryotic genomes. Depending on the organism, multiple transcription units encoding for a catalytically active CK2alpha subunit and/or a regulatory CK2beta subunit may exist. The phosphotransferase activity of members of the protein kinase CK2alpha family is thought to be independent of second messengers but is modulated by interaction with CK2beta-like proteins. In the genome of Drosophila melanogaster, one gene encoding for a CK2alpha subunit and three genes encoding for CK2beta-like proteins are present. The X-linked DmCK2beta transcription unit encodes for several CK2beta protein isoforms due to alternative splicing of its primary transcript. We addressed the question whether CK2beta-like proteins are redundant in function. Our in vivo experiments show that variations of the very C-terminal tail of CK2beta isoforms encoded by the X-linked DmCK2beta transcription unit influence their functional properties. In addition, we find that CK2beta-like proteins encoded by the autosomal D. melanogaster genes CK2betates and CK2beta' cannot fully substitute for a loss of CK2beta isoforms encoded by DmCK2beta.

  3. Defective glucose and lipid metabolism in human immunodeficiency virus-infected patients with lipodystrophy involve liver, muscle tissue and pancreatic beta-cells

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Dela, Flemming

    2005-01-01

    .01. Disposition index (i.e. first-phase insulin response to intravenous glucose multiplied by incremental glucose disposal) was reduced by 46% (P = 0.05) in LIPO compared with the combined groups of NONLIPO and NAIVE, indicating an impaired adaptation of beta-cell function to insulin resistance in LIPO...... of glucose metabolism, lipid metabolism and beta-cell function in lipodystrophic HIV-infected patients. METHODS: [3-3H]glucose was applied during euglycaemic hyperinsulinaemic clamps in association with indirect calorimetry in 43 normoglycaemic HIV-infected patients (18 lipodystrophic patients on HAART (LIPO......), 18 patients without lipodystrophy on HAART (NONLIPO) and seven patients who were naive to antiretroviral therapy (NAIVE) respectively). beta-cell function was evaluated by an intravenous glucose tolerance test. RESULTS: Compared with NONLIPO and NAIVE separately, LIPO displayed markedly reduced ratio...

  4. Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Damgaard Nielsen, M

    2012-01-01

    onset, HDAC1 was upregulated in beta cells whereas HDAC2 and -3 were downregulated in comparison with five paediatric controls. CONCLUSIONS/INTERPRETATION: These data demonstrate non-redundant functions of islet class I HDACs and suggest that targeting HDAC1 and HDAC3 would provide optimal protection......AIMS/HYPOTHESIS: Histone deacetylases (HDACs) are promising pharmacological targets in cancer and autoimmune diseases. All 11 classical HDACs (HDAC1-11) are found in the pancreatic beta cell, and HDAC inhibitors (HDACi) protect beta cells from inflammatory insults. We investigated which HDACs...... of HDAC1, -2 and -3 rescued INS-1 cells from inflammatory damage. Small hairpin RNAs against HDAC1 and -3, but not HDAC2, reduced pro-inflammatory cytokine-induced beta cell apoptosis in INS-1 and primary rat islets. The protective properties of specific HDAC knock-down correlated with attenuated cytokine...

  5. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Adam L. Burrack

    2017-12-01

    Full Text Available Type 1 diabetes (T1D results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.

  6. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration

    Directory of Open Access Journals (Sweden)

    Yaxi Zhu

    2017-11-01

    Full Text Available Abstract Transcription factors regulate gene expression through binding to specific enhancer sequences. Pancreas/duodenum homeobox protein 1 (PDX1, Neurogenin-3 (NEUROG3, and V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA are transcription factors critical for beta cell development and maturation. NEUROG3 is expressed in endocrine progenitor cells and controls islet differentiation and regeneration. PDX1 is essential for the development of pancreatic exocrine and endocrine cells including beta cells. PDX1 also binds to the regulatory elements and increases insulin gene transcription. Likewise, MAFA binds to the enhancer/promoter region of the insulin gene and drives insulin expression in response to glucose. In addition to those natural roles in beta cell development and maturation, ectopic expression of PDX1, NEUROG3, and/or MAFA has been successfully used to reprogram various cell types into insulin-producing cells in vitro and in vivo, such as pancreatic exocrine cells, hepatocytes, and pluripotent stem cells. Here, we review biological properties of PDX1, NEUROG3, and MAFA, and their applications and limitations for beta cell regenerative approaches. The primary source literature for this review was acquired using a PubMed search for articles published between 1990 and 2017. Search terms include diabetes, insulin, trans-differentiation, stem cells, and regenerative medicine.

  7. Islet immunity and beta cell reserve of indigenous Black South Africans with ketoacidosis at initial diagnosis of diabetes.

    Science.gov (United States)

    Ekpebegh, Chukwuma; Longo-Mbenza, Benjamin; Blanco-Blanco, Ernesto

    2013-01-01

    Islet immunity and beta cell reserve status were utilized to classify persons with ketoacidosis as the initial manifestation of diabetes. The clinical features of the various diabetes classes were also characterized. Prospective cross sectional study. Nelson Mandela Academic Hospital, Mthatha, Eastern Cape Province, South Africa. Indigenous Black South Africans with ketoacidosis as the initial manifestation of diabetes. Islet immunity and beta cell reserve were respectively assessed using serum anti-glutamic acid decarboxylase 65 (GAD) antibody and serum C-peptide after 1 mg of intravenous glucagon. Serum anti-GAD 65 antibody > or = 5 units/L and or = 0.5 ng/mL and < 0.5 ng/mL, respectively. The proportions of patients with A+beta-, A+beta+, A-beta- and A-beta+ and their clinical characteristics were determined. Of the 38 males and 33 females who participated in the study, patients were categorized in various classes: A-beta+, 46.5% (n=33/ 71); A-beta-, 26.8% (n=19/71); A+beta-, 22.5% (n=16/71); and A+beta+, 4.2% (n=3/71). The ages of the various classes were: 41.8 +/- 13.8 years for A-beta+ (n=33); 36.5 +/- 14.6 years for A-beta- (n=19); and 20.6 +/- 7.1 years for the combination of A+beta- with A+beta+ (n=19) (P<.0001, P<.0001 for the combination of A+beta- and A+beta+ vs A-beta+, P=.001 for the combination of A+beta- and A+beta+ vs A-beta-and P=.2 for A-beta- vs A-beta+. The clinical features of type 2 diabetes were most prevalent in A-beta+ class while the A+beta- and A+beta+ groups had the clinical profile of type 1A diabetes. Most of the indigenous Black South African patients with ketoacidosis as the initial manifestation of diabetes had islet immunity, beta cell reserve status and clinical profiles of type 2 diabetes.

  8. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells

    International Nuclear Information System (INIS)

    Friesen, Claudia; Lubatschofski, Annelie; Debatin, Klaus-Michael; Kotzerke, Joerg; Buchmann, Inga; Reske, Sven N.

    2003-01-01

    Beta-irradiation used for systemic radioimmunotherapy (RIT) is a promising treatment approach for high-risk leukaemia and lymphoma. In bone marrow-selective radioimmunotherapy, beta-irradiation is applied using iodine-131, yttrium-90 or rhenium-188 labelled radioimmunoconjugates. However, the mechanisms by which beta-irradiation induces cell death are not understood at the molecular level. Here, we report that beta-irradiation induced apoptosis and activated apoptosis pathways in leukaemia cells depending on doses, time points and dose rates. After beta-irradiation, upregulation of CD95 ligand and CD95 receptor was detected and activation of caspases resulting in apoptosis was found. These effects were completely blocked by the broad-range caspase inhibitor zVAD-fmk. In addition, irradiation-mediated mitochondrial damage resulted in perturbation of mitochondrial membrane potential, caspase-9 activation and cytochrome c release. Bax, a death-promoting protein, was upregulated and Bcl-x L , a death-inhibiting protein, was downregulated. We also found higher apoptosis rates and earlier activation of apoptosis pathways after gamma-irradiation in comparison to beta-irradiation at the same dose rate. Furthermore, irradiation-resistant cells were cross-resistant to CD95 and CD95-resistant cells were cross-resistant to irradiation, indicating that CD95 and irradiation used, at least in part, identical effector pathways. These findings demonstrate that beta-irradiation induces apoptosis and activates apoptosis pathways in leukaemia cells using both mitochondrial and death receptor pathways. Understanding the timing, sequence and molecular pathways of beta-irradiation-mediated apoptosis may allow rational adjustment of chemo- and radiotherapeutic strategies. (orig.)

  9. Characterization of estrogen receptors alpha and beta in uterine leiomyoma cells.

    Science.gov (United States)

    Valladares, Francisco; Frías, Ignacio; Báez, Delia; García, Candelaria; López, Francisco J; Fraser, James D; Rodríguez, Yurena; Reyes, Ricardo; Díaz-Flores, Lucio; Bello, Aixa R

    2006-12-01

    Cellular and subcellular localization of estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) in uterine leiomyomas. Retrospective study. University of La Laguna (ULL) and Canary University Hospital (HUC). Premenopausal and postmenopausal women with uterine leiomyomas. Hysterectomy and myomectomy. Estrogen receptor alpha was only present in smooth muscle cells with variation in the subcellular location in different leiomyomas. Estrogen receptor beta was widely distributed in smooth muscle, endothelial, and connective tissue cells with nuclear location in all cases studied; variations were only found in the muscle cells for this receptor. Estrogens operate in leiomyoma smooth muscle cells through different receptors, alpha and beta. However they only act through the ERbeta in endothelial and connective cells.

  10. Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation.

    Science.gov (United States)

    Johansson, Bente Berg; Fjeld, Karianne; Solheim, Marie Holm; Shirakawa, Jun; Zhang, Enming; Keindl, Magdalena; Hu, Jiang; Lindqvist, Andreas; Døskeland, Anne; Mellgren, Gunnar; Flatmark, Torgeir; Njølstad, Pål Rasmus; Kulkarni, Rohit N; Wierup, Nils; Aukrust, Ingvild; Bjørkhaug, Lise

    2017-10-15

    The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal ( 30 LKKVMRR 36 ) in the human enzyme. Substituting the residues KK 31,32 and RR 35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterization of stimulus-secretion coupling in the human pancreatic EndoC-βH1 beta cell line.

    Directory of Open Access Journals (Sweden)

    Lotta E Andersson

    Full Text Available Studies on beta cell metabolism are often conducted in rodent beta cell lines due to the lack of stable human beta cell lines. Recently, a human cell line, EndoC-βH1, was generated. Here we investigate stimulus-secretion coupling in this cell line, and compare it with that in the rat beta cell line, INS-1 832/13, and human islets.Cells were exposed to glucose and pyruvate. Insulin secretion and content (radioimmunoassay, gene expression (Gene Chip array, metabolite levels (GC/MS, respiration (Seahorse XF24 Extracellular Flux Analyzer, glucose utilization (radiometric, lactate release (enzymatic colorimetric, ATP levels (enzymatic bioluminescence and plasma membrane potential and cytoplasmic Ca2+ responses (microfluorometry were measured. Metabolite levels, respiration and insulin secretion were examined in human islets.Glucose increased insulin release, glucose utilization, raised ATP production and respiratory rates in both lines, and pyruvate increased insulin secretion and respiration. EndoC-βH1 cells exhibited higher insulin secretion, while plasma membrane depolarization was attenuated, and neither glucose nor pyruvate induced oscillations in intracellular calcium concentration or plasma membrane potential. Metabolite profiling revealed that glycolytic and TCA-cycle intermediate levels increased in response to glucose in both cell lines, but responses were weaker in EndoC-βH1 cells, similar to those observed in human islets. Respiration in EndoC-βH1 cells was more similar to that in human islets than in INS-1 832/13 cells.Functions associated with early stimulus-secretion coupling, with the exception of plasma membrane potential and Ca2+ oscillations, were similar in the two cell lines; insulin secretion, respiration and metabolite responses were similar in EndoC-βH1 cells and human islets. While both cell lines are suitable in vitro models, with the caveat of replicating key findings in isolated islets, EndoC-βH1 cells have the

  12. Long-Term GABA Administration Induces Alpha Cell-Mediated Beta-like Cell Neogenesis

    DEFF Research Database (Denmark)

    Ben-Othman, Nouha; Vieira, Andhira; Courtney, Monica

    2017-01-01

    , these neo-generated β-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in β-like cell counts, suggestive of α-to-β-like cell conversion processes...

