Excitation of beta Alfven eigenmodes in Tore-Supra
International Nuclear Information System (INIS)
Nguyen, C; Garbet, X; Sabot, R; Goniche, M; Maget, P; Basiuk, V; Decker, J; Elbeze, D; Huysmans, G T A; Macor, A; Segui, J-L; Schneider, M; Eriksson, L-G
2009-01-01
Modes oscillating at the acoustic frequency and identified as beta Alfven eigenmodes (BAEs) have been observed in Tore-Supra under ion cyclotron resonant heating. In this paper, the linear excitation threshold of these modes, thought to be driven by suprathermal ions, is calculated and compared with Tore-Supra observations. Similar studies of the linear excitation threshold of energetic particles driven modes were carried out previously for toroidal Alfven eigenmodes or fishbones. In the case of BAEs, the main point is to understand whether the energetic particle drive is able to exceed ion Landau damping, which is expected to be important in the acoustic frequency range. For this, the BAE dispersion relation is computed and simplified in order to derive a tractable excitation criterion suitable for comparison with experiments. The observation of BAEs in Tore-Supra is found to be in agreement with the calculated criterion and confirms the possibility to trigger these modes in the presence of ion Landau damping. Moreover, the conducted analysis clearly puts forward the role of the global tunable parameters which play a role in the BAE excitation (the magnetic field, the density etc), as well as the role of some plasma profiles. In particular, the outcome of a modification of the shear or of the heating localization is found to be non-negligible and it is discussed in the paper.
Theory and simulation of discrete kinetic beta induced Alfven eigenmode in tokamak plasmas
International Nuclear Information System (INIS)
Wang, X; Zonca, F; Chen, L
2010-01-01
It is shown, both analytically and by numerical simulations, that, in the presence of thermal ion kinetic effects, the beta induced Alfven eigenmode (BAE)-shear Alfven wave continuous spectrum can be discretized into radially trapped eigenstates known as kinetic BAE (KBAE). While thermal ion compressibility gives rise to finite BAE accumulation point frequency, the discretization occurs via the finite Larmor radius and finite orbit width effects. Simulations and analytical theories agree both qualitatively and quantitatively. Simulations also demonstrate that KBAE can be readily excited by the finite radial gradients of energetic particles.
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N.N. [Princeton Plasma Physics Laboratory, Princeton University (United States)], E-mail: ngorelen@pppl.gov; Berk, H.L. [IFS, Austin, Texas (United States); Fredrickson, E. [Princeton Plasma Physics Laboratory, Princeton University (United States); Sharapov, S.E. [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United States)
2007-10-08
New global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfven-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high-beta >20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfven coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.
Magneto-Hydrodynamic Activity and Energetic Particles - Application to Beta Alfven Eigenmodes
International Nuclear Information System (INIS)
Nguyen, Ch.
2009-12-01
The goal of magnetic fusion research is to extract the power released by fusion reactions and carried by the product of these reactions, liberated at energies of the order of a few MeV. The feasibility of fusion energy production relies on our ability to confine these energetic particles, while keeping the thermonuclear plasma in safe operating conditions. For that purpose, it is necessary to understand and find ways to control the interaction between energetic particles and the thermonuclear plasma. Reaching these two goals is the general motivation for this work. More specifically, our focus is on one type of instability, the Beta Alfven Eigenmode (BAE), which can be driven by energetic particles and impact on the confinement of both energetic and thermal particles. In this work, we study the characteristics of BAEs analytically and derive its dispersion relation and structure. Next, we analyze the linear stability of the mode in the presence of energetic particles. First, a purely linear description is used, which makes possible to get an analytical linear criterion for BAE destabilization in the presence of energetic particles. This criterion is compared with experiments conducted in the Tore-Supra tokamak. Secondly, because the linear analysis reveals some features of the BAE stability which are subject to a strong nonlinear modification, the question is raised of the possibility of a sub-critical activity of the mode. We propose a simple scenario which makes possible the existence of meta-stable modes, verified analytically and numerically. Such a scenario is found to be relevant to the physics and scales characterizing BAEs. (author)
Alfven frequency modes and global Alfven eigenmodes
International Nuclear Information System (INIS)
Villard, L.; Vaclavik, J.
1996-07-01
The spectrum of n=0 Alfven modes is calculated analytically and numerically in cylindrical and toroidal geometries. It includes Global Alfven Eigenmodes (GAE) and Surface Modes (SM) of the fast magnetoacoustic wave. These modes are not induced by toroidicity. The n=0 GAEs owe their existence to the shear. The frequency spacing between different radial and poloidal modes and the correlation of eigenfrequencies with changes in the edge density are examined and found in complete agreement with experimental observations of what has been named the 'Alfven Frequency Mode' (AFM) so far. Although the eigenfrequency is related to the edge density, the n=0 GAE (AFM) is not necessarily edge-localized. (author) figs., tabs., refs
An Alfven eigenmode similarity experiment
International Nuclear Information System (INIS)
Heidbrink, W W; Fredrickson, E; Gorelenkov, N N; Hyatt, A W; Kramer, G; Luo, Y
2003-01-01
The major radius dependence of Alfven mode stability is studied by creating plasmas with similar minor radius, shape, magnetic field (0.5 T), density (n e ≅3x10 19 m -3 ), electron temperature (1.0 keV) and beam ion population (near-tangential 80 keV deuterium injection) on both NSTX and DIII-D. The major radius of NSTX is half the major radius of DIII-D. The super-Alfvenic beam ions that drive the modes have overlapping values of v f /v A in the two devices. Observed beam-driven instabilities include toroidicity-induced Alfven eigenmodes (TAE). The stability threshold for the TAE is similar in the two devices. As expected theoretically, the most unstable toroidal mode number n is larger in DIII-D
Beta-induced Alfven-acoustic Eigenmodes in NSTX and DIII-D Driven by Beam Ions
International Nuclear Information System (INIS)
Gorelenkov, N.N.; Van Zeeland, M.A.; Berk, H.L.; Crocker, N.A.; Darrow, D.; Fredrickson, E.; Fu, G.-Y.; Heidbrink, W.W.; Menard, J.; Nazikian, R.
2009-01-01
Kinetic theory and experimental observations of a special class of energetic particle driven instabilities called here Beta-induced Alfven-Acoustic Eigenmodes (BAAE) are reported confirming previous results [N.N. Gorelenkov H.L. Berk, N.A. Crocker et. al. Plasma Phys. Control. Fusion 49 B371 (2007)] The kinetic theory is based on the ballooning dispersion relation where the drift frequency effects are retained. BAAE gaps are recovered in kinetic theory. It is shown that the observed certain low-frequency instabilities on DIII-D [J.L. Luxon, Nucl. Fusion 42 614 (2002)] and National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y.-K M. Peng et. al., Nucl. Fusion 40 3Y 557 (2000)] are consistent with their identification as BAAEs. BAAEs deteriorated the fast ion confinement in DIII-D and can have a similar effect in next-step fusion plasmas, especially if excited together with multiple global Toroidicity-induced shear Alfven Eigenmode (TAE) instabilities. BAAEs can also be used to diagnose safety factor profiles, a technique known as magnetohydrodynamic spectroscopy
Beta-induced Alfven-acousti Eigenmodes in NSTX and DIII-D Driven by Beam Ions
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N. N.; Van Zeeland, M. A.; Berk, H. L.; Crocker, N. A.; Darrow, D.; Fredrickson, E.; Fu, G. Y.; Heidbrink, W. W.; Menard, J.; Nazikian, R.
2009-03-06
Kinetic theory and experimental observations of a special class of energetic particle driven instabilities called here Beta-induced Alfven-Acoustic Eigenmodes (BAAE) are reported confirming previous results [N.N. Gorelenkov H.L. Berk, N.A. Crocker et. al. Plasma Phys. Control. Fusion 49 B371 (2007)] The kinetic theory is based on the ballooning dispersion relation where the drift frequency effects are retained. BAAE gaps are recovered in kinetic theory. It is shown that the observed certain low-frequency instabilities on DIII-D [J.L. Luxon, Nucl. Fusion 42 614 (2002)] and National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y.-K M. Peng et. al., Nucl. Fusion 40 3Y 557 (2000)] are consistent with their identification as BAAEs. BAAEs deteriorated the fast ion confinement in DIII-D and can have a similar effect in next-step fusion plasmas, especially if excited together with multiple global Toroidicity-induced shear Alfven Eigenmode (TAE) instabilities. BAAEs can also be used to diagnose safety factor profiles, a technique known as magnetohydrodynamic spectroscopy.
Alfven Eigenmodes in spherical tokamaks
International Nuclear Information System (INIS)
Gryaznevich, Mikhail P.; Sharapov, Sergei E.; Berk, Herbert L.; Pinches, Simon D.
2005-01-01
Electromagnetic instabilities are often excited by fast super-Alfvenic ions produced by neutral beam injection (NBI) in plasmas of the spherical tokamaks START and MAST (toroidal magnetic confinement devices in which the minor a and major R 0 radii of the torus are comparable, R 0 /a≅1.2/1.8). These instabilities are seen as discrete weakly-damped toroidal and elliptical Alfven Eigenmodes (TAEs and EAEs) with frequencies tracing in time the Alfven scaling with the equilibrium magnetic field and plasma density, or as energetic particle modes (EPMs) whose frequencies don't start from TAE-frequency and sweep down in time faster than the equilibrium parameters change. In some discharges the beam drives Aflvenic-type modes that start from the TAE frequency and sweep in both up- and down- directions. Such electromagnetic perturbations are interpreted as 'hole-clump' long-living nonlinear fluctuations of the fast ion distribution function predicted by Berk-Breizman-Petviashvili [Phys. Lett. A238 (1998) 408]. It is found on both START and MAST that the Alfven instabilities weaken in their mode amplitude and in the number of unstable modes as the pressure of the thermal plasma increases, in agreement with increased thermal ion Landau damping and the pressure effect on core-localised TAEs. (author)
Compressional Alfven Eigenmode Similarity Study
Heidbrink, W. W.; Fredrickson, E. D.; Gorelenkov, N. N.; Rhodes, T. L.
2004-11-01
NSTX and DIII-D are nearly ideal for Alfven eigenmode (AE) similarity experiments, having similar neutral beams, fast-ion to Alfven speed v_f/v_A, fast-ion pressure, and shape of the plasma, but with a factor of 2 difference in the major radius. Toroidicity-induced AE with ˜100 kHz frequencies were compared in an earlier study [1]; this paper focuses on higher frequency AE with f ˜ 1 MHz. Compressional AE (CAE) on NSTX have a polarization, dependence on the fast-ion distribution function, frequency scaling, and low-frequency limit that are qualitatively consistent with CAE theory [2]. Global AE (GAE) are also observed. On DIII-D, coherent modes in this frequency range are observed during low-field (0.6 T) similarity experiments. Experiments will compare the CAE stability limits on DIII-D with the NSTX stability limits, with the aim of determining if CAE will be excited by alphas in a reactor. Predicted differences in the frequency splitting Δ f between excited modes will also be used. \\vspace0.25em [1] W.W. Heidbrink, et al., Plasmas Phys. Control. Fusion 45, 983 (2003). [2] E.D. Fredrickson, et al., Princeton Plasma Physics Laboratory Report PPPL-3955 (2004).
Alfven Eigenmode Control in DIII-D
Hu, W.; Olofsson, E.; Welander, A.; van Zeeland, M.; Collins, C.; Heidbrink, W.
2017-10-01
Alfven eigenmodes (AE) driven by fast ions from neutral beam and ion cyclotron heating are common in present day tokamak plasmas and are expected to be destabilized by alpha particles in future burning plasma experiments. Because these waves have been shown to cause loss and redistribution of fast ions which can impact plasma performance and potentially device integrity, developing control techniques for AEs is of paramount importance. In the DIII-D plasma control system, spectral analysis of real-time ECE data is used as a monitor of AE amplitude, frequency, and location. These values are then used for feedback control of the neutral beam power to control Alfven waves and reduce fast ion loss. This work describes tests of AE control experiments in the current ramp up phase, during which multiple Alfven eigenmodes are typically unstable and fast ion confinement is degraded significantly. Comparisons of neutron emission and confined fast ion profiles with and without active AE control will be made. Work supported by the U.S. Dept. of Energy under Award Number DE-FC02-04ER54698.
Alfven Continuum and Alfven Eigenmodes in the National Compact Stellarator Experiment
International Nuclear Information System (INIS)
Fesenyuk, O.P.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; White, R.B.; Yakovenko, Yu.V.
2004-01-01
The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) is investigated with the AC code COBRA. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gaps of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E
Alfven eigenmodes in shear reversed plasmas
International Nuclear Information System (INIS)
Breizman, B.N.; Berk, H.L.; Pekker, M.S.; Sharapov, S.E.; Hawkes, N.C.; Borba, D.N.; Pinches, S.D.
2003-01-01
Experiments on JT-60U and JET have shown that plasma configurations with shear reversal are prone to the excitation of unusual Alfven Eigenmodes by energetic particles. These modes emerge outside the TAE frequency gap, where one might expect them to be strongly damped. The modes often appear in bunches and they exhibit a quasi-periodic pattern of predominantly upward frequency sweeping (Alfven Cascades) as the safety factor q changes in time. This work presents a theory that explains the key features of the observed unusual modes including their connection to TAE's as well as the modifications of TAE's themselves near the shear reversal point. The developed theory has been incorporated into a reduced numerical model and verified with full geometry codes. JET experimental data on Alfven spectroscopy have been simulated to infer the mode numbers and the evolution of q min in the discharge. This analysis confirms the values of q that characterize the internal transport barrier triggering in reversed shear plasmas. (author)
Global Alfven Eigenmodes in DIII-D
International Nuclear Information System (INIS)
Turnbull, A.D.; Chu, M.S.; Strait, E.J.; Lao, L.L.; Greene, J.M.; Taylor, T.S.; Heidbrink, W.W.; Duong, H.; Chance, M.S.
1992-06-01
Global Alfven modes, such as the Toroidicity-Induced Alfven Eigenmode (TAE), pose a serious threat for strongly-heated tokamaks since they can result in saturation of the achievable beam β at moderate levels and they may also cause serious α-particle losses in future ignited devices. The DIII-D tokamak has a unique capability for study of the resonant excitation of these instabilities by energetic beam ions. TAE modes have now been observed in DIII-D over a wide range of operating conditions, including both circular cross-section and elongated (κ ∼ 1.8) discharges. Equilibrium reconstructions of several representative discharges, using all available external magnetic and internal profile data, have been done and analyzed in detail. The computed real mode frequencies of the TAE modes are in good agreement with the experimentally observed mode frequencies and differ significantly from the estimated kinetic ballooning mode frequencies. The TAE calculations include coupling to the Alfven and acoustic continuum branches of the MHD spectrum and generally indicate that the simplified circular cross-section, large aspect-ratio assumptions made in analytic calculations are poor approximations to the actual TAE mode structures. In particular, the global TAE modes are almost always coupled to one or more continuum branches by toroidicity, poloidal shaping, and finite β effects. Estimates of the various resonant excitation and damping mechanisms, including continuum damping, have been made and the total is found to be in reasonable agreement with the experimental threshold
Effect of alpha particles on Toroidal Alfven Eigenmodes
International Nuclear Information System (INIS)
Berk, H.L.
1992-11-01
An overview is given of the analytic structure for the linear theory of the Toroidal Alfven Eigenmode (TAE), where multiple gap structures occur. A discussion is given of the alpha particle drive and the various dissipation mechanisms that can stabilize the system. A self-consistent calculation of the TAE mode, for a low-beta high-aspect-ratio plasma, indicates that though the alpha particle drive is comparable to the dissipation mechanisms, overall stability is still achieved for ignited ITER-like plasma. A brief discussion is given of the nonlinear theory for the TAE mode and how nonlinear alpha particle dynamics can be treated by mapping methods
Existence of core localized toroidicity-induced Alfven eigenmode
International Nuclear Information System (INIS)
Fu, G.Y.
1995-02-01
The core-localized toroidicity-induced Alfven eigenmode (TAE) is shown to exist at finite plasma pressure due to finite aspect ratio effects in tokamak plasma. The new critical beta for the existence of the TAE mode is given by α∼ 3ε + 2s 2 , where ε = r/R is the inverse aspect ratio, s is the magnetic shear and α = -Rq 2 dβ/dr is the normalized pressure gradient. In contrast, previous critical α is given by α ∼ s 2 . In the limit of s << √r/R, the new critical α is greatly enhanced by the finite aspect ratio effects
Alfven continuum and high-frequency eigenmodes in optimized stellarators
International Nuclear Information System (INIS)
Kolesnichenko, Ya.I.; Lutsenko, V.V.; Wobig, H.; Yakovenko, Yu.V.; Fesenyuk, O.P.
2001-01-01
An equation of shear Alfven eigenmodes (AE) in optimized stellarators of Wendelstein line (Helias configurations) is derived. The metric tensor coefficients, which are contained in this equation, are calculated analytically. Two numerical codes are developed: the first one, COBRA (COntinuum BRanches of Alfven waves), is intended for the investigation of the structure of Alfven continuum; the second, BOA (Branches Of Alfven modes), solves the eigenvalue problem. The family of possible gaps in Alfven continuum of a Helias configuration is obtained. It is predicted that there exist gaps which arise due to or are strongly affected by the variation of the shape of the plasma cross section along the large azimuth of the torus. In such gaps, discrete eigenmodes, namely, helicity-induced eigenmodes (HAE 21 ) and mirror-induced eigenmodes (MAE) are found. It is shown that plasma inhomogeneity may suppress the AEs with a wide region of localization
MHD-Vlasov simulation of the toroidal Alfven eigenmode
International Nuclear Information System (INIS)
Todo, Y.; Sato, T.; Watanabe, K.; Watanabe, T.H.; Horiuchi, R.
1994-11-01
A new simulation method has been developed to investigate the excitation and saturation processes of toroidal Alfven eigenmodes (TAE modes). The background plasma is described by a full-MHD fluid model, while the kinetic evolution of energetic alpha particles is followed by the drift kinetic equation. The magnetic fluctuation of n = 2 mode develops and saturates at the level of 1.8x10 -3 of the equilibrium field when the initial beta of alpha particles is 2% at the magnetic axis. After saturation, the TAE mode amplitude shows an oscillatory behavior with a frequency corresponding to the bounce frequency of the alpha particles trapped by the TEA mode. The decrease of the power transfer rate from the alpha particles to the TAE mode, which is due to the trapped particle effect of a finite-amplitude wave, causes the saturation. From the linear growth rate the saturation level can be estimated. (author)
Nonlinear hybrid simulation of toroidicity-induced alfven eigenmode
International Nuclear Information System (INIS)
Fu, G.Y.; Park, W.
1994-11-01
Gyrokinetic/Magnetohydrodynamics hybrid simulations have been carried out using MH3D-K code to study the nonlinear saturation of the toroidicity-induced Alfven eigenmode driven by energetic particles in a tokamak plasma. It is shown that the wave particle trapping is the nonlinear saturation mechanism for the parameters considered. The corresponding density profile flattening of hot particles is observed. The saturation amplitude is proportional to the square of linear growth rate. In addition to TAE modes, a new n = 1, m = 0 global Alfven eigenmode is shown to be excited by the energetic particles
Excitation of global Alfven Eigenmodes by RF heating in JET
Energy Technology Data Exchange (ETDEWEB)
Kerner, W; Borba, D; Gormezano, C; Huysmans, G; Porcelli, F; Start, D [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Fasoli, A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Sharapov, S [Kurchatov Institute, Moscow (Russian Federation)
1994-07-01
The alpha-particle confinement of future D-T experiments at JET can be severely degraded by Global Alfven Eigenmodes (AE). Scenarios for the excitation of Alfven Eigenmodes in usual (e.g. D-D) plasmas are proposed, which provide a MHD diagnostic and allow the study of the transport of super-Alfvenic ions. Active studies with separate control of TAE amplitude and energetic particle destabilization, measuring the plasma response, give more information than passive studies, in particular concerning the damping mechanisms. The TAE excitation can be achieved by means of the saddle coil and the ICRH antenna. The experimental method is introduced together with a theoretical model for RF excitation. (authors). 6 refs., 3 figs.
Kinetic global analysis of Alfven eigenmodes in toroidal plasmas
International Nuclear Information System (INIS)
Fukuyama, A.
2002-01-01
Systematic study on low to medium n (toroidal mode number) Alfven eigenmodes (AE) in tokamaks and helical systems is presented. Linear stability of AE in the presence of energetic ions was studied using the kinetic full-wave code TASK/WM.We have reproduced the destabilizing effect of toroidal co-rotation on TAE for JT-60U parameters. We have found the existence of reversed-shear-induced Alfven eigenmode (RSAE) which localizes near the q minimum in a reversed magnetic shear configuration. Two kinds of mode structures are identified for energetic particle mode (EPM) below the TAE frequency gap. The coupling to lower-frequency modes such as drift waves and MHD modes as well as the effect of trapped particles are also taken into account. For a helical plasma, the existence of GAE in the central region and TAE in the off-axis region was confirmed. (author)
Alfven Eigenmode Stability with Beams in ITER-like Plasma
International Nuclear Information System (INIS)
Gorelenkov, N.N.; Berk, H.L.; Budny, R.V.
2004-01-01
Toroidicity Alfven Eigenmodes (TAE) in ITER can be driven unstable by two groups of energetic particles, the 3.5 MeV α-particle fusion products and the tangentially injected 1MeV beam ions. Stability conditions are established using the perturbative NOVA/NOVA-K codes. A quasi-linear diffusion model is then used to assess the induced redistribution of energetic particles
Combined Ideal and Kinetic Effects on Reversed Shear Alfven Eigenmodes
International Nuclear Information System (INIS)
Gorelenkov, N.N.; Kramer, G.J.; Nazikian, R.
2011-01-01
A theory of Reversed Shear Alfven Eigenmodes (RSAEs) is developed for reversed magnetic field shear plasmas when the safety factor minimum, qmin, is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with qmin above integer values. Corrected by special analytic FLR condition MHD dispersion of these modes nevertheless can be developed. Large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.
Combined ideal and kinetic effects on reversed shear Alfven eigenmodes
International Nuclear Information System (INIS)
Gorelenkov, N. N.; Kramer, G. J.; Nazikian, R.
2011-01-01
A reversed shear Alfven eigenmodes (RSAEs) theory has been developed for reversed magnetic field shear plasmas when the safety factor minimum, q min , is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that, strictly speaking, the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with q min above integer values. Corrected by a special analytic finite Larmor radius (FLR) condition, MHD dispersion of these modes nevertheless can be developed. Numerically, MHD structure can serve as a good approximation for the RSAEs.The large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.
Non-linear modulation of short wavelength compressional Alfven eigenmodes
Energy Technology Data Exchange (ETDEWEB)
Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bortolon, A. [University of California, Irvine, California 92697 (United States); Crocker, N. A. [University of California, Los Angeles, California 90095 (United States); Levinton, F. M.; Yuh, H. [Nova Photonics, Princeton, New Jersey 08543 (United States)
2013-04-15
Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Alfven eigenmodes driven by Alfvenic beam ions in JT-60U
International Nuclear Information System (INIS)
Shinohara, K.; Kusama, Y.; Takechi, M.
2001-01-01
Instabilities with frequency chirping in the frequency range of Alfven eigenmodes have been found in the domain 0.1% h > bparallel /υ A ∼ 1 with high energy neutral beam injection in JT-60U. One instability with a frequency inside the Alfven continuum spectrum appears and its frequency increases slowly to the toroidicity induced Alfven eigenmode (TAE) gap on the timescale of an equilibrium change (∼ 200 ms). Other instabilities appear with a frequency inside the TAE gap and their frequencies change very quickly by 10-20 kHz in 1-5 ms. During the period when these fast frequency sweeping (fast FS) modes occur, abrupt large amplitude events (ALEs) often appear with a drop of neutron emission rate and an increase in fast neutral particle fluxes. The loss of energetic ions increases with a peak fluctuation amplitude of B-tilde θ /B θ . An energy dependence of the loss ions is observed and suggests a resonant interaction between energetic ions and the mode. (author)
Fokker-Planck simulation study of Alfven eigenmode burst
International Nuclear Information System (INIS)
Todo, Y.; Watanabe, T.; Park, Hyoung-Bin; Sato, T.
2001-01-01
Recurrent bursts of toroidicity-induced Alfven eigenmodes (TAEs) are reproduced with a Fokker-Planck-magnetohydrodynamic simulation where a fast-ion source and slowing down are incorporated self-consistently. The bursts take place at regular time intervals and the behaviors of all the TAEs are synchronized. The fast-ion transport due to TAE activity spatially broadens the classical fast-ion distribution and significantly reduces its peak value. Only a small change of the distribution takes place with each burst, leading to loss of a small fraction of the fast ions. The system stays close to the marginal stability state established through the interplay of the fast-ion source, slowing down, and TAE activity. (author)
Recent progress of nonlinear simulation on the toroidal Alfven eigenmode
International Nuclear Information System (INIS)
Todo, Yasushi; Sato, Tetsuya
1998-01-01
Linear and nonlinear particle-magnetohydrodynamic (MHD) simulation codes are developed to study interactions between energetic ions and MHD modes. Energetic alpha particles with a slowing-down distribution are considered and the behavior of n=2 toroidal Alfven eigenmodes (TAE modes) is investigated with the parameters pertinent to the present large tokamaks. The linear simulation reveals the resonance condition between alpha particles and TAE mode. In the nonlinear simulation two n=2 TAE modes are destabilized and alpha particle losses induced by these TAE modes take place. Counter-passing particles are lost when they cross the passing-trapped boundary as a result of the interaction with the TAE modes. They are the major part of lost particles, but trapped particles are also lost appreciably. (author)
Reversed shear Alfven eigenmode stabilization by localized electron cyclotron heating
Energy Technology Data Exchange (ETDEWEB)
Van Zeeland, M A; Hyatt, A W; Lohr, J; Petty, C C [General Atomics, PO Box 85608 San Diego, CA 92186-5608 (United States); Heidbrink, W W [University of California-Irvine, Irvine, CA 92697 (United States); Nazikian, R; Solomon, W M; Gorelenkov, N N; Kramer, G J [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Austin, M E [University of Texas-Austin, Austin, TX 78712 (United States); Berk, H L [Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712 (United States); Holcomb, C T; Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA (United States); McKee, G R [University of Wisconsin-Madison, Madison, WI 53726 (United States); Sharapov, S E [Euratom/UKAEA Fusion Association, Culham, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Rhodes, T L [University of California-Los Angeles, Los Angeles, California, 90095 (United States)], E-mail: vanzeeland@fusion.gat.com
2008-03-15
Reversed shear Alfven eigenmode (RSAE) activity in DIII-D is stabilized by electron cyclotron heating (ECH) applied near the minimum of the magnetic safety factor (q{sub min}) in neutral beam heated discharges with reversed-magnetic shear. The degree of RSAE stabilization, fast ion density and the volume averaged neutron production (S{sub n}) are highly dependent on ECH deposition location relative to q{sub min}. While discharges with ECH stabilization of RSAEs have higher S{sub n} and more peaked fast ion profiles than discharges with significant RSAE activity, neutron production remains strongly reduced (up to 60% relative to TRANSP predictions assuming classical fast ion transport) even when RSAEs are stabilized.
High-n helicity-induced shear Alfven eigenmodes
International Nuclear Information System (INIS)
Nakajima, N.; Cheng, C.Z.; Okamoto, M.
1992-05-01
The high-n Helicity-induced shear Alfven Eigenmodes (HAE) are considered both analytically and numerically for the straight helical magnetic system, where n is the toroidal mode number. The eigenmode equation for the high-n HAE modes is derived along the field line and with the aid of the averaging method is shown to reduce to the Mathieu equation asymptotically. The discrete HAE modes are shown to exist inside the continuum spectrum gaps. The continuous spectrum gaps appear around ω 2 = ω A 2 [N(lι-m)/2] 2 for N = 1,2,.., where ω A is the toroidal Alfven transit frequency, and l, m, and ι are the polarity of helical coils, the toroidal pitch number of helical coils, and the rotational transform, respectively. For the same ω A and ι, the frequency of the helical continuum gap is larger than that of the continuum gap in tokamak plasmas by |l-ι -1 m|. The polarity of helical coils l plays a crucial role in determining the spectrum gaps and the properties of the high-n HAE modes. The spectrum gaps near the magnetic axis are created by the helical ripple with circular flux surfaces for l = 1, and ≥ 3 helicals. For l = 2 helical systems, the spectrum gaps are created by the ellipticity of the flux surfaces. These analytical results for the continuum gaps and the existence of the high-n HAE modes in the continuum gaps are confirmed numerically for the l = 2 case, and we find that the HAE modes exist for mode structures with the even and the odd parities. (author)
Destabilization of Alfven eigenmodes by fast particles in W7-AS
International Nuclear Information System (INIS)
Zegenhagen, S.
2006-02-01
In the present thesis, a systematic study of beam driven Alfven eigenmodes in high-density and low-temperature plasmas of the W7-AS stellarator is performed. The goal of this thesis is twofold: (I) identification and description of fast particle driven Alfven instabilities in W7-AS, and (II) study of energetic particle losses induced by Alfven instabilities. A total of 133 different Alfven eigenmodes is studied in discharges from different experimental campaigns. The discharges are characterized by high density, n e =5 x 1019 m -3 to 2.5 x 1020 m -3 at relatively low temperatures of T e =T i =150..600 eV. Additional 13 events are found to have frequencies inside the EAE gap and could possibly be EAEs. Evidence for high-frequency Alfven eigenmodes (mirror- and helicity-induced Alfven eigenmodes) is seen, but can not be proven rigorously due to uncertain mode numbers and the complexity of the Alfven continuum. The remaining 41 Alfven eigenmodes can not be classified to be one of the above cases. (orig.)
Destabilization of Alfven eigenmodes by fast particles in W7-AS
Energy Technology Data Exchange (ETDEWEB)
Zegenhagen, S.
2006-02-15
In the present thesis, a systematic study of beam driven Alfven eigenmodes in high-density and low-temperature plasmas of the W7-AS stellarator is performed. The goal of this thesis is twofold: (I) identification and description of fast particle driven Alfven instabilities in W7-AS, and (II) study of energetic particle losses induced by Alfven instabilities. A total of 133 different Alfven eigenmodes is studied in discharges from different experimental campaigns. The discharges are characterized by high density, n{sub e}=5 x 1019 m{sup -3} to 2.5 x 1020 m{sup -3} at relatively low temperatures of T{sub e}=T{sub i}=150..600 eV. Additional 13 events are found to have frequencies inside the EAE gap and could possibly be EAEs. Evidence for high-frequency Alfven eigenmodes (mirror- and helicity-induced Alfven eigenmodes) is seen, but can not be proven rigorously due to uncertain mode numbers and the complexity of the Alfven continuum. The remaining 41 Alfven eigenmodes can not be classified to be one of the above cases. (orig.)
Simulation study of energetic ion transport due to Alfven eigenmodes in LHD plasma
International Nuclear Information System (INIS)
Todo, Yasushi; Nakajima, Noriyoshi; Osakabe, Masaki; Yamamoto, Satoshi; Spong, Donald A.
2008-01-01
The creation of holes and clumps in an energetic ion energy spectrum associated with Alfven eigenmodes was examined using the neutral particle analyzer (NPA) on the LHD shot no.47645. The difference in slowing-down times between the holes and clumps suggested that the energetic ions were transported over 10% of the plasma minor radius. The spatial profile and frequency of the Alfven eigenmodes were analyzed with the AE3D code. The phase space structures of the energetic ions on the NPA line-of-sight were investigated with Poincare plots, where an oscillating Alfven eigenmode was employed for earth plot. The phase space regions trapped by the Alfven eigenmodes appeared as islands in the Poincare plots. The radial width of the islands corresponded to the transport distance of the energetic ions. Since island width depends on Alfven eigenmode amplitude, it was found that Alfven eigenmodes with amplitude δB r /B - 10 -3 transported energetic ions over 10% of the minor radius. (author)
International Nuclear Information System (INIS)
Nishiura, M.; Isobe, M.; Yamamoto, S.
2008-10-01
Alfven instabilities induced fast-ion losses have been directly observed for the first time by a newly developed scintillator lost ion probe (SLIP) in the Large Helical Device (LHD). The SLIP can measure the pitch angle and gyro radius of escaped fast ions toward loss region. Neutral beam driven Alfven Eigenmodes (AEs) are excited under the reactor relevant conditions: the ratio of fast ion (beam) speed υ b and Alfven speed υ A is more than 0.3 - 4.0. The beta value for fast ions is considered roughly to be ∼10%. Non-linear phenomena related to Alfven instabilities are observed under such conditions. During repetitive Toroidal Alfven Eigenmode (TAE) bursts, synchronized fast ion losses are observed by SLIP. From the orbit calculation the measured fast ion with pitch angle of 130 degrees and beam energy of 150 keV surely pass through the locations of TAE gaps. The orbit analysis found that the observed fast ions interact strongly with the excited TAEs. This result becomes the first experimental evidence of radial transport of fast ions predicted theoretically during TAE activities. In addition, from the correlation between stored energy degradation and fast-ion loss rate, it is found that fast-ion losses induced by TAE activities with low toroidal mode numbers categorize two phenomena without and with fast- ion loss enhancements, which indicate the fast-ion redistribution and loss. (author)
Nonperturbative effects of energetic ions on Alfven eigenmodes
International Nuclear Information System (INIS)
Todo, Y.; Nakajima, N.; Shinohara, K.; Takechi, M.; Ishikawa, M.; Yamamoto, S.
2005-01-01
Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n = 2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)
Nonperturbative effects of energetic ions on Alfven eigenmodes
International Nuclear Information System (INIS)
Todo, Y.; Nakajima, N.; Shinohara, Kouji; Takechi, Manabu; Ishikawa, Masao
2005-01-01
Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n=2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)
The effect of toroidal plasma rotation on low-frequency reversed shear Alfven eigenmodes in tokamaks
Haverkort, J. W.
2012-01-01
The influence of toroidal plasma rotation on the existence of reversed shear Alfven eigenmodes (RSAEs) near their minimum frequency is investigated analytically. An existence condition is derived showing that a radially decreasing kinetic energy density is unfavourable for the existence of RSAEs.
Expansion of parameter space for Toroidal Alfven Eigenmode experiments in TFTR
International Nuclear Information System (INIS)
Wong, K.L.; Wilson, J.R.; Chang, Z.Y.; Fredrickson, E.; Hammett, G.W.; Bush, C.; Nazikian, R.; Phillips, C.K.; Snipes, J.; Taylor, G.
1993-05-01
Several techniques were used to excite toroidal Alfven Eigenmodes in the Tokamak Fusion Test Reactor (TFTR) at magnetic fields above 10 kG. These involve pellet injection to raise the plasma density, variation of plasma current to change the energetic ion orbit and the q-profile, and ICRF heating to produce energetic hydrogen ions at velocities comparable to 3.5 MeV alpha particles. These experimental results are presented and relevance to fusion reactors are discussed
Theory and observation of compressional Alfven eigenmodes in low aspect ratio plasma
International Nuclear Information System (INIS)
Gorelenkov, N.N.
2002-01-01
A new theory of radially and poloidally localized Compressional Alfven Eigenmodes (CAE) in low aspect ratio plasma is reported. The theory is applied to identify recently observed instabilities in the MHz frequency range in National Spherical Torus experiments (NSTX). The frequency of observed CAEs is correlated with the characteristic Alfven velocity of the plasma. The observed high frequency modes are explained as CAEs driven by energetic beam ions. The CAE frequency is determined by the Alfven frequency at the mode location on the low field side of the plasma and is given approximately by ω CAE v A m=r, where m is the poloidal mode number, and r is the local minor radius. CAEs are destabilized by free energy in the energetic ion velocity space gradient via Doppler shifted cyclotron resonance with beam ions. Properties of the CAE instability driven by different NBI ion distributions are presented. (author)
Finite orbit energetic particle linear response to toroidal Alfven eigenmodes
International Nuclear Information System (INIS)
Berk, H.L.; Ye Huanchun; Breizman, B.N.
1992-01-01
The linear response of energetic particles of the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width; when the banana width Δ b is much larger than the mode thickness Δ m , we obtain a new compact expression for the linear power transfer. When Δ m /Δ b m /Δ b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balanced-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (vertical strokev parallel vertical stroke=v A ) is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (vertical strokev parallel vertical stroke=v A /(2l-1) with l≥2) is substantially reduced. (orig.)
Finite orbit energetic particle linear response to toroidal Alfven eigenmodes
International Nuclear Information System (INIS)
Berk, H.L.; Ye, Huanchun; Breizman, B.N.
1991-07-01
The linear response of energetic particles to the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width: when the banana width triangle b is much larger than the mode thickness triangle m , we obtain a new compact expression for the linear power transfer. When triangle m /triangle b much-lt 1, the banana orbit effect reduces the power transfer by a factor of triangle m /triangle b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balance-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (|υ parallel | = υ A is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (|υ parallel |) = υ A /(2 ell - 1) with ell ≥ 2) is substantially reduced. 10 refs
Predictions and observations of global beta-induced Alfven-acoustic modes in JET and NSTX
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N N [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Berk, H L [Institute for Fusion Studies, University of Texas, Austin, TX 78712 (United States); Crocker, N A [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Fredrickson, E D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kaye, S [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kubota, S [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Park, H [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Peebles, W [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Sabbagh, S A [Department of Applied Physics, Columbia University, New York, NY 10027-6902 (United States); Sharapov, S E [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Stutmat, D [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Tritz, K [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Levinton, F M [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States); Yuh, H [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States)
2007-12-15
In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high beta >20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks.
International Nuclear Information System (INIS)
Takechi, M.; Matsunaga, G.; Takagi, S.
1999-09-01
Toroidal Alfven eigenmodes (TAE) destabilized by the pressure gradient of energetic alpha particles may expel the alpha particles before thermalization. TAE is important for tokamaks, and for helical systems (stellarators) as well. In CHS (compact helical system) TAE localized in the plasma core are destabilized when the plasma current is induced by co-injection of neutral beams. The observed TAE exhibits a ballooning nature. The internal structure of TAE was measured with a soft X-ray detector. The soft X-ray fluctuations level for TAE is too low to obtain the radial profiles of fluctuation intensities. (Tanaka, M.)
Predications and Observations of Global Beta-induced Alfven-acoustic Modes in JET and NSTX
International Nuclear Information System (INIS)
Gorelenkov, N.N.
2008-01-01
In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta 20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks
International Nuclear Information System (INIS)
Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Crocker, N.A.; Kubota, S.; Heidbrink, W.W.; Yuh, H.
2011-01-01
The National Spherical Torus Experiment (NSTX, (Ono et al 2000 Nucl. Fusion 40 557)) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfvenic, with velocities 1 fast /v Alfven < 5. This provides a strong drive for toroidicity-induced Alfven eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (∼<30%) fast ion losses over ∼1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.
International Nuclear Information System (INIS)
Podesta, M.; Bell, R.E.; Crocker, N.A.; Fredrickson, E.D.; Gorelenkov, N.N.; Heidbrink, W.W.; Kubota, S.; LeBlanc, B.P.; Yu, H.
2011-01-01
The National Spherical Torus Experiment (NSTX, (M. Ono et al., Nucl. Fusion 40, 557 (2000))) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfvenic, with velocities 1 fast /v Alfven < 5. This provides a strong drive for toroidicity-induced Alfven eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (∼<30%) fast ion losses over ∼ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.
International Nuclear Information System (INIS)
Breizman, B.N.; Sharapov, S.E.
1994-10-01
The structure of toroidicity-induced Alfven eigenmodes (TAE) and kinetic TAE (KTAE) with large mode numbers is analyzed and the linear power transfer from energetic particles to these modes is calculated in the low shear limit when each mode is localized near a single gap within an interval whose total width Δ out is much smaller than the radius r m of the mode location. Near its peak where most of the mode energy is concentrated, the mode has an inner scalelength Δ in , which is much smaller than Δ out . The scale Δ in is determined by toroidicity and kinetic effects, which eliminate the singularity of the potential at the resonant surface. This work examines the case when the drift orbit width of energetic particles Δ b is much larger than the inner scalelength Δ in , but arbitrary compared to the total width of the mode. It is shown that the particle-to-wave linear power transfer is comparable for the TAE and KTAE modes in this case. The ratio of the energetic particle contributions to the growth rates of the TAE and KTAE modes is then roughly equal to the inverse ratio of the mode energies. It is found that, in the low shear limit the growth rate of the KTAE modes can be larger than that for the TAE modes
Theory of high-n toroidicity-induced shear Alfven eigenmode in tokamaks
International Nuclear Information System (INIS)
Fu, G.Y.; Cheng, C.Z.; Princeton Univ., NJ
1989-07-01
High-n WKB-ballooning mode equation is employed to study toroidicity-induced shear Alfven eigenmodes (TAE) in the δ - α space, where δ = (r/q)(dq/dr) is the magnetic shear, and α = -(2Rq 2 /B 2 )(dp/dr) is the normalized pressure gradient for tokamak plasmas. In the ballooning mode first stability region, TAE modes are found to exist only for α less than some critical value α c . We also find that these TAE modes reappear in the ballooning mode second stability region for bands of α values. The global envelope structures of these TAE modes are studied by WKB method and are found to be bounded radially if the local mode frequency has a maximum in radius. 15 refs., 14 figs
Experimental study of toroidicity-induced Alfven eigenmode (TAE) stability at high q(0)
International Nuclear Information System (INIS)
Batha, S.H.; Levinton, F.M.; Spong, D.A.
1995-07-01
Experiments to destabilize the Toroidicity-induced Alfven Eigenmode (TAE) by energetic alpha particles were performed on the Tokamak Fusion Test Reactor using deuterium and tritium fuel. To decrease the alpha particle pressure instability threshold, discharges with an elevated value of q(0) > 1.5 were used. By raising q(0), the radial location of the low toroidal-mode-number TAE gaps moves toward the magnetic axis and into alignment with the region of maximum alpha pressure gradient, thereby (in theory) lowering the value of β α (0) required for instability. No TAE activity was observed when the central alpha particle β α reached 0.08% in a discharge with fusion power of 2.4 MW. Calculations show that the fusion power is within a factor of 1.5 to 3 of the instability threshold
Mode structure and continuum damping of high-n toroidal Alfven eigenmodes
International Nuclear Information System (INIS)
Rosenbluth, M.N.; Berk, H.L.; Van Dam, J.W.; Lindberg, D.M.
1992-02-01
An asymptotic theory is described for calculating the mode structure and continuum damping of short wave-length toroidal Alfven eigenmodes (TAE). The formalism somewhat resembles the treatment used for describing low-frequency toroidal modes with singular structure at a rational surface, where an inner solution, which for the TAE mode has toroidal coupling, is matched to an outer toroidally uncoupled solution. A three-term recursion relation among coupled poloidal harmonic amplitudes is obtained, whose solution gives the structure of the global wavefunction and the complex eigenfrequency, including continuum damping. Both analytic and numerical solutions are presented. The magnitude of the damping is essential for determining the thresholds for instability driven by the spatial gradients of energetic particles (e.g., neutral beam-injected ions or fusion-product alpha particles) contained in a tokamak plasma
Kinetic-magnetohydrodynamic simulation study of fast ions and toroidal Alfven eigenmodes
International Nuclear Information System (INIS)
Todo, Y.; Sato, T.
2001-01-01
Particle-magnetohydrodynamic and Fokker-Planck-magnetohydrodynamic simulations of fast ions and toroidicity-induced Alfven eigenmodes (TAE modes) have been carried out. Alpha particle losses induced by TAE mode are investigated with particle-magnetohydrodynamic simulations. Trapped particles near the passing-trapped boundary in the phase space are also lost appreciably in addition to the counter-passing particles. In Fokker-Planck-magnetohydrodynamic simulation source and slowing-down of fast ions are considered. A coherent pulsating behavior of multiple TAE modes, which occurs in neutral beam injection experiments, is observed when the slowing-down time is much longer than the damping time of the TAE modes and the fast-ion pressure is sufficiently high. For a slowing-down time comparable to the damping time, the TAE modes reach steady saturation levels. (author)
Kinetic-magnetohydrodynamic simulation study of fast ions and toroidal Alfven eigenmodes
International Nuclear Information System (INIS)
Todo, Y.; Sato, T.
1999-01-01
Particle-magnetohydrodynamic and Fokker-Planck-magnetohydrodynamic simulations of fast ions and toroidicity-induced Alfven eigenmodes (TAE modes) have been carried out. Alpha particle losses induced by TAE mode are investigated with particle-magnetohydrodynamic simulations. Trapped particles near the passing-trapped boundary in the phase space are also lost appreciably in addition to the counter-passing particles. In Fokker-Planck-magnetohydrodynamic simulation source and slowing-down of fast ions are considered. A coherent pulsating behavior of multiple TAE modes, which occurs in neutral beam injection experiments, is observed when the slowing-down time is much longer than the damping time of the TAE modes and the fast-ion pressure is sufficiently high. For a slowing-down time comparable to the damping time, the TAE modes reach steady saturation levels. (author)
International Nuclear Information System (INIS)
Toi, K; Yamamoto, S; Nakajima, N; Ohdachi, S; Sakakibara, S; Osakabe, M; Murakami, S; Watanabe, K Y; Goto, M; Kawahata, K; Kolesnichenko, Ya I; Masuzaki, S; Morita, S; Narihara, K; Narushima, Y; Takeiri, Y; Tanaka, K; Tokuzawa, T; Yamada, H; Yamada, I; Yamazaki, K
2004-01-01
In the Large Helical Device (LHD), energetic ion driven Alfven eigenmodes (AEs) and their impact on energetic ion transport have been studied. The magnetic configuration of the LHD is three-dimensional and has negative magnetic shear over a whole plasma radius in the low beta regime. These features introduce the characteristic structures of the shear Alfven spectrum. In particular, a core-localized type of toroidicity-induced AE (TAE) is most likely because the TAE gap frequency rapidly increases towards the plasma edge. Moreover, helicity-induced AEs (HAEs) can be generated through a toroidal mode coupling as well as poloidal one in the three-dimensional configuration. The following experimental results have been obtained in LHD plasmas heated by tangential neutral beam injection: (1) observation of core-localized TAEs having odd as well as even parity, (2) eigenmode transition of the core-localized TAE to global AEs (GAEs), which phenomenon is very similar to that in a reversed shear tokamak, (3) observation of HAEs of which the frequency is about eight times higher than the TAE gap frequency, (4) enhanced radial transport/loss of energetic ions caused by bursting TAEs in a relatively high beta regime, and (5) seed formation of internal transport barriers induced by TAE-induced energetic ion transport. These results will be important and interesting information for AE physics in toroidal plasmas
International Nuclear Information System (INIS)
Fu, G.Y.; Van Dam, J.W.
1989-05-01
The stability of the Global Alfven Eigenmodes is investigated in the presence of super-Alfvenic energetic particles, such as the fusion-product alpha particles in an ignited deuterium-tritium tokamak plasma. Alpha particles tend to destabilize these modes when ω *α > ω A , where ω A is the shear-Alfven modal frequency and ω *α is the alpha particle diamagnetic drift frequency. This destabilization due to alpha particles is found to be significantly enhanced when the alpha particles are modeled with a slowing-down distribution function rather than with a Maxwellian. However, previously neglected electron damping due to the magnetic curvature drift is found to be comparable in magnitude to the destabilizing alpha particle term. Furthermore, the effects of toroidicity are also found to be stabilizing, since the intrinsic toroidicity induces poloidal mode coupling, which enhances the parallel electron damping from the sideband shear-Alfven Landau resonance. In particular, for the parameters of the proposed Compact Ignition Tokamak, the Global Alfven Eigenmodes are found to be completely stabilized by either the electron damping that enters through the magnetic curvature drift or the damping introduced by finite toroidicity. 29 refs., 8 figs., 1 tab
International Nuclear Information System (INIS)
Li Wannquan.
