Thermal ion effects on kinetic beta-induced Alfven eigenmodes excited by energetic ions
Energy Technology Data Exchange (ETDEWEB)
Qi Longyu; Sheng, Z. M. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Dong, J. Q. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Bierwage, A. [Aomori Research and Development Center, Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Lu Gaimin [Southwestern Institute of Physics, Chengdu 610041 (China)
2013-03-15
Kinetic beta-induced Alfven eigenmodes (KBAEs) driven by energetic ions are numerically investigated using revised AWECS code. The thermal ion density and temperature gradients are taken into account. It is found that the growth rate of the KBAEs increases with the thermal ion pressure gradient, and the contributions from the density gradient and temperature gradient of the thermal ions to the enhancement of the instability are comparable. The damping effect of thermal ion dynamics on the modes is also observed.
Nonlinear dynamics of beta induced Alfv\\'en eigenmode driven by energetic particles
Wang, X; Chen, L; Fogaccia, G; Di Troia, C; Vlad, G; Zonca, F
2012-01-01
Nonlinear saturation of beta induced Alfv\\'en eigenmode, driven by slowing down energetic particles via transit resonance, is investigated by the nonlinear hybrid magnetohyrodynamic gyro-kinetic code (XHMGC). Saturation is characterized by frequency chirping and symmetry breaking between co- and counter-passing particles, which can be understood as the the evidence of resonance-detuning. The scaling of the saturation amplitude with the growth rate is also demonstrated to be consistent with radial resonance detuning due to the radial non-uniformity and mode structure.
Fine Structure Zonal Flow Excitation by Beta-induced Alfven Eigenmode
Qiu, Zhiyong; Zonca, Fulvio
2016-01-01
Nonlinear excitation of low frequency zonal structure (LFZS) by beta-induced Alfven eigenmode (BAE) is investigated using nonlinear gyrokinetic theory. It is found that electrostatic zonal flow (ZF), rather than zonal current, is preferentially excited by finite amplitude BAE. In addition to the well-known meso-scale radial envelope structure, ZF is also found to exhibit fine radial structure due to the localization of BAE with respect to mode rational surfaces. Specifically, the zonal electric field has an even mode structure at the rational surface where radial envelope peaks.
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N.N. [Princeton Plasma Physics Laboratory, Princeton University (United States)], E-mail: ngorelen@pppl.gov; Berk, H.L. [IFS, Austin, Texas (United States); Fredrickson, E. [Princeton Plasma Physics Laboratory, Princeton University (United States); Sharapov, S.E. [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United States)
2007-10-08
New global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfven-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high-beta >20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfven coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.
Magneto-HydroDynamic activity and Energetic Particles - Application to Beta Alfven Eigenmodes
Nguyen, Christine
2009-01-01
The goal of magnetic fusion research is to extract the power released by fusion reactions and carried by the product of these reactions, liberated at energies of the order of a few MeV. The feasibility of fusion energy production relies on our ability to confine these energetic particles, while keeping the thermonuclear plasma in safe operating conditions. For that purpose, it is necessary to understand and find ways to control the interaction between energetic particles and the thermonuclear plasma. Reaching these two goals is the general motivation for the work conducted during the PhD. More specifically, our focus is on one type of instability, the Beta Alfven Eigenmode (BAE), which can be driven by energetic particles and impact on the confinement of both energetic and thermal particles. In this work, we study the characteristics of BAEs analytically and derive its dispersion relation and structure. Next, we analyze the linear stability of the mode in the presence of energetic particles. First, a purely l...
Magneto-Hydrodynamic Activity and Energetic Particles - Application to Beta Alfven Eigenmodes
International Nuclear Information System (INIS)
The goal of magnetic fusion research is to extract the power released by fusion reactions and carried by the product of these reactions, liberated at energies of the order of a few MeV. The feasibility of fusion energy production relies on our ability to confine these energetic particles, while keeping the thermonuclear plasma in safe operating conditions. For that purpose, it is necessary to understand and find ways to control the interaction between energetic particles and the thermonuclear plasma. Reaching these two goals is the general motivation for this work. More specifically, our focus is on one type of instability, the Beta Alfven Eigenmode (BAE), which can be driven by energetic particles and impact on the confinement of both energetic and thermal particles. In this work, we study the characteristics of BAEs analytically and derive its dispersion relation and structure. Next, we analyze the linear stability of the mode in the presence of energetic particles. First, a purely linear description is used, which makes possible to get an analytical linear criterion for BAE destabilization in the presence of energetic particles. This criterion is compared with experiments conducted in the Tore-Supra tokamak. Secondly, because the linear analysis reveals some features of the BAE stability which are subject to a strong nonlinear modification, the question is raised of the possibility of a sub-critical activity of the mode. We propose a simple scenario which makes possible the existence of meta-stable modes, verified analytically and numerically. Such a scenario is found to be relevant to the physics and scales characterizing BAEs. (author)
Beta-induced Alfven-acousti Eigenmodes in NSTX and DIII-D Driven by Beam Ions
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N. N.; Van Zeeland, M. A.; Berk, H. L.; Crocker, N. A.; Darrow, D.; Fredrickson, E.; Fu, G. Y.; Heidbrink, W. W.; Menard, J.; Nazikian, R.
2009-03-06
Kinetic theory and experimental observations of a special class of energetic particle driven instabilities called here Beta-induced Alfven-Acoustic Eigenmodes (BAAE) are reported confirming previous results [N.N. Gorelenkov H.L. Berk, N.A. Crocker et. al. Plasma Phys. Control. Fusion 49 B371 (2007)] The kinetic theory is based on the ballooning dispersion relation where the drift frequency effects are retained. BAAE gaps are recovered in kinetic theory. It is shown that the observed certain low-frequency instabilities on DIII-D [J.L. Luxon, Nucl. Fusion 42 614 (2002)] and National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y.-K M. Peng et. al., Nucl. Fusion 40 3Y 557 (2000)] are consistent with their identification as BAAEs. BAAEs deteriorated the fast ion confinement in DIII-D and can have a similar effect in next-step fusion plasmas, especially if excited together with multiple global Toroidicity-induced shear Alfven Eigenmode (TAE) instabilities. BAAEs can also be used to diagnose safety factor profiles, a technique known as magnetohydrodynamic spectroscopy.
Phenomenology of Compressional Alfven Eigenmodes
International Nuclear Information System (INIS)
Coherent oscillations with frequency 0.3 (le) ω/ωci (le) 1, are seen in the National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y-K.M. Peng, (and others), Nucl. Fusion 40, 557 (2000)]. This paper presents new data and analysis comparing characteristics of the observed modes to the model of compressional Alfven eigenmodes (CAE). The toroidal mode number has been measured and is typically between 7 < n < 9. The polarization of the modes, measured using an array of four Mirnov coils, is found to be compressional. The frequency scaling of the modes agrees with the predictions of a numerical 2-D code, but the detailed structure of the spectrum is not captured with the simple model. The fast ion distribution function, as calculated with the beam deposition code in TRANSP [R.V. Budny, Nucl. Fusion 34, 1247 (1994)], is shown to be qualitatively consistent with the constraints of the Doppler-shifted cyclotron resonance drive model. This model also predicts the observed scaling of the low frequency limit for CAE
Kinetic Damping of Toroidal Alfven Eigenmodes
Energy Technology Data Exchange (ETDEWEB)
G.Y. Fu; H.L. Berk; A. Pletzer
2005-05-03
The damping of Toroidal Alfven Eigenmodes in JET plasmas is investigated by using a reduced kinetic model. Typically no significant damping is found to occur near the center of the plasma due to mode conversion to kinetic Alfven waves. In contrast, continuum damping from resonance near the plasma edge may be significant, and when it is, it gives rise to damping rates that are compatible with the experimental observations.
Characteristics of Short Wavelength Compressional Alfven Eigenmodes
Energy Technology Data Exchange (ETDEWEB)
Fredrickson, E D; Podesta, M; Bortolon, A; Crocker, N A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M
2012-12-19
Most Alfvenic activity in the frequency range between Toroidal Alfven Eigenmodes and roughly one half of the ion cyclotron frequency on NSTX [M. Ono, et al., Nucl. Fusion 40 (2000) 557], that is, approximately 0.3 MHz up to ≈ 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n=1 kink-like mode. In this paper we present measurements of the spectrum of these high frequency CAE (hfCAE), and their mode structure. We compare those measurements to a simple model of CAE and present evidence of a curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Continuum damping of ideal toroidal Alfven eigenmodes
International Nuclear Information System (INIS)
A perturbation theory based on the two dimensional (2D) ballooning transform is systematically developed for ideal toroidal Alfven eigenmodes (TAEs). A formula, similar to the Fermi golden rule for decaying systems in quantum mechanics, is derived for the continuum damping rate of the TAE; the decay (damping) rate is expressed explicitly in terms of the coupling of the TAE to the continuum spectrum. Numerical results are compared with previous calculations. It is found that in some narrow intervals of the parameter mε the damping rate varies very rapidly. These regions correspond precisely to the root missing intervals of the numerical solution by Rosenbluth et al
Alfven eigenmodes in shear reversed plasmas
International Nuclear Information System (INIS)
Experiments on JT-60U and JET have shown that plasma configurations with shear reversal are prone to the excitation of unusual Alfven Eigenmodes by energetic particles. These modes emerge outside the TAE frequency gap, where one might expect them to be strongly damped. The modes often appear in bunches and they exhibit a quasi-periodic pattern of predominantly upward frequency sweeping (Alfven Cascades) as the safety factor q changes in time. This work presents a theory that explains the key features of the observed unusual modes including their connection to TAE's as well as the modifications of TAE's themselves near the shear reversal point. The developed theory has been incorporated into a reduced numerical model and verified with full geometry codes. JET experimental data on Alfven spectroscopy have been simulated to infer the mode numbers and the evolution of qmin in the discharge. This analysis confirms the values of q that characterize the internal transport barrier triggering in reversed shear plasmas. (author)
Discrete compressional Alfven eigenmode spectrum in tokamaks
International Nuclear Information System (INIS)
The spectrum of Compressional Alfven Eigenmodes (CAE) is analyzed and shown to be discrete in tokamaks with low aspect ratio, such as the National Spherical Torus Experiment (NSTX), as well as in the conventional tokamaks, such as DIII-D. The study is focused on recent similarity experiments on NSTX and DIII-D in which sub-cyclotron frequency instabilities of CAEs were observed at similar plasma conditions [W.W. Heidbrink, et.al. Nuclear Fusion 46, 2006, in press]. The global ideal MHD code NOVA recovers the main properties of these modes predicted by theory and observed in both devices. The discrete spectrum of CAEs is characterized by three quantum mode numbers for each eigenmode, (M;S;n), where M, S, and n are poloidal, radial and toroidal mode numbers, respectively. The expected mode frequency splitting corresponding to each of these mode numbers seems to be observed in experiments and is consistent with our numerical analysis. The polarization of the observed magnetic field oscillations in NSTX was measured and is also consistent with the numerical analysis, which helps to identify them as CAE activity. CAE mode structure was obtained and shown to be localized in both radial and poloidal directions with typical radial localization toward the plasma edge and poloidal localization at the low field side of the plasma cross section. (author)
Discrete compressional Alfven eigenmode spectrum in tokamaks
International Nuclear Information System (INIS)
The spectrum of compressional Alfven eigenmodes (CAE) is analysed and shown to be discrete in tokamaks with low aspect ratio, such as the National Spherical Torus Experiment (NSTX), as well as in conventional tokamaks, such as DIII-D. The study is focused on recent similarity experiments on NSTX and DIII-D in which sub-cyclotron frequency instabilities of CAEs were observed at similar plasma conditions (W.W. Heidbrink et al 2006 Nucl. Fusion 46 324). The global ideal MHD code NOVA recovers the main properties of these modes predicted by theory and observed in both devices. The discrete spectrum of CAEs is characterized by three quantum mode numbers for each eigenmode (M, S and n), where M, S and n are poloidal, radial and toroidal mode numbers, respectively. The expected mode frequency splitting corresponding to each of these mode numbers seems to be observed in experiments and is consistent with our numerical analysis. The polarization of the observed magnetic field oscillations in NSTX was measured and is also consistent with the numerical analysis, which helps to identify them as CAE activity. CAE mode structure was obtained and shown to be localized in both radial and poloidal directions with typical radial localization toward the plasma edge and poloidal localization at the low field side of the plasma cross section
Alfven eigenmodes and their impact on plasma characteristics in JT-60U
International Nuclear Information System (INIS)
In weak or reversed magnetic shear plasmas of JT-60U, the excitation and the stabilization of Alfven eigenmodes and their impact on energetic ion confinement were investigated with the negative-ion-based neutral beam injection at 330-360 keV. Toroidicity-induced Alfven eigenmodes (TAEs) were observed in weak shear plasmas with h>≥0.1% and 0.4≤vbparallel/vA≤1. The stability of TAEs is consistent with the predictions by the NOVA-K code. New burst modes and chirping modes were observed at a higher beta regime of h>≥0.2%. The effect of TAEs, burst modes and chirping modes on the fast ion confinement is small so far. The strongly-reversed shear plasma with the internal transport barrier suppresses Alfven eigenmodes. (author)
MHD-Vlasov simulation of the toroidal Alfven eigenmode
International Nuclear Information System (INIS)
A new simulation method has been developed to investigate the excitation and saturation processes of toroidal Alfven eigenmodes (TAE modes). The background plasma is described by a full-MHD fluid model, while the kinetic evolution of energetic alpha particles is followed by the drift kinetic equation. The magnetic fluctuation of n = 2 mode develops and saturates at the level of 1.8x10-3 of the equilibrium field when the initial beta of alpha particles is 2% at the magnetic axis. After saturation, the TAE mode amplitude shows an oscillatory behavior with a frequency corresponding to the bounce frequency of the alpha particles trapped by the TEA mode. The decrease of the power transfer rate from the alpha particles to the TAE mode, which is due to the trapped particle effect of a finite-amplitude wave, causes the saturation. From the linear growth rate the saturation level can be estimated. (author)
Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes
International Nuclear Information System (INIS)
The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. Satisfying the resonance condition requires that the α-particle birth speed vα ≥ vA/2|m-nq|, where vA is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the α-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4. Typical growth rates of the n=1 TAE mode can be in the order of 10-2ωA, where ωA=vA/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects
Nonlinear hybrid simulation of toroidicity-induced alfven eigenmode
International Nuclear Information System (INIS)
Gyrokinetic/Magnetohydrodynamics hybrid simulations have been carried out using MH3D-K code to study the nonlinear saturation of the toroidicity-induced Alfven eigenmode driven by energetic particles in a tokamak plasma. It is shown that the wave particle trapping is the nonlinear saturation mechanism for the parameters considered. The corresponding density profile flattening of hot particles is observed. The saturation amplitude is proportional to the square of linear growth rate. In addition to TAE modes, a new n = 1, m = 0 global Alfven eigenmode is shown to be excited by the energetic particles
International Nuclear Information System (INIS)
A transition of a core localized type toroidal Alfven eigenmode with n 1 toroidal mode number to two n = 1 global Alfven eignemodes was observed in NBI-heated plasmas in the Compact Helical System (CHS) heliotron/torsatron. This transition phenomenon is interpreted based on the temporal evolution of the rotational transform near the plasma center caused by the increased in the beam-driven current. (author)
Excitation of global Alfven Eigenmodes by RF heating in JET
Energy Technology Data Exchange (ETDEWEB)
Kerner, W.; Borba, D.; Gormezano, C.; Huysmans, G.; Porcelli, F.; Start, D. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Fasoli, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Sharapov, S. [Kurchatov Institute, Moscow (Russian Federation)
1994-07-01
The alpha-particle confinement of future D-T experiments at JET can be severely degraded by Global Alfven Eigenmodes (AE). Scenarios for the excitation of Alfven Eigenmodes in usual (e.g. D-D) plasmas are proposed, which provide a MHD diagnostic and allow the study of the transport of super-Alfvenic ions. Active studies with separate control of TAE amplitude and energetic particle destabilization, measuring the plasma response, give more information than passive studies, in particular concerning the damping mechanisms. The TAE excitation can be achieved by means of the saddle coil and the ICRH antenna. The experimental method is introduced together with a theoretical model for RF excitation. (authors). 6 refs., 3 figs.
Excitation of global Alfven Eigenmodes by RF heating in JET
International Nuclear Information System (INIS)
The alpha-particle confinement of future D-T experiments at JET can be severely degraded by Global Alfven Eigenmodes (AE). Scenarios for the excitation of Alfven Eigenmodes in usual (e.g. D-D) plasmas are proposed, which provide a MHD diagnostic and allow the study of the transport of super-Alfvenic ions. Active studies with separate control of TAE amplitude and energetic particle destabilization, measuring the plasma response, give more information than passive studies, in particular concerning the damping mechanisms. The TAE excitation can be achieved by means of the saddle coil and the ICRH antenna. The experimental method is introduced together with a theoretical model for RF excitation. (authors). 6 refs., 3 figs
Alfven Eigenmode Stability with Beams in ITER-like Plasma
Energy Technology Data Exchange (ETDEWEB)
N.N. Gorelenkov; H.L. Berk; R.V. Budny
2004-07-16
Toroidicity Alfven Eigenmodes (TAE) in ITER can be driven unstable by two groups of energetic particles, the 3.5 MeV {alpha}-particle fusion products and the tangentially injected 1MeV beam ions. Stability conditions are established using the perturbative NOVA/NOVA-K codes. A quasi-linear diffusion model is then used to assess the induced redistribution of energetic particles.
Combined Ideal and Kinetic Effects on Reversed Shear Alfven Eigenmodes
International Nuclear Information System (INIS)
A theory of Reversed Shear Alfven Eigenmodes (RSAEs) is developed for reversed magnetic field shear plasmas when the safety factor minimum, qmin, is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with qmin above integer values. Corrected by special analytic FLR condition MHD dispersion of these modes nevertheless can be developed. Large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.
Combined Ideal and Kinetic Effects on Reversed Shear Alfven Eigenmodes
Energy Technology Data Exchange (ETDEWEB)
N.N. Gorelenkov, G.J. Kramer, and R. Nazikian
2011-05-23
A theory of Reversed Shear Alfven Eigenmodes (RSAEs) is developed for reversed magnetic field shear plasmas when the safety factor minimum, qmin, is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with qmin above integer values. Corrected by special analytic FLR condition MHD dispersion of these modes nevertheless can be developed. Large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.
Non-linear modulation of short wavelength compressional Alfven eigenmodes
Energy Technology Data Exchange (ETDEWEB)
Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bortolon, A. [University of California, Irvine, California 92697 (United States); Crocker, N. A. [University of California, Los Angeles, California 90095 (United States); Levinton, F. M.; Yuh, H. [Nova Photonics, Princeton, New Jersey 08543 (United States)
2013-04-15
Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Fokker-Planck-MHD simulation study of Alfven eigenmodes
International Nuclear Information System (INIS)
Nonlinear evolution of fast ions and Alfven eigenmodes, especially the toroidicity-induced Alfven eigenmodes (TAEs), is investigated with two types of Fokker-Planck-MHD simulations. In the first type of simulation, the fast-ion evolution is described by a 4-dimensional Fokker-Planck equation which takes fast-ion source and slowing down into account. The background plasma is described by the nonlinear full MHD equations. A bursting behavior of multiple TAEs, which takes place in neutral beam injection experiments, is reproduced when the slowing-down time is much longer than the mode damping time and the fast-ion pressure is sufficiently high. In the second type of simulation, 5-dimensional Fokker-Planck equation is solved with a linear TAE. In addition to the particle source and slowing down, the pitch-angle scattering is taken into account. The simulation code is benchmarked with the linear behavior of the alpha-particle-driven n=4 TAE in the TFTR D-T plasma. With a realistic pitch-angle-scattering rate and a chosen damping rate, the relaxation time to a steady saturation state is found to be too long to explain the experiment. (author)
Nonlinear MHD Effects on the Alfven Eigenmode Evolution
International Nuclear Information System (INIS)
Two types of hybrid simulations of MHD fluid and energetic particles were carried out to investigate MHD nonlinear effects on Alfven eigenmode evolution. The first type contains fully nonlinear effects of both the MHD fluid and the energetic particles. The second type of the simulation is similar to the first type but different in that the MHD equations are linearized. Comparison between the results of the two types of simulations clarifies the MHD nonlinear effects. A tokamak plasma, where a toroidal Alfven eigenmode (TAE) with toroidal mode number n=4 is the most unstable, was investigated. When the saturation level is δB/B ∼ 2 x 10-2 in the linear MHD simulation results, we found that the saturation and level is δB/B ∼ 8 x 10-8 in the nonlinear MHD simulation results. The MHD nonlinear effects suppress the saturation level of the TAE. Detailed analyses indicate that the suppression effect arises from the change in n=0 harmonics of the magnetic field that is generated by the nonlinear electric field -vTAE x dBTAE, a product of the velocity field and the magnetic field of the TAE. Axisymmetric velocity fields are also generated in the nonlinear run, although the change in the n=0 magnetic field plays the dominant role in the suppression of TAE. (author)
Calculation of continuum damping of Alfv\\'en eigenmodes in 2D and 3D cases
Bowden, G. W.; Hole, M. J.; Könies, A.
2015-01-01
In ideal MHD, shear Alfv\\'{e}n eigenmodes may experience dissipationless damping due to resonant interaction with the shear Alfv\\'{e}n continuum. This continuum damping can make a significant contribution to the overall growth/decay rate of shear Alfv\\'{e}n eigenmodes, with consequent implications for fast ion transport. One method for calculating continuum damping is to solve the MHD eigenvalue problem over a suitable contour in the complex plane, thereby satisfying the causality condition. ...
Global Alfven eigenmodes stability in thermonuclear tokamak plasmas
International Nuclear Information System (INIS)
Relying on the good agreement observed between the gyrokinetic PENN model and the low n damping measurements from JET, the stability of Alfven eigenmodes (AE) is here predicted for reactor relevant conditions. Full non-local wave-particle power transfers are computed for the α-particles in an ITER reference equilibrium, showing that low n ≅ 2 modes are strongly damped and intermediate n ≅ 12 with a global radial extension are stable with a damping rate γ/ω ≅ 0.02. Even though an excitation of α-particle driven instabilities remains in principle possible, this study suggests that realistic operation scenarii exist where all the AEs of global character are stable. (author)
Reversed shear Alfven eigenmode stabilization by localized electron cyclotron heating
Energy Technology Data Exchange (ETDEWEB)
Van Zeeland, M A; Hyatt, A W; Lohr, J; Petty, C C [General Atomics, PO Box 85608 San Diego, CA 92186-5608 (United States); Heidbrink, W W [University of California-Irvine, Irvine, CA 92697 (United States); Nazikian, R; Solomon, W M; Gorelenkov, N N; Kramer, G J [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Austin, M E [University of Texas-Austin, Austin, TX 78712 (United States); Berk, H L [Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712 (United States); Holcomb, C T; Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA (United States); McKee, G R [University of Wisconsin-Madison, Madison, WI 53726 (United States); Sharapov, S E [Euratom/UKAEA Fusion Association, Culham, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Rhodes, T L [University of California-Los Angeles, Los Angeles, California, 90095 (United States)], E-mail: vanzeeland@fusion.gat.com
2008-03-15
Reversed shear Alfven eigenmode (RSAE) activity in DIII-D is stabilized by electron cyclotron heating (ECH) applied near the minimum of the magnetic safety factor (q{sub min}) in neutral beam heated discharges with reversed-magnetic shear. The degree of RSAE stabilization, fast ion density and the volume averaged neutron production (S{sub n}) are highly dependent on ECH deposition location relative to q{sub min}. While discharges with ECH stabilization of RSAEs have higher S{sub n} and more peaked fast ion profiles than discharges with significant RSAE activity, neutron production remains strongly reduced (up to 60% relative to TRANSP predictions assuming classical fast ion transport) even when RSAEs are stabilized.
Recent progress of nonlinear simulation on the toroidal Alfven eigenmode
International Nuclear Information System (INIS)
Linear and nonlinear particle-magnetohydrodynamic (MHD) simulation codes are developed to study interactions between energetic ions and MHD modes. Energetic alpha particles with a slowing-down distribution are considered and the behavior of n=2 toroidal Alfven eigenmodes (TAE modes) is investigated with the parameters pertinent to the present large tokamaks. The linear simulation reveals the resonance condition between alpha particles and TAE mode. In the nonlinear simulation two n=2 TAE modes are destabilized and alpha particle losses induced by these TAE modes take place. Counter-passing particles are lost when they cross the passing-trapped boundary as a result of the interaction with the TAE modes. They are the major part of lost particles, but trapped particles are also lost appreciably. (author)
Evolution of toroidal Alfven eigenmode instability in TFTR
International Nuclear Information System (INIS)
The nonlinear behavior of the Toroidal Alfven Eigenmode (TAE) driven unstable by energetic ions in TFTR is studied. The evolution of instabilities can take on several scenarios: a single mode or several modes can be driven unstable at the same time, the spectrum can be steady or pulsating and there can be negligible or anomalous loss associated with the instability. This paper presents a comparison between experimental results and recently developed nonlinear theory. The authors find many features observed in experiment are compatible with the consequences of the nonlinear theory. Examples include the structure of the saturated pulse that emerges from the onset of instability of a single mode and the decrease but persistence of TAE signals when the applied rf power is reduced or shut off
Evolution of toroidal Alfven eigenmode instability in TFTR
Energy Technology Data Exchange (ETDEWEB)
Wong, K.L.; Majeski, R.; Petrov, M. [Princeton Univ., NJ (United States). Plasma Physics Lab.] [and others
1996-07-01
The nonlinear behavior of the Toroidal Alfven Eigenmode (TAE) driven unstable by energetic ions in TFTR is studied. The evolution of instabilities can take on several scenarios: a single mode or several modes can be driven unstable at the same time, the spectrum can be steady or pulsating and there can be negligible or anomalous loss associated with the instability. This paper presents a comparison between experimental results and recently developed nonlinear theory. The authors find many features observed in experiment are compatible with the consequences of the nonlinear theory. Examples include the structure of the saturated pulse that emerges from the onset of instability of a single mode and the decrease but persistence of TAE signals when the applied rf power is reduced or shut off.
Damping of kinetic Alfven eigenmodes in tokamak plasmas
International Nuclear Information System (INIS)
The ability to predict the stability of fast-particle-driven Alfven eigenmodes in burning fusion plasmas requires a detailed understanding of the dissipative mechanisms that damp these modes. In order to address this question, the linear gyro-kinetic, electromagnetic code LIGKA is employed to investigate their behaviour in realistic tokamak geometry. LIGKA is based on an eigenvalue formulation and self-consistently calculates the coupling of large-scale MHD modes to gyro-radius scale length kinetic Alfven waves. It uses the drift-kinetic HAGIS code to accurately describe the unperturbed particle orbits in general geometry. In addition, a newly developed antenna-like version of LIGKA allows for a frequency scan, analogous to an external antenna. With these tools the properties of the kinetically modified TAE in or near the gap (KTAE, radiative damping or 'tunnelling') and its coupling to the continuum close to the edge are numerically analysed. The results are compared with previous calculations based on fluid and other gyro-kinetic models. Also first linear calculations on cascade modes are presented. (author)
Observation of compressional Alfven eigenmodes (CAE) in a conventional tokamak
International Nuclear Information System (INIS)
Fast-ion instabilities with frequencies somewhat below the ion cyclotron frequency occur frequently in spherical tokamaks such as the National Spherical Torus Experiment (NSTX). NSTX and the DIII-D tokamak are nearly ideal for fast-ion similarity experiments, having similar neutral beams, fast-ion to Alfven speed vf/vA, fast-ion pressure, and shape of the plasma but with a factor of two difference in major radius. When DIII-D is operated at low field (0.6 T), compressional Alfven eigenmode (CAE) instabilities appear that closely resemble the NSTX instabilities. In particular, the mode frequencies, polarization and beam-energy threshold are nearly identical to NSTX. CAE in high-field discharges and emission at cyclotron harmonics are also observed. As on NSTX, the basic stability properties are consistent with the idea that the instability is driven by anisotropy in the fast-ion velocity distribution and is damped predominantly by Landau damping of electrons. The results suggest that these modes might be excited in ITER
Theory and observations of high frequency Alfven Eigenmodes in low aspect ratio plasma
International Nuclear Information System (INIS)
New observations of sub-cyclotron frequency instabilities in low aspect ratio plasmas in the National Spherical Torus experiment (NSTX) are reported, The frequencies of observed instabilities scale with the characteristic Alfven velocity of the plasma. A theory of localized Compressional Alfven Eigenmodes (CAE) and Global shear Alfven Eigenmodes (GAE) in low aspect ratio plasmas is presented to explain the observed high frequency instabilities. CAE's/GE's are driven by the velocity space gradient of energetic super-Alfvenic beam ions via Doppler shifted cyclotron resonances. Properties of such instabilities are investigated. (author)
Destabilization of Alfven eigenmodes by fast particles in W7-AS
Energy Technology Data Exchange (ETDEWEB)
Zegenhagen, S.
2006-02-15
In the present thesis, a systematic study of beam driven Alfven eigenmodes in high-density and low-temperature plasmas of the W7-AS stellarator is performed. The goal of this thesis is twofold: (I) identification and description of fast particle driven Alfven instabilities in W7-AS, and (II) study of energetic particle losses induced by Alfven instabilities. A total of 133 different Alfven eigenmodes is studied in discharges from different experimental campaigns. The discharges are characterized by high density, n{sub e}=5 x 1019 m{sup -3} to 2.5 x 1020 m{sup -3} at relatively low temperatures of T{sub e}=T{sub i}=150..600 eV. Additional 13 events are found to have frequencies inside the EAE gap and could possibly be EAEs. Evidence for high-frequency Alfven eigenmodes (mirror- and helicity-induced Alfven eigenmodes) is seen, but can not be proven rigorously due to uncertain mode numbers and the complexity of the Alfven continuum. The remaining 41 Alfven eigenmodes can not be classified to be one of the above cases. (orig.)
Destabilization of Alfven eigenmodes by fast particles in W7-AS
International Nuclear Information System (INIS)
In the present thesis, a systematic study of beam driven Alfven eigenmodes in high-density and low-temperature plasmas of the W7-AS stellarator is performed. The goal of this thesis is twofold: (I) identification and description of fast particle driven Alfven instabilities in W7-AS, and (II) study of energetic particle losses induced by Alfven instabilities. A total of 133 different Alfven eigenmodes is studied in discharges from different experimental campaigns. The discharges are characterized by high density, ne=5 x 1019 m-3 to 2.5 x 1020 m-3 at relatively low temperatures of Te=Ti=150..600 eV. Additional 13 events are found to have frequencies inside the EAE gap and could possibly be EAEs. Evidence for high-frequency Alfven eigenmodes (mirror- and helicity-induced Alfven eigenmodes) is seen, but can not be proven rigorously due to uncertain mode numbers and the complexity of the Alfven continuum. The remaining 41 Alfven eigenmodes can not be classified to be one of the above cases. (orig.)
Existence of Weakly Damped Kinetic Alfven Eigenmodes in Reversed Shear Tokamak
Energy Technology Data Exchange (ETDEWEB)
N. N. Gorelenkov
2008-08-12
A kinetic theory of weakly damped Alfven Eigenmode (AE) solutions strongly interacting with the continuum is developed for tokamak plasmas with reversed magnetic shear. We show that the ideal MHD model is not sufficient for the eigenmode solutions if the standard causality condition bypass rule is applied. Finite Larmor radius effects are required, which introduce multiple kinetic subeigenmodes and collisionless radiative damping. The theory explains the existence of experimentally observed Alfvenic instabilities with frequencies sweeping down and reaching their minimum (bottom).
Simulation study of energetic ion transport due to Alfven eigenmodes in LHD plasma
International Nuclear Information System (INIS)
The creation of holes and clumps in an energetic ion energy spectrum associated with Alfven eigenmodes was examined using the neutral particle analyzer (NPA) on the LHD shot no.47645. The difference in slowing-down times between the holes and clumps suggested that the energetic ions were transported over 10% of the plasma minor radius. The spatial profile and frequency of the Alfven eigenmodes were analyzed with the AE3D code. The phase space structures of the energetic ions on the NPA line-of-sight were investigated with Poincare plots, where an oscillating Alfven eigenmode was employed for earth plot. The phase space regions trapped by the Alfven eigenmodes appeared as islands in the Poincare plots. The radial width of the islands corresponded to the transport distance of the energetic ions. Since island width depends on Alfven eigenmode amplitude, it was found that Alfven eigenmodes with amplitude δBr/B - 10-3 transported energetic ions over 10% of the minor radius. (author)
Experimental study of toroidicity-induced Alfven eigenmode (TAE) stability at high q(0)
Energy Technology Data Exchange (ETDEWEB)
Batha, S.H.; Levinton, F.M. [Fusion Physics and Technology, Torrance, CA (United States); Spong, D.A. [Oak Ridge National Lab., TN (United States)] [and others
1995-07-01
Experiments to destabilize the Toroidicity-induced Alfven Eigenmode (TAE) by energetic alpha particles were performed on the Tokamak Fusion Test Reactor using deuterium and tritium fuel. To decrease the alpha particle pressure instability threshold, discharges with an elevated value of q(0) > 1.5 were used. By raising q(0), the radial location of the low toroidal-mode-number TAE gaps moves toward the magnetic axis and into alignment with the region of maximum alpha pressure gradient, thereby (in theory) lowering the value of {beta}{sub {alpha}}(0) required for instability. No TAE activity was observed when the central alpha particle {beta}{sub {alpha}} reached 0.08% in a discharge with fusion power of 2.4 MW. Calculations show that the fusion power is within a factor of 1.5 to 3 of the instability threshold.
Beam Anisotropy Effect on Alfven Eigenmode Stability in ITER-like Plasma
Energy Technology Data Exchange (ETDEWEB)
N.N. Gorelenkov; H.L. Berk; R.V. Budny
2004-08-18
This work studies the stability of the toroidicity-induced Alfven Eigenmodes (TAE) in the proposed ITER burning plasma experiment, which can be driven unstable by two groups of energetic particles, the 3.5-MeV {alpha}-particle fusion products and the tangentially injected 1-MeV beam ions. Both species are super-Alfvenic but they have different pitch-angle distributions and the drive for the same pressure gradients is typically stronger from co-injected beam ions as compared with the isotropically distributed {alpha}-particles. This study includes the effect of anisotropy of the beam-ion distribution function on TAE growth rate directly via the additional velocity space drive and indirectly in terms of the enhanced effect of the resonant particle phase space density. For near parallel injection, TAEs are marginally unstable if the injection aims at the plasma center where the ion Landau damping is strong, whereas with the off-axis neutral-beam injection the instability is stronger with the growth rate near 0.5% of TAE mode frequency. In contrast, for perpendicular beam injection TAEs are predicted to be stabilized in nominal ITER discharges. In addition, the effect of TAEs on the fast-ion beta profiles is evaluated on the bases of a quasi-linear diffusion model which makes use of analytic expressions for the local growth and damping rates. These results illustrate the parameter window that is available for plasma burn when TAE modes are excited.
Calculation of continuum damping of Alfv\\'en eigenmodes in 2D and 3D cases
Bowden, G W; Könies, A
2015-01-01
In ideal MHD, shear Alfv\\'{e}n eigenmodes may experience dissipationless damping due to resonant interaction with the shear Alfv\\'{e}n continuum. This continuum damping can make a significant contribution to the overall growth/decay rate of shear Alfv\\'{e}n eigenmodes, with consequent implications for fast ion transport. One method for calculating continuum damping is to solve the MHD eigenvalue problem over a suitable contour in the complex plane, thereby satisfying the causality condition. Such an approach can be implemented in three-dimensional ideal MHD codes which use the Galerkin method. Analytic functions can be fitted to numerical data for equilibrium quantities in order to determine the value of these quantities along the complex contour. This approach requires less resolution than the established technique of calculating damping as resistivity vanishes and is thus more computationally efficient. The complex contour method has been applied to the three-dimensional finite element ideal MHD code CKA . ...
Tholerus, Emmi; Hellsten, Torbjörn
2016-01-01
FOXTAIL is a new hybrid magnetohydrodynamic-kinetic code used to describe interactions between energetic particles and Alfv\\'en eigenmodes in tokamaks with realistic geometries. The code simulates the nonlinear dynamics of the amplitudes of individual eigenmodes and of a set of discrete markers in five-dimensional phase space representing the energetic particle distribution. Action-angle coordinates of the equilibrium system are used for efficient tracing of energetic particles, and the particle acceleration by the wave fields of the eigenmodes is Fourier decomposed in the same angles. The eigenmodes are described using temporally constant eigenfunctions with dynamic complex amplitudes. Possible applications of the code are presented, e.g., making a quantitative validity evaluation of the one-dimensional bump-on-tail approximation of the system. Expected effects of the fulfillment of the Chirikov criterion in two-mode scenarios have also been verified.
Sensitivity of alpha-particle-driven Alfven eigenmodes to q-profile variation in ITER scenarios
Rodrigues, P; Fazendeiro, L; Ferreira, J; Coelho, R; Nabais, F; Borba, D; Polevoi, N F Loureiro A R; Pinches, S D; Sharapov, S E
2016-01-01
An hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfven eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the $I_\\mathrm{p} = 15$ MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight perturbations (of the order of 1%) in the total plasma current are seen to cause large variations in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core.
Subcyclotron Instability of Alfven Eigenmodes due to Energetic Ions in Low Aspect Ratio Plasmas
International Nuclear Information System (INIS)
High-frequency modes with frequencies below the fundamental cyclotron frequency of thermal ions were observed in the National Spherical Torus Experiment (NSTX). Based on the measured spectrum of high-frequency modes they are identified as Compressional Alfven Eigenmodes (CAEs) and Global Alfven Eigenmodes (GAEs). CAEs have similar time evolution as plasma parameters change, while GAEs may intersect due to q-profile relaxation. A theory has been developed to study the properties of these modes. Both types of instabilities are driven by the tangential neutral-beam injection in NSTX. Beam ions excite CAEs/GAEs through the Doppler-shifted cyclotron resonance. The main source for the drive is the velocity space anisotropy of the beam ion distribution function. Simulations of the effect CAEs/GAEs may have on plasma ions indicate that these modes may provide a channel for efficient energy transfer from fast ions directly to thermal ions
Numerical simulation of core-localized aloha-driven Alfven eigenmodes in tokamaks
International Nuclear Information System (INIS)
The stability of core-localized toroidicity-induced alpha-driven Alfven eigenmodes (TAE) is investigated numerically for tokamak equilibria with circular flux surfaces. It is demonstrated that the TAE mode growth rate is strongly affected by the tokamak magnetic field geometry (i.e. Shafranov shift of the magnetic axis) as well as by the ripple induced transport of high energetic alpha particles. (author)
International Nuclear Information System (INIS)
Instabilities of the Alfven eigenmodes (AEs) that can be driven by circulating energetic ions in optimized stellarators of the Wendelstein line (Helias configurations) are considered. It is stressed that the Alfv‚n instabilities in stellarators may considerably differ from those in tokamaks because specific Alfv‚n eigenmodes and specific resonances of the wave-particle interaction appear when magnetic configurations are non-axisymmetric. An important role of the continuum damping in low-shear stellarators is revealed. Aimed to calculate the continuum damping, a set of resistive magnetohydrodynamic (MHD) equations, which generalize the ideal MHD AE equations obtained in Kolesnichenko et al (Kolesnichenko Ya.I. et al 2001 Phys. Plasmas 8 491), is derived. The derived equations are solved numerically to investigate the damping of the AEs of global character in a Helias reactor. (author)
Effects of energetic particles on zonal flow generation by toroidal Alfven eigenmode
Qiu, Zhiyong; Zonca, Fulvio
2016-01-01
Generation of zonal ow (ZF) by energetic particle (EP) driven toroidal Alfven eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that, nonlinear resonant EP contri- bution dominates over the usual Reynolds and Maxwell stresses due to thermal plasma nonlinear response. ZF can be forced driven in the linear growth stage of TAE, with the growth rate being twice the TAE growth rate. The ZF generation mechanism is shown to be related to polarization induced by resonant EP nonlinearity. The generated ZF has both the usual meso-scale and micro- scale radial structures. Possible consequences of this forced driven ZF on the nonlinear dynamics of TAE are also discussed.
Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.
2010-07-13
We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.
Fast Ion Induced Shearing of 2D Alfven Eigenmodes Measured by Electron Cyclotron Emission Imaging
International Nuclear Information System (INIS)
Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfven eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.
Fast Ion Induced Shearing of 2D Alfven Eigenmodes Measured by Electron Cyclotron Emission Imaging
Energy Technology Data Exchange (ETDEWEB)
Tobias, Ben [University of California, Davis; Classen, I.G.J. [FOM Institute for Plasma Physics Rijnhuizen, Nieuwegein, The Netherlands; Domier, C. W. [University of California, Davis; Heidbrink, W. [University of California, Irvine; Luhmann, N.C. [University of California, Davis; Nazikian, Raffi [Princeton Plasma Physics Laboratory (PPPL); Park, H.K. [Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Spong, Donald A [ORNL; Van Zeeland, Michael [General Atomics
2011-01-01
Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfven eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.
Predications and Observations of Global Beta-induced Alfven-acoustic Modes in JET and NSTX
Energy Technology Data Exchange (ETDEWEB)
N.N. Gorelenkov, et. al.
2008-10-21
In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high beta >20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks.
Predictions and observations of global beta-induced Alfven-acoustic modes in JET and NSTX
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N N [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Berk, H L [Institute for Fusion Studies, University of Texas, Austin, TX 78712 (United States); Crocker, N A [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Fredrickson, E D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kaye, S [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kubota, S [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Park, H [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Peebles, W [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Sabbagh, S A [Department of Applied Physics, Columbia University, New York, NY 10027-6902 (United States); Sharapov, S E [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Stutmat, D [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Tritz, K [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Levinton, F M [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States); Yuh, H [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States)
2007-12-15
In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high beta >20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks.
Perturbative Study of Energetic Particle Redistribution by Alfven Eigenmodes in ITER
Energy Technology Data Exchange (ETDEWEB)
N.N. Gorelenkov and R.B. White
2012-10-29
The modification of particle distributions by magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles. Flattening of a distribution due to phase mixing in an island or due to portions of phase space becoming stochastic is a process extremely rapid on the time scale of an experiment. In this paper we examine the effect of toroidal Alfven eigenmodes (TAE) and reversed shear Alfven eigenmodes (RSAE) in ITER on alpha particle and injected beam distributions using theoretically predicted mode amplitudes. It is found that for the equilibrium of a hybrid scenario even at ten times the predicted saturation level the modes have negligible effect on these distributions. A strongly reversed shear (or advanced) scenario, having a spectrum of modes that are much more global, is somewhat more susceptible to induced loss due to mode resonance, with alpha particle losses of over one percent with predicted amplitudes and somewhat larger with the assistance of toroidal field ripple. The elevated q profile contributes to stronger TAE (RSAE) drive and more unstable modes. An analysis of the existing mode-particle resonances is carried out to determine which modes are responsible for the profile modification and induced loss. We find that losses are entirely due to resonance with the counter-moving and trapped particle populations, with co-moving passing particles participating in resonances only deep within the plasma and not leading to loss.
Simulation study of interaction between energetic ions and Alfven eigenmodes in LHD
International Nuclear Information System (INIS)
Interaction between energetic ions and Alfven eigenmodes (AE modes) in LHD was investigated with numerical approaches. The spatial profile and frequency of the AE modes in an LHD plasma no.47645, where the creation of holes and clumps in the energetic ion energy spectrum associated with AE modes was observed with the neutral particle analyzer (NPA), were analyzed with the AE3D code. The phase space structures of the energetic ions on the NPA line-of-sight were investigated with the Poincare plots where an oscillating AE mode for each plot is employed. The radial width of the phase space regions trapped by the AE modes corresponds to the transport distance of energetic ions. As island width depends on AE mode amplitude, it was found that AE mode amplitude of δBr/B - 10-3 is consistent with the energetic-ion transport over 10% of the minor radius that is suggested by the difference in slowing-down time between the holes and clumps observed with the NPA in the LHD experiment. Furthermore, a numerical code which simulates the time evolution of energetic particles and AE mode amplitude and phase in a self-consistent way has been newly developed for three-dimensional equilibria such as LHD. Alfven eigenmode bursts in LHD plasma were simulated with neutral-beam injection and collisions taken into account. (author)
Non-linear study of fast particle excitation of global Alfven eigenmodes during ICRH
International Nuclear Information System (INIS)
Full text: Fast ions created by ICRH have been proposed for simulating alpha particle heating. In order to extrapolate results regarding excitation of global Alfven eigenmodes to that of thermonuclear alpha particles it is important to understand the differences between excitation by ICRH and by thermonuclear alpha particles. ICRH does not only produce strong anisotropic distribution functions of the resonant ion species compared to the nearly isotropic one of thermonuclear alpha particles, but also decorrelates the interactions between the high-energy ions and the global Alfven eigenmode. In absence of decorrelation the resonant ions will make superadiabatic oscillations in energy. The decorrelation caused by collisions and RF interactions leads to an effective broadening of the MHD resonant region hence increasing the extent of the energy transport region in phase space. The decorrelations also affect the growth rate and the amplitude of the saturation level. ICRH decorrelates the MHD interactions and pushes ions in and out of resonance with the Alfven wave leading to enhanced excitation or damping of the mode. The decorrelation by Coulomb collisions decreases with energy and is more important for particles with low energy, whereas the decorrelation by ICRH becomes more important for high-energy particles. A method to calculate the distribution function of the resonant ions and amplitude of the global Alfven wave self-consistently during ICRH has been developed and implemented in the SELFO- code. The SELFO code consists of the orbit averaged Monte Carlo code FIDO for calculating the distribution function of the heated ions and the global wave code LION for calculating the wave field for ICRF heating. Self-consistent calculations of the ICRF wave field and distribution function is carried out by solving the wave field in LION with a dielectric tensor calculated from the global distribution function obtained with the FIDO code. The wave field of the global Alfven
International Nuclear Information System (INIS)
The National Spherical Torus Experiment (NSTX, (M. Ono et al., Nucl. Fusion 40, 557 (2000))) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfvenic, with velocities 1 fast/vAlfven < 5. This provides a strong drive for toroidicity-induced Alfven eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (∼<30%) fast ion losses over ∼ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.