  13. A faster procedure for the calculation of the J({xi}, {beta}) function

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro Palma, Daniel Artur [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, 28630-050 Rio de Janeiro, RJ (Brazil); COPPE/UFRJ - Programa de Engenharia Nuclear, 21941-914 Rio de Janeiro, RJ (Brazil)], E-mail: dpalma@cefeteq.br; Senra Martinez, Aquilino [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, 28630-050 Rio de Janeiro, RJ (Brazil); COPPE/UFRJ - Programa de Engenharia Nuclear, 21941-914 Rio de Janeiro, RJ (Brazil)], E-mail: aquilino@lmp.ufrj.br

    2009-10-15

    One of the biggest difficulties in obtaining an analytical expression for the J({xi}, {beta}) function is its explicit dependence on the Doppler broadening function {psi}(x,{xi}). The objective of this paper is to present a method for the fast and accurate calculation for the J({xi}, {beta}) function based on the recent advances in the calculation of the Doppler broadening function and on a systematic analysis of its integrand. The methodology proposed uses an analytical formulation for the calculation of {psi}(x, {xi}) and a representation in series for error functions with complex argument. The results were satisfactory from the accuracy and processing time standpoint and are an option to other calculation methods found in the literature.

  14. On k-Gamma and k-Beta Distributions and Moment Generating Functions

    Directory of Open Access Journals (Sweden)

    Gauhar Rahman

    2014-01-01

    Full Text Available The main objective of the present paper is to define k-gamma and k-beta distributions and moments generating function for the said distributions in terms of a new parameter k>0. Also, the authors prove some properties of these newly defined distributions.

  15. The Effect of Bladder Outlet Obstruction on alpha(1)- and beta-Adrenoceptor Expression and Function

    NARCIS (Netherlands)

    Barendrecht, Maurits M.; Frazier, Elfaridah P.; Vrydag, Wim; Alewijnse, Astrid E.; Peters, Stephan L. M.; Michel, Martin C.

    2009-01-01

    Aims: To explore possible changes in expression and/or function of alpha(1)- and beta-adrenoceptor subtypes as a cause for bladder dysfunction in a rat model of bladder outlet obstruction (BOO). Methods: BOO was induced in rats by partial urethral ligature. Contraction and relaxation experiments

  16. SQED two-loop beta function in the context of Implicit regularization

    International Nuclear Information System (INIS)

    Cherchiglia, Adriano Lana; Sampaio, Marcos; Nemes, Maria Carolina

    2013-01-01

    Full text: In this work we present the state-of-art for Implicit Regularization (IReg) in the context of supersymmetric theories. IReg is a four-dimensional regularization technique in momentum space which disentangles, in a consistent way at arbitrary order, the divergencies, regularization dependent and finite parts of any Feynman amplitude. Since it does not resort to modifications on the physical space-time dimensions of the underlying quantum field theoretical model, it can be consistently applied to supersymmetric theories. First we describe the technique and present previous results for supersymmetric models: the two-loop beta function for the Wess-Zumino model (both in the component and superfield formalism); the two-loop beta function for Super Yang-Mills (in the superfield formalism using the background field technique). After, we present our calculation of the two-loop beta function for massless and massive SQED using the superfield formalism with and without resorting to the background field technique. We find that only in the second case the two-loop divergence cancels out. We argue it is due to an anomalous Jacobian under the rescaling of the fields in the path-integral which is necessary for the application of the supersymmetric background field technique. We find, however, that in both cases the two-loop coefficients of beta function are non-null. Finally we briefly discuss the anomaly puzzle in the context of our technique. (author)

  17. Towards the five-loop beta function for a general gauge group

    International Nuclear Information System (INIS)

    Luthe, Thomas; Schroeder, York

    2016-06-01

    We present analytical results for the N"4_f and N"3_f terms of the five-loop beta function, for a general gauge group. While the former term agrees with results available from large-N_f studies, the latter is new and extends the value known for SU(3) from an independent calculation.

  18. Anxiety and beta-adrenergic receptor function in a normal population.

    Science.gov (United States)

    Kang, Eun-Ho; Yu, Bum-Hee

    2005-06-01

    Many studies have shown a close relationship between anxiety and beta-adrenergic receptor function in patients with anxiety disorders. This study examined the relationship between beta-adrenergic receptor function and anxiety levels in a normal population. Subjects for this study included 36 men and 44 women between the ages of 20 and 40 years whose Body Mass Index (BMI) was between 18 and 26. All of them were healthy subjects who had no previous history of medical or psychiatric illnesses. The authors measured the Spielberger State-Trait Anxiety Inventory (STAI), Beck Depression Inventory (BDI), and Chronotropic 25 Dose (CD25) of isoproterenol, previously developed to assess in vivo beta-adrenergic receptor sensitivity. We also examined correlations between log normalized CD25 and mood states. The mean of CD25 was 2.64+/-1.37 mug and the mean of CD25 in men was significantly higher (i.e., lower beta-adrenergic receptor sensitivity) than that of women (3.26+/-1.35 vs. 2.14+/-1.17 microg; t = 3.99, p anxiety (r = -0.344, p = 0.002), trait anxiety (r = -0.331, p = 0.003), and BDI (r = -0.283, p = 0.011). CD25 was positively correlated with BMI (r = 0.423, p anxiety, and BMI. The sensitivity of beta-adrenergic receptors increased as anxiety levels became higher in a normal population. Thus, the relationship between anxiety and beta-adrenergic receptor function in healthy subjects may be different from that of patients with anxiety disorders.

  19. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death.

    Directory of Open Access Journals (Sweden)

    Mohamed I Husseiny

    Full Text Available The onset of metabolic dysregulation in type 1 diabetes (T1D occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy.

  20. Cyclodextrin-facilitated bioconversion of 17 beta-estradiol by a phenoloxidase from Mucuna pruriens cell cultures

    NARCIS (Netherlands)

    Woerdenbag, H.J.; Pras, N.; Frijlink, H.W.; Lerk, C.F.; Malingré, T.M.

    1990-01-01

    After complexation with beta-cyclodextrin, the phenolic steroid 17 beta-estradiol could be ortho-hydroxylated into a catechol, mainly 4-hydroxyestradiol, by a phenoloxidase from in vitro grown cells of Mucuna pruriens. By complexation with beta-cyclodextrin the solubility of the steroid increased

  1. MHC class I phenotype and function of human beta 2-microglobulin transgenic murine lymphocytes

    DEFF Research Database (Denmark)

    Bjerager, L; Pedersen, L O; Bregenholt, S

    1996-01-01

    . Based on data from cellular binding studies, Scatchard analyses and flow cytometry, it is concluded that exogenous h beta 2m does not bind to hybrid MHC class I (MHC-I) molecules composed of mouse heavy chain/h beta 2m molecules expressed on lymphocytes of transgenic mice. Immunoprecipitation and SDS......-PAGE analysis of metabolically labelled normal C57BL/6 lymph node cells showed binding of exogenous h beta 2m to MHC-I, in particular, to the H-2Db molecule through an exchange with endogenous mouse beta 2m. In contrast to normal H-2Db molecules, hybrid H-2Db expressed on the surface of transgenic lymphocytes...... binds radiolabelled peptide in the absence of exogenous added h beta 2m suggesting that a stable fraction of hybrid H-2Db molecules is empty or contain peptides with very low affinity. In a one-way allogenic mixed lymphocyte culture, transgenic splenocytes were found to be far less stimulatory than...

  2. Beta-endorphin cell therapy for cancer prevention.

    Science.gov (United States)

    Zhang, Changqing; Murugan, Sengottuvelan; Boyadjieva, Nadka; Jabbar, Shaima; Shrivastava, Pallavi; Sarkar, Dipak K

    2015-01-01

    β-Endorphin (BEP)-producing neuron in the hypothalamus plays a key role in bringing the stress axis to a state of homeostasis and maintaining body immune defense system. Long-term delivery of BEP to obtain beneficial effect on chemoprevention is challenging, as the peptides rapidly develop tolerance. Using rats as animal models, we show here that transplantation of BEP neurons into the hypothalamus suppressed carcinogens- and hormone-induced cancers in various tissues and prevented growth and metastasis of established tumors via activation of innate immune functions. In addition, we show that intracerebroventricular administration of nanosphere-attached dibutyryl cyclic adenosine monophosphate (dbcAMP) increased the number of BEP neurons in the hypothalamus, reduced the stress response, enhanced the innate immune function, and prevented tumor cell growth, progression, and metastasis. BEP neuronal supplementation did not produce any deleterious effects on general health but was beneficial in suppressing age-induced alterations in physical activity, metabolic, and immune functions. We conclude that the neuroimmune system has significant control over cancer growth and progression, and that activation of the neuroimmune system via BEP neuronal supplementation/induction may have therapeutic value for cancer prevention and improvement of general health. ©2014 American Association for Cancer Research.

  3. Rat beta-LPH, gamma-LPH and beta-endorphin biosynthesized by isolated cells of pars intermedia and pars distalis

    International Nuclear Information System (INIS)

    Gianoulakis, C.; Seidah, N.G.; Routhier, R.; Chretien, M.

    1980-01-01

    Rats pars intermedia cells were incubated for 3 h with the following amino-acids: a) 35 S-methionine and 3 H-phenylalamine; b) 3 H-valine; and c) 3 H-valine and 3 H-lysine. Radioactive gamma-lipotropin, beta-lipotropin and beta-endorphin were purified on carboxy- methyl-cellulose and characterized by polyacrylamide disc gel electrophoresis af pH 4.5, molecular weight estimation and microsequencing. Rat gamma-lipotropin was shown to differ slightly from ovine gamma-lipotropin in its NH 2 -terminal amino acid sequence, in containing no methionine and having phenylalanine at position 6, valine at positions 13 and 27, and lysine at position 20. The same variations were observed in the sequence of rat beta-lipotropin, while rat beta-endorphin was shown to be identical to the ovine beta-endorphin. Following a 3-h pulse of rat pars distalis, the cells were extracted with care to avoid beta-lipotropin degradation by proteolytic enzymes. A peptide was purified and identified to be rat beta-endorphin, thus demonstrating that beta-endorphin is biosynthesized in pars distalis and is not an extraction artifact. (author)

  4. 9-{beta}-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, D. [Rush Univ. Medical Center, Chicago, IL (United States). Therapeutic Radiology; Mustafi, R. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology; Schwartz, J.L. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology]|[Argonne National Lab., IL (United States)

    1992-06-01

    The effect of 9-{beta}-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D{sub 0} values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D{sub 0} values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 {mu}M) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 {mu}M were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo.