1989-01-01
In a circular cylindrical geometry, the author solves a fourth-order set of differential equations numerically for the perturbed fields E τ and E perpendicular . The model takes into account the equilibrium current, magnetic shear, finite ω/ω c1 effect, mode conversion effects like finite ion gyroradius and electron inertia, and various dissipative mechanisms such as electron Landau and collisional damping, and minority fundamental and majority second harmonic cyclotron absorption. To illustrate the results, the author plots the perturbed electric fields and the energy absorbed by each species. He first examines cold plasma surface Alfven eigenmodes analytically and numerically in a pure plasma. The motivation for this work is to investigate how to avoid the undesirable edge absorption and introduce the methods for the study of impurity effects. In the two-species plasmas, he considers three special examples: (1) minority oxygen in hydrogen in PRETEXT, (2) minority T or H in deuterium in TFTR. He adopts two models: (i) a radially varying minority charge, or (ii) a radially varying magnetic field to investigate the minority gyroresonance heating. The model (ii) is used to examine these three examples. But the model (i) is only applied to the first one. In model (i), it is found that surface modes can induce the eigenmodes and dissipate substantial energy near the hybrid layer in the interior. Some cases analytically manageable are given an interpretation of why there is large or small energy deposition in this layer. It is shown that this strongly depends on poloidal mode numbers, minority concentrations, and minority charge profiles
Energy Technology Data Exchange (ETDEWEB)
Podesta, M; Crocker, N A; Fredrickson, E D; Gorelenkov, N N; Heidbrink, W W; Kubota, S; LeBlanc, B P
2011-04-26
The National Spherical Torus Experiment (NSTX, [M. Ono et al., Nucl. Fusion 40, 557 (2000)]) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfv enic, with velocities 1 < vfast=vAlfven < 5. This provides a strong drive for toroidicity-induced Alfv en eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (≤ 30%) fast ion losses over ~ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.
Remote control of Alfven eigenmode sensing system on the large helical device
Energy Technology Data Exchange (ETDEWEB)
Ito, T. [Nagoya University, Department of Energy Engineering and Science, Furo-cho, Chikusa-ku, Nagoya City, Aichi (Japan)], E-mail: ito.takafumi@lhd.nifs.ac.jp; Toi, K. [Nagoya University, Department of Energy Engineering and Science, Furo-cho, Chikusa-ku, Nagoya City, Aichi (Japan); National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu (Japan); Matsunaga, G. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)
2008-04-15
An active sensing system of Alfven eigenmodes (AEs), which consists of a set of toroidally distributed loop antennas and several bi-polar power supplies, has been developed in the large helical device (LHD). The power supplies are controlled with a function generator receiving a control pattern of antenna current and the driving frequency from a personal computer (PC) in an LHD control room. This sensing method is based on the analysis of the frequency dependence of a transfer function that is derived by the ratio of the Fourier-transformed magnetic probe signal ('plasma response') to antenna current one ('exciter signal'). Typically, the driving frequency of the antenna current is swept linearly in time from 10 kHz to 500 kHz for 2 s in the LHD experiment. The sensing system is fully controlled through Ethernet LAN with easy extendable GUI. Configuration and control scheme of the active sensing system of AEs are presented in this paper. An initial result of the system operation is also described.
Geometrical and profile effects on toroidicity and ellipticity induced Alfven eigenmodes
International Nuclear Information System (INIS)
Villard, L.; Fu, G.Y.
1992-04-01
The wave structures, eigenfrequencies and damping rates of toroidicity and ellipticity induced Alfven eigenmodes (TAE, EAE) of low toroidal mode numbers (n) are calculated in various axisymmetric ideal MHD equilibria with the global wave finite element code LION. The importance of safety factor (q) and density (ρ) profiles on continuum damping rates is analysed. For realistic profiles several continuum gaps exist in the plasma discharge. Frequency misalignment of these gaps yields continuum damping rates γ/ω of the order of a few percent. Finite β pol lowers the TAE eigenfrequency. For β values below the Troyon limit the TAE enters the continuum and can thus be stabilized. Finite elongation allows the EAE to exist but triangularity can have a stabilizing effect through coupling to the continuum. The localization of TAE and EAE eigenfunctions is found to increase with the shear and with n. Therefore large shear, through enhanced Landau and collisional damping, is a stabilizing factor for TAE and EAE modes. (author) 16 figs., 28 refs
Wang, Ge; Berk, H. L.
2011-10-01
The frequency chirping signal arising from spontaneous a toroidial Alfven eigenmode (TAE) excited by energetic particles is studied for both numerical and analytic models. The time-dependent numerical model is based on the 1D Vlasov equation. We use a sophisticated tracking method to lock onto the resonant structure to enable the chirping frequency to be nearly constant in the calculation frame. The accuracy of the adiabatic approximation is tested during the simulation which justifies the appropriateness of our analytic model. The analytic model uses the adiabatic approximation which allows us to solve the wave evolution equation in frequency space. Then, the resonant interactions between energetic particles and TAE yield predictions for the chirping rate, wave frequency and amplitudes vs. time. Here, an adiabatic invariant J is defined on the separatrix of a chirping mode to determine the region of confinement of the wave trapped distribution function. We examine the asymptotic behavior of the chirping signal for its long time evolution and find agreement in essential features with the results of the simulation. Work supported by Department of Energy contract DE-FC02-08ER54988.
International Nuclear Information System (INIS)
Bergkvist, T.; Hellsten, T.; Johnson, T.
2006-01-01
Alfven eigenmodes (AEs) excited by fusion born α particles can degrade the heating efficiency of a burning plasma and throw out αs. To experimentally study the effects of excitation of AEs and the redistribution of the fast ions, ion cyclotron resonance heating (ICRH) is often used. The distribution function of thermonuclear αs in a reactor is expected to be isotropic and constantly renewed through DT reactions. The distribution function of cyclotron heated ions is strongly anisotropic, and the ICRH do not only renew the distribution function but also provide a strong decorrelation mechanism between the fast ions and the AE. Because of the sensitivity of the AE dynamics on the details of the distribution function, the location of the resonance surfaces in phase space and the extent of the overlapping resonant regions for different AEs, a self-consistent treatment of the AE excitation and the ICRH is necessary. Interactions of fast ions with AEs during ICRH has been implemented in the SELFO code. Simulations are in good agreement with the experimentally observer pitch-fork splitting and rapid damping of the AE as ICRH is turned off. The redistribution of fast ions have been studied in the presence of several driven AEs. (author)
Alfven eigenmode observations on DIII-D via two-colour CO2 interferometry
International Nuclear Information System (INIS)
Zeeland, M A van; Kramer, G J; Nazikian, R; Berk, H L; Carlstrom, T N; Solomon, W M
2005-01-01
Measurements are presented of toroidicity-induced (TAEs) and reverse shear (RSAEs) Alfven eigenmodes made using the standard two-colour CO 2 interferometer on DIII-D modified for increased bandwidth. Typical values of the effective line-integrated density perturbation in DIII-D are found to be d(nL)/nL ∼ 10 -3 , and comparisons are made with NOVA calculations as well as magnetic measurements. There is a strong difference in the measured power spectrum between vertical and radial chords through the plasma. On average, vertical views are characterized by a larger line-integrated density perturbation due to TAEs than radial chords. Radial chords, however, can be used much more reliably than vertical chords to identify the presence of RSAEs in the plasma-a result found to be due to the radially localized nature of these modes. In general, the apparent amplitude of the observed modes for both TAE and RSAE is found to be highly dependent on viewing location. (letter to the editor)
Remote control of Alfven eigenmode sensing system on the large helical device
International Nuclear Information System (INIS)
Ito, T.; Toi, K.; Matsunaga, G.
2008-01-01
An active sensing system of Alfven eigenmodes (AEs), which consists of a set of toroidally distributed loop antennas and several bi-polar power supplies, has been developed in the large helical device (LHD). The power supplies are controlled with a function generator receiving a control pattern of antenna current and the driving frequency from a personal computer (PC) in an LHD control room. This sensing method is based on the analysis of the frequency dependence of a transfer function that is derived by the ratio of the Fourier-transformed magnetic probe signal ('plasma response') to antenna current one ('exciter signal'). Typically, the driving frequency of the antenna current is swept linearly in time from 10 kHz to 500 kHz for 2 s in the LHD experiment. The sensing system is fully controlled through Ethernet LAN with easy extendable GUI. Configuration and control scheme of the active sensing system of AEs are presented in this paper. An initial result of the system operation is also described
The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfven Eigenmodes
International Nuclear Information System (INIS)
Lesur, M.
2010-01-01
The achievement of sustained nuclear fusion in magnetically confined plasma relies on efficient confinement of alpha particles. Such particles can excite instabilities in the frequency range of Alfven Eigenmodes (AEs), which significantly degrade their confinement and threatens the vacuum vessel of future reactors. In the case of an isolated single resonance, the description of AE destabilization by high-energy ions is homothetic to the so-called Berk-Breizman (BB) problem. A semi-Lagrangian simulation code, COBBLES, is developed to solve the initial-value BB problem in both perturbative (δf) and self-consistent (full-f) approaches. Two collision models are considered, namely a Krook model, and a model that includes dynamical friction (drag) and velocity-space diffusion. The nonlinear behavior of instabilities in experimentally-relevant conditions is categorized into steady-state, periodic, chaotic, and frequency-sweeping (chirping) regimes, depending on external damping rate and collision frequency. The chaotic regime is shown to extend into a linearly stable region, and a mechanism that solves the paradox formed by the existence of such subcritical instabilities is proposed. Analytic and semi-empirical laws for nonlinear chirping characteristics, such as sweeping-rate, lifetime, and asymmetry, are developed and validated. Long-time simulations demonstrate the existence of a quasi-periodic chirping regime. Although the existence of such regime stands for both collision models, drag and diffusion are essential to reproduce the alternation between major chirping events and quiescent phases, which is observed in experiments. A new method for analyzing fundamental kinetic plasma parameters, such as linear drive and external damping rate, is developed. The method, which consists of fitting procedures between COBBLES simulations and quasi-periodic chirping AE experiments, does not require any internal diagnostics. This approach is applied to Toroidicity-induced AEs
The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfven Eigenmodes
International Nuclear Information System (INIS)
Lesur, M.
2010-01-01
The achievement of sustained nuclear fusion in magnetically confined plasma relies on efficient confinement of alpha particles, which are high-energy ions produced by the fusion reaction. Such particles can excite instabilities in the frequency range of Alfven Eigenmodes (AEs), which significantly degrade their confinement and threatens the vacuum vessel of future reactors. In order to develop diagnostics and control schemes, a better understanding of linear and nonlinear features of resonant interactions between plasma waves and high-energy particles, which is the aim of this thesis, is required. In the case of an isolated single resonance, the description of AE destabilization by high-energy ions is homothetic to the so-called Berk-Breizman (BB) problem, which is an extension of the classic bump-on-tail electrostatic problem, including external damping to a thermal plasma, and collisions. A semi-Lagrangian simulation code, COBBLES, is developed to solve the initial-value BB problem in both perturbative (δ f) and self-consistent (full-f) approaches. Two collision models are considered, namely a Krook model, and a model that includes dynamical friction (drag) and velocity-space diffusion. The nonlinear behavior of instabilities in experimentally-relevant conditions is categorized into steady-state, periodic, chaotic, and frequency-sweeping (chirping) regimes, depending on external damping rate and collision frequency. The chaotic regime is shown to extend into a linearly stable region, and a mechanism that solves the paradox formed by the existence of such subcritical instabilities is proposed. Analytic and semi-empirical laws for nonlinear chirping characteristics, such as sweeping-rate, lifetime, and asymmetry, are developed and validated. Long-time simulations demonstrate the existence of a quasi-periodic chirping regime. Although the existence of such regime stands for both collision models, drag and diffusion are essential to reproduce the alternation between
Energy Technology Data Exchange (ETDEWEB)
Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S
2010-08-19
The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.
International Nuclear Information System (INIS)
Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Heidbrink, W.W.; Crocker, N.A.; Kubota, S.; Yuh, H.
2010-01-01
The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) (M. Ono et al., Nucl. Fusion 40 557 (2000)). The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.
International Nuclear Information System (INIS)
Fasoli, A.F.; Testa, D.; Jaun, A.; Sharapov, S.; Gormezano, C.
2001-01-01
The linear stability properties of global modes that can be driven by resonant energetic particles or by the bulk plasma are studied using an external excitation method based on the JET saddle coil antennas. Low toroidal mode number, stable plasma modes are driven by the saddle coils and detected by magnetic probes to measure their structure, frequency and damping rate, both in the Alfven Eigenmode (AE) frequency range and in the low frequency Magneto-Hydro-Dynamic (MHD) range. For AEs, the dominant damping mechanisms are identified for different plasma conditions of relevance for reactors. Spectra and damping rates of low frequency MHD modes that are localized at the foot of the internal transport barrier and can affect the plasma performance in advanced tokamak scenarios have been directly measured for the first time. This gives the possibility of monitoring in real time the approach to the instability boundary. (author)
International Nuclear Information System (INIS)
Edlund, E.M.; Porkolab, M.; Kramer, G.J.; Lin, L.; Lin, Y.; Tsuji, N.; Wukitch, S.J.
2010-01-01
Experiments conducted in the Alcator C-Mod tokamak at MIT have explored the physics of reversed shear Alfven eigenmodes (RSAEs) during the current ramp. The frequency evolution of the RSAEs throughout the current ramp provides a constraint on the evolution of q min , a result which is important in transport modeling and for comparison with other diagnostics which directly measure the magnetic field line structure. Additionally, a scaling of the RSAE minimum frequency with the sound speed is used to derive a measure of the adiabatic index, a measure of the plasma compressibility. This scaling bounds the adiabatic index at 1.40 ± 0.15 used in MHD models and supports the kinetic calculation of separate electron and ion compressibilities with an ion adiabatic index close to 7/4.
1.5D quasilinear model and its application on beams interacting with Alfven eigenmodes in DIII-D
Energy Technology Data Exchange (ETDEWEB)
Ghantous, K.; Gorelenkov, N. N. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543-0451 (United States); Berk, H. L. [Institute for Fusion Studies, University of Texas, 2100 San Jacinto Blvd., Austin, Texas 78712-1047 (United States); Heidbrink, W. W. [Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697 (United States); Van Zeeland, M. A. [General Atomics, PO Box 85608, San Diego, California 92186-560 (United States)
2012-09-15
We propose a model, denoted here by 1.5D, to study energetic particle (EP) interaction with toroidal Alfvenic eigenmodes (TAE) in the case where the local EP drive for TAE exceeds the stability limit. Based on quasilinear theory, the proposed 1.5D model assumes that the particles diffuse in phase space, flattening the pressure profile until its gradient reaches a critical value where the modes stabilize. Using local theories and NOVA-K simulations of TAE damping and growth rates, the 1.5D model calculates the critical gradient and reconstructs the relaxed EP pressure profile. Local theory is improved from previous study by including more sophisticated damping and drive mechanisms such as the numerical computation of the effect of the EP finite orbit width on the growth rate. The 1.5D model is applied on the well-diagnosed DIII-D discharges no. 142111 [M. A. Van Zeeland et al., Phys. Plasmas 18, 135001 (2011)] and no. 127112 [W. W. Heidbrink et al., Nucl. Fusion. 48, 084001 (2008)]. We achieved a very satisfactory agreement with the experimental results on the EP pressure profiles redistribution and measured losses. This agreement of the 1.5D model with experimental results allows the use of this code as a guide for ITER plasma operation where it is desired to have no more than 5% loss of fusion alpha particles as limited by the design.
Drift-Alfven eigenmodes in inhomogeneous electron-positron-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Haque, Q; Ahmad, Ali [Theoretical Plasma Physics Division, PINSTECH, PO Nilore, Islamabad (Pakistan); Yamin, S, E-mail: qamar@pinstech.org.pk [Physics Division, PO Nilore, Islamabad (Pakistan)
2011-03-15
An analytical description of drift-Alfven modes in nonuniform bounded magnetized electron-positron-ion plasmas is presented here. In the linear domain, linearized equations are solved by considering the Gaussian density profile in the radial direction. For this bounded plasma, the condition for the quantization of the modes is found. We note that the condition depends upon the density ratios of different plasma species. The full set of nonlinear equations is also solved, yielding stationary rotating solutions in terms of Bessel functions. We also note that the behavior of the nonlinear structures can be affected by the concentration of the positrons in the system. The importance of the present results with respect to astrophysical plasmas is pointed out.
Beta-Suppression of Alfven Cascade Modes in the National Spherical Torus Experiment
International Nuclear Information System (INIS)
Fredrickson, E.D.; N.A. Crocker; N.N. Gorelenkov; W.W. Heidbrink; S. Kubota; F.M. Levinton; H. Yuh; J.E. Menard; Bell, R.E.
2007-01-01
The coupling of Alfven Cascade (AC) modes or reversed-shear Alfven eigenmodes (rsAE) to Geodesic Acoustic Modes (GAM) implies that the range of the AC frequency sweep is reduced as the electron β is increased. This model provides an explanation for the otherwise surprising absence of AC modes in reverse shear NSTX plasmas, given the rich spectrum of beam-driven instabilities typically seen in NSTX. In experiments done at very low β to investigate this prediction, AC modes were seen, and as the β e was increased from shot to shot, the range of the AC frequency sweep was reduced, in agreement with this theoretical prediction.
Parametric instabilities of parallel propagating incoherent Alfven waves in a finite ion beta plasma
International Nuclear Information System (INIS)
Nariyuki, Y.; Hada, T.; Tsubouchi, K.
2007-01-01
Large amplitude, low-frequency Alfven waves constitute one of the most essential elements of magnetohydrodynamic (MHD) turbulence in the fast solar wind. Due to small collisionless dissipation rates, the waves can propagate long distances and efficiently convey such macroscopic quantities as momentum, energy, and helicity. Since loading of such quantities is completed when the waves damp away, it is important to examine how the waves can dissipate in the solar wind. Among various possible dissipation processes of the Alfven waves, parametric instabilities have been believed to be important. In this paper, we numerically discuss the parametric instabilities of coherent/incoherent Alfven waves in a finite ion beta plasma using a one-dimensional hybrid (superparticle ions plus an electron massless fluid) simulation, in order to explain local production of sunward propagating Alfven waves, as suggested by Helios/Ulysses observation results. Parameter studies clarify the dependence of parametric instabilities of coherent/incoherent Alfven waves on the ion and electron beta ratio. Parametric instabilities of coherent Alfven waves in a finite ion beta plasma are vastly different from those in the cold ions (i.e., MHD and/or Hall-MHD systems), even if the collisionless damping of the Alfven waves are neglected. Further, ''nonlinearly driven'' modulational instability is important for the dissipation of incoherent Alfven waves in a finite ion beta plasma regardless of their polarization, since the ion kinetic effects let both the right-hand and left-hand polarized waves become unstable to the modulational instability. The present results suggest that, although the antisunward propagating dispersive Alfven waves are efficiently dissipated through the parametric instabilities in a finite ion beta plasma, these instabilities hardly produce the sunward propagating waves
Energy Technology Data Exchange (ETDEWEB)
Panis, T.
2010-12-15
Direct damping rate measurements of Alfven eigenmodes (AE) are obtained using the active MHD spectroscopy system installed on the JET tokamak. The system was recently equipped with new antennas, designed to study especially the modes of intermediate toroidal mode number n, ¦n¦ = 3 -- 15, as the AEs of this range are most prone to destabilization by the fast particles in JET and in future burning plasma experiments such as ITER. The broad n-spectrum that is driven by the new antennas and the more localized structure of intermediate-n AEs has important implications for the ability to measure damping rates of intermediate n. To obtain an extended database of high accuracy individual-n measurements, experimental work on technical and engineering aspects was indispensable both on the excitation side and on the detection side. On the excitation side, the electrical model of the AE exciter has been constructed during this thesis. The model is used to determine the operational capabilities of the exciter with the new antennas, to optimize the antenna currents and to design the relevant impedance matching circuits. On the detection side, the excitation of multiple-n, degenerate AEs at close frequencies prompted for a sophisticated method to correctly estimate the n-spectrum of the plasma response. To this end, a sparse spectrum representation method was adapted to deal with the complex and real-time data produced by the active MHD spectroscopy system. The n-decomposition of the plasma response requires an accurate relative calibration of the magnetic pick-up coils. An in situ method was developed and applied for the calibration of the coils using the direct coupling to the new AE antennas. A large collection of damping rate measurements of, mainly, toroidal AEs (TAEs) was obtained during the 2008/2009 JET experimental campaigns following the technical optimization of the antenna system. Selected measurements of ¦n¦ = 3, 4 and ¦n¦ = 7 TAEs are compared to the plasma
International Nuclear Information System (INIS)
Panis, T.
2010-12-01
Direct damping rate measurements of Alfven eigenmodes (AE) are obtained using the active MHD spectroscopy system installed on the JET tokamak. The system was recently equipped with new antennas, designed to study especially the modes of intermediate toroidal mode number n, ¦n¦ = 3 -- 15, as the AEs of this range are most prone to destabilization by the fast particles in JET and in future burning plasma experiments such as ITER. The broad n-spectrum that is driven by the new antennas and the more localized structure of intermediate-n AEs has important implications for the ability to measure damping rates of intermediate n. To obtain an extended database of high accuracy individual-n measurements, experimental work on technical and engineering aspects was indispensable both on the excitation side and on the detection side. On the excitation side, the electrical model of the AE exciter has been constructed during this thesis. The model is used to determine the operational capabilities of the exciter with the new antennas, to optimize the antenna currents and to design the relevant impedance matching circuits. On the detection side, the excitation of multiple-n, degenerate AEs at close frequencies prompted for a sophisticated method to correctly estimate the n-spectrum of the plasma response. To this end, a sparse spectrum representation method was adapted to deal with the complex and real-time data produced by the active MHD spectroscopy system. The n-decomposition of the plasma response requires an accurate relative calibration of the magnetic pick-up coils. An in situ method was developed and applied for the calibration of the coils using the direct coupling to the new AE antennas. A large collection of damping rate measurements of, mainly, toroidal AEs (TAEs) was obtained during the 2008/2009 JET experimental campaigns following the technical optimization of the antenna system. Selected measurements of ¦n¦ = 3, 4 and ¦n¦ = 7 TAEs are compared to the plasma
International Nuclear Information System (INIS)
Carolipio, E. M.; Heidbrink, W. W.; Cheng, C. Z.; Chu, M. S.; Fu, G. Y.; Jaun, A.; Spong, D. A.; Turnbull, A. D.; White, R. B.
2001-01-01
The internal structure of the toroidicity-induced Alfven eigenmode (TAE) is studied by comparing soft x-ray profile and beam ion loss data taken during TAE activity in the DIII-D tokamak [W. W. Heidbrink , Nucl. Fusion 37, 1411 (1997)] with predictions from theories based on ideal magnetohydrodynamic (MHD), gyrofluid, and gyrokinetic models. The soft x-ray measurements indicate a centrally peaked eigenfunction, a feature which is closest to the gyrokinetic model's prediction. The beam ion losses are simulated using a guiding center code. In the simulations, the TAE eigenfunction calculated using the ideal MHD model acts as a perturbation to the equilibrium field. The predicted beam ion losses are an order of magnitude less than the observed ∼6%--8% losses at the peak experimental amplitude of {delta}B r /B 0 ≅2--5 x 10 -4
Excitation of Alfvenic instabilities in spherical tokamaks
International Nuclear Information System (INIS)
McClements, K.G.; Appel, L.C.; Hole, M.J.; Thyagaraja, A.
2003-01-01
Understanding energetic particle confinement in spherical tokamak (STs) is important for optimising the design of ST power plants, and provides a testbed for theoretical modelling under conditions of strong toroidicity and shaping, and high beta. MHD analysis of some recent beam-heated discharges in the MAST ST indicates that high frequency modes observed in these discharges can be identified as toroidal Alfven Eigenmodes (TAEs) and elliptical Alfven Eigenmodes (EAEs). It is possible that such modes could strongly enhance fusion alpha-particle transport in an ST power plant. Computations of TAE growth rates for one particular MAST discharge, made using the HAGIS guiding centre code and benchmarked against analytical estimates, indicate strong drive by sub-Alfvenic neutral beam ions. HAGIS computations using higher mode amplitudes than those observed indicate that whereas co-passing beam ions provide the bulk of he TAE drive, counter-passing ions provide the dominant component of TAE-induced particle losses. Axisymmetric Alfvenic mode activity has been detected during ohmic discharges in MAST. These observations are shown by computational modelling to be consistent with the excitation of global Alfven Eigenmodes (GAEs) with n=0 and low m, driven impulsively by low frequency MHD. (author)
Waltz, R. E.; Bass, E. M.; Heidbrink, W. W.; VanZeeland, M. A.
2015-11-01
Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient [Heidbrink et al 2013 Nucl. Fusion 53 093006]. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code [Waltz and Bass 2014 Nucl. Fusion 54 104006], used to validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the Angioni et al (2009 Nucl. Fusion 49 055013) energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. These results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.
International Nuclear Information System (INIS)
Testa, D.; Carfantan, H.; Fasoli, A.; Goodyear, A.; King, Q.; Blanchard, P.; Klein, A.; Lavanchy, P.; Panis, T.
2011-01-01
We present the real-time VME system used to detect and track MHD instabilities, and particularly Alfven Eigenmodes, on the JET tokamak [J. Wesson, Tokamaks, 3rd ed., Oxford Science Publication, Oxford, 2003, p. 617]. This system runs on a 1 kHz clock cycle, and allows performing a real-time, unsupervised and blind detection, decomposition and tracking of the individual components in a frequency-degenerate, multi-harmonic spectrum, using a small number of input data which are unevenly sampled in the spatial domain. This makes it possible to follow in real-time the detected modes as the plasma background evolves, and measure in real-time their frequency, damping rate, toroidal mode-number and relative amplitude. The successful implementation of this system opens a clear path towards developing real-time control tools for electro-magnetic instabilities in future fusion devices aimed at achieving a net energy gain, such as ITER [J. Wesson, Tokamaks, 3rd ed., Oxford Science Publication, Oxford, 2003, p. 711].
Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode
Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.
2018-01-01
The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N. N.; Berk, H. L.; Fredrickson, E.; Sharapov, S. E.
2007-07-02
New global MHD eigenmode solutions arising in gaps in the low frequency Alfvén -acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfvén-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfvén-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta < 2% as well as in NSTX plasmas at relatively high beta > 20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfvén coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.
Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.
2017-12-01
The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.
Low-n shear Alfven spectra in axisymmetric toroidal plasmas
International Nuclear Information System (INIS)
Cheng, C.Z.; Chance, M.S.
1985-11-01
In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs
Alfven wave heating and stability
International Nuclear Information System (INIS)
Villard, L.; Brunner, S.; Jaun, A.; Vaclavik, J.
1994-10-01
Alfven waves in fusion plasmas play an important role in a number of situations. First, in Alfven Wave Heating (AWH) schemes. Second, both theory and experiment have demonstrated the existence of Global Alfven Eigenmodes (GAEs). GAEs have been observed in different tokamaks (PRETEXT, TCA, TEXTOR, etc.) and, more recently, in a stellarator (Wendelstein 7-AS) where they were shown to become unstable under intense Neutral Beam injection. Third, the existence and possible destabilization by fast ions of Toroidicity induced Alfven Eigenmodes (TAEs) has been evidenced both theoretically and experimentally. This destabilization could hamper the operation of a magnetically confined fusion reactor by setting a limit on the number of fusion alpha particles in the plasma. It is therefore crucial to understand the mechanisms leading to the occurrence of the instability and also those that can stabilize the TAEs by increasing the strength of the damping. The aim is to be able to devise possible ways to avoid the instability of Alfven eigenmodes in a region of parameter space that is compatible with the functioning of a fusion reactor. A global perturbative approach is presented to tackle the problem of the linear stability of TAEs. Our model computes the overall wave particle power transfers to the different species and thus could also be applied to the study of alpha power extraction in the presence of Alfven waves. We indicate also how to go beyond the perturbative approach. (author) 15 figs., 38 refs
Alfven continuum with toroidicity
International Nuclear Information System (INIS)
Riyopoulos, S.; Mahajan, S.M.
1985-06-01
The symmetry property of the MHD wave propagation operator is utilized to express the toroidal eigenmodes as a superposition of the mutually orthogonal cylindrical modes. Because of the degeneracy among cylindrical modes with the same frequency but resonant surfaces of different helicity the toroidal perturbation produces a zeroth order mixing of the above modes. The toroidal eigenmodes of frequency ω 0 2 have multiple resonant surfaces, with each surface shifted relative to its cylindrical position and carrying a multispectral content. Thus a single helicity toroidal antenna of frequency ω 0 couples strongly to all different helicity resonant surfaces with matching local Alfven frequency. Zeroth order coupling between modes in the continuum and global Alfven modes also results from toroidicity and degeneracy. Our perturbation technique is the MHD counterpart of the quantum mechanical methods and is applicable through the entire range of the MHD spectrum
Ion Heating by Fast Particle Induced Alfven Turbulence
International Nuclear Information System (INIS)
Gates, D.; Gorelenkov, N.; White, R.B.
2001-01-01
A novel mechanism that directly transfers energy from Super-Alfvenic energetic ions to thermal ions in high-beta plasmas is described. The mechanism involves the excitation of compressional Alfvin eigenmodes (CAEs) in the frequency range with omega less than or approximately equal to omega(subscript ci). The broadband turbulence resulting from the large number of excited modes causes stochastic diffusion in velocity space, which transfers wave energy to thermal ions. This effect may be important on the National Spherical Torus Experiment (NSTX), and may scale up to reactor scenarios. This has important implications for low aspect ratio reactor concepts, since it potentially allows for the modification of the ignition criterion
Resonant Alfven waves on auroral field lines
International Nuclear Information System (INIS)
Chiu, Y.T.
1987-01-01
It is shown that resonant Alfven waves on dipole magnetic field geometry and plasma distributions suitable for auroral field lines can be conveniently treated in the theory of Mathieu functions. Resurgent interest in invoking large-scale Alfven waves to structure some elements of auroral electrodynamics calls for interpretation of measured perpendicular electric and magnetic disturbance fields in terms of Alfven waves. The ability to express the resonant eigenmodes in closed form in terms of Mathieu functions allows for convenient tests of the Alfven wave structuring hypothesis. Implications for current vector electric and magnetic disturbance measurements are discussed
The structure of ideal MHD Alfven modes
International Nuclear Information System (INIS)
Turnbull, A.D.; Chu, M.S.; Lao, L.L.; Greene, J.M.; Strait, E.J.; Chance, M.S.
1991-01-01
Continuum Alfven modes have undergone a resurgence in interest with the recent realization that so-called Toroidicity-Induced Alfven Eigenmodes (TAE modes) can be destabilized either by energetic beam ions in a strongly heated plasma or by alpha particles in a burning plasma. The GATO Ideal MHD Stability code, which minimizes the potential energy according to a variational formulation, has now been modified to isolate and calculate stable continuum eigenmodes. The existence of the TAE mode and its associated gap has been verified, using this code, for a circular cross-section, finite aspect ratio equilibrium. Moreover, the eigenfrequencies and eigenmodes obtained from this variational calculation are found to be in extremely good quantitative agreement with those obtained from the non-variational NOVA code. A systematic survey of the stable continuum has further revealed a surprising diversity in the structure of the continuum Alfven modes; the logarithmic singularity can be so broad, in some cases, as to occupy the whole cross-section. This has important implications for heating experiments which aim to locally excite the plasma by rf waves in the Alfven frequency range. The structure of several representative examples is discussed. The Alfven continuum, in general, and the TAE mode and its associated gap, in particular, are also found to be strongly modified by cross-sectional shaping. The dependence of the spectrum on various shaping factors is explored
Shear Alfven waves in tokamaks
International Nuclear Information System (INIS)
Kieras, C.E.
1982-12-01
Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma
Drift-kinetic Alfven modes in high performance tokamaks
International Nuclear Information System (INIS)
Jaun, A.; Fasoli, A.F.; Testa, D.; Vaclavik, J.; Villard, L.
2001-01-01
The stability of fast-particle driven Alfven eigenmodes is modeled in high performance tokamaks, successively with a conventional shear, an optimized shear and a tight aspect ratio plasma. A large bulk pressure yields global kinetic Alfven eigenmodes that are stabilized by mode conversion in the presence of a divertor. This suggests how conventional reactor scenarii could withstand significant pressure gradients from the fusion products. A large safety factor in the core q 0 >2.5 in deeply shear reversed configurations and a relatively large bulk ion Larmor radius in a low magnetic field can trigger global drift-kinetic Alfven eigenmodes that are unstable in high performance JET, NSTX and ITER plasmas. (author)
Anomalous transport due to shear-Alfven waves
International Nuclear Information System (INIS)
Lee, W.W.; Chance, M.S.; Okuda, H.
1980-10-01
The behavior of shear-Alfven eigenmodes and the accompanied anomalous transport have been investigated. In the particle simulation, equilibrium thermal fluctuations associated with the eigenmodes have been observed to nullify the zeroth-order shear near the rational surface through the induced second-order eddy current, and, in turn, give rise to the formation of magnetic islands which cause rapid electron energy transport in the region. The theoretical verification of the observed behavior is discussed
Peculiarities of destabilization of Alfven modes by energetic ions in stellarators
International Nuclear Information System (INIS)
Lutsenko, V.V.; Kolesnichenko, Ya.I.; Yakovenko, Yu.V.; Fesenyuk, O.P.; Weller, A.; Werner, A.; Wobig, H.
2003-01-01
Alfven Eigenmodes (AE) associated with the breaking of the axial symmetry in stellarators are considered. Specific calculations are carried out for the Helias reactor HSR4/18. An explanation of the temporal evolution of Alfvenic activity observed in experiments on W7-AS is suggested. (author)
Interplay of energetic ions and Alfven modes in helical plasmas
International Nuclear Information System (INIS)
Kolesnichenko, Ya.I.; Lutsenko, V.V.; Yakovenko, Yu.Y.; Yamazaki, K.; Nakajima, N.; Narushima, Y.; Toi, K.; Yamamoto, S.
2003-08-01
Alfven eigenmodes and their destabilization by energetic ions in stellarators, mainly, in the Large Helical Device (LHD) plasmas, are considered. A general expression for the instability growth rate is derived, which generalizes that obtained in Ref. [Ya.I. Kolesnichenko et al., Phys. Plasmas 9, 517 (2002)] by taking into account the finite magnitude of the perturbed longitudinal magnetic field. The structures of the Alfven continuum and Alfven eigenmodes, as well as the resonances of the wave-particle interaction, are studied. A numerical simulation of the destabilization of Alfven waves with low mode numbers during neutral-beam injection in a particular LHD shot is carried out. The obtained solutions represent even and odd core-localized Toroidicity-induced Alfven Eigenmodes, the calculated frequencies and the mode numbers being in agreement with experimental data. The growth rates of the instabilities are calculated. This work was done during the stay of Ya.I. Kolesnichenko in NIFS as a Guest Professor from January 26, 2003 to April 25, 2003. (author)
Alfvenic Instabilities and Fast Ion Transport in the DIII-D Tokamak
International Nuclear Information System (INIS)
Van Zeeland, M.; Heidbrink, W.; Nazikian, R.; Austin, M.; Berk, H.; Gorelenkov, N.; Holcomb, C.; Kramer, G.; Lohr, J.; Luo, Y.; Makowski, M.; McKee, G.; Petty, C.; Prater, R.; Solomon, W.; White, R.
2008-01-01
Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including Toroidicity and Ellipticity induced Alfven Eigenmodes (TAE/EAE, respectively) and Reversed Shear Alfven Eigenmodes (RSAE) as well as their spatial coupling. These modes are typically studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. During this same time period Fast-Ion D α (FIDA) spectroscopy shows that the central fast ion profile is flattened, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. To simulate the observed neutral beam ion redistribution, NOVA calculations of the 3D eigenmode structures are matched with experimental measurements and used in combination with the ORBIT guiding center following code. For fixed frequency eigenmodes, it is found that ORBIT calculations cannot explain the observed beam ion transport with experimentally measured mode amplitudes. Possible explanations are considered including recent simulation results incorporating eigenmodes with time dependent frequencies
International Nuclear Information System (INIS)
Fu, G.
1988-01-01
The problem of access to the high-beta ballooning second-stability regime by means of auxiliary heating and the problem of the stability of global-shear Alfven waves in an ignited tokamak plasma are theoretically investigated. These two problems are related to the confinement of both the bulk plasma as well as the fusion-product alpha particles an dare fundamentally important to the operation of ignited tokamak plasma. First, a model that incorporates both transport and ballooning mode stability was developed in order to estimate the auxiliary heating power required for tokamak plasma to evolve in time self-consistently into a high-beta, globally self-stabilized equilibrium. The critical heating power needed for access to second stability is found to be proportional to the square root of the anomalous diffusivity induced by the ballooning instability. Next, the full effects of toroidicity are retained in a theoretical description of global-type-shear Alfven modes whose stability can be modified by the fusion-product alpha particles that will present in an ignited tokamak plasma. Toroidicity is found to induce mode coupling and to stabilize the so-called Global Alfven Eigenmodes (GAE)
International Nuclear Information System (INIS)
Evans, T.E.
1984-09-01
The first direct observation of the internal structure of driven global Alfven eigenmodes in a tokamak plasma is presented. A carbon dioxide laser scattering/interferometer has been designed, built, and installed on the PRETEXT tokamak. By using this diagnostic system in the interferometer configuration, we have for the first time, thoroughly investigated the resonance conditions required for, and the spatial wave field structure of, driven plasma eigenmodes at frequencies below the ion cyclotron frequency in a confined, high temperature, tokamak plasma
Numerical analysis of quasiperiodic perturbations for the Alfven wave
International Nuclear Information System (INIS)
Yamakoshi, Y.; Muto, K.; Yoshida, Z.
1994-01-01
The Alfven wave may have a localized eigenfunction when it propagates on a chaotic magnetic field. The Arnold-Beltrami-Childress (ABC) flow is a paradigm of chaotic stream lines and is a simple exact solution to the three-dimensional force-free plasma equilibrium equations. The three-dimensional structure of the magnetic field is represented by sinusoidal quasiperiodic modulation. The short wavelength Alfven wave equation for the ABC-flow magnetic field has a quasiperiodic potential term, which induces interference among ''Bragg-reflected'' waves with irregular phases. Then the eigenfunction decays at long distance and a point spectrum occurs. Two different types of short wavelength modes have numerically analyzed to demonstrate the existence of localized Alfven wave eigenmodes
Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak
International Nuclear Information System (INIS)
Martin, Y.; Hollenstein, Ch.
1988-01-01
The study of the Scrape-Off Layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The SOL of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of the present work is to present in detail the influence of the Alfven wave spectrum on the SOL. The experiments have shown that the plasma boundary layer is strongly affected by the RF, in particular the ion density, the electron temperature and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. This behaviour changes as a function of the power transmitted to the plasma through the antennae, especially we have found with MHD modes a change around 100 kW. The profiles of the basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the difference in coupling, for the continua and the eigenmodes, between the Alfven wave field and the scrape-off layer. (author) 5 figs., 6 refs
Stability of Global Alfven Waves (Tae, Eae) in Jet Tritium Discharges
Kerner, W.; Borba, D.; Huysmans, G. T. A.; Porcelli, F.; Poedts, S.; Goedbloed, J. P.; Betti, R.
1994-01-01
The interaction of alpha-particles in JET tritium discharges with global Alfven waves via inverse Landau damping is analysed. It is found that alpha-particle driven eigenmodes were stable in the PTE1 and should also be stable in a future 50:50 deuterium-tritium mix discharge aiming at Q(DT) = 1,
International Nuclear Information System (INIS)
Stix, H.
1981-01-01
The physics of Alfven-wave heating is particularly sensitive to the character of the linear mode conversion which occurs at the Alfven resonance layer. Parameter changes can profoundly affect both the location within the plasma and the mechanism for the power absorption. Under optimal conditions the heating power may be absorbed by electron Landau damping and by electron transit-time magnetic pumping in the plasma interior, or by the same processes acting near the resonance layer on the mode-converted kinetic Alfven wave. The method is outlined for computing the coefficients for reflection, transmission and absorption at the resonance layer and some representative results are offered
Evolution of Eigenmodes of the Mhd-Waveguide in the Outer Magnetosphere
Chuiko, Daniil
EVOLUTION OF EIGENMODES OF THE MHD-WAVEGUIDE IN THE OUTER MAGNETOSPHERE Mazur V.A., Chuiko D.A. Institute of Solar-Terrestrial Physics, Irkutsk, Russia. Geomagnetic field and plasma inhomogeneties in the outer equatorial part of the magnetosphere al-lows for existence of a channel with low Alfven speeds, which spans from the nose to the far flanks of the magnetosphere, in the morning as well as in the evening sectors. This channel plays a role of a waveguide for fast magnetosonic waves. When an eigenmode travels along the waveguide (i.e. in the azimuthal direction) it undergoes certain evolution. The parameters of the waveguide are changing along the way of wave’s propagation and the eigenmode “adapts” to these parameters. Conditions of the Kelvin-Helmholtz instability are changing due to the increment in the solar wind speed along the magnetopause. The conditions of the solar wind hydromagnetic waves penetration to the magnetosphere are changing due to the same increment. As such, the process of the penetration turns to overreflection regime, which abruptly increases the pump level of the magnetospheric waveguide. There is an Alfven resonance deep within the magnetosphere, which corresponds to the propagation of the fast mode along the waveguide. Oscillation energy dissipation takes place in the vicinity of the Alfven resonance. Alfven resonance is a standing Alfven wave along the magnetic field lines, so it reaches the ionosphere and the Earth surface, when the fast modes of the waveguide, localized in the low Alfven speed channel cannot be observed on Earth. The evolution of the waveguide oscillation propagating from the nose to the far tail is theoretically investigated in this work with consideration of all aforementioned effects. The spatial structure var-iation character, spectral composition and amplitude along the waveguide are found.
Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak
International Nuclear Information System (INIS)
Martin, Y.; Hollenstein, C.
1989-01-01
The study of the scrape-off layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The scrape-off layer of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of this work is to present measurements on the influence of the Alfven wave spectrum on the scrape-off layer. These experiments have shown that the plasma boundary layer is strongly affected by the wave field, in particular the ion saturation current and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes, the Discrete Alfven Wave (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. In case of MHD mode activity, this behaviour changes for power exceeding 100 kW. The profiles of basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF (radio frequency) phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the coupling between RF power and typical edge parameters. (orig.)
Investigation of global Alfven instabilities in TFTR
International Nuclear Information System (INIS)
Wong, K.L.; Paul, S.F.; Fredrickson, E.D.; Nazikian, R.; Park, H.K.; Bell, M.; Bretz, N.L.; Budny, R.; Cheng, C.Z.; Cohen, S.; Hammett, G.W.; Jobes, F.C.; Johnson, L.; Meade, D.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Synakowski, E.J.; Roberts, D.R.; Sabbagh, S.
1992-01-01
Toroidal Alfven Eigenmodes (TAE) were excited by the energetic neutral beam ions tangentially injected into TFTR plasmas at low magnetic field such that the injection velocities were comparable to the Alfven speed. The modes were identified by measurements from Mirnov coils and beam emission spectroscopy (BES). TAE modes appear in bursts whose repetition rate increases with beam power. The neutron emission rate exhibits sawtooth-like behavior and the crashes always coincide with TAE bursts. This indicates ejection of fast ions from the plasma until these modes are stabilized. The dynamics of growth and stabilization was investigated at various plasma current and magnetic field. The results indicate that the instability can effectively clamp the number of energetic ions in the plasma. The observed instability threshold is discussed in the light of recent theories. In addition to these TAE modes, intermittent oscillations at three times the fundamental TAE frequency were observed by Mirnov coils, but no corresponding signal was found in BES. It appears that these high frequency oscillations do not have direct effect on the plasma neutron source strength
Alfven Spectroscopy for Advanced Scenarios on JET
Energy Technology Data Exchange (ETDEWEB)
Sharapov, S. E.
2007-07-01
Advanced tokamak scenarios on JET exhibit outstanding quality fusion-grade plasmas, with internal transport barriers (ITBs) capable of supporting gradients {nabla} T{sub i}{approx_equal} 150 keV/m (with T{sub i}(0){approx_equal} 40 keV), and with q(r)-profiles ranging from monotonic to deep shear reversal, including the limiting case of toroidal current holes. It was found experimentally, that in reversed shear JET discharges the ITB start from so-called ITB triggering events, which are seen as increases in electron temperature within, e.g. r/a {<=} 0.4 by {delta} T{sub e}/T{sub e}{approx} 10-30%. If main heating power is applied at this time, an ITB is formed easily. Without an extra-heating power the improved confinement effect is lost in about 100 msec. Here, we investigate the magnetic field topology at the time of the ITB triggering events in JET plasmas. Alfven spectroscopy based on discrete spectrum of Alfven eigenmodes (AEs) excited by ICRH-accelerated and/or NBI-produced energetic ions is used for determining the evolution of the q(r)- profiles. Recently developed interferometry diagnostics of AEs significantly extended time resolution and sensitivity of Alfven spectroscopy on JET and made it possible to perform the ITB triggering event studies with a high accuracy. The ITB triggering events are found to occur when q{sub min} (t) passes values q{sub min} integer (majority of the cases), q{sub min}= half-integer, and when q(r=0)--infinity (current hole is triggered). This experimental data is compared to the density of rational surfaces transport theory. (Author)
Alfven Spectroscopy for Advanced Scenarios on JET
International Nuclear Information System (INIS)
Sharapov, S. E.
2007-01-01
Advanced tokamak scenarios on JET exhibit outstanding quality fusion-grade plasmas, with internal transport barriers (ITBs) capable of supporting gradients ∇ T i ≅ 150 keV/m (with T i (0)≅ 40 keV), and with ) q(r) -profiles ranging from monotonic to deep shear reversal, including the limiting case of toroidal current holes. It was found experimentally, that in reversed shear JET discharges the ITB start from so-called ITB triggering events, which are seen as increases in electron temperature within, e.g. r/a ≤ 0.4 by Δ T e /T e ∼ 10-30%. If main heating power is applied at this time, an ITB is formed easily. Without an extra-heating power the improved confinement effect is lost in about 100 msec. Here, we investigate the magnetic field topology at the time of the ITB triggering events in JET plasmas. Alfven spectroscopy based on discrete spectrum of Alfven eigenmodes (AEs) excited by ICRH-accelerated and/or NBI-produced energetic ions is used for determining the evolution of the q(r)- profiles. Recently developed interferometry diagnostics of AEs significantly extended time resolution and sensitivity of Alfven spectroscopy on JET and made it possible to perform the ITB triggering event studies with a high accuracy. The ITB triggering events are found to occur when q m in (t) passes values q m ininteger (majority of the cases), q m in= half-integer, and when q(r=0)--∞ (current hole is triggered). This experimental data is compared to the idensity of rational surfaces transport theory. (Author)
Confrontation Doederlein/Alfven
International Nuclear Information System (INIS)
Anon.
1977-01-01
In a brief article it is reported that Hannes Alfven has accepted an invitation to take part in the Salzburg Conference. He will participate in the section on 'Nuclear Power and Public Opinion'. It is anticipated that Jan M. Doederlein will be one of Alfven's opponents. The article concludes by presenting a synopsis of the views of the World Council of Churches, which will also take part in the Salzburg Conference. It is the Council's opinion that there are no ethical or religious objections to the exploitation of nuclear power. (JIW)
Resistive vs. total power depositions by Alfven modes in pre-heated low aspect ratio tokamaks
International Nuclear Information System (INIS)
Cuperman, S.; Bruma, C.; Komoshvili, K.
2004-01-01
The power deposition of fast waves launched by a LFS located antenna in a pre-heated, strongly non-uniform low aspect ratio tokamak (START) is investigated. The rigorous computational results indicate a total power deposition by far larger than that predicted for Alfven continuum eigenmodes in cylindrical plasmas. For toroidal wave numbers |N| > 1, the resistive and total power depositions are almost equal. (author)
International Nuclear Information System (INIS)
Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.
1991-01-01
The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here
Alfven Waves in Gyrokinetic Plasmas
International Nuclear Information System (INIS)
Lee, W.W.; Qin, H.
2003-01-01
A brief comparison of the properties of Alfven waves that are based on the gyrokinetic description with those derived from the MHD equations is presented. The critical differences between these two approaches are the treatment of the ion polarization effects. As such, the compressional Alfven waves in a gyrokinetic plasma can be eliminated through frequency ordering, whereas geometric simplifications are needed to decouple the shear Alfven waves from the compressional Alfven waves within the context of MHD. Theoretical and numerical procedures of using gyrokinetic particle simulation for studying microturbulence and kinetic-MHD physics including finite Larmor radius effects are also presented
Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas
International Nuclear Information System (INIS)
Bruma, C.; Cuperman, S.; Komoshvili, K.