Nonlinear Studies of β-Induced Alfven Eigenmode Driven by Energetic Particles in Fusion Plasmas
International Nuclear Information System (INIS)
Full text: The β-induced Alfven eigenmodes (BAEs) driven by energetic particles (EPs) are observed in early and recent experiments, which can lead to radial redistribution of EPs and, consequently, anomalous EP transport. In the present work, we have employed the nonlinear hybrid magnetohydrodynamic gyro-kinetic code (XHMGC), and investigated the excitation and nonlinear saturation of BAE via transit resonance with slowing-down beam ions. Saturation is found to be characterized by upward frequency chirping and symmetry breaking between co- and counter passing particles, which can be understood as the evidence of radial resonance detuning. Further investigations on the scaling of the saturation amplitude with the growth rate is also found to be consistent with radial resonance detuning due to the radial non-uniformity and mode structure. (author)
Experimental study of toroidicity-induced Alfven eigenmode (TAE) stability at high q(0)
International Nuclear Information System (INIS)
Experiments to destabilize the Toroidicity-induced Alfven Eigenmode (TAE) by energetic alpha particles were performed on the Tokamak Fusion Test Reactor using deuterium and tritium fuel. To decrease the alpha particle pressure instability threshold, discharges with an elevated value of q(0) > 1.5 were used. By raising q(0), the radial location of the low toroidal-mode-number TAE gaps moves toward the magnetic axis and into alignment with the region of maximum alpha pressure gradient, thereby (in theory) lowering the value of βα(0) required for instability. No TAE activity was observed when the central alpha particle βα reached 0.08% in a discharge with fusion power of 2.4 MW. Calculations show that the fusion power is within a factor of 1.5 to 3 of the instability threshold
International Nuclear Information System (INIS)
The spectrum of Compressional Alfven Eigenmodes (CAE) driven by phase space gradient measured in NSTX and DIII-D plasmas is analyzed numerically for the first time. Advanced diagnostic capabilities made it possible to measure single mode polarization and toroidal mode numbers, which unambiguously identifies studied modes to be of compressional branch. CAE modes form the discrete spectrum with each mode having three (quantum) mode numbers (M, S, n), where M, S, and n are poloidal, radial and toroidal mode numbers, respectively. CAE mode frequency splitting corresponding to change of each of these mode numbers seem to be observed in experiments and is consistent with our numerical analysis. CAE mode structure is computed to be localized in both radial and poloidal directions and is shown to be consistent with the internal reflectometer diagnostic data. (author)
Stability analysis of toroidicity-induced Alfven eigenmodes in TFTR DT experiments
International Nuclear Information System (INIS)
The toroidicity-induced Alfvin eigenmodes (TAE) with radially extended structure are found to be stable in the Tokamak Fusion Test Reactor Deuterium-Tritium plasmas. A core localized TAE mode is shown to exist near the center of the plasma at small magnetic shear and finite plasma beta, which can be destabilized by energetic alpha particles on TFTR. With additional instability drive from fast minority ions powered by ICRH, both the global and the core localized TAE modes can be readily destabilized
Simulation study of beam ion loss due to Alfven eigenmode bursts
International Nuclear Information System (INIS)
Recurrent bursts of toroidicity-induced Alfven eigenmodes (TAE) are studied using a self-consistent simulation model. Bursts of beam ion losses observed in the neutral beam injection experiment at the Tokamak Fusion Test Reactor [K. L. Wong et al., Phys. Rev. Lett. 66, 1874 (1991)] are reproduced using the experimental parameters. It is found that synchronized TAE bursts take place at regular time intervals of 2.5 ms, which is fairly close to the experimental value of 2.2 ms. The stored beam energy saturates at 10% of that of the classical slowing-down distribution. This is consistent with an important experimental aspect that the beam confinement time is much shorter than the collisional slowing-down time. The stored beam energy drop associated with each burst has a modulation depth of 20% which is comparable to the inferred experimental value of 7%. This is the first simulation that reproduces all of these experimental aspects. The beam ion distribution hovers around a marginal stability state. Test particle analysis demonstrates that the disappearance of KAM surfaces in a coordinate system co-moving with each eigenmode leads to beam ion loss. (author)
Measurement of the effective plasma ion mass in large tokamaks using Global Alfven Eigenmodes
International Nuclear Information System (INIS)
The ratio in the centre of a tokamak plasma. One of the simpler measurements put forward in the past is the interpretation of the MHD spectrum in the frequency range of the Global Alfven Eigenmodes (GAE). However, the frequencies of these modes do not depend only on the plasma mass, but are also quite strongly dependent on the details of the current and density profiles, creating a problem of deconvolution of the estimate of the plasma mass from an implicit relationship between several measurable plasma parameters and the detected eigenmode frequencies. In view of the lack of competitive diagnostics, this method has been revisited to assess its likely precision for the JET tokamak. Our results show that the low-n GAE modes are sometimes too close to the continuum edge to be detectable and that the interpretation of the GAE spectrum is therefore rendered less direct than had been hoped. However, information on the effective plasma ion mass is still available in the detectable modes and we present a statistical study on the precision with which this quantity could be estimated from the GAE spectrum on JET, including other directly measured or simply available plasma parameters. (author) 5 figs., 3 tabs., 10 refs
Alfven eigenmode stability and fast ion loss in DIII-D and ITER reversed magnetic shear plasmas
Energy Technology Data Exchange (ETDEWEB)
Van Zeeland, Michael [General Atomics; Gorelenkov, Nikolai [Princeton Plasma Physics Laboratory (PPPL); Heidbrink, W. [University of California, Irvine; Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); Spong, Donald A [ORNL; Austin, M. E. [University of Texas, Austin; Fisher, R K [General Atomics, San Diego; Munoz, M G [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Gorelenkova, M. [Princeton Plasma Physics Laboratory (PPPL); Luhmann, N.C. [University of California, Davis; Murakami, Masanori [ORNL; Nazikian, Raffi [Princeton Plasma Physics Laboratory (PPPL); Park, J. M. [Oak Ridge National Laboratory (ORNL); Tobias, Ben [University of California, Davis; White, R. [Princeton Plasma Physics Laboratory (PPPL)
2012-01-01
Neutral beam injection into reversed-magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including toroidicity-induced Alfven eigenmodes (TAEs) and reversed shear Alfven eigenmodes (RSAEs). With measured equilibrium profiles as inputs, the ideal MHD code NOVA is used to calculate eigenmodes of these plasmas. The postprocessor code NOVA-K is then used to perturbatively calculate the actual stability of the modes, including finite orbit width and finite Larmor radius effects, and reasonable agreement with the spectrum of observed modes is found. Using experimentally measured mode amplitudes, fast ion orbit following simulations have been carried out in the presence of the NOVA calculated eigenmodes and are found to reproduce the dominant energy, pitch and temporal evolution of the losses measured using a large bandwidth scintillator diagnostic. The same analysis techniques applied to a DT 8 MA ITER steady-state plasma scenario with reversed-magnetic shear and both beam ion and alpha populations show Alfven eigenmode instability. Both RSAEs and TAEs are found to be unstable with maximum growth rates occurring for toroidal mode number n = 6 and the majority of the drive coming from fast ions injected by the 1MeV negative ion beams. AE instability due to beam ion drive is confirmed by the non-perturbative code TAEFL. Initial fast ion orbit following simulations using the unstable modes with a range of amplitudes (delta B/B = 10(-5)-10(-3)) have been carried out and show negligible fast ion loss. The lack of fast ion loss is a result of loss boundaries being limited to large radii and significantly removed from the actual modes themselves.
International Nuclear Information System (INIS)
The stability of the Global Alfven Eigenmodes is investigated in the presence of super-Alfvenic energetic particles, such as the fusion-product alpha particles in an ignited deuterium-tritium tokamak plasma. Alpha particles tend to destabilize these modes when ω*α > ωA, where ωA is the shear-Alfven modal frequency and ω*α is the alpha particle diamagnetic drift frequency. This destabilization due to alpha particles is found to be significantly enhanced when the alpha particles are modeled with a slowing-down distribution function rather than with a Maxwellian. However, previously neglected electron damping due to the magnetic curvature drift is found to be comparable in magnitude to the destabilizing alpha particle term. Furthermore, the effects of toroidicity are also found to be stabilizing, since the intrinsic toroidicity induces poloidal mode coupling, which enhances the parallel electron damping from the sideband shear-Alfven Landau resonance. In particular, for the parameters of the proposed Compact Ignition Tokamak, the Global Alfven Eigenmodes are found to be completely stabilized by either the electron damping that enters through the magnetic curvature drift or the damping introduced by finite toroidicity. 29 refs., 8 figs., 1 tab
International Nuclear Information System (INIS)
In a circular cylindrical geometry, the author solves a fourth-order set of differential equations numerically for the perturbed fields Eτ and Eperpendicular. The model takes into account the equilibrium current, magnetic shear, finite ω/ωc1 effect, mode conversion effects like finite ion gyroradius and electron inertia, and various dissipative mechanisms such as electron Landau and collisional damping, and minority fundamental and majority second harmonic cyclotron absorption. To illustrate the results, the author plots the perturbed electric fields and the energy absorbed by each species. He first examines cold plasma surface Alfven eigenmodes analytically and numerically in a pure plasma. The motivation for this work is to investigate how to avoid the undesirable edge absorption and introduce the methods for the study of impurity effects. In the two-species plasmas, he considers three special examples: (1) minority oxygen in hydrogen in PRETEXT, (2) minority T or H in deuterium in TFTR. He adopts two models: (i) a radially varying minority charge, or (ii) a radially varying magnetic field to investigate the minority gyroresonance heating. The model (ii) is used to examine these three examples. But the model (i) is only applied to the first one. In model (i), it is found that surface modes can induce the eigenmodes and dissipate substantial energy near the hybrid layer in the interior. Some cases analytically manageable are given an interpretation of why there is large or small energy deposition in this layer. It is shown that this strongly depends on poloidal mode numbers, minority concentrations, and minority charge profiles
Figueiredo, A C A; Borba, D; Coelho, R; Fazendeiro, L; Ferreira, J; Loureiro, N F; Nabais, F; Pinches, S D; Polevoi, A R; Sharapov, S E
2016-01-01
The linear stability of Alfv\\'en eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. This extensive stability study is efficiently conducted through the use of a specialized workflow that profits from the performance of the hybrid MHD drift-kinetic code $\\mbox{CASTOR-K}$ (Borba D. and Kerner W. 1999 J. Comput. Phys. ${\\bf 153}$ 101; Nabais F. ${\\it et\\,al}$ 2015 Plasma Sci. Technol. ${\\bf 17}$ 89), which can rapidly evaluate the linear growth rate of an eigenmode. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfv\\'en eigenmodes. The largest growth-rates occur in the s...
Sears, Stephanie; Anderson, Jay; Capecchi, William; Bonofiglo, Phillip; Kim, Jungha
2015-11-01
Alfven wave dissipation is an important mechanism behind anomalous ion heating, both in astrophysical and reversed-field pinch (RFP) plasma systems. Additionally, the damping rate has implications for the stability of energetic particle driven modes (EPMs) and their associated nonlinear dynamics and fast ion transport, which are crucial topics for any burning plasma reactor. With a 1 MW neutral beam injector on the MST RFP, a controlled set of EPMs and Alfvenic eigenmodes can be driven in this never-before-probed region of strong magnetic shear and weak externally applied magnetic field. The decay time of the average of 100s of reproducible bursts is computed for different equilibrium profiles. In this work, we report initial measurements of Alfvenic damping rates with varied RFP equilibria (including magnetic shear and flow shear) and the effects on fast ion transport. This research is supported by DOE and NSF.
Wang, Ge; Berk, H. L.
2011-10-01
The frequency chirping signal arising from spontaneous a toroidial Alfven eigenmode (TAE) excited by energetic particles is studied for both numerical and analytic models. The time-dependent numerical model is based on the 1D Vlasov equation. We use a sophisticated tracking method to lock onto the resonant structure to enable the chirping frequency to be nearly constant in the calculation frame. The accuracy of the adiabatic approximation is tested during the simulation which justifies the appropriateness of our analytic model. The analytic model uses the adiabatic approximation which allows us to solve the wave evolution equation in frequency space. Then, the resonant interactions between energetic particles and TAE yield predictions for the chirping rate, wave frequency and amplitudes vs. time. Here, an adiabatic invariant J is defined on the separatrix of a chirping mode to determine the region of confinement of the wave trapped distribution function. We examine the asymptotic behavior of the chirping signal for its long time evolution and find agreement in essential features with the results of the simulation. Work supported by Department of Energy contract DE-FC02-08ER54988.
Alfven eigenmode observations on DIII-D via two-colour CO{sub 2} interferometry
Energy Technology Data Exchange (ETDEWEB)
Zeeland, M A van [ORISE, PO Box 117, Oak Ridge, TN 37831-0117 (United States); Kramer, G J [Princeton Plasma Physics Lab., PO Box 451, Princeton, NJ 08543 (United States); Nazikian, R [Princeton Plasma Physics Lab., PO Box 451, Princeton, NJ 08543 (United States); Berk, H L [Institute of Fusion Studies, University of Texas at Austin, Austin, TX 78712 (United States); Carlstrom, T N [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Solomon, W M [Princeton Plasma Physics Lab., PO Box 451, Princeton, NJ 08543 (United States)
2005-09-01
Measurements are presented of toroidicity-induced (TAEs) and reverse shear (RSAEs) Alfven eigenmodes made using the standard two-colour CO{sub 2} interferometer on DIII-D modified for increased bandwidth. Typical values of the effective line-integrated density perturbation in DIII-D are found to be d(nL)/nL {approx} 10{sup -3}, and comparisons are made with NOVA calculations as well as magnetic measurements. There is a strong difference in the measured power spectrum between vertical and radial chords through the plasma. On average, vertical views are characterized by a larger line-integrated density perturbation due to TAEs than radial chords. Radial chords, however, can be used much more reliably than vertical chords to identify the presence of RSAEs in the plasma-a result found to be due to the radially localized nature of these modes. In general, the apparent amplitude of the observed modes for both TAE and RSAE is found to be highly dependent on viewing location. (letter to the editor)
Geometrical and profile effects on toroidicity and ellipticity induced Alfven eigenmodes
International Nuclear Information System (INIS)
The wave structures, eigenfrequencies and damping rates of toroidicity and ellipticity induced Alfven eigenmodes (TAE, EAE) of low toroidal mode numbers (n) are calculated in various axisymmetric ideal MHD equilibria with the global wave finite element code LION. The importance of safety factor (q) and density (ρ) profiles on continuum damping rates is analysed. For realistic profiles several continuum gaps exist in the plasma discharge. Frequency misalignment of these gaps yields continuum damping rates γ/ω of the order of a few percent. Finite βpol lowers the TAE eigenfrequency. For β values below the Troyon limit the TAE enters the continuum and can thus be stabilized. Finite elongation allows the EAE to exist but triangularity can have a stabilizing effect through coupling to the continuum. The localization of TAE and EAE eigenfunctions is found to increase with the shear and with n. Therefore large shear, through enhanced Landau and collisional damping, is a stabilizing factor for TAE and EAE modes. (author) 16 figs., 28 refs
Energy Technology Data Exchange (ETDEWEB)
Podesta, M; Crocker, N A; Fredrickson, E D; Gorelenkov, N N; Heidbrink, W W; Kubota, S; LeBlanc, B P
2011-04-26
The National Spherical Torus Experiment (NSTX, [M. Ono et al., Nucl. Fusion 40, 557 (2000)]) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfv enic, with velocities 1 < vfast=vAlfven < 5. This provides a strong drive for toroidicity-induced Alfv en eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (≤ 30%) fast ion losses over ~ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.
Kinetic Alfven solitons in a low-beta plasma
International Nuclear Information System (INIS)
Kinetic Alfven solitons with hot electrons and finite electron inertia in a low beta (β=8πnoT/B2G, the ratio of the kinetic to the magnetic pressure) plasma is studied analytically, with the ion motion being considered dominant through the polarization drift. Both compressive and rarefactive kinetic Alfven solitons are found to exist within a definite range of kz (the direction of propagation of the kinetic Alfven solitary waves with respect to the direction of the magnetic field) for each pair of assigned values of β and M (Mach number). Unlike in previous theoretical investigations, β appears as an explicit parameter for the kinetic Alfven solitons in this case. In addition, consideration of the electron pressure gradient is found to suppress the speed of both the Alfven solitons considerably for A (=2QM2 / βk2z, with Q the electron-to-ion mass ratio) less than unity. (Author)
The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfven Eigenmodes
International Nuclear Information System (INIS)
The achievement of sustained nuclear fusion in magnetically confined plasma relies on efficient confinement of alpha particles. Such particles can excite instabilities in the frequency range of Alfven Eigenmodes (AEs), which significantly degrade their confinement and threatens the vacuum vessel of future reactors. In the case of an isolated single resonance, the description of AE destabilization by high-energy ions is homothetic to the so-called Berk-Breizman (BB) problem. A semi-Lagrangian simulation code, COBBLES, is developed to solve the initial-value BB problem in both perturbative (δf) and self-consistent (full-f) approaches. Two collision models are considered, namely a Krook model, and a model that includes dynamical friction (drag) and velocity-space diffusion. The nonlinear behavior of instabilities in experimentally-relevant conditions is categorized into steady-state, periodic, chaotic, and frequency-sweeping (chirping) regimes, depending on external damping rate and collision frequency. The chaotic regime is shown to extend into a linearly stable region, and a mechanism that solves the paradox formed by the existence of such subcritical instabilities is proposed. Analytic and semi-empirical laws for nonlinear chirping characteristics, such as sweeping-rate, lifetime, and asymmetry, are developed and validated. Long-time simulations demonstrate the existence of a quasi-periodic chirping regime. Although the existence of such regime stands for both collision models, drag and diffusion are essential to reproduce the alternation between major chirping events and quiescent phases, which is observed in experiments. A new method for analyzing fundamental kinetic plasma parameters, such as linear drive and external damping rate, is developed. The method, which consists of fitting procedures between COBBLES simulations and quasi-periodic chirping AE experiments, does not require any internal diagnostics. This approach is applied to Toroidicity-induced AEs
International Nuclear Information System (INIS)
The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) (M. Ono et al., Nucl. Fusion 40 557 (2000)). The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.
Energy Technology Data Exchange (ETDEWEB)
Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S
2010-08-19
The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.
Rodrigues, P; Ferreira, J; Coelho, R; Nabais, F; Borba, D; Loureiro, N F; Oliver, H J C; Sharapov, S E
2014-01-01
A systematic approach to assess the linear stability of Alfv\\'en eigenmodes in the presence of fusion-born alpha particles is described. Because experimental results for ITER are not available yet, it is not known beforehand which Alfv\\'en eigenmodes will interact more intensively with the alpha-particle population. Therefore, the number of modes that need to be considered in stability assessments becomes quite large and care must be exercised when choosing the numerical tools to work with, which must be fast and efficient. In the presented approach, all possible eigenmodes are first found after intensively scanning a suitable frequency range. Each solution found is then tested to find if its discretization over the radial grid in use is adequate. Finally, the interaction between the identified eigenmodes and the alpha-particle population is evaluated with the drift-kinetic code CASTOR-K, in order to assess their growth rates and hence their linear stability. The described approach enables one to single out t...
1.5D quasilinear model and its application on beams interacting with Alfven eigenmodes in DIII-D
Energy Technology Data Exchange (ETDEWEB)
Ghantous, K.; Gorelenkov, N. N. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543-0451 (United States); Berk, H. L. [Institute for Fusion Studies, University of Texas, 2100 San Jacinto Blvd., Austin, Texas 78712-1047 (United States); Heidbrink, W. W. [Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697 (United States); Van Zeeland, M. A. [General Atomics, PO Box 85608, San Diego, California 92186-560 (United States)
2012-09-15
We propose a model, denoted here by 1.5D, to study energetic particle (EP) interaction with toroidal Alfvenic eigenmodes (TAE) in the case where the local EP drive for TAE exceeds the stability limit. Based on quasilinear theory, the proposed 1.5D model assumes that the particles diffuse in phase space, flattening the pressure profile until its gradient reaches a critical value where the modes stabilize. Using local theories and NOVA-K simulations of TAE damping and growth rates, the 1.5D model calculates the critical gradient and reconstructs the relaxed EP pressure profile. Local theory is improved from previous study by including more sophisticated damping and drive mechanisms such as the numerical computation of the effect of the EP finite orbit width on the growth rate. The 1.5D model is applied on the well-diagnosed DIII-D discharges no. 142111 [M. A. Van Zeeland et al., Phys. Plasmas 18, 135001 (2011)] and no. 127112 [W. W. Heidbrink et al., Nucl. Fusion. 48, 084001 (2008)]. We achieved a very satisfactory agreement with the experimental results on the EP pressure profiles redistribution and measured losses. This agreement of the 1.5D model with experimental results allows the use of this code as a guide for ITER plasma operation where it is desired to have no more than 5% loss of fusion alpha particles as limited by the design.
Energy Technology Data Exchange (ETDEWEB)
Weiland, Markus; Geiger, Benedikt; Bilato, Roberto; Schneider, Philip; Tardini, Giovanni; Lauber, Philipp; Ryter, Francois; Schneller, Mirjam [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Collaboration: ASDEX Upgrade Team
2015-05-01
Fast, supra-thermal ions are created in the tokamak ASDEX Upgrade by neutral beam injection and ion cyclotron resonance heating (ICRH) and they are needed for plasma heating and current drive. A possibility to study them is the spectroscopic observation of line radiation (fast-ion D-alpha, FIDA), which emerges from charge exchange reactions. Here, the fast ions can be distinguished from the thermal particles through there strong Doppler-shift, and their radial density profile can be measured and compared to theoretical models. An analysis of the whole Doppler spectrum yields information about the 2D velocity distribution f(v {sub parallel}, v {sub perpendicular} {sub to}). Observation from different viewing angles allows consequently a tomographic reconstruction of f(v {sub parallel}, v {sub perpendicular} {sub to}). For this purpose, the FIDA diagnostic at ASDEX Upgrade has been extended from two to five views, and the spectrometer setup was improved to allow a simultaneous measurement of blue and red Doppler shifts. These recently developed diagnostic capabilities are used to study changes in the fast-ion distribution, which are caused by Alfven eigenmodes. Moreover, the further acceleration of fast ions through 2{sup nd} harmonic ICRH is investigated and compared to theoretical predictions.
Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles
Franklin, F R
1999-01-01
In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode- Converted Ion Bernstein Waves (MCIBWs) and Alfvé n Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control...
New Digital Control System for the JET Alfv'en Eigenmode Active Spectroscopy Diagnostic
Woskov, P. P.; Stillerman, J.; Porkolab, M.; Fasoli, A.; Testa, D.; Galvao, R.; Pires Dos Resis, A.; Pires de Sa, W.; Ruchko, L.; Blanchard, P.; Figueiredo, J.; Dorling, S.; Farthing, J.; Graham, M.; Dowson, S.; Yu, L.; Concezzi, S.
2012-10-01
The state-of-the-art JET Alfv'en active spectroscopy diagnostic with eight internal inductive antennas is being upgraded from a single 5 kW tube amplifier to eight parallel, 10 -- 1000 kHz, 4 kW solid state class D power switching amplifiers. A new digital control system has been designed with arbitrary constant phase controlled frequency sweeps for traveling mode studies, amplifier gain control through a feedback loop referenced to programmed antenna current profiles, and integration with CODAS for synchronization, triggering, gating, and fault tripping. A combination of National Instruments Real Time LabView software and FPGA circuits is used to achieve the multiple control requirements with better than 1 ms response. System specifications and digital-analog design trade offs for sweep rates, response times, frequency resolution, and voltage levels will be presented.
Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles
Heeter, R F
1999-01-01
In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode-Converted Ion Bernstein Waves (MCIBWs) and Alfvén Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control. A reasonable reactor power scaling is derived. To study AEs, existing magnetic fluctuation probes at the Joint European Torus (JET) have been absolutely calibrated from 30–500 kHz for the first time, allowing fluctuation measurements with &vbm0;dBpol&vbm0;/B0&am...
Energy Technology Data Exchange (ETDEWEB)
Spong, D. A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Bass, E. M. [Department of Physics, University of California, San Diego, California 192093 (United States); Deng, W.; Heidbrink, W. W.; Lin, Z. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tobias, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 085430 (United States); Van Zeeland, M. A. [General Atomics, San Diego, California 92121 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States); Domier, C. W.; Luhmann, N. C. Jr. [Department of Electrical and Computer Engineering and Department of Applied Science, University of California, Davis, California 95616 (United States)
2012-08-15
A verification and validation study is carried out for a sequence of reversed shear Alfven instability time slices. The mode frequency increases in time as the minimum (q{sub min}) in the safety factor profile decreases. Profiles and equilibria are based upon reconstructions of DIII-D discharge (no. 142111) in which many such frequency up-sweeping modes were observed. Calculations of the frequency and mode structure evolution from two gyrokinetic codes, GTC and GYRO, and a gyro-Landau fluid code TAEFL are compared. The experimental mode structure of the instability was measured using time-resolved two-dimensional electron cyclotron emission imaging. The three models reproduce the frequency upsweep event within {+-}10% of each other, and the average of the code predictions is within {+-}8% of the measurements; growth rates are predicted that are consistent with the observed spectral line widths. The mode structures qualitatively agree with respect to radial location and width, dominant poloidal mode number, ballooning structure, and the up-down asymmetry, with some remaining differences in the details. Such similarities and differences between the predictions of the different models and the experimental results are a valuable part of the verification/validation process and help to guide future development of the modeling efforts.
Nonlinear alfv\\'enic fast particle transport and losses
Schneller, Mirjam; García-Muñoz, Manuel; Brüdgam, Michael; Günter, Sibylle
2012-01-01
Magnetohydrodynamic instabilities like Toroidal Alfv\\'en Eigenmodes or core-localized modes such as Beta Induced Alfv\\'en Eigenmodes and Reversed Shear Alfv\\'en Eigenmodes driven by fast particles can lead to significant redistribution and losses in fusion devices. This is observed in many ASDEX Upgrade discharges. The present work aims to understand the underlying resonance mechanisms, especially in the presence of multiple modes with different frequencies. Resonant mode coupling mechanisms are investigated using the drift kinetic HAGIS code [Pinches 1998]. Simulations were performed for different plasma equilibria, in particular for different q profiles, employing the availability of improved experimental data. A study was carried out, investigating double-resonant mode coupling with respect to various overlapping scenarios. It was found that, depending on the radial mode distance, double-resonance is able to enhance growth rates as well as mode amplitudes significantly. Small radial mode distances, however...
Nonlinear dynamics of beta-induced Alfvén eigenmode driven by energetic particles.
Wang, X; Briguglio, S; Chen, L; Di Troia, C; Fogaccia, G; Vlad, G; Zonca, F
2012-10-01
Nonlinear saturation of a beta-induced Alfvén eigenmode, driven by slowing down energetic particles via transit resonance, is investigated by the nonlinear hybrid magnetohyrodynamic gyrokinetic code. Saturation is characterized by frequency chirping and symmetry breaking between co- and counter-passing particles, which can be understood as the evidence of resonance detuning. The scaling of the saturation amplitude with the growth rate is also demonstrated to be consistent with radial resonance detuning due to the radial nonuniformity and mode structure. PMID:23214643
Toroidal Alfven wave stability in ignited tokamaks
Energy Technology Data Exchange (ETDEWEB)
Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.
1989-01-01
The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.
Magneto-HydroDynamic activity and Energetic Particles - Application to Beta Alfven Eigenmodes
Nguyen, Christine
2009-01-01
The goal of magnetic fusion research is to extract the power released by fusion reactions and carried by the product of these reactions, liberated at energies of the order of a few MeV. The feasibility of fusion energy production relies on our ability to confine these energetic particles, while keeping the thermonuclear plasma in safe operating conditions. For that purpose, it is necessary to understand and find ways to control the interaction between energetic particles and the thermonuclear...
Energy Technology Data Exchange (ETDEWEB)
Gorelenkov, N. N.; Berk, H. L.; Fredrickson, E.; Sharapov, S. E.
2007-07-02
New global MHD eigenmode solutions arising in gaps in the low frequency Alfvén -acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfvén-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfvén-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta < 2% as well as in NSTX plasmas at relatively high beta > 20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfvén coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.
The Alfven wave spectrum of analytic high-beta tokamak equilibria
International Nuclear Information System (INIS)
This thesis addresses a number of problems regarding the equilibrium and stability of a tokamak plasma under fusion conditions. To get insight into the geometric effects on the behaviour of the most prominent global modes, a spectral study was carried out on a class of analytic, noncircular plasma equilibria. Parallel to this work, extending a previous high-beta energy principle a variational principle is developed for the numerical determination of the Alfven spectrum of a high-beta tokamak with arbitrary cross-section. Based on the Lagrangian formalism, representations were derived for the potential and kinetic energy in terms of arbitrary, non-orthogonal flux coordinates, which can be readily implemented in a numerical programme. The method is then tested by using the analytic equilibrium as input. 85 refs.; 32 figs.; 2 tabs
Shukla, P K
2012-01-01
It is shown that a three-dimensional (3D) modified-kinetic Alfv\\'en waves (m-KAWs) can propagate in the form of Alfv\\'enic tornadoes characterized by plasma density whirls or magnetic flux ropes carrying orbital angular momentum (OAM). By using the two fluid model, together with Amp\\`ere's law, we derive the wave equation for a 3D m-KAWs in a magnetoplasma with $m_e/m_i \\ll \\beta \\ll 1$, where $m_e$ $(m_i)$ is the electron (ion) mass, $\\beta =4 \\pi n_0 k_B (T_e + T_i)/B_0^2$, $n_0$ the unperturbed plasma number density, $k_B$ the Boltzmann constant, $T_e (T_e)$ the electron (ion) temperature, and $B_0$ the strength of the ambient magnetic field. The 3D m-KAW equation admits solutions in the form of a Laguerre-Gauss (LG) Alfv\\'enic vortex beam or Alfv\\'enic tornadoes with plasma density whirls that support the dynamics of Alfv\\'en magnetic flux ropes.
Observation of modes at frequencies near the second Alfven gap in TFTR
International Nuclear Information System (INIS)
Modes have been observed near the frequency of the second Alfven gap during off-axis H-minority heating experiments in the circular cross-section Tokamak Fusion Test Reactor. The observation of these modes is surprising in that the second gap, which is generally opened with ellipticity, is expected to be small, of order (r/R)2. A model is proposed in which the second gap is opened by the fast ion beta, which is shown to be able to introduce mode coupling, much as toroidal effects introduce mode coupling for Toroidal Alfven Eigenmodes (TAE). The modes are seen with and without accompanying TAE mode activity
Shukla, P. K.
2012-01-01
It is shown that a three-dimensional (3D) modified-kinetic Alfv\\'en waves (m-KAWs) can propagate in the form of Alfv\\'enic tornadoes characterized by plasma density whirls or magnetic flux ropes carrying orbital angular momentum (OAM). By using the two fluid model, together with Amp\\`ere's law, we derive the wave equation for a 3D m-KAWs in a magnetoplasma with $m_e/m_i \\ll \\beta \\ll 1$, where $m_e$ $(m_i)$ is the electron (ion) mass, $\\beta =4 \\pi n_0 k_B (T_e + T_i)/B_0^2$, $n_0$ the unpert...
Low-n shear Alfven spectra in axisymmetric toroidal plasmas
International Nuclear Information System (INIS)
In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs
Nonlinearly Driven Second Harmonics of Alfven Cascades
International Nuclear Information System (INIS)
In recent experiments on Alcator C-Mod, measurements of density fluctuations with Phase Contrast Imaging through the plasma core show a second harmonic of the basic Alfven Cascade (AC) signal. The present work describes the perturbation at the second harmonic as a nonlinear sideband produced by the Alfven Cascade eigenmode via quadratic terms in the MHD equations. (author)
Alfven wave heating and stability
International Nuclear Information System (INIS)
Alfven waves in fusion plasmas play an important role in a number of situations. First, in Alfven Wave Heating (AWH) schemes. Second, both theory and experiment have demonstrated the existence of Global Alfven Eigenmodes (GAEs). GAEs have been observed in different tokamaks (PRETEXT, TCA, TEXTOR, etc.) and, more recently, in a stellarator (Wendelstein 7-AS) where they were shown to become unstable under intense Neutral Beam injection. Third, the existence and possible destabilization by fast ions of Toroidicity induced Alfven Eigenmodes (TAEs) has been evidenced both theoretically and experimentally. This destabilization could hamper the operation of a magnetically confined fusion reactor by setting a limit on the number of fusion alpha particles in the plasma. It is therefore crucial to understand the mechanisms leading to the occurrence of the instability and also those that can stabilize the TAEs by increasing the strength of the damping. The aim is to be able to devise possible ways to avoid the instability of Alfven eigenmodes in a region of parameter space that is compatible with the functioning of a fusion reactor. A global perturbative approach is presented to tackle the problem of the linear stability of TAEs. Our model computes the overall wave particle power transfers to the different species and thus could also be applied to the study of alpha power extraction in the presence of Alfven waves. We indicate also how to go beyond the perturbative approach. (author) 15 figs., 38 refs
Ion Heating by Fast Particle Induced Alfven Turbulence
International Nuclear Information System (INIS)
A novel mechanism that directly transfers energy from Super-Alfvenic energetic ions to thermal ions in high-beta plasmas is described. The mechanism involves the excitation of compressional Alfvin eigenmodes (CAEs) in the frequency range with omega less than or approximately equal to omega(subscript ci). The broadband turbulence resulting from the large number of excited modes causes stochastic diffusion in velocity space, which transfers wave energy to thermal ions. This effect may be important on the National Spherical Torus Experiment (NSTX), and may scale up to reactor scenarios. This has important implications for low aspect ratio reactor concepts, since it potentially allows for the modification of the ignition criterion
Wang, X; Chen, L; Di Troia, C; Fogaccia, G; Vlad, G; Zonca, F
2010-01-01
Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to study thermal ion kinetic effects on Alfv\\'enic modes driven by energetic particles, such as kinetic beta induced Alfv\\'en eigenmodes in tokamak fusion plasmas.
Jo, Young Hyun; Lee, Hae June; Mikhailenko, Vladimir V.; Mikhailenko, Vladimir S.
2016-01-01
It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows. The levels of the drift--Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of the scattering of ions by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same effect of the scattering of ions by electromagnetic turbulence, is derived and employed for the analysis of the ion viscosity and ions heating, resulted from the interactions of ions with drift-Alfven turbulence. In the same way, the phenomena of the ion cyclotron turbulence and anomalous anisotropic heating of ions by ion cyclotron plasma turbulence has numerous practical applications in physics of the near-Earth space plasmas. Using the methodology of the shearing modes, the kinetic theory of the ion cyclotron turbulence of the plasma with transverse current with strong velocity shear has been developed.
Spectrum of compressional Alfven waves
International Nuclear Information System (INIS)
The spectrum of compressional Alfven eigenmodes localized in the potential well created by a combination of the variation in plasma density and the wave number k/sub perpendicular to/ = m/r, is obtained, and its importance for ratio frequency current drive is discussed. It is found that modes with small parallel wave numbers and frequencies below the ion cyclotron frequency are attractive for current drive
Kinetic Thermal Ions Effects on Alfvenic Fluctuations in Tokamak Plasmas
International Nuclear Information System (INIS)
Full text: The early observation of beta induced Alfven eigenmodes (BAE) and a variety of recent experimental observations have attracted attention on studying the low-frequency Alfvenic fluctuations in tokamaks. The generalized fishbone-like dispersion relation theoretical framework has been adopted for extending the hybrid model by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particles (EP) kinetic behaviours. The extended model has been used for implementing an eXtended version of HMGC (XHMGC). In general, the new version of HMGC can have two species of kinetic particles. On one hand, one can use XHMGC for investigating thermal ion kinetic effects on Alfvenic modes driven by EP. In this case, EP dynamics contribute in the ideal MHD region; while wave-particle resonances with core-plasma ions are important only in a narrow inertial layer centred about the mode rational surface, where the dynamics of EP can be neglected due to their large perpendicular orbits (compared to the layer width). On the other hand, it may be interesting to use XHMGC as a tool to simulate two coexisting EP species, generated e.g. by both ICRH and NBI heating, in order to study linear excitation of Alfvenic fluctuations and Energetic Particle Modes (EPM), as well as the interplay between the respective nonlinear physics. Results of initial-value simulations show that the observed frequency is always slightly higher than the BAE accumulation point and is the same at different radial positions; consistent with the characteristics of a discrete BAE-SAW eigenmode (termed as kinetic BAE or KBAE); however, no discrete eigenmode is found within the gap when MHD is ideally stable. Meanwhile, preliminary simulations of KBAE/EPM driven by purely circulating EP have also been done. So far, the results show that the mode frequency is higher than either theoretical BAE accumulation point frequency or EP transit frequency, and increases with
International Nuclear Information System (INIS)
Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an extended version of hybrid magnetohydrodynamics gyrokinetic code (XHMGC) to study thermal ion kinetic effects on Alfvenic modes driven by energetic particles, such as kinetic beta induced Alfven eigenmodes in tokamak fusion plasmas. The XHMGC nonlinear model can be used to address a number of problems, where kinetic treatments of both thermal and supra-thermal plasma components are necessary, as theoretically predicted, or where it is desirable to investigate the phenomena connected with the presence of two supra-thermal particle species with different radial profiles and velocity space distributions.
Anisotropic Alfven-ballooning modes in the Earth's magnetosphere
International Nuclear Information System (INIS)
We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth's inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P perpendicular > P parallel. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value βoB ∼ 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P parallel > P perpendicular, or due to increased ballooning-mirror destabilization when P perpendicular > P parallel. We use a ''β-6 stability diagram'' to display the regions of instability with respect to the equatorial values of the parameters bar β and δ, where bar β = (1/3)(βparallel + 2 β perpendicular) is an average beta value and δ = 1 - P parallel/P perpendicular is a measure of the plasma anisotropy
Shear Alfven waves in tokamaks
International Nuclear Information System (INIS)
Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma
Cao, G. M.; Li, Y. D.; Li, Q.; Sun, P. J.; Wu, G. J.; Hu, L. Q.; the EAST Team
2015-08-01
Beta-induced Alfvén eigenmodes (BAEs) during strong tearing modes (TMs) have been frequently observed in fast-electron plasmas of EAST tokamak. The dynamics of the short-scale ({k}\\perp {ρ }s~{1.5-4.3}) density fluctuations during the activity of BAEs with strong TMs has been preliminarily investigated by a tangential CO2 laser collective scattering system. The results suggest the active, but different, response of short-scale density fluctuations to the TMs and BAEs. In the low-frequency (0-10 kHz) part of density fluctuations, there are harmonic oscillations totally corresponding to those of TMs. In the medium-high frequency (10-250 kHz) part of density fluctuations, with the appearance of the BAEs, the medium-high frequency density fluctuations begin to be dominated by several quasi-coherent (QC) modes, and the frequencies of the QC modes seem to be related to the changes of both TMs and BAEs. These results would shed some light on the understanding of the multi-scale interaction physics.