  5. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    International Nuclear Information System (INIS)

    Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A

    2005-01-01

    Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype

  6. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    Directory of Open Access Journals (Sweden)

    Beecken Wolf-Dietrich

    2005-01-01

    Full Text Available Abstract Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a, alpha2beta1 (CD49b, alpha3beta1 (CD49c, alpha4beta1 (CD49d, alpha5beta1 (CD49e, and alpha6beta1 (CD49f receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype.

  7. Calcium has a permissive role in interleukin-1beta-induced c-jun N-terminal kinase activation in insulin-secreting cells

    DEFF Research Database (Denmark)

    Størling, Joachim; Zaitsev, Sergei V; Kapelioukh, Iouri L

    2005-01-01

    The c-jun N-terminal kinase (JNK) signaling pathway mediates IL-1beta-induced apoptosis in insulin-secreting cells, a mechanism relevant to the destruction of pancreatic beta-cells in type 1 and 2 diabetes. However, the mechanisms that contribute to IL-1beta activation of JNK in beta-cells are la...

  8. GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells.

    Science.gov (United States)

    Yamaoka, Mami; Ishizaki, Toshimasa; Kimura, Toshihide

    2015-01-01

    Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.

  9. Role of growth factors in control of pancreatic beta cell mass: focus on betatrophin.

    Science.gov (United States)

    Levitsky, Lynne L; Ardestani, Goli; Rhoads, David B

    2014-08-01

    Betatrophin is a newly described hormone, which potently stimulates beta cell replication in mice. This discovery has engendered great hope that it could prove clinically important in the treatment of type 1 and type 2 diabetes. Betatrophin, a 198-amino acid protein secreted by liver and adipose tissue, stimulates growth of pancreatic beta cell mass in insulin-resistant mice. Betatrophin has previously been named RIFL, lipasin, and ANGPLT8, and its salutory effects on lipid metabolism have been described in mouse and human studies. Serum betatrophin levels in humans correlate with improved adipose tissue lipid storage and lower serum triglyceride levels in the fed state, but do not correlate with insulin resistance or carbohydrate tolerance in humans. Betatrophin has not yet been shown to have an effect on beta cell replication in human pancreatic islets. Many endocrine and paracrine factors, of which betatrophin is the newest described, increase beta cell mass in murine models. None of these factors, including betatrophin, have displayed the same activity in clinical studies. This may reflect a profound species difference in beta cell regeneration pathways in mice and humans.

  10. Cellular trafficking of thymosin beta-4 in HEPG2 cells following serum starvation.

    Directory of Open Access Journals (Sweden)

    Giuseppina Pichiri

    Full Text Available Thymosin beta-4 (Tβ4 is an ubiquitous multi-functional regenerative peptide, related to many critical biological processes, with a dynamic and flexible conformation which may influence its functions and its subcellular distribution. For these reasons, the intracellular localization and trafficking of Tβ4 is still not completely defined and is still under investigation in in vivo as well as in vitro studies. In the current study we used HepG2 cells, a human hepatoma cell line; cells growing in normal conditions with fetal bovine serum expressed high levels of Tβ4, restricted to the cytoplasm until 72 h. At 84 h, a diffuse Tβ4 cytoplasmic immunostaining shifted to a focal perinuclear and nuclear reactivity. In the absence of serum, nuclear reactivity was localized in small granules, evenly dispersed throughout the entire nuclear envelop, and was observed as earlier as at 48 h. Cytoplasmic immunostaining for Tβ4 in HepG2 cells under starvation appeared significantly lower at 48 h and decreased progressively at 72 and at 84 h. At these time points, the decrease in cytoplasmic staining was associated with a progressive increase in nuclear reactivity, suggesting a possible translocation of the peptide from the cytoplasm to the nuclear membrane. The normal immunocytochemical pattern was restored when culture cells submitted to starvation for 84 h received a new complete medium for 48 h. Mass spectrometry analysis, performed on the nuclear and cytosolic fractions of HepG2 growing with and without serum, showed that Tβ4 was detectable only in the cytosolic and not in the intranuclear fraction. These data suggest that Tβ4 is able to translocate from different cytoplasmic domains to the nuclear membrane and back, based on different stress conditions within the cell. The punctuate pattern of nuclear Tβ4 immunostaining associated with Tβ4 absence in the nucleoplasm suggest that this peptide might be localized in the nuclear pores, where it could

  11. Combined effects of added beta glucan and black tea in breads on starch functionality.

    Science.gov (United States)

    Jalil, Abbe Maleyki M; Edwards, Christine A; Combet, Emilie; Ibrahim, Muhammad; Garcia, Ada L

    2015-03-01

    Bread and tea are usually consumed separately, but there may be different food-matrix interactions and changes in starch characteristics when they are combined in bread. This study developed breads (white bread, WF; black tea, BT; beta glucan, βG; beta glucan plus black tea, βGBT) and determined their starch functionalities. Breads were developed using a standard baking recipe and determined their starch characteristics. There was no significant difference in starch hydrolysis between BT and WF but βGBT reduced early (10 min) starch hydrolysis compared with βG. The starch granules in βG and βGBT were elliptical and closely packed together. These results suggest that the addition of beta glucan and black tea to bread preserved the elliptical starch granules and lowered short-term starch hydrolysis.

  12. Regularization independent analysis of the origin of two loop contributions to N=1 Super Yang-Mills beta function

    Energy Technology Data Exchange (ETDEWEB)

    Fargnoli, H.G.; Sampaio, Marcos; Nemes, M.C. [Federal University of Minas Gerais, ICEx, Physics Department, P.O. Box 702, Belo Horizonte, MG (Brazil); Hiller, B. [Coimbra University, Faculty of Science and Technology, Physics Department, Center of Computational Physics, Coimbra (Portugal); Baeta Scarpelli, A.P. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Lapa, Sao Paulo (Brazil)

    2011-05-15

    We present both an ultraviolet and an infrared regularization independent analysis in a symmetry preserving framework for the N=1 Super Yang-Mills beta function to two loop order. We show explicitly that off-shell infrared divergences as well as the overall two loop ultraviolet divergence cancel out, whilst the beta function receives contributions of infrared modes. (orig.)

  13. Regularization independent analysis of the origin of two loop contributions to N=1 Super Yang-Mills beta function

    International Nuclear Information System (INIS)

    Fargnoli, H.G.; Sampaio, Marcos; Nemes, M.C.; Hiller, B.; Baeta Scarpelli, A.P.

    2011-01-01

    We present both an ultraviolet and an infrared regularization independent analysis in a symmetry preserving framework for the N=1 Super Yang-Mills beta function to two loop order. We show explicitly that off-shell infrared divergences as well as the overall two loop ultraviolet divergence cancel out, whilst the beta function receives contributions of infrared modes. (orig.)

  14. GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines.

    Science.gov (United States)

    Panka, David J; Cho, Daniel C; Atkins, Michael B; Mier, James W

    2008-01-11

    Glycogen synthase kinase-3beta (GSK-3beta) can participate in the induction of apoptosis or, alternatively, provide a survival signal that minimizes cellular injury. We previously demonstrated that the multikinase inhibitor sorafenib induces apoptosis in melanoma cell lines. In this report, we show that sorafenib activates GSK-3beta in multiple subcellular compartments and that this activation undermines the lethality of the drug. Pharmacologic inhibition and/or down-modulation of the kinase enhances sorafenib-induced apoptosis as determined by propidium iodide staining and by assessing the mitochondrial release of apoptosis-inducing factor and Smac/DIABLO. Conversely, the forced expression of a constitutively active form of the enzyme (GSK-3beta(S9A)) protects the cells from the apoptotic effects of the drug. This protective effect is associated with a marked increase in basal levels of Bcl-2, Bcl-x(L), and survivin and a diminution in the degree to which these anti-apoptotic proteins are down-modulated by sorafenib exposure. Sorafenib down-modulates the pro-apoptotic Bcl-2 family member Noxa in cells with high constitutive GSK-3beta activity. Pharmacologic inhibition of GSK-3beta prevents the disappearance of Noxa induced by sorafenib and enhances the down-modulation of Mcl-1. Down-modulation of Noxa largely eliminates the enhancing effect of GSK-3 inhibition on sorafenib-induced apoptosis. These data provide a strong rationale for the use of GSK-3beta inhibitors as adjuncts to sorafenib treatment and suggest that preservation of Noxa may contribute to their efficacy.

  15. Electromagnetically induced nuclear beta decay calculated by a Green's function method

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1984-01-01

    The transition probability for enhancement of forbidden nuclear beta decay by an applied plane-wave electromagnetic field is calculated in a nonrelativistic spinless approximation by a Green's function method. The calculation involves a stationary-phase approximation. The stationary phase points in the presence of an intense field are located in very different positions than they are in the field-free case. In order-of-magnitude terms, the results are completely consistent with an earlier, much more complete wave-function calculation which includes spin and relativistic effects. Both the present Green's function calculation and the earlier wave function calculation give electromagnetic contributions in first-forbidden nuclear beta decay matrix elements which are of order (R 0 /lambda-dash-bar/sub C/) 2 with respect to allowed decays, where R 0 is the nuclear radius and lambda-dash-bar/sub C/ is the electron Compton wavelength

  16. Splenic uptake of both technetium-99m diphosphonate and technetium-99m sulfur colloid in sickle cell beta degrees thalassemia

    International Nuclear Information System (INIS)

    Heck, L.L.; Brittin, G.M.