1997-01-01
This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({ω Alf (r)} min Alf (r)} max ) and discrete range, DR, where global Alfven eigenmodes, GAEs (ω Alf (r)} min ) exist, are considered. (Here, ω Alf (r) ≡ ω Alf [n(r), B 0 (r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author)
Destabilization of low mode number Alfven modes in a tokamak by energetic or alpha particles
International Nuclear Information System (INIS)
Tsang, K.T.; Sigmar, D.J.; Whitson, J.C.
1980-12-01
With the inclusion of finite Larmor radius effects in the shear Alfven eigenmode equation, the continuous Alfven spectrum, which has been extensively discussed in ideal magnetohydrodynamics, is removed. Neutrally stable, discrete radial eigenmodes appear in the absence of sources of free energy and dissipation. Alpha (or energetic) particle toroidal drifts destabilize these modes, provided the particles are faster than the Alfven speed. Although the electron Landu resonance contributes to damping, a stability study of the parametric variation of the energy and the density scale length of the energetic particles shows that modes with low radial mode numbers remain unstable in most cases. Since the alpha particles are concentrated in the center of the plasma, this drift-type instability suggests anomalous helium ash diffusion. Indeed, it is shown that stochasticity of alpha orbits due to the overlapping of radially neighboring Alfven resonances is induced at low amplitudes, e/sub i//sup approx./phi/T/sub i/ greater than or equal to 0.05, implying a diffusion coefficient D/sub r//sup α/ greater than or equal to 4.4 x 10 3 cm 2 /s
Eigenmode analysis of compressional waves in the magnetosphere
International Nuclear Information System (INIS)
Cheng, C.Z.; Lin, C.S.
1987-04-01
A field-aligned eigenode analysis of compressional Alfven instabilities has been performed for a two component anisotropic plasma in a dipole magnetic field. The eigenmode equations are derived from the gyrokinetic equations in the long wavelength (k rho < 1) and low frequency (ω < ω/sub b/) limits, where rho is the hot particle gyroradius and ω/sub b/ is the hot particle bounce frequency. Two types of compressional instabilities are identified. One is the drift mirror mode which has an odd parity compressional magnetic component with respect to the magnetic equator. The other is the drift compressional mode with an even parity compressional magnetic component. For typical storm time plasma parameters neargeosynchronous orbit, the drift mirror mode is most unstable and the drift compressional mode is stable. The storm time compressional Pc 5 waves, observed by multiple satellites during November 14-15, 1979 [Takahashi et al., 1987], can be explained by the drift mirror instability
Ion Acceleration in Plasmas with Alfven Waves
International Nuclear Information System (INIS)
Kolesnychenko, O.Ya.; Lutsenko, V.V.; White, R.B.
2005-01-01
Effects of elliptically polarized Alfven waves on thermal ions are investigated. Both regular oscillations and stochastic motion of the particles are observed. It is found that during regular oscillations the energy of the thermal ions can reach magnitudes well exceeding the plasma temperature, the effect being largest in low-beta plasmas (beta is the ratio of the plasma pressure to the magnetic field pressure). Conditions of a low stochasticity threshold are obtained. It is shown that stochasticity can arise even for waves propagating along the magnetic field provided that the frequency spectrum is non-monochromatic. The analysis carried out is based on equations derived by using a Lagrangian formalism. A code solving these equations is developed. Steady-state perturbations and perturbations with the amplitude slowly varying in time are considered
Nonlinear surface Alfven waves
International Nuclear Information System (INIS)
Cramer, N.F.
1991-01-01
The problem of nonlinear surface Alfven waves propagating on an interface between a plasma and a vacuum is discussed, with dispersion provided by the finite-frequency effect, i.e. the finite ratio of the frequency to the ion-cyclotron frequency. A set of simplified nonlinear wave equations is derived using the method of stretched co-ordinates, and another approach uses the generation of a second-harmonic wave and its interaction with the first harmonic to obtain a nonlinear dispersion relation. A nonlinear Schroedinger equation is then derived, and soliton solutions found that propagate as solitary pulses in directions close to parallel and antiparallel to the background magnetic field. (author)
Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas
International Nuclear Information System (INIS)
Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.
1996-01-01
A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, δf = f - f 0 , from an initial analytic distribution f 0 . High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question
Laplacian eigenmodes for spherical spaces
International Nuclear Information System (INIS)
Lachieze-Rey, M; Caillerie, S
2005-01-01
The possibility that our space is multi-rather than singly-connected has gained renewed interest after the discovery of the low power for the first multipoles of the CMB by WMAP. To test the possibility that our space is a multi-connected spherical space, it is necessary to know the eigenmodes of such spaces. Except for lens and prism space, and to some extent for dodecahedral space, this remains an open problem. Here we derive the eigenmodes of all spherical spaces. For dodecahedral space, the demonstration is much shorter, and the calculation method much simpler than before. We also apply our method to tetrahedric, octahedric and icosahedric spaces. This completes the knowledge of eigenmodes for spherical spaces, and opens the door to new observational tests of the cosmic topology. The vector space V k of the eigenfunctions of the Laplacian on the 3-sphere S 3 , corresponding to the same eigenvalue λ k = -k(k + 2), has dimension (k + 1) 2 . We show that the Wigner functions provide a basis for such a space. Using the properties of the latter, we express the behaviour of a general function of V k under an arbitrary rotation G of SO(4). This offers the possibility of selecting those functions of V k which remain invariant under G. Specifying G to be a generator of the holonomy group of a spherical space X, we give the expression of the vector space V x k of the eigenfunctions of X. We provide a method to calculate the eigenmodes up to an arbitrary order. As an illustration, we give the first modes for the spherical spaces mentioned
Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas
International Nuclear Information System (INIS)
Heidbrink, W. W.
2008-01-01
Superthermal energetic particles (EP) often drive shear Alfven waves unstable in magnetically confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfven instabilities are of practical importance, as the expulsion of energetic particles can damage the walls of a confinement device. Because of rapid dispersion, shear Alfven waves that are part of the continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating waves; the toroidal Alfven eigenmode is a prominent example. The second type is associated with an extremum of the continuous spectrum; the reversed shear Alfven eigenmode is an example of this type. In addition to these normal modes of the background plasma, when the energetic particle pressure is very large, energetic particle modes that adopt the frequency of the energetic particle population occur. Alfven instabilities of all three types occur in every toroidal magnetic confinement device with an intense energetic particle population. The energetic particles are most conveniently described by their constants of motion. Resonances occur between the orbital frequencies of the energetic particles and the wave phase velocity. If the wave resonance with the energetic particle population occurs where the gradient with respect to a constant of motion is inverted, the particles transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated with inversion of the toroidal canonical angular momentum P ζ is most important. Once a mode is driven unstable, a wide variety of
Alfven wave stability in D-III-D
International Nuclear Information System (INIS)
Campbell, R.B.; Samec, T.K.
1989-09-01
Within the framework of the global Alfven eigenmode theory in a cylindrical background plasma, I examine the excitation of global Alfven eigenmodes by intense neutral beam injection in the D III-D tokamak operating at General Atomics. I have considered two separate sets of experimental conditions, a ''low power'' set of cases using 10MW of hydrogen beams, and a ''high power'' shot of 20MW of deuterium beams. My results are particularly sensitive to the background density profile. For parabolic background density profiles, n 0 x (1 - (r/a) 2 ), I have determined that the plasma is stable to all toroidal and poloidal mode numbers for both high and low power cases. For density profiles which are of the form n 0 x (1 - (r/a) 2 ) 1/2 , for the same n 0 , my calculation indicates that the m = -1, l = 0 mode is unstable in each case. The high power case has a considerably higher growth rate at the baseline conditions, which motivated me to study this case more extensively. The results are also sensitive to the beam source radial scalelength, L s , and the electron temperature T e . By narrowing the source from the baseline 36 cm to 20 cm, the growth rate of the (0,-1) actually decreases, but the (0,-2) mode appears with a substantial growth rate. If the source could be made even narrower, L s ∼ 10 cm, the (1,-1) mode would appear, also with a large growth rate. 12 refs., 16 figs., 6 tabs
The effect of compressibility on the Alfven spatial resonance heating
International Nuclear Information System (INIS)
Azevedo, C.A.
1984-01-01
The effect of compressibility of magnetic field line on the damping rate of Alfven spatial resonance heating for a high beta plasma (Kinetic pressure/magnetic pressure) was analysed, using the ideal MHD (Magnetohydrodynamic) model in cylindrical geometry for a diffuse θ-pinch with conducting wall. The dispersion relation was obtained solving the equation of motion in the plasma and vacuum regions together with boundary conditions. (Author) [pt
Perturbation theory for Alfven wave
International Nuclear Information System (INIS)
Yoshida, Z.; Mahajan, S.M.
1995-01-01
The Alfven wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfven wave propagation along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k parallel ) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfven wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfven resonance constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfven wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena
Energy Technology Data Exchange (ETDEWEB)
Komoshvili, K.; Cuperman, S.; Bruma, C. [Tel Aviv Univ. (Israel). Sackler Faculty of Exact Sciences
1997-04-01
A systematic study of non-inductive current drive via helicity injection by global Alfven eigenmode (GAE) waves is carried out. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all of these functions of the characteristics of the waves launched by an external, concentric antenna (i.e. wave frequency and poloidal and toroidal wavenumbers). The tokamak plasma is simulated by a current-carrying cylindrical plasma column surrounded by a helical sheet current and situated inside a perfectly conducting shell, with incorporation of equilibrium (simulated) toroidal field, magnetic shear and a relatively large poloidal magnetic field component. Within the framework of low-{beta} MHD model equations and for typical tokamak physical parameters, the following basic results are obtained: (1) in the range of poloidal wavenumbers -3{<=} m {<=} 3 and toroidal wavenumbers -20{<=} n {<=}20, resonant GAE peaks below the Alfven continuum are found; (2) the power absorption (P), current drive (I) and corresponding frequency of the GAE modes depend strongly on the sets of (m,n) values considered; (3) the `net` current drive is positive (i.e. flows in the direction of the equilibrium current j{sub 0z} for m = -1, -2, -3 and -20 {<=} n {<=} -1 as well as for m +1, +2, +3 and n > 10); (4) in the cases m = -1, -2, -3, the efficiency of current drive, I/P, increases with /m/ and I/n/; (5) the radial localization of the current drive in each of the cases considered is determined and tabulated. (Author).
Plasma eigenmodes and particle acceleration
International Nuclear Information System (INIS)
Rowland, H.L.; Papadopoulos, K.; Tanaka, M.
1983-01-01
Recent simulations have revealed that for low initial ion beam velocities (νsub(d)<3νsub(ti)), the modified two stream instability leads to the formation of superthermal electron tails instead of the bulk heating seen for higher initial νsub(d). This tail formation arises from a nonadiabatic change in the normal modes of the plasma due to strong heating of the ions by the instability. In another example a change in the normal modes is shown to lead to ion heating when the low frequency normal modes of a plasma change from nonlinear eigenmodes (i.e., cavitons) to linear ion-acoustic waves. (author)
International Nuclear Information System (INIS)
Li, Wann-Quan; Ross, D.W.; Mahajan, Swadesh M.
1989-06-01
Kinetic effects of Alfven wave spatial resonances near the plasma edge are investigated numerically and analytically in a cylindrical tokamak model. In Part 1, cold plasma surface Alfven eigenmodes (SAE's) in a pure plasma are examined. Numerical calculations of antenna-driven waves exhibiting absorption resonances at certain discrete frequencies are first reviewed. From a simplified kinetic equation, an analytical dispersion relation is then obtained with the antenna current set equal to zero. The real and imaginary parts of its roots, which are the complex eigenfrequencies, agree with the central frequencies and widths, respectively, of the numerical antenna-driven resonances. These results serve as an introduction to the companion paper, in which it is shown that, in the presence of a minority species, certain SAE's, instead of heating the plasma exterior, can dissipate substantial energy in the two-ion hybrid layer near the plasma center. 11 refs., 8 figs., 1 tab
Resonant interaction of energetic ions with Alfven-like perturbations in stellarators
International Nuclear Information System (INIS)
Karulin, N.; Wobig, H.
1994-04-01
The modification of passing guiding center orbits of 3.5 MeV alpha particles and 45 keV protons in the presence of global Alfven eigenmodes (GAE's) is studied in modular advanced stellarators. It is found that if resonances between particles and waves occur, drift surfaces form a set of island structures. The mode numbers of the perturbations, which are dangerous for the energetic particle confinement, are discussed for two particular stellarators (Helias reactor and Wendelstein 7-AS). The perturbation amplitudes corresponding to the onset of orbit stochasticity are studied numerically. The coefficient of the collisionless stochastic diffusion is estimated using the island width derived analytically. (orig.)
Destabilization of hydromagnetic drift-Alfven waves in a finite pressure collisional plasma
International Nuclear Information System (INIS)
Tang, J.T.
1974-01-01
In a finite beta (β = 8πn 0 kT 0 /B 0 2 ) plasma, where the plasma pressure n 0 kT 0 is an appreciable fraction of the confining magnetic field energy-density B 0 2 /8π, density-gradient driven drift waves couple with Alfven waves when the phase velocities of the two waves become comparable. The resulting hydromagnetic drift-Alfven waves separate into two branches--a drift mode and an Alfven mode, with both modes exhibiting magnetic field and localized density fluctuations near the coupling point. The dispersion relation of the collisional drift-Alfven wave is derived by using a slab-geometry, two-fluid model which includes finite beta, electron-ion collisions, ion-ion collisions, finite ion larmar radius, temperature fluctuations, and an axial electron current. A hydromagnetic drift mode is found to be unstable in a moderately dense plasma. A localized ''Alfven'' mode is destabilized only with the passage of an axial current along the plasma column. In order to check the theoretical predictions an experiment is performed in a finite-beta plasma of density n 0 = 10 13 -10 15 cm -3 and temperature T/sub e/ approximately T/sub i/ = 1-7 eV. (U.S.)
International Nuclear Information System (INIS)
Fredrickson, E. D.; Belova, E. V.; Battaglia, D. J.
2017-01-01
In this paper we present data from experiments on the National Spherical Torus Experiment Upgrade, where it is shown for the first time that small amounts of high pitch-angle beam ions can strongly suppress the counterpropagating global Alfven eigenmodes (GAE). GAE have been implicated in the redistribution of fast ions and modification of the electron power balance in previous experiments on NSTX. The ability to predict the stability of Alfven modes, and developing methods to control them, is important for fusion reactors like the International Tokamak Experimental Reactor, which are heated by a large population of nonthermal, super-Alfvenic ions consisting of fusion generated alpha's and beam ions injected for current profile control. We present a qualitative interpretation of these observations using an analytic model of the Doppler-shifted ion-cyclotron resonance drive responsible for GAE instability which has an important dependence on k(perpendicular to rho L). A quantitative analysis of this data with the HYM stability code predicts both the frequencies and instability of the GAE prior to, and suppression of the GAE after the injection of high pitch-angle beam ions.
International Nuclear Information System (INIS)
Besson, G.; Borg, G.G.; Lister, J.B.; Marmillod, Ph.; Braun, F.; Murphy, A.B.; Noterdaeme, J.M.; Ryter, F.; Wesner, F.
1990-01-01
An experiment has been completed on ASDEX to study the response of the plasma to Alfven wave heating (AWH). Antenna excitation was provided by the old TCA rf generator with an output power capability of 500 kW. Two poloidal loop antennas were installed at the east and west ends of the tokamak allowing either N=1 or N=2 phasings. Since the largest antenna coupling to the Alfven resonance is provided by the m=1 surface wave, the antenna consisted only of a single element on the low field side, whereas in TCA the antennas are located on the top and the bottom of the torus. The antenna elements consisted of 2 parallel bars of inductance 730 nH and, as in TCA, were left unshielded. A typical antenna circulating current of 2 kA peak at 1.80 MHz was provided for the experiments. (author) 3 refs., 4 figs
Magnetosphere as an Alfven maser
International Nuclear Information System (INIS)
Trakhtengerts, V.Yu.
1979-01-01
The Earth magnetosphere is considered as an Alfven maser. The operation mechanism of such a maser is duscussed. The main fact of this mechanism is ''overpopulation'' of the Earth radiation belt with particles moving with cross velocities. The cross velocity particles excess results in the excitation of cyclotron instability in the radiation belt and in the self-arbitrary increase of Alfven waves. At late the theory of cyclotron instability of radiation belts has been universally developed. On the basis of ideas on magnetosphere maser on cyclotron resonance it was possible to explain many geophysical phenomena such as periodical spillings out of particles from the radiation belts, pulsing polar lights, oscillations of magnetic force tubes etc. It is proposed to carry out active cosmic experiments to understand deeper the processes occuring in radiation belts
Unstable universal drift eigenmodes in toroidal plasmas
International Nuclear Information System (INIS)
Cheng, C.Z.; Chen, L.
1980-01-01
The eigenmode equation describing ballooning collisionless drift instabilities is analyzed both analytically and numerically. A new branch of eigenmodes, which corresponds to quasi-bound states due to toroidal coupling effects such as ion delB drifts, is shown to be destabilized by electron Landau damping for typical tokamak parameters. This branch cannot be understood by the strong coupling approximation. However, the slab-like (Pearlstein--Berk-type) branch is found to remain stable and experience enhanced shear damping
Unstable universal drift eigenmodes in toroidal plasmas
International Nuclear Information System (INIS)
Cheng, C.Z.; Chen, L.
1979-08-01
The eigenmode equation describing ballooning collisionless drift instabilities is analyzed both analytically and numerically. A new branch of eigenmodes, which corresponds to quasi-bound states due to the finite toroidicity, is shown to be destabilized by electron Landau damping for typical Tokamak parameters. This branch cannot be understood by the strong coupling approximation. However, the slab-like (Pearlstein-Berk type) branch is found to remain stable and experience enhanced shear damping due to finite toroidicity
Compact toroids with Alfvenic flows
International Nuclear Information System (INIS)
Wang Zhehui; Tang, X.Z.
2004-01-01
The Chandrasekhar equilibria form a class of stationary ideal magnetohydrodynamics equilibria stabilized by magnetic-field-aligned Alfvenic flows. Analytic solutions of the Chandrasekhar equilibria are explicitly constructed for both field-reversed configurations and spheromaks. Favorable confinement property of nested closed flux surfaces and the ideal magnetohydrodynamic stability of the compact toroids are of interest for both magnetic trapping of high energy electrons in astrophysics and confinement of high temperature plasmas in laboratory
One-dimensional model of global Alfven Eigenmodes in TORTUS and Wendelstein WVII-AS
International Nuclear Information System (INIS)
Teo, C.Y.
1998-07-01
In this article, a model for GAEs in a screw pinch plasma geometry is presented. The wave equations are derived from an ideal MHD model with corrections for finite frequency. Analytical and numerical solutions of these equations, applied to parameter sets approximating the TORTUS Tokamak and the Wendelstein WVII-AS advanced stellarator, are presented and discussed. (orig.)
Finite amplitude solitary Alfven waves in a low-β plasma
International Nuclear Information System (INIS)
Kalita, M.K.; Kalita, B.C.
1985-01-01
Different exact forms of Alfven solitons were found recently in low-beta plasmas by different assumptions. The present paper studies the case of parallel ion inertia and current density. Both super and sub-Alfvenian rarefactive solitons were found to exist depending on the angle of inclination of the propagation vector with the magnetic field. (D.Gy.)
Resistive effects on helicity-wave current drive generated by Alfven waves in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Bruma, C.; Cuperman, S.; Komoshvili, K. [Tel Aviv Univ. (Israel). Faculty of Exact Sciences
1997-05-01
This work is concerned with the investigation of non-ideal (resistive) MHD effects on the excitation of Alfven waves by externally launched fast-mode waves, in simulated tokamak plasmas; both continuum range, CR ({l_brace}{omega}{sub Alf}(r){r_brace}{sub min} < {omega} < {l_brace}{omega}{sub Alf}(r){r_brace}{sub max}) and discrete range, DR, where global Alfven eigenmodes, GAEs ({omega} < {l_brace}{sub Alf}(r){r_brace}{sub min}) exist, are considered. (Here, {omega}{sub Alf}(r) {identical_to} {omega}{sub Alf}[n(r), B{sub 0}(r)] is an eigenfrequency of the shear Alfven wave). For this, a cylindrical current carrying plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is used. Toroidicity effects are simulated by adopting for the axial equilibrium magnetic field component a suitable radial profile; shear and finite relative poloidal magnetic field are properly accounted for. A dielectric tensor appropriate to the physical conditions considered in this paper is derived and presented. (author).
Computer simulation of driven Alfven waves
International Nuclear Information System (INIS)
Geary, J.L. Jr.
1986-01-01
The first particle simulation study of shear Alfven wave resonance heating is presented. Particle simulation codes self-consistently follow the time evolution of the individual and collective aspects of particle dynamics as well as wave dynamics in a fully nonlinear fashion. Alfven wave heating is a possible means of increasing the temperature of magnetized plasmas. A new particle simulation model was developed for this application that incorporates Darwin's formulation of the electromagnetic fields with a guiding center approximation for electron motion perpendicular to the ambient magnetic field. The implementation of this model and the examination of its theoretical and computational properties are presented. With this model, several cases of Alfven wave heating is examined in both uniform and nonuniform simulation systems in a two dimensional slab. For the inhomogeneous case studies, the kinetic Alfven wave develops in the vicinity of the shear Alfven resonance region
Axisymmetric Eigenmodes of Spheroidal Pure Electron Plasmas
Kawai, Yosuke; Saitoh, Haruhiko; Yoshida, Zensho; Kiwamoto, Yasuhito
2010-11-01
The axisymmetric electrostatic eigenmodes of spheroidal pure electron plasmas have been studied experimentally. It is confirmed that the observed spheroidal plasma attains a theoretically expected equilibrium density distribution, with the exception of a low-density halo distribution surrounding the plasma. When the eigenmode frequency observed for the plasma is compared with the frequency predicted by the dispersion relation derived under ideal conditions wherein the temperature is zero and the boundary is located at an infinite distance from the plasma, it is observed that the absolute value of the observed frequency is systematically higher than the theoretical prediction. Experimental examinations and numerical calculations indicate that the upward shift of the eigenmode frequency cannot be accounted for solely by the finite temperature effect, but is significantly affected by image charges induced on the conducting boundary and the resulting distortion of the density profile from the theoretical expectation.
Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma
Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud
2016-11-01
We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.
SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES
Energy Technology Data Exchange (ETDEWEB)
Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2012-07-10
Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
The stationary Alfven wave in laboratory and space regimes
Finnegan, S. M.
In this thesis, a non-linear, collisional, two-fluid model of uniform plasma convection across field-aligned current (FAC) sheets, describing stationary Alfven (StA) waves is developed in support of laboratory experiments performed to test the hypothesis that a stationary inertial Alfven wave pattern forms within a channel of parallel electron current across which plasma is convected. In a previous work, Knudsen (D. J. Knudsen, J. Geophys. Res. 101, 10,761 (1996)) showed that, for cold, collisionless plasma, stationary inertial Alfven (StIA) waves can accelerate electrons parallel to a background magnetic field and cause large, time-independent plasma-density variations having spatial periodicity in the direction of the convective flow over a broad range of spatial scales and energies. Here, Knudsen's model has been generalized for warm, collisional, anisotropic plasma. The inclusion of parallel electron thermal pressure introduces dispersive effects which extend the model to the kinetic (beta > me/mi) regime. The effects of both ion-neutral and electron-ion collisional resistivity on StIA and stationary kinetic Alfven (StKA) wave solutions is studied. Conditions for both periodic and solitary wave solutions are identified. In the small amplitude limit, it is shown that the StA wave equation reduces to the differential equation describing the behavior of a forced harmonic oscillator. Analytical solutions are obtained for both a step and impulse, of finite width, forcing functions. Plasma rotation experiments in the West Virginia University Q-machine (WVUQ) demonstrate that an electron-emitting spiral electrode produces controllable, parabolic radial profile of floating potential, while the space potential showed no such structure. Laser-induced fluorescence measurements confirmed that the azimuthal ion drift velocity is inconsistent with a drift due to a gradient in the space potential. Experiments designed to produce StIA wave signatures were performed in the
Active MHD Spectroscopy of Alfvén Eigenmodes on Alcator C-Mod
Sears, J.; Snipes, J.; Burke, W.; Parker, R.; Fasoli, A.
2004-11-01
Alfvén eigenmode resonances are excited in a variety of plasma conditions in C-Mod with two moderate-n antennas positioned above and below the outboard midplane. Power amplifiers (≈ 3 kW) sweep the driving frequency over the audio range (< 30 kHz) or over a selected ± 50 kHz range from 100 kHz to 1 MHz. Logic circuitry that calculates the center frequency of the Toroidal Alfven Eigenmode gap, f_TAE=v_A/4π qR, in real-time from BT and e measurements is being developed to enable the antennas to track f_TAE. Simultaneous in-vessel phase calibration of the pick-up coils will be used to better identify toroidal mode numbers. Shot-to-shot elongation scans do not show the dependence of damping on edge shear that was seen in results at JET. Inner wall limited plasmas with moderate outer gaps show higher damping rates than diverted plasmas with low outer gaps. Low frequency experiments below 20kHz will also be presented.
Discrete Alfven waves in the TORTUS tokamak
International Nuclear Information System (INIS)
Amagishi, Y.; Ballico, M.J.; Cross, R.C.; Donnely, I.J.
1989-01-01
Discrete Alfven Waves (DAWs) have been observed as antenna resistance peaks and as enhanced edge fields in the TORTUS tokamak during Alfven wave heating experiments. A kinetic theory code has been used to calculate the antenna loading and the structure of the DAW fields for a range of plasma current and density profiles. There is fair agreement between the measured and predicted amplitude of the DAW fields in the plasma edge when both are normalized to the same antenna power
Alfven wave. DOE Critical Review Series
International Nuclear Information System (INIS)
Hasegawa, A.; Uberoi, C.
1982-01-01
This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves
The influence of multiple ion species on Alfven wave dispersion and Alfven wave plasma heating
International Nuclear Information System (INIS)
Elfimov, A.G.; Tataronis, J.A.; Hershkowitz, N.
1994-01-01
In this paper, the effects of light impurities, such as deuterium, helium, or carbon, on Alfven wave dispersion characteristics are explored. It is shown that a small population of light impurities in a hydrogen plasma modify the dispersion of the global Alfven waves and the Alfven continuum in such a way that the wave frequency depends weakly on the toroidal wave number. It is also shown that the global Alfven wave enters into the Alfven continuum. Under these conditions, it is possible to heat plasma efficiently by employing an antenna with a broad toroidal wavelength spectrum. The relationship between impurity concentration and the efficiency of Alfven wave heating is explored. Under appropriate conditions, the results indicate that in the presence of impurities, Alfven waves can heat electrons predominantly in the central part of the plasma. This effect is explored via a series of numerical calculations of the heating specifically for the Phaedrus-T Alfven wave heating experiment [Phys. Fluids B 5, 2506 (1993)
Reduction of inward momentum flux by damped eigenmodes
International Nuclear Information System (INIS)
Terry, P. W.; Baver, D. A.; Hatch, D. R.
2009-01-01
The inward momentum flux driven by the off-diagonal pressure gradient in a fluid model for ion temperature gradient turbulence with large Richardson number is significantly reduced by the excitation of stable eigenmodes. This is accomplished primarily through the amplitude autocorrelation of the damped eigenmode, which, in the flux, directly counteracts the quasilinear contribution of the unstable eigenmode. Stable eigenmode cross correlations also contribute to the flux, but the symmetry of conjugate pairing of growing and damped eigenmodes leads to significant cancellations between cross correlation terms. Conjugate symmetry is a property of unstable wavenumbers but applies to the whole of the saturated state because damped eigenmodes in the unstable range prevent the spread of energy outside that range. The heat and momentum fluxes are nearly isomorphous when expressed in terms of the eigenmode correlations. Due to this similarity of form, the thermodynamic constraint, which keeps the heat flux outward even when significantly reduced by the damped eigenmode, results in a momentum flux that remains inward, even though it is also reduced by the damped eigenmode. The isomorphism is not perfect. When the contribution of stable eigenmode cross correlations to the flux do not cancel, the momentum flux can reverse sign and become outward.
Frequency chirpings in Alfven continuum
Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin
2017-10-01
We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.
Waveguide and loop coupling to fast MHD toroidal eigenmodes
International Nuclear Information System (INIS)
Paoloni, F.J.
1975-12-01
Heating of plasmas by wave techniques requires an effective method of coupling rf energy to the plasma. In cavities the presence of weakly damped eigenmodes will enhance the loading of antennas when the wave frequency equals an eigenmode frequency. This report considers two methods of coupling to fast MHD eigenmodes in a toroidal cavity: one is by a waveguide mounted perpendicular to the vacuum vessel wall; and the other by a loop placed within the cavity
Oscillations in sunspot umbras due to trapped Alfven waves excited by overstability
International Nuclear Information System (INIS)
Uchida, Yutaka; Sakurai, Takashi.
1975-01-01
Oscillations observed in sunspot umbras are interpreted as a vertical motion in the atmosphere induced by a standing Alfven wave trapped in the region between the overstable layer under the photosphere and the chromosphere-corona transition layer. The Alfven wave motion is considered to be excited by the overstable convection occurring at the bottom of the abovementioned oscillating layer, and waves with special frequencies are selected as eigen-mode waves standing in the ''cavity,'' while other waves which are out of phase with themselves after reflections will disappear. It is shown by solving the eigen-value problem that the fundamental eigen frequency falls in a range around 0.04 rad s -1 (corresponding to 140-180 s) for the condition in the umbra of a typical spot, and also that the eigen frequencies do not depend greatly on the circumstantial physical or geometric parameters of the model atmosphere, such as the temperature in the layer, or the height of the transition layer, etc. The eigen frequencies, however, depend on the Alfven velocity at the base of the oscillating layer (or at the top of the overstable layer), but the latter quantity, which represents the stiffness of the magnetic tube of force against the overturning motion, takes roughly a common value for different sunspots according to SAVAGE's (1969) stability analysis of the umbral atmosphere against thermal convection, and thus gives a comparatively narrow range of resonant frequencies. In addition to the selection mechanism for oscillations of 140-180-s period, some other aspects of the oscillation, such as the relation to the running penumbral waves, are discussed. (auth.)
International Nuclear Information System (INIS)
Bruma, C.; Cuperman, S.; Komoshvili, K.
1996-01-01
Supplementary non-inductive current drive and heating are necessary to bring Tokamak plasmas into the ignition regime. The resonant excitation of shear Alfven waves (SAW) - in the continuum range (CR) or/and in the discrete global Alfven eigenmode spectrum (GAE's) - represents one potential, suitable method for this purpose. Within the framework of ideal MHD, the current drive (CD) via helicity injection in Tokamak plasmas has been considered by Cuperman et al (1996) and Komoshvili et al. (1996). This work is concerned with the investigation of the non-ideal resistive MHD effects on both the excitation of SAW's (CR's and GAE's) and the generation of non-inductive current drive via helicity injection in Tokamak plasmas. The research covers Tokamak aspect ratios ranging between large value cases (R/a = 10) and the very tight value case (R/ a = 1.2). (authors)
The phase mixing of shear Alfven waves
International Nuclear Information System (INIS)
Uberoi, C.
1993-04-01
The phase mixing of shear Alfven waves is discussed as a current sheets crossover phenomena by using the well-behaved time dependent solution of the Alfven wave equation. This method is a more direct approach than the initial value problem technique to find the collisionless damping time of the surface waves, which as it represents the coherency loss is argued to be the phase mixing time. The phase mixing time obtained by both the methods compares well. The direct method however, has an advantage that no particular profile for the magnetic field variation need to be chosen and secondly the phase mixing time and the time scale for which the resistivity effects become important can be expressed conveniently in terms of Alfven transit times before crossover. (author). 11 refs
Plasma heating by kinetic Alfven wave
International Nuclear Information System (INIS)
Assis, A.S. de.
1982-01-01
The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt
Alfven wave absorption in dissipative plasma
International Nuclear Information System (INIS)
Gavrikov, M B; Taiurskii, A A
2017-01-01
We consider nonlinear absorption of Alfven waves due to dissipative effects in plasma and relaxation of temperatures of electrons and ions. This study is based on an exact solution of the equations of two-fluid electromagnetic hydrodynamics (EMHD) of plasma. It is shown that in order to study the decay of Alfven waves, it suffices to examine the behavior of their amplitudes whose evolution is described by a system of ordinary differential equations (ODEs) obtained in this paper. On finite time intervals, the system of equations on the amplitudes is studied numerically, while asymptotic integration (the Hartman-Grobman theorem) is used to examine its large-time behavior. (paper)
Nonlinear evolution of astrophysical Alfven waves
Spangler, S. R.
1984-01-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth.
Alfven wave heating in a tokamak reactor
International Nuclear Information System (INIS)
Borg, G.G.; Appert, K.; Knight, A.J.; Lister, J.B.; Vaclavik, J.
1990-01-01
A number of features of Alfven wave heating make it potentially attractive for use in large tokamak reactors. Among them are the availability and relativity low cost of the power supplies, the potential ability to act selectively on the current profile, and the probable absence of operational limits in size, fields or density. The physics of Alfven wave heating in a large tokamak is assessed. Present theoretical understanding of mode coupling and antenna loading is extrapolated to a large machine. The problem of a recessed antenna is analysed. Calculations of loading and discussion of various heating scenarios for the particular case of NET are also presented. (author). 23 refs, 18 figs, 4 tabs
The eigenmode analysis of human motion
International Nuclear Information System (INIS)
Park, Juyong; Lee, Deok-Sun; González, Marta C
2010-01-01
Rapid advances in modern communication technology are enabling the accumulation of large-scale, high-resolution observational data of the spatiotemporal movements of humans. Classification and prediction of human mobility based on the analysis of such data has great potential in applications such as urban planning in addition to being a subject of theoretical interest. A robust theoretical framework is therefore required to study and properly understand human motion. Here we perform the eigenmode analysis of human motion data gathered from mobile communication records, which allows us to explore the scaling properties and characteristics of human motion
Scale separation closure and Alfven wave turbulence
International Nuclear Information System (INIS)
Chen, C.Y.; Mahajan, S.M.
1985-04-01
Based on the concept of scale separation between coherent response function and incoherent source for renormalized turbulence theories, a closure scheme is proposed. A model problem dealing with shear-Alfven wave turbulence is numerically solved; the solution explicitly shows expected turbulence features such as frequency shift from linear modes, band-broadening, and a power law dependence for the turbulence spectrum
The compressional Alfven instability in ECRH plasmas
International Nuclear Information System (INIS)
El Nadi, A.
1982-01-01
It is shown that the hot electron component present in an electron cyclotron resonance heated plasma can destabilize the compressional Alfven wave if β of the background plasma exceeds a certain limit. The relevance of the result to the Elmo Bumpy Torus experiment is discussed. (author)
The spectrum of axisymmetric torsional Alfven waves
International Nuclear Information System (INIS)
Sy, W.N.
1977-03-01
The spectrum of axisymmetric torsional Alfven waves propagating in a cylindrical, non-uniform, resistive plasma waveguide has been analysed by a method of singular perturbations. A simple condition has been derived which predicts whether the spectrum is continuous or discrete under given physical conditions. Application of this result to resolve an apparent discrepancy in experimental observations is briefly discussed. (Author)
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Calibration of higher eigenmodes of cantilevers
International Nuclear Information System (INIS)
Labuda, Aleksander; Kocun, Marta; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger; Lysy, Martin
2016-01-01
A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.
Calibration of higher eigenmodes of cantilevers
Energy Technology Data Exchange (ETDEWEB)
Labuda, Aleksander; Kocun, Marta; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger [Asylum Research, an Oxford Instruments Company, Santa Barbara, California 93117 (United States); Lysy, Martin [Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)
2016-07-15
A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.
Evidence for fast-electron-driven Alfvenic modes in the HSX stellarator
International Nuclear Information System (INIS)
Brower, D.L.; Deng, C.; Spong, D.A.; Abdou, A.; Almagri, A.F.; Anderson, D.T.; Anderson, F.S.B.; Guttenfelder, W.; Likin, K.; Oh, S.; Sakaguchi, V.; Talmadge, J.N.; Zhai, K.
2005-01-01
The helically-symmetric experiment (HSX) stellarator device is the first of a new generation of stellarators that exploit the concept of quasi-symmetric magnetic fields. In HSX, the plasma is both produced and heated by use of electron cyclotron resonance heating (ECRH) at the 2nd harmonic X-mode resonance. This heating configuration generates a nonthermal energetic electron population. Herein, we report on the first experimental evidence for fast-electron-driven Global Alfven Eigenmodes (GAE). This mode has previously been observed in both tokamaks and stellarators but it was always driven by energetic ions, not electrons. Evidence for this instability is obtained from quasi-helically symmetric HSX plasmas. Potential consequences of these measurements are twofold; (1) fast electrons can drive the GAE instability, and (2) quasi-symmetry makes a difference by better confining the particles that drive the instability as compared to the conventional stellarator configuration. We report on several features of this fluctuation. It is a coherent mode that is experimentally observed in the plasma core and edge by external magnetic coils, interferometry, ECE and Langmuir probes diagnostics. Fluctuations are observed in the frequency range of 20-120 kHz and scale with ion mass density according to expectations for Alfvenic modes. The mode is observed to be global with odd poloidal mode number (inferred from interferometry, possibly m=1) and is present in quasi-helically symmetric HSX plasmas. When quasi-helical symmetry is broken, the mode is no longer observed. Theory predicts a GAE mode in the gap below the Alfven continua can be excited in the frequency range of the measured fluctuations. By employing a biased electrode inserted deep into the plasma, flows can be generated. Under these conditions, the Alfvenic mode amplitude can increase and the fluctuation is even observed in the conventional stellarator configuration. Shifts in the measured frequency can be used to
Interplanetary Alfvenic fluctuations: A stochastic model
International Nuclear Information System (INIS)
Barnes, A.
1981-01-01
The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested
Alfvenic resonant cavities in the solar atmosphere
International Nuclear Information System (INIS)
Hollweg, J.V.
1984-01-01
We investigate the propagation of Alfven waves in a simple medium consisting of three uniform layers; each layer is characterized by a different value for the Alfven speed, νsub(A). We show how the central layer can act as a resonant cavity under quite general conditions. If the cavity is driven externally, by an incident wave in one of the outer layers, there result resonant transmission peaks, which allow large energy fluxes to enter the cavity from outside. The transmission peaks result from the destructive interference between a wave which leaks out of the cavity, and a directly reflected wave. We show that there are two types of resonances. The first type occurs when the cavity has the largest (or smallest) of the three Alfven speeds; this situation occurs on coronal loops. The second type occurs when the cavity Alfven speed is intermediate between the other two values of νsub(A); this situation may occur on solar spicules. Significant heating of the cavity can occur if the waves are damped. We show that if the energy lost to heat greatly exceeds the energy lost by leakage out of the cavity, then the cavity heating can be independent of the damping rate. This conclusion is shown to apply to coronal resonances and to the spicule resonances. This conclusion agrees with a point made by Ionson in connection with the coronal resonances. Except for a numerical factor of order unity, we recover Ionson's expression for the coronal heating rate. However, Ionson's qualities are much too large. For solar parameters, the maximum quality is of the order of 100, but the heating is independent of the damping rate only when dissipation reduces the quality to less than about 10. (WB)
Nonlinear propagation of Alfven waves in cometary plasmas
International Nuclear Information System (INIS)
Lakhina, G.S.; Shukla, P.K.
1987-07-01
Large amplitude Alfven waves propagating along the guide magnetic field in a three-component plasma are shown to be modulationally unstable due to their nonlinear interaction with nonresonant electrostatic density fluctuations. A new class of subsonic Alfven soliton solutions are found to exist in the three-component plasma. The Alfven solitons can be relevant in explaining the properties of hydromagnetic turbulence near the comets. (author). 15 refs
Experimental observation of Alfven wave cones
International Nuclear Information System (INIS)
Gekelman, W.; Leneman, D.; Maggs, J.; Vincena, S.
1994-01-01
The spatial evolution of the radial profile of the magnetic field of a shear Alfven wave launched by a disk exciter with radius on the order of the electron skin depth has been measured. The waves are launched using wire mesh disk exciters of 4 mm and 8 mm radius into a helium plasma of density about 1.0x10 12 cm -3 and magnetic field 1.1 kG. The electron skin depth δ=c/ω pe is about 5 mm. The current channel associated with the shear Alfven wave is observed to spread with distance away from the exciter. The spreading follows a cone-like pattern whose angle is given by tan θ=k A δ, where k A is the Alfven wave number. The dependence of the magnetic profiles on wave frequency and disk size are presented. The effects of dissipation by electron--neutral collisions and Landau damping are observed. The observations are in excellent agreement with theoretical predictions [Morales et al., Phys. Plasmas 1, 3765 (1994)
Alfven wave studies on a tokamak
International Nuclear Information System (INIS)
Kortbawi, D.
1987-10-01
The continuum modes of the shear Alfven resonance are studied on the Tokapole II device, a small tokamak operated in a four node poloidal divertor configuration. A variety of antenna designs and the efficiency with which they deliver energy to the resonant layer are discussed. The spatial structure of the driven waves is studied by means of magnetic probes inserted into the current channel. In an attempt to optimize the coupling of energy in to the resonant layer, the angle of antenna currents with respect to the equilibrium field, antenna size, and plasma-to-antenna distance are varied. The usefulness of Faraday shields, particle shields, and local limiters are investigated. Antennas should be well shielded, either a dense Faraday shield or particle shield being satisfactory. The antenna should be large and very near to the plasma. The wave magnetic fields measured show a spatial resonance, the position of which varies with the value of the equilibrium field and mass density. They are polarized perpendicular to the equilibrium field. A wave propagates radially in to the resonant surface where it is converted to the shear Alfven wave. The signal has a short risetime and does not propagate far toroidally. These points are all consistent with a strongly damped shear Alfven wave. Comparisons of this work to theoretical predictions and results from other tokamaks are made
Alfven wave resonances and flow induced by nonlinear Alfven waves in a stratified atmosphere
International Nuclear Information System (INIS)
Stark, B. A.; Musielak, Z. E.; Suess, S. T.
1996-01-01
A nonlinear, time-dependent, ideal MHD code has been developed and used to compute the flow induced by nonlinear Alfven waves propagating in an isothermal, stratified, plane-parallel atmosphere. The code is based on characteristic equations solved in a Lagrangian frame. Results show that resonance behavior of Alfven waves exists in the presence of a continuous density gradient and that the waves with periods corresponding to resonant peaks exert considerably more force on the medium than off-resonance periods. If only off-peak periods are considered, the relationship between the wave period and induced longitudinal velocity shows that short period WKB waves push more on the background medium than longer period, non-WKB, waves. The results also show the development of the longitudinal waves induced by finite amplitude Alfven waves. Wave energy transferred to the longitudinal mode may provide a source of localized heating
Effect of Dust Grains on Solitary Kinetic Alfven Wave
International Nuclear Information System (INIS)
Li Yangfang; Wu, D. J.; Morfill, G. E.
2008-01-01
Solitary kinetic Alfven wave has been studied in dusty plasmas. The effect of the dust charge-to-mass ratio is considered. We derive the Sagdeev potential for the soliton solutions based on the hydrodynamic equations. A singularity in the Sagdeev potential is found and this singularity results in a bell-shaped soliton. The soliton solutions comprise two branches. One branch is sub-Alfvenic and the soliton velocities are much smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocities are very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist in each branch. For the sub-Alfvenic branch, the rarefactive soliton is a bell shape curve which is much narrower than the compressive one. In the super-Alfvenic branch, however, the compressive soliton is bell-shaped and the rarefactive one is broadened. We also found that the super-Alfvenic solitons can develop to other structures. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton will increase extremely and an electron density depletion will be observed. When the velocity is much higher than the Alfven speed, the bell-shaped soliton will transit to a cusped structure.
Guided propagation of Alfven waves in a toroidal plasma
International Nuclear Information System (INIS)
Borg, G.G.; Brennan, M.H.; Cross, R.C.; Giannone, L.; Donnelly, I.J.
1985-01-01
Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed. (author)
Guided propagation of Alfven waves in a toroidal plasma
Energy Technology Data Exchange (ETDEWEB)
Borg, G G; Brennan, M H; Cross, R C; Giannone, L.; Donnelly, I J
1985-10-01
Experimental results are presented which show that the Alfven wave is strongly guided by magnetic fields. The experiment was conducted in a Tokamak plasma using a small dipole loop antenna to generate a localised Alfven ray. The ray was observed, with magnetic probes, to propagate as a localised disturbance along the curved lines of the steady magnetic field without significant refraction due to the effects of finite frequency, resistivity or magnetic field gradients. These results agree with theoretical predictions and demonstrate that a localised Alfven wave may be excited, and may propagate, independently of the fast wave, as expected. The implication of these results for the Alfven wave heating scheme is discussed.
Eigenmode multiplexing with SLM for volume holographic data storage
Chen, Guanghao; Miller, Bo E.; Takashima, Yuzuru
2017-08-01
The cavity supports the orthogonal reference beam families as its eigenmodes while enhancing the reference beam power. Such orthogonal eigenmodes are used as additional degree of freedom to multiplex data pages, consequently increase storage densities for volume Holographic Data Storage Systems (HDSS) when the maximum number of multiplexed data page is limited by geometrical factor. Image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at multiple Bragg angles by using Liquid Crystal on Silicon (LCOS) spatial light modulators (SLMs) in reference arms. Total of nine holograms are recorded with three angular and three eigenmode.
Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds
Weeks, Jeffrey R.
2005-01-01
Observational data hints at a finite universe, with spherical manifolds such as the Poincare dodecahedral space tentatively providing the best fit. Simulating the physics of a model universe requires knowing the eigenmodes of the Laplace operator on the space. The present article provides explicit polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary tetrahedral space S3/T*, the prism manifolds S3/D...
How to turn gravity waves into Alfven waves and other such tricks
International Nuclear Information System (INIS)
Newington, Marie E; Cally, Paul S
2011-01-01
Recent observations of travelling gravity waves at the base of the chromosphere suggest an interplay between gravity wave propagation and magnetic field. Our aims are: to explain the observation that gravity wave flux is suppressed in magnetic regions; to understand why we see travelling waves instead of standing waves; and to see if gravity waves can undergo mode conversion and couple to Alfven waves in regions where the plasma beta is of order unity. We model gravity waves in a VAL C atmosphere, subject to a uniform magnetic field of various orientations, considering both adiabatic and radiatively damped propagation. Results indicate that in the presence of a magnetic field, the gravity wave can propagate as a travelling wave, with the magnetic field orientation playing a crucial role in determining the wave character. For the majority of magnetic field orientations, the gravity wave is reflected at low heights as a slow magneto-acoustic wave, explaining the observation of reduced flux in magnetic regions. In a highly inclined magnetic field, the gravity wave undergoes mode conversion to either field guided acoustic waves or Alfven waves. The primary effect of incorporating radiative damping is a reduction in acoustic and magnetic fluxes measured at the top of the integration region. By demonstrating the mode conversion of gravity waves to Alfven waves, this work identifies a possible pathway for energy transport from the solar surface to the upper atmosphere.
Energy Technology Data Exchange (ETDEWEB)
Cuperman, S. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel); Bruma, C. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel) and College of Judea and Samaria, 44837 Ariel (Israel)]. E-mail: edycb@post.tau.ac.il; Komoshvili, K. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel); College of Judea and Samaria, 44837 Ariel (Israel)
2007-03-05
The combined plasma non-uniformity effects on the energy deposition of Alfven waves launched by an external antenna in pre-heated spherical tokamaks are investigated. The following relevant physical processes are here possible: (a) the emergence of gaps in the shear Alfven continuum spectrum and the generation of discrete global Alfven eigenmodes with frequencies inside the gaps; (b) multi-wave interactions, interactions of gaps of the same kind (e.g., toroidicity induced) and of different kinds (toroidicity, ellipticity and triangularity induced) as well as of secondary order gaps arising when a pair of modes is coupled to one or more modes through other coupling parameters; (c) basic wave-plasma interactions as propagation, reflection, mode-conversion, tunneling and deposition. Thus, we solved numerically the full 2D wave equations for the vector and scalar potentials, using a quite general two-fluid resistive tensor-operator, without any geometrical limitations. The results obtained indicate the existence of antenna-launched wave characteristics for which the power is most efficiently coupled in outer regions of plasmas, which is of special interest for low aspect ratio tokamaks, e.g., for the generation of non-inductive current drive as well as for turbulence suppression and transport barriers formation.