Alfven cyclotron instability and ion cyclotron emission
International Nuclear Information System (INIS)
Two-dimensional solutions of compressional Alfven eigenmodes (CAE) are studied in the cold plasma approximation. For finite inverse aspect ratio tokamak plasmas the two-dimensional eigenmode envelope is localized at the low magnetic field side with the radial and poloidal localization on the order of a/√m and a/(fourth root of m), respectively, where m is the dominant poloidal mode number. Charged fusion product driven Alfven Cyclotron Instability (ACI) of the compressional Alfven eigenmodes provides the explanation for the ion cyclotron emission (ICE) spectrum observed in tokamak experiments. The ACI is excited by fast charged fusion products via Doppler shifted cyclotron wave-particle resonances. The ion cyclotron and electron Landau dampings and fast particle instability drive are calculated perturbatively for deuterium-deuterium (DD) and deuterium-tritium (DT) plasmas. Near the plasma edge at the low field side the velocity distribution function of charged fusion products is localized in both pitch angle and velocity. The poloidal localization of the eigenmode enhances the ACI growth rates by a factor of √m in comparison with the previous results without poloidal envelope. The thermal ion cyclotron damping determines that only modes with eigenfrequencies at multiples of the edge cyclotron frequency of the background ions can be easily excited and form an ICE spectrum similar to the experimental observations. Theoretical understanding is given for the results of TFTR DD and DT experiments with υα0/υA α0/υA > 1
International Nuclear Information System (INIS)
Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7
International Nuclear Information System (INIS)
This paper discusses experiments on linear high beta helical axis stellarators. Experiments considered are: formation of linear high beta heliac plasma configurations; Alfven wave heating in a straight tube and in a linear high beat stellarator; shifted hardcore heliac studies; a system for measuring the timing of high-current switches in a pulsed high voltage fusion experiment; HBQM general refurbishment; and proposed experiment on excitation of the m = 1 tilt mode in field-reversed configurations
Peculiarities of destabilization of Alfven modes by energetic ions in stellarators
International Nuclear Information System (INIS)
Alfven Eigenmodes (AE) associated with the breaking of the axial symmetry in stellarators are considered. Specific calculations are carried out for the Helias reactor HSR4/18. An explanation of the temporal evolution of Alfvenic activity observed in experiments on W7-AS is suggested. (author)
Alfven wave cascades in a tokamak
International Nuclear Information System (INIS)
Experiments designed for generating internal transport barriers in the plasmas of the Joint European Torus [JET, P. H. Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol. I, p. 11] reveal cascades of Alfven perturbations with predominantly upward frequency sweeping. These experiments are characterized by a hollow plasma current profile, created by lower hybrid heating and current drive before the main heating power phase. The cascades are driven by ions accelerated with ion cyclotron resonance heating (ICRH). Each cascade consists of many modes with different toroidal mode numbers and different frequencies. The toroidal mode numbers vary from n=1 to n=6. The frequency starts from 20 to 90 kHz and increases up to the frequency range of toroidal Alfven eigenmodes. In the framework of ideal magnetohydrodynamics (MHD) model, a close correlation is found between the time evolution of the Alfven cascades and the evolution of the Alfven continuum frequency at the point of zero magnetic shear. This correlation facilitates the study of the time evolution of both the Alfven continuum and the safety factor, q(r), at the point of zero magnetic shear and makes it possible to use Alfven spectroscopy for studying q(r). Modeling shows that the Alfven cascade occurs when the Alfven continuum frequency has a maximum at the zero shear point. Interpretation of the Alfven cascades is given in terms of a novel-type of energetic particle mode localized at the point where q(r) has a minimum. This interpretation explains the key experimental observations: simultaneous generation of many modes, preferred direction of frequency sweeping, and the absence of strong continuum damping
Multiple-gap theory of toroidal Alfven waves with kinetic effects
International Nuclear Information System (INIS)
The stability of kinetic toroidal Alfven waves with multi-gap coupling is analyzed by using the two-dimensional ballooning transform. An alternate convergence scheme, based on the smallness of the inverse aspect ratio, is devised. The resulting wave functions are oscillatory and do not balloon in contrast to the wave functions of conventional ballooning theory. It is shown that the single-gap theory is a special, weak shear (s → 0) limit of the formalism. Analytical and numerical results for the two fundamental branches, the ideal toroidal Alfven eigenmode (TAE), and the kinetic toroidal Alfven eigenmode (KTAE) are presented and discussed
International Nuclear Information System (INIS)
This paper discusses induced axial current studies in a hardcore Theta-Pinch; nonaxisymmetric RF heating of a high-Beta plasma column; formation of Axisymmetric hardcore theta pinches with notched hardcore current; and externally driven till made experiments on the high-beta Q machine field reversed configuration
Alfven cyclotron instability and ion cyclotron emission
International Nuclear Information System (INIS)
Two-dimensional solutions of compressional Alfven eigenmodes (CAEs) are studied in the cold plasma approximation. For finite inverse aspect ratio tokamak plasmas the two-dimensional eigenmode envelope is localized at the low magnetic field side with the radial and poloidal localization on the order of a/√m and a/4√m, respectively, where m is the dominant poloidal mode number. Charged fusion product driven Alfven cyclotron instability (ACI) of the compressional Alfven eigenmodes provides the explanation for the ion cyclotron emission (ICE) spectrum observed in tokamak experiments. The ACI is excited by fast charged fusion products via Doppler shifted cyclotron wave-particle resonances. The ion cyclotron and electron Landau damping and fast particle instability drive are calculated perturbatively for deuterium-deuterium (DD) and deuterium-tritium (DT) plasmas. Near the plasma edge at the low field side the velocity distribution function of charged fusion products is localized in both pitch angle and velocity. The poloidal localization of the eigenmode enhances the ACI growth rates by a factor of √m in comparison with the previous results without poloidal envelope. The thermal ion cyclotron damping determines that only modes with eigenfrequencies at multiples of the edge cyclotron frequency of the background ions can be easily excited and form an ICE spectrum similar to the experimental observations. Theoretical understanding is given for the results of TFTR DD and DT experiments with υα0/υA ≅ 1 and JET experiments with υα0/υA > 1. (author). 15 refs, 7 figs
International Nuclear Information System (INIS)
The first direct observation of the internal structure of driven global Alfven eigenmodes in a tokamak plasma is presented. A carbon dioxide laser scattering/interferometer has been designed, built, and installed on the PRETEXT tokamak. By using this diagnostic system in the interferometer configuration, we have for the first time, thoroughly investigated the resonance conditions required for, and the spatial wave field structure of, driven plasma eigenmodes at frequencies below the ion cyclotron frequency in a confined, high temperature, tokamak plasma
CHROMOSPHERIC EVAPORATION VIA ALFVEN WAVES
International Nuclear Information System (INIS)
This paper presents a scenario for the chromospheric evaporation during solar flares, which is inspired by the chain of events leading to the formation of auroral arcs and ionospheric evacuation during magnetospheric substorms. The plasma, ejected from high coronal altitudes during a flare reconnection event, accumulates at the tops of coronal loops by braking of the reconnection flow, possibly by fast shock formation. A high-beta layer forms and distorts the magnetic field. Energy contained in magnetic shear stresses is transported as Alfven waves from the loop-top toward the chromosphere. It is shown that under these conditions the Alfven waves carry enough energy to feed the chromospheric evaporation process. The second subject of this investigation is identification of the most effective energy dumping or wave dissipation process. Several processes are being analyzed: ion-neutral collisions, classical and anomalous field-aligned current dissipation, and critical velocity ionization. All of them are being discarded, either because they turn out to be insufficient or imply very unlikely physical properties of the wave modes. It is finally concluded that turbulent fragmentation of the Alfven waves entering the chromosphere can generate the required damping. The basic process would be phase mixing caused by a strongly inhomogeneous distribution of Alfvenic phase speed and laminar flow breakup by Kelvin-Helmholtz (K-H) instability. The filamentary (fibril) structure of the chromosphere thus appears to be essential for the energy conversion, in which the K-H instability is the first step in a chain of processes leading to ion thermalization, electron heating, and neutral particle ionization. Quantitative estimates suggest that a transverse structure with scales not far below 100 km suffices to produce strong wave damping within a few seconds. Nonthermal broadening of some metallic ion lines observed during the pre-impulsive rise phase of a flare might be a residue of
International Nuclear Information System (INIS)
The physics of Alfven-wave heating is particularly sensitive to the character of the linear mode conversion which occurs at the Alfven resonance layer. Parameter changes can profoundly affect both the location within the plasma and the mechanism for the power absorption. Under optimal conditions the heating power may be absorbed by electron Landau damping and by electron transit-time magnetic pumping in the plasma interior, or by the same processes acting near the resonance layer on the mode-converted kinetic Alfven wave. The method is outlined for computing the coefficients for reflection, transmission and absorption at the resonance layer and some representative results are offered
Confinement relevant Alfven instabilities in Wendelstein 7-AS
International Nuclear Information System (INIS)
Full text: An important feature of fast-ion-driven Alfven instabilities (AI) observed in W7-AS is that they can result in thermal crashes (the temperature can drop by up to 50%). The purposes of this work are to explain the mentioned phenomenon and develop further the theory of AI in stellarators. Possible mechanisms of the formation of magnetic islands / the stochastization of magnetic field lines are analysed. It is shown that the process affects mainly electrons but not the bulk plasma ions. The behaviour of the Alfven continuum near a point where two gaps cross is studied, and the phenomenon of the gap annihilation at the crossing point is found. The developed theory is applied to the W7-AS shot no. 34723. The Alfven continuum and eigenmodes are calculated. The growth rate of the eigenmodes is determined with taking into account the continuum damping and the collisional damping. The effect of the instability on the thermal plasma is evaluated and compared with experimental results. (author)
Alfven frequency modes at the edge of TFTR plasmas
International Nuclear Information System (INIS)
An Alfven frequency mode (AFM) is very often seen in TFTR neutral beam heated plasmas as well as ohmic plasmas. This quasi-coherent mode is so far only seen on the magnetic fluctuation diagnostics (Mirnov coils). A close correlation between the plasma edge density and the mode activity (frequency and amplitude) has been observed, which indicates that the AFM is an edge localized mode with r/a > 0.85. No direct impact of this mode on the plasma global performance or fast ion loss (e.g., the α-particles in DT experiments) has been observed. This mode is apparently not the conventional TAE (toroidicity-induced Alfven eigenmodes). The present TAE theory cannot explain the observation. Other possible explanations are discussed
Stability of global Alfven waves (TAE, EAE) in JET tritium discharges
International Nuclear Information System (INIS)
The study of MHD modes driven unstable by energetic particles due to additional heating and, in particular, by alpha particles is crucial for the prediction of α-confinement for future JET D-T discharges aiming at QDT≅1. In this paper we analyse the toroidicity and elongation induced Alfven eigenmodes (TAE, EAE), their damping and their destabilisation by energetic particles. The spectral code CASTOR (Complex Alfven Spectrum for Toroidal Plasmas) together with the equilibrium solver HELENA provides the tool for the analysis of the ideal and dissipative MHD spectrum. (author) 3 refs., 3 figs
Linear gyrokinetic particle-in-cell simulations of Alfven instabilities in tokamaks
Biancalani, A; Briguglio, S; Koenies, A; Lauber, Ph; Mishchenko, A; Poli, E; Scott, B D; Zonca, F
2015-01-01
The linear dynamics of Alfven modes in tokamaks is investigated here by means of the global gyrokinetic particle-in-cell code NEMORB. The model equations are shown and the local shear Alfven wave dispersion relation is derived, recovering the continuous spectrum in the incompressible ideal MHD limit. A verification and benchmark analysis is performed for continuum modes in a cylinder and for toroidicity-induced Alfven Eigenmodes. Modes in a reversed-shear equilibrium are also investigated, and the dependence of the spatial structure in the poloidal plane on the equilibrium parameters is described. In particular, a phase-shift in the poloidal angle is found to be present for modes whose frequency touches the continuum, whereas a radial symmetry is found to be characteristic of modes in the continuum gap.
Analysis of Alfven Wave Activity in KSTAR Plasmas
International Nuclear Information System (INIS)
Full text: We report on evidence of neutral beam driven wave activity in KSTAR plasmas. In 2010 and 2011 campaigns KSTAR plasmas included 1MW of neutral beam heating, which provided drive for Alfvenic wave activity modes. Data from the 2010 campaign, which was fully analysed during 2011, identifies the 40 kHz magnetic fluctuations as a β-induced Alfven eignemode resonant with the q = 1 surface. Evidence is multiple fold: a Fourier mode analysis identifies the mode as n = 1. Electron cyclotron emission chords identify the q = 1 inversion radius. These constrain equilibrium reconstruction, and permit detailed MHD calculations using the global MHD stability code MISHKA. A scan of mode frequency near the q = 1 minimum of the continuum identifies a core localised n = 1 mode separated from the continuum. A complementary kinetic analysis, when coupled with ion and electron temperature measurements ratios obtain from crystallography, enables calculation of the frequency evolution - which is in agreement with observations. In 2011 a series of experiments were conducted to scope Alfven excitation using NBI and ECRH heating as a function of field strength and plasma current. In these experiments plasmas with toroidal current up to 600 kA were generated with 1.5 MW of NBI heating and up to 120 kW of co or counter ECRH, and the field strength varied from 1.7 T to 2 T. Spectral and mode number analysis of the magnetics data identifies 150 - 250 kHz coherent activity with a toroidal mode number of n = 1. Assuming a poloidal mode number of m = 1, we have computed the evolution of the toroidal Alfven eigenmode (TAE) middle of the gap frequency, and compared the frequency evolution to magnetic spectrograms. While the frequency of the mode is above the Nyquist frequency, the aliased frequency tracks the observations to within 20%, providing some confidence of a TAE interpretation. Finally, we also report evidence of ion fishbone activity. (author)
Institute of Scientific and Technical Information of China (English)
K. OGAWA; M. ISOBE; K. TOI; F. WATANABE; D. A. SPONG; A. SHIMIZU; M. OSAKABE; D. S. DARROW; S. OHDACHI; S. SAKAKIBARA; LHD Experiment -Group
2012-01-01
Beam-ion losses induced by fast-ion-driven toroidal Alfven eigenmodes （TAE） were measured with a scintillator-based lost fast-ion probe （SLIP） in the large helical device （LHD）. The SLIP gave simultaneously the energy E and the pitch angle X=arccos（v///v） distribution of the lost fast ions. The loss fluxes were investigated for three typical magnetic configurations of Rax-vac=3.60 m, 3.75 m. and 3.90 m, where Rax-vac is the magnetic axis position of the vacuum field. Dominant losses induced by TAEs in these three configurations were observed in the E/X regions of 50-190 keV/40°, 40-170 keV/25°, and 30-190 keV/30°, respectively. Lost-ion fluxes induced by TAEs depend clearly on the amplitude of TAE magnetic fluctuations, Rax-vac and the toroidal field strength Bt. The increment of the loss fluxes has the dependence of （bTAE/Bt）s. The power s increases from s = 1 to 3 with the increase of the magnetic axis position in finite beta plasmas.
Energy Technology Data Exchange (ETDEWEB)
Weng, C. J. [Department of Physics, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Space Science, National Central University, Jhongli 320, Taiwan (China); Lee, L. C. [Institute of Space Science, National Central University, Jhongli 320, Taiwan (China); Institute of Earth Science, Academia Sinica, Nankang 115, Taiwan (China); Kuo, C. L. [Institute of Space Science, National Central University, Jhongli 320, Taiwan (China); Wang, C. B. [CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei (China)
2013-03-15
Alfven waves are low-frequency transverse waves propagating in a magnetized plasma. We define the Alfven frequency {omega}{sub 0} as {omega}{sub 0}=kV{sub A}cos{theta}, where k is the wave number, V{sub A} is the Alfven speed, and {theta} is the angle between the wave vector and the ambient magnetic field. There are partially ionized plasmas in laboratory, space, and astrophysical plasma systems, such as in the solar chromosphere, interstellar clouds, and the earth ionosphere. The presence of neutral particles may modify the wave frequency and cause damping of Alfven waves. The effects on Alfven waves depend on two parameters: (1) {alpha}=n{sub n}/n{sub i}, the ratio of neutral density (n{sub n}), and ion density (n{sub i}); (2) {beta}={nu}{sub ni}/{omega}{sub 0}, the ratio of neutral collisional frequency by ions {nu}{sub ni} to the Alfven frequency {omega}{sub 0}. Most of the previous studies examined only the limiting case with a relatively large neutral collisional frequency or {beta} Much-Greater-Than 1. In the present paper, the dispersion relation for Alfven waves is solved for all values of {alpha} and {beta}. Approximate solutions in the limit {beta} Much-Greater-Than 1 as well as {beta} Much-Less-Than 1 are obtained. It is found for the first time that there is a 'forbidden zone (FZ)' in the {alpha}-{beta} parameter space, where the real frequency of Alfven waves becomes zero. We also solve the wavenumber k from the dispersion equation for a fixed frequency and find the existence of a 'heavy damping zone (HDZ).' We then examine the presence of FZ and HDZ for Alfven waves in the ionosphere and in the solar chromosphere.
The effect of compressibility on the Alfven spatial resonance heating
International Nuclear Information System (INIS)
The effect of compressibility of magnetic field line on the damping rate of Alfven spatial resonance heating for a high beta plasma (Kinetic pressure/magnetic pressure) was analysed, using the ideal MHD (Magnetohydrodynamic) model in cylindrical geometry for a diffuse θ-pinch with conducting wall. The dispersion relation was obtained solving the equation of motion in the plasma and vacuum regions together with boundary conditions. (Author)
Simulation of the interaction between Alfven waves and fast particles
International Nuclear Information System (INIS)
There is a wide variety of Alfven waves in tokamak and stellarator plasmas. While most of them are damped, some of the global eigenmodes can be driven unstable when they interact with energetic particles. By coupling the MHD code CKA with the gyrokinetic code EUTERPE, a hybrid kinetic-MHD model is created to describe this wave-particle interaction in stellarator geometry. In this thesis, the CKA-EUTERPE code package is presented. This numerical tool can be used for linear perturbative stability analysis of Alfven waves in the presence of energetic particles. The equations for the hybrid model are based on the gyrokinetic equations. The fast particles are described with linearized gyrokinetic equations. The reduced MHD equations are derived by taking velocity moments of the gyrokinetic equations. An equation for describing the Alfven waves is derived by combining the reduced MHD equations. The Alfven wave equation can retain kinetic corrections. Considering the energy transfer between the particles and the waves, the stability of the waves can be calculated. Numerically, the Alfven waves are calculated using the CKA code. The equations are solved as an eigenvalue problem to determine the frequency spectrum and the mode structure of the waves. The results of the MHD model are in good agreement with other sophisticated MHD codes. CKA results are shown for a JET and a W7-AS example. The linear version of the EUTERPE code is used to study the motion of energetic particles in the wavefield with fixed spatial structure, and harmonic oscillations in time. In EUTERPE, the gyrokinetic equations are discretized with a PIC scheme using the delta-f method, and both full orbit width and finite Larmor radius effects are included. The code is modified to be able to use the wavefield calculated externally by CKA. Different slowing-down distribution functions are also implemented. The work done by the electric field on the particles is measured to calculate the energy transfer
Alfven solitons in the solar wind
Ovenden, C.; Schwartz, S. J.
1983-01-01
A nonlinear Alfven soliton solution of the MHD equations is presented. This solution represents the final state of modulationally unstable Alfven waves. A model of the expected turbulent spectrum due to a collection of such solitons is briefly described.
International Nuclear Information System (INIS)
Kinetic effects of Alfven wave spatial resonances near the plasma edge are investigated numerically and analytically in a cylindrical tokamak model. In Part 1, cold plasma surface Alfven eigenmodes (SAE's) in a pure plasma are examined. Numerical calculations of antenna-driven waves exhibiting absorption resonances at certain discrete frequencies are first reviewed. From a simplified kinetic equation, an analytical dispersion relation is then obtained with the antenna current set equal to zero. The real and imaginary parts of its roots, which are the complex eigenfrequencies, agree with the central frequencies and widths, respectively, of the numerical antenna-driven resonances. These results serve as an introduction to the companion paper, in which it is shown that, in the presence of a minority species, certain SAE's, instead of heating the plasma exterior, can dissipate substantial energy in the two-ion hybrid layer near the plasma center. 11 refs., 8 figs., 1 tab
Streaming tearing instability in the current sheet with a super-Alfvenic flow
International Nuclear Information System (INIS)
The tearing instability in a current sheet, which has a sub-Alfvenic or super-Alfvenic plasma flow in the current layer, is investigated based on the linearized compressible magnetohydrodynamic (MHD) equations. An initial-value method is employed to obtain the linear growth rate and eigenmode profiles of the fastest growing mode. The results show that for a sub-Alfvenic plasma flow parallel to the neutral sheet, the growth rate of the tearing instability is only slightly larger than that of the pure tearing mode without the flow. On the other hand, a large increase in the growth rate of the most unstable mode is observed, when the streaming speed V0/sub m/ in the central region of the current sheet increases above a critical speed V/sub C/≅1.2V/sub A//sub ∞/. Here V/sub A//sub ∞/ is the Alfven speed far away from the current layer. This study shows that when the electric resistivity eta is zero, the sausage mode is excited because of a super-Alfvenic plasma flow parallel to the current sheet. This flow-induced sausage mode is called the streaming sausage mode. In the presence of a finite resistivity, the streaming sausage mode becomes a mixed sausage--tearing mode, because of the presence of magnetic field line reconnections in the current sheet. This mixed sausage--tearing mode, or simply the streaming tearing mode, has a high growth rate, γ≅0.1tau-1/sub A/, where tau/sub A/ is the Alfven transit time across the current layer
Formation of quasiparallel Alfven solitons
Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.
1992-01-01
The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.
Three-dimensional computation of drift Alfven turbulence
International Nuclear Information System (INIS)
A transcollisional, electromagnetic fluid model, incorporating the parallel heat flux as a dependent variable, is constructed to treat electron drift turbulence in the regime of tokamak edge plasma at the L-H transition. The resulting turbulence is very sensitive to the plasma beta throughout this regime, with the scaling with rising beta produced by the effect of magnetic induction to slow the Alfvenic parallel electron dynamics and thereby leave the turbulence in a more robust, non-adiabatic state. Magnetic flutter and curvature have a minor quantitative effect is strong. Transport by magnetic flutter is small compared to that by the E x B flow eddies. Fluctuation statistics show that while the turbulence shows no coherent structure, it is coupled strongly enough so that neither density nor temperature fluctuations behave as passive scalars. Both profile gradients drive the turbulence, with the total thermal energy transport varying only weakly with the gradient ratio, d log T/d log n. Scaling with magnetic shear is pronounced, with stronger shear leading to lower drive levels. Scaling with either collision frequency or magnetic curvature is weak, consistent with their weak qualitative effect. The result is that electron drift turbulence at L-H transition edge parameters is drift Alfven turbulence, with both ballooning and resistivity in a clear secondary role. The contents of the drift Alfven model will form a significant part of any useful first-principles computation of tokamak edge turbulence. (Author)
One-dimensional model of global Alfven Eigenmodes in TORTUS and Wendelstein WVII-AS
International Nuclear Information System (INIS)
In this article, a model for GAEs in a screw pinch plasma geometry is presented. The wave equations are derived from an ideal MHD model with corrections for finite frequency. Analytical and numerical solutions of these equations, applied to parameter sets approximating the TORTUS Tokamak and the Wendelstein WVII-AS advanced stellarator, are presented and discussed. (orig.)
James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves
Chen, Liu
2012-10-01
Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.
Rogue waves in Alfvenic turbulence
International Nuclear Information System (INIS)
Rogue waves, in the form of giant breathers, are shown to develop in the Alfven wave (AW) turbulence regime described by the randomly driven derivative nonlinear Schroedinger equation in the presence of a weak dissipation. The distribution of the instantaneous global maxima of the AW intensity fluctuations is seen to be accurately fitted by power laws, which contrasts with the integrable regime (absence of dissipation and forcing) where the behavior is rather exponential. As the dissipation is reduced, freak waves form less frequently but reach larger amplitudes. -- Highlights: → Rogue wave formation in long-wavelength Alfvenic turbulence. → Huge waves form by quasi-collapse of breathers in presence of weak dissipation. → Amplitude distribution of rogue waves is fitted by power laws. → Possible relation with SLAMS pulses observed near the Earth bow shock.
Finite amplitude solitary Alfven waves in a low-β plasma
International Nuclear Information System (INIS)
Different exact forms of Alfven solitons were found recently in low-beta plasmas by different assumptions. The present paper studies the case of parallel ion inertia and current density. Both super and sub-Alfvenian rarefactive solitons were found to exist depending on the angle of inclination of the propagation vector with the magnetic field. (D.Gy.)
Experimental studies of Alfven mode stability in the JET tokamak
International Nuclear Information System (INIS)
Controlling the interaction between fusion generated α's and modes in the Alfven frequency range is a crucial issue for the operation of experimental reactors in the burning plasma regime, such as ITER, as these modes can be driven unstable by the slowing-down α's up to amplitudes at which they could cause rapid radial transport of the α's themselves. The need to avoid strongly unstable regimes for some classes of Alfven Eigenmodes (AEs) could therefore provide additional operational limits for the reactor regime. On the other hand, if adequate actuators are identified, AEs could be used to affect the thermonuclear plasma burn in a controlled way. Two classes of investigations are conducted on JET to directly observe the AE stability limits in the presence of fast particles that can resonate with the modes and to measure the damping rate of the modes as a function of the plasma parameters, in order to quantify the mechanisms that provide background damping for the modes in different conditions. Sections 2 and 3 describe experiments from the first class, addressing the AE stability threshold for different fast ion radial distributions, generated at different locations by additional heating or at different plasma densities, or modified by the presence of error field mode. Examples from the second class are described in Section 4. During the last two years a particular effort was undertaken to complete the database of damping rate measurements of low toroidal mode numbers using the saddle coil active AE excitation system, which is being dismantled during the 2004 JET shutdown. A new antenna system is under development to continue along the same lines, but extending the accessible range of toroidal mode numbers to higher values, up to n >>10-15, of more direct relevance to ITER. This system is described in Section 5
Characteristics of Short-wavelength Oblique Alfven and Slow waves
Zhao, J S; Yu, M Y; Lu, J Y; Wu, D J
2014-01-01
Linear properties of kinetic Alfv\\'en waves (KAWs) and kinetic slow waves (KSWs) are studied in the framework of two-fluid magnetohydrodynamics. We obtain the wave dispersion relations that are valid in a wide range of the wave frequency {\\omega} and plasma-to-magnetic pressure ratio {\\beta}. The KAW frequency can reach and exceed the ion cyclotron frequency at ion kinetic scales, whereas the KSW frequency remains sub-cyclotron. At {\\beta}\\sim1, the plasma and magnetic pressure perturbations of both modes are in anti-phase, so that there is nearly no total pressure perturbations. However, these modes exhibit several different properties. At high {\\beta}, the electric field polarization of KAW and KSW is opposite at the ion gyroradius scale, where KAWs are polarized in sense of electron gyration (right-hand polarized) and KSWs are left-hand polarized. The magnetic helicity {\\sigma}\\sim1 for KAWs and {\\sigma}\\sim-1 for KSWs, and the ion Alfv\\'en ratio R_{Ai}\\ll 1 for KAWs and R_{Ai}\\gg 1 for KSWs. We also found...
Polyakov loop fluctuations in Dirac eigenmode expansion
Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro; Suganuma, Hideo
2015-01-01
We investigate correlations of the Polyakov loop fluctuations with eigenmodes of the lattice Dirac operator. Their analytic relations are derived on the temporally odd-number size lattice with the normal non-twisted periodic boundary condition for the link-variables. We find that the low-lying Dirac modes yield negligible contributions to the Polyakov loop fluctuations. This property is confirmed to be valid in confined and deconfined phase by numerical simulations in SU(3) quenched QCD. Thes...
International Nuclear Information System (INIS)
Alfven instabilities driven by fast ions have been observed in many experiments on tokamaks and stellarators. In tokamaks, they can strongly affect the fast ion confinement but not the bulk plasma. In contrast to this, experiments on the Wendelstein 7-AS (W7-AS) stellarator have shown that Alfvenic activity can strongly deteriorate the global energy confinement time: strong thermal crashes (the temperature dropped by up to 30%) were reported in Ref. [1] and observed also in the last series of experiments in 2002. To explain this phenomenon, recently a new mechanism of anomalous electron heat conductivity associated with Kinetic Alfven Waves (KAW) was suggested. In this work, we further develop theory required for the interpretation of experimental observations of Alfvenic activity in W7-AS and analyse a particular shot (No. 34723) where strong drops of the plasma energy content took place in details. As a result, (i) we identified the instability observed in the mentioned W7-AS shot as Non- conventional Global Alfven Eigenmode (NGAE), (ii) suggested an explanation of the frequency chirping (from ∼70 kHz to ∼45 kHz) during the instability bursts, (iii) showed why the instability was most strong at the end of the bursts when thermal crashes occurred, (iv) considered two possible mechanisms of thermal crashes (anomalous heat conductivity and instability-induced-loss of the injected ions), (v) made a modelling of oscillations of the plasma energy content. An important role of the finite orbit width of fast ions was revealed: it was found that finite orbits actually trigger the instability at ω≤ 70 kHz and weaken the mode destabilization at the end of the instability bursts (when ω≥ 40 kHz). It was concluded that the observed frequency chirping can be explained by the expulsion of fast ions from the plasma core and a concomitant local change of the rotational transform. In order to identify the instability, the Alfven continuum and Alfven eigenmodes were
Three-dimensional numerical simulations of fast-to-Alfven conversion in sunspots
Felipe, T
2012-01-01
The conversion of fast waves to the Alfven mode in a realistic sunspot atmosphere is studied through three-dimensional numerical simulations. An upward propagating fast acoustic wave is excited in the high-beta region of the model. The new wave modes generated at the conversion layer are analyzed from the projections of the velocity and magnetic field in their characteristic directions, and the computation of their wave energy and fluxes. The analysis reveals that the maximum efficiency of the conversion to the slow mode is obtained for inclinations of 25 degrees and low azimuths, while the Alfven wave conversions peaks at high inclinations and azimuths between 50 and 120 degrees. Downward propagating Alfven waves appear at the regions of the sunspot where the orientation of the magnetic field is in the direction opposite to the wave propagation, since at these locations the Alfven wave couples better with the downgoing fast magnetic wave which are reflected due to the gradients of the Alfven speed. The simul...
MIMO Identical Eigenmode Transmission System (IETS) - a Channel Decomposition Perspective
Shakir, Muhammad Zeeshan; Durrani, Tariq
2007-01-01
In the past few years considerable attention has been given to the design of Multiple-Input Multiple-Output (MIMO) Eigenmode Transmission Systems (EMTS). This paper presents an in-depth analysis of a new MIMO eigenmode transmission strategy. The non-linear decomposition technique called Geometric Mean Decomposition (GMD) is employed for the formation of eigenmodes over MIMO flatfading channel. Exploiting GMD technique, identical, parallel and independent transmission pipes are created for dat...
Alfven Wave Tomography for Cold MHD Plasmas
International Nuclear Information System (INIS)
Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation
Interchange Reconnection Alfven Wave Generation
Lynch, B J; Li, Y
2014-01-01
Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we present further analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfven waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly-open field lines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high frequency component associated with the current sheet/reconnection site and an extended low frequency component associ...
Spheromak heating with Alfven waves
International Nuclear Information System (INIS)
The temperature of present spheromak plasmas will need to be raised in order to test the feasibility of the confinement concept. In addition, a spatially-selective rf heating pulse can be used to study transport. As the ohmic heating power within a spheromak can be quite large (6-MW), low frequencies where large amounts of power are available are preferred. For the Los Alamos spheromak experiment CTX, we propose to add heating energy via a shear Alfven wave resonance. This resonance can be made to occur upon a particular flux surface, thus depositing most of the energy locally. A 2-dimensional equilibrium code (toroidally symmetric) is used to establish flux surfaces and magnetic field values for the desired configuration, either with or without plasma pressure
Polyakov loop fluctuations in Dirac eigenmode expansion
Doi, Takahiro M; Sasaki, Chihiro; Suganuma, Hideo
2015-01-01
We investigate correlations of the Polyakov loop fluctuations with eigenmodes of the lattice Dirac operator. Their analytic relations are derived on the temporally odd-number size lattice with the normal non-twisted periodic boundary condition for the link-variables. We find that the low-lying Dirac modes yield negligible contributions to the Polyakov loop fluctuations. This property is confirmed to be valid in confined and deconfined phase by numerical simulations in quenched QCD. These results indicate that there is no direct, one-to-one correspondence between confinement and chiral symmetry breaking in QCD in the context of different properties of the Polyakov loop fluctuation ratios.
The Eigenmode Analysis of Human Motion
Park, Juyong; Gonzalez, Marta C
2016-01-01
Rapid advances in modern communication technology are enabling the accumulation of large-scale, high-resolution observational data of spatiotemporal movements of humans. Classification and prediction of human mobility based on the analysis of such data carry great potential in applications such as urban planning as well as being of theoretical interest. A robust theoretical framework is therefore required to study and properly understand human motion. Here we perform the eigenmode analysis of human motion data gathered from mobile communication records, which allows us to explore the scaling properties and characteristics of human motion.
Continuum Eigenmodes in Some Linear Stellar Models
Winfield, Christopher J
2016-01-01
We apply parallel approaches in the study of continuous spectra to adiabatic stellar models. We seek continuum eigenmodes for the LAWE formulated as both finite difference and linear differential equations. In particular, we apply methods of Jacobi matrices and methods of subordinancy theory in these respective formulations. We find certain pressure-density conditions which admit positive-measured sets of continuous oscillation spectra under plausible conditions on density and pressure. We arrive at results of unbounded oscillations and computational or, perhaps, dynamic instability.
The eigenmode analysis of human motion
International Nuclear Information System (INIS)
Rapid advances in modern communication technology are enabling the accumulation of large-scale, high-resolution observational data of the spatiotemporal movements of humans. Classification and prediction of human mobility based on the analysis of such data has great potential in applications such as urban planning in addition to being a subject of theoretical interest. A robust theoretical framework is therefore required to study and properly understand human motion. Here we perform the eigenmode analysis of human motion data gathered from mobile communication records, which allows us to explore the scaling properties and characteristics of human motion
Alfven wave. DOE Critical Review Series
International Nuclear Information System (INIS)
This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves
Alfven wave. DOE Critical Review Series
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, A.; Uberoi, C.
1982-01-01
This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)
Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvenic Waves in ITER
Schneller, Mirjam; Briguglio, Sergio
2015-01-01
This work presents the results of a multi mode ITER study on Toroidal Alfven Eigenmodes, using the nonlinear hybrid HAGIS-LIGKA model. It is found that main conclusions from earlier studies of ASDEX Upgrade discharges can be transferred to the ITER scenario: global, nonlinear effects are crucial for the evolution of the multi mode scenario. This work focuses on the ITER 15 MA baseline scenario with with a safety factor at the magnetic axis of $q_0 =$ 0.986. The least damped eigenmodes of the system are identified with the gyrokinetic, non-perturbative LIGKA solver, concerning mode structure, frequency and damping. Taking into account all weakly damped modes that can be identified linearly, nonlinear simulations with HAGIS reveal strong multi mode behavior: while in some parameter range, quasi-linear estimates turn out to be reasonable approximations for the nonlinearly relaxed energetic particle profile, under certain conditions low-n TAE branches can be excited. As a consequence, not only grow amplitudes of ...
Effect of Rossby and Alfv\\'{e}n waves on the dynamics of the tachocline
Leprovost, Nicolas; Kim, Eun-Jin
2006-01-01
To understand magnetic diffusion, momentum transport, and mixing in the interior of the sun, we consider an idealized model of the tachocline, namely magnetohydrodynamics (MHD) turbulence on a $\\beta$ plane subject to a large scale shear (provided by the latitudinal differential rotation). This model enables us to self-consistently derive the influence of shear, Rossby and Alfv\\'{e}n waves on the transport properties of turbulence. In the strong magnetic field regime, we find that the turbule...
Alfvenic waves in solar spicules
Ebadi, Hossein
2016-07-01
We analyzed O VI (1031.93 A) and O VI (1037.61 A line profiles from the time series of SOHO/SUMER data. The wavelet analysis is used to determine the fundamental mode and its first harmonic periods and their ratio. The period ratio, P_1/P_2 is obtained as 2.1 based on our calculations. To model the spicule oscillations, we consider an equilibrium configuration in the form of an expanding straight magnetic flux tube with varying density along tube. We used cylindrical coordinates r, phi, and z with the z-axis along tube axis. Standing Alfvenic waves with steady flows are studied. More realistic background magnetic field, plasma density, and spicule radios inferred from the actual magnetoseismology of observations are used. It is found that the oscillation periods and their ratio are shifted because of the steady flows. The observational values are reached in P_1/P_2, when the steady flows are 0.2-0.3, the values which are reported for classical spicules.
Influence of radial electric field on Alfven-type instabilities
Energy Technology Data Exchange (ETDEWEB)
Hahm, T.S.; Tang, W.M.
1994-03-01
The influence of the large scale radial electric field, E{sub r}{sup (0)} on the frequency of shear-Alfven-type instability is analyzed. A frozen-in-flux constraint and the moderate-{beta} ion gyrokinetic equation are used in the derivation. The analysis indicates that the frequency predicted by a theory with E{sub r}{sup (0)} effect should be Doppler-shifted by k {center_dot} V{sub E} for comparison to the experimentally observed frequency. A specific example of the practical relevance of the result is given regarding possible identification of the edge-localized-mode-associated magnetic activity recently observed in PBX-M tokamak experiment.
Neugebauer, M.; Buti, B.
1990-01-01
Results are presented of a study designed to confirm the suspected relation between Alfven solitons (steepened Afven waves) and rotational discontinuities (RDs) in the solar wind. The ISEE 3 data were used to search for the predicted correlations between the beta value of plasma, the sense of polarization of the discontinuity, and changes of the magnetic field strength and plasma density across the discontinuity. No statistically significant evidence was found for the evolution of RDs from Alfven solitons. A possibility is suggested that the observations made could have been far from the regions in which the RDs were formed.
Roles of Fast-Cyclotron and Alfven-Cyclotron Waves for the Multi-Ion Solar Wind
Xiong, Ming; Li, Xing
2012-01-01
Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave-particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfven waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. We assume that (1) low-frequency Alfven and fast waves have the same spectral shape and the same amplitude of power s...
Plasma heating by kinetic Alfven wave
International Nuclear Information System (INIS)
The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author)
Alfven wave heating of a theta pinch
International Nuclear Information System (INIS)
The process of shear Alfven wave resonant absorption for plasma heating has been applied to a theta pinch. The m=1 mode is excited by means of a helical launching structure with a given wavelength, at a number of different frequencies. When the frequency lies in the continuous Alfven spectrum the kink energy is transferred to the Alfven wave and then is rapidly thermalized. The heating power is measured by a diamagnetic probe. It is shown that the probe signal can be treated as a thermodynamic variable permitting an exact energy balance to be deduced. The measured resonance curve of the heating power is in agreement with the predicted behaviour. A 50% efficiency is achieved and the coupling between the plasma and the external circuit is strong, in spite of the high compression ratio. (author)
Alfvenic Heating of Protostellar Accretion Disks
Vasconcelos, M. J.; Jatenco-Pereira, V.; R. Opher
1999-01-01
We investigate the effects of heating generated by damping of Alfven waves on protostellar accretion disks. Two mechanisms of damping are investigated, nonlinear and turbulent, which were previously studied in stellar winds (Jatenco-Pereira & Opher 1989a, b). For the nominal values studied, f=delta v/v_{A}=0.002 and F=varpi/Omega_{i}=0.1, where delta v, v_{A} and varpi are the amplitude, velocity and average frequency of the Alfven wave, respectively, and Omega_{i} is the ion cyclotron freque...
Current generation by the Kinetic Alfven wave
International Nuclear Information System (INIS)
The current generated and the efficiency of the shear Kinetic Alfven wave are obtained using a self-consistent quasilinear formulation. Also, the current generation by the monochromatic shear Kinetic Alfven wave introduced by Hasegawa is re-examined taking into account the nonresonant electrons. To obtain the RF current density at the level of the ohmic heating current density in a tokamak, the required external magnetic field is smaller than 0.1% of the DC magnetic field, and the parallel electric field (E2), using the Lausanne-TCA-Tokamak parameters is of the order of 0.01 V cm-1. (author)
On Alfven waves in the solar breeze
International Nuclear Information System (INIS)
The application to the solar wind motivates the consideration of Alfven waves in a radial background magnetic field and radial mean flow, in two cases, viz., with velocity and magnetic field perturbations along parallels, or also with perturbations along meridians, combined in the radial components of vorticity and electric current. In both cases the same second-order Alfven wave equation is obtained; it has, in general, two singularities. If the mean flow velocity is taken to be a power of radial distance, with exponent other than zero or unity, there is a transition layer. In general there is a second singularity, viz., a critical layer, where the Alfven speed equals the mean flow velocity. There is one exceptional case in which the critical layer does not exist, namely a homogeneous medium, for which the mean flow velocity decays on the inverse square of the radial distance, and then Alfven speed also decays in the same way, so that their ratio is a constant, leading to two possibilities: (i) the ratio is not unity, and the wave equation remains of the second-order; (ii) the wave equation becomes of first-order in the case the mean flow velocity and Alfven speed are equal everywhere, because then the waves can propagate only in one direction. Case (i) corresponds to Alfven waves in the solar breeze. Exact solutions of the wave equations are obtained for all values of the radius, as a single expression for the first-order wave equation, whereas for the second-order wave equation it is possible to obtain solutions for small and large radius; the transition level limits the radius of convergence of one of these solutions, but the two solutions together cover the full range of radial distances. The choices of boundary conditions are discussed and the wavefields plotted vs dimensionless distance for several values of the two dimensionless parameters of the problem, viz., the Alfven number and dimensionless frequency, which appear in one combination only. The
Modulational instability of finite-amplitude, circularly polarized Alfven waves
Derby, N. F., Jr.
1978-01-01
The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.
Eigenmodes of three-dimensional magnetic arcades in the Sun's corona
Jain, Bradley W Hindman Rekha
2015-01-01
We develop a model of coronal-loop oscillations that treats the observed bright loops as an integral part of a larger 3-D magnetic structure comprised of the entire magnetic arcade. We demonstrate that magnetic arcades within the solar corona can trap MHD fast waves in a 3-D waveguide. This is accomplished through the construction of a cylindrically symmetric model of a magnetic arcade with a potential magnetic field. For a magnetically dominated plasma, we derive a governing equation for MHD fast waves and from this equation we show that the magnetic arcade forms a 3-D waveguide if the Alfv\\'en speed increases monotonically beyond a fiducial radius. Both magnetic pressure and tension act as restoring forces, instead of just tension as is generally assumed in 1-D models. Since magnetic pressure plays an important role, the eigenmodes involve propagation both parallel and transverse to the magnetic field. Using an analytic solution, we derive the specific eigenfrequencies and eigenfunctions for an arcade posse...
Effects of small wavenumber Alfven waves on particle acceleration
International Nuclear Information System (INIS)
Energetic charged particles are accelerated by turbulent Alfven waves via resonant interaction. We discuss effects of nonresonant Alfven waves on energy diffusion by using test particle simulations. When the Alfven waves are given at wavenumbers larger than the resonant wavenumber with small amplitude, simulated diffusion coefficient is similar to that by the quasi-linear theory. If the Alfven waves are added at wavenumbers smaller than the resonant wavenumber, it is found that the simulated diffusion coefficient exceeds the quasi-linear one and becomes larger with increasing the energy density of the nonresonant Alfven waves. (author)
The use of Alfven waves in NET
International Nuclear Information System (INIS)
A number of features of Alfven wave heating make it potentially attractive for use in large tokamac reactors. Among them are the availability and relatively low cost of the power supplies, the potential ability to act selectively on the current profile, and the probable absence of operational limits in size, fields or density. (author) 26 figs., 10 tabs., 54 refs
The nonlinear compressional Alfven wave equation
International Nuclear Information System (INIS)
The nonlinear wave equation of the compressional Alfven mode is derived in Lagrangian fluid coordinate. The nonlinearity attributes unequal weight to the terms of temporal and spatial derivatives. Two specific solutions relevant to transit-time magnetic pumping plasma heating and theta-pinch implosions are given. (Author)
Particle energization and current sheets in Alfvenic plasma turbulence
Makwana, Kirit; Li, Hui; Guo, Fan; Daughton, William; Cattaneo, Fausto
2015-11-01
Plasma turbulence is driven by injecting energy at large scales through stirring or instabilities. This energy cascades forward to smaller scales by nonlinear interactions, described by magnetohydrodynamics (MHD) at scales larger than the ion gyroradius. At smaller scales, the fluid description of MHD breaks down and kinetic mechanisms convert turbulent energy into particle energy. We investigate this entire process by simulating the cascade of strongly interacting Alfven waves using MHD and particle-in-cell (PIC) simulations. The plasma beta is varied and particle heating is analyzed. Anisotropic heating of particles is observed. We calculate the fraction of injected energy converted into non-thermal energy. At low beta we obtain a significant non-thermal component to the particle energy distribution function. We investigate the mechanisms behind this acceleration. The velocity distribution function is correlated with the sites of turbulent current sheets. The different dissipative terms due to curvature drift, gradB drift, polarization drifts, and parallel current density are also calculated. This has applications for understanding particle energization in turbulent space plasmas.
Alfven waves: a journey between space and fusion plasmas
International Nuclear Information System (INIS)
Alfven waves discovered by Hannes Alfven (1942 Nature 150 405) are fundamental electromagnetic oscillations in magnetized plasmas existing in the nature and laboratories. Alfven waves play important roles in the heating, stability and transport of plasmas. The anisotropic nearly incompressible shear Alfven wave is particularly interesting since, in realistic non-uniform plasmas, its wave spectra consist of both the regular discrete and the singular continuous components. In this Alfven lecture, I will discuss these spectral properties and examine their significant linear and nonlinear physics implications. These discussions will be based on perspectives from my own research in both space and laboratory fusion plasmas, and will demonstrate the positive feedback and cross-fertilization between these two important sub-disciplines of plasma physics research. Some open issues of nonlinear Alfven wave physics in burning fusion as well as magnetospheric space plasmas will also be explored.
Stationary nonlinear Alfven waves and solitons
Hada, T.; Kennel, C. F.; Buti, B.
1989-01-01
Stationary solutions of the derivative nonlinear Schroedinger equation are discussed and classified by using a pseudopotential formulation. The solutions consist of a rich family of nonlinear Alfven waves and solitons with parallel and oblique propagation directions. Expressions for the envelope and the phase of nonlinear waves with periodic envelope modulation, and 'hyperbolic' and 'algebraic' solitons are given. The propagation angle for the slightly modulated elliptic, periodic waves and for oblique solitons is evaluated.
Refined critical balance in strong Alfvenic turbulence
Mallet, A.; Schekochihin, A. A.; Chandran, B. D. G.
2014-01-01
We present numerical evidence that in strong Alfvenic turbulence, the critical balance principle---equality of the nonlinear decorrelation and linear propagation times---is scale invariant, in the sense that the probability distribution of the ratio of these times is independent of scale. This result only holds if the local alignment of the Elsasser fields is taken into account in calculating the nonlinear time. At any given scale, the degree of alignment is found to increase with fluctuation...
Alfven wave studies on a tokamak
International Nuclear Information System (INIS)
The continuum modes of the shear Alfven resonance are studied on the Tokapole II device, a small tokamak operated in a four node poloidal divertor configuration. A variety of antenna designs and the efficiency with which they deliver energy to the resonant layer are discussed. The spatial structure of the driven waves is studied by means of magnetic probes inserted into the current channel. In an attempt to optimize the coupling of energy in to the resonant layer, the angle of antenna currents with respect to the equilibrium field, antenna size, and plasma-to-antenna distance are varied. The usefulness of Faraday shields, particle shields, and local limiters are investigated. Antennas should be well shielded, either a dense Faraday shield or particle shield being satisfactory. The antenna should be large and very near to the plasma. The wave magnetic fields measured show a spatial resonance, the position of which varies with the value of the equilibrium field and mass density. They are polarized perpendicular to the equilibrium field. A wave propagates radially in to the resonant surface where it is converted to the shear Alfven wave. The signal has a short risetime and does not propagate far toroidally. These points are all consistent with a strongly damped shear Alfven wave. Comparisons of this work to theoretical predictions and results from other tokamaks are made
Saturation of Alfven modes in tokamaks
White, Roscoe; Gorelenkov, Nikolai; Gorelenkova, Marina; Podesta, Mario; Chen, Yang
2015-11-01
The effect of Alfven modes on high energetic particles in tokamaks is important in general, and could be of significance for ITER. This work is a combination of analytic models and numerical simulation to find the saturation levels of unstable Alfven modes and the resulting effect on beam and alpha particle distributions. Solving the drift kinetic equation with a guiding center code in the presence of Alfven modes driven unstable by a distribution of high energy particles requires the use of a δf formalism, wherby the initial distribution f0 is assumed to be a steady state high energy particle distribution in the absense of the modes, and f =f0 + δf describes the particle distribution in the presence of the modes. The Hamiltonian is written as H =H0 +H1 with H0 giving the unperturbed motion, conserving particle energy E, toroidal canonical momentum Pζ, and magnetic moment μ. By writing the initial particle distribution in terms of these variables, a simple means of calculating mode-particle energy and momentum transfer results, giving a very accurate δf formalism.