    1989-01-01

    A 19-year-old black woman with sickle cell beta degrees thalassemia had experienced more than 100 hospital admissions for sickle cell crisis and aseptic necrosis of both femoral heads. Her spleen was enlarged threefold and accumulated both radiocolloid and bone-seeking agent on two occasions, demonstrating an exception to the rule in sickle cell anemia that spleens that take up bone-seeking agents demonstrate functional asplenia. In the context of fever, left upper quadrant pain, and splenomegaly, the pattern of calcification in the patient's spleen as revealed in ultrasound and CT studies suggested possible abscess and led to unnecessary splenectomy. The nuclear medicine studies did not support this diagnosis. Nuclear medicine physicians should not be misled by splenic findings of sickle cell thalassemia (and possibly of other heterozygous sickle cell disorders) that differ from those of the more familiar homozygous sickle cell anemia

  17. Liver X receptor activation inhibits PC-3 prostate cancer cells via the beta-catenin pathway.

    Science.gov (United States)

    Youlin, Kuang; Li, Zhang; Weiyang, He; Jian, Kang; Siming, Liang; Xin, Gou

    2017-03-01

    Liver X receptors (LXRs) are nuclear receptors family of ligand-dependent transcription factors that play a crucial role in regulating cholesterol metabolism and inflammation. Recent studies show that LXR agonists exhibit anti-cancer activities in a variety of cancer cell lines including prostate. To further identify the potential mechanisms of LXRα activation on prostate cancer, we investigated the effect of LXR agonist T0901317 on PC3 prostate cancer cell and in which activity of beta-catenin pathway involved. Prostate cancer PC3 cells were transfected with LXR-a siRNA and treated with LXR activator T0901317. qRT-PCR and western blot were used to detect the LXR-a expression. beta-catenin, cyclin D1 and c-MYC were analyzed by western blot. Cell apoptosis was examined by flow cytometry and Cell proliferation was assessed by Cell Counting Kit-8 assay. Cell migration was detected by Transwell chambers. Data showed that T0901317 significantly inhibited PC3 cell proliferation as well as invasion and increased apoptosis in vitro. Furthermore, we found that LXRα activation induced the reduction of beta-catenin expression in PC3 cells, and this inhibitory effect could be totally abolished when cells were treated with LXRα. Meanwhile, the expression of beta-catenin target gene cyclin D1 and c-MYC were also decreased. This study provided additional evidence that LXR activation inhibited PC-3 prostate cancer cells via suppressing beta-catenin pathway. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Effects of ultrasound on Transforming Growth Factor-beta genes in bone cells

    Directory of Open Access Journals (Sweden)

    J Harle

    2005-12-01

    Full Text Available Therapeutic ultrasound (US is a widely used form of biophysical stimulation that is increasingly applied to promote fracture healing. Transforming growth factor-beta (TGF-beta, which is encoded by three related but different genes, is known to play a major part in bone growth and repair. However, the effects of US on the expression of the TGF-beta genes and the physical acoustic mechanisms involved in initiating changes in gene expression in vitro, are not yet known. The present study demonstrates that US had a differential effect on these TGF-beta isoforms in a human osteoblast cell line, with the highest dose eliciting the most pronounced up-regulation of both TGF-beta1 and TGF-beta3 at 1 hour after treatment and thereafter declining. In contrast, US had no effect on TGF-beta2 expression. Fluid streaming rather than thermal effects or cavitation was found to be the most likely explanation for the gene responses observed in vitro.

  19. Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells.

    Science.gov (United States)

    Elumalai, Suma; Karunakaran, Udayakumar; Lee, In Kyu; Moon, Jun Sung; Won, Kyu Chang

    2017-04-01

    We recently reported that cluster determinant 36 (CD36), a fatty acid transporter, plays a pivotal role in glucotoxicity-induced β-cell dysfunction. However, little is known about how glucotoxicity influences CD36 expression. Emerging evidence suggests that the small GTPase Rac1 is involved in the pathogenesis of beta cell dysfunction in type 2 diabetes (T2D). The primary objective of the current study was to determine the role of Rac1 in CD36 activation and its impact on β-cell dysfunction in diabetes mellitus. To address this question, we subjected INS-1 cells and human beta cells (1.1B4) to high glucose conditions (30mM) in the presence or absence of Rac1 inhibition either by NSC23766 (Rac1 GTPase inhibitor) or small interfering RNA. High glucose exposure in INS-1 and human beta cells (1.1b4) resulted in the activation of Rac1 and induced cell apoptosis. Rac1 activation mediates NADPH oxidase (NOX) activation leading to elevated ROS production in both cells. Activation of the Rac1-NOX complex by high glucose levels enhanced CD36 expression in INS-1 and human 1.1b4 beta cell membrane fractions. The inhibition of Rac1 by NSC23766 inhibited NADPH oxidase activity and ROS generation induced by high glucose concentrations in INS-1 & human 1.1b4 beta cells. Inhibition of Rac1-NOX complex activation by NSC23766 significantly reduced CD36 expression in INS-1 and human 1.1b4 beta cell membrane fractions. In addition, Rac1 inhibition by NSC23766 significantly reduced high glucose-induced mitochondrial dysfunction. Furthermore, NADPH oxidase inhibition by VAS2870 also attenuated high glucose-induced ROS generation and cell apoptosis. These results suggest that Rac1-NADPH oxidase dependent CD36 expression contributes to high glucose-induced beta cell dysfunction and cell death. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Functionalized Nanoporous Track Etched {beta}-PVDF Membrane Electrodes for Lead (II) Determination by Square Wave Anodic Stripping Voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Bessbousse, H [Laboratoire des Solides Irradies, CEA-CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Nadhakumar, I [School of Chemistry, University of Southampton, University Road, Southampton S017 1BJ (United Kingdom); Decker, M; Clochard, M -C; Wade, T L [Laboratoire des Solides Irradies, CEA-CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Barsbay, M [Hacettepe University, Department of Chemistry, Polymer Chemistry Division, 06800 Beytepe Ankara (Turkey)

    2012-09-15

    Track etched functionalized nanoporous {beta}-PVDF membrane electrodes, or functionalized membrane electrodes (FME), are thin-layer cells made from poly(acrylic acid) (PAA) functionalized nanoporous {beta}-poly(vinylidene fluoride) ({beta}-PVDF) membranes with thin Au films sputtered on each side as electrodes. The Au film is thin enough that the pores of the membranes are not completely covered. The PAA functionalization is specifically localised in the walls of the nanoporous {beta}-PVDF membrane by grafting. The PAA is a cation exchange polymer that adsorbs metal ions, such as Pb{sup 2+}, from aqueous solutions concentrating the ions into the membrane. After a time the FME is transferred to an electrochemical cell for analysis. A negative potential is applied to the Au film of the FME for a set time to reduce the adsorbed ions onto the Au film working electrode. The other metalized side of the FME functions as a counter electrode. Finally, square-wave anodic stripping voltammetry (SW-ASV) is performed on the FME to determine the metal ion concentrations in the original solution. The calibration curve of charge versus log concentration has a Temkin isotherm form. The FME membranes are 9 {mu}m thick and have 40 nm diameter pores with a density of 10{sup 10} pores/cm{sup 2}. This high pore density provides a large capacity for ion adsorption. Au ingress in the pores during sputtering forms a random array of nanoelectrodes. Like surface modified electrodes for adsorptive stripping voltammetry, the pre-concentration step for the FME is performed at open circuit. The zero current intercept of the calibration for Pb{sup 2+} is 0.13 ppb ({mu}g/L) and a detection limit of 0.050 ppb based on 3S/N from blank measurements. Voltammetry (CV) and chronoapmerometry (CA) were used to characterize the system. The apparent diffusion coefficient (D) for Pb{sup 2+} in the PAA functionalized pores was determined to be 2.44 x 10{sup -7} cm{sup 2}/s and the partition coefficient (p

  1. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Pavlikova, Nela, E-mail: nela.pavlikova@lf3.cuni.cz [Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic); Smetana, Pavel [Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic); Halada, Petr [Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague (Czech Republic); Kovar, Jan [Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic)

    2015-10-15

    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE. - Highlights: • Epidemiologic studies connect pollution with incidence of diabetes mellitus. • We explored the effect of DDT and DDE on protein expression in the NES2Y pancreatic beta cell line. • One month exposure to three sublethal concentrations of DDT and DDE was employed. • Expression of alpha-enolase, actin

  2. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells

    International Nuclear Information System (INIS)

    Pavlikova, Nela; Smetana, Pavel; Halada, Petr; Kovar, Jan

    2015-01-01

    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE. - Highlights: • Epidemiologic studies connect pollution with incidence of diabetes mellitus. • We explored the effect of DDT and DDE on protein expression in the NES2Y pancreatic beta cell line. • One month exposure to three sublethal concentrations of DDT and DDE was employed. • Expression of alpha-enolase, actin

  3. Expression profile of senescence-associated beta-galactosidase and activation of telomerase in human ovarian surface epithelial cells undergoing immortalization.

    Science.gov (United States)

    Litaker, J R; Pan, J; Cheung, Y; Zhang, D K; Liu, Y; Wong, S C; Wan, T S; Tsao, S W

    1998-11-01

    Senescence is a specific physiological stage of cells characterized by long population doubling time. It accounts for the inability of normal somatic cells to undergo indefinite cell division. As the number of population doublings increase, cell cycle regulatory mechanisms come into play and signal cells to exit the cell cycle and become senescent. Senescence has been implicated in the aging process and may function as a tumor suppressor mechanism in human cells. The ability to measure the degree of cellular senescence is important in understanding the biological processes regulating cell aging and immortalization. Senescent cells exhibit an enzyme termed senescence-associated histochemical staining. Cells immortalized by viral oncogenes often enter a stage of crisis at the early phase of immortalization. The cells at crisis have a long population doubling time. Cells at the crisis stage resemble senescent cells and the expression of SA- beta-Gal may be used to monitor the process of immortalization. In this study the expression profile of SA-beta-Gal was examined in human ovarian surface epithelial cells (HOSE 6-3) undergoing immortalization by the human papilloma viral oncogene E6 and E7 (HPV E6 and E7). Our results showed a low percentage (12.0%) of HOSE 6-3 cells expressing SA-beta-Gal activity at the pre-crisis stage. The percentage of HOSE 6-3 cells expressing SA-beta-Gal activity was highest (39.2%) at the crisis stage. When HOSE 6-3 cells achieved immortalized status there was a sharp decrease in cells (1. 3%) expressing SA-beta-Gal activity. In addition, an inverse relationship between the expression of SA-beta-Gal activity and telomerase activity was noted in cells undergoing immortalization. The results confirm that the SA-beta-Gal enzyme is a good marker for monitoring the population of cells undergoing senescence at different stages of immortalization and that telomerase activation is a characteristic feature of post-crisis cells.

  4. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  5. Anti-Proliferative and Apoptotic Effects of Beta-Ionone in Human Leukemia Cell Line K562

    Directory of Open Access Journals (Sweden)

    Zohreh Faezizadeh

    2016-06-01

    Full Text Available Background Beta-ionone is an aroma compound found in the Rosaceae family. Some evidence supported that beta-ionone has a great potential for cancer prevention. To date, the anti-proliferative and apoptotic effects of beta-ionone in human leukemia cell line K562 were not studied. Objectives Hence, we investigated whether beta-ionone could inhibit cell growth and induce apoptosis in the K562 cells. Materials and Methods In this experimental study, human leukemia cell line K562 was cultured and anti-proliferation effect of beta-ionone with different doses (25 - 400 µm at different times (24 - 96 hours on treated cells was evaluated by the MTT assay. To determine apoptosis rate, the Hoechst 33342 staining and flow cytometry was performed. Results The MTT assay showed that beta-ionone inhibited proliferation of K562 cells in a dose-dependent manner significantly (P = 0.0008. Moreover, the increased apoptotic rate was found after incubation of K562 cells with 200 µm beta-ionone. The Hoechst staining and flow cytometry analysis indicated that beta-ionone could increase apoptosis of K562 cells in a dose-dependent manner. Conclusions The results demonstrated that beta-ionone has anti-proliferative and apoptotic effects on K562 cells, and in the future may be used in the treatment of some leukemia sub-types.

  6. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebi, Masahide [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  7. Initial slope of human tumor cell survival curves: its modification by the oxic cell sensitizer beta-arabinofuranosyladenine

    International Nuclear Information System (INIS)

    Chavaudra, N.; Halimi, M.; Parmentier, C.; Gaillard, N.; Grinfeld, S.; Malaise, E.P.