International Nuclear Information System (INIS)
Sharapov, S.E.; Mikhailovskii, A.B.; Huysmans, G.T.A.
2004-01-01
The effects of nonresonating hot ions on the spectrum of magnetohydrodynamic (MHD) waves and instabilities in tokamaks are studied in the limit when the width of the hot ion drift orbits is much larger than the radial scale length of the MHD perturbations. Due to the large magnetic drift velocities the hot ions cannot contribute to the MHD perturbations directly, but two main effects of the hot ions, the hot-ion density-dependent effect and the hot-ion pressure-dependent effect, influence the MHD perturbations indirectly. The physics of both effects is elucidated and it is shown that both these effects can be described in MHD approach. A new code, MISHKA-H (MISHKA including the hot-ion indirect effects), is developed as an extension of the ideal MHD code MISHKA-D [Huysmans et al., Phys. Plasmas 8, 4292 (2002)]. Analytical benchmarks for this code are given. Results of the MISHKA-H code on Alfven spectrum in a shear-reversed discharges with ion-cyclotron resonance frequency (ICRF) heating are presented. Modeling of Alfven cascades and their transition into toroidal Alfven eigenmodes in shear-reversed tokamak equilibrium is considered. The hot-ion effect on the unstable branch of the MHD spectrum is studied for the test case of an n=1 ideal MHD internal kink mode, which is relevant to short-period sawteeth in low-density plasmas observed in Joint European Torus (JET) [Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol. I, p. 11] experiments with high-power ICRF heating
Nonlinear propagation of short wavelength drift-Alfven waves
DEFF Research Database (Denmark)
Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens
1986-01-01
Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two-dim...
The eigenmode perspective of NMR spin relaxation in proteins
Energy Technology Data Exchange (ETDEWEB)
Shapiro, Yury E., E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il; Meirovitch, Eva, E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)
2013-12-14
We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D{sub 1}, the local (probe-related) diffusion tensor, D{sub 2}, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the {sup 15}N−{sup 1}H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D{sub 2} ≫ D{sub 1}), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the
Alfven wave experiments on the TORTUS tokamak
International Nuclear Information System (INIS)
Ballico, M.J.; Bowden, M.; Brand, G.F.; Brennan, M.H.; Cross, R.C.; Fekete, P.; James, B.W.
1989-01-01
Results are presented on the first observations of the Discrete Alfven Wave (DAW) and the first measurements of laser scattering off the kinetic Alfven wave in the TORTUS tokamak. TORTUS is a relatively small device, with major radius R=0.44m, minor radius 0.1m and has previously been operated routinely with B Φ =0.7T, I p =20 kA and n e ∼ 1x10 19 m -3 . Under these conditions, and over a wide frequency range (1-14 MHz), there has been no evidence of the DAW modes observed on TCA. Recently, a minor upgrade of TORTUS has permitted routine operation at B Φ =1.0 T, I p =39 kA, q(a)∼5 and n e ∼1-4 x 10 19 m -3 . At the operating frequency, 3.2 MHz, chosen for this study, DAW modes are observed clearly at both low and high densities. The appearance of DAW modes appears to be due to a steeper current profile at the higher plasma currents now generated in TORTUS. The general behaviour of DAW modes is in fact quite sensitive to the density and current profiles, indicating that DAW modes should provide a useful current profile diagnostic. (author) 6 refs., 2 figs
Calculation of degenerated Eigenmodes with modified power method
Energy Technology Data Exchange (ETDEWEB)
Zhang, Peng; Lee, Hyun Suk; Lee, Deok Jung [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2017-02-15
The modified power method has been studied by many researchers to calculate the higher Eigenmodes and accelerate the convergence of the fundamental mode. Its application to multidimensional problems may be unstable due to degenerated or near-degenerated Eigenmodes. Complex Eigenmode solutions are occasionally encountered in such cases, and the shapes of the corresponding eigenvectors may change during the simulation. These issues must be addressed for the successful implementation of the modified power method. Complex components are examined and an approximation method to eliminate the usage of the complex numbers is provided. A technique to fix the eigenvector shapes is also provided. The performance of the methods for dealing with those aforementioned problems is demonstrated with two dimensional one group and three dimensional one group homogeneous diffusion problems.
Theory of universal eigenmodes in a sheared magnetic field
International Nuclear Information System (INIS)
Chen, L.; Guzdar, P.N.; White, R.B.; Kaw, P.K.; Oberman, C.
1978-05-01
Collisionless drift-wave eigenmodes in a sheared magnetic field are analyzed using the WKBJ method. It is found that, for L/sub s//L/sub n/ > (L/sub s//L/sub n/)/sub c/, ion-sound dynamics determines the eigenvalues at small k 2 /sub y/ and the eigenmodes are damped. However, at large k 2 /sub y/ electron dynamics dominates and the eigenmodes become marginally stable. For L/sub s//L/sub n/ 2 /sub y/. The critical value (L/sub s//L/sub n/)/sub c/ scales as (m/sub i//m/sub e/)/sup 1/4/
Coupling to fast MHD eigenmodes in a toroidal cavity
International Nuclear Information System (INIS)
Paoloni, F.J.
1975-05-01
The coupling to fast MHD waves in toroidal-like geometry is calculated when eigenmodes exist in the plasma. The torus is considered to be a resonant cavity into which energy is coupled by a half turn loop. The cavity Q is calculated for the minority heating process, for cyclotron harmonic damping, electron transit-time magnetic pumping, wall loading, and Coulomb collisional damping. The problem of sustaining the eigenmode as the plasma conditions change with time is also discussed. One method that seems to be practical is a feedback scheme that varies the plasma major radius by a small amount as the conditions change. (U.S.)
Fast-ion transport induced by Alfvén eigenmodes in the ASDEX Upgrade tokamak
DEFF Research Database (Denmark)
Garcia-Munoz, M.; Classen, I.G.J.; Geiger, B.
2011-01-01
A comprehensive suite of diagnostics has allowed detailed measurements of the Alfvén eigenmode (AE) spatial structure and subsequent fast-ion transport in the ASDEX Upgrade (AUG) tokamak [1]. Reversed shear Alfvén eigenmodes (RSAEs) and toroidal induced Alfvén eigenmodes (TAEs) have been driven u...
Alfven wave coupling in large tokamaks
International Nuclear Information System (INIS)
Borg, G.G.; Knight, A.J.; Lister, J.B.; Appert, K.; Vaclavik, J.
1988-01-01
Supplementary plasma heating by Alfven waves (AWH) has been extensively studied both theoretically and experimentally for small, low temperature plasmas. However, only a few studies of AWH have been performed for fusion plasmas. In this paper the cylindrical kinetic code ISMENE is used to address problems af AWH in a large tokamak. The results of calculations are presented which show that the antenna loading scales with frequency and vessel dimensions according to ideal MHD theory. A sample scaling of the experimental antenna loading measured in TCA to the loading predicted for a fusion plasma is presented. We discuss whether this loading leads to a realistic antenna design. The choice of a suitable antenna configuration, mode number and operating frequency is presented for NET parameters with a typical operating scenario. (author) 6 figs., 8 refs
Nonlinear coupled Alfven and gravitational waves
International Nuclear Information System (INIS)
Kaellberg, Andreas; Brodin, Gert; Bradley, Michael
2004-01-01
In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected
Alfven wave propagation in a partially ionized plasma
International Nuclear Information System (INIS)
Watts, Christopher; Hanna, Jeremy
2004-01-01
Results from a laboratory study of the dispersion relation of Alfven waves propagating through a partially ionized plasma are presented. The plasma is generated using a helicon source, creating a high density, current-free discharge, where the source can be adjusted to one of several modes with varying neutral fraction. Depending on the neutral fraction, the measured dispersion curve of shear Alfven waves can change significantly. Measurement results are compared with theoretical predictions of the effect of neutral particles on Alfven wave propagation. In fitting the theory, the neutral fraction is independently estimated using two simple particle transport models, one collisionless, the other collisional. The two models predict comparable neutral fractions, and agree well with the neutral fraction required for the Alfven dispersion theory
An improved perfectly matched layer in the eigenmode expansion technique
DEFF Research Database (Denmark)
Gregersen, Niels; Mørk, Jesper
2008-01-01
When employing the eigenmode expansion technique (EET), parasitic reflections at the boundary of the computational domain can be suppressed by introducing a perfectly matched layer (PML). However, the traditional PML, suffers from an artificial field divergence limiting its usefulness. We propose...
Theory of semicollisional kinetic Alfven modes in sheared magnetic fields
International Nuclear Information System (INIS)
Hahm, T.S.; Chen, L.
1985-02-01
The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum
Resonant magnetohydrodynamic waves in high-beta plasmas
International Nuclear Information System (INIS)
Ruderman, M. S.
2009-01-01
When a global magnetohydrodynamic (MHD) wave propagates in a weakly dissipative inhomogeneous plasma, the resonant interaction of this wave with either local Alfven or slow MHD waves is possible. This interaction occurs at the resonant position where the phase velocity of the global wave coincides with the phase velocity of either Alfven or slow MHD waves. As a result of this interaction a dissipative layer embracing the resonant position is formed, its thickness being proportional to R -1/3 , where R>>1 is the Reynolds number. The wave motion in the resonant layer is characterized by large amplitudes and large gradients. The presence of large gradients causes strong dissipation of the global wave even in very weakly dissipative plasmas. Very often the global wave motion is characterized by the presence of both Alfven and slow resonances. In plasmas with small or moderate plasma beta β, the resonance positions corresponding to the Alfven and slow resonances are well separated, so that the wave motion in the Alfven and slow dissipative layers embracing the Alfven and slow resonant positions, respectively, can be studied separately. However, when β > or approx. R 1/3 , the two resonance positions are so close that the two dissipative layers overlap. In this case, instead of two dissipative layers, there is one mixed Alfven-slow dissipative layer. In this paper the wave motion in such a mixed dissipative layer is studied. It is shown that this motion is a linear superposition of two motions, one corresponding to the Alfven and the other to the slow dissipative layer. The jump of normal velocity across the mixed dissipative layer related to the energy dissipation rate is equal to the sum of two jumps, one that occurs across the Alfven dissipative layer and the other across the slow dissipative layer.
International Nuclear Information System (INIS)
Komoshvili, K.; Cuperman, S.; Bruma, C.
1996-01-01
The non-inductive current drive via helicity injection by Global Alfven eigenmode (GAE) waves is studied. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all these as functions of the characteristics of the waves launched by an external, concentric antenna (i.e, wave frequency and poloidal and toroidal wave numbers). The results reveal the following conclusions. Generation of GAE waves. In the range of poloidal wave numbers -3 0 for m = -l, -2, -3 and -20 10; I-BAR < 0 for m = +1, +2, +3 and n < 10. (iv) The efficiency of the current drive, η = absolute I-BAR/absolute P-BAR, increases in the cases m = -1, -2, -3 with absolute m and absolute 1/n. (v) Detailed information on the relative direction and radial (core) localization of the current drive is obtained. (authors)
Kinetic Alfven waves and electron physics. II. Oblique slow shocks
International Nuclear Information System (INIS)
Yin, L.; Winske, D.; Daughton, W.
2007-01-01
One-dimensional (1D) particle-in-cell (PIC; kinetic ions and electrons) and hybrid (kinetic ions; adiabatic and massless fluid electrons) simulations of highly oblique slow shocks (θ Bn =84 deg. and β=0.1) [Yin et al., J. Geophys. Res., 110, A09217 (2005)] have shown that the dissipation from the ions is too weak to form a shock and that kinetic electron physics is required. The PIC simulations also showed that the downstream electron temperature becomes anisotropic (T e parallel )>T e perpendicular ), as observed in slow shocks in space. The electron anisotropy results, in part, from the electron acceleration/heating by parallel electric fields of obliquely propagating kinetic Alfven waves (KAWs) excited by ion-ion streaming, which cannot be modeled accurately in hybrid simulations. In the shock ramp, spiky structures occur in density and electron parallel temperature, where the ion parallel temperature decreases due to the reduction of the ion backstreaming speed. In this paper, KAW and electron physics in oblique slow shocks are further examined under lower electron beta conditions. It is found that as the electron beta is reduced, the resonant interaction between electrons and the wave parallel electric fields shifts to the tail of the electron velocity distribution, providing more efficient parallel heating. As a consequence, for β e =0.02, the electron physics is shown to influence the formation of a θ Bn =75 deg. shock. Electron effects are further enhanced at a more oblique shock angle (θ Bn =84 deg.) when both the growth rate and the range of unstable modes on the KAW branch increase. Small-scale electron and ion phase-space vortices in the shock ramp formed by electron-KAW interactions and the reduction of the ion backstreaming speed, respectively, are observed in the simulations and confirmed in homogeneous geometries in one and two spatial dimensions in the accompanying paper [Yin et al., Phys. Plasmas 14, 062104 (2007)]. Results from this study
Excitation and Propagation of Alfven Waves in a Helicon Discharge
International Nuclear Information System (INIS)
Grulke, Olaf; Klinger, Thomas; Franck, Christian M.
2003-01-01
An experimental study of shear Alfven waves in a linearly magnetized plasma is presented. Shear Alfven waves are electromagnetic waves propagating parallel to the background magnetic field without compression of the plasma at a frequency well below the ion cyclotron frequency and a wavelength inversely proportional to the square root of the plasma density. A basic condition on laboratory investigations is that the Alfven wavelength must be significantly smaller than the device dimension. This makes Alfven waves difficult to investigate in laboratory experiments and most studies are performed in space, where typical Alfven wavelengths of several kilometers are observed. The results of these studies are often ambiguous due to difficulties concerning the measurements of plasma parameters and the magnetic field geometry. The primary motivation for the present paper is the investigation of Alfven wave propagation in a well defined laboratory situation. The experiments are conducted in the linear VINETA device. The necessary operational regime is achieved by the large axial device length of 4.5m and the use of a helicon plasma source providing high density plasmas with ionization degrees of up to 100%. The Argon plasma is magnetized by a set of 36 magnetic field coils, which produce a maximum magnetic field of 0.1T on the device axis. With this configuration a plasma-β of ≥ 10-4 is achieved, which exceeds the electron to ion mass ration, and the ion cyclotron frequency is ≅ 250kHz. Langmuir probes provide detailed informations on the time-averaged plasma profiles. Magnetic field perturbations for the excitation of Alfven waves are generated by a current loop, which is introduced into the plasma. The surface normal of the current loop is directed perpendicular to the magnetic field. The waves's dispersion relation in dependence of plasma parameters is determined by spatially resolved B probe measurements
Non-inductive current drive via helicity injection by Alfven waves in low-aspect-ratio tokamaks
Energy Technology Data Exchange (ETDEWEB)
Cuperman, S.; Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). Sackler Faculty of Exact Sciences
1996-08-01
A theoretical investigation of radio-frequency (RF) current drive via helicity injection in low aspect ratio tokamaks is carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is considered. Toroidal features of low-aspect-ratio tokamaks are simulated by incorporating the following effects: (i) arbitrarily small aspect ratio, R{sub O}/a ``identical to`` 1/{epsilon}; (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. This study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub min}{r_brace} {<=} {omega} {<=} {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub max}, where {omega}{sub Alf}({tau}) ``identical to`` {omega}{sub Alf}[n({tau}), B{sub O}({tau})] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-{beta} magnetohydrodynamics, the wave equation with correct boundary (matching) conditions is solved, the RF field components are found, and subsequently current drive, power deposition and efficiency are computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low-aspect-ratio tokamaks, in the SAW mode. A special algorithm is developed that enables one to select the antenna parameters providing optimal current drive efficiency. (Author).
On WKB expansions for Alfven waves in the solar wind
International Nuclear Information System (INIS)
Hollweg, J.V.
1990-01-01
The author reexamines the WKB expansion for toroidal Alfven waves in the solar wind, as described by equations (9) of Heinemann and Olbert (1980). His principal conclusions are as follows: (1) The WKB expansion used by Belcher (1971) and Hollweg (1973) is nonuniformly convergent. (2) Using the method of multiple scales (Nayfeh, 1981), he obtains an expansion which is uniform. (3) The uniform expansion takes into account the small modification to the Alfven wave phase speed due to spatial gradients of the background. (4) Both the uniform and nonuniform expansions reveal that each normal mode has both Elsaesser variables δz + ≠ 0 and δz - ≠ 0. Thus if δz - corresponds to the outgoing mode in a homogeneous background, an observation of δz + ≠ 0 does not necessarily imply the presence of the inward propagating mode, as is commonly assumed. (5) Even at the Alfven critical point (where V = υ A ) he finds that δz + ≠ 0. Thus incompressible MHD turbulence, which requires both δz + ≠ 0 and δz - ≠ 0, can proceed at the Alfven critical point (cf. Roberts, 1989). (6) With very few exceptions, the predictions of these calculations do not agree with recent observations (Marsch and Tu, 1990) of the power spectra of δz + and δz - in the solar wind. Thus the evolution of Alfven waves in the solar wind is governed by dynamics not included in the Heinemann and Olbert equations
Nonlinear hybridization of the fundamental eigenmodes of microscopic ferromagnetic ellipses.
Demidov, V E; Buchmeier, M; Rott, K; Krzysteczko, P; Münchenberger, J; Reiss, G; Demokritov, S O
2010-05-28
We have studied experimentally with high spatial resolution the nonlinear eigenmodes of microscopic Permalloy elliptical elements. We show that the nonlinearity affects the frequencies of the edge and the center modes in an essentially different way. This leads to repulsion of corresponding resonances and to nonlinear mode hybridization resulting in qualitative modifications of the spatial characteristics of the modes. We find that the nonlinear counterparts of the edge and the center modes simultaneously exhibit features specific for both their linear analogues.
Nonlinear Hybridization of the Fundamental Eigenmodes of Microscopic Ferromagnetic Ellipses
Demidov, V. E.; Buchmeier, M.; Rott, Karsten; Krzysteczko, Patryk; Münchenberger, Jana; Reiss, Günter; Demokritov, S. O.
2010-01-01
We have studied experimentally with high spatial resolution the nonlinear eigenmodes of microscopic Permalloy elliptical elements. We show that the nonlinearity affects the frequencies of the edge and the center modes in an essentially different way. This leads to repulsion of corresponding resonances and to nonlinear mode hybridization resulting in qualitative modifications of the spatial characteristics of the modes. We find that the nonlinear counterparts of the edge and the center modes s...
Two-dimensional analysis of trapped-ion eigenmodes
International Nuclear Information System (INIS)
Marchand, R.; Tang, W.M.; Rewoldt, G.
1979-11-01
A fully two-dimensional eigenmode analysis of the trapped-ion instability in axisymmetric toroidal geometry is presented. The calculations also takes into account the basic dynamics associated with other low frequency modes such as the trapped-electron instability and the ion-temperature-gradient instability. The poloidal structure of the mode is taken into account by Fourier expanding the perturbed electrostatic potential, PHI, in theta
Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging
Zimmerli, Gregory A.; Buchanan, David A.; Follo, Jeffrey C.; Vaden, Karl R.; Wagner, James D.; Asipauskas, Marius; Herlacher, Michael D.
2010-01-01
Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank hardware, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for
Comments on the Alfven wave spectrum as measured on the TCA tokamak
International Nuclear Information System (INIS)
Puri, S.
1986-06-01
The heating in the TCA tokamak is ascribed to a combination of compressional Alfven wave heating (CAW) and discrete Alfven wave (DAW) heating. In this communication we invoke an alternative plasma heating mechanism by the direct excitation of torsional Alfven waves (TAW) to account for the observed features of the TCA experiment. (orig./GG)
Electromagnetic transport components and sheared flows in drift-Alfven turbulence
DEFF Research Database (Denmark)
Naulin, V.
2003-01-01
Results from three-dimensional numerical simulations of drift-Alfven turbulence in a toroidal geometry with sheared magnetic field are presented. The simulations show a relation between self-generated poloidal shear flows and magnetic field perturbations. For large values of the plasma beta we ob...... with a folded Gaussian, while the PDFs of the spatially averaged transport are in good agreement with an extreme value distribution. (C) 2003 American Institute of Physics....... related to magnetic flutter is proposed. The characteristics of the ExB flux are investigated using probability density distribution functions (PDFs). Although they are not Gaussian, no signs of algebraic tails in the PDFs are observed. The PDFs of the pointwise transport are found to agree well...
Alfven wave experiments in the Phaedrus-T tokamak
International Nuclear Information System (INIS)
Majeski, R.; Probert, P.; Moroz, P.; Intrator, T.; Breun, R.; Brouchous, D.; Che, H.Y.; DeKock, J.R.; Diebold, D.; Doczy, M.; Fonck, R.; Hershkowitz, N.; Johnson, R.D.; Kishinevsky, M.; McKee, G.; Meyer, J.; Nonn, P.; Oliva, S.P.; Pew, J.; Sorensen, J.; Tanaka, T.; Vukovic, M.; Winz, G.
1993-01-01
Heating in the Alfven resonant regime has been demonstrated in the Phaedrus-T tokamak [Fusion Technol. 19, 1327 (1991)]. Electron heating during injection of radio-frequency (rf) power is indicated by a 30%--40% drop in loop voltage and modifications in sawtooth activity. Heating was observed at a frequency ω rf ∼0.7Ω i on axis, using a two-strap fast wave antenna operated at 7 and 9.2 MHz with 180 degree phasing (N parallel ∼100). Numerical modeling with the fast wave code FASTWA [Plasma Phys. Controlled Fusion 33, 417 (1991)] indicates that for Phaedrus-T parameters the kinetic Alfven wave is excited via mode conversion from a surface fast wave at the Alfven resonance and is subsequently damped on electrons
Neutrino induced vorticity, Alfven waves and the normal modes
Energy Technology Data Exchange (ETDEWEB)
Bhatt, Jitesh R. [Theory Division, Physical Research Laboratory, Ahmedabad (India); George, Manu [Theory Division, Physical Research Laboratory, Ahmedabad (India); Indian Institute of Technology, Department of Physics, Ahmedabad (India)
2017-08-15
We consider a plasma consisting of electrons and ions in the presence of a background neutrino gas and develop the magnetohydrodynamic equations for the system. We show that the electron neutrino interaction can induce vorticity in the plasma even in the absence of any electromagnetic perturbations if the background neutrino density is left-right asymmetric. This induced vorticity supports a new kind of Alfven wave whose velocity depends on both the external magnetic field and on the neutrino asymmetry. The normal mode analysis show that in the presence of neutrino background the Alfven waves can have different velocities. We also discuss our results in the context of dense astrophysical plasma such as magnetars and show that the difference in the Alfven velocities can be used to explain the observed pulsar kick. We discuss also the relativistic generalisation of the electron fluid in presence of an asymmetric neutrino background. (orig.)
Stable Alfven wave dynamo action in the reversed field pinch
International Nuclear Information System (INIS)
Werley, K.A.
1984-01-01
Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. Static quasi-linear Alfven wave calculations have shown that dynamo emfs on the order of eta vector J are possible. This suggested a possible explanation of RFP behavior and a new (externally driven) mechanism for extending operation and controlling field profiles (possibly reducing plasma transport). This thesis demonstrates that the dynamo emf can quickly induce plasma currents whose emf cancels the dynamo effect. This thesis also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number
Ion temperature in plasmas with intrinsic Alfven waves
International Nuclear Information System (INIS)
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-01-01
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process
Impulsive Alfven coupling between the magnetosphere and ionosphere
International Nuclear Information System (INIS)
Reddy, R.V.; Watanabe, K.; Sato, T.; Watanabe, T.H.
1994-04-01
Basic properties of the impulsive Alfven interaction between the magnetosphere and ionosphere have been studied by means of a three-dimensional self-consistent simulation of the coupled magnetosphere and ionosphere system. It is found that the duration time of an impulsive perturbation at the magnetospheric equator, the latitudinal distribution of the Alfven propagation time along the field lines, and the ratio between the magnetospheric impedance and the ionospheric resistance is the main key factors that determine the propagation dynamics and the ionospheric responses for an impulsive MHD perturbation in the magnetosphere. (author)
Resonant Alfven wave instabilities driven by streaming fast particles
International Nuclear Information System (INIS)
Zachary, A.
1987-01-01
A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs
Global structures of Alfven-ballooning modes in magnetospheric plasmas
International Nuclear Information System (INIS)
Vetoulis, G.; Chen, Liu.
1994-03-01
The authors show that a steep plasma pressure gradient can lead to radially localized Alfven modes, which are damped through coupling to filed line resonances. These have been called drift Alfven balloning modes (DABM) and are the prime candidates to explain Pc4-Pc5 geomagnetic pulsations observed during storms. A strong dependence of the damping rate on the azimuthal wave number m is established, as well as on the equilibrium profile. A minimum azimuthal mode number can be found for the DABM to be radially trapped. The authors find that higher m DABMs are better localized, which is consistent with high-m observations
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Effect of Alfvenic fluctuations on the solar wind
International Nuclear Information System (INIS)
Chien, T.H.
1974-01-01
The major source of microscale fluctuations in the interplanetary medium due to the outwardly propagating Alfven waves is considered. The effect of the Alfven waves on the supersonic expansion of the solar wind is studied under the assumption that the motion of the interplanetary medium can be resolved physically into a comparatively smooth and slowly varying mesoscale flow and field with very irregular disordered incompressible microscale Alfvenic fluctuations superposed on it. The important features of the solar wind such as heat conduction flux, spiral interplanetary magnetic field, and proton thermal anisotropy are included in the theory. For inviscid, steady state, spherically symmetrical model of the solar wind, the two-fluid formulation of the background mesoscale MHD equations is obtained. The results show that during the expansion process, fluctuation energy is converted into the kinetic energy of the solar wind. Due to the presence of the Alfvenic fluctuations, the velocity of the solar wind is about 5 percent higher than that without considering the fluctuations. (U.S.)
Reflection of Alfven waves at an open magnetopause
International Nuclear Information System (INIS)
Cao, F.; Kan, J.R.
1990-01-01
Reflection of an Alfven wave incident on an open magnetopause form the magnetospheric side is examined. An open magnetopause, whose structure is different from the standard rotational discontinuity, is assumed to be a parameterized discontinuity with a nonzero normal field component. When an Alfven wave is incident on the open magnetopause, reflected and transmitted waves are generated. The emanating waves can be analyzed using linearized MHD conservation relations across the magnetopause, together with Snell's law. Under the assumption that the magnetic fields on the two sides of the open magnetopause are coplanar with the normal direction of the magnetopause, the governing equations are solved numerically. The results show that the electric fields of emanating Alfven waves depend mainly on the number density and the magnetic field jumps across the magnetopause. Under conditions representing the open magnetopause, it turns out that the open magnetopause behaves like a near perfect reflector. The corresponding reflection coefficient for the wave electric field can be approximated by R E = E r /E i ∼ -1 as has been deduced by Kan and Sun (1985) based on physical arguments. In other words, the solar wind flow is more or less unchanged by the loading effect of the Alfven wave incident on the magnetopause from the magnetospheric side. Therefore, under the assumptions of the model, the open magnetopause can be viewed as a constant voltage source
Direct excitation of resonant torsional Alfven waves by footpoint motions
Ruderman, M. S.; Berghmans, D.; Goossens, M.; Poedts, S.
1997-01-01
The present paper studies the heating of coronal loops by linear resonant Alfven waves that are excited by the motions of the photospheric footpoints of the magnetic field lines. The analysis is restricted to torsionally polarised footpoint motions in an axially symmetric system so that only
Solitary Alfven wave envelopes and the modulational instability
International Nuclear Information System (INIS)
Kennel, C.F.
1987-06-01
The derivative nonlinear Schroedinger equation describes the modulational instability of circularly polarized dispersive Alfven wave envelopes. It also may be used to determine the properties of finite amplitude localized stationary wave envelopes. Such envelope solitons exist only in conditions of modulational stability. This leaves open the question of whether, and if so, how, the modulational instability produces envelope solitons. 12 refs
Inductive Eigenmodes of a resistive toroidal surface in vacuum
International Nuclear Information System (INIS)
Lo Surdo, C.
1999-01-01
In this paper it has been studied the Electro-Magnetic (EM) Eigenmodes, sufficiently slow as to legitimate the pre-Maxwell approximation of Maxwell's system (or inductive Eigenmodes), of a given smooth, toroidal-unknotted, electrically resistive surface Τ with given smooth (surface) resistivity 0 d egree 3 . Within the above limitations (to be made more precise), the geometry of Τ is arbitrary. With the eigenvalue associated with the generic Eigenmode being defined as the opposite of its logarithmic time-derivative, one expects that the resulting spectrum be discrete and strictly positive. It shall be interested into the degenerate case where Τ be cut (i.e. electrically broken) along one or more of its irreducible cycles. This case will be analyzed autonomously, rather than as a limit (for ρ d egree → ∞ along the cuts) of the regular case. Without cuts, the Eigenproblem under consideration is nothing but the two-dimensional (2-dim) generalization of the classical case of a smooth, unknotted, electrically conductive, simple coil in infinite vacuum. Its analysis hinges on the classical potential theory, and turns out to be a special application of the linear, integrodifferential (elliptic) equation theory on a compact, multiply connected, 2-dim manifold. The attention and approach will be confined to strong (or classical) solutions, both in Τ and C Τ = R 3 / Τ. This study is divided in two parts: a General Part (Sects 1 divided 4) is devoted to the case of generic Τ and ρ d egree (within the convenient smoothness requirements), whereas a Special Part (Sects 5 divided 7) deals with the (more or less formal) discussion of a couple of particular cases (Τ ≡ a canonical torus), both of which with uniform ρ d egree. Some propaedeutical/supplementary information is provided in a number of Appendices [it
Ion acoustic eigenmodes in a collisionless bounded plasma:
International Nuclear Information System (INIS)
Kuhn, S.; Schupfer, N.; Santiago, M.A.M.; Assis, A.S. de
1990-01-01
This paper is based on an integral-equation method developed for solving the general linearized perturbation problem for a one-dimensional, uniform collisionless plasma with thin sheats, bounded by two planar electrodes. The underlying system of equations consists of a) the Vlasov equations for all particle species involved; b) Poisson's equation; c) the equation of total-current conservation; d) the particle boundary conditions at the left and right hand electrodes and e) the external-circuit equation. The method allows for very general equilibrium, boundary and external-circuit conditions. Using Laplace transformations in both time and space, it is set up to handle the complete initial value problem but also yields, as a by-product, the solution to the eigenmode problem. The only application to date of this method was to the Pierce Diode with a non-trivial external circuit, in which case the equation determining the complex eigenfrequencies ω n was found in analytic form. The said method is applied to ion-acoustic eigenmodes in a one-dimensional, collisionless bounded plasma consisting of non-drifting thermal electrons and a cold ion beam propagating through them. In this case, which is of relevance in the context of both Q- and DP-machines, the eigenfrequencies can no longer be obtained as solutions of an analytically explicit homogeneous system of linear integral equations. Via appropriate basis- set expansions of all perturbation functions involved, this system is transformed into a system of linear algebraic equations for the ω-dependent expansion coefficients, from which the eigenfrequencies can be obtained as the zeros of the'system determinant'. The results include studies on how the eigenfrequencies depend on plasma, boundary, as well as a comparison between these bounded-system ion-acoustic eigenmodes and their infinite-plasma counter-parts. (Author)
Current drive by Alfven waves in elongated cross section tokamak
International Nuclear Information System (INIS)
Tsypin, V.S.; Elfimov, A.G.; Nekrasov, F.M.; Azevedo, C.A.; Assis, A.S. de
1997-01-01
Full text. The problem of the noninductive current drive in cylindrical plasma model and in circular cross-section tokamaks had been already discussed intensively. At the beginning of the study of this problem it have been clear that there are significant difficulties in using of the current-drive in toroidal magnetic traps, especially in a tokamak reactor. Thus, in the case of the lower-hybrid current-drive the efficiency of this current-drive drops strongly as the plasma density increases. For the Alfven waves, there is an opinion that the efficiency of the current-drive drops as a result of waves absorption by the trapped particles 1,2. Okhawa proposed that the current in a magnetized plasma can be maintained also by means of forces, depending on the radiofrequency (rf) field amplitude gradients (the helicity injection). This idea was developed later, some new hopes appeared, connected with the possibility of the current-drive efficiency increasing. It was shown that for the cylindrical plasmas the local efficiency of Alfev wave current drive can be increased by one order of magnitude due to gradient forces, for the kinetic Alfven waves (KAW) and the global Alfven waves 9GAW) at some range of the phase velocity. For tokamaks, this additional nonresonant current drive does not depend on the trapped particle effects, which reduce strongly the Alfven current drive efficiency in tokamaks, as it is supposed. Now, the theory development of the Alfven wave (AW) current drive is very important in the cource of the future experiments on the TCA/BR tokamak (Brazil). In this paper, an attempt is made to clarify some general aspects of this problems for magnetic traps. For large aspects ratio tokamaks, with an elongated cross-section, some general formulas concerning the untrapped and trapped particles dynamics and their input to the Landau damping of the Alfven waves, are presented. They are supposed to be used for the further development of the Alfven current drive theory
Current drive by Alfven waves in elongated cross section tokamak
Energy Technology Data Exchange (ETDEWEB)
Tsypin, V.S.; Elfimov, A.G.; Nekrasov, F.M.; Azevedo, C.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Assis, A.S. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica
1997-12-31
Full text. The problem of the noninductive current drive in cylindrical plasma model and in circular cross-section tokamaks had been already discussed intensively. At the beginning of the study of this problem it have been clear that there are significant difficulties in using of the current-drive in toroidal magnetic traps, especially in a tokamak reactor. Thus, in the case of the lower-hybrid current-drive the efficiency of this current-drive drops strongly as the plasma density increases. For the Alfven waves, there is an opinion that the efficiency of the current-drive drops as a result of waves absorption by the trapped particles 1,2. Okhawa proposed that the current in a magnetized plasma can be maintained also by means of forces, depending on the radiofrequency (rf) field amplitude gradients (the helicity injection). This idea was developed later, some new hopes appeared, connected with the possibility of the current-drive efficiency increasing. It was shown that for the cylindrical plasmas the local efficiency of Alfev wave current drive can be increased by one order of magnitude due to gradient forces, for the kinetic Alfven waves (KAW) and the global Alfven waves (GAW) at some range of the phase velocity. For tokamaks, this additional nonresonant current drive does not depend on the trapped particle effects, which reduce strongly the Alfven current drive efficiency in tokamaks, as it is supposed. Now, the theory development of the Alfven wave (AW) current drive is very important in the cource of the future experiments on the TCA/BR tokamak (Brazil). In this paper, an attempt is made to clarify some general aspects of this problems for magnetic traps. For large aspects ratio tokamaks, with an elongated cross-section, some general formulas concerning the untrapped and trapped particles dynamics and their input to the Landau damping of the Alfven waves, are presented. They are supposed to be used for the further development of the Alfven current drive theory
Free-boundary toroidal Alfvén eigenmodes
Chen, Eugene Y.; Berk, H. L.; Breizman, B.; Zheng, L. J.
2011-05-01
A numerical study is presented for the n = 1 free-boundary toroidal Alfvén eigenmodes (TAE) in tokamaks, which shows that there is considerable sensitivity of n = 1 modes to the position of the conducting wall. An additional branch of the TAE is shown to emerge from the upper continuum as the ratio of conducting wall radius to plasma radius increases. Such phenomena arise in plasma equilibria with both circular and shaped cross sections, where the shaped profile studied here is similar to that found in Alcator C-Mod.
Cavity enhanced eigenmode multiplexing for volume holographic data storage
Miller, Bo E.; Takashima, Yuzuru
2017-08-01
Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.
Interacting Eigenmodes of a plasma diode with a density gradient
International Nuclear Information System (INIS)
Loefgren, T.; Gunell, H.
1997-08-01
The formation of narrow high frequency electric field spikes in plasma density gradients is investigated using one-dimensional particle in cell simulations. It is found that the shape of the plasma density gradient is very important for the spike formation. The spike appears also in simulations with immobile ions showing that a coupling to the ion motion, as for example in wave interactions, is not necessary for the formation of HF spikes. However, the HF spike influences the ion motion, and ion waves are seen in the simulations. It has been found, in experiments and simulations, that the electron velocity distribution function deviates from the Maxwellian distribution. Dispersion relations are calculated using realistic distribution functions. The spike can be seen as a coupled system of two Eigenmodes of a plasma diode fed by the beam-plasma interaction. Based on a simplified fluid description of such Eigenmodes, explanations for the localization of the spike, spatially and in frequency, are given. The density amplitude is comparable with the DC density level close to the cathode. Space charge limits of waves in this region seem to determine the amplitude of the spike through the Poisson's equation
Quantum multiple scattering: Eigenmode expansion and its applications to proximity resonance
International Nuclear Information System (INIS)
Li Sheng; Heller, Eric J.
2003-01-01
We show that for a general system of N s-wave point scatterers, there are always N eigenmodes. These eigenmodes or eigenchannels play the same role as spherical harmonics for a spherically symmetric target--they give a phase shift only. In other words, the T matrix of the system is of rank N, and the eigenmodes are eigenvectors corresponding to nonzero eigenvalues of the T matrix. The eigenmode expansion approach can give insight to the total scattering cross section; the position, width, and superradiant or subradiant nature of resonance peaks; the unsymmetric Fano line shape of sharp proximity resonance peaks based on the high-energy tail of a broadband; and other properties. Off-resonant eigenmodes for identical proximate scatterers are approximately angular-momentum eigenstates
Gap eigenmode of radially localized helicon waves in a periodic structure
International Nuclear Information System (INIS)
Chang, L; Hole, M J; Breizman, B N
2013-01-01
An ElectroMagnetic Solver (Chen et al 2006 Phys. Plasmas 13 123507) is employed to model a spectral gap and a gap eigenmode in a periodic structure in the whistler frequency range. A radially localized helicon mode (Breizman and Arefiev 2000 Phys. Rev. Lett. 84 3863) is considered. We demonstrate that the computed gap frequency and gap width agree well with a theoretical analysis, and find a discrete eigenmode inside the gap by introducing a defect to the system's periodicity. The axial wavelength of the gap eigenmode is close to twice the system's periodicity, which is consistent with Bragg's law. Such an eigenmode could be excited by energetic electrons, similar to the excitation of toroidal Alfvén eigenmodes by energetic ions in tokamaks. Experimental identification of this mode is conceivable on the large plasma device (Gekelman et al 1991 Rev. Sci. Instrum. 62 2875). (paper)
Global Hybrid Simulation of Alfvenic Waves Associated with Magnetotail Reconnection and Fast Flows
Cheng, L.; Lin, Y.; Wang, X.; Perez, J. D.
2017-12-01
Alfvenic fluctuations have been observed near the magnetotail plasma sheet boundary layer associated with fast flows. In this presentation, we use the Auburn 3-D Global Hybrid code (ANGIE3D) to investigate the generation and propagation of Alfvenic waves in the magnetotail. Shear Alfven waves and kinetic Alfven waves (KAWs) are found to be generated in magnetic reconnection in the plasma sheet as well as in the dipole-like field region of the magnetosphere, carrying Poynting flux along magnetic field lines toward the ionosphere, and the wave structure is strongly altered by the flow braking in the tail. The 3-D structure of the wave electromagnetic field and the associated parallel currents in reconnection and the dipole-like field region is presented. The Alfvenic waves exhibit a turbulence spectrum. The roles of these Alfvenic waves in ion heating is discussed.
Dissipation of Alfven waves in compressible inhomogeneous media
International Nuclear Information System (INIS)
Malara, F.; Primavera, L.; Veltri, P.
1997-01-01
In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. Using numerical simulations, we study the properties of Alfven waves propagating in a compressible inhomogeneous medium, with an inhomogeneity transverse to the direction of wave propagation. Two dynamical effects, energy pinching and phase mixing, are responsible for the small-scales formation, similarly to the incompressible case. Moreover, compressive perturbations, slow waves and a static entropy wave are generated; the former are subject to steepening and form shock waves, which efficiently dissipate their energy, regardless of the Reynolds number. Rough estimates show that the dissipation times are consistent with those required to dissipate Alfven waves of photospheric origin inside the solar corona
Instability of drift Alfven wave accompanying polar magnetic storm
International Nuclear Information System (INIS)
Higuchi, Yoshihiro
1974-01-01
As the micro plasma instability due to the plasma non-uniformity in magnetosphere, there is the instability of drift Alfven wave. With the data obtained with the network of multiple observation points for geomagnetism, attempt was made to prove the hypothesis that the instability of drift Alfven wave due to the electron temperature gradient at the inner boundary of plasma sheet may be one of the causes for the geomagnetic pulsation (Pi 1) accompanying polar magnetic storm. Up to date, final conclusion is yet impossible as to the problems in it due to the discussion based on the data from widely separated observation points. The installation of economically efficient multi-point observation network is necessary for the solution. (Mori, K.)
Characterization of Alfvenic fluctuations in the magnetopause boundary layer
International Nuclear Information System (INIS)
Rezeau, L.; Morane, A.; Perraut, S.; Roux, A.; Schmidt, R.
1989-01-01
The European Space Agency GEOS 2 spacecraft happened to cross the magnetopause several times, at various local times. Intense electric and magnetic fluctuations, in the ultralow-frequency (ULF) range (0-10 Hz) have been detected during each such crossing, with a peak at the magnetopause and still large amplitudes in the adjacent magnetosheath and magnetopause boundary layer. By applying spectral analysis and correlations to the electric and magnetic fluctuations, and a minimum variance analysis to the magnetic fluctuations, the authors investigate the nature of these fluctuations which appear as short-lasting bursts in the spacecraft frame. Having reviewed possible interpretations, they show that the observed electric and magnetic signatures are consistent with small-scale (L ∼ ion Larmor radius) Alfvenic field-aligned structures passing by the spacecraft at high speed. It is suggested that these structures correspond to nonlinear Alfvenic structures
Particle acceleration by Alfven wave turbulence in radio galaxies
International Nuclear Information System (INIS)
Eilek, J.A.
1986-01-01
Radio galaxies show evidence for acceleration of relativistic electrons locally within the diffuse radio luminous plasma. One likely candidate for the reacceleration mechanism is acceleration by magnetohydrodynamic turbulence which exists within the plasma. If Alfven waves are generated by a fluid turbulent cascade described by a power law energy-wavenumber spectrum, the particle spectrum in the presence of synchrotron losses will evolve towards an asymptotic power law which agrees with the particle spectra observed in these sources
Attractors of magnetohydrodynamic flows in an Alfvenic state
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel; Sanz, Javier [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1999-08-13
We present a simplified form of the magnetohydrodynamic system which describes the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form of Alfven waves, such as happens in several turbulent situations. Bounds on the dimension of the global attractor are found, and are shown to be an improvement of the standard ones for the full magnetohydrodynamic equations. (author)
Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes
Directory of Open Access Journals (Sweden)
Daniel Kiracofe
2013-06-01
Full Text Available One of the key goals in atomic force microscopy (AFM imaging is to enhance material property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors explore the use of higher eigenmodes in bimodal AFM (e.g., exciting the first and fourth eigenmodes. It is found that such operation leads to interesting contrast reversals compared to traditional bimodal AFM. A series of experiments and numerical simulations shows that the primary cause of the contrast reversals is not the choice of eigenmode itself (e.g., second versus fourth, but rather the relative kinetic energy between the higher eigenmode and the first eigenmode. This leads to the identification of three distinct imaging regimes in bimodal AFM. This result, which is applicable even to traditional bimodal AFM, should allow researchers to choose cantilever and operating parameters in a more rational manner in order to optimize resolution and contrast during nanoscale imaging of materials.
On field line resonances of hydromagnetic Alfven waves in dipole magnetic field
International Nuclear Information System (INIS)
Chen, Liu; Cowley, S.C.
1989-07-01
Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs
Velocity shear generated Alfven waves in electron-positron plasmas
International Nuclear Information System (INIS)
Rogava, A.D.; Berezhiani, V.I.; Mahajan, S.M.
1996-01-01
Linear MHD modes in cold, nonrelativistic electron-positron plasma shear flow are considered. The general set of differential equations, describing the evolution of perturbations in the framework of the nonmodal approach is derived. It is found, that under certain circumstances, the compressional and shear Alfven perturbations may exhibit large transient growth fuelled by the mean kinetic energy of the shear flow. The velocity shear also induces mode coupling allowing the exchange of energy as well as the possibility of a strong mutual transformation of these modes into each other. The compressional Alfven mode may extract the energy of the mean flow and transfer it to the shear Alfven mode via this coupling. The relevance of these new physical effects to provide a better understanding of the laboratory e + e - plasma is emphasized. It is speculated that the shear-induced effects in the electron-positron plasmas could also help solve some astrophysical puzzles (e.g., the generation of pulsar radio emission). Since most astrophysical plasma are relativistic, it is shown that the major results of the study remain valid for weakly sheared relativistic plasmas. (author). 21 refs, 4 figs
Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations
Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.
2014-01-01
Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.
Nonlinear eigen-mode structures in complex astroclouds
International Nuclear Information System (INIS)
Karmakar, P K; Haloi, A
2017-01-01
The evolutionary dynamics of strongly nonlinear waves (of arbitrary amplitude) in an inhomogeneous complex astrophysical viscous cloud is investigated without recourse to any kind of swindle. It consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neural hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method transforms the analytic model into a conjugated pair of intermixed non-integrable energy integral laws. A natural excitation of electrostatic quasi-monotonic compressive dispersive shock-like eigen-modes is numerically demonstrated. In contrast, the self-gravitational waves grow purely as non-monotonic compressive oscillatory shock-like structures. The unique features of both the distinct classes are depicted. Their non-trivial significance in the astro-context is emphasized. (paper)
Nonlinear eigen-mode structures in complex astroclouds
Karmakar, P. K.; Haloi, A.
2017-05-01
The evolutionary dynamics of strongly nonlinear waves (of arbitrary amplitude) in an inhomogeneous complex astrophysical viscous cloud is investigated without recourse to any kind of swindle. It consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neural hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method transforms the analytic model into a conjugated pair of intermixed non-integrable energy integral laws. A natural excitation of electrostatic quasi-monotonic compressive dispersive shock-like eigen-modes is numerically demonstrated. In contrast, the self-gravitational waves grow purely as non-monotonic compressive oscillatory shock-like structures. The unique features of both the distinct classes are depicted. Their non-trivial significance in the astro-context is emphasized.
1.5D quasilinear model and its application on beams interacting with Alfvén eigenmodes in DIII-D
Ghantous, K.; Gorelenkov, N. N.; Berk, H. L.; Heidbrink, W. W.; Van Zeeland, M. A.
2012-09-01
We propose a model, denoted here by 1.5D, to study energetic particle (EP) interaction with toroidal Alfvenic eigenmodes (TAE) in the case where the local EP drive for TAE exceeds the stability limit. Based on quasilinear theory, the proposed 1.5D model assumes that the particles diffuse in phase space, flattening the pressure profile until its gradient reaches a critical value where the modes stabilize. Using local theories and NOVA-K simulations of TAE damping and growth rates, the 1.5D model calculates the critical gradient and reconstructs the relaxed EP pressure profile. Local theory is improved from previous study by including more sophisticated damping and drive mechanisms such as the numerical computation of the effect of the EP finite orbit width on the growth rate. The 1.5D model is applied on the well-diagnosed DIII-D discharges #142111 [M. A. Van Zeeland et al., Phys. Plasmas 18, 135001 (2011)] and #127112 [W. W. Heidbrink et al., Nucl. Fusion. 48, 084001 (2008)]. We achieved a very satisfactory agreement with the experimental results on the EP pressure profiles redistribution and measured losses. This agreement of the 1.5D model with experimental results allows the use of this code as a guide for ITER plasma operation where it is desired to have no more than 5% loss of fusion alpha particles as limited by the design.