Excitation of Alfven Waves and Pulsar Radio Emission
Lyutikov, Maxim
1999-01-01
We analyze mechanisms of the excitation of Alfv\\'{e}n wave in pulsar magnetospheres as a possible source of pulsar radio emission generation. We find that Cherenkov excitation of obliquely propagating Alfv\\'{e}n waves is inefficient, while excitation at the anomalous cyclotron resonance by the particles from the primary beam and from the tail of the bulk distribution function may have a considerable growth rate. The cyclotron instability on Alfv\\'{e}n waves occurs in the kinetic regime still ...
Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity
Institute of Scientific and Technical Information of China (English)
ZHANG Xian-Gao; HUANG Xin-Fan; CHEN Kun-Ji; QIAN Bo; CHEN San; DING Hong-Lin; LIU Sui; WANG Xiang; XU Jun; LI Wei
2008-01-01
Hydrogenated amorphous silicon nitride based coupled optical microcavity is investigated theoretically and experimentally. The theoretical calculation of the transmittance spectra of optical microcavity with one cavity and coupled microcavity with two-cavity is performed.The optical eigenmode splitting for coupled microcavity is found due to the interaction between the neighbouring localized cavities.Experimentally,the coupled cavity samples are prepared by plasma enhanced chemical vapour deposition and characterized by photoluminescence measurements.It is found that the photoluminescence peak wavelength agrees well with the cavity mode in the calculated transmittance spectra.This eigenmode splitting is analogous to the electron state energy splitting in diatom molecules.
International Nuclear Information System (INIS)
With the first injection of neutral beams into the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40, 557 (2000)], a broad spectrum of fluctuations consisting of nearly equally spaced peaks in the frequency range from about 0.2 to 1.2 times the ion cyclotron frequency was observed. The frequencies scale with toroidal field and plasma density consistently with Alfven waves. From these and other observations, the modes have been identified as compressional Alfven eigenmodes (CAE). It has also recently been found that the ratio of the measured ion and electron temperatures in NSTX during neutral beam heating is anomalously high [Bell, Bull. Am. Phys. Soc. 46, 206 (2001)]. To explain the anomaly in the ratio of ion to electron temperature, it has been suggested that the CAE, driven by the beam ions, stochastically heat the thermal ions [Gates et al., Phys. Rev. Lett. 87, 205003 (2001)]. In this paper it is shown through studies of the power balance that stochastic heating of the thermal ions by the observed CAE alone is not solely responsible for the anomaly in the ion to electron temperature ratio
International Nuclear Information System (INIS)
The combined plasma non-uniformity effects on the energy deposition of Alfven waves launched by an external antenna in pre-heated spherical tokamaks are investigated. The following relevant physical processes are here possible: (a) the emergence of gaps in the shear Alfven continuum spectrum and the generation of discrete global Alfven eigenmodes with frequencies inside the gaps; (b) multi-wave interactions, interactions of gaps of the same kind (e.g., toroidicity induced) and of different kinds (toroidicity, ellipticity and triangularity induced) as well as of secondary order gaps arising when a pair of modes is coupled to one or more modes through other coupling parameters; (c) basic wave-plasma interactions as propagation, reflection, mode-conversion, tunneling and deposition. Thus, we solved numerically the full 2D wave equations for the vector and scalar potentials, using a quite general two-fluid resistive tensor-operator, without any geometrical limitations. The results obtained indicate the existence of antenna-launched wave characteristics for which the power is most efficiently coupled in outer regions of plasmas, which is of special interest for low aspect ratio tokamaks, e.g., for the generation of non-inductive current drive as well as for turbulence suppression and transport barriers formation
Fast-ion transport induced by Alfvén eigenmodes in the ASDEX Upgrade tokamak
DEFF Research Database (Denmark)
Garcia-Munoz, M.; Classen, I.G.J.; Geiger, B.;
2011-01-01
A comprehensive suite of diagnostics has allowed detailed measurements of the Alfvén eigenmode (AE) spatial structure and subsequent fast-ion transport in the ASDEX Upgrade (AUG) tokamak [1]. Reversed shear Alfvén eigenmodes (RSAEs) and toroidal induced Alfvén eigenmodes (TAEs) have been driven u...
Energy transfer between eigenmodes in multimodal atomic force microscopy
International Nuclear Information System (INIS)
We present experimental and computational investigations of tetramodal and pentamodal atomic force microscopy (AFM), respectively, whereby the first four or five flexural eigenmodes of the cantilever are simultaneously excited externally. This leads to six to eight additional observables in the form of amplitude and phase signals, with respect to the monomodal amplitude modulation method. We convert these additional observables into three or four dissipation and virial expressions, and show that these quantities can provide enhanced contrast that would otherwise remain hidden in the original observables. We also show that the complexity of the multimodal impact leads to significant energy transfer between the active eigenmodes, such that the dissipated power for individual eigenmodes may be positive or negative, while the total dissipated power remains positive. These results suggest that the contrast of individual eigenmodes in multifrequency AFM should be not be considered in isolation and that it may be possible to use different eigenfrequencies to probe sample properties that respond to different relaxation times. (paper)
Nonlinear propagation of short wavelength drift-Alfven waves
DEFF Research Database (Denmark)
Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens
1986-01-01
Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...
Effect of longitudinal modulation of Alfven wave filamentation
International Nuclear Information System (INIS)
The modulation of circularly polarized Alfven waves due to quasitransverse perturbations is addressed, and the nonlinear dynamics simulated numerically. In some instances, radial collapse (filamentation) of Alfven waves can be arrested by the magnetosonic waves stirred by the ponderomotive force. Such waves may, however, develop sharp fronts leading to strong hydrodynamic effects
A study of Alfven's ionizing critical velocity
International Nuclear Information System (INIS)
Alfven's hypothesis of the ionizing critical velocity is investigated on the basis of observations with rotating plasma devices. The experimental fact is that the relative velocity between a neutral gas and a plasma perpendicular to a magnetic field does not exceed a critical velocity vc = √2eVi/m (eVi and m, the ionization energy and the atomic or molecular mass of the gas, respectively). It is interpreted from the standpoint of a current which generates in a process of plasma polarization. A final interpretation on the hypothesis is not given, but the structure and elementary process of the ionizing interaction is clarified. (author)
Solitary kinetic Alfven waves in adiabatic process
International Nuclear Information System (INIS)
Solitary kinetic Alfven waves (SKAWs) have been an important subject in the field of space plasma physics because of their nonzero parallel electrical field and density fluctuations. Under different thermodynamic processes, SKAWs, within the limit of small amplitude, are studied analytically and numerically using the Sagdeev potential method. The results show that the width of the solitary structures is larger and the amplitude of the density humps is smaller under constant entropy than those under constant temperature with other relevant parameters being the same. The perturbed electromagnetic fields Ex, By, and Ez are also studied further.
HLL Riemann Solvers and Alfven Waves in Black Hole Magnetospheres
Punsly, Brian; Kim, Jinho; Garain, Sudip
2016-01-01
In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. However, numerical simulations of black hole magnetospheres are often based on 1-D HLL Riemann solvers that readily dissipate Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, it is unclear how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. The HLL Riemann solver is also notorious for producing large recurring...
Nonlinear standing Alfven wave current system at Io: Theory
International Nuclear Information System (INIS)
We present a nonlinear analytical model of the Alfven current tubes continuing the currents through Io (or rather its ionosphere) generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. We thereby extend the linear work by Drell et al. (1965) to the fully nonlinear, sub-Alfvenic situation also including flow which is not perpendicular to the background magnetic field. The following principal results have been obtained: (1) The portion of the currents feeding Io is aligned with the Alfven characteristics at an angle theta/sub A/ is the Alfven Mach number. (2) The Alfven tubes act like an external conductance Σ/sub A/=1/(μ0V/sub A/(1+M/sub A/2+2M/sub A/ sin theta)/sup 1/2/ where V/sub A/ is the Alfven wave propagation. Hence the Jovian ionospheric conductivity is not necessary for current closure. (3) In addition, the Alfven tubes may be reflected from either the torus boundary or the Jovian ionosphere. The efficiency of the resulting interaction with these boundaries varies with Io position. The interaction is particularly strong at extreme magnetic latitudes, thereby suggesting a mechanism for the Io control of decametric emissions. (4) The reflected Alfven waves may heat both the torus plasma and the Jovian ionosphere as well as produce increased diffusion of high-energy particles in the torus. (5) From the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites for several reasons: these include its ionosphere arising from ionized volcanic gases, a high external Alfvenic conductance Σ/sub A/, and a high corotational voltage in addition to the interaction phenomenon with a boundary. (6) We find that Amalthea is probably strongly coupled to Jupiter's ionosphere while the outer Galilean satellites may occasionally experience super-Alfvenic conditions
Excitation of Alfven Cyclotron Instability by charged fusion products in tokamaks
International Nuclear Information System (INIS)
The spectrum of ion cyclotron emission (ICE) observed in tokamak experiments shows narrow peaks at multiples of the edge cyclotron frequency of background ions. A possible mechanism of ICE based on the fast Alfven Cyclotron Instability (ACI) resonantly excited by high energy charged products (α-particles or protons) is studied here. The two-dimensional ACI eigenmode structure and eigenfrequency are obtained in the large tokamak aspect ratio limit. The ACI is excited via wave-particle resonances in phase space by tapping the fast ion velocity space free energy. The instability growth rates are computed perturbatively from the perturbed fast particle distribution function, which is obtained by integrating the high frequency gyrokinetic equation along the particle orbit. Numerical examples of ACI growth rates are presented for TFTR plasmas. The fast ion distribution function is assumed to be singular in pitch angle near the plasma edge. The results are employed to understand the ICE in Deuterium-Deuterium (DD) and Deuterium-tritium (DT) tokamak experiments
Selecting method of the dominant eigenmodes of eddy currents for plasma control study
International Nuclear Information System (INIS)
A method for selecting the dominant eigenmodes of the eddy currents which affect plasma equilibria and its control is presented. The method is based on the blockline diagram analysis of a control model. The passive effects of conductors due to eddy currents are classified into 6 groups and each effect such as a shell effect and a shield effect is expressed in a simple summation of that of each eigenmode. This property is used to select the dominant eigenmodes for a plasma control study. The application of this method is made for JT-60 and 35 dominant eigenmodes are selected from among 464 eigenmodes obtained from the eddy current analysis. The effect due to these 35 dominant eigenmodes approximates well to that due to 464 eigenmodes and it is shown that the dimension of the control model is well reduced by using this method. (author)
Kinetic effects on Alfven wave nonlinearity. II. The modified nonlinear wave equation
International Nuclear Information System (INIS)
The study of kinetic effects on Alfven wave nonlinearity is continued. Previously obtained expressions for the perturbed (by an Alfven wave) ion and electron distribution functions are used to obtain a nonlinear wave equation for parallel-propagating, circularly polarized waves. The results are cast in the form of a modified version of the familiar derivative nonlinear Schroedinger equation. The approach in obtaining this equation is a hybrid one; fluid theory is used to the greatest extent possible, and kinetic theory is introduced where the correction is believed to be most important. Fluid theory at two levels of sophistication is employed. The first uses a simple scalar pressure term. This approach yields physical insight and illuminates the field-aligned fluid flow and the associated plasma density perturbation as a major contributor to Alfven wave nonlinearity. The second approach employs a tensor pressure term that in general will be necessary. The results indicate that kinetic effects in general produce a nonlinear wave equation that is of a different functional form than the derivative nonlinear Schroedinger equation, as previously reported by Mjolhus and Wyller [Phys. Scr. 33, 442 (1986); J. Plasma Phys. 40, 229 (1988)]. The coefficient of the derivative cubic term depends on the plasma beta in a way which, in general, is quite different from the fluid expression. In addition, a functionally novel term appears in the modified equation. The magnitude of this term, named the ''nonlocal term'' by Mjolhus and Wyller, can be large when the plasma beta is comparable to unity. The susceptibility of the modified equation to modulational instability is studied. Kinetic effects cause modulational instability of wave packets, even when fluid theory would predict modulational stability. This modulational instability occurs for both right- and left-hand polarized waves
Kinetic Alfv\\'{e}n solitary and rogue waves in superthermal plasmas
Bains, A; Xia, L -D
2014-01-01
We investigate the small but finite amplitude solitary Kinetic Alfv\\'{e}n waves (KAWs) in low $\\beta$ plasmas with superthermal electrons modeled by a kappa-type distribution. A nonlinear Korteweg-de Vries (KdV) equation describing the evolution of KAWs is derived by using the standard reductive perturbation method. Examining the dependence of the nonlinear and dispersion coefficients of the KdV equation on the superthermal parameter $\\kappa$, plasma $\\beta$ and obliqueness of propagation, we show that these parameters may change substantially the shape and size of solitary KAW pulses. Only sub-Alfv\\'enic, compressive solitons are supported. We then extend the study to examine kinetic Alfv\\'en rogue waves by deriving a nonlinear Schr\\"{o}dinger equation from {the KdV} equation. Rational solutions that form rogue wave envelopes are obtained. We examine how the behavior of rogue waves depends on the plasma parameters in question, finding that the rogue envelopes are lowered with increasing electron superthermal...
Embedded monopoles in quark eigenmodes in quenched SU(2) QCD
Chernodub, M N
2006-01-01
We study the embedded QCD monopoles (``quark monopoles'') using low-lying eigenmodes of the overlap Dirac operator in zero- and finite-temperature quenched SU(2) gauge theory on the lattice. These monopoles correspond to gauge-invariant hedgehogs in the quark-antiquark condensates. The monopoles were suggested to be agents of the chiral symmetry restoration since their cores should suppress the chiral condensate. We study numerically the scalar, axial and chirally invariant definitions of the embedded monopoles and show that the monopole densities are in fact globally anti-correlated with the density of the Dirac eigenmodes. We observe, that the embedded monopoles corresponding to low-lying Dirac eigenvalues are dense in the chirally invariant (high temperature) phase and dilute in the chirally broken (low temperature) phase. We find that the scaling of the scalar and axial monopole densities towards the continuum limit is similar to the scaling of the string-like objects while the chirally invariant monopole...
Cooperative eigenmodes and scattering in 1D atomic arrays
Bettles, R J; Adams, C S
2016-01-01
Using a classical coupled dipole model, we numerically investigate the cooperative behavior of a one dimensional array of atomic dipoles driven by a weak laser field. Changing the polarization and direction of the driving field allows us to separately address superradiant, subradiant, red shifted, and blue shifted eigenmodes, as well as observe strong Fano-like interferences between different modes. The cooperative eigenvectors can be characterized by the phase difference between nearest neighbor dipoles, ranging from all oscillating in phase to all oscillating out of phase with their nearest neighbors. Investigating the eigenvalue behavior as a function of atom number and lattice spacing, we find that certain eigenmodes of an infinite atomic chain have the same decay rate as a single atom between two mirrors.
Discrete space-time symmetry, polarization eigenmodes and their degeneracies
Potton, R J
2016-01-01
The irreducible representations of the group C4(direct product)V can be used to distinguish polarization eigenmodes, to account for their degeneracies and to associate them with particular magnetic crystal classes. The occurrence of this finite Abelian group points to a possible connection with topology but, irrespective of this, qualitative features of gyrotropy in condensed media can be approached in a way that does not depend on arbitrarily truncated tensor expansions.
Polyakov loop fluctuations in the Dirac eigenmode expansion
Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro; Suganuma, Hideo
2015-01-01
We investigate correlations of the Polyakov loop fluctuations with eigenmodes of the lattice Dirac operator. Their analytic relations are derived on the temporally odd-number size lattice with the normal nontwisted periodic boundary condition for the link variables. We find that the low-lying Dirac modes yield negligible contributions to the Polyakov loop fluctuations. This property is confirmed to be valid in confined and deconfined phases by numerical simulations in SU(3) quenched QCD. Thes...
Distortional eigenmodes and solutions for thin-walled beams
DEFF Research Database (Denmark)
Andreassen, Michael Joachim; Jönsson, Jeppe
2011-01-01
found for the homogeneous system the final uncoupled set of distortional differential equations including the load terms are presented and the full solution is given, including an illustrative example. This new approach is an alternative to the traditional first order GBT method....... differential equations for generalized beam theory (GBT), are determined via a semi-discretization procedure. The distortional displacement fields are found as solutions to a distortional homogeneous eigenvalue problem which produce distortional displacement eigenmodes. Using the distortional modal matrix...
Inertial Alfven waves in an inhomogeneous bi-Maxwellian plasma
International Nuclear Information System (INIS)
The Vlasov kinetic equation is solved using gyrokinetic theory and the dielectric tensor for non-relativistic, magnetized, bi-Maxwellian plasmas is calculated. A generalized dispersion relation for kinetic Alfven waves is derived taking into account the density inhomogeneity and temperature anisotropy. The modified dispersion relation thus obtained is then used to examine the propagation characteristics of the kinetic Alfven waves in the inertial regime. The importance of density inhomogeneity and temperature anisotropy for Solar corona is highlighted. The growth rate of the inertial Alfven wave proves that density inhomogeneity acts as a source of free energy.
Optical absorption and localization of eigenmodes in disordered clusters
International Nuclear Information System (INIS)
Results of a large-scale computational project for the calculation of the dispersion relations of eigenmodes (surface plasmons) and optical-absorption spectra of disordered clusters (fractal and uncorrelated) are reported. Fractals (cluster-cluster aggregates and the random-walk clusters, both original and diluted) and random-gas clusters consisting of 100--300 monomers are studied. High-accuracy results of Monte Carlo simulations are obtained. Transition of the eigenmodes from extremely localized to fully delocalized is found. Scaling of the dispersion relation of the eigenmodes, i.e., their localization radius or coherence length as a function of the spectral variable X, predicted earlier is quantitatively confirmed for diluted clusters. In contrast to the dispersion relations, the absorption spectra as functions of X do not show pronounced scaling in the intermediate region, but scale in the binary (spectral-wing) region. We suggest a new plot for the absorption profiles, namely absorption as a function of the coherence length of excitations. In such plots for most clusters, scaling is pronounced, but the indices differ dramatically from the predictions of the strong-localization theory. Possible reasons for the observed behavior are discussed
The Source of Alfven Waves That Heat the Solar Corona
Ruzmaikin, A.; Berger, M. A.
1998-01-01
We suggest a source for high-frequency Alfven waves invoked in coronal heating and acceleration of the solar wind. The source is associated with small-scale magnetic loops in the chromospheric network.
Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air
Directory of Open Access Journals (Sweden)
Santiago D. Solares
2014-09-01
Full Text Available We present an exploratory study of multimodal tapping-mode atomic force microscopy driving more than three cantilever eigenmodes. We present tetramodal (4-eigenmode imaging experiments conducted on a thin polytetrafluoroethylene (PTFE film and computational simulations of pentamodal (5-eigenmode cantilever dynamics and spectroscopy, focusing on the case of large amplitude ratios between the fundamental eigenmode and the higher eigenmodes. We discuss the dynamic complexities of the tip response in time and frequency space, as well as the average amplitude and phase response. We also illustrate typical images and spectroscopy curves and provide a very brief description of the observed contrast. Overall, our findings are promising in that they help to open the door to increasing sophistication and greater versatility in multi-frequency AFM through the incorporation of a larger number of driven eigenmodes, and in highlighting specific future research opportunities.
Confinement relevant Alfven instabilities in Wendelstein 7-AS
International Nuclear Information System (INIS)
Bursting Alfvenic activity accompanied by strong thermal crashes and frequency chirping in a W7-AS shot is studied. A theory explaining the experimental observations is developed. A novel mechanism of anomalous electron thermal conductivity is found. In addition, a general consideration of the influence of the gap crossing on the Alfven continuum in stellarators is carried out and a phenomenon of gap annihilation is predicted. (author)
Development of Alfven wave antenna system for TCABR Tokamak
International Nuclear Information System (INIS)
The advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak is presented. The antenna system is capable of exciting the travelling waves M=- 1, N=-4, -6 with single helicity and provides the possibility to improve Alfven wave plasma heating efficiency and to increase RF power input up 1 MW, without an uncontrolled density rise. The basic features of the antenna design and the results of preliminary tests are analyzed. (author)
A laboratory search for plasma erosion by Alfven waves
Vincena, S.; Gekelman, W.; Pribyl, P.
2007-12-01
Obliquely propagating shear Alfven waves with transverse wavelengths on the order of the electron inertial length or even the ion gyro-radius are commonly observed in the earth's low-altitude auroral zones. These regions are also replete with observations of electron beams and transversely heated ions. A kinetic treatment of shear Alfven wave-particle interaction reveals how these waves can be responsible for some of the observed particle acceleration. The auroral plasma environment is further enriched by the presence of field-aligned depletions in plasma density, and it has been suggested* that the Alfven waves may, in fact, be the cause of the erosion of ionospheric density. In this laboratory experiment, shear waves will be launched using a variety of proven antennas, and also allowed to grow spontaneously as Drift-Alfven modes in seeded density depletions**. Detailed measurements of the wave magnetic fields in the perpendicular density gradient regions will be presented which demonstrate the generation of short perpendicular wave scales due to the perpendicular gradient in parallel wave phase speed. Miniature in-situ particle diagnostics will also be used to look for electron and ion acceleration. The waves will also be launched into an increasing region of background magnetic field in an attempt to model the ratios of Alfven speed to electron thermal speed, and density gradient scale length to electron inertial length appropriate to the earth's auroral zone. Preliminary results will be presented on the efficacy of shear Alfven waves to self-generate plasma density depletions, or deepen ambient density inhomogeneities. The experiments are conducted at UCLA's Basic Plasma Science Facility in the Large Plasma Device. *Chaston, et al., "Ionospheric erosion by Alfven Waves," JGR, V 111, A03206, 2006. **Penano, et al., "Drift-Alfven fluctuations associated with a narrow pressure striation," Phys. Plasmas, V 7, Issue 1, pp. 144-157 (2000).
Low-frequency waves in a high-beta collisionless plasma Polarization, compressibility and helicity
Gary, S. P.
1986-01-01
This paper considers the linear theory of waves near and below the ion cyclotron frequency in an isothermal electron-ion Vlasov plasma which is isotropic, homogeneous and magnetized. Numerical solutions of the full dispersion equation for the magnetosonic/whistler and Alfven/ion cyclotron modes at beta(i) = 1.0 are presented, and the polarizations, compressibilities, helicities, ion Alfven ratios and ion cross-helicities are exhibited and compared. At sufficiently large beta(i) and theta, the angle of propagation with respect to the magnetic field, the real part of the polarization of the Alfven/ion cyclotron wave changes sign, so that, for such parameters, this mode is no longer left-hand polarized. The Alfven/ion cyclotron mode becomes more compressive as the wavenumber increases, whereas the magnetosonic/whistler becomes more compressive with increasing theta.
Interplanetary Alfven waves and auroral (substorm) activity: IMP 8
International Nuclear Information System (INIS)
Almost year of IMP 8 interplanetary magnetic field and plasma data (Days 1-312, 1979) have been examined to determine the interplanetary causes of geomagnetic AE activity. The nature of the interplanetary medium (Alfvenic or non-Alfvenic) and the B2 correlation with AE were examined over 12-hour increments throughout the study. It is found that Alfvenic wave intervals (defined as Vx-Bx cross-correlation coefficients of >0.6) are present over 60% of the time and the southward component of the Alfven waves is well correlated with AE (average peak correlation coefficient 0.62), with a median lag of 43 min. The most probable delay of AE from Bs is considerably shorter, about 20-25 min. Southward magnetic fields during non-Alfvenic intervals (Vx-Bx cross-correlation coefficients of s were variable from event to event (and at different times within the Alfven wave train), ranging from 45 min to as little as 0 min. The cause of this variable delay is somewhat surprising and is not presently well understood
Localized eigenmodes of the overlap operator and their impact on the eigenvalue distribution
Energy Technology Data Exchange (ETDEWEB)
Hasenfratz, A.; Hoffmann, R. [Colorado Univ., Boulder, CO (United States). Department of Physics; Schaefer, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-09-15
In a system where chiral symmetry is spontaneously broken, the low energy eigenmodes of the continuum Dirac operator are extended. On the lattice, due to discretization effects, the Dirac operator can have localized eigenmodes that affect physical quantities sensitive to chiral symmetry. While the infrared eigenmodes of the Wilson Dirac operator are usually extended even on coarse lattices, the chiral overlap operator has many localized eigenmodes in the physical region, especially in mixed action simulations. Depending on their density, these modes can introduce strong lattice artifacts. The effect can be controlled by changing the parameters of the overlap operator, in particular the clover improvement term and the center of the overlap projection. (orig.)
International Nuclear Information System (INIS)
Stationary transonic super-Alfven, subsonic super-Alfven, supersonic sub-Alfven, and Alfven magnetohydrodynamic flows, obtained by numerical modeling of their build-up processes, in coaxial canals in the presence of longitudinal magnetic field have been considered
Inductive Eigenmodes of a resistive toroidal surface in vacuum
International Nuclear Information System (INIS)
In this paper it has been studied the Electro-Magnetic (EM) Eigenmodes, sufficiently slow as to legitimate the pre-Maxwell approximation of Maxwell's system (or inductive Eigenmodes), of a given smooth, toroidal-unknotted, electrically resistive surface Τ with given smooth (surface) resistivity 0 degree 3. Within the above limitations (to be made more precise), the geometry of Τ is arbitrary. With the eigenvalue associated with the generic Eigenmode being defined as the opposite of its logarithmic time-derivative, one expects that the resulting spectrum be discrete and strictly positive. It shall be interested into the degenerate case where Τ be cut (i.e. electrically broken) along one or more of its irreducible cycles. This case will be analyzed autonomously, rather than as a limit (for ρdegree → ∞ along the cuts) of the regular case. Without cuts, the Eigenproblem under consideration is nothing but the two-dimensional (2-dim) generalization of the classical case of a smooth, unknotted, electrically conductive, simple coil in infinite vacuum. Its analysis hinges on the classical potential theory, and turns out to be a special application of the linear, integrodifferential (elliptic) equation theory on a compact, multiply connected, 2-dim manifold. The attention and approach will be confined to strong (or classical) solutions, both in Τ and C Τ = R3 / Τ. This study is divided in two parts: a General Part (Sects 1 divided 4) is devoted to the case of generic Τ and ρdegree (within the convenient smoothness requirements), whereas a Special Part (Sects 5 divided 7) deals with the (more or less formal) discussion of a couple of particular cases (Τ ≡ a canonical torus), both of which with uniform ρdegree. Some propaedeutical/supplementary information is provided in a number of Appendices
Polyakov loop fluctuations in the Dirac eigenmode expansion
Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro; Suganuma, Hideo
2015-11-01
We investigate correlations of the Polyakov loop fluctuations with eigenmodes of the lattice Dirac operator. Their analytic relations are derived on the temporally odd-number size lattice with the normal nontwisted periodic boundary condition for the link variables. We find that the low-lying Dirac modes yield negligible contributions to the Polyakov loop fluctuations. This property is confirmed to be valid in confined and deconfined phases by numerical simulations in SU(3) quenched QCD. These results indicate that there is no direct, one-to-one correspondence between confinement and chiral symmetry breaking in QCD in the context of different properties of the Polyakov loop fluctuation ratios.
Free-boundary toroidal Alfvén eigenmodes
Chen, Eugene Y.; Berk, H. L.; Breizman, B.; Zheng, L. J.
2011-05-01
A numerical study is presented for the n = 1 free-boundary toroidal Alfvén eigenmodes (TAE) in tokamaks, which shows that there is considerable sensitivity of n = 1 modes to the position of the conducting wall. An additional branch of the TAE is shown to emerge from the upper continuum as the ratio of conducting wall radius to plasma radius increases. Such phenomena arise in plasma equilibria with both circular and shaped cross sections, where the shaped profile studied here is similar to that found in Alcator C-Mod.
Optical Control of Fluorescence through Plasmonic Eigenmode Extinction
Xu, Xiaoying; Lin, Shih-Che; Li, Quanshui; Zhang, Zhili; Ivanov, Ilia N.; Li, Yuan; Wang, Wenbin; Gu, Baohua; Zhang, Zhenyu; Hsueh, Chun-Hway; Snijders, Paul C.; Seal, Katyayani
2015-04-01
We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.
Optical Control of Fluorescence through Plasmonic Eigenmode Extinction
Xu, Xiaoying; Li, Quanshui; Zhang, Zhili; Ivanov, Ilia N; Li, Yuan; Wang, Wenbin; Gu, Baohua; Zhang, Zhenyu; Hsueh, Chun-Hway; Snijders, Paul C; Seal, Katyayani
2015-01-01
We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum.
Filamentation of dispersive Alfven waves in density channels: Hall magnetohydrodynamics description
International Nuclear Information System (INIS)
Filamentation of dispersive Alfven waves initiated by low or high density channels (depending on the plasma beta) is simulated numerically in the framework of ideal Hall magnetohydrodynamics, and asymptotically modeled with a two-dimensional nonlinear Schroedinger equation including a linear attracting potential. Compared with the dynamics in a homogeneous plasma, the phenomenon is accelerated and occurs for a broader range of parameters. In the case of an isolated channel with a width comparable to the pump wavelength, the transverse wave collapse can be replaced by a moderate amplification. In many cases, a relatively complex dynamics takes place, characterized by an oscillation between magnetic filaments and magnetic ribbons, leading to the formation of small scales at which dissipative effects could become relevant. Alfven vortices, governed by the equations of the reduced magnetohydrodynamics, are also identified in the simulations, in spite of their small amplitude relative to the wave. The formation of structures under the effect of periodic or random distributions of low and high density channels is also discussed
ARQ strategies for MIMO eigenmode transmission with adaptive modulation and coding
DEFF Research Database (Denmark)
De Carvalho, Elisabeth; Popovski, Petar
Packet retransmission strategies are presented for MIMO eigenmode transmission where adaptive modulation and coding (AMC) is implemented. The retransmission design is based on weighted linear MMSE. It includes the transmit and receiver filter, the power and eigenmode allocation and AMC level when...
Interacting Eigenmodes of a plasma diode with a density gradient
International Nuclear Information System (INIS)
The formation of narrow high frequency electric field spikes in plasma density gradients is investigated using one-dimensional particle in cell simulations. It is found that the shape of the plasma density gradient is very important for the spike formation. The spike appears also in simulations with immobile ions showing that a coupling to the ion motion, as for example in wave interactions, is not necessary for the formation of HF spikes. However, the HF spike influences the ion motion, and ion waves are seen in the simulations. It has been found, in experiments and simulations, that the electron velocity distribution function deviates from the Maxwellian distribution. Dispersion relations are calculated using realistic distribution functions. The spike can be seen as a coupled system of two Eigenmodes of a plasma diode fed by the beam-plasma interaction. Based on a simplified fluid description of such Eigenmodes, explanations for the localization of the spike, spatially and in frequency, are given. The density amplitude is comparable with the DC density level close to the cathode. Space charge limits of waves in this region seem to determine the amplitude of the spike through the Poisson's equation
Interacting Eigenmodes of a plasma diode with a density gradient
Energy Technology Data Exchange (ETDEWEB)
Loefgren, T.; Gunell, H.
1997-08-01
The formation of narrow high frequency electric field spikes in plasma density gradients is investigated using one-dimensional particle in cell simulations. It is found that the shape of the plasma density gradient is very important for the spike formation. The spike appears also in simulations with immobile ions showing that a coupling to the ion motion, as for example in wave interactions, is not necessary for the formation of HF spikes. However, the HF spike influences the ion motion, and ion waves are seen in the simulations. It has been found, in experiments and simulations, that the electron velocity distribution function deviates from the Maxwellian distribution. Dispersion relations are calculated using realistic distribution functions. The spike can be seen as a coupled system of two Eigenmodes of a plasma diode fed by the beam-plasma interaction. Based on a simplified fluid description of such Eigenmodes, explanations for the localization of the spike, spatially and in frequency, are given. The density amplitude is comparable with the DC density level close to the cathode. Space charge limits of waves in this region seem to determine the amplitude of the spike through the Poisson`s equation. 12 refs, 19 figs.
Stability criteria for current-driven drift wave eigenmodes
International Nuclear Information System (INIS)
Eigenmodes of current-driven collisionless electrostatic drift waves in a sheared magnetic field are re-examined in the light of the recent discovery that their non-current-driven counterparts are stable. Conditions for instability are determined from numerical finite difference and variational solutions of the slab model differential equation. It is found that three stringent conditions are required for instability: (1) very weak shear, (2) low ion temperature, and (3) very large parallel drift velocity. For L/sub n//L/sub s/=0.02 and T/sub i//T/sub e/=0, the instability threshold is u/sub d//c/sub s/=0.85, where L/sub n/ and L/sub s/ are the density and shear scale lengths, respectively, u/sub d/ is the drift velocity, and c/sub s/ is the sound speed. For larger shear and finite ion temperature the critical drift velocity is even larger. It is concluded that drift wave fluctuations in tokamaks cannot be described in terms of these eigenmodes
Tuan, P H; Wen, C P; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F
2014-02-01
Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity. PMID:25353549
Electromagnetic transport components and sheared flows in drift-Alfven turbulence
DEFF Research Database (Denmark)
Naulin, V.
2003-01-01
Results from three-dimensional numerical simulations of drift-Alfven turbulence in a toroidal geometry with sheared magnetic field are presented. The simulations show a relation between self-generated poloidal shear flows and magnetic field perturbations. For large values of the plasma beta we ob...... folded Gaussian, while the PDFs of the spatially averaged transport are in good agreement with an extreme value distribution. (C) 2003 American Institute of Physics....... related to magnetic flutter is proposed. The characteristics of the ExB flux are investigated using probability density distribution functions (PDFs). Although they are not Gaussian, no signs of algebraic tails in the PDFs are observed. The PDFs of the pointwise transport are found to agree well with a...
Prokopenko, Yu. V.; Filippov, Yu. F.; Shipilova, I. A.
2007-09-01
A semicylindrical dielectric resonator with a thin cylindrical inhomogeneity in the region of the field antinode of a whispering gallery eigenmode has been studied. Characteristic equations determining the complex eigenfrequencies of such resonators with axially homogeneous eigenmodes are obtained. It is shown that the presence of a dielectric or conducting inhomogeneity leads to a frequency shift and causes additional energy losses of the eigenmode.
Stable Alfven wave dynamo action in the reversed field pinch
International Nuclear Information System (INIS)
Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. Static quasi-linear Alfven wave calculations have shown that dynamo emfs on the order of eta vector J are possible. This suggested a possible explanation of RFP behavior and a new (externally driven) mechanism for extending operation and controlling field profiles (possibly reducing plasma transport). This thesis demonstrates that the dynamo emf can quickly induce plasma currents whose emf cancels the dynamo effect. This thesis also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number
Alfven QPOs in magnetars in the anelastic approximation
Cerdá-Durán, Pablo; Font, José A
2009-01-01
We perform two-dimensional simulations of Alfven oscillations in magnetars, modeled as relativistic stars with a dipolar magnetic field. We use the anelastic approximation to general relativistic magnetohydrodynamics, which allows for an effective suppression of fluid modes and an accurate description of Alfven waves. In addition, we compute Alfven oscillation frequencies along individual magnetic field lines with a semi-analytic approach, employing a short-wavelength approximation. Our main findings are as follows: a) we confirm the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency, as was found in the linear study of Sotani, Kokkotas & Stergioulas (2008); b) the QPOs appearing near the magnetic axis are split into two groups, depending on their symmetry across the equatorial plane. The antisymmetric QPOs have only odd integer-multiple harmonics; c) the continuum obtained with our semi-analytic approach agrees remarkably well...
Diffusive shock acceleration with magnetic field amplification and Alfvenic drift
Kang, Hyesung
2012-01-01
We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfvenic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is greater than 2x10^{-4}, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfven speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfvenic drift predicts that the postshock CR pressure saturates roughly at 10 % of the shock ram pressure for strong shocks...
Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.
1992-01-01
In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.
Alfven wave heating of current-carrying plasmas
International Nuclear Information System (INIS)
Alfven wave heating involves the excitation, by antenna currents, of MHD waves which mode convert to short wavelength quasi-electrostatic waves (QEW) at the Alfven resonance position. Over the past few years the authors developed the computer code ANTENNA which solves the kinetic theory equations that describe this process for a cylindrical model of a tokamak. Recently, the following improvements have been made to the code: Antennas with radial current elements can now be treated; arbitrary density and temperature profiles can be analysed; the kinetic theory wave equations have been formulated for arbitrary force-free plasma-current distributions
Ion temperature in plasmas with intrinsic Alfven waves
Wu, C. S.; Yoon, P. H.; Wang, C. B.
2014-10-01
This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.
Global structures of Alfven-ballooning modes in magnetospheric plasmas
International Nuclear Information System (INIS)
The authors show that a steep plasma pressure gradient can lead to radially localized Alfven modes, which are damped through coupling to filed line resonances. These have been called drift Alfven balloning modes (DABM) and are the prime candidates to explain Pc4-Pc5 geomagnetic pulsations observed during storms. A strong dependence of the damping rate on the azimuthal wave number m is established, as well as on the equilibrium profile. A minimum azimuthal mode number can be found for the DABM to be radially trapped. The authors find that higher m DABMs are better localized, which is consistent with high-m observations
First Results of PIC Modeling of Kinetic Alfven Wave Dissipation
Chulaki, Anna; Hesse, Michael; Zenitani, Seiji
2007-01-01
We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.
Resonant Alfven wave instabilities driven by streaming fast particles
International Nuclear Information System (INIS)
A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs
High and low frequency Alfven modes in tokamaks
International Nuclear Information System (INIS)
We present an analysis of the typical features of shear Alfven waves in tokamak plasmas in a frequency domain ranging from the ''high'' frequencies (ω ≅ νA/2qR0; νA being the Alfven speed and qR0 the tokamak connection length) of the toroidal gap to the ''low'' frequencies, comparable with the thermal ion diamagnetic frequency, ω*pi and/or the thermal ion transit frequency ωti = νti/qR0 (νti being the ion thermal speed). (author)
KINETIC ALFVEN WAVES EXCITED BY OBLIQUE MAGNETOHYDRODYNAMIC ALFVEN WAVES IN CORONAL HOLES
International Nuclear Information System (INIS)
Kinetic Alfven waves (KAWs) are small-scale dispersive AWs that can play an important role in particle heating and acceleration of space and solar plasmas. An excitation mechanism for KAWs created by the coupling between large-scale oblique AWs and small-scale KAWs is presented in this paper. Taking into account both the collisional and Landau damping dissipations, the results show that the net growth rate of the excited KAWs increases with their perpendicular wavenumber kperpendicular and reaches maximum at λe kperpendicular ∼ 0.3, where λe is the electron inertial length. However, for KAWs with shorter perpendicular wavelengths, the net growth rate decreases rapidly due to dissipative effects. The evaluation of the threshold amplitude of the AW implies that for KAWs with λe kperpendicular e kperpendicular < 0.3 can be not only efficiently excited in the interplume region but also strongly dissipated in the dense plume due to the Landau damping.
Studies of the Jet in BL Lacertae. II. Superluminal Alfv\\'en Waves
Cohen, M H; Arshakian, T G; Clausen-Brown, E; Homan, D C; Hovatta, T; Kovalev, Y Y; Lister, M L; Pushkarev, A B; Richards, J L; Savolainen, T
2014-01-01
Ridge lines on the pc-scale jet of the active galactic nucleus BL Lac display transverse patterns that move superluminally downstream. The patterns are not ballistic, but are analogous to waves on a whip. Their apparent speeds $\\beta_\\mathrm{app}$ (units of $c$) range from 4.2 to 13.5, corresponding to $\\beta_\\mathrm{wave}^\\mathrm{gal}= 0.981 - 0.998$ in the galaxy frame. We show that the magnetic field in the jet is well-ordered with a strong transverse component, and assume that it is helical and that the transverse patterns are longitudinal Alfv\\'en waves. The wave-induced transverse speed of the jet is non-relativistic ($\\beta_\\mathrm{tr}^\\mathrm{gal}\\sim 0.09$) and in agreement with our assumption of low-amplitude waves. In 2010 the wave activity subsided and the jet displayed a mild wiggle that had a complex oscillatory behavior. The waves are excited by changes in the position angle of the recollimation shock, in analogy to exciting a wave on a whip by shaking it. Simple models of the system are presen...
Eigenmodes of quasi-static magnetic islands in current sheet
International Nuclear Information System (INIS)
As observation have shown, magnetic islands often appear before and/or after the onset of magnetic reconnections in the current sheets, and they also appear in the current sheets in the solar corona, Earth's magnetotail, and Earth's magnetopause. Thus, the existence of magnetic islands can affect the initial conditions in magnetic reconnection. In this paper, we propose a model of quasi-static magnetic island eigenmodes in the current sheet. This model analytically describes the magnetic field structures in the quasi-static case, which will provide a possible approach to reconstructing the magnetic structures in the current sheet via observation data. This model is self-consistent in the kinetic theory. Also, the distribution function of charged particles in the magnetic island can be calculated.
An improved perfectly matched layer for the eigenmode expansion technique
DEFF Research Database (Denmark)
Gregersen, Niels; Mørk, Jesper
2008-01-01
When performing optical simulations for rotationally symmetric geometries using the eigenmode expansion technique, it is necessary to place the geometry under investigation inside a cylinder with perfectly conducting walls. The parasitic reflections at the boundary of the computational domain can...... be suppressed by introducing a perfectly matched layer (PML) using e.g. complex coordinate stretching of the cylinder radius. However, the traditional PML suffers from an artificial field divergence limiting its usefulness. We show that the choice of a constant cylinder radius leads to mode profiles...... with exponentially increasing field amplitudes resulting in numerical instability. As a remedy we propose an improved PML based on a mode-dependent cylinder radius and mode profiles with stable field amplitudes. The new PML formulation eliminates the artificial field divergence and ensures numerical...
Numerical study of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak
International Nuclear Information System (INIS)
Alfvén eigenmodes in up-down asymmetric tokamak equilibria are studied by a new magnetohydrodynamic eigenvalue code. The code is verified with the NOVA code for the Solovév equilibrium and then is used to study Alfvén eigenmodes in a up-down asymmetric equilibrium of the Experimental Advanced Superconducting Tokamak. The frequency and mode structure of toroidicity-induced Alfvén eigenmodes are calculated. It is demonstrated numerically that up-down asymmetry induces phase variation in the eigenfunction across the major radius on the midplane
Alfv\\'enic instabilities driven by runaways in fusion plasmas
Fülöp, T
2014-01-01
Runaway particles can be produced in plasmas with large electric fields. Here we address the possibility that such runaway ions and electrons excite Alfv\\'enic instabilities. The magnetic perturbation induced by these modes can enhance the loss of runaways. This may have important implications for the runaway electron beam formation in tokamak disruptions.
Nonlinear Alfven waves and solitons in cold plasma
International Nuclear Information System (INIS)
A finite-zone sector for the derivative nonlinear Schroedinger equation, which describes nonlinear small-amplitude. Alfven waves in the long-wave approximation, is investigated. The formulas for periodic one-phase and one-soliton solutions and the general formula for an n-soliton solution envelope are obtained
Quantum effects on compressional Alfven waves in compensated semiconductors
Energy Technology Data Exchange (ETDEWEB)
Amin, M. R. [Department of Electronics and Communications Engineering, East West University, Aftabnagar, Dhaka 1212 (Bangladesh)
2015-03-15
Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.
Drift-Alfven vortices in Hamiltonian plasma fluids
International Nuclear Information System (INIS)
Plasma phenomena with frequencies below the ion cyclotron and the magnetosonic and above the ion-acoustic frequency are discussed. Finite electron mass and ion gyro-radius effects are taken into account. Equilibrium and stability are investigated from a noncanonical Hamiltonian point of view. Explicit solutions are given for dipole drift-Alfven vortices that propagate across a uniform magnetic field
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Energy Technology Data Exchange (ETDEWEB)
Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
1.5D quasilinear model and its application on beams interacting with Alfvén eigenmodes in DIII-D
Ghantous, K.; Gorelenkov, N. N.; Berk, H. L.; Heidbrink, W. W.; Van Zeeland, M. A.
2012-09-01
We propose a model, denoted here by 1.5D, to study energetic particle (EP) interaction with toroidal Alfvenic eigenmodes (TAE) in the case where the local EP drive for TAE exceeds the stability limit. Based on quasilinear theory, the proposed 1.5D model assumes that the particles diffuse in phase space, flattening the pressure profile until its gradient reaches a critical value where the modes stabilize. Using local theories and NOVA-K simulations of TAE damping and growth rates, the 1.5D model calculates the critical gradient and reconstructs the relaxed EP pressure profile. Local theory is improved from previous study by including more sophisticated damping and drive mechanisms such as the numerical computation of the effect of the EP finite orbit width on the growth rate. The 1.5D model is applied on the well-diagnosed DIII-D discharges #142111 [M. A. Van Zeeland et al., Phys. Plasmas 18, 135001 (2011)] and #127112 [W. W. Heidbrink et al., Nucl. Fusion. 48, 084001 (2008)]. We achieved a very satisfactory agreement with the experimental results on the EP pressure profiles redistribution and measured losses. This agreement of the 1.5D model with experimental results allows the use of this code as a guide for ITER plasma operation where it is desired to have no more than 5% loss of fusion alpha particles as limited by the design.