    1989-01-01

    The initial slope of the survival curve, which is a characteristic of each tumor cell line, varies with the histological group of the tumor. It is one of the factors on which clinical radioresponsiveness depends. The DNA dependant DNA polymerase inhibitor beta-ara A acts as an oxic cell sensitizer. This study was carried out on human tumor cell lines to look for a correlation between the degree of radiosensitization induced by beta-ara A and the radiosensitivity of a given cell line. Six human tumor cell lines with different radiosensitivities were used (the survival rate at 2 Gy and D ranged from 20 to 73% and from 1.2 to 3.2 Gy, respectively). beta-ara A had a major toxic effect on all cell lines but this varied greatly from one cell line to another and was concentration dependant; this toxic effect was taken into account when calculating the surviving fractions. For all cell lines, beta-ara A acted as an oxic radiosensitizer and the radiosensitization was concentration dependant. Analysis of the survival curves of the 6 cell lines using the linear quadratic model showed that concentrations of beta-ara A between 200 and 1000 microM induced an increase in the linear component while the quadratic component underwent no systematic change. The sensitizing enhancement ratio (SER) measured from the Ds ratios, varied greatly from one line to another. For example, at a concentration of 500 microM, the extreme values of Ds ratios were 1.5 and 2.6. The radiosensitization is greater, the higher the radiosensitivity of the cell line studied during exponential growth. The results do not favor the use of beta-ara A in the treatment of intrinsically radioresistant human tumors

  8. Initial slope of human tumor cell survival curves: its modification by the oxic cell sensitizer beta-arabinofuranosyladenine

    Energy Technology Data Exchange (ETDEWEB)

    Chavaudra, N.; Halimi, M.; Parmentier, C.; Gaillard, N.; Grinfeld, S.; Malaise, E.P.

    1989-05-01

    The initial slope of the survival curve, which is a characteristic of each tumor cell line, varies with the histological group of the tumor. It is one of the factors on which clinical radioresponsiveness depends. The DNA dependant DNA polymerase inhibitor beta-ara A acts as an oxic cell sensitizer. This study was carried out on human tumor cell lines to look for a correlation between the degree of radiosensitization induced by beta-ara A and the radiosensitivity of a given cell line. Six human tumor cell lines with different radiosensitivities were used (the survival rate at 2 Gy and D ranged from 20 to 73% and from 1.2 to 3.2 Gy, respectively). beta-ara A had a major toxic effect on all cell lines but this varied greatly from one cell line to another and was concentration dependant; this toxic effect was taken into account when calculating the surviving fractions. For all cell lines, beta-ara A acted as an oxic radiosensitizer and the radiosensitization was concentration dependant. Analysis of the survival curves of the 6 cell lines using the linear quadratic model showed that concentrations of beta-ara A between 200 and 1000 microM induced an increase in the linear component while the quadratic component underwent no systematic change. The sensitizing enhancement ratio (SER) measured from the Ds ratios, varied greatly from one line to another. For example, at a concentration of 500 microM, the extreme values of Ds ratios were 1.5 and 2.6. The radiosensitization is greater, the higher the radiosensitivity of the cell line studied during exponential growth. The results do not favor the use of beta-ara A in the treatment of intrinsically radioresistant human tumors.

  9. Calculation of absorbed dose of anchorage-dependent cells from internal beta-rays irradiation

    International Nuclear Information System (INIS)

    Chen Jianwei; Huang Gang; Li Shijun

    2001-01-01

    Objective: To elicit the formula of internal dosimetry in anchorage-dependent cells by beta-emitting radionuclides from uniformly distributed volume sources. Methods: By means of the definition of absorbed dose and the MIRD (Medical International Radiation Dose) scheme the formula of internal dosimetry was reasonably deduced. Firstly, studying the systems of suspension culture cells. Then, taking account of the speciality of the systems of the anchorage-dependent cells and the directions of irradiation, the absorbed dose of anchorage -dependent cells was calculated by the accumulated radioactivity, beta-ray energy, and the volume of the cultured systems. Results: The formula of internal dosimetry of suspension culture cells and anchorage-dependent cells were achieved. At the same time, the formula of internal dosimetry of suspension culture cells was compared with that of MIRD and was confirmed accurate. Conclusion: The formula of internal dosimetry is concise, reliable and accurate

  10. Characterization of beta-adrenergic receptors through the replicative life span of IMR-90 cells

    International Nuclear Information System (INIS)

    Scarpace, P.J.

    1987-01-01

    Beta-adrenergic receptor number and receptor affinity for isoproterenol were assessed at various in vitro ages of the human diploid fibroblast cell line IMR-90. From population doubling level (PDL) 33 to 44, there was a positive correlation between beta-adrenergic receptor density and PDL. Beta-adrenergic receptors, assessed by Scatchard analysis of [ 125 I]-iodocyanopindolol (ICYP) binding, increased from 15 fmol/mg protein at PDL 33 to 36 fmol/mg protein at PDL 44. In contrast, from PDL 44 to 59, there was a negative correlation between beta-adrenergic receptor density and PDL. Receptor density declined to 12 fmol/mg protein at PDL 59. When the density of beta-adrenergic receptors was expressed as receptor per cell, the findings were similar. Receptor agonist affinity for isoproterenol was determined from Hill plots of [ 125 I]-ICYP competition with isoproterenol. There was no change in the dissociation constant for isoproterenol with in vitro age. In humans, serum norepinephrine concentrations increase with age. This increase in serum norepinephrine may be partially responsible for the decreased beta-adrenergic receptor-agonist affinity observed with age in human lymphocytes and rat heart and lung. The present findings are consistent with the hypothesis that the decreases in receptor agonist affinity in rat and man with age are secondary to increases in catecholamine concentrations

  11. Functions of phenylalanine residues within the beta-barrel stem of the anthrax toxin pore.

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2009-07-01

    Full Text Available A key step of anthrax toxin action involves the formation of a protein-translocating pore within the endosomal membrane by the Protective Antigen (PA moiety. Formation of this transmembrane pore by PA involves interaction of the seven 2beta2-2beta3 loops of the heptameric precursor to generate a 14-strand transmembrane beta barrel.We examined the effects on pore formation, protein translocation, and cytotoxicity, of mutating two phenylalanines, F313 and F314, that lie at the tip the beta barrel, and a third one, F324, that lies part way up the barrel.Our results show that the function of these phenylalanine residues is to mediate membrane insertion and formation of stable transmembrane channels. Unlike F427, a key luminal residue in the cap of the pore, F313, F314, and F324 do not directly affect protein translocation through the pore. Our findings add to our knowledge of structure-function relationships of a key virulence factor of the anthrax bacillus.

  12. The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates.

    Science.gov (United States)

    Tsonkova, Violeta Georgieva; Sand, Fredrik Wolfhagen; Wolf, Xenia Asbæk; Grunnet, Lars Groth; Kirstine Ringgaard, Anna; Ingvorsen, Camilla; Winkel, Louise; Kalisz, Mark; Dalgaard, Kevin; Bruun, Christine; Fels, Johannes Josef; Helgstrand, Charlotte; Hastrup, Sven; Öberg, Fredrik Kryh; Vernet, Erik; Sandrini, Michael Paolo Bastner; Shaw, Allan Christian; Jessen, Carsten; Grønborg, Mads; Hald, Jacob; Willenbrock, Hanni; Madsen, Dennis; Wernersson, Rasmus; Hansson, Lena; Jensen, Jan Nygaard; Plesner, Annette; Alanentalo, Tomas; Petersen, Maja Borup Kjær; Grapin-Botton, Anne; Honoré, Christian; Ahnfelt-Rønne, Jonas; Hecksher-Sørensen, Jacob; Ravassard, Philippe; Madsen, Ole D; Rescan, Claude; Frogne, Thomas

    2018-02-01

    To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins. Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate. By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation. ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active

  13. The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates

    Directory of Open Access Journals (Sweden)

    Violeta Georgieva Tsonkova

    2018-02-01

    Full Text Available Objective: To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. Methods: EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. Results: Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins.Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate.By screening of various proteins and peptides, we found Bombesin (BB receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation.ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. Conclusions: Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated

  14. Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function

    DEFF Research Database (Denmark)

    Mirastschijski, Ursula; Schnabel, Reinhild; Claes, Juliane

    2010-01-01

    applied topically to full-thickness skin excisional wounds in rats and its ability to inhibit the promotion of myofibroblast formation and function by the latent transforming-growth factor-beta1 (TGF-beta1). BB-94 delayed wound contraction, as well as all other associated aspects of wound healing examined......, including myofibroblast formation, stromal cell proliferation, blood vessel formation, and epithelial wound coverage. Interestingly, BB-94 dramatically increased the level of latent and active MMP-9. The increased levels of active MMP-9 may eventually overcome the ability of BB-94 to inhibit this MMP...... and may explain why wound contraction and other associated events of wound healing were only delayed and not completely inhibited. BB-94 was also found to inhibit the ability of latent TGF-beta1 to promote the formation and function of myofibroblasts. These results suggest that BB-94 could delay wound...

  15. Relationship Between Beta Cell Dysfunction and Severity of Disease Among Critically Ill Children: A STROBE-Compliant Prospective Observational Study.

    Science.gov (United States)

    Liu, Ping-Ping; Lu, Xiu-Lan; Xiao, Zheng-Hui; Qiu, Jun; Zhu, Yi-Min

    2016-05-01

    Although beta cell dysfunction has been proved to predict prognosis among humans and animals, its prediction on severity of disease remains unclear among children. The present study was aimed to examine the relationship between beta cell dysfunction and severity of disease among critically ill children.This prospective study included 1146 critically ill children, who were admitted to Pediatric Intensive Care Unit (PICU) of Hunan Children's Hospital from November 2011 to August 2013. Information on characteristics, laboratory tests, and prognostic outcomes was collected. Homeostasis model assessment (HOMA)-β, evaluating beta cell function, was used to divide all participants into 4 groups: HOMA-β = 100% (group I, n = 339), 80% ≤ HOMA-β multiple organ dysfunction syndrome (MODS), mechanical ventilation (MV) and mortality. Logistic regression analysis was used to evaluate the risk of developing poor outcomes among patients in different HOMA-β groups, with group I as the reference group.Among 1146 children, incidence of HOMA-β decrement of HOMA-β (P < 0.01). C-reactive protein and procalcitonin levels, rather than white blood cell, were significantly different among 4 groups (P < 0.01). In addition, the worst SOFA score and the worst PRISMIII score increased with declined HOMA-β. For example, the worst SOFA score in group I, II, III, and IV was 1.55 ± 1.85, 1.71 ± 1.93, 1.92 ± 1.63, and 2.18 ± 1.77, respectively. Furthermore, patients with declined HOMA-β had higher risk of developing septic shock, MODS, MV, and mortality, even after adjusting age, gender, myocardial injury, and lung injury. For instance, compared with group I, the multivariate-adjusted odds ratio (95% confidence interval) for developing septic shock was 2.17 (0.59, 8.02), 2.94 (2.18, 6.46), and 2.76 (1.18, 6.46) among patients in group II, III, and IV, respectively.Beta cell dysfunction reflected the severity of disease among critically ill children

  16. Effect of beta-blockers on exacerbation rate and lung function in chronic obstructive pulmonary disease (COPD).

    Science.gov (United States)

    Duffy, Sean; Marron, Robert; Voelker, Helen; Albert, Richard; Connett, John; Bailey, William; Casaburi, Richard; Cooper, J Allen; Curtis, Jeffrey L; Dransfield, Mark; Han, MeiLan K; Make, Barry; Marchetti, Nathaniel; Martinez, Fernando; Lazarus, Stephen; Niewoehner, Dennis; Scanlon, Paul D; Sciurba, Frank; Scharf, Steven; Reed, Robert M; Washko, George; Woodruff, Prescott; McEvoy, Charlene; Aaron, Shawn; Sin, Don; Criner, Gerard J

    2017-06-19

    Beta-blockers are commonly prescribed for patients with cardiovascular disease. Providers have been wary of treating chronic obstructive pulmonary disease (COPD) patients with beta-blockers due to concern for bronchospasm, but retrospective studies have shown that cardio-selective beta-blockers are safe in COPD and possibly beneficial. However, these benefits may reflect symptom improvements due to the cardiac effects of the medication. The purpose of this study is to evaluate associations between beta-blocker use and both exacerbation rates and longitudinal measures of lung function in two well-characterized COPD cohorts. We retrospectively analyzed 1219 participants with over 180 days of follow up from the STATCOPE trial, which excluded most cardiac comorbidities, and from the placebo arm of the MACRO trial. Primary endpoints were exacerbation rates per person-year and change in spirometry over time in association with beta blocker use. Overall 13.9% (170/1219) of participants reported taking beta-blockers at enrollment. We found no statistically significant differences in exacerbation rates with respect to beta-blocker use regardless of the prevalence of cardiac comorbidities. In the MACRO cohort, patients taking beta-blockers had an exacerbation rate of 1.72/person-year versus a rate of 1.71/person-year in patients not taking beta-blockers. In the STATCOPE cohort, patients taking beta-blockers had an exacerbation rate of 1.14/person-year. Patients without beta-blockers had an exacerbation rate of 1.34/person-year. We found no detrimental effect of beta blockers with respect to change in lung function over time. We found no evidence that beta-blocker use was unsafe or associated with worse pulmonary outcomes in study participants with moderate to severe COPD.