Energy Technology Data Exchange (ETDEWEB)
Maneva, Y. G. [Department of Physics, Catholic University of America, Washington DC, 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vinas, A. F. [Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2013-06-13
In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.
International Nuclear Information System (INIS)
Komoshvili, K.; Cuperman, S.; Bruma, C.
1997-01-01
A systematic study of non-inductive current drive via helicity injection by global Alfven eigenmode (GAE) waves is carried out. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all of these functions of the characteristics of the waves launched by an external, concentric antenna (i.e. wave frequency and poloidal and toroidal wavenumbers). The tokamak plasma is simulated by a current-carrying cylindrical plasma column surrounded by a helical sheet current and situated inside a perfectly conducting shell, with incorporation of equilibrium (simulated) toroidal field, magnetic shear and a relatively large poloidal magnetic field component. Within the framework of low-β MHD model equations and for typical tokamak physical parameters, the following basic results are obtained: (1) in the range of poloidal wavenumbers -3≤ m ≤ 3 and toroidal wavenumbers -20≤ n ≤20, resonant GAE peaks below the Alfven continuum are found; (2) the power absorption (P), current drive (I) and corresponding frequency of the GAE modes depend strongly on the sets of (m,n) values considered; (3) the 'net' current drive is positive (i.e. flows in the direction of the equilibrium current j 0z for m = -1, -2, -3 and -20 ≤ n ≤ -1 as well as for m +1, +2, +3 and n > 10; (4) in the cases m = -1, -2, -3, the efficiency of current drive, I/P, increases with /m/ and I/n/; (5) the radial localization of the current drive in each of the cases considered is determined and tabulated. (Author)
ANTENNA RADIATION NEAR THE LOCAL PLASMA FREQUENCY BY LANGMUIR WAVE EIGENMODES
International Nuclear Information System (INIS)
Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.
2012-01-01
Langmuir waves (LWs) in the solar wind are generated by electron beams associated with solar flares, interplanetary shock fronts, planetary bow shocks, and magnetic holes. In principle, LWs localized as eigenmodes of density fluctuations can emit electromagnetic (EM) radiation by an antenna mechanism near the local plasma frequency f p and twice the local plasma frequency. In this work, analytic expressions are derived for the radiated electric and magnetic fields and power generated near f p by LW eigenmodes. The EM wave power emitted near f p is predicted as a function of the eigenmode length scale L, maximum electric field, driving electron beam speed, and the ambient plasma density and temperature. The escape to a distant observer of f p radiation from a localized Langmuir eigenmode is also briefly explored as a function of the plasma conditions.
Geodesic acoustic eigenmode for tokamak equilibrium with maximum of local GAM frequency
Energy Technology Data Exchange (ETDEWEB)
Lakhin, V.P. [NRC “Kurchatov Institute”, Moscow (Russian Federation); Sorokina, E.A., E-mail: sorokina.ekaterina@gmail.com [NRC “Kurchatov Institute”, Moscow (Russian Federation); Peoples' Friendship University of Russia, Moscow (Russian Federation)
2014-01-24
The geodesic acoustic eigenmode for tokamak equilibrium with the maximum of local GAM frequency is found analytically in the frame of MHD model. The analysis is based on the asymptotic matching technique.
Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy
Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André
2017-05-01
We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.
The scaling dimension of low lying Dirac eigenmodes and of the topological charge density
Aubin, C.; Gottlieb, Steven; Gregory, E.B.; Heller, Urs M.; Hetrick, J.E.; Osborn, J.; Sugar, R.; Toussaint, D.; de Forcrand, Ph.; Jahn, Oliver
2005-01-01
As a quantitative measure of localization, the inverse participation ratio of low lying Dirac eigenmodes and topological charge density is calculated on quenched lattices over a wide range of lattice spacings and volumes. Since different topological objects (instantons, vortices, monopoles, and artifacts) have different co-dimension, scaling analysis provides information on the amount of each present and their correlation with the localization of low lying eigenmodes.
International Nuclear Information System (INIS)
Horton, W.; Correa, C.; Chagelishvili, G. D.; Avsarkisov, V. S.; Lominadze, J. G.; Perez, J. C.; Kim, J.-H.; Carter, T. A.
2009-01-01
According to recent experiments, magnetically confined fusion plasmas with ''drift wave-zonal flow turbulence'' (DW-ZF) give rise to broadband electromagnetic waves. Sharapov et al. [Europhysics Conference Abstracts, 35th EPS Conference on Plasma Physics, Hersonissos, 2008, edited by P. Lalousis and S. Moustaizis (European Physical Society, Switzerland, 2008), Vol. 32D, p. 4.071] reported an abrupt change in the magnetic turbulence during L-H transitions in Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] plasmas. A broad spectrum of Alfvenic-like (electromagnetic) fluctuations appears from ExB flow driven turbulence in experiments on the large plasma device (LAPD) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] facility at UCLA. Evidence of the existence of magnetic fluctuations in the shear flow region in the experiments is shown. We present one possible theoretical explanation of the generation of electromagnetic fluctuations in DW-ZF systems for an example of LAPD experiments. The method used is based on generalizing results on shear flow phenomena from the hydrodynamics community. In the 1990s, it was realized that fluctuation modes of spectrally stable nonuniform (sheared) flows are non-normal. That is, the linear operators of the flows modal analysis are non-normal and the corresponding eigenmodes are not orthogonal. The non-normality results in linear transient growth with bursts of the perturbations and the mode coupling, which causes the generation of electromagnetic waves from the drift wave-shear flow system. We consider shear flow that mimics tokamak zonal flow. We show that the transient growth substantially exceeds the growth of the classical dissipative trapped-particle instability of the system.
Inductive Eigenmodes of a resistive toroidal surface in vacuum
Energy Technology Data Exchange (ETDEWEB)
Lo Surdo, C. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione
1999-07-01
In this paper it has been studied the Electro-Magnetic (EM) Eigenmodes, sufficiently slow as to legitimate the pre-Maxwell approximation of Maxwell's system (or inductive Eigenmodes), of a given smooth, toroidal-un knotted, electrically resistive surface {tau} with given smooth (surface) resistivity 0 < {rho}{sub d}egree < {infinity}, and lying in the (empty) R{sup 3}. Within the above limitations (to be made more precise), the geometry of {tau} is arbitrary. With the eigenvalue associated with the generic Eigenmode being defined as the opposite of its logarithmic time-derivative, one expects that the resulting spectrum be discrete and strictly positive. It shall be interested into the degenerate case where {tau} be cut (i.e. electrically broken) along one or more of its irreducible cycles. This case will be analyzed autonomously, rather than as a limit (for {rho}{sub d}egree {yields} {infinity} along the cuts) of the regular case. Without cuts, the Eigenproblem under consideration is nothing but the two-dimensional (2-dim) generalization of the classical case of a smooth, unknotted, electrically conductive, simple coil in infinite vacuum. Its analysis hinges on the classical potential theory, and turns out to be a special application of the linear, integrodifferential (elliptic) equation theory on a compact, multiply connected, 2-dim manifold. The attention and approach will be confined to strong (or classical) solutions, both in {tau} and C {tau} = R{sup 3} / {tau}. This study is divided in two parts: a General Part (Sects 1 divided 4) is devoted to the case of generic {tau} and {rho}{sub d}egree (within the convenient smoothness requirements), whereas a Special Part (Sects 5 divided 7) deals with the (more or less formal) discussion of a couple of particular cases ({tau} {identical_to} a canonical torus), both of which with uniform {rho}{sub d}egree. Some propaedeutical/supplementary information is provided in a number of Appendices. [Italian] Il presente
Non-axial-symmetric Alfven waves in cylindrical, radial inhomogeneous plasmas
International Nuclear Information System (INIS)
Raeuchle, E.
1978-08-01
The propagation of nonaxialsymmetric Alfven waves is investigated theoretically. Eigenfunctions and dispersion relations are calculated numerically for radial inhomogeneous cylindrical plasmas. In the MHD treatment resistivity, neutral particle loading and ion cyclotron effects are included. The investigations are of importance for plasma heating by Alfven waves. (orig.) [de
Excitation of short wavelength Alfven oscillations by high energy ions in tokamak
International Nuclear Information System (INIS)
Beasley, C.O. Jr.; Lominadze, J.G.; Mikhailovskii, A.B.
1975-08-01
The excitation of Alfven waves by fast untrapped ions in axisymmetric tokamaks is described by the dispersion relation epsilon 11 - c 2 k/sub parallel bars/ 2 /ω 2 = 0. Using this relation a new class of instability connected with the excitation of Alfven oscillations is described. (U.S.)
Alfven instability and micromagnetic islands in a plasma with sheared magnetic fields
International Nuclear Information System (INIS)
Hsu, J.; Kaw, P.; Chen, L.
1977-07-01
The normal mode equation for coupled drift and Alfven waves in a finite-β nonuniform plasma with a sheared magnetic field is solved, in the slab geometry, to investigate the instability of slow Alfven waves. It is shown, that, besides having an appreciable growth rate, the instability also produces microscopic ''tearing'' of the rational surfaces which has important implications for anomalous transport
Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion
International Nuclear Information System (INIS)
Borg, G.G.
1994-01-01
Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs
Parallel inhomogeneity and the Alfven resonance. 1: Open field lines
Hansen, P. J.; Harrold, B. G.
1994-01-01
In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.
Experiments on shear Alfven resonance in a tokamak
International Nuclear Information System (INIS)
Prager, S.C.; Witherspoon, F.D.; Kieras, C.E.; Kortbawi, D.; Sprott, J.C.; Tataronis, J.A.
1983-02-01
Detailed observations have been made of the spatial structure of the wave magnetic field. Measurements of the resonance properties such as radial location, wave polarization, resonance width and risetime are all consistent with shear Alfven resonance theory, although several measurements require improvement in resolution. The resonance location agrees with prediction of a fully two-dimensional ideal MHD theory for the Tokapole II device. To complete the identification a frequency scan and careful comparison of the observed resonance with antenna loading will be undertaken
On the stability of shear-Alfven vortices
International Nuclear Information System (INIS)
Jovanovic, D.; Horton, W.
1993-08-01
Linear stability of shear-Alfven vortices is studied analytically using the Lyapunov method. Instability is demonstrated for vortices belonging to the drift mode, which is a generalization of the standard Hasegawa-Mima vortex to the case of large parallel phase velocities. In the case of the convective-cell mode, short perpendicular-wavelength perturbations are stable for a broad class of vortices. Eventually, instability of convective-cell vortices may occur on the perpendicular scale comparable with the vortex size, but it is followed by a simultaneous excitation of coherent structures with better localization than the original vortex
Eigenmode analysis of coupled magnetohydrodynamic oscillations in the magnetosphere
International Nuclear Information System (INIS)
Fujita, S.; Patel, V.L.
1992-01-01
The authors have performed an eigenmode analysis of the coupled magnetohydrodynamic oscillations in the magnetosphere with a dipole magnetic field. To understand the behavior of the spatial structure of the field perturbations with a great accuracy, they use the finite element method. The azimuthal and radial electric field perturbations are assumed to vanish at the ionosphere, and the azimuthal electric field is assumed to be zero on the outer boundary. The global structures of the electromagnetic field perturbations associated with the coupled magnetohydrodynamic oscillations are presented. In addition, the three-dimensional current system associated with the coupled oscillations is numerically calculated and the following characteristics are found: (1) A strong field-aligned current flows along a resonant field line. The current is particularly strong near the ionosphere. (2) The radial current changes its direction on the opposite sides of the resonant L shell. Unlike the field-aligned current, the radial currents exist in the entire magnetosphere. (3) Although the azimuthal and radial currents are intense on the resonant field line, these currents do not form a loop in the plane perpendicular to the ambient magnetic field. Therefore the field-aligned component of the perturbed magnetic field does not have a maximum at the resonant L shell
Energy Technology Data Exchange (ETDEWEB)
Bruma, C.; Cuperman, S.; Komoshvili, K. [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel)
1998-08-01
Several low aspect ratio (spherical) Tokamaks (ST's) are now in operation or under construction. These devices would permit cost-effective and attractive embodiment of future fusion reactors: they would provide high {beta}, good confinement and steady state operation at modest field values. Now, a steady state reactor has to be sustained by non-inductively driven currents. Recently, the generation of non-inductive current drive by Alfven waves (AWCD) has been investigated theoretically within the framework of ideal (E{sub p}arallel=0) MHD and non-ideal, resistive (E{sub p}arallel{ne}0) MHD; however, in all these cases, the tokamak device consisted of a cylindrical plasma with simulated toroidal effects. Rather encouraging results have been obtained. In this work we further investigate AWCD in ST's as follows: (i) we use consistent equilibrium profiles with neoclassical conductivity corresponding to an ohmic START discharge; (ii) incorporate effects due to neoclassical conductivity in the elements of the resistive MHD dielectric tensor, in the solution of the full (E{sub p}arallel{ne}0) wave equation as well as in the calculation of AWCD; and (iii) carry out a systematic search for antenna parameters optimizing the AWCD. (author)
Coronal heating by Alfven waves dissipation in compressible nonuniform media
International Nuclear Information System (INIS)
Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi
1996-01-01
The possibility to produce small scales and then to efficiently dissipate energy has been studied by Malara et al. [1992b] in the case of MHD disturbances propagating in an weakly dissipative incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend this work to include both compressibility and the third component for vector quantities. Numerical simulations show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. These effects give rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. Rough estimates of the typical times the various dynamical processes take to produce small scales show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin
Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes
Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.
2018-01-01
The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.
TURBULENCE IN THE SUB-ALFVENIC SOLAR WIND DRIVEN BY REFLECTION OF LOW-FREQUENCY ALFVEN WAVES
International Nuclear Information System (INIS)
Verdini, A.; Velli, M.; Buchlin, E.
2009-01-01
We study the formation and evolution of a turbulent spectrum of Alfven waves driven by reflection off the solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfvenic critical point. The background solar wind is assigned and two-dimensional shell models are used to describe nonlinear interactions. We find that the turbulent spectra are influenced by the nature of the reflected waves. Close to the base, these give rise to a flatter and steeper spectrum for the outgoing and reflected waves, respectively. At higher heliocentric distance both spectra evolve toward an asymptotic Kolmogorov spectrum. The turbulent dissipation is found to account for at least half of the heating required to sustain the background imposed solar wind and its shape is found to be determined by the reflection-determined turbulent heating below 1.5 solar radii. Therefore, reflection and reflection-driven turbulence are shown to play a key role in the acceleration of the fast solar wind and origin of the turbulent spectrum found at 0.3 AU in the heliosphere.
Hindman, Bradley W.; Jain, Rekha
2018-05-01
The arched field lines forming coronal arcades are often observed to undulate as magnetohydrodynamic waves propagate both across and along the magnetic field. These waves are most likely a combination of resonantly coupled fast magnetoacoustic waves and Alfvén waves. The coupling results in resonant absorption of the fast waves, converting fast wave energy into Alfvén waves. The fast eigenmodes of the arcade have proven difficult to compute or derive analytically, largely because of the mathematical complexity that the coupling introduces. When a traditional spectral decomposition is employed, the discrete spectrum associated with the fast eigenmodes is often subsumed into the continuous Alfvén spectrum. Thus fast eigenmodes become collective modes or quasi-modes. Here we present a spectral decomposition that treats the eigenmodes as having real frequencies but complex wavenumbers. Using this procedure we derive dispersion relations, spatial damping rates, and eigenfunctions for the resonant, fast eigenmodes of the arcade. We demonstrate that resonant absorption introduces a fast mode that would not exist otherwise. This new mode is heavily damped by resonant absorption, travelling only a few wavelengths before losing most of its energy.
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Effects of Wind Velocity Driven by Alfven Waves on the Line Profiles for 32 CYG
Directory of Open Access Journals (Sweden)
Kyung-Mee Kim
1996-06-01
Full Text Available We calculate the theoretical line profiles for 32 Cyg in order to investigate the influence of various velocity fields. Line profiles are calculated with wind accelerations driven by Alfven waves and described by velocity parameters. The results for Alfvenic wave model show weakened line profiles. For the orbital phases ¥÷=0.78 and ¥÷=0.06 the Alfvenic models show strong absorption part due to very low densities at the surface of the supergiant. Hence, we conclude the velocity gradient of the wind near the supergiant could influence on the theoretical line formation.
International Nuclear Information System (INIS)
Borovikov, N.V.; Kosinov, G.A.; Fedorov, Yu.N.
1989-01-01
Portable transportable digital beta radiometer providing for measuring beta-decay radionuclide specific activity in the range from 5x10 -9 up to 10 -6 Cu/kg (Cu/l) with error of ±25% is designed and introduced into commercial production for determination of volume and specific water and food radioactivity. The device specifications are given. Experience in the BETA radiometer application under conditions of the Chernobyl' NPP 30-km zone has shown that it is convenient for measuring specific activity of the order of 10 -8 Cu/kg, and application of a set of different beta detectors gives an opportunity to use it for surface contamination measurement in wide range of the measured value
Alfven wave heating studies in Tokapole II tokamak
International Nuclear Information System (INIS)
Kortbawi, D.; Witherspoon, F.D.; Zhu, S.Y.; Casavant, T.; Sprott, J.C.; Prager, S.C.
1984-01-01
In earlier experiments at low power on the Tokapole II tokamak using the internal divertor rings as a launching structure the authors have observed a resonance with properties consistent with those expected for a shear Alfven wave. With these encouraging results, a second phase of experiments has begun where, eventually, 4 discrete antennas, located ≅180 0 apart in both the toroidal and poloidal directions and phased to establish proper mode numbers are driven from a 1 MW source. A prototype antenna has been installed and tested. It is a 2 turn Faraday shielded loop extending 54 0 along a toroidal arc. This orientation was chosen for the antenna currents based on the earlier experiments and the simple MHD result that the component of the wage magnetic field perpendicular to the equilibrium field is most strongly divergent. To test this the antenna can be rotated +.45 0 . It can also be inserted radially up to 6 cm
Alfven-wave current drive and magnetic field stochasticity
International Nuclear Information System (INIS)
Litwin, C.; Hegna, C.C.
1993-01-01
Propagating Alfven waves can generate parallel current through an alpha effect. In resistive MHD however, the dynamo field is proportional to resistivity and as such cannot drive significant currents for realistic parameters. In the search for an enhancement of this effect the authors investigate the role of magnetic field stochasticity. They show that the presence of a stochastic magnetic field, either spontaneously generated by instabilities or induced externally, can enhance the alpha effect of the wave. This enhancement is caused by an increased wave dissipation due to both current diffusion and filamentation. For the range of parameters of current drive experiments at Phaedrus-T tokamak, a moderate field stochasticity leads to significant modifications in the loop voltage
The Ion Cyclotron, Lower Hybrid, and Alfven Wave Heating Methods
International Nuclear Information System (INIS)
Koch, R.
2004-01-01
This lecture covers the practical features and experimental results of the three heating methods. The emphasis is on ion cyclotron heating. First, we briefly come back to the main non-collisional heating mechanisms and to the particular features of the quasilinear coefficient in the ion cyclotron range of frequencies (ICRF). The specific case of the ion-ion hybrid resonance is treated, as well as the polarisation issue and minority heating scheme. The various ICRF scenarios are reviewed. The experimental applications of ion cyclotron resonance heating (ICRH) systems are outlined. Then, the lower hybrid and Alfven wave heating and current drive experimental results are covered more briefly. Where applicable, the prospects for ITER are commented
Alfven waves and associated energetic ions downstream from Uranus
International Nuclear Information System (INIS)
Zhang, Ming; Belcher, J.W.; Richardson, J.D.; Smith, C.W.
1991-01-01
The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10 -3 Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location
Role of plasma equilibrium current in Alfven wave antenna optimization
International Nuclear Information System (INIS)
Puri, S.
1986-12-01
The modifications in the antenna loading produced by the plasma equilibrium current, the Faraday shield, and the finite electron temperature for coupling to the Alfven waves are studied using a self-consistent, three-dimensional, fully analytic periodic-loop-antenna model. The only significant changes are found to occur due to the plasma current and consist of an improved coupling (by a factor of ∝ 2.5) at low toroidal numbers (n ∝ 1-3). Despite this gain, however, the coupling to low n continues to be poor with R=0.03 Ω and Q=180 for n=2. Optimum coupling with R=0.71 Ω and Q=16.8 occurs for n=8 as was also the case in the absence of the plasma current. For the large n values, mode splitting due to the removal of the poloidal degeneracy combined with the finite electron temperatures effects lead to significant broadening of the energy absorption profile. Direct antenna coupling to the surface shear wave is small and no special provision, such as Faraday shielding, may be needed for preventing surface losses. The introduction of the Faraday screen, in fact, increases the coupling to the surface shear wave, possibly by acting as an impedance matching transformer between the antenna and the plasma. The finite electron temperature causes the predictable increase in the absorption width without influencing the antenna coupling. Thus the recommendations for antenna design for optimum coupling to the Alfven wave remain unaffected by the inclusion of the plasma current. Efficient coupling with capabilities for dynamic impedance tracking through purely electronic means may be obtained using a dense-cluster-array antenna with a toroidal configuration of n ∝ 8. (orig.)
Black, Carrie; Germaschewski, Kai; Bhattacharjee, Amitava; Ng, C. S.
2013-01-01
It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator. The effect of the collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.
New non-axisymmetric eigenmodes associated with an edge plasma layer
International Nuclear Information System (INIS)
Yamanaka, Kaoru; Sugihara, Ryo.
1989-12-01
Effects of a rarefied plasma layer surrounding a cylindrical main plasma on Alfven waves are investigated. The plasma is approximated with a two-step density profile and is assumed to be surrounded with a conducting wall. When the Alfven resonance exists inside the rarefied plasma layer, two new modes are generated. One has its maximum of the wave intensity at the wall, is thus similar to a surface wave and the other is a short of a coaxial mode. These results are re-examined in a diffuse boundary plasma and the presence of these modes is confirmed. (author)
Nonlinear inertial Alfven waves in plasmas with sheared magnetic field and flow
International Nuclear Information System (INIS)
Chen Yinhua; Wang Ge; Tan Liwei
2004-01-01
Nonlinear equations describing inertial Alfven waves in plasmas with sheared magnetic field and flow are derived. For some specific parameters chosen, authors have found a new type of electromagnetic coherent structures in the tripolar vortex-like form
Alfven. Symphony No 5 in A minor, Op. 54 / Robert Layton
Layton, Robert
1994-01-01
Uuest heliplaadist "Alfven. Symphony No 5 in A minor, Op. 54. The Mountain King - Suite, Gustav II Adolf, Op. 49 - Elegy. Royal Stockholm Philarmonic Orchestra / Neeme Järvi. BIS CD 585 (68 minutes) Recorded in association with Trygg Hansa"
Convective cell excitation by inertial Alfven waves in a low density plasma
International Nuclear Information System (INIS)
Pokhotelov, O.A.; Onishchenko, O.G.; Sagdeev, R.Z.; Srenflo, L.; Balikhin, M.A.
2005-01-01
The parametric interaction of inertial Alfven waves with large-scale convective cells in a low-density plasma is investigated. It is shown that, in plasmas where the Alfven velocity is comparable to or exceeds the speed of light, the parametric interaction is substantially suppressed. A compact expression for the optimal scale and instability growth rate of the fastest growing mode is obtained [ru
International Nuclear Information System (INIS)
Akiyama, H.; Hayler, M.O.; Kristiansen, M.
1985-01-01
The dispersion relations for the compressional Alfven waves in a two-ion species plasma of deuterium and hydrogen are calculated for a configuration which includes a vacuum layer between the cylindrical plasma and the conducting wall. The presence of the vacuum layer strongly affects the propagation of the compressional Alfven wave, permitting some branches to propagate and penetrate the plasma column over most frequencies in the ion-cyclotron range. Basic Alfven-wave propagation and heating experiments in two-ion species consequently should be possible using tokamak and mirror devices with minor radii smaller than the Alfven wavelength
Ion temperature anisotropy limitation in high beta plasmas
International Nuclear Information System (INIS)
Scime, Earl E.; Keiter, Paul A.; Balkey, Matthew M.; Boivin, Robert F.; Kline, John L.; Blackburn, Melanie; Gary, S. Peter
2000-01-01
Measurements of parallel and perpendicular ion temperatures in the Large Experiment on Instabilities and Anisotropies (LEIA) space simulation chamber display an inverse correlation between the upper bound on the ion temperature anisotropy and the parallel ion beta (β=8πnkT/B 2 ). Fluctuation measurements indicate the presence of low frequency, transverse, electromagnetic waves with wave numbers and frequencies that are consistent with predictions for Alfven Ion Cyclotron instabilities. These observations are also consistent with in situ spacecraft measurements in the Earth's magnetosheath and with a theoretical/computational model that predicts that such an upper bound on the ion temperature anisotropy is imposed by scattering from enhanced fluctuations due to growth of the Alfven ion cyclotron instability. (c) 2000 American Institute of Physics
Experimental studies of Alfven modes stability on the JET tokamak
International Nuclear Information System (INIS)
Testa, D.; Fasoli, A.; Borba, D.N.
2002-01-01
The linear stability properties of Alfven modes are studied on JET using an active excitation technique. The Saddle Coils drive low amplitude, vertical bar δB/B vertical bar ∼ 10 -6 , stable plasma modes with toroidal mode number n=0 / 2. The diagnostic technique uses repetitive sweeps of the driving frequency in a pre-defined range, controlled in real-time. The plasma response is extracted from background noise using synchronous detection, and is used to identify in real-time the resonance corresponding to a global mode. When a resonance is found, the real-time controller locks to that frequency and tracks the mode. This provides a direct evaluation of the mode damping rate, γ/ω from the width of the frequency sweep. Two systems are used to measure fast fluctuation data. The KC1F system is a 8-channel, 1MHz/4s continuous digitizer used to analyze magnetic and reflectometry data in the frequency range 5≤f(kHz) ≤500. This system is particularly suitable to follow the time evolution of the instability. The CATS system collects and digitizes a large number of channels generally using short time snapshots. This system is useful to determine the position of the instability using the cross-correlation between the magnetic and other radially localized measurements, such as soft X-rays, reflectometry or electron cyclotron emission
Shear-Alfven dynamics of toroidally confined plasmas. Part A
International Nuclear Information System (INIS)
Hazeltine, R.D.; Meiss, J.D.
1984-08-01
Recent developments in the stability theory of toroidally confined plasmas are reviewed, with the intention of providing a picture comprehensible to non-specialists. The review considers a class of low-frequency, electromagnetic disturbances that seem especially pertinent to modern high-temperature confinement experiments. It is shown that such disturbances are best unified and understood through consideration of a single, exact fluid moment: the shear-Alfven law. Appropriate versions of this law and its corresponding closure relations are derived - essentially from first principles - and applied in a variety of mostly, but not exclusively, linear contexts. Among the specific topics considered are: flux coordinates (including Hamada coordinates), the Newcomb solubility condition. Shafranov geometry, magnetic island evolution, reduced MHD and its generalizations, drift-kinetic electron response, classical tearing, twisting, and kink instabilities, pressure-modified tearing instability (Δ-critical), collisionless and semi-collisional tearing modes, the ballooning representation in general geometry, ideal ballooning instability, Mercier criterion, near-axis expansions, the second stability region, and resistive and kinetic ballooning modes. The fundamental importance of toroidal topology and curvature is stressed
Particle energization by inertial Alfven wave in auroral ionosphere
Kumar, S.
2017-12-01
The role of inertial Alfven wave in auroral acceleration region and in the inertial regime to energize the plasma particles is an interesting field and widely discussed observationally as well as theoretically in recent years. In this work, we present the density perturbations by inertial Alfvén wave (AW) in the auroral ionosphere. We obtain dynamical equations for inertial AW and fast mode of AW using two-fluid model and then solve them numerically in order to analyze the localized structures and cavity formation. The ponderomotive force due to the high frequency inertial AW changes the background density and is believed to be responsible for the wave localization or for the formation of density cavities in auroral ionosphere. These density cavities are believed to be the sites for particle energization. This perturbed density channel grow with time until the modulation instability acquires steady state. We find that the density cavities are accompanied by the high amplitude magnetic fields. The amplitude of the strongest density cavity is estimated as ˜ 0.26n0 (n0 is unperturbed plasma number density). The results presented here are found consistent with the observational studies using FAST spacecraft.
Stable Alfven-wave dynamo action in the reversed-field pinch
International Nuclear Information System (INIS)
Werley, K.A.
1984-01-01
Previous theoretical work has suggested that Alfven waves may be related to the anomalous toroidal magnetic flux generation and extended (over classical expectations) discharge times observed in the reversed-field pinch. This thesis examines the dynamo action of stable Alfven waves as a means of generating toroidal flux. Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. This technique is readily extendable to other plasmas in which dynamic stable model action is of interest. Such plasmas include Alfven wave current-drive and plasma heating for fusion devices, as well as astrophysical and geophysical dynamo systems. This study also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number
Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks
International Nuclear Information System (INIS)
Spong, D.A.; Carreras, B.A.; Hedrick, C.L.; Leboeuf, J.N.; Weller, A.
1994-01-01
An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE's in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles
Three-dimensional stability of solitary kinetic Alfven waves and ion-acoustic waves
International Nuclear Information System (INIS)
Ghosh, G.; Das, K.P.
1994-01-01
Starting from a set of equations that lead to a linear dispersion relation coupling kinetic Alfven waves and ion-acoustic waves, three-dimensional KdV equations are derived for these waves. These equations are then used to investigate the three-dimensional stability of solitary kinetic Alfven waves and ion-acoustic waves by the small-k perturbation expansion method of Rowlands and Infeld. For kinetic Alfven waves it is found that there is instability if the direction of the plane-wave perturbation lies inside a cone, and the growth rate of the instability attains a maximum when the direction of the perturbation lies in the plane containing the external magnetic field and the direction of propagation of the solitary wave. For ion-acoustic waves the growth rate of instability attains a maximum when the direction of the perturbation lies in a plane perpendicular to the direction of propagation of the solitary wave. (Author)
Alfven wave. [Book on linear and nonlinear properties for fusion applications
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, A.; Uberoi, C.
1978-11-01
Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7.
A KINETIC ALFVEN WAVE AND THE PROTON DISTRIBUTION FUNCTION IN THE FAST SOLAR WIND
International Nuclear Information System (INIS)
Li Xing; Lu Quanming; Chen Yao; Li Bo; Xia Lidong
2010-01-01
Using one-dimensional test particle simulations, the effect of a kinetic Alfven wave on the velocity distribution function (VDF) of protons in the collisionless solar wind is investigated. We first use linear Vlasov theory to numerically obtain the property of a kinetic Alfven wave (the wave propagates in the direction almost perpendicular to the background magnetic field). We then numerically simulate how the wave will shape the proton VDF. It is found that Landau resonance may be able to generate two components in the initially Maxwellian proton VDF: a tenuous beam component along the direction of the background magnetic field and a core component. The streaming speed of the beam relative to the core proton component is about 1.2-1.3 Alfven speed.
Experiments and Observations on Intense Alfven Waves in the Laboratory and in Space
International Nuclear Information System (INIS)
Gekelman, W.; VanZeeland, M.; Vincena, S.; Pribyl, P.
2003-01-01
There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma that can support Alfven waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfven wave propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. A new class of experiments which involve the expansion of a dense (initially, δn/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfven waves will be presented. Measurements are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, coupled to the initial electron current, which replace fast electrons escaping the initial blast
International Nuclear Information System (INIS)
Carlotti, G.; Madami, M.; Gubbiotti, G.; Tacchi, S.
2014-01-01
Sub-200 nm patterned magnetic dots are key elements for the design of magnetic switches, memory cells or elementary units of nanomagnetic logic circuits. In this paper, we analyse by micromagnetic simulations the magnetization reversal, the dissipated energy and the excited spin eigenmodes in bistable magnetic switches, consisting of elliptical nanodots with 100×60 nm lateral dimensions. Two different strategies for reversal are considered and the relative results compared: (i) the irreversible switching obtained by the application of an external field along the easy axis, in the direction opposite to the initial magnetization; (ii) the precessional switching accomplished by the application of a short magnetic field pulse, oriented perpendicular to the initial magnetization direction. The obtained results are discussed in terms of deviation from the macrospin behavior, energy dissipation and characteristics of the spectrum of spin eigenmodes excited during the magnetization reversal process
Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems.
Miller, Bo E; Takashima, Yuzuru
2016-12-26
Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.
Miriţoiu, C. M.; Stănescu, M. M.; Burada, C. O.; Bolcu, D.; Roşca, V.
2015-11-01
For modal identification, the single-point excitation method has been widely used in modal tests and it consists in applying a force in a given point and recording the vibratory structure response in all interest points, including the excitation point. There will be presented the experimental recordings for the studied bars (with Kevlar-carbon or carbon fibers), the frequency response function in Cartesian and polar coordinates. By using the frequency response functions we determine the eigenparameters for each bar. We present the final panel of the eigenmodes (with the damping factors, eigenfrequencies and critical damping) for each considered bar. Using the eigenfrequency of the first determined eigenmode, the bars stiffness has been determined. The presented bars can be used in practical engineering for: car or bus body parts, planes body parts, bullet-proof vests, reinforcements for sandwich beams, and so on.
International Nuclear Information System (INIS)
Tsurutani, B.T.; Gonzalez, W.D.
1987-01-01
It is shown that high intensity (AE > 1,000 nT), long duration (T > 2 d) continuous auroral activity (HILDCAA) events are caused by outward (from the sun) propagating interplanetary Alfven wave trains. The Alfven waves are often (but not always) detected several days after major interplanetary events, such as shocks and solar wind density enhancements. Presumably magnetic reconnection between the southward components of the Alfven wave magnetic fields and magnetospheric fields is the mechanism for transfer of solar wind energy to the magnetosphere. If the stringent requirements for HILDCAA events are relaxed, there are many more AE events of this type. A brief inspection indicates that these are also related to interplanetary Alfvenic fluctuations. We therefore suggest that most auroral activity may be caused by reconnection associated with Alfven waves in the interplanetary medium. (author)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Pei [Manchester Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [Manchester Univ. (United Kingdom). School of Physics and Astronomy; The Cockcroft Institute, Daresbury, Warrington (United Kingdom)
2012-06-15
The third harmonic nine-cell cavity (3.9 GHz) for FLASH and the European XFEL has been investigated using simulations performed with the computer code CST Microwave Studio registered. The band structure of monopole, dipole, quadrupole and sextupole modes for an ideal cavity has been studied. The higher order modes for the nine-cell structure are compared with that of the cavity mid-cell. The R/Q of these eigenmodes are calculated.
A non conforming finite element method for computing eigenmodes of resonant cavities
International Nuclear Information System (INIS)
Touze, F.; Le Meur, G.
1990-06-01
We present here a non conforming finite element in R 3 . This finite element, built on tetrahedrons, is particularly suited for computing eigenmodes. The main advantage of this element is that it preserves some structural properties of the space in which the solutions of the Maxwell's equations are to be found. Numerical results are presented for both two-dimensional and three-dimensional cases
Eigenmodes of a microwave cavity partially filled with an anisotropic hot plasma
International Nuclear Information System (INIS)
Shoucri, M.M.; Gagne, R.R.J.
1978-01-01
The eigenmodes of a microwave cavity, which contains a uniform hot plasma with anisotropic temperature, are determined using the linearized fluid equations together with Maxwell's equations. Conditions are discussed under which hot plasma mode and the cold plasma mode are decoupled. The frequency shift of the microwave cavity is calculated and the theoretical results are shown to be in very good qualitative agreement with published experimental results obtained for the TM 010 mode. (author)
Harrison Hong; David Sraer
2012-01-01
We provide a model for why high beta assets are more prone to speculative overpricing than low beta ones. When investors disagree about the common factor of cash-flows, high beta assets are more sensitive to this macro-disagreement and experience a greater divergence-of-opinion about their payoffs. Short-sales constraints for some investors such as retail mutual funds result in high beta assets being over-priced. When aggregate disagreement is low, expected return increases with beta due to r...
Propagation of large amplitude Alfven waves in the solar wind current sheet
International Nuclear Information System (INIS)
Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi
1996-01-01
The time evolution of Alfvenic perturbations in the Solar Wind current sheet is studied by using numerical simulations of the compressible magnetohydrodynamic (MHD) equations. The simulations show that the interaction between the large amplitude Alfvenic pertubation and the solar wind current sheet decreases the correlation between velocity and magnetic field fluctuations and produces compressive fluctuations. The characteristics of these compressive fluctuations compare rather well with spatial observations. The behavior of the correlation between density and magnetic field intensity fluctuations and of the their spectra are well reproduced so that the physical mechanisms giving rise to these behaviors can be identified
International Nuclear Information System (INIS)
Omura, Yoshiharu; Matsumoto, Hiroshi.
1989-01-01
Past theoretical and numerical studies of the nonlinear evolution of electromagnetic cyclotron waves are reviewed. Such waves are commonly observed in space plasmas such as Alfven waves in the solar wind or VLF whistler mode waves in the magnetosphere. The use of an electromagnetic full-particle code to study an electron cyclotron wave and of an electromagnetic hybrid code to study an ion cyclotron wave is demonstrated. Recent achievements in the simulations of nonlinear revolution of electromagnetic cyclotron waves are discussed. The inverse cascading processes of finite-amplitude whistler and Alfven waves is interpreted in terms of physical elementary processes. 65 refs
Basic principles approach for studying nonlinear Alfven wave-alpha particle dynamics
International Nuclear Information System (INIS)
Berk, H.L.; Breizman, B.N.; Pekker, M.
1994-01-01
An analytical model and a numerical procedure are presented which give a kinetic nonlinear description of the Alfven-wave instabilities driven by the source of energetic particles in a plasma. The steady-state and bursting nonlinear scenarios predicted by the analytical theory are verified in the test numerical simulation of the bump-on-tail instability. A mathematical similarity between the bump-on-tail problem for plasma waves and the Alfven wave problem gives a guideline for the interpretation of the bursts in the wave energy and fast particle losses observed in the tokamak experiments with neutral beam injection
Alfven-wave particle interaction in finite-dimensional self-consistent field model
International Nuclear Information System (INIS)
Padhye, N.; Horton, W.
1998-01-01
A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons
Energy Technology Data Exchange (ETDEWEB)
Ruderman, M S
1988-08-01
Nonlinear Alfven surface wave propagation at a magnetic interface in a compressible fluid is considered. It is supposed that the magnetic field directions at both sides of the interface and the direction of wave propagation coincide. The equation governing time-evolution of nonlinear small-amplitude waves is derived by the method of multiscale expansions. This equation is similar to the equation for nonlinear Alfven surface waves in an incompressible fluid derived previously. The numerical solution of the equation shows that a sinusoidal disturbance overturns, i.e. infinite gradients arise.
The upgraded JET toroidal Alfvén eigenmode diagnostic system
Puglia, P.; Pires de Sa, W.; Blanchard, P.; Dorling, S.; Dowson, S.; Fasoli, A.; Figueiredo, J.; Galvão, R.; Graham, M.; Jones, G.; Perez von Thun, C.; Porkolab, M.; Ruchko, L.; Testa, D.; Woskov, P.; Albarracin-Manrique, M. A.; Contributors, JET
2016-11-01
The main characteristics of toroidal Alfvén eigenmodes (TAEs) have been successfully investigated in JET (Joint European Torus) using the scheme of sweeping-frequency external excitation with tracking of the synchronously-detected resonances. However, due to technical limitations, only modes with low values of the toroidal mode number n≤slant 7 could be effectively excited and unambiguously identified by the Alfvén Eigenmode Active Diagnostic (AEAD) system. This represents a serious restriction because theoretical models indicate that medium-n Alfvén eigenmodes (AEs) are the most prone to be destabilized by energetic particles in ignited plasmas and, therefore, reliable measurement of their damping rates remains a relevant issue to properly access their effect in ignited plasmas. For this reason, a major upgrade of the AEAD system has been carried out aiming at providing a state-of-the-art excitation and real-time detection system for the planned DT campaign in JET. This required the development of a new type of radio frequency amplifier and filter, not commercially available, and also a control system. In this paper, details of the concepts that are relevant to understand the operation of the new system in the next experimental campaigns are presented, as are the results of numerical simulations to model its performance.
Variable eigenmode excitation in the beach heating of two-ion-species mirror plasmas
International Nuclear Information System (INIS)
Roberts, D.R.
1990-01-01
Variable eigenmode excitation scans of the ion species ratio of hydrogen-helium and hydrogen-deuterium plasmas has been examined in the bench-heating configuration of the Phaedrus-B central cell. m = -1 fields were selectively excited by a ''rotating-field'' antenna array at ω/Ω H = 0.8. The coupled wave energy propagates through a steep axial magnetic gradient into a region of strong ion-cyclotron resonance absorption which is located triangle z = 50cm from the antenna. Evidence of varied fast- and slow-wave eigenmode excitation and absorption, including variations in the radial profiles of waves magnetic field and plasma parameters, was observed during the scans. Optimal peak parameters in the plasma core, n e = 1.0 x 10 13 cm -3 , T eparallel = 20eV, T iparallel = 140eV, T iperpendicular = 450eV, and β = 0.2, were obtained for moderate helium or deuterium ion fractions (puffed n He /n e = n D /n e ∼ 0.25). These parameters exceed those obtained under the same conditions with ''pure'' hydrogen plasmas: n e = 7.0 x 10 12 cm -3 , T eparallel = 25eV, T iparallel = 80eV, T iperpendicular = 300eV, and β = 0.1. These variations are in agreement with those expected from antenna-eigenmode coupling considerations
Eigenmode analysis of ballooning perturbations in the inner magnetosphere of the Earth
Directory of Open Access Journals (Sweden)
A. S. Parnowski
2007-06-01
Full Text Available We analyze coupled Alfvén and slow magnetosonic eigenmodes in a dipole geomagnetic field with different ionospheric conductivities in the framework of ideal magnetic hydrodynamics (MHD with finite pressure. We use numerical and, if possible, analytical methods to describe eigenmode frequencies, growth rates and eigenfunctions. The spectrum of Alfvén and slow magnetosonic modes is discrete and equidistant. The frequencies of the first Alfvén and slow magnetosonic eigenmodes are estimated as ~1 Hz and ~1 mHz, respectively. In the case of finite conductivity, periodic and aperiodic modes are separated and their interaction analyzed. It was shown that periodic and aperiodic perturbations can mutually transform into each other. A new flute stability criterion is derived (α~4.25, which is stricter than the Gold criterion (α=20/3. Here, as usual, α=−L/p dp/dL. For flute perturbations, the deviations of transversal displacement from a constant are calculated. An approximation for longitudinal displacement is derived. We determined the position of the main longitudinal peak, which can be responsible for nonlinear structures observed by Freja. An influence of nonlinear terms in pressure is estimated as well.
Energy Technology Data Exchange (ETDEWEB)
Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)
2001-02-01
In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.
Experimental study of high beta toroidal plasmas
International Nuclear Information System (INIS)
Kellman, A.G.
1983-09-01
Experiments on the Wisconsin Levitated Toroidal Octupole have produced a wide range of stable high β plasmas with β significantly above single fluid MHD theory predictions. A stable β approx. 8% plasma, twice the fluid limit, is obtained with 5 rho/sub i/ approx. L/sub n/ and tau/sub β/ approx. = 6000 tau/sub Alfven/ = 600 μsec. The enhanced stability is explained with a kinetic treatment that includes the effect of finite ion gyroradius which couples the ballooning mode to an ion drift wave. In a more collisional, large gyroradius (2 rho/sub i/ approx. L/sub n/) regime, a stable β approx. 35% plasma is obtained with a decay time of 1000 Alfven times. Measurement of the equilibrium magnetic field in this regime indicates that the diamagnetic current density is five times smaller than predicted by ideal MHD, probably due to ion gyroviscosity. Particle transport is anomalous and ranges from agreement with the classical diffusion rate at the highest beta, lowest field plasma (B/sub P/ = 200 G), to thirteen times the classical rate in a β=11%, high field plasma (B/sub P/ = 860 G) where the level of enhancement increase with magnetic field. Fluctuations in density, electrostatic potential, and magnetic field have been studied in plasmas with β from 0.1% to 40%
Alfven waves in the auroral ionosphere: A numerical model compared with measurements
International Nuclear Information System (INIS)
Knudsen, D.J.; Kelley, M.C.; Vickrey, J.F.
1992-01-01
The authors solve a linear numerical model of Alfven waves reflecting from the high-latitude ionosphere, both to better understanding the role of the ionosphere in the magnetosphere/ionosphere coupling process and to compare model results with in situ measurements. They use the model to compute the frequency-dependent amplitude and phase relations between the meridional electric and the zonal magnetic fields due to Alfven waves. These relations are compared with measurements taken by an auroral sounding rocket flow in the morningside oval and by the HILAT satellite traversing the oval at local noon. The sounding rocket's trajectory was mostly parallel to the auroral oval, and is measured enhanced fluctuating field energy in regions of electron precipitation. The rocket-measured phase data are in excellent agreement with the Alfven wave model, and the relation between the modeled and the measured by HILAT are related by the height-integrated Pedersen conductivity Σ p , indicating that the measured field fluctuations were due mainly to structured field-aligned current systems. A reason for the relative lack of Alfven wave energy in the HILAT measurements could be the fact that the satellite traveled mostly perpendicular to the oval and therefore quickly traversed narrow regions of electron precipitation and associated wave activity
Alfven, Hugo. Die drei Schwedischen Rhapsodien op. 19, 24 und 47 / Andreas Meyer
Meyer, Andreas
1995-01-01
Uuest heliplaadist "Alfven, Hugo. Die drei Schwedischen Rhapsodien op. 19, 24 und 47, En skärgardssägen op. 20, Suite aus Der Berkönig. Königliche Stockholmer Philharmoniker, Neeme Järvi". AD: 1987-1992. BIS?Disco-Center CD 725 (WD: 77'00")
International Nuclear Information System (INIS)
Chambrier, A. de; Heym, A.; Hofmann, F.; Joye, B.; Keller, R.; Lietti, A.; Lister, J.B.; Pochelon, A.; Simm, W.
1983-01-01
The aim of the TCA project is to investigate the heating effects of resonant absorption of Alfven waves in a Tokamak plasma. In TCA, the ion temperature increases linearly with the heating. Depending on the conditions, the ion temperature rises from 150 eV to 225 eV. (Auth./G.T.H.)
Energy balance in the TCA tokamak plasma with Alfven wave heating
International Nuclear Information System (INIS)
Ding Ning; Qu Wenxiao; Huang Li; Long Yongxing; Qiu Xiaoming
1993-01-01
The energy balance in TCA tokamak plasma with Alfven wave heating is studied, in which the equivalent electron thermal conductivity is determined by using the profile consistency principle. The results are in good agreement with experiments. It is shown that this method is applicable to various devices and other heating methods
The calculation for energy balance of heating plasmas by Alfven waves
International Nuclear Information System (INIS)
Long Yongxing; Ding Ning; He Qibing; Qu Wenxiao; Huang Lin; Qiu Xiaoming
1992-10-01
A numerical method for computing the energy balance of heating tokamak plasmas by Alfven waves is introduced. The results are in agreement with experiments. This method is not only simpler and more distinct but also considerably saving time in computation. It also can be used in kinetic problems with other types of radio frequency (RF) heating
Differential equation for Alfven ion cyclotron waves in finite-length plasma
International Nuclear Information System (INIS)
Watson, D.C.; Fateman, R.J.; Baldwin, D.E.