Fligsen, T; Van Rienen, U
2014-01-01
The computation of eigenmodes for complex accelerating structures is a challenging and important task for the design and operation of particle accelerators. Discretizing long and complex structures to determine its eigenmodes leads to demanding computations typically performed on super computers. This contribution presents an application example of a method to compute eigenmodes and other parameters derived from these eigenmodes for long and complex structures using standard workstation computers. This is accomplished by the decomposition of the complex structure into several single segments. In a next step, the electromagnetic properties of the segments are described in terms of a compact state-space model. Subsequently, the state-space models of the single structures are concatenated to the full structure. The results of direct calculations are compared with results obtained by the concatenation scheme in terms of computational time and accuracy.
Hammer, Manfred
2004-01-01
The propagation of guided and nonconfined optical waves at fixed frequency through dielectric structures with piecewise constant, rectangular permittivity is considered in two spatial dimensions. Bidirectional versions of eigenmodes, computed for sequences of multilayer slab waveguides, constitute t
Hammer, Manfred; Honsa, R.; Richter, L.
2003-01-01
Superpositions of two perpendicularly oriented bidirectional eigenmode propagation (BEP) fields, composed of basis modes that satisfy Dirichlet boundary conditions, can establish rigorous semianalytical solutions for problems of 2-D fixed-frequency wave propagation on unbounded, cross-shaped domains
Inductive Eigenmodes of a resistive toroidal surface in vacuum
Energy Technology Data Exchange (ETDEWEB)
Lo Surdo, C. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione
1999-07-01
In this paper it has been studied the Electro-Magnetic (EM) Eigenmodes, sufficiently slow as to legitimate the pre-Maxwell approximation of Maxwell's system (or inductive Eigenmodes), of a given smooth, toroidal-un knotted, electrically resistive surface {tau} with given smooth (surface) resistivity 0 < {rho}{sub d}egree < {infinity}, and lying in the (empty) R{sup 3}. Within the above limitations (to be made more precise), the geometry of {tau} is arbitrary. With the eigenvalue associated with the generic Eigenmode being defined as the opposite of its logarithmic time-derivative, one expects that the resulting spectrum be discrete and strictly positive. It shall be interested into the degenerate case where {tau} be cut (i.e. electrically broken) along one or more of its irreducible cycles. This case will be analyzed autonomously, rather than as a limit (for {rho}{sub d}egree {yields} {infinity} along the cuts) of the regular case. Without cuts, the Eigenproblem under consideration is nothing but the two-dimensional (2-dim) generalization of the classical case of a smooth, unknotted, electrically conductive, simple coil in infinite vacuum. Its analysis hinges on the classical potential theory, and turns out to be a special application of the linear, integrodifferential (elliptic) equation theory on a compact, multiply connected, 2-dim manifold. The attention and approach will be confined to strong (or classical) solutions, both in {tau} and C {tau} = R{sup 3} / {tau}. This study is divided in two parts: a General Part (Sects 1 divided 4) is devoted to the case of generic {tau} and {rho}{sub d}egree (within the convenient smoothness requirements), whereas a Special Part (Sects 5 divided 7) deals with the (more or less formal) discussion of a couple of particular cases ({tau} {identical_to} a canonical torus), both of which with uniform {rho}{sub d}egree. Some propaedeutical/supplementary information is provided in a number of Appendices. [Italian] Il presente
Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes
Daniel Kiracofe; Arvind Raman; Dalia Yablon
2013-01-01
One of the key goals in atomic force microscopy (AFM) imaging is to enhance material property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors...
Theory and calculation of finite beta drift wave turbulence
International Nuclear Information System (INIS)
Using numerical techniques, we calculate eigenmodes of the nonlinear universal mode with finite beta in order to determine the scaling of the saturation level of the instability with beta. We use two different renormalizations in the calculations and find that using the appropriate renormalization, we are able to recover Alcator density scaling, as originally found in analytic work by Molvig and Hirshman. We also find that the universal mode should be stable in ohmically heated tokamaks above a critical beta on the order of 0.02
Magneto-Hydrodynamic Activity and Energetic Particles - Application to Beta Alfvén Eigenmodes.
Nguyen, Christine
2009-01-01
The goal of magnetic fusion research is to extract the power released by fusion reactions and carried by the product of these reactions, liberated at energies of the order of a few MeV. The feasibility of fusion energy production relies on our ability to confine these energetic particles, while keeping the thermonuclear plasma in safe operating conditions. For that purpose, it is necessary to understand and find ways to control the interaction between energetic particles and the thermonuclear...
Alfv\\'en waves in simulations of solar photospheric vortices
Shelyag, S; Reid, A; Mathioudakis, M
2013-01-01
Using advanced numerical magneto-hydrodynamic simulations of the magnetised solar photosphere, including non-grey radiative transport and a non-ideal equation of state, we analyse plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit "tornado"-like behaviour or a "bath-tub" effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tension in the magnetised intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfv\\'en perturbations propagating along the nearly vertical magnetic field lines with local Alfv\\'en speed.
Kuridze, D
2007-01-01
Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.
Looking for Cosmological Alfven Waves in WMAP Data
Chen, Gang; Mukherjee, Pia; Kahniashvili, Tina; Ratra, Bharat; Wang, Yun
2004-01-01
A primordial cosmological magnetic field induces and supports vorticity or Alfven waves, which in turn generate cosmic microwave background (CMB) anisotropies. A homogeneous primordial magnetic field with fixed direction induces correlations between the $a_{l-1,m}$ and $a_{l+1,m}$ multipole coefficients of the CMB temperature anisotropy field. We discuss the constraints that can be placed on the strength of such a primordial magnetic field using CMB anisotropy data from the WMAP experiment. W...
Attractors of magnetohydrodynamic flows in an Alfvenic state
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel; Sanz, Javier [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1999-08-13
We present a simplified form of the magnetohydrodynamic system which describes the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form of Alfven waves, such as happens in several turbulent situations. Bounds on the dimension of the global attractor are found, and are shown to be an improvement of the standard ones for the full magnetohydrodynamic equations. (author)
Experimental observation of the shear Alfven resonance in a tokamak
International Nuclear Information System (INIS)
Experiments in Tokapole II have demonstrated the shear Alfven resonance in a tokamak by direct probe measurement of the wave magnetic field within the plasma. The resonance is driven by external antennas and is identified as radially localized enhancements of the poloidal wave magnetic field. The radial location agrees with calculations which include toroidicity and noncircularity of the plasma cross-section. Other properties such as polarization, radial width, risetime, and wave enhancement also agree with MHD theory
The Alf'ven Effect and Conformal Field Theory
Tabar, M. R. Rahimi; Rouhani, S
1995-01-01
Noting that two-dimensional magnetohydrodynamics can be modeled by conformal field theory, we argue that when the Alf'ven effect is also taken into account one is naturally lead to consider conformal field theories, which have logarithmic terms in their correlation functions. We discuss the implications of such logarithmic terms in the context of magnetohydrodynamics, and derive a relationship between conformal dimensions of the velocity stream function, the magnetic flux function and the Rey...
Sub-Alfvenic velocity limits in magnetohydrodynamic rotating plasmas
International Nuclear Information System (INIS)
Magnetized plasmas in shaped fields rely on large, supersonic rotation to effect centrifugal confinement of plasma along magnetic field lines. The results of experiments on the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 12, 055704 (2005)] to document velocity limits are reported. Previous results have shown a limit at the Alfven speed, consistent with equilibrium limits from ideal magnetohydrodynamic theory. Another speed limit, previously reported as possibly related to a critical ionization phenomenon and depending only on the ion species and the shape of the confining magnetic field, is investigated here for a broad range of the applied parameters. We show that this speed limit manifests at sub-Alfvenic levels and that, as externally applied torques on the plasma are increased, the extra momentum input shows up as enhanced plasma density or lower momentum confinement time, accompanied by an increase in the neutral radiation level. Several key parameters are scanned, including the mirror ratio, the length between insulators, and the species mass. We show that this velocity limit is consistent with the species-dependent critical ionization velocity postulated by Alfven.
Zaqarashvili, T. V.; Khodachenko, M. L.; Soler, R.
2012-01-01
Ion-neutral collisions may lead to the damping of Alfven waves in chromospheric and prominence plasmas. Neutral helium atoms enhance the damping in certain temperature interval, where the ratio of neutral helium and neutral hydrogen atoms is increased. Therefore, the height-dependence of ionization degrees of hydrogen and helium may influence the damping rate of Alfven waves. We aim to study the effect of neutral helium in the damping of Alfven waves in stratified partially ionized plasma of ...
Enhanced phase mixing of Alfv\\'en waves propagating in stratified and divergent coronal structures
Smith, P. D.; Tsiklauri, D.; Ruderman, M. S.
2007-01-01
Corrected analytical solutions describing the enhanced phase mixing of Alfven waves propagating in divergent stratified coronal structures are presented. These show that the enhanced phase mixing mechanism can dissipate Alfven waves at heights less than half that is predicted by the previous analytical solutions. The enhanced phase mixing of 0.1 Hz harmonic Alfven waves propagating in strongly divergent, H_b=5 Mm, stratified coronal structures, H_rho=50 Mm, can fulfill 100% of an active regio...
Cossu, Guido
2016-01-01
We investigate the properties of the background gauge field configurations that act as disorder for the Anderson localization mechanism in the Dirac spectrum of QCD at high temperatures. We compute the eigenmodes of the M\\"obius domain-wall fermion operator on configurations generated for the $SU(3)$ gauge theory with two flavors of fermions, in the temperature range $[0.9,1.9]T_c$. We identify the source of localization of the eigenmodes with gauge configurations that are self-dual and support negative fluctuations of the Polyakov loop $P_L$, in the high temperature sea of $P_L\\sim 1$. The dependence of these observations on the boundary conditions of the valence operator is studied. We also investigate the spatial overlap of the left-handed and right-handed projected eigenmodes in correlation with the localization and the corresponding eigenvalue. We discuss an interpretation of the results in terms of monopole-instanton structures.
Cossu, Guido; Hashimoto, Shoji
2016-06-01
We investigate the properties of the background gauge field configurations that act as disorder for the Anderson localization mechanism in the Dirac spectrum of QCD at high temperatures. We compute the eigenmodes of the Möbius domain-wall fermion operator on configurations generated for the SU(3) gauge theory with two flavors of fermions, in the temperature range [0.9, 1.9]T c . We identify the source of localization of the eigenmodes with gauge configurations that are self-dual and support negative fluctuations of the Polyakov loop P L , in the high temperature sea of P L ˜ 1. The dependence of these observations on the boundary conditions of the valence operator is studied. We also investigate the spatial overlap of the left-handed and right-handed projected eigenmodes in correlation with the localization and the corresponding eigenvalue. We discuss an interpretation of the results in terms of monopole-instanton structures.
... South Asian (Indian, Pakistani, etc.), Southeast Asian and Chinese descent. 1 Beta Thalassemia ßß Normal beta globin ... then there is a 25% chance with each pregnancy that their child will inherit two abnormal beta ...
Decomposition into eigenmodes: a novel approach to characterize plasma confinement in a tokamak
International Nuclear Information System (INIS)
A novel method of perturbation analysis has been developed to characterize particle and energy confinement in a tokamak plasma. Whereas the classical approach to confinement begins with an empirical model using transport coefficients, the present work uses eigenmodes to represent the dynamic response. The latter approach has been applied to density perturbations induced in the TCA tokamak by pellet injection. The observed dynamic response can be entirely reproduced by a set of three eigenmodes, thereby reducing the temporal evolution of the density to three time constants only. The scatter of these time constants allows the density to evolve on quite different time-scales, with the relaxation of the density profile being determined by the nature of the eigenmodes. Whilst a τ∼I2-3pnoe dependence is observed in the time constants, the eigenfunctions remain insensitive to plasma conditions. The density invariance is linked with a strong linearity in the dynamic response, indicating that the pellet has no significant impact on transport processes. The eigenmode representation is particularly well suited to the study of coupled variables. A coupling has been identified between density perturbations and another variable which is very likely to be the electron temperature. The strength of this coupling does not depend on plasma conditions, although it varies with the level of MHD activity. High levels of activity change the interaction between particle and heat fluxes without affecting the eigenmodes. This results in an unfavourable weighting of the eigenmodes which accelerates the density relaxation and thereby explains the observed confinement degradation. (author) 42 figs., 45 refs
On Alfven's critical velocity for the interaction of a neutral gas with a moving magnetized plasma
International Nuclear Information System (INIS)
A theory for the interaction of a neutral gas with a moving magnetized plasma is given. The Alfven expression for the critical velocity is identified with that for the terminal velocity while another expression for the threshold velocity for interaction is given. The implications of these results to the Alfven-Arrhenius model for the solar system are discussed. (Auth.)
Violation of chirality of the M\\"obius domain-wall Dirac operator from the eigenmodes
Cossu, Guido; Hashimoto, Shoji; Tomiya, Akio
2015-01-01
We investigate the effects of the violation of the Ginsparg-Wilson (GW) relation in the M\\"obius domain-wall fermion formulation on the lattice with finite fifth dimension. Using a decomposion in terms of the eigenmodes of its four-dimensional effective Dirac operator, we isolate the GW-violating terms for various physical quantities including the residual mass and the meson susceptibilities relevant for the effective restoration of the axial U(1) symmetry at finite temperature. Numerical result shows that the GW-violating effect is more significant, or even overwhelming, for the quantities that are dominated by the low-lying eigenmodes.
Threaded-Field-Lines Model for the Low Solar Corona Powered by the Alfven Wave Turbulence
Sokolov, Igor V; Manchester, Ward B; Ozturk, Doga Can Su; Szente, Judit; Taktakishvili, Aleksandre; Tóth, Gabor; Jin, Meng; Gombosi, Tamas I
2016-01-01
We present an updated global model of the solar corona, including the transition region. We simulate the realistic tree-dimensional (3D) magnetic field using the data from the photospheric magnetic field measurements and assume the magnetohydrodynamic (MHD) Alfv\\'en wave turbulence and its non-linear dissipation to be the only source for heating the coronal plasma and driving the solar wind. In closed field regions the dissipation efficiency in a balanced turbulence is enhanced. In the coronal holes we account for a reflection of the outward propagating waves, which is accompanied by generation of weaker counter-propagating waves. The non-linear cascade rate degrades in strongly imbalanced turbulence, thus resulting in colder coronal holes. The distinctive feature of the presented model is the description of the low corona as almost-steady-state low-beta plasma motion and heat flux transfer along the magnetic field lines. We trace the magnetic field lines through each grid point of the lower boundary of the g...
Nonlinear absorption of Alfven wave in dissipative plasma
Energy Technology Data Exchange (ETDEWEB)
Taiurskii, A. A., E-mail: tayurskiy2001@mail.ru; Gavrikov, M. B., E-mail: nadya-p@cognitive.ru [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 4 Miusskaya sq. Moscow 125047 (Russian Federation)
2015-10-28
We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.
Theoretical Studies of Drift-Alfven and Energetic Particle Physics
Energy Technology Data Exchange (ETDEWEB)
CHEN, L.
2014-05-14
The research program supported by this DOE grant has been rather successful and productive in terms of both scientific investigations as well as human resources development; as demonstrated by the large number (60) of journal articles, 6 doctoral degrees, and 3 postdocs. This PI is particularly grateful to the generous support and flexible management of the DOE–SC-OFES Program. He has received three award/prize (APS Excellence in Plasma Physics Research Award, 2004; EPS Alfven Prize, 2008; APS Maxwell Prize, 2012) as the results of research accomplishments supported by this grant.
On the stability of shear-Alfven vortices
International Nuclear Information System (INIS)
Linear stability of shear-Alfven vortices is studied analytically using the Lyapunov method. Instability is demonstrated for vortices belonging to the drift mode, which is a generalization of the standard Hasegawa-Mima vortex to the case of large parallel phase velocities. In the case of the convective-cell mode, short perpendicular-wavelength perturbations are stable for a broad class of vortices. Eventually, instability of convective-cell vortices may occur on the perpendicular scale comparable with the vortex size, but it is followed by a simultaneous excitation of coherent structures with better localization than the original vortex
Density Limit in TCABR Plasmas With Alfven Wave Heating
International Nuclear Information System (INIS)
Alfven Waves (AW) were launched in tokamak (TCABR) density limit plasmas for the first time. Experimental evidence of plasma heating is backed up by calculations from an 1-D numerical cylindrical code, based on the toroidal electric field diffusion. Simultaneously, increase in the density limit and plasma pressure with negligible impurities level launched by the AW antennas were also observed, without major appearance of a resistive disruption. The increase in the density limit and the heating might be related to the expected edge and off-axis AW power deposition, respectively, in agreement with the calculation performed by an 1-D numerical code linked to ASTRA
Nonlinear absorption of Alfven wave in dissipative plasma
International Nuclear Information System (INIS)
We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations
Interplanetary Alfven waves inducing ionospheric disturbances observed by GPS data
International Nuclear Information System (INIS)
Complete text of publication follows. Interplanetary Alfven waves appear in satellite data as high-amplitude, fast oscillations in the interplanetary magnetic field and solar wind velocity components. The waves are more often present in high speed solar wind streams emanating from coronal holes. For a long time, these Alfven waves were not believed as able to produce geomagnetic responses due to the absence of a strong and sustained southward Bz (Bs) interplanetary magnetic field. But in 1987, Tsurutani and Gonzalez showed that these structures were responsible by intense and long-lasting auroral activity (observable through the AE index). However, these phenomena were not strong enough to produce significant ring current intensification (measured by the middle/low latitude Dst index). In this work we analyze three intervals of strong auroral activity related to interplanetary Alfven waves outside main phases of geomagnetic storms. These events occurred in the years 2002, 2003, and 2005. The ionospheric effects were observed through the vertical Total Electron Content (TEC) data from GPS receivers. Data from three GPS stations were employed in this study: Porto Alegre (POAL, Brazil, Lat. 30.1deg S, Long. 51.1deg W, Dip Lat. 20.7deg S, LT=UT-3 h), Bahia Blanca (VBCA, Argentina, Lat 38.7deg S, Long. 62.3deg W, Dip Lat. 22.4deg S, LT=UT-4 h), and Rio Grande (RIOG, Argentina, Lat. 53.6deg S, Long. 67.8deg W, Dip Lat. 43.6deg S, LT=UT-4 h). For each event three quiet days around the date were used to calculate the VTEC average and standard deviation. These values were assumed as reference for disturbed intervals comparisons. For the three selected intervals we observed VTEC increases in all the analyzed stations. The VTEC values may reach over 50% increases compared to quiet day values. Another remarkable observation is that the POAL station (the most equatorward station) always presents higher increases than the other stations. This effect is reduced as the latitude
Damping of long-wavelength kinetic alfven fluctuations: linear theory
International Nuclear Information System (INIS)
The full electromagnetic linear dispersion equation for kinetic Alfven fluctuations in a homogeneous, isotropic, Maxwellian electron-proton plasma is solved numerically in the long wavelength limit. The solutions are summarized by an analytic expression for the damping rate of such modes at propagation sufficiently oblique to the background magnetic field Bo which scales as kperpendicular2 kparallel where the subscripts denote directions relative to Bo. This damping progressively (although not monotonically) increases with increasing electron β, corresponding to four distinct damping regimes: nonresonant, electron Landau, proton Landau, and proton transit-time damping
Effect of the radial electric field, induced by Alfven waves, on transport processes in tokamaks
International Nuclear Information System (INIS)
We demonstrate that Alfven waves may be the convenient trigger for the formation and maintenance of edge and internal transport barriers due to their small radial localizations. Kinetic Alfven waves can also provide a mechanism for squeezing the banana orbits of ions in collisional plasmas of tokamaks. It is shown that the radial electric field, induced by Alfven waves, at some conditions has a nonlinear dependence on the radio-frequency absorbed power. The dependence of the ion heat conductivity and of the ion poloidal viscosity oil the radio-frequency absorbed power is obtained in this paper for tokamak plasmas with ion banana orbits squeezed by Alfven waves. Estimations of the proper absorbed power of Alfven waves in some tokamaks is about the level of absorbed power to be used in early fulfilled experiments. (author)
Effect of the radial electric field, induced by Alfven waves, on transport processes in tokamaks
International Nuclear Information System (INIS)
We demonstrate that Alfven waves may be the convenient trigger for the formation and maintenance of edge and internal transport barriers due to their small radial localizations. Kinetic Alfven waves can also provide a mechanism for squeezing the banana orbits of ions in weekly collisional plasmas of tokamaks. It is shown that the radial electric field, induced by Alfven waves, at some conditions has a nonlinear dependence on the radio-frequency absorbed power. The dependence of the ion heat conductivity and of the ion poloidal viscosity on the radio-frequency absorbed power is obtained in this paper for tokamak plasmas with ion banana orbit squeezed by Alfven waves. Estimations of the proper absorbed power of Alfven waves in some tokamaks is about the level of absorbed power to be used in early fulfilled experiments. (author)
Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion
International Nuclear Information System (INIS)
Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs
Nonlinear astrophysical Alfven waves - Onset and outcome of the modulational instability
Spangler, S. R.
1985-01-01
The nonlinear development of Alfven waves is numerically studied, with applications to Alfven waves in astrophysical plasmas. It is found that amplitude-modulated Alfven wave packets undergo a collapse instability in which the wave packets become more intense and of smaller spatial extent. The wave packet steepening is eventually halted in a process most aptly described as soliton formation. A simple analytic model based on the method of characteristics can account for many of the results of the numerical calculations. The instability probably cannot prevent particle pitch angle isotropization due to self-generated Alfven waves. Nonlinear effects of the collapse may modify the process by which energetic electrons are reaccelerated by plasma turbulence. The model calculations can semiquantitatively account for properties of shock-associated Alfven waves in the solar system.
New non-axisymmetric eigenmodes associated with an edge plasma layer
International Nuclear Information System (INIS)
Effects of a rarefied plasma layer surrounding a cylindrical main plasma on Alfven waves are investigated. The plasma is approximated with a two-step density profile and is assumed to be surrounded with a conducting wall. When the Alfven resonance exists inside the rarefied plasma layer, two new modes are generated. One has its maximum of the wave intensity at the wall, is thus similar to a surface wave and the other is a short of a coaxial mode. These results are re-examined in a diffuse boundary plasma and the presence of these modes is confirmed. (author)
Plasma heating inside ICMEs by Alfvenic fluctuations dissipation
Li, Hui; He, Jiansen; Zhang, Lingqian; Richardson, John D; Belcher, John W; Tu, Cui
2016-01-01
Nonlinear cascade of low-frequency Alfvenic fluctuations (AFs) is regarded as one candidate of the energy sources to heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It is found that AFs with high degree of Alfvenicity frequently occurred inside ICMEs, for almost all the identified ICMEs (30 out of 33 ICMEs), and 12.6% of ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs.
Cosmic Ray propagation in sub-Alfvenic magnetohydrodynamic turbulence
Cohet, Romain
2016-01-01
This work has the main objective to provide a detailed investigation of cosmic ray propagation in magnetohydrodynamic turbulent fields generated by forcing the fluid velocity field at large scales. It provides a derivation of the particle mean free path dependences in terms of the turbulence level described by the Alfv\\'enic Mach number and in terms of the particle rigidity. We use an upgrade version of the magnetohydrodynamic code {\\tt RAMSES} which includes a forcing module and a kinetic module and solve the Lorentz equation for each particle. The simulations are performed using a 3 dimension periodical box in the test-particle and magnetostatic limits. The forcing module is implemented using an Ornstein-Uhlenbeck process. An ensemble average over a large number of particle trajectories is applied to reconstruct the particle mean free paths. We derive the cosmic ray mean free paths in terms of the Alfv\\'enic Mach numbers and particle reduced rigidities in different turbulence forcing geometries. The reduced...
Emission of Alfven Waves by Planets in Close Orbits
MacGregor, Keith B.; Pinsonneault, M. H.
2011-01-01
We examine the electrodynamics of a conducting planet orbiting within a magnetized wind that emanates from its parent star. When the orbital motion differs from corotation with the star, an electric field exists in the rest frame of the planet, inducing a charge separation in its ionosphere. Because the planet is immersed in a plasma, this charge can flow away from it along the stellar magnetic field lines it successively contacts in its orbit. For sufficiently rapid orbital motion, a current system can be formed that is closed by Alfvenic disturbances that propagate along field lines away from the planet. Using a simple model for the wind from a Sun-like star, we survey the conditions under which Alfven wave emission can occur, and estimate the power radiated in the form of linear waves for a range of stellar, planetary, and wind properties. For a Jupiter-like planet in a close (a type star, the emitted wave power can be as large as 1027 erg/s. While only a small influence on the planet's orbit, a wave power of this magnitude may have consequences for wind dynamics and localized heating of the stellar atmosphere. NCAR is sponsored by the NSF.
Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire
Rühle, S.; van Vugt, L.K.; Li, H.-Y.; Keizer, N.A.; Kuipers, L.; Vanmaekelbergh, D.A.M.
2008-01-01
The emission spectrum of individual high-quality ZnO nanowires consists of a series of Fabry-Pérot-like eigenmodes that extend far below the band gap of ZnO. Spatially resolved luminescence spectroscopy shows that light is emitted predominantly at both wire ends, with identical spectra reflecting st
Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility
Gailitis, A; Dementev, S; Platacis, E; Cifersons, A; Gerbeth, G; Gundrum, T; Stefani, F; Christen, M; Hänel, H; Will, G; Gailitis, Agris; Lielausis, Olgerts; Dement'ev, Sergej; Platacis, Ernests; Cifersons, Arnis; Gerbeth, Gunter; Gundrum, Thomas; Stefani, Frank; Christen, Michael; Hänel, Heiko; Will, Gotthard
2000-01-01
In an experiment at the Riga sodium dynamo facility, a slowly growing magnetic field eigenmode has been detected over a period of about 15 seconds. For a slightly decreased propeller rotation rate, additional measurements showed a slow decay of this mode. The measured results correspond satisfactory with numerical predictions for the growth rates and frequencies.
Spiral eigenmodes triggered by grooves in the phase space of disc galaxies
De Rijcke, Sven
2015-01-01
We use linear perturbation theory to investigate how a groove in the phase space of a disc galaxy changes the stellar disc's stability properties. Such a groove is a narrow trough around a fixed angular momentum from which most stars have been removed, rendering part of the disc unresponsive to spiral waves. We find that a groove can dramatically alter a disc's eigenmode spectrum by giving rise to a set of vigorously growing eigenmodes. These eigenmodes are particular to the grooved disc and are absent from the original ungrooved disc's mode spectrum. We discuss the properties and possible origin of the different families of new modes. By the very nature of our technique, we prove that a narrow phase-space groove can be a source of rapidly growing spiral patterns that are true eigenmodes of the grooved disc and that no non-linear processes need to be invoked to explain their presence in N-body simulations of disc galaxies. Our results lend support to the idea that spiral structure can be a recurrent phenomeno...
Maruta, Kazuki; Iwakuni, Tatsuhiko; Ohta, Atsushi; Arai, Takuto; Shirato, Yushi; Kurosaki, Satoshi; Iizuka, Masataka
2016-01-01
Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G). One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO) can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS) dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI) estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity. PMID:27399715
International Nuclear Information System (INIS)
The modulational instability and envelope-solitons are analyzed for the Alfven waves propagating along the static magnetic field in cold collisionless plasmas, using the modified nonlinear Schroedinger equation previously derived by the authors. The modulational instability occurs in the left-hand circularly polarized Alfven wave (left Alfven wave) for a small amplitude but does not for an amplitude larger than the critical value. On the other hand, the instability never occurs in the right-hand circularly polarized Alfven wave (right Alfven wave). When the modulational instability does not occur, the rarefactive and compressive envelope-solitons exist in the left Alfven wave and the two types of the rarefactive envelope-solitons exist in the right Alfven wave. (auth.)
An experimental study of the harmonics generated during Alfven wave heating in TCA
International Nuclear Information System (INIS)
During plasma excitation by high power Alfven waves in TCA, signals at harmonics of the generator frequency are observed in the plasma scrape-off layer. In this paper we report experimental investigations of the sheath effect and the excitation efficiency and dispersion properties of these harmonics. The results indicate that the harmonics arise either directly or indirectly through the driven Alfven waves and not the sheath effect at the exciting antenna. The RF ion saturation current is observed a non-negligible peak amplitude in comparison to the time averaged ion saturation current and may provide evidence of non-linear evolution of the driven Alfven waves. (author) 8 figs., 8 refs
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Drift-Kinetic Alfven Waves Observed near a Reconnection X Line in the Earth's Magnetopause
International Nuclear Information System (INIS)
We identify drift-kinetic Alfven waves in the vicinity of a reconnection X line on the Earth's magnetopause. The dispersive properties of these waves have been determined using wavelet interferometric techniques applied to multipoint observations from the Cluster spacecraft. Comparison of the observed wave dispersion with that expected for drift-kinetic Alfven waves shows close agreement. The waves propagate outwards from the X line suggesting that reconnection is a kinetic Alfven wave source. Energetic O+ ions observed in these waves indicate that reconnection is a driver of auroral ion outflow
Borysov, Stanislav S; Balatsky, Alexander V; Haviland, David B
2014-01-01
We present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever responsivity) of a cantilever. The method is based on the tip-surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip-surface interaction. The calibration method proposed requires a single-point force measurement using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.
Exact Analytical Solution of Alfven Waves in Nonuniform Plasmas
International Nuclear Information System (INIS)
Full text: The propagation of Alfven waves in non-uniform plasmas is described through linear second-order differential equations, governing the total pressure and radial plasma velocity. In general, these two differential equations only admit numerical solutions, whose behavior is very much complicated especially near resonance surfaces which encompass essential degeneracies. It is well-known that most existing analytical methods, including the famous Wentzel-Karmers-Brillouin (WKB) approximation fail near such singularities. In this paper, a power analytical method, which is recently developed and named the Differential Transfer Matrix Method (DTMM), is applied to find a rigorously exact solution to the problem of interest. We also present an approximate solution based on the Airy functions. (author)
Preliminary results on Alfven wave system in the TCABR tokamak
International Nuclear Information System (INIS)
A brief review of the Alfven Wave Excitation System (AWES) designed for the TCABR tokamak and the first experimental results on RF plasma heating are presented. One of four antenna modules has been completely installed in the vacuum chamber and the initial experiments were carried out in the low power regime using the four-phase RF generator. The main objectives were the antenna tuning according to the typical plasma parameters of TCABR and the evaluation of the antenna parasitic loading, as well as the calibration of the RF diagnostic tools in real discharge conditions. The first results have been obtained with standard diagnostics and with the RF signals measured using high sampling rate digital oscilloscopes. They showed that daily antenna cleaning and correct wave helicity excitation reduce significantly the parasitic loading and are crucial for efficient plasma coupling
Alfven Waves in a Plasma Sheet Boundary Layer Associated with Near-Tail Magnetic Reconnection
Institute of Scientific and Technical Information of China (English)
YUAN Zhi-Gang; DENG Xiao-Hua; PANG Ye; LI Shi-You; WANG Jing-Fang
2007-01-01
We report observations from Geotail satellite showing that large Poynting fluxes associated with Alfven waves in the plasma sheet boundary layer(PSBL) occur in the vicinity of the near-tail reconnection region on 10 December 1996.During the period of large Poynting fluxex,Geotail also observed strong tailward plasma flws.These observations demonstrate the importance of near-tail reconnection process as the energy source of Alfven waves in the PSBL.Strong tailward(Earthward)plasma flows ought to be an important candidate in generating Alfven waves.Furthermore,the strong pertutbations not only of the magnetic field but also of the electric field observed in the PSBL indicate that the PSBL plays an important role in the generation and propagation of the energy flux associated with Alfven waves.
Drake, D J; Howes, G G; Kletzing, C A; Skiff, F; Carter, T A; Auerbach, D W
2013-01-01
Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfven waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfven waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfven wave generated nonlinearly by a collision between counterpropagating Alfven waves.
Formation of convective cells by modulational instability of drift Alfven waves
International Nuclear Information System (INIS)
A model equation describing drift Alfven wave with E X B nonlinearity is derived. For a special ordering a nonlinear Schroedinger equation is derived, which governs modulational instability of the drift Alfven wave. Translational invariance is assumed along the magnetic field. The relation between the characteristic scale lengths parallel and perpendicular to the drift flow for the onset of cell formation has been found. The influence of perpendicular ion viscosity is also discussed. (Auth.)
Eigenmodes of superconducting cavities calculated on an APE-100 supercomputer (SIMD)
Neugebauer, F
1999-01-01
The construction of modern accelerators is usually supported by the numerical determination of eigenmodes in the accelerating cavities. Often the rotational symmetry of the cavity is used to simplify the numerical simulation. However, in cases where the cavity lacks rotational symmetry resp. where attached components like couplers have to be taken into account, a fully three dimensional treatment of the Maxwell equations is necessary. This requires more computer power than is available on a normal high end workstation. Therefore, in the present approach a parallel SIMD super computer (APE-100) is used to compute the eigenmodes of accelerating cavities. As an example parts of the superconducting TESLA structure are investigated. The geometry input is parsed by MAFIA which transfers the resulting system matrix, incorporating geometry and material information, to the APE-100. The result of the diagonalization procedure is then read back to the MAFIA host where further data analysis and visualization can be done....
International Nuclear Information System (INIS)
Sub-200 nm patterned magnetic dots are key elements for the design of magnetic switches, memory cells or elementary units of nanomagnetic logic circuits. In this paper, we analyse by micromagnetic simulations the magnetization reversal, the dissipated energy and the excited spin eigenmodes in bistable magnetic switches, consisting of elliptical nanodots with 100×60 nm lateral dimensions. Two different strategies for reversal are considered and the relative results compared: (i) the irreversible switching obtained by the application of an external field along the easy axis, in the direction opposite to the initial magnetization; (ii) the precessional switching accomplished by the application of a short magnetic field pulse, oriented perpendicular to the initial magnetization direction. The obtained results are discussed in terms of deviation from the macrospin behavior, energy dissipation and characteristics of the spectrum of spin eigenmodes excited during the magnetization reversal process
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; FAN Yue
2003-01-01
By introducing a convenient complex form of the α-th 2-dimensional fractional Fourier transform (CFFT) operation we find that it possesses new eigenmodes which are two-mode Hermite polynomials. We prove the eigenvalues of propagation in quadratic graded-index medium over a definite distance are the same as the eigenvalues of the α-th CFFT, which means that our definition of the α-th CFFT is physically meaningful.
Low-lying eigenmodes of the Wilson-Dirac operator and correlations with topological objects
Kusterer, D J; Kamleh, W; Leinweber, D B; Williams, A G; Kusterer, Daniel-Jens; Hedditch, John; Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.
2002-01-01
The probability density of low-lying eigenvectors of the hermitian Wilson-Dirac operator is examined. Comparisons in position and size between eigenvectors, topological charge and action density are made. We do this for standard Monte-Carlo generated SU(3) background fields and for single instanton background fields. Both hot and cooled SU(3) background fields are considered. An instanton model is fitted to eigenmodes and topological charge density and the sizes and positions of these are compared.
Omega3P: A Parallel Finite-Element Eigenmode Analysis Code for Accelerator Cavities
Energy Technology Data Exchange (ETDEWEB)
Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Ko, Kwok; /SLAC
2009-03-04
Omega3P is a parallel eigenmode calculation code for accelerator cavities in frequency domain analysis using finite-element methods. In this report, we will present detailed finite-element formulations and resulting eigenvalue problems for lossless cavities, cavities with lossy materials, cavities with imperfectly conducting surfaces, and cavities with waveguide coupling. We will discuss the parallel algorithms for solving those eigenvalue problems and demonstrate modeling of accelerator cavities through different examples.
Production and maintenance of high poloidal beta tokamak plasmas by means of rf current drive
Energy Technology Data Exchange (ETDEWEB)
Luckhardt, S.C.; Chen, K.; Coda, S.; Kesner, J.; Kirkwood, R.; Lane, B.; Porkolab, M.; Squire, J.
1989-03-27
It is shown that in tokamak plasmas sustained by rf current drive, the contribution of the suprathermal rf-driven electron population to the poloidal beta (..beta../sub p/) can be substantial if the total current is comparable to the Alfven critical current, I/sub A/ = (4..pi..mcv/..mu../sub 0/ec)..gamma... Equilibria with values of epsilon..beta../sub p/ up to approximately 1.3 were obtained, and no equilibrium or gross stability limits were observed.
On the propagation of MHD eigenmodes in a 2-D-magnetotail
Directory of Open Access Journals (Sweden)
G. Fruit
2011-01-01
Full Text Available The propagation of MHD kink/sausage low frequency waves in the magnetotail with a finite normal B_{z} component is addressed. The general idea is to investigate how a finite B_{z} may affect the propagation of MHD eigenmodes in the plasma sheet. The standard MHD equations are linearized and solved numerically in a modified Harris sheet. Boundary conditions are chosen such that energy flows outward of the frame box (free propagating system. An initial perturbation is set up in the pressure gradient term and the wave energy is then traced in the system. While a pure 1-D-Harris sheet constitutes an efficient wave guide for MHD eigenmodes, the introduction of a finite B_{z} in the zero-order geometry changes significantly the propagation of MHD fluctuations: the eigenmodes propagate much more slowly and carry little energy whereas a pure sound wave is excited and propagates isotropically in the system. The presence of a finite B_{z} thus tends to inhibit the MHD propagation of energy along the plasma sheet. It tends rather to spread the energy throughout the magnetotail. As an application of the above study, the role of a permanent X-point structure on MHD propagation in the plasma sheet is also explored.
Variable eigenmode excitation in the beach heating of two-ion-species mirror plasmas
International Nuclear Information System (INIS)
Variable eigenmode excitation scans of the ion species ratio of hydrogen-helium and hydrogen-deuterium plasmas has been examined in the bench-heating configuration of the Phaedrus-B central cell. m = -1 fields were selectively excited by a ''rotating-field'' antenna array at ω/ΩH = 0.8. The coupled wave energy propagates through a steep axial magnetic gradient into a region of strong ion-cyclotron resonance absorption which is located triangle z = 50cm from the antenna. Evidence of varied fast- and slow-wave eigenmode excitation and absorption, including variations in the radial profiles of waves magnetic field and plasma parameters, was observed during the scans. Optimal peak parameters in the plasma core, ne = 1.0 x 1013cm-3, Teparallel = 20eV, Tiparallel = 140eV, Tiperpendicular = 450eV, and β = 0.2, were obtained for moderate helium or deuterium ion fractions (puffed nHe/ne = nD/ne ∼ 0.25). These parameters exceed those obtained under the same conditions with ''pure'' hydrogen plasmas: ne = 7.0 x 1012cm -3, Teparallel = 25eV, Tiparallel = 80eV, Tiperpendicular = 300eV, and β = 0.1. These variations are in agreement with those expected from antenna-eigenmode coupling considerations
Identification of an Island-induced Alfvén Eigenmode in MST plasmas
Anderson, J. K.; Cook, C. R.; Hegna, C. C.; Boguski, J.; Feng, R.; McCollam, K. M.; Sears, S. H.; Spong, D. A.; Hirshman, S. P.
2015-11-01
Recent theoretical work analytically computes the effect of a magnetic island on the shear Alfvén continuum and may explain unresolved Alfvénic activity observed in neutral beam-heated MST plasmas. Consideration of the previously-ignored core-localized n=5 island leads to theoretical Alfvén continua that provide a gap in which the observed n=4 Alfvénic bursts reside. Numerical simulations using the STELLGAP/AE3D codes, as well as a new code called SIESTAlfvén have identified the bursts as the first observation of an Island-induced Alfvén Eigenmode (IAE). The IAE arises from a helical coupling of mode numbers, similar to the helicity-induced Alfvén eigenmode, but occurs in the core of an island. The observed frequency of bursting n=4 Alfvénic modes fall within the island-induced gap over a wide range of MST operating parameters. Characteristics such as mode frequency, width and damping rate are measured as a function of experimentally-varied magnetic island width. Coincident bursts with toroidal mode number n=1 may exhibit frequency scaling of an Alfvénic eigenmode; the possibility of an island induced extremum mode is explored as an explanation. Work supported by US DoE under grants DE-FG02-99ER54546, DE-SC0006103 and DE-FC02-05ER54814.
Alfven ion-cyclotron instability: Simulation theory and techniques
International Nuclear Information System (INIS)
The numerical properties of a particle-ion, fluid-electron computer simulation code, used in the study of the parallel-propagating electromagnetic Alfven ion-cyclotron (AIC) instability, are examined. A numerical odd--even mode is suppressed by means of a two-timestep averaging methods. Excellent energy conservation is obtained by using a method similar to the Boris particle mover to advance the transverse fields. Linear growth rates obtained from the code differ substantially from those predicted by uniform Vlasov theory, here derived using a multifluid model. Short wavelengths in particular show substantial growth rates when damping is predicted, and additionally show strong linear mode coupling. Positive growth rates are even observed in the case of a Maxwellian ion distribution. Disagreement is also generally found among short-wavelength mode frequencies. These inconsistencies are resolved by taking into consideration general grid and discrete-particle effects of the simulation model. A theoretical study reveals a real, physical process by which an ion distribution may collisionlessly relax via short-wavelength AIC instabilities acting resonantly on small portions of the distribution function. This process is combined with a linear mode coupling theory and other characteristics of the AIC instability to explain all observed differences. Nonlinear short-wavelength saturation levels are also obtained and their relevance to other field-aligned, electromagnetic simulations is discussed. copyright 1988 Academic Press, Inc
Formation and disruption of Alfvenic filaments in Hall magnetohydrodynamics
International Nuclear Information System (INIS)
In magnetohydrodynamics with Hall effect (Hall-MHD), weakly nonlinear quasimonochromatic dispersive Alfven waves propagating along an ambient magnetic field can develop to transverse instabilities leading to the formation of intense magnetic filaments. This phenomenon, described as a transverse collapse within the asymptotic approach provided by the nonlinear Schroedinger equation for the pump envelope, was also reproduced by spectral direct numerical simulations of the Hall-MHD system. We address here the dynamics at longer times, using a finite difference scheme with adaptive mesh refinement to reproduce a strong filamentation regime, supplemented by a shock capturing scheme in the final phase of the simulations. We observe a strong distortion of the early time cylindrical filaments, associated with flattening and twisting of the structures and the transition from nonlinear waves to a hydrodynamic regime, characterized by intense current sheets and a strong acceleration of the plasma. A configuration where the intensity of the magnetic filaments saturates while the velocity field is still growing is also identified in the spectral simulation of a regime with moderate scale separation
Recent Results of Alfven Wave Studies in TCABR
International Nuclear Information System (INIS)
The results on comparative studies of Alfven wave plasma heating by two different antenna types in TCABR are presented. Emphasis is placed on the excited wave spectra and parasitic coupling with the edge plasma. The antenna modules have two groups of RF current-carrying straps separated by a toroidal angle of approximately 22 deg. In type I antenna, each group consists of two circular loops that are cut in two half-turn windings. The feeders of each loop pair are rotated 90 deg. in the poloidal direction with respect to each other, to decrease the mutual coupling between them and make it possible to excite single helicity plasma modes (M=+1 or M=-1). In type II antenna, each group consists of two poloidal straps located at the low-magnetic-field side of the vacuum chamber. The poloidal extension of each strap is around 90 deg. and the angle between straps is also of the same value. In both antenna types, the straps have side protectors of boron nitride. Initial experiments indicate that the parasitic interaction with the edge plasma is quite different for the two antennae. Also the first type has larger self-inductance, making it more difficult to deliver high currents to the antenna without increasing the dynamic polarization voltage up to breakdown limits. Results on the excited spectrum and floating potential at the plasma edge are presented
Shear-Alfven dynamics of toroidally confined plasmas. Part A
International Nuclear Information System (INIS)
Recent developments in the stability theory of toroidally confined plasmas are reviewed, with the intention of providing a picture comprehensible to non-specialists. The review considers a class of low-frequency, electromagnetic disturbances that seem especially pertinent to modern high-temperature confinement experiments. It is shown that such disturbances are best unified and understood through consideration of a single, exact fluid moment: the shear-Alfven law. Appropriate versions of this law and its corresponding closure relations are derived - essentially from first principles - and applied in a variety of mostly, but not exclusively, linear contexts. Among the specific topics considered are: flux coordinates (including Hamada coordinates), the Newcomb solubility condition. Shafranov geometry, magnetic island evolution, reduced MHD and its generalizations, drift-kinetic electron response, classical tearing, twisting, and kink instabilities, pressure-modified tearing instability (Δ-critical), collisionless and semi-collisional tearing modes, the ballooning representation in general geometry, ideal ballooning instability, Mercier criterion, near-axis expansions, the second stability region, and resistive and kinetic ballooning modes. The fundamental importance of toroidal topology and curvature is stressed
Ionospheric Ion Upflows Associated with the Alfven Wave Heating
Song, P.; Tu, J.