  17. Successful application of preimplantation genetic diagnosis for beta-thalassaemia and sickle cell anaemia in Italy.

    Science.gov (United States)

    Chamayou, S; Alecci, C; Ragolia, C; Giambona, A; Siciliano, S; Maggio, A; Fichera, M; Guglielmino, A

    2002-05-01

    In Italy, the autosomal recessive diseases beta-thalassaemia and sickle cell anaemia are so widespread that in some regions they can be defined as 'social diseases'. In this study, nine clinical applications of preimplantation genetic diagnosis (PGD) were performed for beta-thalassaemia and sickle cell anaemia on seven Sicilian couples and carriers of beta-globin gene mutations. The studied mutations were: Cd39, HbS, IVS1 nt1, IVS1 nt6 and IVS1 nt110. ICSI was performed with partner's sperm on 131 out of 147 retrieved oocytes, and this resulted in 72 zygotes; 32 embryos were successfully biopsied on day 3. The biopsied blastomeres were lysed and the beta-globin alleles amplified by nested PCR. The mutation diagnosis was performed by restriction enzyme digestion and reverse dot-blot. The amplification efficacy was 97.2%. The genotype study of non-transferred and surplus embryos showed that the allele drop-out rate was 8.6%. Seventeen embryos were transferred in utero on day 4. All couples received an embryo transfer; of the four pregnancies obtained, three resulted in live births and one miscarried at 11 weeks. Prenatal diagnosis at the 11th week and miscarriage material analysis confirmed the PGD results. These studies represent the first successful application of PGD for beta-thalassaemia and sickle cell anaemia in Italy.

  18. Changes in the reproductive function and developmental phenotypes in mice following intramuscular injection of an activin betaA-expressing plasmid

    Directory of Open Access Journals (Sweden)

    Mayo Kelly E

    2008-12-01

    Full Text Available Abstract Background The TGF-beta family protein activin has numerous reported activities with some uncertainty in the reproductive axis and development. The precise roles of activin in in vivo system were investigated using a transient gain of function model. Methods To this end, an expression plasmid, pCMV-rAct, with the activin betaA cDNA fused to the cytomegalovirus promoter, was introduced into muscle of the female adult mice by direct injection. Results Activin betaA mRNA was detected in the muscle by RT-PCR and subsequent Southern blot analysis. Activin betaA was also detected, and western blot analysis revealed a relatively high level of serum activin with correspondingly increased FSH. In the pCMV-rAct-injected female mice, estrus stage within the estrous cycle was extended. Moreover, increased numbers of corpora lutea and a thickened granulosa cell layer with a small antrum in tertiary follicles within the ovary were observed. When injected female mice were mated with males of proven fertility, a subset of embryos died in utero, and most of those that survived exhibited increased body weight. Conclusion Taken together, our data reveal that activin betaA can directly influence the estrous cycle, an integral part of the reproduction in female mice and activin betaA can also influence the embryo development as an endocrine fashion.

  19. 11beta-hydroxysteroid dehydrogenase type 2 expression in the newly formed Leydig cells after ethane dimethanesulphonate treatment of adult rats.

    Directory of Open Access Journals (Sweden)

    Katerina Georgieva

    2008-01-01

    Full Text Available The enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD catalyzes the reversible conversion of physiologically active corticosterone to the biologically inert 11beta-dehydrocorticosterone in rat testis and protect the Leydig cells (LCs against the suppressive effect of glucocorticoids. The developmental pathway of the adult LCs population is accompanied with an increase in the 11beta-HDS activity. Thus, 11beta-HDS together with its role in controlling the toxicological effect of glucocorticoids on LCs can be used as a marker for their functional maturity. Ethane 1,2-dimethanesulphonate (EDS treatment of adult rats become unique appropriate model, which enable to answer many questions related to the differentiation of adult LCs in the prepubertal rat testis. The aim of the present study was to investigate the specific changes in the 11beta-HDS type 2 immunoreactivity in tandem with the expression of androgen receptor (AR during renewal of LCs population after EDS treatment. In the present study, we observed the first appearance of immunostaining for 11beta-HSD2 in new LCs population on day 14 after EDS administration when the progenitor LCs were detected. Our immunohistochemical analysis revealed progressive increases in the 11beta-HSD2 reaction intensity on 21 days after EDS treatment and reached a maximum on day 35. AR immunoexpression was found in new LCs on day 14 and 21 after EDS injection with an increasing curve of intensity. The most prominent AR immunostaining in new population LCs was evident by 35 days after EDS and that coincided with the increased number of LCs and restoration of adult LCs population. Our results demonstrated similar pattern of immunoreactivity for 11beta-HSD2 and AR in new LCs population after EDS treatment and suggested that the changes in 11beta-HSD2 expression can be used for evaluation of adult LCs differentiation in rat testis.

  20. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    Science.gov (United States)

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes. © 2016 Elsevier Inc. All rights reserved.

  1. Oxidative Metabolism Genes Are Not Responsive to Oxidative Stress in Rodent Beta Cell Lines

    Directory of Open Access Journals (Sweden)

    Faer Morrison

    2012-01-01

    Full Text Available Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes. Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study, we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell line. We exposed INS-1 rodent beta cells to low (5.6 mmol/L, ambient (11 mmol/L, and high (28 mmol/L glucose conditions for 48 hours. Increases in oxidative stress were measured using the fluorescent probe dihydrorhodamine 123. We then measured the expression levels of a panel of 90 oxidative metabolism genes by real-time PCR. Elevated reactive oxygen species (ROS production was evident in INS-1 cells after 48 hours (P<0.05. TLDA analysis revealed a significant (P<0.05 upregulation of 16 of the 90 genes under hyperglycemic conditions, although these expression differences did not reflect differences in ROS. We conclude that although altered glycemia may influence the expression of some oxidative metabolism genes, this effect is probably not mediated by increased ROS production. The alterations to the expression of oxidative metabolism genes previously observed in human diabetic skeletal muscle do not appear to be mirrored in rodent pancreatic beta cells.

  2. Use of antibodies against the variable regions of the T-cell receptor alpha/beta heterodimer for the study of cutaneous T-cell lymphomas.

    Science.gov (United States)

    Ralfkiaer, E; Wollf-Sneedorff, A; Vejlsgaard, G L

    1991-11-01

    Recent studies have suggested that antibodies against the variable (V) regions of the T-cell antigen receptor (TCR) may be used as markers for clonality and malignancy in T-cell infiltrates. We have investigated this by examining biopsy samples from 45 patients with cutaneous T-cell lymphomas (CTCL) for reactivity with seven antibodies against different V-gene families on the TCR alpha/beta heterodimer, i.e. ICI (V beta 5a), W112 (V beta 5b), OT145 (V beta 6a), 16G8 (V beta 8a), S511 (V beta 12a), F1 (V alpha 2a) and LC4 (alpha beta Va). Serial biopsies were available in 13 patients and a total of 62 samples were studied. The neoplastic cells in five cases were positive for either V beta 5 (one case), V beta 6 (one case), V beta 8 (two cases) or V beta 12 (one case). In the remaining 40 cases, no staining was seen of the neoplastic cells. These findings indicate that while antibodies against the TCR V-regions may be used as clonotypic markers for certain T-cell neoplasms, there is as yet not a sufficient number of anti-TCR V-region antibodies available for the routine diagnosis of these conditions.

  3. Zero of the discrete beta function in SU(3) lattice gauge theory with color sextet fermions

    International Nuclear Information System (INIS)

    Shamir, Yigal; Svetitsky, Benjamin; DeGrand, Thomas

    2008-01-01

    We have carried out a Schrodinger functional calculation for the SU(3) lattice gauge theory with two flavors of Wilson fermions in the sextet representation of the gauge group. We find that the discrete beta function, which governs the change in the running coupling under a discrete change of spatial scale, changes sign when the Schrodinger functional renormalized coupling is in the neighborhood of g 2 =2.0. The simplest explanation is that the theory has an infrared-attractive fixed point, but more complicated possibilities are allowed by the data. While we compare rescalings by factors of 2 and 4/3, we work at a single lattice spacing.

  4. Direct interaction of beta-amyloid with Na,K-ATPase as a putative regulator of the enzyme function

    Science.gov (United States)

    Petrushanko, Irina Yu.; Mitkevich, Vladimir A.; Anashkina, Anastasia A.; Adzhubei, Alexei A.; Burnysheva, Ksenia M.; Lakunina, Valentina A.; Kamanina, Yulia V.; Dergousova, Elena A.; Lopina, Olga D.; Ogunshola, Omolara O.; Bogdanova, Anna Yu.; Makarov, Alexander A.

    2016-06-01

    By maintaining the Na+ and K+ transmembrane gradient mammalian Na,K-ATPase acts as a key regulator of neuronal electrotonic properties. Na,K-ATPase has an important role in synaptic transmission and memory formation. Accumulation of beta-amyloid (Aβ) at the early stages of Alzheimer’s disease is accompanied by reduction of Na,K-ATPase functional activity. The molecular mechanism behind this phenomenon is not known. Here we show that the monomeric Aβ(1-42) forms a tight (Kd of 3 μM), enthalpy-driven equimolar complex with α1β1 Na,K-ATPase. The complex formation results in dose-dependent inhibition of the enzyme hydrolytic activity. The binding site of Aβ(1-42) is localized in the “gap” between the alpha- and beta-subunits of Na,K-ATPase, disrupting the enzyme functionality by preventing the subunits from shifting towards each other. Interaction of Na,K-ATPase with exogenous Aβ(1-42) leads to a pronounced decrease of the enzyme transport and hydrolytic activity and Src-kinase activation in neuroblastoma cells SH-SY5Y. This interaction allows regulation of Na,K-ATPase activity by short-term increase of the Aβ(1-42) level. However prolonged increase of Aβ(1-42) level under pathological conditions could lead to chronical inhibition of Na,K-ATPase and disruption of neuronal function. Taken together, our data suggest the role of beta-amyloid as a novel physiological regulator of Na,K-ATPase.