1977-01-01
One finds the fourth-order differential equation describing an Alfven-ion-cyclotron wave propagating along a magnetic field of varying intensity. The equation is self-adjoint and possesses non-trivial turning points. The final form of the equation is checked using MACSYMA, a system for performing algebra on a computer
International Nuclear Information System (INIS)
Prokopov, P A; Zakharov, Yu P; Tishchenko, V N; Shaikhislamov, I F; Boyarintsev, E L; Melekhov, A V; Ponomarenko, A G; Posukh, V G; Terekhin, V A
2016-01-01
Generation of Alfven waves propagating along external magnetic field B 0 and Collisionless Shock Waves propagating across B 0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field E φ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field B φ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B 0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number M A ∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*10 13 cm -3 is observed. At the same conditions but smaller M A ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B 0 ∼100÷500 G for a distance of ∼2.5 m is studied. (paper)
Energy Technology Data Exchange (ETDEWEB)
Podestà, M.; Gorelenkov, N. N.; White, R. B.; Fredrickson, E. D.; Gerhardt, S. P.; Kramer, G. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2013-08-15
A second Neutral Beam (NB) injection line is being installed on the NSTX Upgrade device, resulting in six NB sources with different tangency radii that will be available for heating and current drive. This work explores the properties of instabilities in the frequency range of the Toroidal Alfvén Eigenmode (TAE) for NSTX-U scenarios with various NB injection geometries, from more perpendicular to more tangential, and with increased toroidal magnetic field with respect to previous NSTX scenarios. Predictions are based on analysis through the ideal MHD code NOVA-K. For the scenarios considered in this work, modifications of the Alfvén continuum result in a frequency up-shift and a broadening of the radial mode structure. The latter effect may have consequences for fast ion transport and loss. Preliminary stability considerations indicate that TAEs are potentially unstable with ion Landau damping representing the dominant damping mechanism.
Mechanisms for the Dissipation of Alfven Waves in Near-Earth Space Plasma
Singh, Nagendra; Khazanov, George; Krivorutsky, E. N.; Davis, John M. (Technical Monitor)
2002-01-01
Alfven waves are a major mechanism for the transport of electromagnetic energy from the distant part of the magnetosphere to the near-Earth space. This is especially true for the auroral and polar regions of the Earth. However, the mechanisms for their dissipation have remained illusive. One of the mechanisms is the formation of double layers when the current associated with Alfven waves in the inertial regime interact with density cavities, which either are generated nonlinearly by the waves themselves or are a part of the ambient plasma turbulence. Depending on the strength of the cavities, weak and strong double layers could form. Such double layers are transient; their lifetimes depend on that of the cavities. Thus they impulsively accelerate ions and electrons. Another mechanism is the resonant absorption of broadband Alfven- wave noise by the ions at the ion cyclotron frequencies. But this resonant absorption may not be possible for the very low frequency waves, and it may be more suited for electromagnetic ion cyclotron waves. A third mechanism is the excitation of secondary waves by the drifts of electrons and ions in the Alfven wave fields. It is found that under suitable conditions, the relative drifts between different ion species and/or between electrons and ions are large enough to drive lower hybrid waves, which could cause transverse accelerations of ions and parallel accelerations of electrons. This mechanism is being further studied by means of kinetic simulations using 2.5- and 3-D particle-in-cell codes. The ongoing modeling efforts on space weather require quantitative estimates of energy inputs of various kinds, including the electromagnetic energy. Our studies described here contribute to the methods of determining the estimates of the input from ubiquitous Alfven waves.
Eigenmodes of three-dimensional spherical spaces and their application to cosmology
International Nuclear Information System (INIS)
Lehoucq, Roland; Weeks, Jeffrey; Uzan, Jean-Philippe; Gausmann, Evelise; Luminet, Jean-Pierre
2002-01-01
This paper investigates the computation of the eigenmodes of the Laplacian operator in multi-connected three-dimensional spherical spaces. General mathematical results and analytical solutions for lens and prism spaces are presented. Three complementary numerical methods are developed and compared with our analytic results and previous investigations. The cosmological applications of these results are discussed, focusing on the cosmic microwave background (CMB) anisotropies. In particular, whereas in the Euclidean case too-small universes are excluded by present CMB data, in the spherical case, candidate topologies will always exist even if the total energy density parameter of the universe is very close to unity
Eigenmodes of three-dimensional spherical spaces and their application to cosmology
Energy Technology Data Exchange (ETDEWEB)
Lehoucq, Roland [CE-Saclay, DSM/DAPNIA/Service d' Astrophysique, F-91191 Gif sur Yvette (France); Weeks, Jeffrey [15 Farmer St, Canton, NY 13617-1120 (United States); Uzan, Jean-Philippe [Institut d' Astrophysique de Paris, GReCO, CNRS-FRE 2435, 98 bis, Bd Arago, 75014 Paris (France); Gausmann, Evelise [Instituto de Fisica Teorica, Rua Pamplona, 145 Bela Vista - Sao Paulo - SP, CEP 01405-900 (Brazil); Luminet, Jean-Pierre [Laboratoire Univers et Theories, CNRS-FRE 2462, Observatoire de Paris, F-92195 Meudon (France)
2002-09-21
This paper investigates the computation of the eigenmodes of the Laplacian operator in multi-connected three-dimensional spherical spaces. General mathematical results and analytical solutions for lens and prism spaces are presented. Three complementary numerical methods are developed and compared with our analytic results and previous investigations. The cosmological applications of these results are discussed, focusing on the cosmic microwave background (CMB) anisotropies. In particular, whereas in the Euclidean case too-small universes are excluded by present CMB data, in the spherical case, candidate topologies will always exist even if the total energy density parameter of the universe is very close to unity.
Chardon, Gilles; Daudet, Laurent
2013-11-01
This paper extends the method of particular solutions (MPS) to the computation of eigenfrequencies and eigenmodes of thin plates, in the framework of the Kirchhoff-Love plate theory. Specific approximation schemes are developed, with plane waves (MPS-PW) or Fourier-Bessel functions (MPS-FB). This framework also requires a suitable formulation of the boundary conditions. Numerical tests, on two plates with various boundary conditions, demonstrate that the proposed approach provides competitive results with standard numerical schemes such as the finite element method, at reduced complexity, and with large flexibility in the implementation choices.
Low-lying eigenmodes of the Wilson-Dirac operator and correlations with topological objects
International Nuclear Information System (INIS)
Kusterer, Daniel-Jens; Hedditch, John; Kamleh, Waseem; Leinweber, D.B.; Williams, Anthony G.
2002-01-01
The probability density of low-lying eigenvectors of the hermitian Wilson-Dirac operator H(κ)=γ 5 D W (κ) is examined. Comparisons in position and size between eigenvectors, topological charge and action density are made. We do this for standard Monte-Carlo generated SU(3) background fields and for single instanton background fields. Both hot and cooled SU(3) background fields are considered. An instanton model is fitted to eigenmodes and topological charge density and the sizes and positions of these are compared
Global kink and ballooning modes in high-beta systems and stability of toroidal drift modes
International Nuclear Information System (INIS)
Galvao, R.M.O.; Goedbloed, J.P.; Rem, J.; Sakanaka, P.H.; Schep, T.J.; Venema, M.
1983-01-01
A numerical code (HBT) has been developed which solves for the equilibrium, global stability and high-n stability of plasmas with arbitrary cross-section. Various plasmas are analysed for their stability to these modes in the high-beta limit. Screw-pinch equilibria are stable to high-n ballooning modes up to betas of 18%. The eigenmode equation for drift waves is analysed numerically. The toroidal branch is shown to be destabilized by the non-adiabatic response of trapped and circulating particles. (author)
International Nuclear Information System (INIS)
Dryak, P.; Zderadicka, J.; Plch, J.; Kokta, L.; Novotna, P.
1977-01-01
For the purpose of beta spectrometry, a semiconductor spectrometer with one Si(Li) detector cooled with liquid nitrogen was designed. Geometrical detection efficiency is about 10% 4 sr. The achieved resolution for 624 keV conversion electrons of sup(137m)Ba is 2.6 keV (FWHM). A program was written in the FORTRAN language for the correction of the deformation of the measured spectra by backscattering in the analysis of continuous beta spectra. The method permits the determination of the maximum energy of the beta spectrum with an accuracy of +-5 keV. (author)
Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium
Belcher, J. W.; Burchsted, R.
1974-01-01
Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.
... may not work as effectively for people of African heritage and older people, especially when taken without ... conditions/high-blood-pressure/in-depth/beta-blockers/ART-20044522 . Mayo Clinic Footer Legal Conditions and Terms ...
Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots
Energy Technology Data Exchange (ETDEWEB)
Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Dipartimento di Fisica e Geologia, Perugia (Italy); Gubbiotti, G.; Dey, H.; Csaba, G.; Porod, W. [Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)
2015-05-07
We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements has been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.
From micro- to nanomagnetic dots: evolution of the eigenmode spectrum on reducing the lateral size
International Nuclear Information System (INIS)
Carlotti, G; Madami, M; Gubbiotti, G; Tacchi, S; Hartmann, F; Emmerling, M; Kamp, M; Worschech, L
2014-01-01
Brillouin light scattering experiments and micromagnetic simulations have been exploited to investigate the spectrum of thermally excited magnetic eigenmodes in 10 nm-thick elliptical Permalloy dots, when the longer axis D is scaled down from about 1000 to 100 nm. It is shown that for D larger than about 200 nm the characteristics of the spin-wave eigenmodes are dominated by dipolar energy, while for D in the range of about 100 to 200 nm exchange energy effects cause qualitative and quantitative differences in the spin-wave spectrum. In this ‘mesoscopic’ regime, the usual classification scheme, involving one fundamental mode with large average magnetization and many other modes collected in families with specific symmetries, no longer holds. Rather, one finds the simultaneous presence of two modes with ‘fundamental’ character, i.e. with a significant and comparable value of the average dynamical magnetization: the former is at larger frequency and has its maximum amplitude at the dot's centre, while the latter occurs at lower frequency and is localized at the dot's edges. Interestingly, the maximum intensity swaps from the higher frequency mode to the lower frequency one, just when the dot size is reduced from about 200 to 100 nm. This is relevant in view of the exploitation of nanodots for the design of nanomagnetic devices with lateral dimensions in the above interval, such as memory cells, logic gates, reading heads and spin-torque oscillators. (paper)
Hybrid simulation of toroidal Alfvén eigenmode on the National Spherical Torus Experiment
Energy Technology Data Exchange (ETDEWEB)
Liu, D., E-mail: deyongl@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Fu, G. Y.; Podestà, M.; Breslau, J. A.; Fredrickson, E. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Crocker, N. A.; Kubota, S. [Department of Physics and Astronomy, University of California, Los Angles, California 90095 (United States)
2015-04-15
Energetic particle modes and Alfvén eigenmodes driven by super-Alfvénic fast ions are routinely observed in neutral beam heated plasmas on the National Spherical Torus eXperiment (NSTX). These modes can significantly impact fast ion transport and thus cause fast ion redistribution or loss. Self-consistent linear simulations of Toroidal Alfvén Eigenmodes (TAEs) in NSTX plasmas have been carried out with the kinetic/magnetohydrodynamic hybrid code M3D-K using experimental plasma parameters and profiles including plasma toroidal rotation. The simulations show that unstable TAEs with n=3,4, or 5 can be excited by the fast ions from neutral beam injection. The simulated mode frequency, mode radial structure, and phase shift are consistent with measurements from a multi-channel microwave reflectometer diagnostic. A sensitivity study on plasma toroidal rotation, safety factor q profile, and initial fast ion distribution is performed. The simulations show that rotation can have a significant destabilizing effect when the rotation is comparable or larger than the experimental level. The mode growth rate is sensitive to q profile and fast ion distribution. Although mode structure and peak position depend somewhat on q profile and plasma rotation, the variation of synthetic reflectometer response is within experimental uncertainty and it is not sensitive enough to see the difference clearly.
International Nuclear Information System (INIS)
Itasse, Maxime; Brazier, Jean-Philippe; Léon, Olivier; Casalis, Grégoire
2015-01-01
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m 1 , n 1 ), (m 2 , n 2 ), such that the difference in azimuth and in frequency matches the desired “target” mode (m 1 − m 2 , n 1 − n 2 ). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes
Linear stability of toroidal Alfvén eigenmodes in the Chinese Fusion Engineering Test Reactor
Energy Technology Data Exchange (ETDEWEB)
Yang, Wenjun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230026 (China); Li, Guoqiang, E-mail: ligq@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Hu, Youjun; Gao, Xiang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)
2017-01-15
The Chinese Fusion Engineering Test Reactor (CFETR) is under design. It aims to fill the gaps between ITER and DEMO. In the reactor, the deuterium-tritium fusion reaction and the auxiliary heating will generate a lot of energetic particles. It is possible that these energetic particles will drive toroidal Alfvén eigenmode (TAE) instabilities under the conditions of CFETR plasma parameters. These instabilities can result in energetic particles redistribution or loss, so it’s vital to study TAE instabilities in CFETR. The aim of this paper is to study the possibility of reducing TAE instabilities by changing safety factor profiles in CFETR. NOVA and NOVA-K codes are used to study TAE stability. The equilibria are constructed using the CORSICA code. Safety factor profiles are selected as the three typical profiles of ITER scenarios. For the three different safety factor profiles, we use NOVA to scan and calculate their continuum spectrum and eigenmode structures, then use NOVA-K to calculate the different damping and driving mechanisms for different toroidal mode numbers. The numerical calculations show that if the safety factor profiles are chosen appropriately, then all the TAEs can be stable. Thus, it’s possible to reduce the TAE instabilities by changing safety factor profiles in CFETR. We also scan the temperature and density profiles to see their effects on the TAE instabilities. It shows that the TAE instabilities keep unchanged for a wide range of profiles.
From micro- to nanomagnetic dots: evolution of the eigenmode spectrum on reducing the lateral size
Carlotti, G.; Gubbiotti, G.; Madami, M.; Tacchi, S.; Hartmann, F.; Emmerling, M.; Kamp, M.; Worschech, L.
2014-07-01
Brillouin light scattering experiments and micromagnetic simulations have been exploited to investigate the spectrum of thermally excited magnetic eigenmodes in 10 nm-thick elliptical Permalloy dots, when the longer axis D is scaled down from about 1000 to 100 nm. It is shown that for D larger than about 200 nm the characteristics of the spin-wave eigenmodes are dominated by dipolar energy, while for D in the range of about 100 to 200 nm exchange energy effects cause qualitative and quantitative differences in the spin-wave spectrum. In this ‘mesoscopic’ regime, the usual classification scheme, involving one fundamental mode with large average magnetization and many other modes collected in families with specific symmetries, no longer holds. Rather, one finds the simultaneous presence of two modes with ‘fundamental’ character, i.e. with a significant and comparable value of the average dynamical magnetization: the former is at larger frequency and has its maximum amplitude at the dot's centre, while the latter occurs at lower frequency and is localized at the dot's edges. Interestingly, the maximum intensity swaps from the higher frequency mode to the lower frequency one, just when the dot size is reduced from about 200 to 100 nm. This is relevant in view of the exploitation of nanodots for the design of nanomagnetic devices with lateral dimensions in the above interval, such as memory cells, logic gates, reading heads and spin-torque oscillators.
Energy Technology Data Exchange (ETDEWEB)
Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr; Casalis, Grégoire, E-mail: Gregoire.Casalis@onera.fr [Onera - The French Aerospace Lab, F-31055 Toulouse (France)
2015-08-15
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequency matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.
Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities
International Nuclear Information System (INIS)
Uphoff, Manuel; Brekenfeld, Manuel; Rempe, Gerhard; Ritter, Stephan
2015-01-01
We study the frequency splitting of the polarization eigenmodes of the fundamental transverse mode in CO 2 laser-machined, high-finesse optical Fabry–Perot cavities and investigate the influence of the geometry of the cavity mirrors. Their highly reflective surfaces are typically not rotationally symmetric but have slightly different radii of curvature along two principal axes. We observe that the eccentricity of such elliptical mirrors lifts the degeneracy of the polarization eigenmodes. The impact of the eccentricity increases for smaller radii of curvature. A model derived from corrections to the paraxial resonator theory is in excellent agreement with the measurements, showing that geometric effects are the main source of the frequency splitting of polarization modes for the type of microscopic cavity studied here. By rotating one of the mirrors around the cavity axis, the splitting can be tuned. In the case of an identical differential phase shift per mirror, it can even be eliminated, despite a nonvanishing eccentricity of each mirror. We expect our results to have important implications for many experiments in cavity quantum electrodynamics, where Fabry–Perot cavities with small mode volumes are required. (paper)
Active and fast particle driven Alfvén eigenmodes in Alcator C-Moda)
Snipes, J. A.; Basse, N.; Boswell, C.; Edlund, E.; Fasoli, A.; Gorelenkov, N. N.; Granetz, R. S.; Lin, L.; Lin, Y.; Parker, R.; Porkolab, M.; Sears, J.; Sharapov, S.; Tang, V.; Wukitch, S.
2005-05-01
Alfvén eigenmodes (AEs) are studied to assess their stability in high density reactor relevant regimes where Ti≈Te and as a diagnostic tool. Stable AEs are excited with active magnetohydrodynamics antennas in the range of the expected AE frequency. Toroidal Alfvén eigenmode (TAE) damping rates between 0.5%<γ/ω<4.5% have been observed in diverted and limited Ohmic plasmas. Unstable AEs are excited with a fast ion tail driven by H minority ion cyclotron radio frequency (ICRF) heating with electron densities in the range of n¯e=0.5-2×1020m-3. Energetic particle modes or TAEs have been observed to decrease in frequency and mode number with time up to a large sawtooth collapse, indicating the role fast particles play in stabilizing sawteeth. In the current rise phase, unstable modes with frequencies that increase rapidly with time are observed with magnetic pick-up coils at the wall and phase contrast imaging density fluctuation measurements in the core. Modeling of these modes constrains the calculated safety factor profile to be very flat or with slightly reversed shear. AEs are found to be more stable for an inboard than for central or outboard ICRF resonances in qualitative agreement with modeling.
Kinetic Alfven Waves at the Magnetopause-Mode Conversion, Transport and Formation of LLBL; TOPICAL
International Nuclear Information System (INIS)
Jay R. Johnson; C.Z. Cheng
2002-01-01
At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity[Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D(approx) 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 and gt; 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in
Effects of dust on the propagation and dissipation of Alfven waves in interstellar clouds
International Nuclear Information System (INIS)
Pilipp, W.; Morfill, G.E.; Hartquist, T.W.; Havnes, O.; Maryland Univ., College Park; Nordlysobservatoriet, Tromso, Norway)
1987-01-01
The propagation of circularly polarized Alfven waves in dusty, weakly ionized media consisting of three gaseous fluids and of one size of grains that are either neutral or singly ionized is numerically investigated. For a molecular hydrogen number density of 10,000/cu cm, a magnetic field strength of 0.0001 G, and a temperature of 20 K, the waves are well coupled when the wavelengths exceed about 1 pc. The grains can reduce the minimum wavelength for coupled waves to about 0.1 pc and the dissipation rates of well-coupled small-amplitude waves by an order of magnitude. The speeds and dissipation rates of decoupled Alfven waves with frequencies well above 0.01/yr and wavelengths well below 0.01 pc are altered greatly over a wide range of frequencies by the presence of grains. In particular, right-handed circularly polarized waves are affected strongly by gyroresonance and cutoff effects. 18 references
Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave
Energy Technology Data Exchange (ETDEWEB)
Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.
1996-06-01
The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile.
Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave
International Nuclear Information System (INIS)
Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.
1996-06-01
The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile
Improved model of quasi-particle turbulence (with applications to Alfven and drift wave turbulence)
International Nuclear Information System (INIS)
Mendonca, J. T.; Hizanidis, K.
2011-01-01
We consider the classical problem of wave stability and dispersion in a turbulent plasma background. We adopt a kinetic description for the quasi-particle turbulence. We describe an improved theoretical approach, which goes beyond the geometric optics approximation and retains the recoil effects associated with the emission and absorption of low frequency waves by nearly resonant quasi-particles. We illustrate the present approach by considering two particular examples. One is the excitation of zonal flows by drift wave turbulence or driftons. The other is the coupling between ion acoustic waves and Alfven wave turbulence, eventually leading to saturation of Alfven wave growth. Both examples are relevant to anomalous transport in magnetic fusion devices. Connection with previous results is established. We show that these results are recovered in the geometric optics approximation.
The analysis of Alfven wave current drive and plasma heating in TCABR tokamak
International Nuclear Information System (INIS)
Ruchko, L.F.; Lerche, E.A.; Galvao, R.M.O.; Elfimov, A.G.; Nascimento, I.C.; Sa, W.P. de; Sanada, E.; Elizondo, J.I.; Ferreira, A.A.; Saettone, E.A.; Severo, J.H.F.; Bellintani, V.; Usuriaga, O.N.
2002-01-01
The results of experiments on Alfven wave current drive and plasma heating in the TCABR tokamak are analyzed with the help of a numerical code for simulation of the diffusion of the toroidal electric field. It permits to find radial distributions of plasma current density and conductivity, which match the experimentally measured total plasma current and loop voltage changes, and thus to study the performance of the RF system during Alfven wave plasma heating and current drive experiments. Regimes with efficient RF power input in TCABR have been analyzed and revealed the possibility of noninductive current generation with magnitudes up to ∼8 kA. The increase of plasma energy content due to RF power input is consistent with the diamagnetic measurements. (author)
Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak
International Nuclear Information System (INIS)
Tan Yi; Gao Zhe; He Yexi
2009-01-01
Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak are presented. Two candidate antenna concepts, folded and unfolded, are analyzed and compared with each other. In the frequency range of Alfven resonance the impedance spectrums of both two concept antennas for major modes are numerically calculated in a 1-D MHD framework. The folded concept is chosen for engineering design. The antenna system is designed to be simple and requires least modification to the vacuum vessel. The definition of the antenna shape is guided by the analyses with constraints of existing hardware layouts. Each antenna unit consists of two stainless steel straps with a thickness of 1 mm. A number of boron nitride tiles are assembled together as the side limiters for plasma shielding. Estimation shows that the structure is robust enough to withstand the electromagnetic force and the heat load for typical discharge duty cycles.
Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave
Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.;
2017-01-01
Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.
Modification and damping of Alfven waves in a magnetized dusty plasma
International Nuclear Information System (INIS)
Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.
1994-10-01
The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlation. It is found that in addition to the usual Landau damping which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field. (author)
International Nuclear Information System (INIS)
Meyerhofer, D.D.; Perkins, F.W.
1984-04-01
The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer-Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 m -1 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches
Warm-ion drift Alfven turbulence and the L-H transition
International Nuclear Information System (INIS)
Scott, B.
1998-01-01
Computations of fluid drift turbulence treating ions and electrons on equal footing, including both temperatures, are conducted in a model toroidal geometry. The resulting 'ion mixing mode' turbulence bears features of both electron drift-Alfven and ion temperature gradient turbulence, and nonlinear sensitivity to the relative strengths of the density and temperature gradients provides a possible route to the bifurcation needed for the L-H transition. (author)
Effects of minority ions on the propagation of the Fast Alfven wave
International Nuclear Information System (INIS)
Wong, K.L.; Kristiansen, M.; Hagler, M.
1985-01-01
Minority ions play an important role in ICRF wave heating and fast wave current drive. The former provides supplemental heating to the plasma ions, and the latter enables a Tokamak reactor to operate in steady state. The injection of minority ions greatly perturbs the propagation and absorption properties of the fast waves provided that the excitation frequency and confining magnetic field strength make the hybrid layers exist inside the plasma. A cold-plasma slab model with gradient confining magnetic field, parabolic plasma density, vacuum layer, launching antenna and conducting walls was used in studying wave propagation with and without minority ions. The wave propagation was studied individually for each discrete toroidal eigenmode (N=Rk/sub z/). There exists an asymmetric density cutoff region which is mainly due to the density variation in a single-ion plasma. The larger the torodial mode number, the larger the density cutoff region. Therefore, there exists a maximum mode number N/sub m/, which can be excited for each operating frequency. With injection of minority ions, the cutoff region for each mode number is almost unchanged. But, if one carefully chooses the excitation frequency; the hybrid layers can exist inside the plamsa for all or part of the allowed eigenmodes. Those eigenmodes with hybrid layers inside the plasma will undergo drastic change in the propagation and absorption of the waves
Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas
Energy Technology Data Exchange (ETDEWEB)
Chen, Liu [Univ. of California, Irvine, CA (United States)
2017-12-20
This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.
Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer
Energy Technology Data Exchange (ETDEWEB)
Shrivastava, G., E-mail: geetphy9@gmail.com; Ahirwar, G. [School of Studies in Physics, Vikram University, Ujjain India (India); Shrivastava, J., E-mail: jayashrivastava2007@gmail.com [Dronacharya Group of Institutions, Greater Noida-India (India)
2015-07-31
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.
MONTE CARLO SIMULATION MODEL OF ENERGETIC PROTON TRANSPORT THROUGH SELF-GENERATED ALFVEN WAVES
Energy Technology Data Exchange (ETDEWEB)
Afanasiev, A.; Vainio, R., E-mail: alexandr.afanasiev@helsinki.fi [Department of Physics, University of Helsinki (Finland)
2013-08-15
A new Monte Carlo simulation model for the transport of energetic protons through self-generated Alfven waves is presented. The key point of the model is that, unlike the previous ones, it employs the full form (i.e., includes the dependence on the pitch-angle cosine) of the resonance condition governing the scattering of particles off Alfven waves-the process that approximates the wave-particle interactions in the framework of quasilinear theory. This allows us to model the wave-particle interactions in weak turbulence more adequately, in particular, to implement anisotropic particle scattering instead of isotropic scattering, which the previous Monte Carlo models were based on. The developed model is applied to study the transport of flare-accelerated protons in an open magnetic flux tube. Simulation results for the transport of monoenergetic protons through the spectrum of Alfven waves reveal that the anisotropic scattering leads to spatially more distributed wave growth than isotropic scattering. This result can have important implications for diffusive shock acceleration, e.g., affect the scattering mean free path of the accelerated particles in and the size of the foreshock region.
International Nuclear Information System (INIS)
Gao Zhe; He Yexi; Tan Yi
2009-01-01
Using electromagnetic waves to startup and sustain plasma current takes a important role in the research program of the SUNIST spherical tokamak. Electron cyclotron ware (ECW) current startup have been investigated and revealed two totally different regimes. In the regime of very low working pressure, a plasma current of about 2 kA is obtained with a steadily applied vertical field of 12 Gauss and 40 kW/2.45 GHz microwave injection. In addition, the physics of the transient process during ECW startup in the relatively high working pressure regime is analyzed. The hardware preparation for the experimental research of Alfven wave current drive is being performed. The Alfven wave antenna system consists of four models in toroidal direction and two antenna straps in poloidal direction for each module and the rf generator has been designed as a four-phase oscillator (4x100 kW, 0.5 - 1 Mhz).The impedance spectrum of the antenna system is roughly evaluated by 1-D cylindrical magneto-hydrodynamic calculation. To investigate the wave-plasma interaction in ECW startup and Alfven wave current drive, upgrade of the device, especially in equilibrium control and diagnostics, is ongoing. (author)
Non-inductive current drive via helicity injection by Alfven waves in low aspects ratio Tokamak
International Nuclear Information System (INIS)
Cuperman, S.; Bruma, C.; Komoshvili, K.
1996-01-01
A theoretical investigation of radio frequency (RF) current drive via helicity injection in low aspect ratio tokamaks was carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell was considered. Toroidal features of low aspect ratio tokamaks were simulated by incorporation of the following effects: (i) arbitrarily small aspect ratio, R o /a ≡ 1/ε (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. The study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {ω Alf (r)} min ≤ω≥{ω Alf (r)} max , where ω Alf (r)≡ω[n(r),B o (o)] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-p, ideal magneto-hydrodynamics, the wave equation with correct boundary (matching) conditions was solved, the RF field components were found and subsequently, current drive , power deposition and efficiency were computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low aspect ratio tokamaks, in the SAW mode. A special algorithm was developed which enables the selection of the antenna parameters providing optimal current drive efficiency. (authors)
Effects of heavy ion temperature on low-frequency kinetic Alfven waves
International Nuclear Information System (INIS)
Yang, L.; Wu, D. J.
2011-01-01
Heavy ion-electron (or proton) temperature ratio varies in a wide range in the solar and space environment. In this paper, proton and heavy ion temperatures are included in a three-fluid plasma model. For the specified parameters, low-frequency (<< heavy ion gyrofrequency) kinetic Alfven waves (KAWs) with sub- and super-Alfvenic speeds are found to coexist in the same plasma environment. Our results show that the temperature ratio of heavy ions to electrons can considerably affect the dispersion, propagation, and electromagnetic polarizations of the KAWs. In particular, the temperature ratio can increase the ratio of parallel to perpendicular electric fields and the normalized electric to magnetic field ratio, the variations of which are greatly different in regions with a high heavy ion temperature and with a low one. The results may help to understand the physical mechanism of some energization processes of heavy ions in the solar and space plasma environment. Effects of the ratio of electron thermal to Alfven speeds and the heavy ion abundance on these parameters are also discussed.
Alfven Wave Reflection Model of Field-Aligned Currents at Mercury
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James
2010-01-01
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.
The effect of toroidal plasma rotation on low-frequency reversed shear Alfvén eigenmodes in tokamaks
J.W. Haverkort (Willem)
2012-01-01
htmlabstractThe influence of toroidal plasma rotation on the existence of reversed shear Alfvén eigenmodes (RSAEs) near their minimum frequency is investigated analytically. An existence condition is derived showing that a radially decreasing kinetic energy density is unfavourable for the existence
International Nuclear Information System (INIS)
Heidbrink, W. W.; Austin, M. E.; Spong, D. A.; Tobias, B. J.; Van Zeeland, M. A.
2013-01-01
Reversed shear Alfvén eigenmodes (RSAEs) usually sweep upward in frequency when the minimum value of the safety factor q min decreases in time. On rare occasions, RSAEs sweep downward prior to the upward sweep. Electron cyclotron emission measurements show that the radial eigenfunction during the downsweeping phase is similar to the eigenfunction of normal, upsweeping RSAEs
Study of MHD stability beta limit in LHD by hierarchy integrated simulation code
International Nuclear Information System (INIS)
Sato, M.; Watanabe, K.Y.; Nakamura, Y.
2008-10-01
The beta limit by the ideal MHD instabilities (so-called 'MHD stability beta limit') for helical plasmas is studied by a hierarchy integrated simulation code. A numerical model for the effect of the MHD instabilities is introduced such that the pressure profile is flattened around the rational surface due to the MHD instabilities. The width of the flattening of the pressure gradient is determined from the width of the eigenmode structure of the MHD instabilities. It is assumed that there is the upper limit of the mode number of the MHD instabilities which directly affect the pressure gradient. The upper limit of the mode number is determined using a recent high beta experiment in the Large Helical Device (LHD). The flattening of the pressure gradient is calculated by the transport module in a hierarchy integrated code. The achievable volume averaged beta value in the LHD is expected to be beyond 6%. (author)
Todo, Y.; Berk, H. L.; Breizman, B. N.
2012-03-01
A hybrid simulation code for nonlinear magnetohydrodynamics (MHD) and energetic-particle dynamics has been extended to simulate recurrent bursts of Alfvén eigenmodes by implementing the energetic-particle source, collisions and losses. The Alfvén eigenmode bursts with synchronization of multiple modes and beam ion losses at each burst are successfully simulated with nonlinear MHD effects for the physics condition similar to a reduced simulation for a TFTR experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874, Todo et al 2003 Phys. Plasmas 10 2888). It is demonstrated with a comparison between nonlinear MHD and linear MHD simulation results that the nonlinear MHD effects significantly reduce both the saturation amplitude of the Alfvén eigenmodes and the beam ion losses. Two types of time evolution are found depending on the MHD dissipation coefficients, namely viscosity, resistivity and diffusivity. The Alfvén eigenmode bursts take place for higher dissipation coefficients with roughly 10% drop in stored beam energy and the maximum amplitude of the dominant magnetic fluctuation harmonic δBm/n/B ~ 5 × 10-3 at the mode peak location inside the plasma. Quadratic dependence of beam ion loss rate on magnetic fluctuation amplitude is found for the bursting evolution in the nonlinear MHD simulation. For lower dissipation coefficients, the amplitude of the Alfvén eigenmodes is at steady levels δBm/n/B ~ 2 × 10-3 and the beam ion losses take place continuously. The beam ion pressure profiles are similar among the different dissipation coefficients, and the stored beam energy is higher for higher dissipation coefficients.
Integral-equation formulation for drift eigenmodes in cylindrically symmetric systems
International Nuclear Information System (INIS)
Linsker, R.
1980-12-01
A method for solving the integral eigenmode equation for drift waves in cylindrical (or slab) geometry is presented. A leading-order kinematic effect that has been noted in the past, but incorrectly ignored in recent integral-equation calculations, is incorporated. The present method also allows electrons to be treated with a physical mass ratio (unlike earlier work that is restricted to artificially small m/sub i//m/sub e/ owing to resolution limitations). Results for the universal mode and for the ion-temperature-gradient driven mode are presented. The kinematic effect qualitatively changes the spectrum of the ion mode, and a new second region of instability for k/sub perpendicular to/rho/sub i/greater than or equal to 1 is found
Eigenmode compendium of the third harmonic module of the European X-ray Free Electron Laser
Flisgen, Thomas; Galek, Tomasz, Rostock Universitaet; Shi, Liangliang; Joshi, Nirav; Baboi, Nicoletta; Jones, Roger M; van Rienen, Ursula
2017-01-01
Chains of superconducting radio-frequency resonators are key components of modern particle accelerators such as the European XFEL, which is currently under construction in the north of Germany. In addition to the accelerating mode of the resonators, their beam excited higher order modes are of special interest, because they can harm the beam quality. In contrast to the accelerating mode, these modes are in general not confined within single resonators of the cavity string. For instance, eigenmodes can be localized between adjacent cavities or can be distributed along the entire chain of cavities. Therefore, the full chain has to be considered for a reasonable investigation of its resonant spectra. Accounting for such complex structures is computationally challenging and is therefore often avoided. In this article, the challenge is faced by using the so-called state-space concatenation approach, which is a combination of domain decomposition and model-order reduction. The technique allows for a reduction of th...
Excited eigenmodes in magnetic vortex states of soft magnetic half-spheres and spherical caps
Energy Technology Data Exchange (ETDEWEB)
Yoo, Myoung-Woo; Lee, Jae-Hyeok; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr [National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)
2014-12-14
We studied the magnetization dynamics of excitation modes in special geometrical confinements of soft magnetic half-spheres and spherical caps in magnetic vortex states using finite-element micromagnetic numerical calculations. We found additional fine features of the zeroth- and first-order gyrotropic modes and asymmetric m = +1 and m = −1 azimuthal spin-wave modes, which detailed information is unobtainable from two-dimensional mesh-cell based numerical calculations. Moreover, we examined the perpendicular bias field dependence of the excited eigenmodes, which data provide for an efficient means of control over the excited modes. Such numerical calculations offer additional details or new underlying physics on dynamic features in arbitrary-shape magnetic nano-elements such as half-spheres and spherical caps in magnetic vortex states.
Eigenmode characteristics of the double tearing mode in the presence of shear flows
International Nuclear Information System (INIS)
Mao Aohua; Li Jiquan; Kishimoto, Y.; Liu Jinyuan
2013-01-01
The double tearing mode (DTM) is characterized by two eigen states with antisymmetric or symmetric magnetic island structure, referred to as the even or odd DTM. In this work, we systematically revisit the DTM instabilities in the presence of an antisymmetric shear flow with a focus on eigenmode characteristics as well as the stabilization or destabilization mechanism in a wide parameter region. Both initial value simulation and eigenvalue analysis are performed based on reduced resistive MHD model in slab geometry. A degenerated eigen state is found at a critical flow amplitude v c . The even (or odd) DTM is stabilized (or destabilized) by weak shear flow below v c through the distortion of magnetic islands mainly due to the global effect of shear flow rather than the local flow shear. The distortion can be quantified by the phase angles of the perturbed flux, showing a perfect correspondence to the growth rates. As the shear flow increases above v c , the degenerated eigen state bifurcates into two eigen modes with the same growth rate but opposite propagating direction, resulting in an oscillatory growth of fluctuation energy. It is identified that two eigen modes show the single tearing mode structure due to the Alfvén resonance (AR) occurring on one current sheet. Most importantly, the AR can destabilize the DTMs through enhancing the plasma flow exerting on the remaining island. Meanwhile, the local flow shear plays a remarkable stabilizing role in this region. In addition, the eigenmode characteristic of the electromagnetic Kelvin-Helmholtz instability is also discussed.
Modelling of diamagnetic stabilization of ideal MHD eigenmodes associated with the transport barrier
International Nuclear Information System (INIS)
Huysmans, G.; Sharapov, S.; Mikhailovskii, A.; Kerner, W.
2001-01-01
A new code, MISHKA-D (Drift MHD), has been developed as an extension of the ideal MHD code MISHKA-1 in order to investigate the finite gyroradius stabilizing effect of ion diamagnetic drift frequency, ω *i , on linear ideal MHD eigenmodes in tokamaks with shaped plasma cross-section. The MISHKA-D code gives a self-consistent computation of both stable and unstable eigenmodes with eigenvalues [γ] ≅ ω *i in plasmas with strong radial variation in the ion diamagnetic frequency. Test results of the MISHKA-D code show good agreement with the analytically obtained ω *i -spectrum and stability limits of the internal kink mode, n/m=1/1, used as a benchmark case. Finite-n ballooning and low-n kink (peeling) modes in the edge transport barrier just inside the separatrix are studied for H-mode plasma with the ω *i -effect included. The ion diamagnetic stabilization of the ballooning modes is found to be most effective for narrow edge pedestals. For low enough plasma density the ω *i - stabilization can lead to a second zone of ballooning stability, in which all the ballooning modes are stable for any value of the pressure gradient. For internal transport barriers typical of JET optimised shear discharges, the stabilizing influence of ion diamagnetic frequency on the n=1 global pressure driven disruptive mode is studied. A strong radial variation of ω *i is found to significantly decrease the stabilizing ω *i - effect on the n=1 mode, in comparison with the case of constant ω *i estimated at the foot of the internal transport barrier. (author)
Eigenmode compendium of the third harmonic module of the European X-ray Free Electron Laser
Flisgen, Thomas; Heller, Johann; Galek, Tomasz; Shi, Liangliang; Joshi, Nirav; Baboi, Nicoleta; Jones, Roger M.; van Rienen, Ursula
2017-04-01
Chains of superconducting radio-frequency resonators are key components of modern particle accelerators such as the European XFEL, which is currently under construction in the north of Germany. In addition to the accelerating mode of the resonators, their beam excited higher order modes are of special interest, because they can harm the beam quality. In contrast to the accelerating mode, these modes are in general not confined within single resonators of the cavity string. For instance, eigenmodes can be localized between adjacent cavities or can be distributed along the entire chain of cavities. Therefore, the full chain has to be considered for a reasonable investigation of its resonant spectra. Accounting for such complex structures is computationally challenging and is therefore often avoided. In this article, the challenge is faced by using the so-called state-space concatenation approach, which is a combination of domain decomposition and model-order reduction. The technique allows for a reduction of the number of degrees of freedom by a factor of ≈ 1.471 ×10-4 . The method is employed to generate a compendium of eigenmodes in the chain of third harmonic cavities for the European XFEL. The results are discussed in detail and are compared with experimental measurements. The compendium serves as a reference for experiments (inter alia for diagnostics based on higher order modes) at the third harmonic cavity string of the European XFEL, it allows for qualitative understanding of resonant effects appearing in chains of cavities, and it is meant to be a proof of principle of the state-space concatenation approach to handle very long and complex radio-frequency structures. To the authors' knowledge, it is the first time that a modal compendium of a structure with the given complexity is generated. The article presents geometrical details of the chain, defines quantities relevant to superconducting radio-frequency cavities, and describes the employed
Eigenmode compendium of the third harmonic module of the European X-ray Free Electron Laser
Directory of Open Access Journals (Sweden)
Thomas Flisgen
2017-04-01
Full Text Available Chains of superconducting radio-frequency resonators are key components of modern particle accelerators such as the European XFEL, which is currently under construction in the north of Germany. In addition to the accelerating mode of the resonators, their beam excited higher order modes are of special interest, because they can harm the beam quality. In contrast to the accelerating mode, these modes are in general not confined within single resonators of the cavity string. For instance, eigenmodes can be localized between adjacent cavities or can be distributed along the entire chain of cavities. Therefore, the full chain has to be considered for a reasonable investigation of its resonant spectra. Accounting for such complex structures is computationally challenging and is therefore often avoided. In this article, the challenge is faced by using the so-called state-space concatenation approach, which is a combination of domain decomposition and model-order reduction. The technique allows for a reduction of the number of degrees of freedom by a factor of ≈ 1.471×10^{-4}. The method is employed to generate a compendium of eigenmodes in the chain of third harmonic cavities for the European XFEL. The results are discussed in detail and are compared with experimental measurements. The compendium serves as a reference for experiments (inter alia for diagnostics based on higher order modes at the third harmonic cavity string of the European XFEL, it allows for qualitative understanding of resonant effects appearing in chains of cavities, and it is meant to be a proof of principle of the state-space concatenation approach to handle very long and complex radio-frequency structures. To the authors’ knowledge, it is the first time that a modal compendium of a structure with the given complexity is generated. The article presents geometrical details of the chain, defines quantities relevant to superconducting radio-frequency cavities, and describes
Matsumoto, Takuma; Shibata, Kazunari
We have performed MHD simulations of Alfven wave propagation along an open ux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photo-spheric granular motion from G-band movies of Hinode/SOT. It is shown that the total energy ux at the corona becomes larger and the transition region height becomes higher in the case when we use the observed spectrum rather than white/pink noise spectrum as the wave gener-ator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have conrmed that there are at least three resonant frequencies, 1, 3 and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy ux to heat the corona.
Global marginal stability of TAEs in the presence of fast ions
International Nuclear Information System (INIS)
Villard, L.; Brunner, S.; Vaclavik, J.
1994-09-01
The global stability of toroidicity-induced Alfven eigenmodes (TAEs) in the presence of fast ions in realistic tokamak fusion-grade plasmas is analyzed with a global, perturbative approach. Volume averaged fast particle betas for marginal stability are obtained and analyzed for a wide range of plasma parameters such as the fast ion radial density profile width, the ratio of birth velocity to the Alfven velocity on axis and the bulk plasma beta. The different stability behaviour of two types of TAEs ('internal' or 'external') is evidenced. (author) 19 figs., 22 refs
Scrape-off measurements during Alfven wave heating in the TCA tokamak
International Nuclear Information System (INIS)
Hofmann, F.; Hollenstein, C.; Joye, B.; Lietti, A.; Lister, J.B.; Pochelon, A.; Gimzewski, J.K.; Veprek, S.
1984-01-01
Plasma parameters and impurity fluxes in the scrape-off layer of the TCA tokamak have been measured during Alfven wave heating. Langmuir probes are used to measure electron density, electron temperature and plasma potential. Collection probes, in conjunction with XPS surface analysis, are used to determine impurity fluxes and ion impact energies. During RF heating, the electron edge temperature rises, the plasma potential drops and impurity fluxes are enhanced. Probe erosion due to impurity sputtering is clearly observed. The measurements are correlated with other diagnostics on TCA. (orig.)
Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves
International Nuclear Information System (INIS)
Biglari, H.; Ono, M.
1992-01-01
The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E x B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the pondermotive force. In either case, it is shown that modest amounts of absorbed power (∼ few 100 kW) are required to suppress turbulence in a region of several cm radial width
Observations of neutral beam and ICRF tail ion losses due to Alfven modes in TFTR
International Nuclear Information System (INIS)
Darrow, D.S.; Zweben, S.J.; Chang, Z.
1996-04-01
Fast ion losses resulting from MHD modes at the Alfven frequency, such as the TAE, have been observed in TFTR. The modes have been driven both by neutral beam ions, at low B T , and by H-minority ICRF tail ions at higher B T . The measurements indicate that the loss rate varies linearly with the mode amplitude, and that the fast ion losses during the mode activity can be significant, e.g. up to 10% of the input power is lost in the worst case
On the definition of the momentum of an Alfven wave packet
International Nuclear Information System (INIS)
Khudik, V.N.
1993-01-01
The different definitions of the momentum of a wave disturbance are considered, corresponding to the invariance of the Lagrangian with respect to different kinds of translation in magnetohydrodynamics. It is shown that the value of the momentum of an Alfven wave packet calculated using the definition accepted in the electrodynamics of continuous media is not the same as the total momentum of the particles in the medium and the electromagnetic field in the region within which the packet is localized. 5 refs., 2 figs
Finite Larmor radius effects on Alfven wave current drive in low-aspect ratio tokamaks
International Nuclear Information System (INIS)
Komoshvili, K.; Cuperman, S.; Bruma, C.
1998-01-01
Alfven wave current drive (AWCD) in low-aspect ratio (A≡R/a=1/ε > or approx. 1) tokamaks (LARTs) is studied numerically. For this, the full-wave equation (E parallel ≠0) with a Vlasov-based dielectric tensor is solved by relaxation techniques, subject to appropriate boundary conditions at the plasma centre and at the plasma-vacuum interface, as well as the concentric antenna current sheet and at the external metallic wall. A systematic investigation of the physical characteristics of the AWCD generated in LARTs when kinetic effects are considered is carried out and illustrative results are presented and discussed. (author)
Alpha effect of Alfven waves and current drive in reversed field pinches
International Nuclear Information System (INIS)
Litwin, C.; Prager, S.C.
1997-10-01
Circularly polarized Alfven waves give rise to an α-dynamo effect that can be exploited to drive parallel current. In a open-quotes laminarclose quotes magnetic the effect is weak and does not give rise to significant currents for realistic parameters (e.g., in tokamaks). However, in reversed field pinches (RFPs) in which magnetic field in the plasma core is stochastic, a significant enhancement of the α-effect occurs. Estimates of this effect show that it may be a realistic method of current generation in the present-day RFP experiments and possibly also in future RFP-based fusion reactors
ULF Waves in the Ionospheric Alfven Resonator: Modeling of MICA Observations
Streltsov, A. V.; Tulegenov, B.
2017-12-01
We present results from a numerical study of physical processes responsible for the generation of small-scale, intense electromagnetic structures in the ultra-low-frequency range frequently observed in the close vicinity of bright discrete auroral arcs. In particular, our research is focused on the role of the ionosphere in generating these structures. A significant body of observations demonstrate that small-scale electromagnetic waves with frequencies below 1 Hz are detected at high latitudes where the large-scale, downward magnetic field-aligned current (FAC) interact with the ionosphere. Some theoretical studies suggest that these waves can be generated by the ionospheric feedback instability (IFI) inside the ionospheric Alfven resonator (IAR). The IAR is the region in the low-altitude magnetosphere bounded by the strong gradient in the Alfven speed at high altitude and the conducting bottom of the ionosphere (ionospheric E-region) at low altitude. To study ULF waves in this region we use a numerical model developed from reduced two fluid MHD equations describing shear Alfven waves in the ionosphere and magnetosphere of the earth. The active ionospheric feedback on structure and amplitude of magnetic FACs that interact with the ionosphere is implemented through the ionospheric boundary conditions that link the parallel current density with the plasma density and the perpendicular electric field in the ionosphere. Our numerical results are compared with the in situ measurements performed by the Magnetosphere-Ionosphere Coupling in the Alfven Resonator (MICA) sounding rocket, launched on February 19, 2012 from Poker Flat Research Range in Alaska to measure fields and particles during a passage through a discreet auroral arc. Parameters of the simulations are chosen to match actual MICA parameters, allowing the comparison in the most precise and rigorous way. Waves generated in the numerical model have frequencies between 0.30 and 0.45 Hz, while MICA measured
Re-ionization of a partially ionized plasma by an Alfven wave of moderate amplitude
International Nuclear Information System (INIS)
Brennan, M.H.; Sawley, M.L.
1980-01-01
The use of forced magnetic-acoustic oscillations to investigate the effect of a torsional hydromagnetic (Alfven) wave pulse of moderate amplitude on the properties of a partially ionized afterglow helium plasma is reported. Observations of the magnetic flux associated with the oscillations, measured at a number of frequencies are used to determine radial density profiles and to provide estimates of plasma temperature. The torsional wave is shown to cause significant re-ionization of the plasma with no corresponding increase in the plasma temperature. The presence of a number of energetic particles is evidenced by the production of a significant number of doubly charged helium ions. (author)
Design of the RF system for Alfven wave heating and current drive in a TCA/BR tokamak
International Nuclear Information System (INIS)
Ruchko, L.; Andrade, M.L.; Ozono, E.; Galvao, R.M.O.; Degaspari, F.T.; Nascimento, I.C.