2014-12-01
In this study we present the simulation results from a self-consistent inductive-dynamic ionosphere-thermosphere model. In a 2-D numerical simulation (noon-midnight meridian plane), we solve the continuity, momentum, and energy equations for multiple species of ions and neutrals and Maxwell's equations. In particular, the model retains Faraday's law, inertial term in the ion momentum equations and photochemistry. The code is based on an implicit algorithm and simulates a region from 80 km to 5000 km above the Earth. The system is driven by an antisunward motion at the upper boundary of the dayside cusp latitude in both hemispheres. We show that the frictional heating, which can produce upflows of the light (H+ and He+) and heave (O+) ions, is driven by the Alfven wave-induced ion motion relative to the neutrals. The variations of the upflows along a noon-midnight magnetic meridian are examined in association with given driving conditions imposed by the magnetosphere convection.
Alfvenic fluctuations in the solar wind observed by Ulysses
Smith, E. J.; Neugebauer, M; Tsurutani, B. T.; Balogh, A.; McComas, D. J.
1995-01-01
One of the striking results of the Sun's south polar pass by Ulysses was the discovery of large amplitude, long period Alfvenic fluctuations that were continuously present in the solar wind flow from the polar coronal hole. The fluctuations dominate the variances and power spectra at periods greater than or equal to 1 hour and are evident as correlated fluctuations in the magnetic field and solar wind velocity components. Various properties of the fluctuations in the magnetic field, in the velocity, and in the electric field have been established. The waves appear to have important implications for galactic cosmic rays and for the solar wind, topics which have continued to be investigated. Their origin is also under study, specifically whether or not they represent motions of the ends of the field lines at the Sun. The resolution of these issues has benefited from the more recent observations as the spacecraft traveled northward toward the ecliptic and passed into the northern solar hemisphere. All these observations will be presented and their implications will be discussed.
Oxygen Ion Heat Rate within Alfvenic Turbulence in the Cusp
Coffey, Victoria N.; Singh, Nagendra; Chandler, Michael O.
2009-01-01
The role that the cleft/cusp has in ionosphere-magnetosphere coupling makes it a dynamic and important region. It is directly exposed to the solar wind, making it possible for the entry of electromagnetic energy and precipitating electrons and ions from dayside reconnection and other dayside events. It is also a significant source of ionospheric plasma, contributing largely to the mass loading of the magnetosphere with large fluxes of outflowing ions. Crossing the cusp/cleft near 5100 km, the Polar instruments observe the common correlation of downward Poynting flux, ion energization, soft electron precipitation, broadband extremely low-frequency (BB-ELF) emissions, and density depletions. The dominant power in the BB-ELF emissions is now identified to be from spatially broad, low frequency Alfv nic structures. For a cusp crossing, we determine using the Electric Field Investigation (EFI), that the electric and magnetic field fluctuations are Alfv nic and the electric field gradients satisfy the inequality for stochastic acceleration. With all the Polar 1996 horizontal crossings of the cusp, we determine the O+ heating rate using the Thermal Ion Dynamics Experiment (TIDE) and Plasma Wave Investigation (PWI). We then compare this heating rate to other heating rates assuming the electric field gradient criteria exceeds the limit for stochastic acceleration for the remaining crossings. The comparison suggests that a stochastic acceleration mechanism is operational and the heating is controlled by the transverse spatial scale of the Alfvenic waves.
Choueiri, E. Y.; Kelly, A. J.; Jahn, R. G.
1985-01-01
The role of Alfven's critical ionization velocity in the performance of the self-field MPD thruster has been investigated. The existence of a well defined characteristic velocity can be attributed to an ionization process involving the production of a population of suprathermal electrons by an electrostatic instability. It is shown that for the MPD thruster plasma, suprathermalization of electrons via this electrostatic instability can only happen if ions are initially accelerated to velocities larger than the Alfven critical ionization velocity. When this occurs the mechanism will be initiated and the ions decelerated to velocities near the critical velocity. This mechanism ceases to be limiting when all neutrals are ionized. A model of MPD thruster terminal behavior, incorporating Alfven's hypothesis, is presented. Experiments with three different propellants reveal that operation at values of the current squared to total mass flow ratio corresponding to the Alfven critical velocity is marked by a transition wherein low frequency voltage oscillations and a notable change in the voltage-current dependence occurs. One major result of this study is the demonstration that the Alfven critical velocity is not a fundamental limitation on MPD exhaust velocity.
On the origin of solar wind. Alfven waves induced jump of coronal temperature
Mishonov, T M; Maneva, Y G
2007-01-01
Absorbtion of Alfven waves is considered as the main mechanism of heating of solar corona. It is concluded that the sharp increase of the plasma temperature by two orders of magnitude is related to a self-induced opacity with respect to Alfven waves. The maximal frequency for propagation of Alfven waves is determined by the strongly temperature dependent kinematic viscosity. In such a way the temperature jump is due to absorption of high frequency Alfven waves in a narrow layer above the solar surface. There is calculated the dissipated in this layer power, which blows up the plasma and gives birth to the solar wind. A model short wave-length (WKB) evaluation takes into account the 1/f^2 frequency dependance of the transversal magnetic field and velocity spectral densities. Such spectral densities agree with an old magnetometer's data taken by Voyager 1 and recent theoretical calculations in the framework of Langevin-Burgers MHD. The present theory predicts existence of intensive high frequency Alfven waves i...
Experimental study of high beta toroidal plasmas
International Nuclear Information System (INIS)
Experiments on the Wisconsin Levitated Toroidal Octupole have produced a wide range of stable high β plasmas with β significantly above single fluid MHD theory predictions. A stable β approx. 8% plasma, twice the fluid limit, is obtained with 5 rho/sub i/ approx. L/sub n/ and tau/sub β/ approx. = 6000 tau/sub Alfven/ = 600 μsec. The enhanced stability is explained with a kinetic treatment that includes the effect of finite ion gyroradius which couples the ballooning mode to an ion drift wave. In a more collisional, large gyroradius (2 rho/sub i/ approx. L/sub n/) regime, a stable β approx. 35% plasma is obtained with a decay time of 1000 Alfven times. Measurement of the equilibrium magnetic field in this regime indicates that the diamagnetic current density is five times smaller than predicted by ideal MHD, probably due to ion gyroviscosity. Particle transport is anomalous and ranges from agreement with the classical diffusion rate at the highest beta, lowest field plasma (B/sub P/ = 200 G), to thirteen times the classical rate in a β=11%, high field plasma (B/sub P/ = 860 G) where the level of enhancement increase with magnetic field. Fluctuations in density, electrostatic potential, and magnetic field have been studied in plasmas with β from 0.1% to 40%
Li, Dong; Bi, Chao; Zhao, Jianlin
2016-04-20
We present the evolution of the eigenmode frequency spectrum in a nonplanar ring resonator based on the Jones matrix and the Fresnel-Kirchhoff diffraction integral. Taking the modes TEM(q+1)01 and TEMq10 with different polarization states as examples, we numerically derive the frequency difference between them versus the folding angles of the resonator by considering the polarization and the light field distribution of the eigenmodes synchronously. It can be found that the extreme values of frequency difference between TEM(q+1)01 and TEMq10 are particularly affected by the polarization states of the eigenmode, and the locations of these consecutive extreme values correspond to the total image rotation angle with values of the integer multiple of 90°. Moreover, the influence of the resonator structure on the frequency difference of eigenmodes with the identical polarization state is also analyzed. The results prove that the frequency difference between the fundamental mode and higher order modes declines with the increase of the spherical mirrors' radius of curvature but increases with the augmentation of the resonator's total length. These interesting findings are important for the mode selection in high-accuracy ring laser gyroscopes with nonplanar structure by modulating the polarization states and the light field distribution of the eigenmodes to control the frequency difference between them. PMID:27140100
Calculation of continuum damping of Alfvén eigenmodes in tokamak and stellarator equilibria
International Nuclear Information System (INIS)
In an ideal magnetohydrodynamic (MHD) plasma, shear Alfvén eigenmodes may experience dissipationless damping due to resonant interaction with the shear Alfvén continuum. This continuum damping can make a significant contribution to the overall growth/decay rate of shear Alfvén eigenmodes, with consequent implications for fast ion transport. One method for calculating continuum damping is to solve the MHD eigenvalue problem over a suitable contour in the complex plane, thereby satisfying the causality condition. Such an approach can be implemented in three-dimensional ideal MHD codes which use the Galerkin method. Analytic functions can be fitted to numerical data for equilibrium quantities in order to determine the value of these quantities along the complex contour. This approach requires less resolution than the established technique of calculating damping as resistivity vanishes and is thus more computationally efficient. The complex contour method has been applied to the three-dimensional finite element ideal MHD Code for Kinetic Alfvén waves. In this paper, we discuss the application of the complex contour technique to calculate the continuum damping of global modes in tokamak as well as torsatron, W7-X and H-1NF stellarator cases. To the authors' knowledge, these stellarator calculations represent the first calculation of continuum damping for eigenmodes in fully three-dimensional equilibria. The continuum damping of global modes in W7-X and H-1NF stellarator configurations investigated is found to depend sensitively on coupling to numerous poloidal and toroidal harmonics
Calculation of continuum damping of Alfvén eigenmodes in tokamak and stellarator equilibria
Bowden, G. W.; Hole, M. J.; Könies, A.
2015-09-01
In an ideal magnetohydrodynamic (MHD) plasma, shear Alfvén eigenmodes may experience dissipationless damping due to resonant interaction with the shear Alfvén continuum. This continuum damping can make a significant contribution to the overall growth/decay rate of shear Alfvén eigenmodes, with consequent implications for fast ion transport. One method for calculating continuum damping is to solve the MHD eigenvalue problem over a suitable contour in the complex plane, thereby satisfying the causality condition. Such an approach can be implemented in three-dimensional ideal MHD codes which use the Galerkin method. Analytic functions can be fitted to numerical data for equilibrium quantities in order to determine the value of these quantities along the complex contour. This approach requires less resolution than the established technique of calculating damping as resistivity vanishes and is thus more computationally efficient. The complex contour method has been applied to the three-dimensional finite element ideal MHD Code for Kinetic Alfvén waves. In this paper, we discuss the application of the complex contour technique to calculate the continuum damping of global modes in tokamak as well as torsatron, W7-X and H-1NF stellarator cases. To the authors' knowledge, these stellarator calculations represent the first calculation of continuum damping for eigenmodes in fully three-dimensional equilibria. The continuum damping of global modes in W7-X and H-1NF stellarator configurations investigated is found to depend sensitively on coupling to numerous poloidal and toroidal harmonics.
Calculation of continuum damping of Alfvén eigenmodes in tokamak and stellarator equilibria
Energy Technology Data Exchange (ETDEWEB)
Bowden, G. W.; Hole, M. J. [Plasma Theory and Modelling, Research School of Physics and Engineering, Australian National University, Acton 2601, Australian Capital Territory (Australia); Könies, A. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-17491 Greifswald (Germany)
2015-09-15
In an ideal magnetohydrodynamic (MHD) plasma, shear Alfvén eigenmodes may experience dissipationless damping due to resonant interaction with the shear Alfvén continuum. This continuum damping can make a significant contribution to the overall growth/decay rate of shear Alfvén eigenmodes, with consequent implications for fast ion transport. One method for calculating continuum damping is to solve the MHD eigenvalue problem over a suitable contour in the complex plane, thereby satisfying the causality condition. Such an approach can be implemented in three-dimensional ideal MHD codes which use the Galerkin method. Analytic functions can be fitted to numerical data for equilibrium quantities in order to determine the value of these quantities along the complex contour. This approach requires less resolution than the established technique of calculating damping as resistivity vanishes and is thus more computationally efficient. The complex contour method has been applied to the three-dimensional finite element ideal MHD Code for Kinetic Alfvén waves. In this paper, we discuss the application of the complex contour technique to calculate the continuum damping of global modes in tokamak as well as torsatron, W7-X and H-1NF stellarator cases. To the authors' knowledge, these stellarator calculations represent the first calculation of continuum damping for eigenmodes in fully three-dimensional equilibria. The continuum damping of global modes in W7-X and H-1NF stellarator configurations investigated is found to depend sensitively on coupling to numerous poloidal and toroidal harmonics.
Nonlinear coherent structures of Alfven wave in a collisional plasma
International Nuclear Information System (INIS)
Low-frequency Magneto Hydrodynamic waves in general and Alfv´en wave, in particular, occurs in various physical problems starting from laboratory to space plasma. These low frequency disturbances make the magnetic fluctuations large enough so that nonlinear coupling becomes finite. Among these low-frequency waves, nonlinear Alfv´en wave has become a topic of intense research due to its applications in various physical processes, related to particle energization in magnetized plasma, self-modulation in strongly magnetized plasma, tokamak plasma heating, interplanetary shocks, turbulence etc. In the present work, we have investigated weakly nonlinear Alfv´en wave dynamics in the framework of Lagrangian two-fluid theory in a compressible cold magnetized plasma in presence of finite electron inertia effect. The electron-ion collision induced dissipation effect is also taken into account. In the finite amplitude limit, we have shown that the collisionless Alfv´en wave is governed by a modified Korteweg-de Vries (mKdV) equation. In presence of collision it becomes a modified Korteweg-de Vries -Burgers (mKdVB) equation, where the electron inertia is found to act as a dispersive effect and the electron-ion collision serves as a dissipation which is responsible for the Burgers term. In the long wavelength limit, we have also investigated another important physical phenomenon, known as the wave modulation instability. The dynamics of this modulated wave is shown to be governed by a nonlinear Schrödinger equation (NLSE) with a linear damping term arising due to electron-ion collision. These two nonlinear equations are analyzed by means of analytical and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Both the results reveal that nonlinear Alfven wave exhibits shock, dissipative envelope and breather like structures. Numerical simulation also predicts the formation of Alv´enic rogue wave and giant breathers
Observation of an Alfv\\'en Wave Parametric Instability in a Laboratory Plasma
Dorfman, S
2016-01-01
A shear Alfv\\'en wave parametric instability is observed for the first time in the laboratory. When a single finite $\\omega/\\Omega_i$ kinetic Alfv\\'en wave (KAW) is launched in the Large Plasma Device above a threshold amplitude, three daughter modes are produced. These daughter modes have frequencies and parallel wave numbers that are consistent with copropagating KAW sidebands and a low frequency nonresonant mode. The observed process is parametric in nature, with the frequency of the daughter modes varying as a function of pump wave amplitude. The daughter modes are spatially localized on a gradient of the pump wave magnetic field amplitude in the plane perpendicular to the background field, suggesting that perpendicular nonlinear forces (and therefore $k_{\\perp}$ of the pump wave) play an important role in the instability process. Despite this, modulational instability theory with $k_{\\perp}=0$ has several features in common with the observed nonresonant mode and Alfv\\'en wave sidebands.
Magnetohydrodynamics in the Early Universe and the Damping of Non-linear Alfven Waves
Subramanian, K; Subramanian, Kandaswamy; Barrow, John D.
1998-01-01
The evolution and viscous damping of cosmic magnetic fields in the early universe, is analysed. Using the fact that the fluid, electromagnetic, and shear viscous energy-momentum tensors are all conformally invariant, the evolution is transformed from the expanding universe setting into that in flat spacetime. Particular attention is paid to the evolution of nonlinear Alfven modes. For a small enough magnetic field, which satisfies our observational constraints, these wave modes either oscillate negligibly or, when they do oscillate, become overdamped. Hence they do not suffer Silk damping on galactic and subgalactic scales. The smallest scale which survives damping depends on the field strength and is of order a dimensionless Alfven velocity times the usual baryon-photon Silk damping scale. After recombination, nonlinear effects can convert the Alfven mode into compressional, gravitationally unstable waves and seed cosmic structures if the cosmic magnetic field is sufficiently strong.
Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer
International Nuclear Information System (INIS)
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (Ti/Te), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave
Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks
International Nuclear Information System (INIS)
An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE's in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles
Measuring the Alfvenic Nature of the Interstellar Medium: Velocity Anisotropy Revisited
Burkhart, Blakesley; Leao, I C; de Medeiros, J R; Esquivel, A
2014-01-01
The dynamics of the interstellar medium (ISM) are strongly affected by turbulence, which shows increased anisotropy in the presence of a magnetic field. We expand upon the Esquivel & Lazarian method to estimate the Alfven Mach number using the structure function anisotropy in velocity centroid data from position-position-velocity maps. We utilize 3D magnetohydrodynamic (MHD) simulations of fully developed turbulence, with a large range of sonic and Alfvenic Mach numbers, to produce synthetic observations of velocity centroids with observational characteristics such as thermal broadening, cloud boundaries, noise, and radiative transfer effects of carbon monoxide. In addition, we investigate how the resulting anisotropy-Alfven Mach number dependency found in Esquivel & Lazarian (2011) might change when taking the second moment of the position-position-velocity cube or when using different expressions to calculate the velocity centroids. We find that the degree of anisotropy is related primarily to the m...
Alfven wave. [Book on linear and nonlinear properties for fusion applications
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, A.; Uberoi, C.
1978-11-01
Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7.
Global kink and ballooning modes in high-beta systems and stability of toroidal drift modes
International Nuclear Information System (INIS)
A numerical code (HBT) has been developed which solves for the equilibrium, global stability and high-n stability of plasmas with arbitrary cross-section. Various plasmas are analysed for their stability to these modes in the high-beta limit. Screw-pinch equilibria are stable to high-n ballooning modes up to betas of 18%. The eigenmode equation for drift waves is analysed numerically. The toroidal branch is shown to be destabilized by the non-adiabatic response of trapped and circulating particles. (author)
Quantum Treatment of Kinetic Alfv\\'en Waves instability in a dusty plasma: Magnetized ions
Rubab, N
2016-01-01
The dispersion relation of kinetic Alfv\\'en wave in inertial regime is studied in a three component non-degenerate streaming plasma. A lin- ear dispersion relation using fluid- Vlasov equation for quantum plasma is also derived. The quantum correction CQ raised due to the insertion of Bohm potential in Vlasov model causes the suppression in the Alfven wave frequency and the growth rates of instability. A number of analytical expressions are derived for various modes of propagation. It is also found that many system parameters, i.e, streaming velocity, dust charge, num- ber density and quantum correction significantly influence the dispersion relation and the growth rate of instability.
AMPTE/CCE observations of substorm-associated standing Alfven waves in the midnight sector
Takahashi, K.; Mcentire, R. W.; Potemra, T. A.; Kokubun, S.; Sakurai, T.
1988-01-01
Magnetic-field and medium-energy particle data from the AMPTE/CCE spacecraft are used to study substorm-associated ULF pulsations in the midnight sector at a radial distance of 8 to 9 earth radii. The particle data are used to identify ion injections and to detect the electric field of ULF waves. A case study of the events on May 23, 1985 shows that the waves have the properties of a fundamental-mode standing Alfven wave. It is suggested that these observations are evidence of substorm-associated standing Alfven waves in the nightside magnetosphere.
Long-Alfven-wave trains in collisionless plasmas. I. Kinetic theory
International Nuclear Information System (INIS)
A generalized kinetic derivative nonlinear Schroedinger equation for the multidimensional dynamics of Alfven wave trains propagating along an ambient magnetic field is derived from the Vlasov-Maxwell equations by a reductive perturbative expansion. It retains in addition to the Landau damping, the coupling to longitudinally averaged fields driven by both transverse gradients and kinetic effects. These mean fields that modulate the propagation speed of the wave play a main role in transverse instabilities of extended Alfven wave packets and in the filamentation phenomenon. This long-wave model also provides a benchmark for Landau-fluid descriptions of collisionless plasmas
Alfven Wave Collisions, The Fundamental Building Block of Plasma Turbulence II: Numerical Solution
Nielson, Kevin D; Dorland, William
2013-01-01
This paper presents the numerical verification of an asymptotic analytical solution for the nonlinear interaction between counterpropagating Alfven waves, the fundamental building block of astrophysical plasma turbulence. The analytical solution, derived in the weak turbulence limit using the equations of incompressible MHD, is compared to a nonlinear gyrokinetic simulation of an Alfven wave collision. The agreement between these methods signifies that the incompressible solution satisfactorily describes the essential dynamics of the nonlinear energy transfer, even under the weakly collisional plasma conditions relevant to many astrophysical environments.
The soliton transform and a possible application to nonlinear Alfven waves in space
Hada, T.; Hamilton, R. L.; Kennel, C. F.
1993-01-01
The inverse scattering transform (IST) based on the derivative nonlinear Schroedinger (DNLS) equation is applied to a complex time series of nonlinear Alfven wave data generated by numerical simulation. The IST describes the long-time evolution of quasi-parallel Alfven waves more efficiently than the Fourier transform, which is adapted to linear rather than nonlinear problems. When dissipation is added, so the conditions for the validity of the DNLS are not strictly satisfied, the IST continues to provide a compact description of the wavefield in terms of a small number of decaying envelope solitons.
Destabilization of hydromagnetic drift-Alfven waves in a finite pressure, collisional plasma
International Nuclear Information System (INIS)
The hydromagnetic drift mode of the coupled drift-Alfven wave is destabilized as a standing wave in a dense, current-free plasma in the presence of a density gradient. When an axial electron current is drawn, a localized Alfven mode propagating against the current is destabilized, in addition to the unstable drift mode now propagating along the current. The measured wave properties, dispersion, and dependence on plasma parameters are found to agree with the theory derived for a finite β, collisional plasma
Alfven-wave particle interaction in finite-dimensional self-consistent field model
International Nuclear Information System (INIS)
A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons
Benchmarking Fast-to-Alfven Mode Conversion in a Cold MHD Plasma
Cally, Paul S.; Hansen, Shelley C.
2011-01-01
Alfv\\'en waves may be generated via mode conversion from fast magneto-acoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helio-seismology. In active regions this reflection typically occurs high enough that the Alfv\\'en speed $a$ greatly exceeds the sound speed $c$, well above the $a=c$ level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfv\\'en conver...
International Nuclear Information System (INIS)
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m1, n1), (m2, n2), such that the difference in azimuth and in frequency matches the desired “target” mode (m1 − m2, n1 − n2). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes
Active and fast particle driven Alfvén eigenmodes in Alcator C-Moda)
Snipes, J. A.; Basse, N.; Boswell, C.; Edlund, E.; Fasoli, A.; Gorelenkov, N. N.; Granetz, R. S.; Lin, L.; Lin, Y.; Parker, R.; Porkolab, M.; Sears, J.; Sharapov, S.; Tang, V.; Wukitch, S.
2005-05-01
Alfvén eigenmodes (AEs) are studied to assess their stability in high density reactor relevant regimes where Ti≈Te and as a diagnostic tool. Stable AEs are excited with active magnetohydrodynamics antennas in the range of the expected AE frequency. Toroidal Alfvén eigenmode (TAE) damping rates between 0.5%<γ/ω<4.5% have been observed in diverted and limited Ohmic plasmas. Unstable AEs are excited with a fast ion tail driven by H minority ion cyclotron radio frequency (ICRF) heating with electron densities in the range of n¯e=0.5-2×1020m-3. Energetic particle modes or TAEs have been observed to decrease in frequency and mode number with time up to a large sawtooth collapse, indicating the role fast particles play in stabilizing sawteeth. In the current rise phase, unstable modes with frequencies that increase rapidly with time are observed with magnetic pick-up coils at the wall and phase contrast imaging density fluctuation measurements in the core. Modeling of these modes constrains the calculated safety factor profile to be very flat or with slightly reversed shear. AEs are found to be more stable for an inboard than for central or outboard ICRF resonances in qualitative agreement with modeling.
Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation
Todo, Y.; Berk, H. L.; Breizman, B. N.
2010-08-01
Nonlinear magnetohydrodynamic (MHD) effects on Alfvén eigenmode evolution were investigated via hybrid simulations of an MHD fluid interacting with energetic particles. The investigation focused on the evolution of an n = 4 toroidal Alfvén eigenmode (TAE) which is destabilized by energetic particles in a tokamak. In addition to fully nonlinear code, a linear-MHD code was used for comparison. The only nonlinearity in that linear code is from the energetic-particle dynamics. No significant difference was found in the results of the two codes for low saturation levels, δB/B ~ 10-3. In contrast, when the TAE saturation level predicted by the linear code is δB/B ~ 10-2, the saturation amplitude in the fully nonlinear simulation was reduced by a factor of 2 due to the generation of zonal (n = 0) and higher-n (n >= 8) modes. This reduction is attributed to the increased dissipation arising from the nonlinearly generated modes. The fully nonlinear simulations also show that geodesic acoustic mode is excited by the MHD nonlinearity after the TAE mode saturation.
Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots
Energy Technology Data Exchange (ETDEWEB)
Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Dipartimento di Fisica e Geologia, Perugia (Italy); Gubbiotti, G.; Dey, H.; Csaba, G.; Porod, W. [Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)
2015-05-07
We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements has been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.
Holographic modal analysis for the separation of narrow-spaced eigenmodes
Klingele, Hermann; Steinbichler, Hans; Freymann, Raymond; Honsberg, Wolfram; Haberstok, Carsten
1996-08-01
The automotive industry has particular interest in obtaining modal models of panel-like structures in the higher frequency range where the accuracy of FE-models normally is not longer sufficient to predict the dynamic response of a car body structure to a given operational excitation. Experimental modal analysis can fill this gap. However, the sensors which are currently used for the acquisition of vibrational data (accelerometers, laser vibrometer) are limited in spatial resolution and therefore higher-order panel modes are hard to be investigated. Holographic interferometry is widely used for qualitative and quantitative measurements of the mode shapes of dynamic systems, where its high spatial resolution outperforms any other kind of vibrational dynamic sensor. The limitations of holography with respect to the sampling rate can be overcome in the context of modal analysis by using stepped sine testing. A large number of holograms is then automatically recorded and evaluated. First results on a test structure which exhibits narrow-spaced eigenmodes are shown using this kind of measurement setup with a high frequency resolution. The dense vibration data enables the modal analysis software to separate the eigenmodes.
Hybrid simulation of toroidal Alfvén eigenmode on the National Spherical Torus Experiment
International Nuclear Information System (INIS)
Energetic particle modes and Alfvén eigenmodes driven by super-Alfvénic fast ions are routinely observed in neutral beam heated plasmas on the National Spherical Torus eXperiment (NSTX). These modes can significantly impact fast ion transport and thus cause fast ion redistribution or loss. Self-consistent linear simulations of Toroidal Alfvén Eigenmodes (TAEs) in NSTX plasmas have been carried out with the kinetic/magnetohydrodynamic hybrid code M3D-K using experimental plasma parameters and profiles including plasma toroidal rotation. The simulations show that unstable TAEs with n=3,4, or 5 can be excited by the fast ions from neutral beam injection. The simulated mode frequency, mode radial structure, and phase shift are consistent with measurements from a multi-channel microwave reflectometer diagnostic. A sensitivity study on plasma toroidal rotation, safety factor q profile, and initial fast ion distribution is performed. The simulations show that rotation can have a significant destabilizing effect when the rotation is comparable or larger than the experimental level. The mode growth rate is sensitive to q profile and fast ion distribution. Although mode structure and peak position depend somewhat on q profile and plasma rotation, the variation of synthetic reflectometer response is within experimental uncertainty and it is not sensitive enough to see the difference clearly
A simple apparatus for recording the eigenmodes in a microwave cavity
Schultz, K. D.; Koch, P. M.; Zelazny, S. A.
2000-06-01
Maier and Slaterfootnote L.C. Maier, Jr. and J.C. Slater, J. App. Phys. 23, 68 (1952) showed how to record the spatial distribution of cavity eigenmodes by measuring resonant frequency shifts caused by a small metal or dielectric bead. Using equipment available around a physics or EE department or that can be bought relatively cheaply, we have developed a simple ``bead-pull" apparatus suitable for student research projects or classroom demonstrations. We describe its use for azimuthally symmetric TM eigenmodes in a 2D cavity resonator. These are in the set of solutions of a scalar Helmholtz equation mathematically equivalent to the 2D Schrödinger equation. Therefore, the cavity corresponds to a quantal billiard, of interest for quantum chaos studies. We begin with an empty 2D circular cavity, which is easily solved analytically and used to test the method. Next we place inside a disk that partially fills the cavity radially and vertically. We compare measurements along a diameter to the results of calculations with public domain software (Superfish). Our apparatus exposes students to a variety of experimental techniques as well as research topics of high interest in contemporary physics.
Non-linear modulation of short wavelength compressional Alfvén eigenmodes
International Nuclear Information System (INIS)
Most Alfvénic activity in the frequency range between toroidal Alfvén eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to ≈1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfvén Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Energy Technology Data Exchange (ETDEWEB)
Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr; Casalis, Grégoire, E-mail: Gregoire.Casalis@onera.fr [Onera - The French Aerospace Lab, F-31055 Toulouse (France)
2015-08-15
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequency matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.
Ferromagnetic and resistive wall effects on beta limit in a tokamak
International Nuclear Information System (INIS)
Ferromagnetic and resistive wall effect on beta limit in a tokamak is investigated. It is shown that the beta limit is reduced to 90% of that without ferromagnetic effect for high aspect ratio tokamak, if the ferromagnetic wall of relative permeability of 2 is used. The effect of toroidal plasma flow is also investigated, and the flow velocity of 0.03vta, vta is toroidal Alfven velocity, is sufficient for the resistive wall to have stability effect of ideal wall. Both the resistive wall and ideal kink modes are destabilized by the ferromagnetic wall effects. (author)
Experimental evidence of Alfv\\'en wave propagation in a Gallium alloy
Alboussiere, Thierry; Debray, François; La Rizza, Patrick; Masson, Jean-Paul; Plunian, Franck; Ribeiro, Adolfo; Schmitt, Denys
2011-01-01
Experiments with a liquid metal alloy, galinstan, are reported and show clear evidence of Alfv\\'en wave propagation as well as resonance of Alfv\\'en modes. Galinstan is liquid at room temperature, and although its electrical conductivity is not as large as that of liquid sodium or NaK, it has still been possible to study Alfv\\'en waves, thanks to the use of intense magnetic fi elds, up to 13 teslas. The maximal values of Lundquist number, around 60, are similar to that of the reference experimental study by Jameson [1]. The generation mechanism for Alfv\\'en waves and their refl ection is studied carefully. Numerical simulations have been performed and have been able to reproduce the experimental results despite the fact that the simulated magnetic Prandtl number was much larger than that of galinstan. An originality of the present study is that a poloidal disturbance (magnetic and velocity fields) is generated, allowing us to track its propagation from outside the conducting domain, hence without interfering.
Kinetic structures of shear Alfven and acoustic wave spectra in burning plasmas
Energy Technology Data Exchange (ETDEWEB)
Zonca, F; Biancalani, A; Chavdarovski, I; Chen, L; Di Troia, C; Wang, X, E-mail: fulvio.zonca@enea.it
2010-11-01
We present a general theoretical framework for discussing the physics of low frequency fluctuation spectra of shear Alfven and acoustic waves in toroidal plasmas of fusion interest. This framework helps identifying the relevant dynamics and, thus, interpreting experimental observations. We also discuss the roles of such general theoretical framework for verification and validation of numerical simulation codes vs. analytic predictions and experimental results.
Kinetic structures of shear Alfven and acoustic wave spectra in burning plasmas
International Nuclear Information System (INIS)
We present a general theoretical framework for discussing the physics of low frequency fluctuation spectra of shear Alfven and acoustic waves in toroidal plasmas of fusion interest. This framework helps identifying the relevant dynamics and, thus, interpreting experimental observations. We also discuss the roles of such general theoretical framework for verification and validation of numerical simulation codes vs. analytic predictions and experimental results.
Alfven wave coupled with flow-driven fluid instability in interpenetrating plasmas
Vranjes, J
2015-01-01
The Alfven wave is analyzed in case of one quasineutral plasma propagating with some constant speed $v_0$ through another static quasineutral plasma. A dispersion equation is derived describing the Alfven wave coupled with the flow driven mode $\\omega= k v_0$ and solutions are discussed analytically and numerically. The usual solutions for two oppositely propagating Alfv\\'en waves are substantially modified due to the flowing plasma. More profound is modification of the solution propagating in the negative direction with respect to the magnetic field and the plasma flow. For a large enough flow speed (exceeding the Alfven speed in the static plasma), this negative solution may become non-propagating, with frequency equal to zero. In this case it represents a spatial variation of the electromagnetic field. For greater flow speed it becomes a forward mode, and it may merge with the positive one. This merging of the two modes represents the starting point for a flow-driven instability, with two complex-conjugate...
Overdamped Alfven waves due to ion-neutral collisions in the solar chromosphere
Soler, R; Zaqarashvili, T V
2014-01-01
Alfvenic waves are ubiquitous in the solar atmosphere and their dissipation may play an important role in atmospheric heating. In the partially ionized solar chromosphere, collisions between ions and neutrals are an efficient dissipative mechanism for Alfven waves with frequencies near the ion-neutral collision frequency. The collision frequency is proportional to the ion-neutral collision cross section for momentum transfer. Here, we investigate Alfven wave damping as a function of height in a simplified chromospheric model and compare the results for two sets of collision cross sections, namely those of the classic hard-sphere model and those based on recent quantum-mechanical computations. We find important differences between the results for the two sets of cross sections. There is a critical interval of wavelengths for which impulsively excited Alfven waves are overdamped as a result of the strong ion-neutral dissipation. The critical wavelengths are in the range from 1 km to 50 km for the hard-sphere cr...
Benchmarking Fast-to-Alfven Mode Conversion in a Cold MHD Plasma
Cally, Paul S
2011-01-01
Alfv\\'en waves may be generated via mode conversion from fast magneto-acoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helio-seismology. In active regions this reflection typically occurs high enough that the Alfv\\'en speed $a$ greatly exceeds the sound speed $c$, well above the $a=c$ level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfv\\'en conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold MHD model $c\\to0$. This provides a benchmark for fast-to-Alfv\\'en mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfv\\'en speed profile with density scale height $h$, the Alfv\\'en conversion coefficient depends on three variables only; the dimensionless transverse-to-the-stratification wavenumber $\\kappa=kh$, the magnetic field ...
Heating and Acceleration of the Fast Solar Wind by Alfv\\'{e}n Wave Turbulence
van Ballegooijen, A A
2016-01-01
We present numerical simulations of reduced magnetohydrodynamic (RMHD) turbulence in a magnetic flux tube at the center of a polar coronal hole. The model for the background atmosphere is a solution of the momentum equation, and includes the effects of wave pressure on the solar wind outflow. Alfv\\'{e}n waves are launched at the coronal base, and reflect at various heights due to variations in Alfv\\'{e}n speed and outflow velocity. The turbulence is driven by nonlinear interactions between the counter-propagating Alfv\\'{e}n waves. Results are presented for two models of the background atmosphere. In the first model the plasma density and Alfv\\'{e}n speed vary smoothly with height, resulting in minimal wave reflections and low energy dissipation rates. We find that the dissipation rate is insufficient to maintain the temperature of the background atmosphere. The standard phenomenological formula for the dissipation rate significantly overestimates the rate derived from our RMHD simulations, and a revised formu...
Configurational Effects on Alfvenic modes and Confinement in the H-1NF Heliac
Blackwell, B D; Howard, J; Nazikian, R; Kumar, S T A; Oliver, D; Byrne, D; Harris, J H; Nuhrenberg, C A; McGann, M; Dewar, R L; Detering, F; Hegland, M; Potter, G I; Read, J W
2009-01-01
The flexible Heliac coil set of helical axis stellarator H-1 (R=1m, ~0.15-0.2 m) permits access to a wide range of magnetic configurations. Surprisingly, in the absence of any obvious population of energetic particles, Alfven modes normally associated with energetic populations in larger fusion experiments are observed. Using H-1's unique combination of flexibility and advanced diagnostics, RF-generated plasma in H-1 is shown to have a very complex dependence on configuration of both the electron density and fluctuations in the MHD Alfven range. Magnetic fluctuations range from highly coherent, often multi-frequency, to approaching broad-band (df/f ~ 0.02-0.5), in the range 1-200 kHz. Application of datamining techniques to a wide range of configurations classifies these fluctuations and extracts poloidal and toroidal mode numbers, revealing that a significant class of fluctuations exhibit scaling which is i) Alfvenic with electron density (within a constant factor) and ii) shear Alfvenic in rotational transf...
Inbound waves in the solar corona: a direct indicator of Alfv\\'en Surface location
DeForest, C E; McComas, D J
2014-01-01
The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary -- the Alfv\\'en surface -- that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfv\\'en surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfv\\'en speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona, and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer corona beyond 6 solar radii for the first time, and used it to determine that the Alfv\\'en surface is at least 12.5 solar radii from the Sun over the polar coronal holes and 17 solar radii in the streamer belt, well beyond ...
Todo, Y.; Berk, H. L.; Breizman, B. N.
2012-03-01
A hybrid simulation code for nonlinear magnetohydrodynamics (MHD) and energetic-particle dynamics has been extended to simulate recurrent bursts of Alfvén eigenmodes by implementing the energetic-particle source, collisions and losses. The Alfvén eigenmode bursts with synchronization of multiple modes and beam ion losses at each burst are successfully simulated with nonlinear MHD effects for the physics condition similar to a reduced simulation for a TFTR experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874, Todo et al 2003 Phys. Plasmas 10 2888). It is demonstrated with a comparison between nonlinear MHD and linear MHD simulation results that the nonlinear MHD effects significantly reduce both the saturation amplitude of the Alfvén eigenmodes and the beam ion losses. Two types of time evolution are found depending on the MHD dissipation coefficients, namely viscosity, resistivity and diffusivity. The Alfvén eigenmode bursts take place for higher dissipation coefficients with roughly 10% drop in stored beam energy and the maximum amplitude of the dominant magnetic fluctuation harmonic δBm/n/B ~ 5 × 10-3 at the mode peak location inside the plasma. Quadratic dependence of beam ion loss rate on magnetic fluctuation amplitude is found for the bursting evolution in the nonlinear MHD simulation. For lower dissipation coefficients, the amplitude of the Alfvén eigenmodes is at steady levels δBm/n/B ~ 2 × 10-3 and the beam ion losses take place continuously. The beam ion pressure profiles are similar among the different dissipation coefficients, and the stored beam energy is higher for higher dissipation coefficients.
International Nuclear Information System (INIS)
Overlap fermions, which preserve exact chiral symmetry on the lattice, provide a powerful tool for investigating the topological structure of the vacuum. Applying this formulation to zerotemperature quenched SU(3) configurations generated by means of the Luescher-Weisz action, we define the topological charge density with and without UV filtering and study its properties by looking at the density profile and the two-point correlation function. We observe that the density possesses global sign coherent structures, which get increasingly tangled as more and more modes are included. This change of the structure is also detected by the increasing negative tail of the two-point function. We also study the inverse participation ratio of the eigenmodes and discuss their dimensionality. (orig.)
Distortional eigenmodes and homogeneous solutions for semi-discretized thin-walled beams
DEFF Research Database (Denmark)
Jönsson, Jeppe; Andreassen, Michael Joachim
2011-01-01
part of a semi-discretization process. In this process the cross-section is discretized into finite cross-section elements and the axial variation of the displacement functions are solutions to the established coupled fourth order differential equations of GBT. We use a novel finite-element...... solution is given as well as transformations between different degree of freedom spaces. This new approach is a considerable theoretical improvement, since the obtained GBT equations found by discretization of the cross-section are now solved analytically and the formulation is valid without special...... attention also for closed single or multi cell cross-sections. Further more the found eigenvalues have clear mechanical meaning, since they represent the attenuation of the distortional eigenmodes and may be used in the automatic meshing of approximate distortional beam elements. The magnitude of the...
Low frequency eigenmodes of thin anisotropic current sheets and Cluster observations
Directory of Open Access Journals (Sweden)
L. M. Zelenyi
2009-02-01
Full Text Available The eigenmodes of low frequency perturbations of thin anisotropic current sheets with a finite value of the normal magnetic field, are investigated in this paper. It is shown that two possible polarizations of symmetric and asymmetric modes (sausage and kink exist where the growth rate of instabilities is positive. In addition, we demonstrate that a tearing instability might have a positive growth rate in thin anisotropic current sheets. The class of relatively fast wavy flapping oscillations observed by Cluster is described. The main direction of wave motion coincides with the direction of the current and the typical velocity of this motion is comparable with the plasma drift velocity in the current sheet. The comparison of these characteristics with theoretical predictions of the model of anisotropic thin current sheets, demonstrates that, in principle, the theory adequately describes the observations.
Identification of island-induced Alfvén eigenmodes in a reversed field pinch
Cook, C. R.; Hegna, C. C.; Anderson, J. K.; McCollam, K. J.; Boguski, J.; Feng, R.; Koliner, J. J.; Spong, D. A.; Hirshman, S. P.
2016-05-01
The modification of the shear Alfvén spectrum due to a core resonant magnetic island is used to explain the Alfvénic activity observed on the Madison symmetric torus (MST) reversed-field pinch during neutral beam injection. Theoretical studies show that the Alfvén continua in the core of the island provide a gap in which the observed Alfvénic bursts reside. Numerical simulations using a new code called SIESTAlfvén have identified the bursts as the first observation of an island-induced Alfvén eigenmode (IAE) in an RFP. The IAE arises from a helical coupling of harmonics due to the magnetic island.
Parallel equilibrium current effect on existence of reversed shear Alfvén eigenmodes
International Nuclear Information System (INIS)
A new fast global eigenvalue code, where the terms are segregated according to their physics contents, is developed to study Alfvén modes in tokamak plasmas, particularly, the reversed shear Alfvén eigenmode (RSAE). Numerical calculations show that the parallel equilibrium current corresponding to the kink term is strongly unfavorable for the existence of the RSAE. An improved criterion for the RSAE existence is given for with and without the parallel equilibrium current. In the limits of ideal magnetohydrodynamics (MHD) and zero-pressure, the toroidicity effect is the main possible favorable factor for the existence of the RSAE, which is however usually small. This suggests that it is necessary to include additional physics such as kinetic term in the MHD model to overcome the strong unfavorable effect of the parallel current in order to enable the existence of RSAE
A singular finite element technique for calculating continuum damping of Alfvén eigenmodes
International Nuclear Information System (INIS)
Damping due to continuum resonances can be calculated using dissipation-less ideal magnetohydrodynamics provided that the poles due to these resonances are properly treated. We describe a singular finite element technique for calculating the continuum damping of Alfvén waves. A Frobenius expansion is used to determine appropriate finite element basis functions on an inner region surrounding a pole due to the continuum resonance. The location of the pole due to the continuum resonance and mode frequency is calculated iteratively using a Galerkin method. This method is used to find the complex frequency and mode structure of a toroidicity-induced Alfvén eigenmode in a large aspect ratio circular tokamak and is shown to agree closely with a complex contour technique
Excited eigenmodes in magnetic vortex states of soft magnetic half-spheres and spherical caps
International Nuclear Information System (INIS)
We studied the magnetization dynamics of excitation modes in special geometrical confinements of soft magnetic half-spheres and spherical caps in magnetic vortex states using finite-element micromagnetic numerical calculations. We found additional fine features of the zeroth- and first-order gyrotropic modes and asymmetric m = +1 and m = −1 azimuthal spin-wave modes, which detailed information is unobtainable from two-dimensional mesh-cell based numerical calculations. Moreover, we examined the perpendicular bias field dependence of the excited eigenmodes, which data provide for an efficient means of control over the excited modes. Such numerical calculations offer additional details or new underlying physics on dynamic features in arbitrary-shape magnetic nano-elements such as half-spheres and spherical caps in magnetic vortex states
Transient evolution of eigenmodes in dynamic cavities and time-varying media
Gradoni, Gabriele; Arnaut, Luk R.
2015-12-01
In this paper, we investigate the perturbation of natural eigenmodes of dynamic cavities with boundaries moving at quasi-static speeds relative to the wave velocity. For an arbitrarily shaped source-free cavity, the amplitude of the irrotational mode is modeled as a damped harmonic oscillator with time-varying eigenfrequency, i.e., a parametric oscillator. It is found that the effect of the pure Doppler shift of the resonance frequencies of the eigenmodes is small at nonrelativistic speeds. However, it is known that any spectrum of eigenenergies that is perturbed by a space- and/or time-fluctuating medium can develop frequency shifts of arbitrary magnitude. By using a linear dynamic (time-dependent) shift for the cavity broad resonances, we find that Doppler-like large shifts result in a mere frequency modulation of the total (resultant) field amplitude, while nonuniform red or blue shift can create a hybrid amplitude and frequency modulation. Interestingly, the combined action of red and blue shifts of uniform magnitude can also create a hybrid modulation. If the angle between modal wave vector and stirrer speed is accounted for in the static (time-independent) shift, the resulting red and blue shifts lead to irregular hybrid modulations. This can occur even for regular perturbations in regular cavities. In addition, owing to the stochastic nature of mode-stirred cavities, the effect of random Doppler-like shifts is also investigated, leading to a Fokker-Planck equation whose diffusion coefficient shows quadratic dependence on the mode amplitude. Thus, the analysis of random perturbations offers an effective framework for observed instantaneous Doppler effects in closed electromagnetic environments. The mathematical framework obtained in terms of stochastic differential equations is useful to predict the nonstationary response of dynamic cavities with complicated or unknown boundary geometry.