  5. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype

    DEFF Research Database (Denmark)

    Breau, Marie A; Pietri, Thomas; Eder, Olivier

    2006-01-01

    The enteric nervous system arises mainly from vagal and sacral neural crest cells that colonise the gut between 9.5 and 14 days of development in mice. Using the Cre-LoxP system, we removed beta1 integrins in the neural crest cells when they emerge from the neural tube. beta1-null enteric neural...

  6. A standardized method for in vivo mouse pancreas imaging and semiquantitative beta cell mass measurement by dual isotope SPECT

    NARCIS (Netherlands)

    Mathijs, I.; Xavier, C.; Peleman, C.; Caveliers, V.; Brom, M.; Gotthardt, M.; Herrera, P.L.; Lahoutte, T.; Bouwens, L.

    2015-01-01

    PURPOSE: In order to evaluate future beta cell tracers in vivo, we aimed to develop a standardized in vivo method allowing semiquantitative measurement of a prospective beta cell tracer within the pancreas. PROCEDURES: 2-[(123)I]Iodo-L-phenylalanine ([(123)I]IPA) and

  7. Cell cycle phase dependent role of DNA polymerase beta in DNA repair and survival after ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Begg, A.C.; Vens, C.

    2008-01-01

    PURPOSE: The purpose of the present study was to determine the role of DNA polymerase beta in repair and response after ionizing radiation in different phases of the cell cycle. METHODS AND MATERIALS: Synchronized cells deficient and proficient in DNA polymerase beta were irradiated in different

  8. Apc bridges Wnt/{beta}-catenin and BMP signaling during osteoblast differentiation of KS483 cells

    Energy Technology Data Exchange (ETDEWEB)

    Miclea, Razvan L., E-mail: R.L.Miclea@lumc.nl [Department of Pediatrics, Leiden University Medical Centre (LUMC), Leiden (Netherlands); Horst, Geertje van der, E-mail: G.van_der_Horst@lumc.nl [Department of Urology, LUMC, Leiden (Netherlands); Robanus-Maandag, Els C., E-mail: E.C.Robanus@lumc.nl [Department of Human Genetics, LUMC, Leiden (Netherlands); Loewik, Clemens W.G.M., E-mail: C.W.G.M.Lowik@lumc.nl [Department of Endocrinology and Metabolic Diseases, LUMC, Leiden (Netherlands); Oostdijk, Wilma, E-mail: W.Oostdijk@lumc.nl [Department of Pediatrics, Leiden University Medical Centre (LUMC), Leiden (Netherlands); Wit, Jan M., E-mail: J.M.Wit@lumc.nl [Department of Pediatrics, Leiden University Medical Centre (LUMC), Leiden (Netherlands); Karperien, Marcel, E-mail: H.B.J.Karperien@tnw.utwente.nl [MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Zuidhorst Room ZH 144, Drienerlolaan 5, 7522 NB Enschede (Netherlands)

    2011-06-10

    The canonical Wnt signaling pathway influences the differentiation of mesenchymal cell lineages in a quantitative and qualitative fashion depending on the dose of {beta}-catenin signaling. Adenomatous polyposis coli (Apc) is the critical intracellular regulator of {beta}-catenin turnover. To better understand the molecular mechanisms underlying the role of Apc in regulating the differentiation capacity of skeletal progenitor cells, we have knocked down Apc in the murine mesenchymal stem cell-like KS483 cells by stable expression of Apc-specific small interfering RNA. In routine culture, KSFrt-Apc{sub si} cells displayed a mesenchymal-like spindle shape morphology, exhibited markedly decreased proliferation and increased apoptosis. Apc knockdown resulted in upregulation of the Wnt/{beta}-catenin and the BMP/Smad signaling pathways, but osteogenic differentiation was completely inhibited. This effect could be rescued by adding high concentrations of BMP-7 to the differentiation medium. Furthermore, KSFrt-Apc{sub si} cells showed no potential to differentiate into chondrocytes or adipocytes. These results demonstrate that Apc is essential for the proliferation, survival and differentiation of KS483 cells. Apc knockdown blocks the osteogenic differentiation of skeletal progenitor cells, a process that can be overruled by high BMP signaling.

  9. Rapid effects of 17beta-estradiol on epithelial TRPV6 Ca2+ channel in human T84 colonic cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2008-11-01

    The control of calcium homeostasis is essential for cell survival and is of crucial importance for several physiological functions. The discovery of the epithelial calcium channel Transient Receptor Potential Vaniloid (TRPV6) in intestine has uncovered important Ca(2+) absorptive pathways involved in the regulation of whole body Ca(2+) homeostasis. The role of steroid hormone 17beta-estradiol (E(2)), in [Ca(2+)](i) regulation involving TRPV6 has been only limited at the protein expression levels in over-expressing heterologous systems. In the present study, using a combination of calcium-imaging, whole-cell patch-clamp techniques and siRNA technology to specifically knockdown TRPV6 protein expression, we were able to (i) show that TRPV6 is natively, rather than exogenously, expressed at mRNA and protein levels in human T84 colonic cells, (ii) characterize functional TRPV6 channels and (iii) demonstrate, for the first time, the rapid effects of E(2) in [Ca(2+)](i) regulation involving directly TRPV6 channels in T84 cells. Treatment with E(2) rapidly (<5 min) enhanced [Ca(2+)](i) and this increase was partially but significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV6 protein expression. These results indicate that when cells are stimulated by E(2), Ca(2+) enters the cell through TRPV6 channels. TRPV6 channels in T84 cells contribute to the Ca(2+) entry\\/signalling pathway that is sensitive to 17beta-estradiol.

  10. Time evolution of coupled-bunch modes from beta function variation in storage rings

    Directory of Open Access Journals (Sweden)

    Kai Meng Hock

    2007-08-01

    Full Text Available We present an analytical and numerical study of the equations of motion for bunches coupled by transverse wakefields. We base our study on a recent lattice design for the damping rings in the baseline configuration of the International Linear Collider. Using the macroparticle model, and assuming resistive wall wakefield coupling, we present numerical results on the time evolution of the multibunch modes. Decay modes display growth after initial decay, and mode amplitudes exhibit high-frequency oscillations. These phenomena are not expected if the beta function is assumed to have a constant, averaged value. We show analytically that they can come from coupling between modes caused by variation of the beta function in a real lattice. The effect is shown to be comparable to the effect of a nonuniform fill pattern and significantly larger than that of the higher-order mode wakefield localized in the rf cavities. Turning to the case of constant beta function, we develop a more complete treatment of the equations of motion. We derive general formulas for the bunch trajectories, and show that such formulas can only be valid in the limit of small wakefield coupling.

  11. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee-Jung [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Chung, Tae-Wook; Kim, Cheorl-Ho [Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do (Korea, Republic of); Jeong, Han-Sol; Joo, Myungsoo [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Youn, BuHyun, E-mail: bhyoun72@pusan.ac.kr [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Ha, Ki-Tae, E-mail: hagis@pusan.ac.kr [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  12. Characteristics of the Na/beta-alumina/Na cell as a sodium vapor pressure sensor

    International Nuclear Information System (INIS)

    Takikawa, O.; Imai, A.; Harata, M.

    1982-01-01

    The EMF and voltage-current characteristics for a galvanic cell with the configuration Na vapor (P 1 )/sodium beta-alumina/Na vapor (P 2 ) were studied. It was verified that the EMF followed the Nernst relation over a wide pressure range. For example, when P 1 = 2 x 10 -2 mm Hg and beta-alumina temperature = 340 0 C, the measured EMF agreed with the calculated value in P 2 range from 10 -5 to 10 -2 mm Hg. At lower pressure range, the measured EMF showed a negative deviation. Coexisting argon gas did not influence the cell EMF characteristic. In an atmosphere containing oxygen, the measured EMF was very high at first. Then it decreased and finally approached a value which agreed with the Nernst equation after several hours. At low beta-alumina temperatures, current saturation was observed in the voltage versus current relation with the anode on the P 2 side. Although the sodium pressure could be determined from saturating current measurement, the measurable pressure range was narrower than that for EMF measurement. At high beta-alumina temperature, current saturation was not clear. Values of 6 x 10 -6 (Ω cm) -1 for the electron conductivity and 6 x 10 -10 (Ω cm) -1 for the hole conductivity at 340 0 C were obtained for beta-alumina from the voltage-current characteristics at low sodium pressure. (Auth.)

  13. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cleasby, Mark E. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Millard, Susan; Leong, Gary M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cooney, Gregory J. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Muscat, George E.O., E-mail: g.muscat@imb.uq.edu.au [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia)

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  14. Timing of Ca2+ response in pancreatic beta-cells is related to mitochondrial mass

    DEFF Research Database (Denmark)

    Gustavsson, N; Abedi, G; Larsson-Nyrén, G

    2006-01-01

    timing are disturbed in beta-cells from hyperglycemic mice and one of the causes is likely to be an altered mitochondrial metabolism. Mitochondria play a key role in the control of nutrient-induced insulin secretion. Here, we used confocal microscopy with the fluorescent probe MitoTracker Red CMXRos...

  15. Beta cell imaging - a key tool in optimized diabetes prevention and treatment

    NARCIS (Netherlands)

    Gotthardt, M.; Eizirik, D.L.; Cnop, M.; Brom, M.

    2014-01-01

    The prevalence of diabetes is 382 million worldwide, and is expected to rise to 592 million in 2035 (http://www.idf.org/diabetesatlas); 2.5-15\\% of national annual healthcare budgets are related to diabetes care, potentially increasing to 40\\% in high-prevalence countries. Beta cell dysfunction and

  16. Growth hormone is a growth factor for the differentiated pancreatic beta-cell

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Billestrup, N

    1989-01-01

    The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin...

  17. Cytokines and beta-cell biology: from concept to clinical translation

    DEFF Research Database (Denmark)

    Donath, M.Y.; Storling, J.; Berchtold, L.A.

    2007-01-01

    The tale of cytokines and the beta-cell is a long story, starting with in vitro discovery in 1984, evolving via descriptive and phenomenological studies to detailed mapping of the signalling pathways, gene- and protein expression patterns, molecular and biochemical effector mechanisms to in vivo...

  18. Imaging of beta-Cell Mass and Insulitis in Insulin-Dependent (Type 1) Diabetes Mellitus

    NARCIS (Netherlands)

    Di Gialleonardo, Valentina; de Vries, Erik F. J.; Di Girolamo, Marco; Quintero, Ana M.; Dierckx, Rudi A. J. O.; Signore, Alberto

    2012-01-01

    Insulin-dependent (type 1) diabetes mellitus is a metabolic disease with a complex multifactorial etiology and a poorly understood pathogenesis. Genetic and environmental factors cause an autoimmune reaction against pancreatic beta-cells, called insulitis, confirmed in pancreatic samples obtained at

  19. Transforming growth factor-beta. En potent multifunktionel voekstfaktor for normale og maligne celler

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Spang-Thomsen, M

    1992-01-01

    The polypeptide growth factor transforming growth factor-beta (TGF-beta) is a multifunctional regulator of basic cellular functions: proliferation, differentiation, cell adhesion and interactions with the extracellular matrix. TGF-beta is part of a regulatory network of which our knowledge is sti...... possibilities for therapeutic intervention in the physiological and patophysiological functions of TGF-beta. Udgivelsesdato: 1992-Nov-30...