1995-01-01
The advanced RF system for Alfven wave plasma heating and current drive in TCA/BR tokamak is presented. The antenna system is capable of exciting the standing and travelling wave M = -1,N = 1,N =-4,-6 with single helicity and thus provides the possibility to improve Alfven wave plasma heating efficiency in TCA/BR tokamak and to increase input power level up to P ≅ 1 MW, without the uncontrolled density rise which was encountered in previous TCA (Switzerland) experiments. (author). 4 refs., 3 figs
Energy Technology Data Exchange (ETDEWEB)
Balantekin, M., E-mail: mujdatbalantekin@iyte.edu.tr
2015-02-15
We present a high-speed operating method with feedback to be used in dynamic atomic force microscope (AFM) systems. In this method we do not use an actuator that has to be employed to move the tip or the sample as in conventional AFM setups. Instead, we utilize a Q-controlled eigenmode of an AFM cantilever to perform the function of the actuator. Simulations show that even with an ordinary tapping-mode cantilever, imaging speed can be increased by about 2 orders of magnitude compared to conventional dynamic AFM imaging. - Highlights: • A high-speed imaging method is developed for dynamic-AFM systems. • An eigenmode of an AFM cantilever is utilized to perform fast actuation. • Simulations show 2 orders of magnitude increase in scan speed. • The time spent for dynamic-AFM imaging experiments will be minimized.
Optimization of Antenna Current Feeding for the Alfvén Eigenmodes Active Diagnostic System of JET
Albarracin Manrique, Marcos A.; Ruchko, L.; Pires, C. J. A.; Galvão, R. M. O.; Elfimov, A. G.
2018-04-01
The possibility of exploring proper phasing of the feeding currents in the existing antenna of the Alfvén Eigenmodes Active Diagnostic system of JET, to excite pure toroidal spectra of Toroidal Alfvén Eigenmodes, is numerically investigated. Special attention is given to the actual perturbed fields excited in the plasma, which are calculated self-consistently using the antenna version of the CASTOR code. It is found that due to the close spacing of the JET antenna modules and quasi degeneracy of modes with medium to high values of the toroidal mode number n, although a proper choice of the phasing of the feeding currents of the antenna modules indeed leads to an increase of the perturbed fields of the selected mode, modes with nearby values of n are also excited with large amplitudes, so that a scheme to proper select the detected modes remains necessary. A scheme using different antenna position distribution is proposed to achieve successful optimization.
Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves
International Nuclear Information System (INIS)
Moghaddam-Taaheri, E.; Goertz, C.K.; Smith, R.A.
1989-01-01
The kinetic Alfven wave, an Alfven wave with a perpendicular wavelength comparable to the ion gyroradius, can diffuse ions both in velocity and coordinate spaces with comparable transport rates. This may lead to the generation of ion beams in the plasma sheet boundary layer (PSBL). To investigate the ion beam generation process numerically, a two-dimensional quasi-linear code was constructed. Assuming that the plasma β (the ratio of plasma pressure to the magnetic pressure) varies from β = 1 to β << 1 across the magnetic field, the dynamics of the ion beam generation in the PSBL was studied. It was found that if your start with an ion distribution function which monotonically decreases with velocity along the magnetic field and a density gradient across the magnetic field, ions diffuse in velocity-coordinate space until nearly a plateau is established along the diffusion path. Depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., open or closed field lines, the ion distribution function may or may not reach a steady state. If the field lines are open there, i.e., if the diffusion extends into the lobe, the double diffusion process may provide a mechanism for continuously transferring the ions from the central plasma sheet to the lobe. The authors comment on the effect of the particle loss on the establishment of the pressure balance in the plasma sheet
Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves
International Nuclear Information System (INIS)
Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.
2008-01-01
The Doppler-shifted cyclotron resonance (ω-k z v z =Ω f ) between fast ions and shear Alfven waves is experimentally investigated (ω, wave frequency; k z , axial wavenumber; v z , fast-ion axial speed; Ω f , fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li + source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude δ B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8ω ci . Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.
Alfven wave excitation in a cavity with a transverse magnetic field
International Nuclear Information System (INIS)
Bures, M.
1982-12-01
A transversely magnetized cylindrical plasma model with an internal rod conductor is used to approximate the FIVA internal ring device of Spherator type with a purely poloidal magnetic field. It is shown that an excitation asymmetry along the plasma column, i.e. with a wave number k sub (z) does not equal 0, introduces a coupling between the magnetoacoustic and shear Alfven waves in the frequency range #betta#<<#betta# sub (ci). The introduction of an equilibrium mass motion along the plasma cylinder introduces a flow continuum. Simultaneously the Alfven resonance frequency becomes Doppler shifted. The experimental observations indicate that cavity modes do not build up in the FIVA device in the case of nonsymmetric excitation. If on the other hand the exciting structure becomes symmetric, i.e. with k sub (z) equals 0, the magnetoacoustic resonance become excited. The resulting Q values are rather low which indicates that the coupling to the shear wave through the Hall electric field cannot be neglected. (Author)
Interaction of the precessional wave with free-boundary Alfven surface waves in tandem mirrors
International Nuclear Information System (INIS)
Berk, H.L.; Kaiser, T.B.
1984-04-01
We consider a symmetric tandem mirror plugging a long central cell, with plugs stabilized by a hot component plasma. The system is taken to have a flat pressure profile with a steep edge gradient. We then consider the interaction of the precessional mode with Alfven waves generated in the central cell. This analysis is non-eikonal and is valid when mΔ/r < 1 (m is the azimuthal mode number. r the plasma radius and Δ the radial gradient scale length) for long-wavelength radial modes. We find that without FLR effects the precessional mode is always destabilized by the excitation of the Alfven waves for m greater than or equal to 2. For m=1, it is possible to achieve stabilization with conducting walls. A discussion is given of how FLR affects stabilization of the m greater than or equal to 2 long-wavelength modes and of finite-Larmor-radius stabilization of modes described in the eikonal approximation
Advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak
International Nuclear Information System (INIS)
Ruchko, L.F.; Ozono, E.; Galvao, R.M.O.; Nascimento, I.C.; Degasperi, F.T.; Lerche, E.
1998-01-01
An advanced antenna system that has been developed for investigation of Alfven wave plasma heating and current drive in the TCABR tokamak is described. The main goal was the development of such a system that could insure the excitation of travelling single helicity modes with predefined wave mode numbers M and N. The system consists of four similar modules with poloidal windings. The required spatial spectrum is formed by proper phasing of the RF feeding currents. The impedance matching of the antenna with the four-phase oscillator is accomplished by resonant circuits which form one assembly unit with the RF feeders. The characteristics of the antenna system design with respect to the antenna-plasma coupling and plasma wave excitation, for different phasing of the feeding currents, are summarised. The antenna complex impedance Z=Z R +Z I is calculated taking into account both the plasma response to resonant excitation of fast Alfven waves and the nonresonant excitation of vacuum magnetic fields in conducting shell. The matching of the RF generator with the antenna system during plasma heating is simulated numerically, modelling the plasma response with mutually coupled effective inductances with corresponding active Z R and reactive Z I impedances. The results of the numerical simulation of the RF system performance, including both the RF magnetic field spectrum analysis and the modeling of the RF generator operation with plasma load, are presented. (orig.)
Unified theory of damping of linear surface Alfven waves in inhomogeneous incompressible plasmas
International Nuclear Information System (INIS)
Ruderman, M.S.; Goossens, M.
1996-01-01
The viscous damping of surface Alfven waves in a non-uniform plasma is studied in the context of linear and incompressible MHD. It is shown that damping due to resonant absorption and damping on a true discontinuity are two limiting cases of the continuous variation of the damping rate with respect to the dimensionless number Rg = Δλ 2 Re, where Δ is the relative variation of the local Alfven velocity, λ is the ratio of the thickness of the inhomogeneous layer to the wavelength, and Re is the viscous Reynolds number. The analysis is restricted to waves with wavelengths that are long in comparison with the extent of the non-uniform layer (λ '' >'' 1) values of Rg. For very small values of Rg, the damping rate agrees with that found for a true discontinuity, while for very large values of Rg, it agrees with the damping rate due to resonant absorption. The dispersion relation is subsequently studied numerically over a wide range of values of Rg, revealing a continuous but non-monotonic variation of the damping rate with respect to Rg. (Author)
Fast wave absorption at the Alfven resonance during ion cyclotron resonance heating
International Nuclear Information System (INIS)
Heikkinen, J.A.; Hellsten, T.; Alava, M.J.
1991-01-01
For ICRH scenarii where the majority cyclotron resonance intersects the plasma core, mode conversion of the fast magnetosonic wave to an Alfven wave takes place at the plasma boundary on the high field side. Simple analytical estimates of the converted power for this mode conversion process are derived and compared with numerical calculations including finite electron inertia and kinetic effects. The converted power is found to depend on the local value of the wave field as well as on plasma parameters at the Alfven wave resonance. The interference with the reflected wave will therefore modify the mode conversion. If the conversion layer is localized near the wall, the conversion will be strongly reduced. The conversion coefficient is found to be strongest for small density gradients and high density and it is sensitive to the value of the parallel wave number. Whether it increases or decreases with the latter depends on the ion composition. Analysis of this problem for ICRH in JET predicts that a large fraction of the power is mode converted at the plasma boundary for first harmonic heating of tritium in a deuterium-tritium plasma. (author). 13 refs, 10 figs, 1 tab
Polarization of eigenmodes in laser diode waveguides on semipolar and nonpolar GaN
Energy Technology Data Exchange (ETDEWEB)
Rass, Jens; Vogt, Patrick [Institute of Solid State Physics, Technische Universitaet Berlin (Germany); Wernicke, Tim; Einfeldt, Sven; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Scheibenzuber, Wolfgang G.; Schwarz, Ulrich T. [Department of Physics, Regensburg University (Germany); Kupec, Jan [Integrated Systems Laboratory, ETH Zurich (Switzerland); Witzigmann, Bernd [Computational Electronics and Photonics Group, University of Kassel (Germany); Kneissl, Michael [Institute of Solid State Physics, Technische Universitaet Berlin (Germany); Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany)
2010-02-15
Recent calculations of the eigenmodes in waveguides grown on semipolar GaN suggest that the optical polarization of the emitted light as well as the optical gain depends on the orientation of the resonator. Our measurements on separate confinement heterostructures on semipolar (11 anti 22) and (10 anti 12) GaN show that for laser resonators along the semipolar [11 anti 2 anti 3 ] and [0 anti 111] directions (i.e. the projection of the c-axis onto the plane of growth) the threshold for amplified spontaneous emission is lower than for the nonpolar direction and that the stimulated emission is linearly polarized as TE mode. For the waveguide structures along the nonpolar [1 anti 100] or [11 anti 20] direction on the other hand, birefringence and anisotropy of the optical gain in the plane of growth leads not only to a higher threshold but also to a rotation of the optical polarization which is not any more TE- or TM-polarized but influenced by the ordinary and extraordinary refractive index of the material. We observe stimulated emission into a mode which is linearly polarized in extraordinarydirection nearly parallel to the c-axis. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Saturation of a toroidal Alfvén eigenmode due to enhanced damping of nonlinear sidebands
Todo, Y.; Berk, H. L.; Breizman, B. N.
2012-09-01
This paper examines nonlinear magneto-hydrodynamic effects on the energetic particle driven toroidal Alfvén eigenmode (TAE) for lower dissipation coefficients and with higher numerical resolution than in the previous simulations (Todo et al 2010 Nucl. Fusion 50 084016). The investigation is focused on a TAE mode with toroidal mode number n = 4. It is demonstrated that the mechanism of mode saturation involves generation of zonal (n = 0) and higher-n (n ⩾ 8) sidebands, and that the sidebands effectively increase the mode damping rate via continuum damping. The n = 0 sideband includes the zonal flow peaks at the TAE gap locations. It is also found that the n = 0 poloidal flow represents a balance between the nonlinear driving force from the n = 4 components and the equilibrium plasma response to the n = 0 fluctuations. The spatial profile of the n = 8 sideband peaks at the n = 8 Alfvén continuum, indicating enhanced dissipation due to continuum damping.
Carlotti, G.; Gubbiotti, G.; Madami, M.; Tacchi, S.; Stamps, R. L.
2014-05-01
Micromagnetic simulations at room temperature (300 K) have been carried out in order to analyse the magnetic eigenmodes (frequency and spatial profile) in elliptical dots with sub-100 nm lateral size. Features are found that are qualitatively different from those typical of larger dots because of the dominant role played by the exchange-energy. These features can be understood most simply in terms of nodal planes defined relative to the orientation of the static magnetization. A new, generalized labeling scheme is proposed that simplifies discussion and comparison of modes from different geometries. It is shown that the lowest-frequency mode for small dots is characterized by an in-phase precession of spins, without nodal planes, but with a maximum amplitude at the edges. This mode softens at an applied switching field with magnitude comparable to the coercive field and determines specific aspects of magnetization reversal. This characteristic behavior can be relevant for optimization of microwave assisting switching as well as for maximizing interdot coupling in dense arrays of dots.
Stability of Alfvén eigenmodes in the vicinity of auroral arc
Hiraki, Yasutaka
2013-08-01
The purpose of this study is to give a theoretical suggestion to the essential question why east-west elongated auroral arc can keep its anisotropic structure for a long time. It could be related to the stability of east-westward traveling modes in the vicinity of arc, which may develop into wavy or spiral structures, whereas north-southward modes are related to splitting of arcs. Taking into account the arc-inducing field-aligned current and magnetic shears, we examine changes in the stability of Alfvén eigenmodes that are coupled to perpendicular modes in the presence of convection electric field. It is demonstrated that the poleward current shear suppresses growth of the westward mode in case of the westward convection electric field. Only the poleward mode is still unstable because of the properties of feedback shear waves. It is suggested that this tends to promote (poleward) arc splitting as often observed during quiet times. We further draw a diagram of the westward mode growth rate as a function of convection electric field and current shear, evaluating critical fields for instabilities of lower Alfvén harmonics. It is discovered that a switching phenomenon of fast-growing mode from fundamental to the first harmonic occurs for a high electric field regime. Our stability criterion is applied to some observed situations of auroral arc current system during pre-breakup active times.
Nonlinear dynamics of toroidal Alfvén eigenmodes in the presence of tearing modes
Zhu, J.; Ma, Z. W.; Wang, S.; Zhang, W.
2018-04-01
A hybrid simulation is carried out to study nonlinear dynamics of n = 1 toroidal Alfvén eigenmodes (TAEs) with the m/n = 2/1 tearing mode. It is found that the n = 1 TAE is first excited by isotropic energetic particles at the linear stage and reaches the first steady state due to wave-particle interaction. After the saturation of the n = 1 TAE, the m/n = 2/1 tearing mode grows continuously and reaches its steady state due to nonlinear mode-mode coupling, especially, the n = 0 component plays a very important role in the tearing mode saturation. The results suggest that the enhancement of the tearing mode activity with increase of the resistivity could weaken the TAE frequency chirping through the interaction between the p = 1 TAE resonance and the p = 2 tearing mode resonance for passing particles in the phase space, which is opposite to the classical physical picture of the TAE frequency chirping that is enhanced with dissipation increase.
International Nuclear Information System (INIS)
Descamps, P.; Wassenhove, G. van; Koch, R.; Messiaen, A.M.; Vandenplas, P.E.; Lister, J.B.; Marmillod, P.
1990-01-01
The use of the discrete Alfven wave spectrum to determine the current density profile and the effective mass density of the plasma in the TEXTOR tokamak is studied; the measurement, the validity of which is discussed, confirms independently the central q(r=0)<1 already obtained by polarimetry. (orig.)
International Nuclear Information System (INIS)
Cuperman, S.; Bruma, C.; Komoshvili, K.
1999-01-01
Theoretical results on the wave-plasma interactions in simulated toroidal configurations are presented. The study covers the cases of large to low aspect ratio tokamaks, in the pre-heated stage. Fast waves emitted from an external antenna with different wave numbers and frequencies are considered. The non-inductive Alfven wave current drive is evaluated and discussed. (author)
International Nuclear Information System (INIS)
Cuperman, S.; Bruma, C.; Komoshvili, K.
2001-01-01
Theoretical results on the wave-plasma interactions in simulated toroidal configurations are presented. The study covers the cases of large to low aspect ratio tokamaks, in the pre-heated stage. Fast waves emitted from an external antenna with different wave numbers and frequencies are considered. The non-inductive Alfven wave current drive is evaluated and discussed. (author)
International Nuclear Information System (INIS)
Klimushkin, D.Yu.
1998-01-01
The effect of bounce-drift instability on the structure of small-scale azimuthal Alfven waves in the magnetosphere is studied with allowance for the curvature of the geomagnetic field lines. The pressure of the background plasma is assumed to be zero. As early as 1993, Leonovich and Mazur showed that Alfven waves with m>>1, being standing waves along magnetic field lines, propagate, at the same time, across the magnetic surfaces. As these waves propagate through the magnetosphere, they interact with a group of high-energy particles and, thereby, are amplified with a growth rate dependent on the radial coordinate, i.e., a coordinate perpendicular to the magnetic sheaths. Near the Alfven resonance surface, the growth rate approaches zero, and the waves are damped completely due to the energy dissipation in the ionosphere. As the growth rate increases, the maximum of the wave amplitude is displaced to the Alfven resonance region and the most amplified waves are those whose magnetic field vectors oscillate in the azimuthal direction. Among the waves excited in a plasma resonator that is formed near the plasmapause, the most amplified are those with radial polarization
International Nuclear Information System (INIS)
Mikhailovskii, A.B.
1986-01-01
Some general problems of the theory of Alfven instabilities of a tokamak with high-energy ions are considered. It is assumed that such ions are due to either ionization of fast neutral atoms, injected into the tokamak, or production of them under thermo-nuclear conditions. Small-oscillation equations are derived for the Alfven-type waves, which allow for both destabilizing effects, associated with the high-energy particles, and stabilizing ones, such as effects of shear and bulk-plasm dissipation. A high-energy ion contribution is calculated into the growth rate of the Alfven waves. The author considers the role of trapped-electron collisional dissipation
Fast particle effects on the internal kink, fishbone and Alfven modes
International Nuclear Information System (INIS)
Gorelenkov, N.N.; Bernabei, S.; Cheng, C.Z.; Fu, G.Y.; Hill, K.; Kaye, S.; Kramer, G.J.; Nazikian, R.; Park, W.; Kusama, Y.; Shinokhara, K.; Ozeki, T.
2001-01-01
The issues of linear stability of low frequency perturbative and nonperturbative modes in advanced tokamak regimes are addressed based on recent developments in theory, computational methods, and progress in experiments. Perturbative codes NOVA and ORBIT are used to calculate the effects of TAEs on fast particle population in spherical tokamak NSTX. Nonperturbative analysis of chirping frequency modes in experiments on TFTR and JT-60U is presented using the kinetic code HINST, which identified such modes as a separate branch of Alfven modes - resonance TAE (R-TAE). Internal kink mode stability in the presence of fast particles is studied using the NOVA code and hybrid kinetic-MHD nonlinear code M3D. (author)
The Role of Kinetic Alfven Waves in Plasma Transport in an Ion-scale Flux Rope
Tang, B.; Li, W.; Wang, C.; Dai, L.
2017-12-01
Magnetic flux ropes, if generated by multiply X-line reconnections, would be born as a crater type one, meaning the plasma density within is relatively high. They will then evolve into typical flux ropes as plasma are transported away along the magnetic field lines [Zhang et al., 2010]. In this study, we report an ion-scale flux rope observed by MMS on November 28, 2016, which is accompanied by strong kinetic Alfven waves (KAW). The related wave parallel electric field can effectively accelerate electrons inside the flux rope by Landau resonance, resulting into a significant decrease of the electron at 90° pitch angle. The change of electron pitch angle distribution would cause the rapid plasma transport along the magnetic field lines, and help the flux rope evolve into a strong magnetic core in a short time. This wave-particle interaction would be a candidate mechanism to explain the rareness of crater flux ropes in reality.
Possible evidence for the driving of the winds of hot stars by Alfven waves
International Nuclear Information System (INIS)
Underhill, A.B.
1983-01-01
Ultraviolet spectra of the supergiants α Cam (09.5 Ia), HD 105056 (ON9.7 Iae), and 15 Sgr (09.7 Lab) are compared, and it is shown that the terminal outflow velocity ν/sub infinity/, of HD 105056 is one-half that of the other two stars even though HD 105056 has the highest effective temperature of the three stars. This anomaly, together with the fact that the observed ν/sub infinity/ values for early-type stars scatter about an empirical correlation between ν/sub infinity/ and log T/sub eff/ by an amount which is larger than the amount which is larger than the amount expected according to the observational errors in determining ν/sub infinity/ and log T/sub eff/, leads to the conclusion that an agent in addition to radiation. Alfven waves, is driving the winds of early-type stars
Fast Particle Effects on the Internal Kink, Fishbone and Alfven Modes
International Nuclear Information System (INIS)
Gorelenkov, N.N.; Bernabei, S.; Cheng, C.Z.; Fu, G.Y.; Hill, K.; Kaye, S.; Kramer, G.J.; Kusama, Y.; Shinohara, K.; Nazikian, R.; Ozeki, T.; Park, W.
2000-01-01
The issues of linear stability of low frequency perturbative and nonperturbative modes in advanced tokamak regimes are addressed based on recent developments in theory, computational methods, and progress in experiments. Perturbative codes NOVA and ORBIT are used to calculate the effects of TAEs on fast particle population in spherical tokamak NSTX. Nonperturbative analysis of chirping frequency modes in experiments on TFTR and JT-60U is presented using the kinetic code HINST, which identified such modes as a separate branch of Alfven modes - resonance TAE (R-TAE). Internal kink mode stability in the presence of fast particles is studied using the NOVA code and hybrid kinetic-MHD nonlinear code M3D
Signatures of mode conversion and kinetic Alfven waves at the magnetopause
International Nuclear Information System (INIS)
Johnson, Jay R.; Cheng, C. Z.
2000-01-01
It has been suggested that resonant mode conversion of compressional MHD waves into kinetic Alfven waves at the magnetopause can explain the abrupt transition in wave polarization from compressional to transverse commonly observed during magnetopause crossings. The authors analyze magnetic field data for magnetopause crossings as a function of magnetic shear angle (defined as the angle between the magnetic fields in the magnetosheath and magnetosphere) and compare with the theory of resonant mode conversion. The data suggest that amplification in the transverse magnetic field component at the magnetopause is not significant up to a threshold magnetic shear angle. Above the threshold angle significant amplification results, but with weak dependence on magnetic shear angle. Waves with higher frequency are less amplified and have a higher threshold angle. These observations are qualitatively consistent with theoretical results obtained from the kinetic-fluid wave equations
Antenna analysis and boundary conditions for Alfven wave studies in tokamaks
International Nuclear Information System (INIS)
Ross, D.W.; Li Yanming; Mahajan, S.M.; Michie, R.B.
1986-01-01
Previous studies of Alfven wave heating which employed kinetic theory are extended in order to take into account antenna configurations, in cylindrical geometry, consisting of arbitrary shell currents and their associated radial feeders. For each Fourier component of the form exp [-i(lzeta-mtheta)], the shell current consists of a divergence-free part having the helicity of the mode (l, m), plus an orthogonal part requiring the feeders. It is shown, both analytically and by including the full current in the numerical code, that only the divergence-free part of the current contributes significantly to the plasma response and antenna loading. The important effect of the feeders is to cancel the contribution from the surface current perpendicular to the helicity. This explicitly verifies results reported previously. (author)
Zonal Flows Driven by Small-Scale Drift-Alfven Modes
International Nuclear Information System (INIS)
Li Dehui; Zhou Deng
2011-01-01
Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions. (magnetically confined plasma)
International Nuclear Information System (INIS)
Eckhartt, D.
1989-01-01
Supra-thermal ions can contribute to the steady-state current in future large tokamak machines like NET or ITER. The fast-ion population is generated by collisional slowing-down of high-energy ions which were injected as neutral atoms in quasi-tangential direction and ionized by plasma interactions. Depending on the initial beam shape these fast ions can excite microinstabilities of the Alfven-wave type which are driven by the gradients in velocity-space. The ensuring plasma turbulence is expected to slow down the fast ions very quickly. This effect reduces the current drive efficiency which otherwise is comparable to that of other current drive schemes like lower hybrid waves where the toroidal current is carried by high-energy resonant electrons. (author) 3 refs., 1 fig
Antenna analysis and boundary conditions for Alfven wave studies in tokamaks
International Nuclear Information System (INIS)
Ross, D.W.; Li, Y.M.; Mahajan, S.M.; Michie, R.B.
1985-07-01
Previous studies of Alfven wave heating which employed kinetic theory are extended to take into account antenna configurations, in cylindrical geometry, consisting of arbitrary shell currents and their associated radial feeders. For each Fourier component of the form esp/-i(l zeta - m theta)/, the shell current consists of a divergence-free part having the helicity of the mode (l,m), plus an orthogonal part requiring the feeders. It is shown, both analtically and by including the full current in the numerical code, that only the divergence-free part of the current contributes significantly to the plasma response and antenna loading. The important effect of the feeders is to cancel the contribution from the surface current perpendicular to the helicity. This explicitly verifies results reported previously
Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions
Energy Technology Data Exchange (ETDEWEB)
Galvao, R. A.; Ziebell, L. F. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP: 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354-Campus UFPel, CEP: 96010-900 Pelotas, Rio Grande do Sul (Brazil); Juli, M. C. de [Centro de Radio-Astronomia e Astrofisica Mackenzie-CRAAM, Universidade Presbiteriana Mackenzie, Rua da Consolacao 896, CEP: 01302-907 Sao Paulo, Sao Paulo (Brazil)
2012-12-15
We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.
An experimental study of Alfven wave heating using electrostatically shielded antennas in TCA
International Nuclear Information System (INIS)
Borg, G.G.; Joye, B.
1990-01-01
Despite the wide acceptance of electrostatic screens in ICRH for the protection of the plasma from the near fields of rf antennas, it has always been considered that low voltages at low frequency have made such screens unnecessary in Alfven wave heating (AWH). Despite this, AWH performs rather poorly as a heating method; the results being confused by a density rise up to 300 % of the target density. It is known that the density increase arises neither from impurity injection nor from a change in recycling. In addition, an extensive range of phenomena have been observed in the plasma scrape-off layer (SOL). During AWH, the SOL density is observed to decrease, the SOL floating potential is perturbed in a way that reflects the Alfven wave spectrum, the antennas charge negatively and draw a large current from the plasma and harmonics have been observed on the edge wave fields. The cause and correlation of these effects with each other and their impression on the bulk plasma response was not known. Experimental results from the TORTUS tokamak have indicated that the density increase might be eliminated by electrostatic screens. In their case, two AWH experiments were performed. In the first, an unshielded OFHC copper loop antenna was excited at a given power and, in the second, the same antenna was excited at the same power after installation of an aluminium, TiN coated, slotted screen. The density increase in the first case was shown to be completely eliminated in the second, although spectroscopic measurements revealed a difference in the plasma O(II) and Cu(I) content for each case. (author) 2 refs., 3 figs
Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.
2011-12-01
A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program
Directory of Open Access Journals (Sweden)
Shuang Liu
2018-01-01
Full Text Available In this paper, the eigenmode linear superposition (ELS method based on the regularization is used to discuss the distributions of all eigenmodes and the role of their instability to the intensity and structure change in TC-like vortex. Results show that the regularization approach can overcome the ill-posed problem occurring in solving mode weight coefficients as the ELS method are applied to analyze the impacts of dynamic instability on the intensity and structure change of TC-like vortex. The Generalized Cross-validation (GCV method and the L curve method are used to determine the regularization parameters, and the results of the two approaches are compared. It is found that the results based on the GCV method are closer to the given initial condition in the solution of the inverse problem of the vortex system. Then, the instability characteristic of the hollow vortex as the basic state are examined based on the linear barotropic shallow water equations. It is shown that the wavenumber distribution of system instability obtained from the ELS method is well consistent with that of the numerical analysis based on the norm mode. On the other hand, the evolution of the hollow vortex are discussed using the product of each eigenmode and its corresponding weight coefficient. Results show that the intensity and structure change of the system are mainly affected by the dynamic instability in the early stage of disturbance development, and the most unstable mode has a dominant role in the growth rate and the horizontal distribution of intense disturbance in the near-core region. Moreover, the wave structure of the most unstable mode possesses typical characteristics of mixed vortex Rossby-inertio-gravity waves (VRIGWs.
International Nuclear Information System (INIS)
Salat, A.
1981-12-01
The existence of quasi-periodic eigensolutions of a linear second order ordinary differential equation with quasi-periodic coefficient f(ω 1 t,ω 2 t) is investigated numerically and graphically. For sufficiently incommensurate frequencies ω 1 , ω 2 a doubly indexed infinite sequence of eigenvalues and eigenmodes is obtained. The equation considered is a model for the magneto-hydrodynamic 'continuum' in general toroidal geometry. The result suggests that continuum modes exist at least on sufficiently irrational magnetic surfaces. (orig.)
International Nuclear Information System (INIS)
Adam, J.; Jacquinot, J.
1977-04-01
Detailed calculations concerning the field structure and excitation of the fast magnetosonic wave are presented keeping in mind RF heating of a Tokamak near the ion cyclotron harmonic. The new contributions are - a discussion of the cylindrical problem in an inhomogeneous plasma including surface waves and the splitting of the eigenmodes by the poloidal field - a calculation of the field structure in the toroidal cavity resonator and the application to mode tracking - a formulation of the loading impedance of various coupling structures: array of coils in the low frequency limit or transmission lines in the high frequency case
Energy Technology Data Exchange (ETDEWEB)
Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)
2012-09-10
The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave
Beta Emission and Bremsstrahlung
Energy Technology Data Exchange (ETDEWEB)
Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-13
Bremsstrahlung is continuous radiation produced by beta particles decelerating in matter; different beta emitters have different endpoint energies; high-energy betas interacting with high-Z materials will more likely produce bremsstrahlung; depending on the data, sometimes all you can say is that a beta emitter is present.
Ebeling, Daniel; Solares, Santiago D
2013-01-01
We present an overview of the bimodal amplitude-frequency-modulation (AM-FM) imaging mode of atomic force microscopy (AFM), whereby the fundamental eigenmode is driven by using the amplitude-modulation technique (AM-AFM) while a higher eigenmode is driven by using either the constant-excitation or the constant-amplitude variant of the frequency-modulation (FM-AFM) technique. We also offer a comparison to the original bimodal AFM method, in which the higher eigenmode is driven with constant frequency and constant excitation amplitude. General as well as particular characteristics of the different driving schemes are highlighted from theoretical and experimental points of view, revealing the advantages and disadvantages of each. This study provides information and guidelines that can be useful in selecting the most appropriate operation mode to characterize different samples in the most efficient and reliable way.
Fast-ion losses induced by ACs and TAEs in the ASDEX Upgrade tokamak
M. García-Muñoz,; Hicks, N.; van Voornveld, R.; Classen, I.G.J.; Bilato, R.; Bobkov, V.; Brambilla, M.; Bruedgam, M.; Fahrbach, H. U.; Igochine, V.; Jaemsae, S.; Maraschek, M.; Sassenberg, K.
2010-01-01
The phase-space of convective and diffusive fast-ion losses induced by shear Alfven eigenmodes has been characterized in the ASDEX Upgrade tokamak. Time-resolved energy and pitch-angle measurements of fast-ion losses correlated in frequency and phase with toroidal Alfven eigenmodes (TAEs) and Alfven
International Nuclear Information System (INIS)
Meyerhofer, D.D.; Perkins, F.W.
1984-01-01
The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer--Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches
Beta limits in EBT and their implications for a reactor
International Nuclear Information System (INIS)
Uckan, N.A.; Spong, D.A.; Nelson, D.B.
1982-01-01
Theoretical models indicate limits on core beta ranging from a few percent to 10-20% depending on the models and/or assumptions. Some of the parameters that enter into these beta limits are: the ratio of the ring radial scale length to the average radius of curvature, epsilon=Δ/Rsub(c); the ratio of the cold to the hot plasma density, fsub(R)=nsub(cold)/nsub(hot); the ratios of the hot electron drift frequency to the ion cyclotron frequency, ωsub(dh)/ωsub(ci), and to the drift Alfven frequency ωsub(dh)/kVsub(A); the ratio of the ring electron temperature to the core ion temperature, Tsub(R)/Tsub(i); the ring beta βsub(R); etc. Because of uncertainties in extrapolating results of simplifield models to a reactor plasma, the above parameters that influence the beta limits cannot be determined accurately at the present time. Also, reasonable changes within the models and/or assumptions are seen to affect the core beta limits by almost an order of magnitude. Hence, at the present, these limits cannot be used as a rigid (and reliable) requirement for ELMO Bumpy Torus (EBT) reactor engineering considerations. However, sensitivity studies can be carried out to determine the boundaries of the operating regime and to demonstrate the effects of various modes, assumptions, and models on reactor performance (Q value). First the modes believed to limit the core β and ring plasma performance are discussed, and the simplifications and/or assumptions involved in deriving these limits are highlighted. Then, the implications of these limits for a reactor are given. (author)
International Nuclear Information System (INIS)
Chandran, Benjamin D. G.; Hollweg, Joseph V.
2009-01-01
We study the propagation, reflection, and turbulent dissipation of Alfven waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al., we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy and assume that there is much more energy in waves propagating away from the Sun than waves propagating toward the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al. by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfven critical point-that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfven-wave reflection and turbulent heating into fluid models of the solar wind.
Oblique non-neutral solitary Alfven modes in weakly nonlinear pair plasmas
International Nuclear Information System (INIS)
Verheest, Frank; Lakhina, G S
2005-01-01
The equal charge-to-mass ratio for both species in pair plasmas induces a decoupling of the linear eigenmodes between waves that are charge neutral or non-neutral, also at oblique propagation with respect to a static magnetic field. While the charge-neutral linear modes have been studied in greater detail, including their weakly and strongly nonlinear counterparts, the non-neutral mode has received less attention. Here the nonlinear evolution of a solitary non-neutral mode at oblique propagation is investigated in an electron-positron plasma. Employing the framework of reductive perturbation analysis, a modified Korteweg-de Vries equation (with cubic nonlinearity) for the lowest-order wave magnetic field is obtained. In the linear approximation, the non-neutral mode has its magnetic component orthogonal to the plane spanned by the directions of wave propagation and of the static magnetic field. The linear polarization is not maintained at higher orders. The results may be relevant to the microstructure in pulsar radiation or to the subpulses
Influence of gyroradius and dissipation on the Alfven-wave continuum
International Nuclear Information System (INIS)
Connor, J.W.; Tang, W.M.; Taylor, J.B.
1982-01-01
It is well known that in ideal magnetohydrodynamics there is a continuous spectrum of real frequencies associated with a singularity of the shear Alfven waves on the surface k/sub parallel to/v/sub A/ = omega. It is also known that the introduction of first-order gyroradius effects eliminates the continuum. In the present work we examine the influence of the full gyroradius response and of dissipation on the continuum. In the absence of dissipation we first confirm that if only first-order gyroradius effects are incorporated, the continuum disappears. However, when the full gyroradius response is included, this discrete spectrum vanishes, and a new continuum (associated with singularities at k/sub parallel to/v/sub A/ = 0) appears. The introduction of collisional dissipation removes the original MHD continuum leaving discrete modes whose frequency tends to zero with the collision rate as ν/sup 1/3/. collisions also remove the new continuum of the full gyroradius model leaving discrete modes whose frequency tends to zero as (log ν) -1 . Collisionless Landau damping has a similar effect
The dominant mode of standing Alfven waves at the synchronous orbit
International Nuclear Information System (INIS)
Cummings, W.D.; Countee, C.; Lyons, D.; Wiley, W. III
1975-01-01
Low-frequency oscillations of the earth's magnetic field recorded by the University of California at Los Angeles magnetometer on board ATS 1 have been examined for the 6-month interval January-June 1968. Using evidence from Ogo 5 and ATS 5 as well as the data from ATS 1, we argue that the dominant mode at ATS 1 must be the fundamental rather than the second harmonic of a standing Alfven wave. We also conclude that these transverse oscillations are more accurately associated with magnetically disturbed days than with quiet days. Both of these results represent changes of tentative conclusions based on our initial analysis. From 14 instances when oscillations of distinctly different periods occurred during the same time interval at ATS 1 we also conclude that higher harmonics can exist. The period ratio in seven of the 14 cases corresponds to the simultaneous occurrence of the second harmonic with the fundamental, and four other cases could be identified as the simultaneous occurrence of the fourth harmonic with the fundamental
Drift-Alfven wave mediated particle transport in an elongated density depression
International Nuclear Information System (INIS)
Vincena, Stephen; Gekelman, Walter
2006-01-01
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii ρ s =c s /ω ci . The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k perpendicular ρ s ∼0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles
On the stochastic interaction of monochromatic Alfven waves with toroidally trapped particles
International Nuclear Information System (INIS)
Krlin, L.; Pavlo, P.; Tluchor, Z.; Gasek, Z.
1987-07-01
Monochromatic Alfven wave interaction with toroidaly trapped particles in the intrinsic stochasticity regime is discussed. Both the diffusion in velocities and in the radial position of bananas is studied. Using a suitable Hamiltonian formalism, the effect of wave parallel components E-tilde paral and B-tilde paral is investigated. The stochasticity threshold is estimated for plasma electrons and for thermonuclear alpha-particles (neglecting the effect of B-tilde paral ) by means of direct numerical integration of the corresponding canonical equations. Stochasticity causes transfer between trapped and untrapped regimes and the induced radial diffusion of bananas. The latter effect can considerably exceed neoclassical diffusion. The effect of B-tilde paral was only estimated analytically. It consisted in frequency modulation of the banana periodic motion coupled with a possible Mathieu instability. Nevertheless, for B-tilde paral corresponding to E-tilde paral , the effect seems to be weaker than the effect of E-tilde paral when the thermonuclear regime is considered. (author). 14 figs., 36 refs
Basic toroidal Effects on Alfven Wave Current in Small Aspect Ratio Tokamaks
International Nuclear Information System (INIS)
Burma, C.; Cuperman, S.; Komoshvili, K.
1998-01-01
The Alfven wave current drive (AWCD) in small aspect ratio Tokamaks is properly calculated, with consideration of the basic toroidicity effects present in (i) the dielectric tensor-operator (involving the strongly toroidal equilibrium profiles), (ii) the structure of the r.f. fields obtained as a solution of the wave equation (through Maxwell's equations' toroidal operators as well as the conversion rate and conversion layer location, depending also on the equilibrium profiles) and (iii) the formulation of the AWCD (which, besides its dependence on the r.f. fields - affected by toroidicity as mentioned at points (i) and (ii) - also requires the equilibrium-magnetic-surface averaging of non-resonant forces involved). Thus, we consider consistent equilibrium profiles with neo-classical conductivity corresponding to an ohmic START-like discharge; use a resistive (anisotropic) MHD dielectric tensor-operator Edith practically no limitations, adequate to describe the plasma response in the pre-heated stage ; solve numerically the 2(1/2)D full- wave equation by the aid of an advanced finite element code developed in; and evaluate the AWCD by the aid of the recently proposed, quite general formulation holding in the case of strongly toroidal fusion devices and including contributions due to helicity injection, momentum transfer and plasma Bow. A general discussion of the results obtained in this work is presented
International Nuclear Information System (INIS)
Bruma, C.; Cuperman, S.; Komoshvili, K.
1998-01-01
Several low aspect ratio (spherical) Tokamaks (ST's) are now in operation or under construction. These devices would permit cost-effective and attractive embodiment of future fusion reactors: they would provide high β, good confinement and steady state operation at modest field values. Now, a steady state reactor has to be sustained by non-inductively driven currents. Recently, the generation of non-inductive current drive by Alfven waves (AWCD) has been investigated theoretically within the framework of ideal (E p arallel=0) MHD and non-ideal, resistive (E p arallel≠0) MHD; however, in all these cases, the tokamak device consisted of a cylindrical plasma with simulated toroidal effects. Rather encouraging results have been obtained. In this work we further investigate AWCD in ST's as follows: (i) we use consistent equilibrium profiles with neoclassical conductivity corresponding to an ohmic START discharge; (ii) incorporate effects due to neoclassical conductivity in the elements of the resistive MHD dielectric tensor, in the solution of the full (E p arallel≠0) wave equation as well as in the calculation of AWCD; and (iii) carry out a systematic search for antenna parameters optimizing the AWCD. (author)
Drift-Alfven waves induced optical emission fluctuations in Aditya tokamak
International Nuclear Information System (INIS)
Manchanda, R.; Ghosh, J.; Chattopadhyay, P. K.; Chowdhuri, M. B.; Banerjee, Santanu; Ramasubramanian, N.; Patel, Ketan M.; Kumar, Vinay; Vasu, P.; Tanna, R. L.; Paradkar, B.; Gupta, C. N.; Bhatt, S. B.; Raju, D.; Jha, R.; Atrey, P. K.; Joisa, S.; Rao, C. V. S.; Saxena, Y. C.
2010-01-01
In Aditya tokamak [S. B. Bhatt et al. Indian J. Pure Appl. Phys. 27, 710 (1989)], an increase in the H α and C 2+ intensity fluctuations from the edge region is observed with an increase in the magnetohydrodynamic (MHD) activity. Very small fluctuation amplitudes of H α and C 2+ intensity are observed in discharges where there is no MHD activity compared to the discharges with MHD activity. These fluctuations in the H α and C 2+ , measured by optical filter--photomultiplier tube combination--are modulated by Mirnov oscillations having a dominant peak with a common frequency ∼7-10 kHz. Further investigation reveals the presence of strong coherent fluctuations in density and floating potential at same frequency as well. These observations indicate the existence of a nonelectrostatic instability, which may be based on the coupled mode of the drift mode and the Alfven mode. The coherent density fluctuations give rise to the experimentally observed coherent H α and C 2+ intensity fluctuations.
International Nuclear Information System (INIS)
Sakai, J.I.; Haruki, T.; Kazimura, Y.
2000-01-01
It is shown by using a 2-D fully relativistic electromagnetic particle-in-cell (PIC) code that the tearing instability in a current sheet of pair plasmas is caused by Landau resonances of both electrons and positrons. Strong magnetic flux can be generated during coalescence of magnetic islands in the nonlinear phase of the tearing instability. The magnetic flux produced in an O-type magnetic island is caused from the counter-streaming instability found by Kazimura et al. (1998). It is also shown that charge separation with a quadrupole-like structure is generated from the localized strong magnetic flux. During the decay of the quadrupole-like charge structure as well as the magnetic flux, there appear wave emission with high-frequency electromagnetic waves and Alfven waves as well as Langmuir waves. We also show by using a 3-D PIC code that current filaments associated with the O-type magnetic islands become unstable against the kink instability during the coalescence of current filaments. (orig.)
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Theory of charged particle heating by low-frequency Alfven waves
International Nuclear Information System (INIS)
Guo Zehua; Crabtree, Chris; Chen, Liu
2008-01-01
The heating of charged particles by a linearly polarized and obliquely propagating shear Alfven wave (SAW) at frequencies a fraction of the charged particle cyclotron frequency is demonstrated both analytically and numerically. Applying Lie perturbation theory, with the wave amplitude as the perturbation parameter, the resonance conditions in the laboratory frame are systematically derived. At the lowest order, one recovers the well-known linear cyclotron resonance condition k parallel v parallel -ω-nΩ=0, where v parallel is the particle velocity parallel to the background magnetic field, k parallel is the parallel wave number, ω is the wave frequency, Ω is the gyrofrequency, and n is any integer. At higher orders, however, one discovers a novel nonlinear cyclotron resonance condition given by k parallel v parallel -ω-nΩ/2=0. Analytical predictions on the locations of fixed points, widths of resonances, and resonance overlapping criteria for global stochasticity are also found to agree with those given by computed Poincare surfaces of section
Computing the damping and destabilization of global Alfven waves in tokamaks
International Nuclear Information System (INIS)
Kerner, W.; Keegan, B.; Goedbloed, J.P.; Huysmans, G.T.A.
1991-01-01
The role of ideal MHD in magnetic fusion is in the first place to discover magnetic geometries with favourable equilibrium and stability properties. Non-ideal effects cause slower and weaker instabilities leading to enhanced transport and often to violent disruptions. MHD spectroscopy, i.e. the identification of ideal and dissipative MHD modes for the purpose of diagnosing tokamaks and optimising their stability properties, requires a numerical tool which accurately calculates the dissipative MHD spectra for measured equilibria. The new spectral code CASTOR (Complex Alfven Spectrum for TORoidal Plasmas), together with the equilibrium solver HELENA, provides such a tool. In CASTOR, the fluid variables ρ, v, T, and b are discretized by means of a combination of cubic Hermite and quadratic finite elements for the radial direction and Fourier modes for the poloidal coordinate. The equilibrium in non-orthogonal flux coordinates ψ, θ, φ with straight field lines is computed using isoparametric bicubic Hermite elements, resulting in a very accurate representation of the metric elements. Finally, for analysis of JET discharges the equilibrium solver HELENA is interfaced with the equilibrium identification code IDENTC(D). (author) 5 refs., 5 figs
Fernandez, Pablo
2003-01-01
We prove that in a world without leverage cost the relationship between the levered beta ( L) and the unlevered beta ( u) is the No-costs-of-leverage formula: L = u + ( u - d) D (1 - T) / E. We also analyze 6 alternative valuation theories proposed in the literature to estimate the relationship between the levered beta and the unlevered beta (Harris and Pringle (1985), Modigliani and Miller (1963), Damodaran (1994), Myers (1974), Miles and Ezzell (1980), and practitioners) and prove that all ...
Beta Thalassemia (For Parents)
... Safe Videos for Educators Search English Español Beta Thalassemia KidsHealth / For Parents / Beta Thalassemia What's in this ... Symptoms Diagnosis Treatment Print en español Beta talasemia Thalassemias Thalassemias are a group of blood disorders that ...
Edlund, E. M.; Porkolab, M.; Kramer, G. J.; Lin, L.; Lin, Y.; Wukitch, S. J.
2009-05-01
Reversed shear Alfvén eigenmodes (RSAEs) have been observed with the phase contrast imaging diagnostic and Mirnov coils during the sawtooth cycle in Alcator C-mod [M. Greenwald et al., Nucl. Fusion 45, S109 (2005)] plasmas with minority ion-cyclotron resonance heating. Both down-chirping RSAEs and up-chirping RSAEs have been observed during the sawtooth cycle. Experimental measurements of the spatial structure of the RSAEs are compared to theoretical models based on the code NOVA [C. Z. Cheng and M. S. Chance, J. Comput. Phys. 71, 124 (1987)] and used to derive constraints on the q profile. It is shown that the observed RSAEs can be understood by assuming a reversed shear q profile (up chirping) or a q profile with a local maximum (down chirping) with q ≈1.
DEFF Research Database (Denmark)
Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory
Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward......-looking. This paper introduces a radically different approach to estimating market betas. Using the tools in Bakshi and Madan (2000) and Bakshi, Kapadia and Madan (2003) we employ the information embedded in the prices of individual stock options and index options to compute our forward-looking market beta...
Energy Technology Data Exchange (ETDEWEB)
Xie, M. [Lawrence Berkeley Lab., CA (United States)
1995-12-31
I present an exact calculation of free-electron-laser (FEL) eigenmodes (fundamental as well as higher order modes) in the exponential-gain regime. These eigenmodes specify transverse profiles and exponential growth rates of the laser field, and they are self-consistent solutions of the coupled Maxwell-Vlasov equations describing the FEL interaction taking into account the effects due to energy spread, emittance and betatron oscillations of the electron beam, and diffraction and guiding of the laser field. The unperturbed electron distribution is assumed to be of Gaussian shape in four dimensional transverse phase space and in the energy variable, but uniform in longitudinal coordinate. The focusing of the electron beam is assumed to be matched to the natural wiggler focusing in both transverse planes. With these assumptions the eigenvalue problem can be reduced to a numerically manageable integral equation and solved exactly with a kernel iteration method. An approximate, but more efficient solution of the integral equation is also obtained for the fundamental mode by a variational technique, which is shown to agree well with the exact results. Furthermore, I present a handy formula, obtained from interpolating the numerical results, for a quick calculation of FEL exponential growth rate. Comparisons with simulation code TDA will also be presented. Application of these solutions to the design and multi-dimensional parameter space optimization for an X-ray free electron laser driven by SLAC linac will be demonstrated. In addition, a rigorous analysis of transverse mode degeneracy and hence the transverse coherence of the X-ray FEL will be presented based on the exact solutions of the higher order guided modes.