Nonlinear coupling of O- and X-mode radio emission and Alfven waves in the solar corona
International Nuclear Information System (INIS)
The nonlinear coupling of extraordinary and ordinary waves via kinetic Alfven waves (KAWs) is investigated on the basis of two fluid magnetohydrodynamics. The equation governing the time dependence of electric field of excited O-mode is found. We estimate the time of effective coupling between modes and corresponding interaction distance in solar corona. Our theoretical results show that the X- and O-mode couplings via Alfven waves can be efficient depolarization mechanism for the coronal radioemission
Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium
Belcher, J. W.; Burchsted, R.
1974-01-01
Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.
Alfven solitons in the coupled derivative nonlinear Schroedinger system with symbolic computation
International Nuclear Information System (INIS)
The propagation of nonlinear Alfven waves in magnetized plasmas with right and left circular polarizations is governed by the coupled derivative nonlinear Schroedinger (CDNLS) system. The integrability of this system is indicated by the existence of two gauge-equivalent Lax pairs and infinitely many independent conservation laws. With symbolic computation, the analytic one- and two-soliton solutions are obtained via the Hirota bilinear method. The propagation characteristics of the Alfven waves are discussed through qualitative analysis. The collision dynamics of the CDNLS solitons is found to be characterized by the invariance of the soliton velocities and widths, parameter-dependent changes of the soliton amplitudes and conservation of the total energy of right- and left-polarized components. The parametric condition for the amplitude-preserving collision occurring in each component is explicitly given.
Reappraising Transition Region Line Widths in light of Recent Alfv\\'{e}n Wave Discoveries
McIntosh, Scott W; Tarbell, Theodore D
2008-01-01
We provide a new interpretation of ultraviolet transition region emission line widths observed by the SUMER instrument on the Solar and Heliospheric Observatory (SOHO). This investigation is prompted by observations of the chromosphere at unprecedented spatial and temporal resolution from the Solar Optical Telescope (SOT) on Hinode revealing that all chromospheric structures above the limb display significant transverse (Alfvenic) perturbations. We demonstrate that the magnitude, network sensitivity and apparent center-to-limb isotropy of the measured line widths (formed below 250,000K) can be explained by an observationally constrained forward-model in which the line width is caused by the line-of-sight superposition of longitudinal and Alfvenic motions on the small-scale (spicular) structures that dominate the chromosphere and low transition region.
Modification and damping of Alfven waves in a magnetized dusty plasma
International Nuclear Information System (INIS)
The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlation. It is found that in addition to the usual Landau damping which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field. (author)
Alfven wave spectrum control in the heating and current drive experiments
International Nuclear Information System (INIS)
In this report we present the diagnostic system that has been developed for wave field spectrum analysis and control during Alfven wave heating and current drive experiments in the TCABR tokamak The system permits to register simultaneously the phase and the amplitude of the toroidal Β-tilde φ and poloidal Β-tildeθ magnetic field components of the waves with M ±1, N = ±, N = ±(2+6) in the frequency range ∫ = 2-8 MHz and RF pulse duration τ = 20-50 ms and to generate a feedback signal for plasma parameters control. The wave mode and frequency selectivity are ensured by the adjustment of the magnetic probe position and by utilization of specially designed 'lock-in' amplifiers that use 'sin' and 'cos' reference signals produced on the basis of the Alfven antenna feeding current. (author)
Reflection and dissipation of Alfv\\'en waves in interstellar clouds
Pinto, C; Galli, D; Velli, M
2012-01-01
Context: Supersonic nonthermal motions in molecular clouds are often interpreted as long-lived magnetohydrodynamic (MHD) waves. The propagation and amplitude of these waves is affected by local physical characteristics, most importantly the gas density and the ionization fraction. Aims: We study the propagation, reflection and dissipation of Alfv\\'en waves in molecular clouds deriving the behavior of observable quantities such as the amplitudes of velocity fluctuations and the rate of energy dissipation. Methods: We formulated the problem in terms of Els\\"asser variables for transverse MHD waves propagating in a one-dimensional inhomogeneous medium, including the dissipation due to collisions between ions and neutrals and to a nonlinear turbulent cascade treated in a phenomenological way. We considered both steady-state and time-dependent situations and solved the equations of the problem numerically with an iterative method and a Lax-Wendroff scheme, respectively. Results: Alfv\\'en waves incident on overdens...
Kinetic Alfven Waves at the Magnetopause-Mode Conversion, Transport and Formation of LLBL; TOPICAL
International Nuclear Information System (INIS)
At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity[Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D(approx) 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 and gt; 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in
Phenomenology of non-Alfvenic turbulence in a uniformly expanding medium
Matthaeus, W. H.; Zank, G. P.
1995-01-01
Transport and decay of magnetohydrodynamic (MHD) turbulence in a weakly inhomogeneous uniformly expanding medium involves a fairly complex formalism, even for the case where no spectral information is required. Here we argue that the phenomenology for decay simplifies greatly if: (1) the cross helicity (Alfvenicity) is small, (2) the dynamical influence of the large scale magnetic field is negligible either because of spectral anisotropy or because the expansion speed is much greater than the corresponding Alfven speed, and (3) the ratio of kinetic energy to magnetic energy for the fluctuations is either unity or some other constant. These conditions are acceptable as an approximation to solar wind turbulence in the outer heliosphere. In these circumstances a reasonable MHD energy-containing phenomenology is essentially that of locally homogeneous Kolmogoroff turbulence in a uniformly expanding medium. Analytical solutions for this model are presented for both undriven and driven cases.
Particle simulation of energetic particle driven Alfven modes in NBI heated DIII-D experiments
International Nuclear Information System (INIS)
The mutual nonlinear interactions of shear Alfven modes and alpha particles can enhance their transport in burning plasmas. Theoretical and numerical works have shown that rapid transport of energetic ions can take place because of fast growing Alfven modes (e.g. energetic particle driven modes, EPMs). This kind of transport has been observed in experiments as well as in numerical simulations. Hybrid MHD-gyrokinetic codes can investigate linear and nonlinear dynamics of energetic particle (EP) driven modes, retaining the mutual interaction between waves and EPs self-consistently. Self-consistent nonlinear wave-particle interactions (both in configuration and velocity space) are crucial for a correct description of the mode dynamics in the case of strongly driven modes; thus, a non-perturbative approach is mandatory. The knowledge of the threshold characterizing the transition from weakly to strongly driven regimes is of primary importance for burning plasma operations (e.g. for ITER), in order to avoid EPM enhanced EP transport regimes. The hybrid MHD-gyrokinetic code (HMGC) has been applied to the interpretation of phenomena observed in present experiments with neutral beam (NB) heating. In reversed-shear beam-heated DIII-D discharges, a large discrepancy between the expected and measured EP radial density profiles has been observed in the presence of large Alfvenic activity. HMGC simulations with EP radial profiles expected from classical NB deposition as input give rise to strong EPM activity, resulting in relaxed EP radial profiles at saturation level close to experimental measurements. The frequency spectra obtained from several simulations with different toroidal mode numbers, as calculated during the saturated phase when the strong EPMs transform in weak reversed-shear Alfven modes, are quite close to experimental observations both in absolute frequency and in radial localization. In this work, we discuss in particular the effects of nonlinear coupling
Transverse dynamics of dispersive Alfven waves. II. Driving of a reduced magnetohydrodynamic flow
International Nuclear Information System (INIS)
The nonlinear dynamics resulting from transverse and quasi-transverse instabilities of a finite-amplitude dispersive Alfven wave propagating along an ambient magnetic field is studied by direct numerical simulations of the three-dimensional Hall-magnetohydrodynamic (Hall-MHD) equations. When the pump wave has a moderate amplitude and a long enough wavelength, one observes the generation of nonlinear structures in the form of helical filaments for the transverse magnetic field intensity and the density fluctuations. An interesting feature is the development of a quasi-incompressible turbulent flow, with a longitudinal characteristic scale large compared to the Alfven wavelength, that remains spectrally well separated from the wave throughout the evolution. The coexistence of this 'reduced MHD' flow with nonlinear Alfven waves was predicted on the basis of an asymptotic analysis [A. Gazol, T. Passot, and P. L. Sulem, Phys. Plasmas 6, 3114 (1999)] carried out in the long-wavelength limit. Whereas in this regime the generation of the reduced MHD flow is negligible, it becomes significant on a time scale of a few wave periods when dispersion is increased. Increasing the dispersion also leads to a faster destabilization of the wave and to a more rapid dissipation, a remarkable effect due to enhanced instability growth rates. In the case of a larger amplitude pump, or of an Alfven wavelength close to the ion-inertial length, the helical structures get fragmented and the spectral gap observed at early times between the large-scale flow and the waves rapidly disappears, leading to a fully three-dimensional MHD turbulent flow
Magnetosphere--Ionosphere Coupling: Effects of Plasma Alfven Wave Relative Motion
Christiansen, P. J.; Dum, C. T.
1989-06-01
The introduction of relative perpendicular motion between a flux-tube supporting shear Alfven wave activity and the background plasma is studied in the context of the coupling of a wave generating region with a distant ionosphere. The results of a representative simulation, using an extended version of the code developed by Lysak & Dum (J. geophys. Res. 88, 365 (1983)), are used as a basis for interpreting some aspects of recent satellite observations.
Reflection and dissipation of Alfv\\'en waves in interstellar clouds
Pinto, C.; A. Verdini; Galli, D.; Velli, M.
2012-01-01
Context: Supersonic nonthermal motions in molecular clouds are often interpreted as long-lived magnetohydrodynamic (MHD) waves. The propagation and amplitude of these waves is affected by local physical characteristics, most importantly the gas density and the ionization fraction. Aims: We study the propagation, reflection and dissipation of Alfv\\'en waves in molecular clouds deriving the behavior of observable quantities such as the amplitudes of velocity fluctuations and the rate of energy ...
Magnetohydrodynamics in the Early Universe and the Damping of Non-linear Alfven Waves
Subramanian, Kandaswamy; Barrow, John D.
1997-01-01
The evolution and viscous damping of cosmic magnetic fields in the early universe, is analysed. Using the fact that the fluid, electromagnetic, and shear viscous energy-momentum tensors are all conformally invariant, the evolution is transformed from the expanding universe setting into that in flat spacetime. Particular attention is paid to the evolution of nonlinear Alfven modes. For a small enough magnetic field, which satisfies our observational constraints, these wave modes either oscilla...
Plasma acceleration by the interaction of parallel propagating Alfv\\'en waves
Mottez, Fabrice
2014-01-01
It is shown that two circularly polarised Alfv\\'en waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic wa...
Propagation of Alfv\\'enic Waves From Corona to Chromosphere and Consequences for Solar Flares
Russell, A. J. B.; Fletcher, L.
2013-01-01
How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a 2-fluid model (of plasma and neutrals) and used it to perform 1D simulations of Alfv\\'en waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra and umbra) show that energy transmis...
Mallet, A.; Schekochihin, A. A.
2016-01-01
We propose a simple statistical model of three-dimensionally anisotropic, intermittent, strong Alfv\\'enic turbulence, incorporating both critical balance and dynamic alignment. Our model is based on log-Poisson statistics for Elsasser-field increments {\\em along} the magnetic field. We predict the scalings of Elsasser-field conditional two-point structure functions with point separations in all three directions in a coordinate system locally aligned with the direction of the magnetic field an...
Bi-directional Alfv\\'en Cyclotron Instabilities in the Mega-Amp Spherical Tokamak
Sharapov, S E; Akers, R; Ayed, N Ben; Cecconello, M; Cook, J W C; Cunningham, G; Verwichte, E; Tea, the MAST
2014-01-01
Alfv\\'en cyclotron instabilities excited by velocity gradients of energetic beam ions were investigated in MAST experiments with super-Alfv\\'enic NBI over a wide range of toroidal magnetic fields from ~0.34 T to ~0.585 T. In MAST discharges with high magnetic field, a discrete spectrum of modes in the sub-cyclotron frequency range is excited toroidally propagating counter to the beam and plasma current (toroidal mode numbers n < 0).
Generation of coherent wave packets of kinetic Alfven waves in solar plasmas
International Nuclear Information System (INIS)
This work presents the numerical simulations to study the filamentation of kinetic Alfven waves in solar plasmas. Using the modified nonlinear Schroedinger equation model, we study the effect of changing the initial perturbation on filament formation and their nonlinear dynamics. The spectral indices of the power spectrum are calculated with different initial conditions of the simulations. The relevance of the present investigation in coronal heating and solar wind acceleration/turbulence is also pointed out
Brunetti, G.; P. Blasi(INAF Arcetri)
2005-01-01
In a previous paper (Brunetti et al. 2004) we presented the first self-consistent calculations of the time-dependent coupled equations for the electrons, hadrons and Alfv\\'en waves in the intracluster medium, which describe the stochastic acceleration of the charged particles and the corresponding spectral modification of the waves. Under viable assumptions, this system of mutually interacting components was shown to accurately describe several observational findings related to the radio halo...
Theory of heating of hot magnetized plasma by Alfven waves. Application for solar corona
Mishonov, T. M.; Stoev, M. V.; Maneva, Y. G.
2007-01-01
The heating of magnetized plasma by propagation of Alfven waves is calculated as a function of the magnetic field spectral density. The results can be applied to evaluate the heating power of the solar corona at known data from satellites' magnetometers. This heating rate can be incorporated in global models for heating of the solar corona and creation of the solar wind. The final formula for the heating power is illustrated with a model spectral density of the magnetic field obtained by anal...
Alfvenic behavior of alpha particle driven ion cyclotron emission in TFTR
International Nuclear Information System (INIS)
Ion cyclotron emission (ICE) has been observed during D-T discharges in the Tokamak Fusion Test Reactor (TFTR), using rf probes located near the top and bottom of the vacuum vessel. Harmonics of the alpha cyclotron frequency (Ωα) evaluated at the outer midplane plasma edge are observed at the onset of the beam injection phase of TFTR supershots, and persist for approximately 100-250 ms. These results are in contrast with observations of ICE in JET, in which harmonics of Ωα evolve with the alpha population in the plasma edge. Such differences are believed to be due to the fact that newly-born fusion alpha particles are super-Alfvenic near the edge of JET plasmas, while they are sub-Alfvenic near the edge of TFTR supershot plasmas. In TFTR discharges with edge densities such that newly-born alpha particles are super-Alfvenic, alpha cyclotron harmonics are observed to persist. These results are in qualitative agreement with numerical calculations of growth rates due to the magnetoacoustic cyclotron instability
On the reflection of Alfv\\'en waves and its implication for Earth's core modeling
Schaeffer, Nathanaël; Cardin, Philippe; Marie, Drouard
2011-01-01
Alfv\\'en waves propagate in electrically conducting fluids in the presence of a magnetic field. Their reflection properties depend on the ratio between the kinematic viscosity and the magnetic diffusivity of the fluid, also known as the magnetic Prandtl number Pm. In the special case Pm=1, there is no reflection on an insulating, no-slip boundary, and the wave energy is entirely dissipated in the boundary layer. We investigate the consequences of this remarkable behaviour for the numerical modeling of torsional Alfv\\'en waves (also known as torsional oscillations), which represent a special class of Alfv\\'en waves, in rapidly rotating spherical shells. They consist of geostrophic motions and are thought to exist in the fluid cores of planets with internal magnetic field. In the geophysical limit Pm 0.3, which is the range of values for which geodynamo numerical models operate. As a result, geodynamo models with no-slip boundary conditions cannot exhibit torsional oscillation normal modes.
Kinetic Alfv\\'en waves generation by large-scale phase-mixing
Vasconez, C L; Valentini, F; Servidio, S; Matthaeus, W H; Malara, F
2015-01-01
One view of the solar-wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length $d_p$ may be considered as Kinetic Alfv\\'en waves (KAWs). In the present paper, we show how phase-mixing of large-scale parallel propagating Alfv\\'en waves is an efficient mechanism for the production of KAWs at wavelengths close to $d_p$ and at large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall-Magnetohydrodynamic (HMHD), and hybrid Vlasov-Maxwell (HVM) simulations modeling the propagation of Alfv\\'en waves in inhomogeneous plasmas are performed. In linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase-mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave group velocity with analytical linear predictions. In the nonlinear regime, comparison of HMHD and HVM simulations allows to point out the role of kinetic effe...
Spectroscopic Observations and Modelling of Impulsive Alfv\\'en Waves Along a Polar Coronal Jet
Jelínek, P; Murawski, K; Kayshap, P; Dwivedi, B N
2015-01-01
Using the Hinode/EIS 2$"$ spectroscopic observations, we study the intensity, velocity, and FWHM variations of the strongest Fe XII 195.12 \\AA\\ line along the jet to find the signature of Alfv\\'en waves. We simulate numerically the impulsively generated Alfv\\'en waves within the vertical Harris current-sheet, forming the jet plasma flows, and mimicking their observational signatures. Using the FLASH code and the atmospheric model with embedded weakly expanding magnetic field configuration within a vertical Harris current-sheet, we solve the two and half-dimensional (2.5-D) ideal magnetohydrodynamic (MHD) equations to study the evolution of Alfv\\'en waves and vertical flows forming the plasma jet. At a height of $\\sim 5~\\mathrm{Mm}$ from the base of the jet, the red-shifted velocity component of Fe XII 195.12 \\AA\\ line attains its maximum ($5~\\mathrm{km\\,s}^{-1}$) which converts into a blue-shifted one between the altitude of $5-10~\\mathrm{Mm}$. The spectral intensity continously increases up to $10~\\mathrm{Mm...
Solar off-limb line widths: Alfven waves, ion-cyclotron waves, and preferential heating
Dolla, L
2008-01-01
Alfven waves and ion-cyclotron absorption of high-frequency waves are frequently brought into models devoted to coronal heating and fast solar-wind acceleration. Signatures of ion-cyclotron resonance have already been observed in situ in the solar wind (HELIOS spacecrafts) and, recently, in the upper corona (UVCS/SOHO remote-sensing results). We propose a method to constrain both the Alfven wave amplitude and the preferential heating induced by ion-cyclotron resonance, above a partially developed polar coronal hole observed with the SUMER/SOHO spectrometer. The instrumental stray light contribution is first substracted from the spectra. By supposing that the non-thermal velocity is related to the Alfven wave amplitude, it is constrained through a density diagnostic and the gradient of the width of the Mg X 625 A line. The temperatures of several coronal ions, as functions of the distance above the limb, are then determined by substracting the non-thermal component to the observed line widths. The effect of st...
Torsional Alfven Waves in Solar Magnetic Flux Tubes of Axial Symmetry
Murawski, K; Musielak, Z E; Srivastava, A K; Kraskiewicz, J
2015-01-01
Aims: Propagation and energy transfer of torsional Alfv\\'en waves in solar magnetic flux tubes of axial symmetry is studied. Methods: An analytical model of a solar magnetic flux tube of axial symmetry is developed by specifying a magnetic flux and deriving general analytical formulae for the equilibrium mass density and a gas pressure. The main advantage of this model is that it can be easily adopted to any axisymmetric magnetic structure. The model is used to simulate numerically the propagation of nonlinear Alfv\\'en waves in such 2D flux tubes of axial symmetry embedded in the solar atmosphere. The waves are excited by a localized pulse in the azimuthal component of velocity and launched at the top of the solar photosphere, and they propagate through the solar chromosphere, transition region, and into the solar corona. Results: The results of our numerical simulations reveal a complex scenario of twisted magnetic field lines and flows associated with torsional Alfv\\'en waves as well as energy transfer to t...
Star of Lima - Overview and optical diagnostics of a barium Alfven critical velocity experiment
Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Foeppl, H.; Valenzuela, A.
1986-01-01
The Alfven critical velocity mechanism for ionization of a neutral gas streaming across the magnetic field has been demonstrated in laboratory experiments. In March 1983, two rocket-borne experiments with Ba and Sr tested the effect in the wall-less laboratory of space from Punto Lobos, Peru, near 430 km altitude. 'Star of Lima' used a conical Ba shaped charge aimed at an instrument payload about 2 km away. Because of rocket overperformance the detonation occurred in partial sunlight, so that less than 21.6 percent of the ionizing UV was present. Particle and field measurements indicate the production of hot electrons and waves in the energy and frequency range that are respectively predicted to produce a cascade of ionization by the Alfven mechanism. However, the ionization fluxes and wave energy density did not reach cascade levels, and optical observations indicate that only 2.5 to 5 x 10 to the 20th Ba ions were produced. A substantial portion and perhaps all of the ionization could have been produced by solar UV. The failure of the Alfven process in this experiment is not well understood.
Effects of heavy ion temperature on low-frequency kinetic Alfven waves
International Nuclear Information System (INIS)
Heavy ion-electron (or proton) temperature ratio varies in a wide range in the solar and space environment. In this paper, proton and heavy ion temperatures are included in a three-fluid plasma model. For the specified parameters, low-frequency (<< heavy ion gyrofrequency) kinetic Alfven waves (KAWs) with sub- and super-Alfvenic speeds are found to coexist in the same plasma environment. Our results show that the temperature ratio of heavy ions to electrons can considerably affect the dispersion, propagation, and electromagnetic polarizations of the KAWs. In particular, the temperature ratio can increase the ratio of parallel to perpendicular electric fields and the normalized electric to magnetic field ratio, the variations of which are greatly different in regions with a high heavy ion temperature and with a low one. The results may help to understand the physical mechanism of some energization processes of heavy ions in the solar and space plasma environment. Effects of the ratio of electron thermal to Alfven speeds and the heavy ion abundance on these parameters are also discussed.
Supergranulation-driven Alfven waves in the solar chromosphere and related phenomena.
Hollweg, J. V.
1972-01-01
It has recently been recognized that Alfven waves frequently dominate the microstructure of the solar wind at the orbit of the earth. We seek a solar source for these waves, and consider here their excitation by the supergranular motions. The wave equation is solved in a horizontally stratified, bi-exponential solar atmosphere. The interaction of Alfven wave motions associated with adjacent supergranules is discussed qualitatively. The Alfven wave effectively conveys the supergranular motions to great heights in the chromosphere. These motions are oppositely directed above intersupergranule boundaries, and compress the magnetic field there. A naive calculation of the compression, based on balancing dynamic and magnetic pressures, leads to adequate agreement with observations of the chromospheric network. We find that the magnetic field is appreciably compressed only below about 1500 km, and on this basis we reject theories of spicule formation which require large vertical magnetic fields at the heights reached by spicules. We advance a theory for spicule formation, in which spicules form as a result of matter being squeezed upward, out of the compression region between adjacent supergranules.
Statistical Evidence for the Existence of Alfv\\'enic Turbulence in Solar Coronal Loops
Liu, Jiajia; De Moortel, Ineke; Threlfall, James; Bethge, Christian
2014-01-01
Recent observations have demonstrated that waves which are capable of carrying large amounts of energy are ubiquitous throughout the solar corona. However, the question of how this wave energy is dissipated (on which time and length scales) and released into the plasma remains largely unanswered. Both analytic and numerical models have previously shown that Alfv\\'enic turbulence may play a key role not only in the generation of the fast solar wind, but in the heating of coronal loops. In an effort to bridge the gap between theory and observations, we expand on a recent study [De Moortel et al., ApJL, 782:L34, 2014] by analyzing thirty-seven clearly isolated coronal loops using data from the Coronal Multi-channel Polarimeter (CoMP) instrument. We observe Alfv\\'enic perturbations with phase speeds which range from 250-750 km/s and periods from 140-270 s for the chosen loops. While excesses of high frequency wave-power are observed near the apex of some loops (tentatively supporting the onset of Alfv\\'enic turbu...
Sunward-propagating Alfv\\'enic fluctuations observed in the heliosphere
Li, H; Belcher, J W; He, J S; Richardson, J D
2016-01-01
The mixture/interaction of anti-sunward-propagating Alfv\\'enic fluctuations (AFs) and sunward-propagating Alfv\\'enic fluctuations (SAFs) is believed to result in the decrease of the Alfv\\'enicity of solar wind fluctuations with increasing heliocentric distance. However, SAFs are rarely observed at 1 au and solar wind AFs are found to be generally outward. Using the measurements from Voyager 2 and Wind, we perform a statistical survey of SAFs in the heliosphere inside 6 au. We first report two SAF events observed by Voyager 2. One is in the anti-sunward magnetic sector with a strong positive correlation between the fluctuations of magnetic field and solar wind velocity. The other one is in the sunward magnetic sector with a strong negative magnetic field-velocity correlation. Statistically, the percentage of SAFs increases gradually with heliocentric distance, from about 2.7% at 1.0 au to about 8.7% at 5.5 au. These results provide new clues for understanding the generation mechanism of SAFs.
The Modulation of Ionospheric Alfven Resonator on Heating HF Waves and the Doppler Effect
Institute of Scientific and Technical Information of China (English)
NiBin-bin; ZhaoZheng-yu; XieShu-guo
2003-01-01
The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature varia-tions on the Alfven resonant field, We discuss the mechanism of the modulation effect and lucubrate possible reasons for the Doppler effect. The results show that the Alfven resonant field can have an observable modulation effect on HF waves while its mechanism is quite different from that of Schumann resonant field on HF waves. The depth of modulation of IAR on HF waves has a quasi-quadratic relation with the Alfven field, which directly inspires the formation of cross-spectrum between ULF waves and HF waves and results in spectral peaks at some gyro-frequencies of IAR. With respect to the Doppler effect during the propagation of HF waves in IAR, it is mainly caused by the motion of the high-speed flyer and the drifting electrons and the frequency shift from the phase vari-ation of the reflected waves can be neglected when the frequency of HF incident wave is high enough.
International Nuclear Information System (INIS)
We present a high-speed operating method with feedback to be used in dynamic atomic force microscope (AFM) systems. In this method we do not use an actuator that has to be employed to move the tip or the sample as in conventional AFM setups. Instead, we utilize a Q-controlled eigenmode of an AFM cantilever to perform the function of the actuator. Simulations show that even with an ordinary tapping-mode cantilever, imaging speed can be increased by about 2 orders of magnitude compared to conventional dynamic AFM imaging. - Highlights: • A high-speed imaging method is developed for dynamic-AFM systems. • An eigenmode of an AFM cantilever is utilized to perform fast actuation. • Simulations show 2 orders of magnitude increase in scan speed. • The time spent for dynamic-AFM imaging experiments will be minimized
k-space Imaging of the Eigenmodes of Sharp Gold Tapers for Scanning Near-Field Optical Microscopy
Esmann, Martin; da Cunha, Bernard B; Brauer, Jens H; Vogelgesang, Ralf; Gross, Petra; Lienau, Christoph
2013-01-01
We investigate the radiation patterns of sharp conical gold tapers, designed as adiabatic nanofocusing probes for scanning near-field optical microscopy (SNOM). Field calculations show that only the lowest order eigenmode of such a taper can reach the very apex and thus induce the generation of strongly enhanced near-field signals. Higher order modes are coupled into the far field at finite distances from the apex. Here, we demonstrate experimentally how to distinguish and separate between the lowest and higher order eigenmodes of such a metallic taper by filtering in the spatial frequency domain. Our approach has the potential to considerably improve the signal-to-background ratio in spectroscopic experiments on the nanoscale.
k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy
Directory of Open Access Journals (Sweden)
Martin Esmann
2013-10-01
Full Text Available We investigate the radiation patterns of sharp conical gold tapers, which were designed as adiabatic nanofocusing probes for scanning near-field optical microscopy (SNOM. Field calculations show that only the lowest order eigenmode of such a taper can reach the very apex and thus induce the generation of strongly enhanced near-field signals. Higher-order modes are coupled into the far field at finite distances from the apex. Here, we demonstrate experimentally how to distinguish and separate between the lowest and higher-order eigenmodes of such a metallic taper by filtering in the spatial frequency domain. Our approach has the potential to considerably improve the signal-to-background ratio in spectroscopic experiments at the nanoscale.
Soft iron and axisymetric eigenmodes in the von-Karman-Sodium dynamo
Giesecke, A.; Stefani, F.; Gerbeth, G.
2012-04-01
In the Cadarache von-Karman-Sodium (VKS) dynamo experiment magnetic field excitation is generated by a turbulent flow of liquid sodium. In the experiment this so called von-Karman-like flow is driven by two counter-rotating impellers that are located close to the end-caps of a cylindrical vessel. Despite of extensive numerical and experimental efforts the very nature of the VKS dynamo and its surprising properties still remain unclear. Firstly, dynamo action is obtained only when (at least one of) the flow driving impellers are made of soft iron with a relative permeability around 65. Moreover, and in apparent contradiction with Cowling's anti-dynamo theorem, the geometric structure of the observed magnetic field is dominated by an axisymmetric field. Our kinematic simulations of an axisymmetric model of the Cadarache dynamo show a close connection between the exclusive occurrence of dynamo action with soft iron impellers and the axisymmetry of the magnetic field. We observe two distinct classes of axisymmetric eigenmodes, a purely toroidal mode that is amplified by paramagnetic pumping at the fluid-disk interface and a mixed mode consisting of a poloidal and a toroidal contribution that is rather insensitive to the disk permeability. In the limit of large permeability, the purely toroidal mode is close to the onset of dynamo action with a growth-rate that is rather independent of the flow field. This mode is located near to and in the high permeability disks and becomes the leading mode when the disk permeability exceeds a critical value. However, since in our axisymmetric configuration the purely toroidal mode is decoupled from any poloidal field component no dynamo action can be expected from this mode. The purely toroidal mode and its strong amplification by paramagnetic pumping at the fluid-disks interface can be obtained only by explicitly considering the internal permeability distribution. This mode does not exist in case of highly conducting disks or in
Evidence of kinetic Alfvén eigenmode in the near-Earth magnetotail during substorm expansion phase
Duan, S. P.; Dai, Lei; Wang, Chi; Liang, J.; Lui, A. T. Y.; Chen, L. J.; He, Z. H.; Zhang, Y. C.; Angelopoulos, V.
2016-05-01
Unipolar pulses of kinetic Alfvén waves (KAW) are first observed in the near-Earth plasma sheet (NEPS) associated with dipolarizations during substorm expansion phases. Two similar events are studied with Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations during substorms on 3 February 2008 and 7 February 2008. The unipolar pulses were located at a trough-like Alfvén speed profile in the northern plasma sheet at a distance of 10-11 RE from Earth. The dominant wave components consist of a southward δEz toward the neutral plane and a +δBy toward the dusk. The |δEz|/|δBy| ratio was in the range of a few times the local Alfvén speed, a strong indication of KAW nature. The wave Poynting flux was earthward and nearly parallel to the background magnetic field. The pulse was associated with an earthward field-aligned current carried by electrons. These observational facts strongly indicate a KAW eigenmode that is confined by the plasma sheet but propagates earthward along the field line. The KAW eigenmode was accompanied by short timescale (1 min) dipolarizations likely generated by transient magnetotail reconnection. The observed polarity of the KAW field/current is consistent with that of the Hall field/current in magnetic reconnection, supporting the scenario that the Hall fields/current propagate out from reconnection site as KAW eigenmodes. Aurora images on the footprint of THEMIS spacecraft suggest that KAW eigenmode may power aurora brightening during substorm expansion phase.
Figueiredo, A. C. A.; Rodrigues, P.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.
2016-07-01
The linear stability of Alfvén eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach based on CASTOR-K (Borba and Kerner 1999 J. Comput. Phys. 153 101; Nabais et al 2015 Plasma Sci. Technol. 17 89) is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfvén eigenmodes. The largest growth-rates occur in the scenario variant with higher core temperatures, which has the highest alpha-particle density and density gradient, for eigenmodes with toroidal mode numbers n≈ 30 . Although these eigenmodes suffer significant radiative damping, which is also evaluated, their growth rates remain larger than those of the most unstable eigenmodes found in the variant of the ITER baseline scenario with lower core temperatures, which have n≈ 15 and are not affected by radiative damping.
Energy Technology Data Exchange (ETDEWEB)
Diaz, Alfredo J.; Eslami, Babak; López-Guerra, Enrique A.; Solares, Santiago D., E-mail: ssolares@gwu.edu [Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742 (United States)
2014-09-14
This paper explores the effect of the amplitude ratio of the higher to the fundamental eigenmode in bimodal atomic force microscopy (AFM) on the phase contrast and the dissipated power contrast of the higher eigenmode. We explore the optimization of the amplitude ratio in order to maximize the type of contrast that is most relevant to the particular study. Specifically, we show that the trends in the contrast range behave differently for different quantities, especially the dissipated power and the phase, with the former being more meaningful than the latter (a similar analysis can be carried out using the virial, for which we also provide a brief example). Our work is based on numerical simulations using two different conservative-dissipative tip-sample models, including the standard linear solid and the combination of a dissipation coefficient with a conservative model, as well as experimental images of thin film Nafion{sup ®} proton exchange polymers. We focus on the original bimodal AFM method, where the higher eigenmode is driven with constant amplitude and frequency (i.e., in “open loop”).
Externally driven global Alfvén eigenmodes applied for effective mass number measurement on TCABR
International Nuclear Information System (INIS)
The excitation and detection of Global Alfvén Eigenmodes on TCABR for diagnostic purposes are presented. The modes can be excited with one or two in-vessel antennae, with up to 15 A of current in each, in the frequency range from 2 to 4 MHz. This scheme allows the estimation of the effective mass number at the plasma center, which value is affected by impurity concentration in the core. An amplifier based on MOSFETs is used to excite the waves driven by low power, in order to not change the basic plasma parameters. The variation of the GAE with density is verified and the location of the mode resonance at the plasma center is confirmed by the sawtooth beating, so that the correspondingly beating phase inversion improves the precision on the resonant condition determination. The toroidal parity of the modes N = 1,2 is determined by use of two opposite located antennae with different phase of the RF current. Knowledge of toroidal mode number is important as it identifies GAE location and defines the estimated effective mass value. The estimated value for Aeff is ∼1.4–1.5, corresponding to 5–7% of carbon impurity concentration. The measured value of Aeff is used to estimate Zeff, which is compared to older TCA experiments and the value obtained by the Spitzer conductivity
Saturation of a toroidal Alfvén eigenmode due to enhanced damping of nonlinear sidebands
Todo, Y.; Berk, H. L.; Breizman, B. N.
2012-09-01
This paper examines nonlinear magneto-hydrodynamic effects on the energetic particle driven toroidal Alfvén eigenmode (TAE) for lower dissipation coefficients and with higher numerical resolution than in the previous simulations (Todo et al 2010 Nucl. Fusion 50 084016). The investigation is focused on a TAE mode with toroidal mode number n = 4. It is demonstrated that the mechanism of mode saturation involves generation of zonal (n = 0) and higher-n (n ⩾ 8) sidebands, and that the sidebands effectively increase the mode damping rate via continuum damping. The n = 0 sideband includes the zonal flow peaks at the TAE gap locations. It is also found that the n = 0 poloidal flow represents a balance between the nonlinear driving force from the n = 4 components and the equilibrium plasma response to the n = 0 fluctuations. The spatial profile of the n = 8 sideband peaks at the n = 8 Alfvén continuum, indicating enhanced dissipation due to continuum damping.
Integral eigenmode analysis of shear flow effects on the ion temperature gradient mode
International Nuclear Information System (INIS)
Previous numerical and analytic kinetic studies have investigated the influence of velocity shear on the ion temperature gradient (ITG) mode. These studies relied on a differential approximation to study mode structures with kperpendicularρi much-lt 1. A recently developed gyrokinetic integral code is here used to explore the effects of sheared flows on the ITG mode for arbitrary values of kperpendicularρi. It is found that both the mode structure and eigenfrequencies predicted by the integral code can differ from the results obtained by the differential approach, even in the kyρi much-lt 1 limit. Although some trends predicted by the differential approximation are recovered by the integral approach, there are some significant differences. For example, the slight destabilizing effect observed for small values of the perpendicular velocity shear at kperpendicularρi much-lt 1 is amplified when the integral approach is applied. In dealing with the higher radial eigenmodes, which can often exhibit the largest growth rates, it is emphasized that their finer radial structure usually dictates that the integral equation analysis is required. Results from the integral code are presented together with comparisons with results from the differential approach
Analytical formulae of the Polyakov and Wilson loops with Dirac eigenmodes in lattice QCD
International Nuclear Information System (INIS)
We derive an analytical gauge-invariant formula between the Polyakov loop LP and the Dirac eigenvalues λn in QCD, i.e., LP∝∑nλnNt−1〈n|U-^4|n〉, in ordinary periodic square lattice QCD with odd-number temporal size Nt. Here, |n〉 denotes the Dirac eigenstate, and U-^4 the temporal link-variable operator. This formula is a Dirac spectral representation of the Polyakov loop in terms of Dirac eigenmodes |n〉. Because of the factor λnNt−1 in the Dirac spectral sum, this formula indicates a negligibly small contribution of low-lying Dirac modes to the Polyakov loop in both confinement and deconfinement phases, while these modes are essential for chiral symmetry breaking. Next, we find a similar formula between the Wilson loop and Dirac modes on arbitrary square lattices, without restriction of odd-number size. This formula suggests a small contribution of low-lying Dirac modes to the string tension σ, or the confining force. These findings support no crucial role of low-lying Dirac modes for confinement, i.e., no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD, which seems to be natural because heavy quarks are also confined even without light quarks or the chiral symmetry
Effects of near-zero Dirac eigenmodes on axial U(1) symmetry at finite temperature
Tomiya, Akio; Fukaya, Hidenori; Hashimoto, Shoji; Noaki, Junichi
2014-01-01
We study the axial U(1)A symmetry of Nf = 2 QCD at finite temperature using the Dirac eigenvalue spectrum. The gauge configurations are generated employing the Mobius domain-wall fermion action on 16^3x8 and 32^3x8 lattices. The physical spatial size of these lattices is around 2 fm and 4 fm, respectively, and the simulated temperature is around 200 MeV, which is slightly above the critical temperature of the chiral phase transition. Although the Mobius domain-wall Dirac operator is expected to have a good chiral symmetry and our data actually show small values of the residual mass, we observe significant violation of the Ginsparg-Wilson relation for the low- lying eigenmodes of the Mobius domain-wall Dirac operator. Using the reweighting technique, we compute the overlap-Dirac operator spectrum on the same set of configurations and find a significant difference of the spectrum between the two Dirac operators for the low-lying eigenvalues. The overlap-Dirac spectrum shows a gap from zero, which is insensitive...
Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons
Gallagher, Dominic F. G.; Felici, Thomas P.
2003-06-01
With the rapid growth of the telecommunications industry over the last 5 to 10 years has come the need to solve ever more complex electromagnetic problems and to solve them more precisely than ever before. The basic EME (EigenMode Expansion) technique is a powerful method for calculation of electromagnetic propagation which has been well known amongst academic environments and also in microwave fields, representing the electromagnetic fields everywhere in terms of a basis set of local modes. It is at the same time a rigorous solution of Maxwell's Equations and is able to deal with very long structures. We discuss here progress that the authors and others have made recently in applying and extending it to integrated, fibre, and diffractive optics - including development of efficient ways of modelling tapers and other smoothly varying structures, new more efficient boundary conditions and improved mode finders. We outline the advantages it has over other techniques and also its limitations. We illustrate its application with a variety of real life examples, including diffractive elements, directional couplers, tapers, MMI's, bend modelling, periodic structures and others.
Global marginal stability of TAEs in the presence of fast ions
International Nuclear Information System (INIS)
The global stability of toroidicity-induced Alfven eigenmodes (TAEs) in the presence of fast ions in realistic tokamak fusion-grade plasmas is analyzed with a global, perturbative approach. Volume averaged fast particle betas for marginal stability are obtained and analyzed for a wide range of plasma parameters such as the fast ion radial density profile width, the ratio of birth velocity to the Alfven velocity on axis and the bulk plasma beta. The different stability behaviour of two types of TAEs ('internal' or 'external') is evidenced. (author) 19 figs., 22 refs
Matteini, L; Pantellini, F; Velli, M; Schwartz, S J
2015-01-01
We investigate properties of the plasma fluid motion in the large amplitude low frequency fluctuations of highly Alfv\\'enic fast solar wind. We show that protons locally conserve total kinetic energy when observed from an effective frame of reference comoving with the fluctuations. For typical properties of the fast wind, this frame can be reasonably identified by alpha particles, which, owing to their drift with respect to protons at about the Alfv\\'en speed along the magnetic field, do not partake in the fluid low frequency fluctuations. Using their velocity to transform proton velocity into the frame of Alfv\\'enic turbulence, we demonstrate that the resulting plasma motion is characterized by a constant absolute value of the velocity, zero electric fields, and aligned velocity and magnetic field vectors as expected for unidirectional Alfv\\'enic fluctuations in equilibrium. We propose that this constraint, via the correlation between velocity and magnetic field in Alfv\\'enic turbulence, is at the origin of ...
Lazarian, A
2016-01-01
This paper considers turbulent damping of Alfven waves in magnetized plasmas. We identify two cases of damping, one related to damping of cosmic rays streaming instability, the other related to damping of Alfven waves emitted by a macroscopic wave source, e.g. stellar atmosphere. The physical difference between the two cases is that in the former case the generated waves are emitted in respect to the local direction of magnetic field, in the latter in respect to the mean field. The scaling of damping is different in the two cases. We the regimes of turbulence ranging from subAlfvenic to superAlfvenic we obtain analytical expressions for the damping rates and define the ranges of applicability of these expressions. Describing the damping of the streaming instability, we find that for subAlfvenic turbulence the range of cosmic ray energies influenced by weak turbulence is unproportionally large compared to the range of scales that the weak turbulence is present. On the contrary, the range of cosmic ray energies...
International Nuclear Information System (INIS)
This report discusses the following topics: Nonaxisymmetric radio- frequency heating in an l = 1 stellarator and in a linear plasma column; measurement of induced current in a hardcore theta pinch; externally driven tilt mode study on an FRC; elimination of induced plasma current in a hardcore theta pinch; and simulated toroidicity studies
Resonant-state-expansion Born approximation with a correct eigen-mode normalisation
Doost, M. B.
2016-08-01
The Born approximation (Born 1926 Z. Phys. 38 802) is a fundamental result in physics, it allows the calculation of weak scattering via the Fourier transform of the scattering potential. As was done by previous authors (Ge et al 2014 New J. Phys. 16 113048) the Born approximation is extended by including in the formula the resonant-states (RSs) of the scatterer. However in this study unlike previous studies the included eigen-modes are correctly normalised with dramatic positive consequences for the accuracy of the method. The normalisation of RSs used in the previous RS expansion Born approximation or resonant-state expansion (RSE) Born approximation made in Ge et al (2014 New J. Phys. 16 113048) has been shown to be numerically unstable in Muljarov et al (2014 arXiv:1409.6877) and by analytics here. The RSs of the system can be calculated using my recently discovered RSE perturbation theory for dispersive electrodynamic scatterers (Muljarov et al 2010 Europhys. Lett. 92 50010; Doost et al 2012 Phys. Rev. A 85 023835; Doost et al 2013 Phys. Rev. A 87 043827; Armitage et al 2014 Phys. Rev. A 89; Doost et al 2014 Phys. Rev. A 90 013834) and normalised correctly to appear in spectral Green's functions and hence the RSE Born approximation via the flux-volume normalisation which I recently rigorously derived in Armitage et al (2014 Phys. Rev. A 89), Doost et al (2014 Phys. Rev. A 90 013834), Doost (2016 Phys. Rev. A 93 023835). In the case of effectively one-dimensional systems I find a RSE Born approximation alternative to the scattering matrix method.
BETA-S, Multi-Group Beta-Ray Spectra
International Nuclear Information System (INIS)
1 - Description of program or function: BETA-S calculates beta-decay source terms and energy spectra in multigroup format for time-dependent radionuclide inventories of actinides, fission products, and activation products. Multigroup spectra may be calculated in any arbitrary energy-group structure. The code also calculates the total beta energy release rate from the sum of the average beta-ray energies as determined from the spectral distributions. BETA-S also provides users with an option to determine principal beta-decaying radionuclides contributing to each energy group. The CCC-545/SCALE 4.3 (or SCALE4.2) code system must be installed on the computer before installing BETA-S, which requires the SCALE subroutine library and nuclide-inventory generation from the ORIGEN-S code. 2 - Methods:Well-established models for beta-energy distributions are used to explicitly represent allowed, and 1., 2. - and 3. -forbidden transition types. Forbidden non-unique transitions are assumed to have a spectral shape of allowed transitions. The multigroup energy spectra are calculated by numerically integrating the energy distribution functions using an adaptive Simpson's Rule algorithm. Nuclide inventories are obtained from a binary interface produced by the ORIGEN-S code. BETA-S calculates the spectra for all isotopes on the binary interface that have associated beta-decay transition data in the ENSDF-95 library, developed for the BETA-S code. This library was generated from ENSDF data and contains 715 materials, representing approximately 8500 individual beta transition branches. 3 - Restrictions on the complexity of the problem: The algorithms do not treat positron decay transitions or internal conversion electrons. The neglect of positron transitions in inconsequential for most applications involving aggregate fission products, since most of the decay modes are via electrons. The neglect of internal conversion electrons may impact on the accuracy of the spectrum in the low
Numerical analysis of Alfven and acoustic eigen modes in toroidal plasmas
International Nuclear Information System (INIS)
Full text: Recently various kinds of low-frequency eigen modes have been experimentally observed in toroidal plasmas. Excitation of a set of Alfven eigen modes in a reversed-magnetic-shear configuration has been identified as reversed shear induced Alfven eigen modes (RSAE). Density fluctuations in a tens kHz range are believed to be geodesic acoustic modes (GAM). In order to systematically identify the low-frequency modes and study the mode structure, we have updated the full wave code TASK/WM and applied to the low-frequency modes. The TASK/WM codes solves three-dimensional Maxwell's equation for a wave electric field with a complex frequency and the eigen mode frequency is obtained by maximizing the wave electric field amplitude for given source current density proportional to the electron density. The new version of the TASK/WM code uses the finite element method and calculates the electromagnetic field in a local orthogonal coordinates to achieve higher accuracy compared with the old version. The gyro kinetic dielectric tensor for a plasma with spatial inhomogeneity was also implemented with the finite gyro radius effects, while previous analyses used the full kinetic dielectric tensor in a uniform plasma for electrons and bulk ions. The new version can describe low-frequency mode in the range of drift frequencies. First the new code was applied to the Alfven eigen modes in monotonic and reversed magnetic shear configuration of tokamak plasmas and the results were compared with those of the older version. Next mode structures of the eigen modes and destabilization by energetic ions were studied in tokamak and helical plasmas. The analysis of acoustic modes including GAM is under way and the result will be reported. (author)
Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling
Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.