  20. Beta thalassaemia traits in Nigerian patients with sickle cell anaemia ...

    African Journals Online (AJOL)

    Journal of Medicine and Biomedical Research ... These three patients (1.2%) were found to have positive co-inheritance of thalassaemia trait and sickle cell anaemia. The erythrocyte indices were all reduced in these selected families except for one family whose mean cell haemoglobin concentration was within normal ...

  1. CCAAT/enhancer binding protein {beta} deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shaikh M., E-mail: rmizanoor@hotmail.com [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Miyazaki, Makoto [Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Friedman, Jacob E. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to prevent LXR

  2. Infusion of Autologous Retrodifferentiated Stem Cells into Patients with Beta-Thalassemia

    Directory of Open Access Journals (Sweden)

    Ilham Saleh Abuljadayel

    2006-01-01

    Full Text Available Beta-thalassemia is a genetic, red blood cell disorder affecting the beta-globin chain of the adult hemoglobin gene. This results in excess accumulation of unpaired alpha-chain gene products leading to reduced red blood cell life span and the development of severe anemia. Current treatment of this disease involves regular blood transfusion and adjunct chelation therapy to lower blood transfusion–induced iron overload. Fetal hemoglobin switching agents have been proposed to treat genetic blood disorders, such as sickle cell anemia and beta-thalassemia, in an effort to compensate for the dysfunctional form of the beta-globin chain in adult hemoglobin. The rationale behind this approach is to pair the excess normal alpha-globin chain with the alternative fetal gamma-chain to promote red blood cell survival and ameliorate the anemia. Reprogramming of differentiation in intact, mature, adult white blood cells in response to inclusion of monoclonal antibody CR3/43 has been described. This form of retrograde development has been termed “retrodifferentiation”, with the ability to re-express a variety of stem cell markers in a heterogeneous population of white blood cells. This form of reprogramming, or reontogeny, to a more pluripotent stem cell state ought to recapitulate early hematopoiesis and facilitate expression of a fetal and/or adult program of hemoglobin synthesis or regeneration on infusion and subsequent redifferentiation. Herein, the outcome of infusion of autologous retrodifferentiated stem cells (RSC into 21 patients with beta-thalassemia is described. Over 6 months, Infusion of 3-h autologous RSC subjected to hematopoietic-conducive conditions into patients with beta-thalassemia reduced mean blood transfusion requirement, increased mean fetal hemoglobin synthesis, and significantly lowered mean serum ferritin. This was always accompanied by an increase in mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH, and mean

  3. Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/beta-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Desheng Lu

    Full Text Available BACKGROUND: Aberrant activation of Wnt/beta-catenin signaling promotes the development of several cancers. It has been demonstrated that the Wnt signaling pathway is activated in chronic lymphocytic leukemia (CLL cells, and that uncontrolled Wnt/beta-catenin signaling may contribute to the defect in apoptosis that characterizes this malignancy. Thus, the Wnt signaling pathway is an attractive candidate for developing targeted therapies for CLL. METHODOLOGY/PRINCIPAL FINDINGS: The diuretic agent ethacrynic acid (EA was identified as a Wnt inhibitor using a cell-based Wnt reporter assay. In vitro assays further confirmed the inhibitory effect of EA on Wnt/beta-catenin signaling. Cell viability assays showed that EA selectively induced cell death in primary CLL cells. Exposure of CLL cells to EA decreased the expression of Wnt/beta-catenin target genes, including LEF-1, cyclin D1 and fibronectin. Immune co-precipitation experiments demonstrated that EA could directly bind to LEF-1 protein and destabilize the LEF-1/beta-catenin complex. N-acetyl-L-cysteine (NAC, which can react with the alpha, beta-unsaturated ketone in EA, but not other anti-oxidants, prevented the drug's inhibition of Wnt/beta-catenin activation and its ability to induce apoptosis in CLL cells. CONCLUSIONS/SIGNIFICANCE: Our studies indicate that EA selectively suppresses CLL survival due to inhibition of Wnt/beta-catenin signaling. Antagonizing Wnt signaling in CLL with EA or related drugs may represent an effective treatment of this disease.

  4. The zinc transporter ZNT3 co-localizes with insulin in INS-1E pancreatic beta cells and influences cell survival, insulin secretion capacity, and ZNT8 expression

    DEFF Research Database (Denmark)

    Smidt, Kamille; Larsen, Agnete; Brønden, Andreas

    2016-01-01

    Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage in the granu......Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage...

  5. Research of TGF-beta1 Inducing Lung Adencarcinoma PC9 Cells to Mesenchymal Cells Transition

    Directory of Open Access Journals (Sweden)

    Xiaofeng CHEN

    2010-01-01

    Full Text Available Background and objective It has been proven that epithelial-mesenchymal transition (EMT not only correlated with embryonic development but also could promote tumor invasion and metastasis. Transforming growth factor beta-1 (TGF-β1 has been identified as the main inducer of tumor EMT. The aim of this study was to investigate the effects of TGF-β1 on EMT and PI3K/AKT signaling pathway in lung adencarcinoma PC9 cells. Methods Cultured PC9 cells were treated with different concentrations of TGF-β1 for 48 h. The morphological changes were observed under phase-contrast microscopy; EMT relative marker protein changes were assessed by Western blot and immunoflurescence staining. In addition, the expression of AKT and P-AKT were also measured by Western blot. Results The data showed that TGF-β1 could induce PC9 morphological alteration from epithelial to mesenchymal and upregulate the expression of mesenchymal maker protein Fibronectin. Obviously, the expression of P-AKT was downregulated by TGF-β1 treatment for 48 h. Conclusion TGF-β1 might induce EMT of PC9 cells , accompanied by the changes of PI3K/AKT signaling pathway.

  6. Sickle Cell Beta-Plus Thalassemia with Subcapsular Hematoma of the Spleen

    Directory of Open Access Journals (Sweden)

    Suyash Dahal

    2017-01-01

    Full Text Available While splenic complications like hypersplenism, sequestration crisis, and infarction are commonly reported in sickle cell variants like sickle cell beta-plus thalassemia, splenic rupture with hematoma is rare. We present a case of a 32-year-old young male who presented with dull left upper quadrant pain who was found to have multiple subcapsular splenic lacerations and hematoma on abdominal imaging. Hemoglobin electrophoresis confirmed sickle cell beta-plus thalassemia in the patient. There was no history of trauma, and rest of the workup for possible cause of spontaneous rupture of spleen was negative. With the patient refusing splenectomy, he was managed conservatively. Clinicians need to be aware of this rare complication of sickle cell variants.

  7. Trans fatty acids increase nitric oxide levels and pancreatic beta-cell necrosis in rats

    Directory of Open Access Journals (Sweden)

    Kusmiyati Tjahjono DK

    2013-04-01

    Full Text Available Background The prevalence of diabetes in Indonesia is increasing due to various factors, including life style changes such as trans fatty acid (TFA intake. High TFA intake is known to be related to blood lipid profile changes resulting in cardiovascular disorders. This study was to identify the effect of TFA on nitric oxide (NO production and on necrosis of pancreatic beta cells. Methods A study of randomized pre-test post–test design with control group. Thirty Sprague Dawley rats were divided into 3 groups, i.e. group K (control, group P1 receiving a diet with 5% TFA, and P2 receiving 10% TFA. The intervention was performed for 8 weeks. NO level and pancreatic beta-cell necrosis were analyzed using Pearson’s chi square test. Results After 4 weeks of treatment there was no change in NO levels in group K, but increased NO in P2 (2.6-3.8 ìM. At 8 weeks after treatment, NO levels in groups P1 and P2 increased to 2.6-3.4 ìM and 4.2-14.3 ìM, respectively, while in group K only 2 rats had increased NO levels of 2.8-2.9 ìM. With Pearson’s chi-square test, there was a signifant difference in the proportions of necrotic pancreatic beta cells after 4 weeks and 8 weeks (p=0.000. No necrosis of beta cells was found in group K, mild necrosis in group P1 (1-25% and moderate necrosis in group P2 (26-50%. Conclusion TFA consumption significantly increases NO levels in Sprague Dawley rats and also results in moderate grades of necrosis of pancreatic beta cells.

  8. Trans fatty acids increase nitric oxide levels and pancreatic beta-cell necrosis in rats

    Directory of Open Access Journals (Sweden)

    Kusmiyati Tjahjono DK

    2015-12-01

    Full Text Available BACKGROUND The prevalence of diabetes in Indonesia is increasing due to various factors, including life style changes such as trans fatty acid (TFA intake. High TFA intake is known to be related to blood lipid profile changes resulting in cardiovascular disorders. This study was to identify the effect of TFA on nitric oxide (NO production and on necrosis of pancreatic beta cells. METHODS A study of randomized pre-test post–test design with control group. Thirty Sprague Dawley rats were divided into 3 groups, i.e. group K (control, group P1 receiving a diet with 5% TFA, and P2 receiving 10% TFA. The intervention was performed for 8 weeks. NO level and pancreatic beta-cell necrosis were analyzed using Pearson’s chi square test. RESULTS After 4 weeks of treatment there was no change in NO levels in group K, but increased NO in P2 (2.6-3.8 ìM. At 8 weeks after treatment, NO levels in groups P1 and P2 increased to 2.6-3.4 ìM and 4.2-14.3 ìM, respectively, while in group K only 2 rats had increased NO levels of 2.8-2.9 ìM. With Pearson’s chi-square test, there was a signifant difference in the proportions of necrotic pancreatic beta cells after 4 weeks and 8 weeks (p= 0.000. No necrosis of beta cells was found in group K, mild necrosis in group P1 (1-25% and moderate necrosis in group P2 (26-50%. CONCLUSION TFA consumption significantly increases NO levels in Sprague Dawley rats and also results in moderate grades of necrosis of pancreatic beta cells

  9. Mobility of creatine phosphokinase and beta-enolase in cultured muscle cells

    OpenAIRE

    Arrio-Dupont, M.; Foucault, G.; Vacher, M.; Douhou, A.; Cribier, S.

    1997-01-01

    The diffusion of beta-enolase and creatine phosphokinase in muscle cells has been studied by modulated fringe pattern photobleaching. Beta-enolase is mobile in the sarcoplasm. At 20 degrees C, the diffusion coefficient is 13.5 +/- 2.5 microm2 s(-1) in the cytosol and 56 microm2 s(-1) in aqueous media. As in the case of dextrans of the same hydrodynamic radius, its mobility is hindered by both the crowding of the fluid phase of the cytoplasm and the screening effect due to myofilaments. A frac...

  10. Glucocorticoid receptor beta increases migration of human bladder cancer cells.

    Science.gov (United States)

    McBeth, Lucien; Nwaneri, Assumpta C; Grabnar, Maria; Demeter, Jonathan; Nestor-Kalinoski, Andrea; Hinds, Terry D

    2016-05-10

    Bladder cancer is observed worldwide having been associated with a host of environmental and lifestyle risk factors. Recent investigations on anti-inflammatory glucocorticoid signaling point to a pathway that may impact bladder cancer. Here we show an inverse effect on the glucocorticoid receptor (GR) isoform signaling that may lead to bladder cancer. We found similar GRα expression levels in the transitional uroepithelial cancer cell<