Rankin, R.; Sydorenko, D.
2015-12-01
Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.
International Nuclear Information System (INIS)
Sen, S.; Roy Chowdhury, A.
1989-06-01
The nonlinear Alfven waves are governed by the Vector Derivative nonlinear Schroedinger (VDNLS) equation, which for parallel or quasi parallel propagation reduces to the Derivative Nonlinear Schroedinger (DNLS) equation for the circularly polarized waves. We have formulated the Quantum Inverse problem for a new type of Nonlinear Schroedinger Equation which has many properties similar to the usual NLS problem but the structure of classical and quantum R matrix are distinctly different. The commutation rules of the scattering data are obtained and the Algebraic Bethe Ansatz is formulated to derive the eigenvalue equation for the energy of the excited states. 10 refs
DEFF Research Database (Denmark)
Frazzini, Andrea; Heje Pedersen, Lasse
We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model’s five central predictions: (1) Since constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for U...... of the BAB factor is low; (4) Increased funding liquidity risk compresses betas toward one; (5) More constrained investors hold riskier assets........S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return...
DEFF Research Database (Denmark)
Bollerslev, Tim; Li, Sophia Zhengzi; Todorov, Viktor
-section. An investment strategy that goes long stocks with high jump betas and short stocks with low jump betas produces significant average excess returns. These higher risk premiums for the discontinuous and overnight market betas remain significant after controlling for a long list of other firm characteristics......Motivated by the implications from a stylized equilibrium pricing framework, we investigate empirically how individual equity prices respond to continuous, or \\smooth," and jumpy, or \\rough," market price moves, and how these different market price risks, or betas, are priced in the cross......-section of expected returns. Based on a novel highfrequency dataset of almost one-thousand individual stocks over two decades, we find that the two rough betas associated with intraday discontinuous and overnight returns entail significant risk premiums, while the intraday continuous beta is not priced in the cross...
International Nuclear Information System (INIS)
Helton, F.J.; Miller, R.L.
1982-01-01
ETF (Engineering Test Facility) one-dimensional transport simulations indicate that a volume-average beta of 4% is required for ignition. It is therefore important that theoretical beta limits, determined by requiring equilibria to be stable to all ideal modes, exceed 4%. This paper documents an ideal MHD analysis wherein it is shown that, with appropriate plasma cross-sectional shape and current profile optimization, operation near 5% is possible. The critical beta value, however, depends on the functional form used for ff', which suggests that higher critical betas could be achieved by directly optimizing the safety factor profile. (author)
Beta-energy averaging and beta spectra
International Nuclear Information System (INIS)
Stamatelatos, M.G.; England, T.R.
1976-07-01
A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality
Wilder, F. D.; Eriksson, S.; Wiltberger, M. J.
2017-12-01
The saturation of the cross-polar cap potential (CPCP) is an unexplained phenomenon in magnetosphere-ionosphere system science. In the present study, we expand upon the Alfvén Wing model of CPCP saturation by investigating its impact on the magnetosphere-ionosphere current system, particularly the cusp-mantle dynamo associated with lobe field lines. In this expansion of the Alfven wing model, the ability of open flux tubes to deform in response to the fluid stress from the magnetosheath is governed by the magnetosheath plasma beta, which in turn reduces the Maxwell stress imposed on the ionospheric plasma to accelerate it against ion-neutral collisional drag. We perform 32 simulations using the Lyon-Fedder-Mobarry (LFM) Magnetohydrodynamic (MHD) model with varying solar wind density and IMF strength, as well as a dipole tilt of 25 degrees to investigate the relative importance of both magnetosheath plasma beta and ionospheric conductivity in the formation of Alfvén wing-like structures and the saturation of the CPCP. We find that the plasma beta in the magnetosheath is different in each hemisphere and dependent on the stagnation point location. We also show that the lobes become more bent in the summer hemisphere with higher ionospheric conductivity. We find that higher ionospheric conductivity also makes the summer hemisphere lobes more sensitive to changes in the magnetosheath beta.
Tamrakar, Radha; Varma, P.; Tiwari, M. S.
2018-05-01
Kinetic Alfven wave (KAW) generation due to variation of loss-cone index J and density of multi-ions (H+, He+ and O+) in the plasma sheet boundary layer region (PSBL) is investigated. Kinetic approach is used to derive dispersion relation of wave using Vlasov equation. Variation of frequency with respect to wide range of k⊥ρi (where k⊥ is wave vector across the magnetic field, ρi is gyroradius of ions and i denotes H+, He+ and O+ ions) is analyzed. It is found that each ion gyroradius and number density shows different effect on wave generation with varying width of loss-cone. KAW is generated with multi-ions (H+, He+ and O+) over wide regime for J=1 and shows dissimilar effect for J=2. Frequency is reduced with increasing density of gyrating He+ and O+ ions. Wave frequency is obtained within the reported range which strongly supports generation of kinetic Alfven waves. A sudden drop of frequency is also observed for H+ and He+ ion which may be due to heavy penetration of these ions through the loss-cone. The parameters of PSBL region are used for numerical calculation. The application of these results are in understanding the effect of gyrating multi-ions in transfer of energy and Poynting flux losses from PSBL region towards ionosphere and also describing the generation of aurora.
Kovalev, A S
2002-01-01
The resonance activation of eigenmodes for a finite 2D easy-plane ferromagnet is considered to treat theoretically by the vortex switching in magnetic nanodots due to the action of external circular magnetic field. It is shown analytically that if the anisotropy is weak, i.e. the vortex has a nonzero polarity (total magnization along the z-axis), the process of the field action has a complicated nature. The circular field acts in a resonance way upon azimuthal system eigenmodes, in which magnetization depends on the azimuthal coordinate (as a direct resonance at the eigenfrequencies of these modes). The interaction of the azimuthal and symmetric modes (in which the magnetization does not depend on the azimuthal coordinate) via the applied field gives rise to complex parametric resonance at multifrequencies. The results obtained are compared with the data of previous numerical calculations.
Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets
Jafelice, L. C.; Opher, R.
1990-11-01
evident that both problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS
International Nuclear Information System (INIS)
Dory, R.A.; Berger, D.P.; Charlton, L.A.; Hogan, J.T.; Munro, J.K.; Nelson, D.B.; Peng, Y.K.M.; Sigmar, D.J.; Strickler, D.J.
1978-01-01
MHD equilibrium, stability, and transport calculations are made to study the accessibility and behavior of ''high beta'' tokamak plasmas in the range β approximately 5 to 15 percent. For next generation devices, beta values of at least 8 percent appear to be accessible and stable if there is a conducting surface nearby
G.T. Post (Thierry); P. van Vliet (Pim); S.D. Lansdorp (Simon)
2009-01-01
textabstractDownside risk, when properly defined and estimated, helps to explain the cross-section of US stock returns. Sorting stocks by a proper estimate of downside market beta leads to a substantially larger cross-sectional spread in average returns than sorting on regular market beta. This
DEFF Research Database (Denmark)
Frazzini, Andrea; Heje Pedersen, Lasse
2014-01-01
We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model's five central predictions: (1) Because constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically...
Genetics Home Reference: beta thalassemia
... Facebook Twitter Home Health Conditions Beta thalassemia Beta thalassemia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Beta thalassemia is a blood disorder that reduces the production ...
Pei, Youbin; Xiang, Nong; Shen, Wei; Hu, Youjun; Todo, Y.; Zhou, Deng; Huang, Juan
2018-05-01
Kinetic-MagnetoHydroDynamic (MHD) hybrid simulations are carried out to study fast ion driven toroidal Alfvén eigenmodes (TAEs) on the Experimental Advanced Superconducting Tokamak (EAST). The first part of this article presents the linear benchmark between two kinetic-MHD codes, namely MEGA and M3D-K, based on a realistic EAST equilibrium. Parameter scans show that the frequency and the growth rate of the TAE given by the two codes agree with each other. The second part of this article discusses the resonance interaction between the TAE and fast ions simulated by the MEGA code. The results show that the TAE exchanges energy with the co-current passing particles with the parallel velocity |v∥ | ≈VA 0/3 or |v∥ | ≈VA 0/5 , where VA 0 is the Alfvén speed on the magnetic axis. The TAE destabilized by the counter-current passing ions is also analyzed and found to have a much smaller growth rate than the co-current ions driven TAE. One of the reasons for this is found to be that the overlapping region of the TAE spatial location and the counter-current ion orbits is narrow, and thus the wave-particle energy exchange is not efficient.
Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.
2018-01-01
In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.
Rapid synthesis of beta zeolites
Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng
2015-08-18
The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.
Beta particle measurement fundamentals
International Nuclear Information System (INIS)
Alvarez, J.L.
1986-01-01
The necessary concepts for understanding beta particle behavior are stopping power, range, and scattering. Dose as a consequence of beta particle interaction with tissue can be derived and explained by these concepts. Any calculations of dose, however, assume or require detailed knowledge of the beta spectrum at the tissue depth of calculation. A rudimentary knowledge of the incident spectrum can be of use in estimating dose, interpretating dose measuring devices and designing protection. The stopping power and range based on the csda will give a conservative estimate in cases of protection design, as scattering will reduce the range. Estimates of dose may be low because scattering effects were neglected
Energy Technology Data Exchange (ETDEWEB)
Zhao, G. Q.; Chen, L.; Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yan, Y. H., E-mail: djwu@pmo.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing 100012 (China)
2013-06-10
Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.
Neutrinoless double beta decay
Indian Academy of Sciences (India)
2012-10-06
Oct 6, 2012 ... Anyhow, the 'multi-isotope' ansatz is needed to compensate for matrix element ... The neccessary half-life requirement to touch this ... site energy depositions (like double beta decay) and multiple site interactions (most of.
... disease (COPD). It is also used to improve memory and muscle strength. Some people use beta-carotene ... to reduce the chance of death and night blindness during pregnancy, as well as diarrhea and fever ...
Double beta decay: experiments
International Nuclear Information System (INIS)
Fiorini, Ettore
2006-01-01
The results obtained so far and those of the running experiments on neutrinoless double beta decay are reviewed. The plans for second generation experiments, the techniques to be adopted and the expected sensitivities are compared and discussed
{beta} - amyloid imaging probes
Energy Technology Data Exchange (ETDEWEB)
Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)
2007-04-15
Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.
Sharapov, S. E.; Garcia-Munoz, M.; Van Zeeland, M. A.; Bobkov, B.; Classen, I. G. J.; Ferreira, J.; Figueiredo, A.; Fitzgerald, M.; Galdon-Quiroga, J.; Gallart, D.; Geiger, B.; Gonzalez-Martin, J.; Johnson, T.; Lauber, P.; Mantsinen, M.; Nabais, F.; Nikolaeva, V.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Schneider, P. A.; Snicker, A.; Vallejos, P.; the AUG Team; the EUROfusion MST1 Team
2018-01-01
Dedicated studies performed for toroidal Alfvén eigenmodes (TAEs) in ASDEX-Upgrade (AUG) discharges with monotonic q-profiles have shown that electron cyclotron resonance heating (ECRH) can make TAEs more unstable. In these AUG discharges, energetic ions driving TAEs were obtained by ion cyclotron resonance heating (ICRH). It was found that off-axis ECRH facilitated TAE instability, with TAEs appearing and disappearing on timescales of a few milliseconds when the ECRH power was switched on and off. On-axis ECRH had a much weaker effect on TAEs, and in AUG discharges performed with co- and counter-current electron cyclotron current drive (ECCD), the effects of ECCD were found to be similar to those of ECRH. Fast ion distributions produced by ICRH were computed with the PION and SELFO codes. A significant increase in T e caused by ECRH applied off-axis is found to increase the fast ion slowing-down time and fast ion pressure causing a significant increase in the TAE drive by ICRH-accelerated ions. TAE stability calculations show that the rise in T e causes also an increase in TAE radiative damping and thermal ion Landau damping, but to a lesser extent than the fast ion drive. As a result of the competition between larger drive and damping effects caused by ECRH, TAEs become more unstable. It is concluded, that although ECRH effects on AE stability in present-day experiments may be quite significant, they are determined by the changes in the plasma profiles and are not particularly ECRH specific.
Resistive wall mode stabilization in slowly rotating high beta plasmas
Energy Technology Data Exchange (ETDEWEB)
Reimerdes, H [Columbia University, New York, NY 10027 (United States); Garofalo, A M [Columbia University, New York, NY 10027 (United States); Okabayashi, M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Strait, E J [General Atomics, San Diego, CA 92186-5608 (United States); Betti, R [University of Rochester, Rochester, NY 14627 (United States); Chu, M S [General Atomics, San Diego, CA 92186-5608 (United States); Hu, B [University of Rochester, Rochester, NY 14627 (United States); In, Y [FAR-TECH, Inc., San Diego, CA 92121 (United States); Jackson, G L [General Atomics, San Diego, CA 92186-5608 (United States); La Haye, R J [General Atomics, San Diego, CA 92186-5608 (United States); Lanctot, M J [Columbia University, New York, NY 10027 (United States); Liu, Y Q [Chalmers University of Technology, S-412 96 Goeteborg (Sweden); Navratil, G A [Columbia University, New York, NY 10027 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Takahashi, H [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Groebner, R J [General Atomics, San Diego, CA 92186-5608 (United States)
2007-12-15
DIII-D experiments show that the resistive wall mode (RWM) can remain stable in high {beta} scenarios despite a low net torque from nearly balanced neutral beam injection heating. The minimization of magnetic field asymmetries is essential for operation at the resulting low plasma rotation of less than 20 krad s{sup -1} (measured with charge exchange recombination spectroscopy using C VI emission) corresponding to less than 1% of the Alfven velocity or less than 10% of the ion thermal velocity. In the presence of n = 1 field asymmetries the rotation required for stability is significantly higher and depends on the torque input and momentum confinement, which suggests that a loss of torque-balance can lead to an effective rotation threshold above the linear RWM stability threshold. Without an externally applied field the measured rotation can be too low to neglect the diamagnetic rotation. A comparison of the instability onset in plasmas rotating with and against the direction of the plasma current indicates the importance of the toroidal flow driven by the radial electric field in the stabilization process. Observed rotation thresholds are compared with predictions for the semi-kinetic damping model, which generally underestimates the rotation required for stability. A more detailed modeling of kinetic damping including diamagnetic and precession drift frequencies can lead to stability without plasma rotation. However, even with corrected error fields and fast plasma rotation, plasma generated perturbations, such as edge localized modes, can nonlinearly destabilize the RWM. In these cases feedback control can increase the damping of the magnetic perturbation and is effective in extending the duration of high {beta} discharges.
Bytchenkoff, Dimitri; Rodts, Stéphane
2011-01-01
The form of the two-dimensional (2D) NMR-relaxation spectra--which allow to study interstitial fluid dynamics in diffusive systems by correlating spin-lattice (T(1)) and spin-spin (T(2)) relaxation times--has given rise to numerous conjectures. Herein we find analytically a number of fundamental structural properties of the spectra: within the eigen-modes formalism, we establish relationships between the signs and intensities of the diagonal and cross-peaks in spectra obtained by various 1 and 2D NMR-relaxation techniques, reveal symmetries of the spectra and uncover interdependence between them. We investigate more specifically a practically important case of porous system that has sets of T(1)- and T(2)-eigenmodes and eigentimes similar to each other by applying the perturbation theory. Furthermore we provide a comparative analysis of the application of the, mathematically more rigorous, eigen-modes formalism and the, rather more phenomenological, first-order two-site exchange model to diffusive systems. Finally we put the results that we could formulate analytically to the test by comparing them with computer-simulations for 2D porous model systems. The structural properties, in general, are to provide useful clues for assignment and analysis of relaxation spectra. The most striking of them--the presence of negative peaks--underlines an urgent need for improvement of the current 2D Inverse Laplace Transform (ILT) algorithm used for calculation of relaxation spectra from NMR raw data. Copyright © 2010 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Matthias Schmid
Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.
International Nuclear Information System (INIS)
Nalesso, G.F.; Jacobson, A.R.
1988-01-01
We study the interaction of a plasma cloud, jetting across the geomagnetic field with the surrounding ionosphere. The cloud is assumed of finite extension in the direction normal to both the direction of motion and the magnetic field, while the ionosphere is considered a collisional anisotropic magnetized plasma. It is shown that two main mechanisms contribute to the cloud's braking: momentum exchange with the ionosphere via Alfven waves and momentum dissipation due to resistive currents. Due to the finite size of the cloud a differential braking of the different transverse harmonics of the Alfven wave appears when the momentum exchange mechanism is dominant. The result is a sharpening of the cloud's velocity field. copyright American Geophysical Union 1988
International Nuclear Information System (INIS)
Lyu, L.H.; Kan, J.R.
1989-01-01
Nonlinear one-dimensional constant-profile hydromagnetic wave solutions are obtained in finite-temperature two-fluid collisionless plasmas under adiabatic equation of state. The nonlinear wave solutions can be classified according to the wavelength. The long-wavelength solutions are circularly polarized incompressible oblique Alfven wave trains with wavelength greater than hudreds of ion inertial length. The oblique wave train solutions can explain the high degree of alignment between the local average magnetic field and the wave normal direction observed in the solar wind. The short-wavelength solutions include rarefaction fast solitons, compression slow solitons, Alfven solitons and rotational discontinuities, with wavelength of several tens of ion inertial length, provided that the upstream flow speed is less than the fast-mode speed
Labelling of. beta. -endorphin (. beta. -END) and. beta. -lipotropin (. beta. -LPH) by /sup 125/I
Energy Technology Data Exchange (ETDEWEB)
Deby-Dupont, G.; Joris, J.; Franchimont, P. (Universite de Liege (Belgique)); Reuter, A.M.; Vrindts-Gevaert, Y. (Institut des Radioelements, Fleurus (Belgique))
1983-01-01
5 ..mu..g of human ..beta..-endorphin were labelled with 2 mCi /sup 125/I by the chloramine T technique. After two gel filtrations on Sephadex G-15 and on Sephadex G-50 in phosphate buffer with EDTA, Trasylol and mercapto-ethanol, a pure tracer was obtained with a specific activity about 150 ..mu..Ci/..mu..g.Kept at + 4/sup 0/C, the tracer remained utilizable for 30 days without loss of immunoreactivity. The labelling with lactoperoxydase and the use of another gel filtration method (filtration on Aca 202) gave a /sup 125/I ..beta..-END tracer with the same immunoreactivity. The binding of this tracer to the antibody of an anti-..beta..-END antiserum diluted at 1/8000 was 32% with a non specific binding of 2%. 5 ..mu..g of human ..beta..-lipotropin were labelled with 0.5 mCi /sup 125/I by the lactoperoxydase method. After two gel filtrations on Sephadex G-25 and on Sephadex G-75 in phosphate buffer with EDTA, Trasylol and mercapto-ethanol, a pure tracer with a specific activity of 140 ..mu..Ci/..mu..g was obtained. It remained utilizable for 30 days when kept at + 4/sup 0/C. Gel filtration on Aca 202 did not give good purification, while gel filtration on Aca 54 was good but slower than on Sephadex G-75. The binding to antibody in absence of unlabelled ..beta..-LPH was 32% for an anti-..beta..-LPH antiserum diluted at 1/4000. The non specific binding was 2.5%.
International Nuclear Information System (INIS)
Amaral, L.B.D.; Pinto, J.C.M.; Linhares, E.; Linhares, Estevao
1981-01-01
There are three important indications for the early diagnosis of pregnancy through the determination of the beta sub-unit of chorionic gonadotrophin using radioimmunoassay: 1) some patient's or doctor's anxiety to discover the problem; 2) when it will be necessary to employ diagnostic or treatment procedures susceptible to affect the ovum; and 3) in the differential diagnosis of amenorrhoea, uterine hemorrhage and abdominal tumors. Other user's are the diagnosis of missed absortion, and the diagnosis and follow-up of chrorioncarcinoma. The AA. studied 200 determinations of plasma beta-HCG, considering the main difficulties occuring in the clinical use of this relevant laboratory tool in actual Obstetrics. (author) [pt
Relation between the 2{nu}{beta}{beta} and 0{nu}{beta}{beta} nuclear matrix elements
Energy Technology Data Exchange (ETDEWEB)
Vogel, Petr [Kellogg Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Simkovic, Fedor [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, SK-84248 Bratislava (Slovakia)
2011-12-16
A formal relation between the GT part of the nuclear matrix elements M{sub GT}{sup 0{nu}} of 0{nu}{beta}{beta} decay and the closure matrix elements M{sub cl}{sup 2{nu}} of 2{nu}{beta}{beta} decay is established. This relation is based on the integral representation of these quantities in terms of their dependence on the distance r between the two nucleons undergoing transformation. We also discuss the difficulties in determining the correct values of the closure 2{nu}{beta}{beta} decay matrix elements.
International Nuclear Information System (INIS)
Bandyopadhyay, Anup; Das, K.P.
2002-01-01
The evolution equations describing both kinetic Alfven wave and ion-acoustic wave in a nonthermal magnetized plasma with warm ions including weak nonlinearity and weak dispersion with the effect of Landau damping have been derived. These equations reduce to two coupled equations constituting the KdV-ZK (Korteweg-de Vries-Zakharov-Kuznetsov) equation for both kinetic Alfven wave and ion-acoustic wave, including an extra term accounting for the effect of Landau damping. When the coefficient of the nonlinear term of the evolution equation for ion-acoustic wave vanishes, the nonlinear behavior of ion-acoustic wave, including the effect of Landau damping, is described by two coupled equations constituting the modified KdV-ZK (MKdV-ZK) equation, including an extra term accounting for the effect of Landau damping. It is found that there is no effect of Landau damping on the solitary structures of the kinetic Alfven wave. Both the macroscopic evolution equations for the ion-acoustic wave admits solitary wave solutions, the former having a sech 2 profile and the latter having a sech profile. In either case, it is found that the amplitude of the ion-acoustic solitary wave decreases slowly with time
International Nuclear Information System (INIS)
Tsiklauri, D.
2014-01-01
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1∕3 and in the latter as log(S), where S is the Lundquist number. In this work, linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed to
Energy Technology Data Exchange (ETDEWEB)
Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)
2014-05-15
Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S{sup 1∕3} and in the latter as log(S), where S is the Lundquist number. In this work, linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is
International Nuclear Information System (INIS)
Todo, Y.; Van Zeeland, M.A.; Bierwage, A.; Heidbrink, W.W.
2014-01-01
A multi-phase simulation that is a combination of classical simulation and hybrid simulation for energetic particles interacting with a magnetohydrodynamic (MHD) fluid is developed to simulate the nonlinear dynamics on the slowing down time scale of the energetic particles. The hybrid simulation code is extended with realistic beam deposition profile, collisions and losses, and is used for both the classical and hybrid phases. The code is run without MHD perturbations in the classical phase, while the interaction between the energetic particles and the MHD fluid is simulated in the hybrid phase. In a multi-phase simulation of DIII-D discharge #142111, the stored beam ion energy is saturated due to Alfvén eigenmodes (AE modes) at a level lower than in the classical simulation. After the stored fast ion energy is saturated, the hybrid simulation is run continuously. It is demonstrated that the fast ion spatial profile is significantly flattened due to the interaction with the multiple AE modes with amplitude v/v A ∼ δB/B ∼ O(10 −4 ). The dominant AE modes are toroidal Alfvén eigenmodes (TAE modes), which is consistent with the experimental observation at the simulated moment. The amplitude of the temperature fluctuations brought about by the TAE modes is of the order of 1% of the equilibrium temperature. This is also comparable with electron cyclotron emission measurements in the experiment. (paper)
STAVREV, A.
2013-03-01
The uncertainty of geometric imperfections in a series of nominally equal I-beams leads to a variability of corresponding buckling loads. Its analysis requires a stochastic imperfection model, which can be derived either by the simple variation of the critical eigenmode with a scalar random variable, or with the help of the more advanced theory of random fields. The present paper first provides a concise review of the two different modeling approaches, covering theoretical background, assumptions and calibration, and illustrates their integration into commercial finite element software to conduct stochastic buckling analyses with the Monte-Carlo method. The stochastic buckling behavior of an example beam is then simulated with both stochastic models, calibrated from corresponding imperfection measurements. The simulation results show that for different load cases, the response statistics of the buckling load obtained with the eigenmode-based and the random field-based models agree very well. A comparison of our simulation results with corresponding Eurocode 3 limit loads indicates that the design standard is very conservative for compression dominated load cases. © 2013 World Scientific Publishing Company.
International Nuclear Information System (INIS)
Reiss, H.R.
1986-01-01
Certain nuclear beta decay transitions normally inhibited by angular momentum or parity considerations can be induced to occur by the application of an electromagnetic field. Such decays can be useful in the controlled production of power, and in fission waste disposal
Trichoderma .beta.-glucosidase
Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian
2006-01-03
The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.
International Nuclear Information System (INIS)
Rich, B.L.
1986-01-01
Measurements of beta and/or nonpenetrating exposure results is complicated and past techniques and capabilities have resulted in significant inaccuracies in recorded results. Current developments have resulted in increased capabilities which make the results more accurate and should result in less total exposure to the work force. Continued development of works in progress should provide equivalent future improvements
Directory of Open Access Journals (Sweden)
R Jha
2014-09-01
Full Text Available Thalassemia is a globin gene disorder that results in a diminished rate of synthesis of one or more of the globin chains. About 1.5% of the global population (80 to 90 million people are carriers of beta Thalassemia. More than 200 mutations are described in beta thalassemia. However not all mutations are common in different ethnic groups. The only effective way to reduce burden of thalassemia is to prevent birth of homozygotes. Diagnosis of beta thalassemia can be done by fetal DNA analysis for molecular defects of beta thalassemia or by fetal blood analysis. Hematopoietic stem cell transplantation is the only available curative approach for Thalassemia. Many patients with thalassemia in underdeveloped nations die in childhood or adolescence. Programs that provide acceptable care, including transfusion of safe blood and supportive therapy including chelation must be established.DOI: http://dx.doi.org/10.3126/jpn.v4i8.11609 Journal of Pathology of Nepal; Vol.4,No. 8 (2014 663-671
International Nuclear Information System (INIS)
Piepke, A.
2005-01-01
The experimental observation of neutrino oscillations and thus neutrino mass and mixing gives a first hint at new particle physics. The absolute values of the neutrino mass and the properties of neutrinos under CP-conjugation remain unknown. The experimental investigation of the nuclear double beta decay is one of the key techniques for solving these open problems
Beta cell adaptation in pregnancy
DEFF Research Database (Denmark)
Nielsen, Jens Høiriis
2016-01-01
Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades...... in the expansion of the beta cell mass in human pregnancy, and the relative roles of endocrine factors and nutrients....
Misleading Betas: An Educational Example
Chong, James; Halcoussis, Dennis; Phillips, G. Michael
2012-01-01
The dual-beta model is a generalization of the CAPM model. In the dual-beta model, separate beta estimates are provided for up-market and down-market days. This paper uses the historical "Anscombe quartet" results which illustrated how very different datasets can produce the same regression coefficients to motivate a discussion of the…
Monte-Carlo Orbit/Full Wave Simulation of Fast Alfven Wave (FW) Damping on Resonant Ions in Tokamaks
International Nuclear Information System (INIS)
Choi, M.; Chan, V.S.; Pinsker, R.I.; Tang, V.; Bonoli, P.; Wright, J.
2005-01-01
To simulate the resonant interaction of fast Alfven wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement
International Nuclear Information System (INIS)
Knudsen, D.J.; Kelley, M.C.; Earle, G.D.; Vickrey, J.F.; Boehm, M.
1990-01-01
The authors present and analyze sounding rocket and HILAT satellite measurements of the low frequency ( 0 in the auroral oval. By examining the time-domain field data it is often difficult to distinguish temporal fluctuations from static structures which are Doppler shifted to a non-zero frequency in the spacecraft frame. However, they show that such a distinction can be made by constructing the impedance function Z(f). Using Z(f) they find agreement with the static field interpretation below about 0.1 Hz in the spacecraft frame, i.e. Z(f) = Σ p -1 where Σ p is the height-integrated Pedersen conductivity of the ionosphere. About 0.1 Hz the authors find Z(f) > Σ p -1 , which they argue to be due to the presence of Alfven waves incident from the magnetosphere and reflecting from the lower ionosphere, forming a standing wave pattern. These waves may represent an electromagnetic coupling mechanism between the auroral acceleration region and the ionosphere
International Nuclear Information System (INIS)
Bruma, C; Cuperman, S; Komoshvili, K
2003-01-01
In an effort to optimize the internal transport barriers (ITBs) generated by externally launched mode-converted fast waves (FWs) in pre-heated spherical tokamaks (STs), we have carried out a systematic parametric investigation with respect to the rf waves and antenna characteristics; as a study case, a START-like device has been considered. Within the framework of a plasma model including both kinetic effects (collisionless Landau damping on passing electrons) and collisional damping on both trapped and passing electrons and ions, and starting with the solution of the full wave equation for a ST-plasma, we show that optimized ITBs, suitable for the stabilization of plasma turbulence (e.g. overpassing the maximum growth rate of the ITG-instability, γ ITG ) in STs can be generated by the aid of externally launched FW and mode-converted to kinetic Alfven waves. This result holds in spite of the limiting trapped-particles associated squeezing factor S present in the non-linear equation for E r (via the viscosity coefficient μ θi ∝|S| 3/2 , S = S(dE r /dr))
International Nuclear Information System (INIS)
Bruma, C.; Cuperman, S.
2003-01-01
We investigate quantitatively the possibility of turbulence suppression through the generation of transport barriers in pre-heated low aspect ratio tokamaks (LARTs) by the sheared electric fields generated by externally driven rf waves in the frequency range ω A ≅ ci (ω A and ω ci are, respectively, Alfven and ion cyclotron frequencies). To this aim the following sequential steps are followed: (1) Solutions of the resistive two-fluid model full wave equation for a realistic LART configuration (D-shape cross-section and aspect ratio, R/a ∼> 1; as well as suitably located low field side, LFS, antenna) upon using a quite general dielectric tensor operator; (2) Calculation of the ponderomotive forces and their magnetic surface averages; (3) Solution of a strongly non-linear differential equation for the quasi-stationary radial electric field, including the particle orbit squeezing effects, based on the results of steps (1) and (2); and (4) Calculation of the radial flow shear, S perpend ; for both banana and potato collisional regimes
Energy Technology Data Exchange (ETDEWEB)
Bruma, C.; Cuperman, S. [Tel Aviv Univ. (Israel). School of Physics and Astronomy; Komoshvili, K. [The College of Judea and Samaria, Ariel (Israel)
2003-05-01
We investigate quantitatively the possibility of turbulence suppression through the generation of transport barriers in pre-heated low aspect ratio tokamaks (LARTs) by the sheared electric fields generated by externally driven rf waves in the frequency range {omega}{sub A} {approx_equal} <{omega}{sub ci} ({omega}{sub A} and {omega}{sub ci} are, respectively, Alfven and ion cyclotron frequencies). To this aim the following sequential steps are followed: (1) Solutions of the resistive two-fluid model full wave equation for a realistic LART configuration (D-shape cross-section and aspect ratio, R/a {approx}> 1; as well as suitably located low field side, LFS, antenna) upon using a quite general dielectric tensor operator; (2) Calculation of the ponderomotive forces and their magnetic surface averages; (3) Solution of a strongly non-linear differential equation for the quasi-stationary radial electric field, including the particle orbit squeezing effects, based on the results of steps (1) and (2); and (4) Calculation of the radial flow shear, S{sub perpend}; for both banana and potato collisional regimes.
Energy Technology Data Exchange (ETDEWEB)
Bruma, C [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Cuperman, S [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Komoshvili, K [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel)
2003-04-01
In an effort to optimize the internal transport barriers (ITBs) generated by externally launched mode-converted fast waves (FWs) in pre-heated spherical tokamaks (STs), we have carried out a systematic parametric investigation with respect to the rf waves and antenna characteristics; as a study case, a START-like device has been considered. Within the framework of a plasma model including both kinetic effects (collisionless Landau damping on passing electrons) and collisional damping on both trapped and passing electrons and ions, and starting with the solution of the full wave equation for a ST-plasma, we show that optimized ITBs, suitable for the stabilization of plasma turbulence (e.g. overpassing the maximum growth rate of the ITG-instability, {gamma}{sub ITG}) in STs can be generated by the aid of externally launched FW and mode-converted to kinetic Alfven waves. This result holds in spite of the limiting trapped-particles associated squeezing factor S present in the non-linear equation for E{sub r} (via the viscosity coefficient {mu}{sub {theta}}{sub i}{proportional_to}|S|{sup 3/2}, S = S(dE{sub r}/dr))
International Nuclear Information System (INIS)
Bhattacharyya, B.; Chakraborty, B.
1979-01-01
Nonlinear corrections of a left and a right circularly polarized electromagnetic wave of the same frequency, propagating in the direction of a static and uniform magnetic field in a cold and collisionally damped two-component plasma, have been evaluated. The nonlinearly correct dispersion relation, self-generating nonlinear precessional rotation of the polarization ellipse of the wave and the shift in a wave parameter depend on linear combinations of products of the amplitude components taken two at a time and hence on the energies of the waves. Both in the low frequency resonance (that is when the ion cyclotron frequency equals the wave frequency) and in the high frequency resonance (that is when the electron cyclotron frequency equals the wave frequency), the self-precessional rate and wavenumber shift are found to be large and so have the possibility of detection in laboratory experiments. Moreover, for the limit leading to Alfven waves, these nonlinear effects have been found to have some interesting and significant properties. (Auth.)
Shiina, T; Kawasaki, A; Nagao, T; Kurose, H
2000-09-15
The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.
Low-beta investment strategies
Korn, Olaf; Kuntz, Laura-Chloé
2015-01-01
This paper investigates investment strategies that exploit the low-beta anomaly. Although the notion of buying low-beta stocks and selling high-beta stocks is natural, a choice is necessary with respect to the relative weighting of high-beta stocks and low-beta stocks in the investment portfolio. Our empirical results for US large-cap stocks show that this choice is very important for the risk-return characteristics of the resulting portfolios and their sensitivities to common risk factors. W...
Neutrophil beta-2 microglobulin: an inflammatory mediator
DEFF Research Database (Denmark)
Bjerrum, O W; Nissen, Mogens Holst; Borregaard, N
1990-01-01
Beta-2 microglobulin (beta 2m) constitutes the light invariant chain of HLA class I antigen, and is a constituent of mobilizable compartments of neutrophils. Two forms of beta 2m exist: native beta 2m and proteolytically modified beta 2m (Des-Lys58-beta 2m), which shows alpha mobility in crossed ...
International Nuclear Information System (INIS)
Galindo, A.; Pascual, P.
1967-01-01
These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)
Directory of Open Access Journals (Sweden)
Origa Raffaella
2010-05-01
Full Text Available Abstract Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands, dilated myocardiopathy, liver fibrosis and cirrhosis. Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes, gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely
DEFF Research Database (Denmark)
Løvborg, Leif; Gaffney, C. F.; Clark, P. A.
1985-01-01
Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...... that the present practice of avoiding samples above a depth of 0.3 m may be over-cautious...
Energy Technology Data Exchange (ETDEWEB)
Galindo, A; Pascual, P
1967-07-01
These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)
Regulation of beta cell replication
DEFF Research Database (Denmark)
Lee, Ying C; Nielsen, Jens Høiriis
2008-01-01
Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...
International Nuclear Information System (INIS)
Okamura, S.; Matsuoka, K.; Nishimura, K.
1994-09-01
High beta experiments were performed in the low-aspect-ratio helical device CHS with the volume-averaged equilibrium beta up to 2.1 %. These values (highest for helical systems) are obtained for high density plasmas in low magnetic field heated with two tangential neutral beams. Confinement improvement given by means of turning off gas puffing helped significantly to make high betas. Magnetic fluctuations increased with increasing beta, but finally stopped to increase in the beta range > 1 %. The coherent modes appearing in the magnetic hill region showed strong dependence on the beta values. The dynamic poloidal field control was applied to suppress the outward plasma movement with the plasma pressure. Such an operation gave fixed boundary operations of high beta plasmas in helical systems. (author)
International Nuclear Information System (INIS)
Adams, S.F.
1992-01-01
It was over 30 years between the first observation of the enigmatic process of beta decay and the first postulation of the neutrino. It took a further 26 years until the first neutrino was detected and yet another 27 until the electroweak theory was confirmed by the discovery of W and Z particles. This article traces some of the puzzles and paradoxes associated with the history of the neutrino. (author)
DEFF Research Database (Denmark)
Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger
In object-oriented programming, a program execution is viewed as a physical model of some real or imaginary part of the world. A language supporting object-oriented programming must therefore contain comprehensive facilities for modeling phenomena and concepts form the application domain. Many...... applications in the real world consist of objects carrying out sequential processes. Coroutines may be used for modeling objects that alternate between a number of sequential processes. The authors describe coroutines in BETA...
DEFF Research Database (Denmark)
Madsen, Ole Lehrmann
1999-01-01
Component technologies based on binary units of independent production are some of the most important contributions to software architecture and reuse during recent years. Especially the COM technologies and the CORBA standard from the Object Management Group have contributed new and interesting...... principles for software architecture, and proven to be useful in parctice. In this paper ongoing work with component support in the BETA language is described....
LHCb: $2\\beta_s$ measurement at LHCb
Conti, G
2009-01-01
A measurement of $2\\beta_s$, the phase of the $B_s-\\bar{B_s}$ oscillation amplitude with respect to that of the ${\\rm b} \\rightarrow {\\rm c^{+}}{\\rm W^{-}}$ tree decay amplitude, is one of the key goals of the LHCb experiment with first data. In the Standard Model (SM), $2\\beta_s$ is predicted to be $0.0360^{+0.0020}_{-0.0016} \\rm rad$. The current constraints from the Tevatron are: $2\\beta_{s}\\in[0.32 ; 2.82]$ at 68$\\%$CL from the CDF experiment and $2\\beta_{s}=0.57^{+0.24}_{-0.30}$ from the D$\\oslash$ experiment. Although the statistical uncertainties are large, these results hint at the possible contribution of New Physics in the $B_s-\\bar{B_s}$ box diagram. After one year of data taking at LHCb at an average luminosity of $\\mathcal{L}\\sim2\\cdot10^{32}\\rm cm^{-2} \\rm s^{-1}$ (integrated luminosity $\\mathcal{L}_{\\rm int}\\sim 2 \\rm fb^{-1}$), the expected statistical uncertainty on the measurement is $\\sigma(2\\beta_s)\\simeq 0.03$. This uncertainty is similar to the $2\\beta_s$ value predicted by the SM.
Enantioselective synthesis of alpha,beta-disubstituted-beta-amino acids.
Sibi, Mukund P; Prabagaran, Narayanasamy; Ghorpade, Sandeep G; Jasperse, Craig P
2003-10-01
Highly diastereoselective and enantioselective addition of N-benzylhydroxylamine to imides 17 and 20-30 produces alpha,beta-trans-disubstituted N-benzylisoxazolidinones 19 and 31-41. These reactions proceed in 60-96% ee with 93-99% de's using 5 mol % of Mg(NTf2)2 and ligand 18. The product isoxazolidinones can be hydrogenolyzed directly to provide alpha,beta-disubstituted-beta-amino acids.
International Nuclear Information System (INIS)
Horvath, Ivan
2005-01-01
The structure of QCD vacuum can be studied from first principles using lattice-regularized theory. This line of research entered a qualitatively new phase recently, wherein the space-time structure (at least for some quantities) can be directly observed in configurations dominating the QCD path integral, i.e., without any subjective processing of typical configurations. This approach to QCD vacuum structure does not rely on any proposed picture of QCD vacuum but rather attempts to characterize this structure in a model-independent manner, so that a coherent physical picture of the vacuum can emerge when such unbiased numerical information accumulates to a sufficient degree. An important part of this program is to develop a set of suitable quantitative characteristics describing the space-time structure in a meaningful and physically relevant manner. One of the basic pertinent issues here is whether QCD vacuum dynamics can be understood in terms of localized vacuum objects, or whether such objects behave as inherently global entities. The first direct studies of vacuum structure strongly support the latter. In this paper, we develop a formal framework which allows to answer this question in a quantitative manner. We discuss in detail how to apply this approach to Dirac eigenmodes and to basic scalar and pseudoscalar composites of gauge fields (action density and topological charge density). The approach is illustrated numerically on overlap Dirac zero modes and near-zero modes. This illustrative data provides direct quantitative evidence supporting our earlier arguments for the global nature of QCD Dirac eigenmodes
Farrugia, C. J.; Lugaz, N.; Alm, L.; Vasquez, B. J.; Argall, M. R.; Kucharek, H.; Matsui, H.; Torbert, R. B.; Lavraud, B.; Le Contel, O.; Shuster, J. R.; Burch, J. L.; Khotyaintsev, Y. V.; Giles, B. L.; Fuselier, S. A.; Gershman, D. J.; Ergun, R.; Eastwood, J. P.; Cohen, I. J.; Dorelli, J.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Marklund, G. T.; Paulson, K.; Petrinec, S.; Phan, T.; Pollock, C.
2017-12-01
We present MMS) observations during two dayside magnetopause crossingsunder hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvenic flow, and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B ( 20 nT) pointing south, and (ii) a density profile with episodic decreases to values of 0.3 /cc followed by moderate recovery. During the crossings he magnetosheath magnetic field is stronger than the magnetosphere field by a factor of 2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S-line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due kinetic Alfvén waves.During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (Tperp>Tpar) were observed. Another aim of the paper isto distinguish bow shock-induced field and flow perturbations from reconnection-related signatures.The high resolution MMS data together with 2D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walen relation.
Beta measurement evaluation and upgrade
International Nuclear Information System (INIS)
Swinth, K.L.; Rathbun, L.A.; Roberson, P.L.; Endres, G.W.R.
1986-01-01
This program focuses on the resolution of problems associated with the field measurement of the beta dose component at Department of Energy (DOE) facilities. The change in DOE programs, including increased efforts in improved waste management and decontamination and decommissioning (D and D) of facilities, coupled with beta measurement problems identified at Three Mile Island has increased the need to improve beta measurements. In FY 1982, work was initiated to provide a continuing effort to identify problems associated with beta dose assessment at DOE facilities. The problems identified resulted in the development of this program. The investigation includes (1) an assessment of measurement systems now in use, (2) development of improved calibration systems and procedures, (3) application of innovative beta dosimetry concepts, (4) investigation of new instruments or concepts for monitoring and spectroscopy, and (5) development of recommendations to assure an adequate beta measurement program within DOE facilities
Rosner, R.; An, C.-H.; Musielak, Z. E.; Moore, R. L.; Suess, S. T.
1991-01-01
A simple qualitative model for the origin of the coronal and mass-loss dividing lines separating late-type giants and supergiants with and without hot, X-ray-emitting corona, and with and without significant mass loss is discussed. The basic physical effects considered are the necessity of magnetic confinement for hot coronal material on the surface of such stars and the large reflection efficiency for Alfven waves in cool exponential atmospheres. The model assumes that the magnetic field geometry of these stars changes across the observed 'dividing lines' from being mostly closed on the high effective temperature side to being mostly open on the low effective temperature side.
Conditional Betas and Investor Uncertainty
Fernando D. Chague
2013-01-01
We derive theoretical expressions for market betas from a rational expectation equilibrium model where the representative investor does not observe if the economy is in a recession or an expansion. Market betas in this economy are time-varying and related to investor uncertainty about the state of the economy. The dynamics of betas will also vary across assets according to the assets' cash-flow structure. In a calibration exercise, we show that value and growth firms have cash-flow structures...
Dynamic returns of beta arbitrage
Nascimento, Mafalda
2017-01-01
This thesis studies the patterns of the abnormal returns of the beta strategy. The topic can be helpful for professional investors, who intend to achieve a better performance in their portfolios. Following the methodology of Lou, Polk, & Huang (2016), the COBAR measure is computed in order to determine the levels of beta arbitrage in the market in each point in time. It is argued that beta arbitrage activity can have impact on the returns of the beta strategy. In fact, it is demonstrated that...
Integration of BETA with Eclipse
DEFF Research Database (Denmark)
Andersen, Peter; Madsen, Ole Lehrmann; Enevoldsen, Mads Brøgger
2004-01-01
This paper presents language interoperability issues appearing in order to implement support for the BETA language in the Java-based Eclipse integrated development environment. One of the challenges is to implement plug-ins in BETA and be able to load them in Eclipse. In order to do this, some fo...... it is possible to implement plug-ins in BETA and even inherit from Java classes. In the paper the two approaches are described together with part of the mapping from BETA to Java class files. http://www.sciencedirect.com/science/journal/15710661...
Simultaneous beta and gamma spectroscopy
Farsoni, Abdollah T.; Hamby, David M.
2010-03-23
A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.
Identification of active anti-inflammatory principles of beta- beta ...
African Journals Online (AJOL)
chromatography. Components of the extracts were identified by thin layer chromatography (TLC) scanner and UV-visible spectroscopy, using scopoletin as standard. Results: ... basic coumarin skeleton ring structure reduce ... Figure 2: Thin-layer chromatogram: (1) Ethanol extract; (2) Dichloromethane fraction; (3) Beta-beta.
Improved limits on beta(-) and beta(-) decays of Ca-48
Czech Academy of Sciences Publication Activity Database
Bakalyarov, A.; Balysh, A.; Barabash, AS.; Beneš, P.; Briancon, C.; Brudanin, V. B.; Čermák, P.; Egorov, V.; Hubert, F.; Hubert, P.; Korolev, NA.; Kosjakov, VN.; Kovalík, Alojz; Lebedev, NA.; Novgorodov, A. F.; Rukhadze, NI.; Štekl, NI.; Timkin, VV.; Veleshko, IE.; Vylov, T.; Umatov, VI.
2002-01-01
Roč. 76, č. 9 (2002), s. 545-547 ISSN 0021-3640 Institutional research plan: CEZ:AV0Z1048901 Keywords : beta decay * double beta decay * Ca-48 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.483, year: 2002
Lee, I Y; Nissen, S L; Rosazza, J P
1997-01-01
beta-Hydroxy-beta-methylbutyric acid (HMB) has been shown to increase strength and lean mass gains in humans undergoing resistance-exercise training. HMB is currently marketed as a calcium salt of HMB, and thus, environmentally sound and inexpensive methods of manufacture are being sought. This study investigates the microbial conversion of beta-methylbutyric acid (MBA) to HMB by cultures of Galactomyces reessii. Optimal concentrations of MBA were in the range of 5 to 20 g/liter for HMB produ...
Zou, L.
2006-01-01
The issue of 'best-beta' arises as soon as potential errors in the Sharpe-Lintner-Black capital asset pricing model (CAPM) are acknowledged. By incorporating a target variable into the investor preferences, this study derives a best-beta CAPM (BCAPM) that maintains the CAPM's theoretical appeal and
Borcea, R; Aysto, J; Caurier, E; Dendooven, P; Doring, J; Gierlik, M; Gorska, M; Grawe, H; Hellstrom, M; Janas, Z; Jokinen, A; Karny, M; Kirchner, R; La Commara, M; Langanke, K; Martinez-Pinedo, G; Mayet, P; Nieminen, A; Nowacki, F; Penttila, H; Plochocki, A; Rejmund, M; Roeckl, E; Schlegel, C; Schmidt, K; Schwengner, R; Sawicka, M
2001-01-01
The proton-rich isotope Cu-56 was produced at the GSI On-Line Mass Separator by means of the Si-28(S-32, p3n) fusion-evaporation reaction. Its beta -decay properties were studied by detecting beta -delayed gamma rays and protons. A half-Life of 93 +/- 3 ms was determined for Cu-56. Compared to the
BETA SPECTRA. I. Negatrons spectra
International Nuclear Information System (INIS)
Grau Malonda, A.; Garcia-Torano, E.
1978-01-01
Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)
International Nuclear Information System (INIS)
Sheffield, J.
1982-01-01
This note lists some of the possible causes of beta limitation in tokamak and discusses what is known and what is involved in investigating them. The motivation for preparing this note is the observed degradation of confinement with increasing beta poloidal β/sub p/ and beam power P/sub b/ in ISX-B