2011-01-01
The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.
Stimulated emission of fast Alfv\\'en waves within magnetically confined fusion plasmas
Cook, J W S; Chapman, S C
2016-01-01
A fast Alfv\\'en wave with finite amplitude is shown to grow by a stimulated emission process that we propose for exploitation in toroidal magnetically confined fusion plasmas. Stimulated emission occurs while the wave propagates inward through the outer mid-plane plasma, where a population inversion of the energy distribution of fusion-born ions is observed to arise naturally. Fully nonlinear first principles simulations, which self-consistently evolve particles and fields under the Maxwell-Lorentz system, demonstrate this novel "alpha-particle channelling" scenario for the first time.
International Nuclear Information System (INIS)
The results of the initial experimental studies of the Alfven wave antenna module, which is destined to be a part of the advanced antenna system of TCABR tokamak, are presented. The tests were carried out in a specially constructed vacuum chamber and included the measurement of antenna electrical parameters and testing of the power diagnostic tools. The complex impedances and inductive mutual coupling of antenna loops were measured and results were compared with theoretical calculations. The tests have shown that the parameters of the antenna module have values according to the design. (author)
On the limitation of RF fields by Alfven's critical ionization velocity phenomenon
International Nuclear Information System (INIS)
Alfven's critical ionization velocity hypothesis and some of the numerous experiments supporting it are briefly reviewed. The critical velocity is associated with a critical electric field, which may limit the transfer of RF power through a cold partially ionized blanket. The underlying mechanism is not fully understood at present, but experimental observation indicate the parameter and frequency ranges in which the phenomenon occurs. The upper frequency limit seems to be higher than the ion cyclotron frequency. For frequencies below the ion-neutral collision frequency, the field limitation becomes less severe
Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves
International Nuclear Information System (INIS)
The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E x B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the ponderomotive force. In either case, it is shown that modest amounts of absorbed power (∼ few 100 kW) are required to suppress turbulence in a region of several cm radial width. 9 refs
Plastic damping of Alfv\\'en waves in magnetar flares and delayed afterglow emission
Li, Xinyu
2015-01-01
Magnetar flares generate Alfv\\'en waves bouncing in the closed magnetosphere with energy up to $\\sim 10^{46}$ erg. We show that on a 10-ms timescale the waves are transmitted into the star and form a compressed packet of high energy density. This packet strongly shears the stellar crust and initiates a plastic flow, heating the crust and melting it hundreds of meters below the surface. A fraction of the deposited plastic heat is eventually conducted to the stellar surface, contributing to the surface afterglow months to years after the flare. A large fraction of heat is lost to neutrino emission or conducted into the core of the neutron star.
Zonal Flows Driven by Small-Scale Drift-Alfven Modes
Institute of Scientific and Technical Information of China (English)
李德徽; 周登
2011-01-01
Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions.
Design of the RF system for Alfven wave heating and current drive in a TCA/BR tokamak
International Nuclear Information System (INIS)
The advanced RF system for Alfven wave plasma heating and current drive in TCA/BR tokamak is presented. The antenna system is capable of exciting the standing and travelling wave M = -1,N = 1,N =-4,-6 with single helicity and thus provides the possibility to improve Alfven wave plasma heating efficiency in TCA/BR tokamak and to increase input power level up to P ≅ 1 MW, without the uncontrolled density rise which was encountered in previous TCA (Switzerland) experiments. (author). 4 refs., 3 figs
International Nuclear Information System (INIS)
Detailed calculations concerning the field structure and excitation of the fast magnetosonic wave are presented keeping in mind RF heating of a Tokamak near the ion cyclotron harmonic. The new contributions are - a discussion of the cylindrical problem in an inhomogeneous plasma including surface waves and the splitting of the eigenmodes by the poloidal field - a calculation of the field structure in the toroidal cavity resonator and the application to mode tracking - a formulation of the loading impedance of various coupling structures: array of coils in the low frequency limit or transmission lines in the high frequency case
Global hybrid-gyrokinetic simulations of fast-particle effects on Alfvén Eigenmodes in stellarators
International Nuclear Information System (INIS)
Simulations of gyrokinetic energetic ions interacting with the magneto-hydrodynamic (MHD) Alfvén Eigenmodes are presented. The effect of the finite fast-ion orbit width and the finite fast-ion gyroradius, the role of the equilibrium radial electric field, as well as the effect of anisotropic fast-particle distribution functions (loss-cone and ICRH-type distributions), are studied in Wendelstein 7-X stellarator geometry using a combination of gyrokinetic particle-in-cell and reduced MHD eigenvalue codes. A preliminary stability analysis of a HELIAS reactor configuration is undertaken. (paper)
The role of Alfv\\'en wave heating in solar prominences
Soler, Roberto; Oliver, Ramon; Ballester, Jose Luis
2016-01-01
Observations have shown that magnetohydrodynamic waves over a large frequency range are ubiquitous in solar prominences. The waves are probably driven by photospheric motions and may transport energy up to prominences suspended in the corona. Dissipation of wave energy can lead to heating of the cool prominence plasma, so contributing to the local energy balance within the prominence. Here we discuss the role of Alfv\\'en wave dissipation as a heating mechanism for the prominence plasma. We consider a slab-like quiescent prominence model with a transverse magnetic field embedded in the solar corona. The prominence medium is modelled as a partially ionized plasma composed of a charged ion-electron single fluid and two separate neutral fluids corresponding to neutral hydrogen and neutral helium. Friction between the three fluids acts as a dissipative mechanism for the waves. The heating caused by externally-driven Alfv\\'en waves incident on the prominence slab is analytically explored. We find that the dense pro...
Alfvenic Turbulence from the Sun to 65 Solar Radii: Numerical predictions.
Perez, J. C.; Chandran, B. D. G.
2015-12-01
The upcoming NASA Solar Probe Plus (SPP) mission will fly to within 9 solar radii from the solar surface, about 7 times closer to the Sun than any previous spacecraft has ever reached. This historic mission will gather unprecedented remote-sensing data and the first in-situ measurements of the plasma in the solar atmosphere, which will revolutionize our knowledge and understanding of turbulence and other processes that heat the solar corona and accelerate the solar wind. This close to the Sun the background solar-wind properties are highly inhomogeneous. As a result, outward-propagating Alfven waves (AWs) arising from the random motions of the photospheric magnetic-field footpoints undergo strong non-WKB reflections and trigger a vigorous turbulent cascade. In this talk I will discuss recent progress in the understanding of reflection-driven Alfven turbulence in this scenario by means of high-resolution numerical simulations, with the goal of predicting the detailed nature of the velocity and magnetic field fluctuations that the SPP mission will measure. In particular, I will place special emphasis on relating the simulations to relevant physical mechanisms that might govern the radial evolution of the turbulence spectra of outward/inward-propagating fluctuations and discuss the conditions that lead to universal power-laws.
The Spatial and Temporal Dependence of Coronal Heating by Alfven Wave Turbulence
Asgari-Targhi, M; Cranmer, S R; DeLuca, E E
2013-01-01
The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magneto-hydrodynamics (MHD) code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.
Alfven waves and current relaxation: attenuation at high frequencies and large resistivity
International Nuclear Information System (INIS)
The dispersion relations of Alfven waves propagating in a resistive plasma are explored by assuming a finite relaxation time for the current density. It is shown that the proposed approach is consistent with the hydromagnetic approximation. An extension for the equation governing the space and time evolution of Alfven waves is provided. New results are found at high values of the wave frequency ω: for a small resistivity, the wavelength increases as the cube of the equilibrium magnetic field but decreases with the cube of ω; for a large resistivity, the wave attenuation does not depend on ω, saturating to a finite value which is fully determined by the relaxation time of the current density. A transition frequency, ωt, between two sharply distinct regimes of the perturbation is identified: for ω t, the disturbance propagates in the resistive plasma as an attenuated oscillation; for ω > ωt the wave ceases very rapidly to oscillate (in space), its amplitude saturating to a finite value. The results presented here may be relevant for investigations of some transient phenomena in plasma physics such as the reconnection of magnetic field lines.
Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics
Energy Technology Data Exchange (ETDEWEB)
Klein, R I; Li, P S; McKee, C F; Fisher, R
2008-04-10
Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256{sup 3} and 512{sup 3} simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li et al. (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.
Advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak
International Nuclear Information System (INIS)
An advanced antenna system that has been developed for investigation of Alfven wave plasma heating and current drive in the TCABR tokamak is described. The main goal was the development of such a system that could insure the excitation of travelling single helicity modes with predefined wave mode numbers M and N. The system consists of four similar modules with poloidal windings. The required spatial spectrum is formed by proper phasing of the RF feeding currents. The impedance matching of the antenna with the four-phase oscillator is accomplished by resonant circuits which form one assembly unit with the RF feeders. The characteristics of the antenna system design with respect to the antenna-plasma coupling and plasma wave excitation, for different phasing of the feeding currents, are summarised. The antenna complex impedance Z=ZR+ZI is calculated taking into account both the plasma response to resonant excitation of fast Alfven waves and the nonresonant excitation of vacuum magnetic fields in conducting shell. The matching of the RF generator with the antenna system during plasma heating is simulated numerically, modelling the plasma response with mutually coupled effective inductances with corresponding active ZR and reactive ZI impedances. The results of the numerical simulation of the RF system performance, including both the RF magnetic field spectrum analysis and the modeling of the RF generator operation with plasma load, are presented. (orig.)
Integrated campaign to study the stationary inertial Alfven wave in the laboratory and space regimes
International Nuclear Information System (INIS)
A small, off-axis mesh-anode electrode at one plasma-column end is used to create a paraxial channel of electron current and depleted density in the large plasma device upgrade at UCLA. We show that the on-axis, larger, surrounding-plasma column rotates about its cylindrical axis because a radial electric field is imposed by a multiple-segmented-disc termination electrode on the same end as the mesh-anode electrode. The radial profile of azimuthal velocity is shown to be consistent with predictions of rigid-body rotation. Launched inertial Alfven waves are shown to concentrate in the off-axis channel of electron current and depleted plasma density. In the absence of launched waves, time varying boundary conditions, or spatially structured boundary conditions, a non-fluctuating, non-traveling pattern in the plasma density is shown to arise spontaneously in the channel, but only in the combined presence of electron current, density depletion, and spontaneously in the channel, cross-field convection (i.e. rotation). These results may be relevant to the stationary Alfven wave in the inertial regime in space and laboratory plasmas
Observation of an MHD Alfv\\'en vortex in the slow solar wind
Roberts, Owen Wyn; Alexandrova, Olga; Li, Bo
2016-01-01
In the solar wind, magnetic field power spectra usually show several power-laws. In this paper, magnetic field data from the Cluster mission during an undisturbed interval of slow solar wind is analyzed at 0.28Hz, near the spectral break point between the ion inertial and dissipation/dispersion ranges. Assuming Taylor's frozen-in condition, it corresponds to a proton kinetic scale of $kv_A/\\Omega_p \\sim 0.38$, where $v_A$ and $\\Omega_p$ are the Alfv\\'en speed and proton angular gyrofrequency, respectively. Data show that the Cluster spacecraft passed through a series of wavepackets. A strong isolated wavepacket is found to be in accordance with the four Cluster satellites crossing an Alfv\\'en vortex, a nonlinear solution to the incompressible MHD equations. A strong agreement is seen between the data from four satellites and a model vortex with a radius of the order of $40$ times the local proton gyro-radii. The polarization at different spacecraft is compared and is found to agree with the vortex model, wher...
International Nuclear Information System (INIS)
The consistency of proposed burning plasma scenarios with Alfvenic instabilities driven by alpha particles is investigated. If the alpha particle pressure is above the threshold for resonant excitation of Energetic Particle driven Modes (EPMs), significant modification of the alpha particle pressure profile can take place. Model simulations are performed using the Hybrid MHD-Gyrokinetic Code (HMGC) retaining relevant thermal-plasma parameters, safety factor and alpha particle pressure profiles. ITER monotonic-q and reversed-shear scenarios are considered. A 'hybrid' ITER scenario is also studied and quantitatively compared with the previous ones. We find that, unlike the latter, the former equilibria are unstable. Nonlinear effects on the alpha-particle pressure profile result, however, to be negligible for the monotonic-q case. They can instead be relevant for the reversed-shear scenario. The assessment of such a conclusion requires further investigations concerning the possibility that the strong EPM instability is regulated, in realistic conditions, by nonlinear effects of weaker Alfven modes. (author)
Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves
International Nuclear Information System (INIS)
The Doppler-shifted cyclotron resonance (ω-kzvz=Ωf) between fast ions and shear Alfven waves is experimentally investigated (ω, wave frequency; kz, axial wavenumber; vz, fast-ion axial speed; Ωf, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li+ source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude δ B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8ωci. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.
Energy Technology Data Exchange (ETDEWEB)
Carter, T A
2006-11-16
Final report for DOE Plasma Physics Junior Faculty Development award DOE-FG02-02ER54688. Reports on research undertaken from 8/1/2002 until 5/15/2006, investigating nonlinear interactions between Alfven waves in a laboratory experiment.
Nonlinear reflection process of linearly-polarized, broadband Alfv\\'en waves in the fast solar wind
Shoda, Munehito
2016-01-01
Using one-dimensional numerical simulations, we study the elementary process of Alfv\\'{e}n wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfv\\'{e}n wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave-wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfv\\'{e}n wave. In this study we consider a linearly polarized Alfv\\'en wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfv\\...
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Matsumoto, H.
2001-01-01
Roč. 106, - (2001), s. 13,215-13,224. ISSN 0148-0227 R&D Projects: GA AV ČR IAB3042106 Institutional research plan: CEZ:AV0Z3042911 Keywords : instability * whistler * Alfven wave Subject RIV: BE - Theoretical Physics Impact factor: 2.609, year: 2001
Fernandez, Pablo
2003-01-01
We prove that in a world without leverage cost the relationship between the levered beta ( L) and the unlevered beta ( u) is the No-costs-of-leverage formula: L = u + ( u - d) D (1 - T) / E. We also analyze 6 alternative valuation theories proposed in the literature to estimate the relationship between the levered beta and the unlevered beta (Harris and Pringle (1985), Modigliani and Miller (1963), Damodaran (1994), Myers (1974), Miles and Ezzell (1980), and practitioners) and prove that all ...
Role of explosive instabilities in high-$\\beta$ disruptions in tokamaks
Aydemir, A Y; Lee, S G; Seol, J; Park, B H; In, Y K
2016-01-01
Intrinsically explosive growth of a ballooning finger is demonstrated in nonlinear magnetohydrodynamic calculations of high-$\\beta$ disruptions in tokamaks. The explosive finger is formed by an ideally unstable n=1 mode, dominated by an m/n=2/1 component. The quadrupole geometry of the 2/1 perturbed pressure field provides a generic mechanism for the formation of the initial ballooning finger and its subsequent transition from exponential to explosive growth, without relying on secondary processes. The explosive ejection of the hot plasma from the core and stochastization of the magnetic field occur in Alfv\\'enic time scales, accounting for the extremely fast growth of the precursor oscillations and the rapidity of the thermal quench in some high-$\\beta$ disruptions.
DEFF Research Database (Denmark)
Frazzini, Andrea; Heje Pedersen, Lasse
.S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return of the...
DEFF Research Database (Denmark)
Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory
Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward-...
Kinetic Alfven solitary waves in a magnetized plasma with superthermal electrons
Energy Technology Data Exchange (ETDEWEB)
Panwar, A., E-mail: anurajrajput@gmail.com, E-mail: ryu201@postech.ac.kr, E-mail: bainsphysics@yahoo.co.in; Ryu, C. M., E-mail: anurajrajput@gmail.com, E-mail: ryu201@postech.ac.kr, E-mail: bainsphysics@yahoo.co.in [POSTECH, Hyoja-Dong San 31, KyungBuk, Pohang 790-784 (Korea, Republic of); Bains, A. S., E-mail: anurajrajput@gmail.com, E-mail: ryu201@postech.ac.kr, E-mail: bainsphysics@yahoo.co.in [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatchewan S7N5E2 (Canada)
2015-09-15
A study of the ion Larmor radius effects on the solitary kinetic Alfven waves (SKAWs) in a magnetized plasma with superthermal electrons is presented by employing the kinetic theory. The linear dispersion relation of SKAW is shown to depend on the superthermal parameter κ, ion to electron temperature ratio, and the angle of wave propagation. Using the Sagdeev potential approach, the energy balance equation has been derived to study the dynamics of SKAWs. The effects of various plasma parameters are investigated for the propagation of SKAWs. It is shown that only compressive solitons can exist and in the Maxwellian limit our results are in good agreement with previous studies. Further, the characteristics of small amplitude SKAWs are investigated. Present study could be useful for the understanding of SKAWs in a low β plasma in astrophysical environment, where particle distributions are superthermal in nature.
Solitary Kinetic Alfven Waves in a Low-β Dusty Plasma
Institute of Scientific and Technical Information of China (English)
CHEN Yin-Hua; LU Wei
2000-01-01
The nonlinear kinetic Alfven waves in a low-β(0<β<1)dusty plasma have been investigated with the fluid model of three-component plasma. The nonlinear equation governing the perturbation density of electrons in a form of the energy integral has been derived. In the approximation of small amplitude, the soliton solution for the perturbation density of electrons is found, and the characteristics of solitons in different range of plasma parameters is studied numerically. The results show that the density dip or hump can be formed in a dusty plasma for different ranges of parameters, the amplitude of density dip is enhanced and the amplitude of density hump is reduced with increasing dust grain content.
The Structure of Plasma Heating in Gyrokinetic Alfv\\'enic Turbulence
Navarro, A B; Told, D; Groselj, D; Crandall, P; Jenko, F
2016-01-01
We analyze plasma heating in weakly collisional kinetic Alfv\\'en wave (KAW) turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.e. $\\mathbf{J} \\!\\cdot\\! (\\mathbf{E} + \\mathbf{v}_e\\times\\mathbf{B})$, as a proxy for turbulent dissipation to argue that heating follows the intermittent spatial structure of the electric current. Furthermore, we show that electrons are dominated by parallel heating while the ions prefer the perpendicular heating route. We comment on the implications of the results presented here.
Zonal Flows Driven by Small-Scale Drift-Alfven Modes
International Nuclear Information System (INIS)
Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions. (magnetically confined plasma)
Kinetic Alfv\\'{e}n turbulence below and above ion-cyclotron frequency
Zhao, J S; Wu, D J; Yu, M Y
2015-01-01
Alfv\\'{e}nic turbulent cascade perpendicular and parallel to the background magnetic field is studied accounting for anisotropic dispersive effects and turbulent intermittency. The perpendicular dispersion and intermittency make the perpendicular-wavenumber magnetic spectra steeper and speed up production of high ion-cyclotron frequencies by the turbulent cascade. On the contrary, the parallel dispersion makes the spectra flatter and decelerate the frequency cascade above the ion-cyclotron frequency. Competition of the above factors results in spectral indices distributed in the interval [-2,-3], where -2 is the index of high-frequency space-filling turbulence, and -3 is the index of low-frequency intermittent turbulence formed by tube-like fluctuations. Spectra of fully intermittent turbulence fill a narrower range of spectral indices [-7/3,-3], which almost coincides with the range of indexes measured in the solar wind. This suggests that the kinetic-scale turbulent spectra are shaped mainly by dispersion a...
Transverse dynamics of dispersive Alfven waves. I. Direct numerical evidence of filamentation
International Nuclear Information System (INIS)
The three-dimensional dynamics of a small-amplitude monochromatic Alfven wave propagating along an ambient magnetic field is simulated by direct numerical integration of the Hall-magnetohydrodynamics equations. As predicted by the two-dimensional nonlinear Schroedinger equation or by more general amplitude equations retaining the coupling to low-frequency magnetosonic waves, the transverse instability of the pump leads to wave collapse and formation of intense magnetic filaments, in spite of the presence of competing, possibly linearly dominant, instabilities that in some instances distort the above structures. In computational boxes, including a large number of pump wavelengths, an early arrest of the collapse is possible under the effect of quasi-transverse instabilities that drive magnetosonic waves and also prescribe the directions of the filaments
Measures of Three-Dimensional Anisotropy and Intermittency in Strong Alfv\\'enic Turbulence
Mallet, A; Chandran, B D G; Chen, C H K; Horbury, T S; Wicks, R T; Greenan, C C
2015-01-01
We measure the local anisotropy of numerically simulated strong Alfv\\'enic turbulence with respect to two local, physically relevant directions: along the local mean magnetic field and along the local direction of one of the fluctuating Elsasser fields. We find significant scaling anisotropy with respect to both these directions: the fluctuations are "ribbon-like" --- statistically, they are elongated along both the mean magnetic field and the fluctuating field. The latter form of anisotropy is due to scale-dependent alignment of the fluctuating fields. The intermittent scalings of the $n$th-order conditional structure functions in the direction perpendicular to both the local mean field and the fluctuations agree well with the theory of Chandran et al. 2015, while the parallel scalings are consistent with those implied by the critical-balance conjecture. We quantify the relationship between the perpendicular scalings and those in the fluctuation and parallel directions, and find that the scaling exponent of ...
Mallet, A
2016-01-01
We propose a simple statistical model of three-dimensionally anisotropic, intermittent, strong Alfv\\'enic turbulence, incorporating both critical balance and dynamic alignment. Our model is based on log-Poisson statistics for Elsasser-field increments {\\em along} the magnetic field. We predict the scalings of Elsasser-field conditional two-point structure functions with point separations in all three directions in a coordinate system locally aligned with the direction of the magnetic field and of the fluctuating fields and obtain good agreement with numerical simulations. We also derive a scaling of the parallel coherence scale of the fluctuations, $l_\\parallel \\propto \\lambda^{1/2}$, where $\\lambda$ is the perpendicular scale. This is indeed observed for the bulk of the fluctuations in numerical simulations.
Kinetic Alfven solitary waves in a magnetized plasma with superthermal electrons
International Nuclear Information System (INIS)
A study of the ion Larmor radius effects on the solitary kinetic Alfven waves (SKAWs) in a magnetized plasma with superthermal electrons is presented by employing the kinetic theory. The linear dispersion relation of SKAW is shown to depend on the superthermal parameter κ, ion to electron temperature ratio, and the angle of wave propagation. Using the Sagdeev potential approach, the energy balance equation has been derived to study the dynamics of SKAWs. The effects of various plasma parameters are investigated for the propagation of SKAWs. It is shown that only compressive solitons can exist and in the Maxwellian limit our results are in good agreement with previous studies. Further, the characteristics of small amplitude SKAWs are investigated. Present study could be useful for the understanding of SKAWs in a low β plasma in astrophysical environment, where particle distributions are superthermal in nature
Plasma acceleration by the interaction of parallel propagating Alfv\\'en waves
Mottez, Fabrice
2014-01-01
It is shown that two circularly polarised Alfv\\'en waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic waves. The simulations are done with monochromatic waves and with wave packets. The simulations show parallel electromagnetic fields consistent with the theory, and they show that the particle acceleration result in plasma cavities and, if the waves amplitudes are high enough, in ion beams. These acceleration processes could be relevant in space plasmas. For instance, they could be at work in the auroral zone and in the radiation belts of the Earth magnetosphere. In particular, they may explain the origin of the deep plasma...
Alfven seismic vibrations of crustal solid-state plasma in quaking paramagnetic neutron star
Bastrukov, S; Takata, J; Chang, H -K; Xu, R X
2010-01-01
Magneto-solid-mechanical model of two-component, core-crust, paramagnetic neutron star responding to quake-induced perturbation by differentially rotational, torsional, oscillations of crustal electron-nuclear solid-state plasma about axis of magnetic field frozen in the immobile paramagnetic core is developed. Particular attention is given to the node-free torsional crust-against-core vibrations under combined action of Lorentz magnetic and Hooke's elastic forces; the damping is attributed to Newtonian force of shear viscose stresses in crustal solid-state plasma. The spectral formulae for the frequency and lifetime of this toroidal mode are derived in analytic form and discussed in the context of quasi-periodic oscillations of the X-ray outburst flux from quaking magnetars. The application of obtained theoretical spectra to modal analysis of available data on frequencies of oscillating outburst emission suggests that detected variability is the manifestation of crustal Alfven's seismic vibrations restored b...
Doppler-shifted cyclotron resonance of fast ions with circularly polarized shear Alfven waves
International Nuclear Information System (INIS)
The Doppler-shifted cyclotron resonance between fast ions and shear Alfven waves (SAWs) has been experimentally investigated with a test-particle fast-ion (Li+) beam launched in the helium plasma of the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. Left- or right-hand circularly polarized SAWs are launched by an antenna with four current channels. A collimated fast-ion energy analyzer characterizes the resonance by measuring the nonclassical spreading of the averaged beam signal. Left-hand circularly polarized SAWs resonate with the fast ions but right-hand circularly polarized SAWs do not. The measured fast-ion profiles are compared with simulations by a Monte Carlo Lorentz code that uses the measured wave field data.
Relationship Between Alfvenic Fluctuations and Heavy Ion Heating in the Cusp at 1 Re
Coffey, Victoria; Chandler, Michael; Singh, Nagendra
2008-01-01
We look at the effect of heavy ion heating from their coupling with observed broadband (BB-ELF) emissions. These wave fluctuations are common to many regions of the ionosphere and magnetosphere and have been described as spatial turbulence of dispersive Alfven waves (DAW) with short perpendicular wavelengths. With Polar passing through the cusp at 1 Re in the Spring of 1996, we show the correlation of their wave power with mass-resolved O+ derived heating rates. This relationship lead to the study of the coupling of the thermal O+ ions and these bursty electric fields. We demonstrate the role of these measurements in the suggestion of DAW and stochastic ion heating and the observed density cavity characteristics.
PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVEN-WAVE TURBULENCE IN THE SOLAR WIND
International Nuclear Information System (INIS)
We consider ion heating by turbulent Alfven waves (AWs) and kinetic Alfven waves (KAWs) with wavelengths (measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies ω smaller than the ion cyclotron frequency Ω. We focus on plasmas in which β ∼ρ/vperpendicular, where vperpendicular (v ||) is the component of the ion velocity perpendicular (parallel) to the background magnetic field B 0, and δv ρ (δB ρ) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case of thermal protons, when ε crit, where εcrit is a constant, a proton's magnetic moment is nearly conserved and stochastic heating is extremely weak. However, when ε>εcrit, the proton heating rate exceeds half the cascade power that would be present in strong balanced KAW turbulence with the same value of δv ρ, and magnetic-moment conservation is violated even when ω crit = 0.19. For protons in low-β plasmas, ε ≅ β-1/2δBρ/B 0, and ε can exceed εcrit even when δBρ/B 0 crit. The heating is anisotropic, increasing v 2perpendicular much more than v 2|| when β 1 Landau damping and transit-time damping of KAWs lead to strong parallel heating of protons.) At comparable temperatures, alpha particles and minor ions have larger values of ε than protons and are heated more efficiently as a result. We discuss the implications of our results for ion heating in coronal holes and the solar wind.
Edlund, E. M.; Porkolab, M.; Kramer, G. J.; Lin, L.; Lin, Y.; Wukitch, S. J.
2009-05-01
Reversed shear Alfvén eigenmodes (RSAEs) have been observed with the phase contrast imaging diagnostic and Mirnov coils during the sawtooth cycle in Alcator C-mod [M. Greenwald et al., Nucl. Fusion 45, S109 (2005)] plasmas with minority ion-cyclotron resonance heating. Both down-chirping RSAEs and up-chirping RSAEs have been observed during the sawtooth cycle. Experimental measurements of the spatial structure of the RSAEs are compared to theoretical models based on the code NOVA [C. Z. Cheng and M. S. Chance, J. Comput. Phys. 71, 124 (1987)] and used to derive constraints on the q profile. It is shown that the observed RSAEs can be understood by assuming a reversed shear q profile (up chirping) or a q profile with a local maximum (down chirping) with q ≈1.
Energy Technology Data Exchange (ETDEWEB)
Xie, M. [Lawrence Berkeley Lab., CA (United States)
1995-12-31
I present an exact calculation of free-electron-laser (FEL) eigenmodes (fundamental as well as higher order modes) in the exponential-gain regime. These eigenmodes specify transverse profiles and exponential growth rates of the laser field, and they are self-consistent solutions of the coupled Maxwell-Vlasov equations describing the FEL interaction taking into account the effects due to energy spread, emittance and betatron oscillations of the electron beam, and diffraction and guiding of the laser field. The unperturbed electron distribution is assumed to be of Gaussian shape in four dimensional transverse phase space and in the energy variable, but uniform in longitudinal coordinate. The focusing of the electron beam is assumed to be matched to the natural wiggler focusing in both transverse planes. With these assumptions the eigenvalue problem can be reduced to a numerically manageable integral equation and solved exactly with a kernel iteration method. An approximate, but more efficient solution of the integral equation is also obtained for the fundamental mode by a variational technique, which is shown to agree well with the exact results. Furthermore, I present a handy formula, obtained from interpolating the numerical results, for a quick calculation of FEL exponential growth rate. Comparisons with simulation code TDA will also be presented. Application of these solutions to the design and multi-dimensional parameter space optimization for an X-ray free electron laser driven by SLAC linac will be demonstrated. In addition, a rigorous analysis of transverse mode degeneracy and hence the transverse coherence of the X-ray FEL will be presented based on the exact solutions of the higher order guided modes.
Fast-ion losses induced by ACs and TAEs in the ASDEX Upgrade tokamak
Garcia-Munoz, M.; Hicks, N.; van Voornveld, R.; Classen, I.G.J.; Bilato, R.; Bobkov, V.; Brambilla, M.; Bruedgam, M.; Fahrbach, H. U.; Igochine, V.; Jaemsae, S.; Maraschek, M.; Sassenberg, K.
2010-01-01
The phase-space of convective and diffusive fast-ion losses induced by shear Alfven eigenmodes has been characterized in the ASDEX Upgrade tokamak. Time-resolved energy and pitch-angle measurements of fast-ion losses correlated in frequency and phase with toroidal Alfven eigenmodes (TAEs) and Alfven
Recent Observations of Plasma and Alfvenic Wave Energy Injection at the Base of the Fast Solar Wind
McIntosh, Scott W
2012-01-01
We take stock of recent observations that identify the episodic plasma heating and injection of Alfvenic energy at the base of fast solar wind (in coronal holes). The plasma heating is associated with the occurrence of chromospheric spicules that leave the lower solar atmosphere at speeds of order 100km/s, the hotter coronal counterpart of the spicule emits radiation characteristic of root heating that rapidly reaches temperatures of the order of 1MK. Furthermore, the same spicules and their coronal counterparts ("Propagating Coronal Disturbances"; PCD) exhibit large amplitude, high speed, Alfvenic (transverse) motion of sufficient energy content to accelerate the material to high speeds. We propose that these (disjointed) heating and accelerating components form a one-two punch to supply, and then accelerate, the fast solar wind. We consider some compositional constraints on this concept, extend the premise to the slow solar wind, and identify future avenues of exploration.
International Nuclear Information System (INIS)
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5RE,0.3RE), where RE is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k⊥≫k∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δEz)/(δBy )∼ω/k∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet
Energy Technology Data Exchange (ETDEWEB)
Guo, Zhifang [Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hong, Minghua; Du, Aimin [Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); Lin, Yu; Wang, Xueyi [CAS Key Lab of Geoscience Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Physics Department, Auburn University, 206 Allison Laboratory, Auburn, Alabama 36849-5311 (United States); Wu, Mingyu; Lu, Quanming, E-mail: qmlu@ustc.edu.cn [CAS Key Lab of Geoscience Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Collaborative Innovation Center of Astronautical Science and Technology (China)
2015-02-15
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R{sub E},0.3R{sub E}), where R{sub E} is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k{sub ⊥}≫k{sub ∥} are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE{sub z})/(δB{sub y} )∼ω/k{sub ∥} of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
Zaqarashvili, T. V.; Khodachenko, M. L.; Rucker, H.O.
2011-01-01
Chromospheric and prominence plasmas contain neutral atoms, which may change the plasma dynamics through collision with ions. Most of the atoms are neutral hydrogen, but a significant amount of neutral helium may also be present in the plasma with a particular temperature. Damping of MHD waves due to ion collision with neutral hydrogen is well studied, but the effects of neutral helium are largely unknown. We aim to study the effect of neutral helium in the damping of Alfven waves in solar pa...
Cally, P. S.; Goossens, M
2007-01-01
The efficacy of fast/slow MHD mode conversion in the surface layers of sunspots has been demonstrated over recent years using a number of modelling techniques, including ray theory, perturbation theory, differential eigensystem analysis, and direct numerical simulation. These show that significant energy may be transferred between the fast and slow modes in the neighbourhood of the equipartition layer where the Alfven and sound speeds coincide. However, most of the models so far have been two...
Guo, Zhifang; Hong, Minghua; Lin, Yu; Du, Aimin; Wang, Xueyi; Wu, Mingyu; Lu, Quanming
2015-02-01
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E ×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x ,z ) =(-10.5 RE,0.3 RE) , where RE is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k⊥≫k∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δEz)/(δBy )˜ω/k∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
Wang, X.; Briguglio, S.; Chen, L.; Di Troia, C; Fogaccia, G.; Vlad, G.; Zonca, F.
2010-01-01
Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to study thermal ion kinetic effects on Alfv\\'enic...
Koedam {beta} factors revisited
Energy Technology Data Exchange (ETDEWEB)
Lawler, J.E. [Physics Department, University of Wisconsin, Madison, WI (United States); Doughty, D.A. [Perkin-Elmer Optoelectronics, Santa Clara, CA (United States); Lister, G.G. [OSRAM SYLVANIA Inc., Beverly, MA (United States)
2002-07-21
A Koedam {beta} factor makes it possible to compute the total output power in line radiation from a positive column discharge using a single radiance measurement normal to an aperture in the wall. The results of analytic derivations of {beta} factors are presented for columns with uniform ({beta}=1.0) and parabolic ({beta}=0.75) excitation rates per unit volume and with negligible opacity. A Monte Carlo code for simulating radiation trapping with a spatially uniform density of absorbing atoms is then used to determine {beta} factors as a function of opacity. The code includes partial frequency redistribution and a Voigt line shape with radiative broadening, resonance collisional broadening, and Doppler broadening. The resulting {beta} factors are found to be nearly independent of opacity over a wide range of column radii for spectral line shapes dominated by Doppler broadening or by resonance collisional broadening. Additional Monte Carlo simulations are used to study {beta} factors as a function of a non-uniform density of absorbing atoms from radial cataphoresis with line shapes dominated by Doppler broadening, foreign gas broadening, and resonance collisional broadening. Radial cataphoresis is found to increase {beta} factors in all cases. Geometrical effects, refraction, and imperfect transmission at the glass wall are studied and found to decrease {beta} factors. (author)
Beta-energy averaging and beta spectra
International Nuclear Information System (INIS)
A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality
Oblique non-neutral solitary Alfven modes in weakly nonlinear pair plasmas
Energy Technology Data Exchange (ETDEWEB)
Verheest, Frank [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Physics, Howard College Campus, University of KwaZulu-Natal, Durban 4041 (South Africa); Lakhina, G S [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218 (India); Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)
2005-04-01
The equal charge-to-mass ratio for both species in pair plasmas induces a decoupling of the linear eigenmodes between waves that are charge neutral or non-neutral, also at oblique propagation with respect to a static magnetic field. While the charge-neutral linear modes have been studied in greater detail, including their weakly and strongly nonlinear counterparts, the non-neutral mode has received less attention. Here the nonlinear evolution of a solitary non-neutral mode at oblique propagation is investigated in an electron-positron plasma. Employing the framework of reductive perturbation analysis, a modified Korteweg-de Vries equation (with cubic nonlinearity) for the lowest-order wave magnetic field is obtained. In the linear approximation, the non-neutral mode has its magnetic component orthogonal to the plane spanned by the directions of wave propagation and of the static magnetic field. The linear polarization is not maintained at higher orders. The results may be relevant to the microstructure in pulsar radiation or to the subpulses.
International Nuclear Information System (INIS)
The resonance activation of eigenmodes for a finite 2D easy-plane ferromagnet is considered to treat theoretically by the vortex switching in magnetic nanodots due to the action of external circular magnetic field. It is shown analytically that if the anisotropy is weak, i.e. the vortex has a nonzero polarity (total magnization along the z-axis), the process of the field action has a complicated nature. The circular field acts in a resonance way upon azimuthal system eigenmodes, in which magnetization depends on the azimuthal coordinate (as a direct resonance at the eigenfrequencies of these modes). The interaction of the azimuthal and symmetric modes (in which the magnetization does not depend on the azimuthal coordinate) via the applied field gives rise to complex parametric resonance at multifrequencies. The results obtained are compared with the data of previous numerical calculations
Kovalev, A S
2002-01-01
The resonance activation of eigenmodes for a finite 2D easy-plane ferromagnet is considered to treat theoretically by the vortex switching in magnetic nanodots due to the action of external circular magnetic field. It is shown analytically that if the anisotropy is weak, i.e. the vortex has a nonzero polarity (total magnization along the z-axis), the process of the field action has a complicated nature. The circular field acts in a resonance way upon azimuthal system eigenmodes, in which magnetization depends on the azimuthal coordinate (as a direct resonance at the eigenfrequencies of these modes). The interaction of the azimuthal and symmetric modes (in which the magnetization does not depend on the azimuthal coordinate) via the applied field gives rise to complex parametric resonance at multifrequencies. The results obtained are compared with the data of previous numerical calculations.
International Nuclear Information System (INIS)
The spectrum of JET discharges heated with new antennas is analyzed. A series of peaks in the coupling resistance are observed when the monopole phasing is used. A detailed and unambiguous identification of radial eigenmodes, which are between the ion-ion hybrid cut-off layer and the antenna, is obtained. The comparison of slab model predictions with the data analysis for the spacings of the onset of these peaks is carried out. The modelling of the peak-to-valley ratios for the coupling resistance is performed. It is shown that the variations in the coupling resistance are reduced when dipole phasing is used. Data is examined to gauge the effects of eigenmode excitation during high power ion cyclotron resonance heating
On the coronal heating mechanism by the resonant absorption of Alfven waves
Directory of Open Access Journals (Sweden)
H. Y. Alkahby
1993-12-01
Full Text Available In this paper, we will investigate the heating of the solar corona by the resonant absorption of Alfven waves in a viscous and isothermal atmosphere permeated by a horizontal magnetic field. It is shown that if the viscosity dominates the motion in a high (low- ÃŽÂ² plasma, it creates an absorbing and reflecting layer and the heating process is acoustic (magnetoacoustic. When the magnetic field dominates the oscillatory process it creates a non-absorbing reflecting layer. Consequently, the heating process is magnetohydrodynamic. An equation for resonance is derived. It shows that resonances may occur for many values of the frequency and of the magnetic field if the wavelength is matched with the strength of the magnetic field. At the resonance frequencies, magnetic and kinetic energies will increase to very large values which may account for the heating process. When the motion is dominated by the combined effects of the viscosity and the magnetic field, the nature of the reflecting layer and the magnitude of the reflection coefficient depend on the relative strengths of the magnetic field and the viscosity.
International Nuclear Information System (INIS)
We have constructed a quadratic dispersion relation, in which various MHD and kinetic effects like ion diamagnetism, electron diamagnetism, electron-electron electron-ion collisions, ion Landau-damping, E x B drift and energetic particles are included and treated in a systematic way. The numerical study in which we use the formalism to investigate the two most likely instabilities in tandem mirror machines produced many quantitative and qualitative results about the two modes. We have proposed a physically motivated, non-perturbative closure scheme to deal with some problems in plasma or fluid turbulence. After discussing a few simple analytically tractable applications, we have applied our formalism to a model problem: the shear-Alfven turbulence. The problem is readily solved numerically to obtain the turbulent spectrum with the following features: the calculated spectrum has explicit frequency shift from the linear theory as well as explicit band-broadening in k, ω space; the frequency integrated spectrum obeys a power law in the intermediate k range, i.e., I/sub k/ /approximately/ K/sup -α/, where α approaches the value 2 in the case we studied; and the form of the power law is hardly influenced by changing low-k, high-k damping effects, or by changing the strength of the turbulence. It is very encouraging that this closure scheme is capable of producing essential features associated with a turbulence spectrum. 66 refs., 38 figs
Computing the damping and destabilization of global Alfven waves in tokamaks
International Nuclear Information System (INIS)
The role of ideal MHD in magnetic fusion is in the first place to discover magnetic geometries with favourable equilibrium and stability properties. Non-ideal effects cause slower and weaker instabilities leading to enhanced transport and often to violent disruptions. MHD spectroscopy, i.e. the identification of ideal and dissipative MHD modes for the purpose of diagnosing tokamaks and optimising their stability properties, requires a numerical tool which accurately calculates the dissipative MHD spectra for measured equilibria. The new spectral code CASTOR (Complex Alfven Spectrum for TORoidal Plasmas), together with the equilibrium solver HELENA, provides such a tool. In CASTOR, the fluid variables ρ, v, T, and b are discretized by means of a combination of cubic Hermite and quadratic finite elements for the radial direction and Fourier modes for the poloidal coordinate. The equilibrium in non-orthogonal flux coordinates ψ, θ, φ with straight field lines is computed using isoparametric bicubic Hermite elements, resulting in a very accurate representation of the metric elements. Finally, for analysis of JET discharges the equilibrium solver HELENA is interfaced with the equilibrium identification code IDENTC(D). (author) 5 refs., 5 figs
Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies
Ofman, L.
2010-01-01
Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.
Barabash, A. S.
2011-01-01
The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.
Kohda, Tohru; Aihara, Kazuyuki
2008-01-01
A new class of analog-digital (A/D), digital-analog (D/A) converters as an alternative to conventional ones, called $\\beta$-encoder, has been shown to have exponential accuracy in the bit rates while possessing self-correction property for fluctuations of amplifier factor $\\beta$ and quantizer threshold $\
DEFF Research Database (Denmark)
Frazzini, Andrea; Heje Pedersen, Lasse
2014-01-01
We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model's five central predictions: (1) Because constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for...
Rapid synthesis of beta zeolites
Energy Technology Data Exchange (ETDEWEB)
Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng
2015-08-18
The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.
Search for alpha-driven BAE modes in TFTR
International Nuclear Information System (INIS)
A search for alpha-driven beta-induced Alfven eigenmodes (BAE modes) was conducted in low current (1.0--1.6 MA) TFTR supershots. Stable high-beta deuterium-tritium (DT) discharges were obtained with Bρ = 2.4 and central alpha beta of 0.1%. Instabilities between 75--200 kHz were observed by magnetic probes in many DT discharges, but the activity was also present in deuterium-deuterium (DD) comparison discharges, indicating that these modes are not destabilized (principally) by the alpha-particle population. Losses of fusion products are also similar in the two sets of discharges
Crocker, N. A.; Tritz, K.; White, R. B.; Fredrickson, E. D.; Gorelenkov, N. N.; NSTX-U Team
2015-11-01
New simulation results demonstrate that high frequency compressional (CAE) and global (GAE) Alfvén eigenmodes cause radial convection of electrons, with implications for particle and energy confinement, as well as electric field formation in NSTX-U. Simulations of electron orbits in the presence of multiple experimentally determined CAEs and GAEs, using the gyro-center code ORBIT, have revealed substantial convective transport, in addition to the expected diffusion via orbit stochastization. These results advance understanding of anomalous core energy transport expected in high performance, beam-heated NSTX-U plasmas. The simulations make use of experimentally determined density perturbation (δn) amplitudes and mode structures obtained by inverting measurements from 16 a channel reflectometer array using a synthetic diagnostic. Combined with experimentally determined mode polarizations (i.e. CAE or GAE), the δn are used to estimate the ExB displacements for use in ORBIT. Preliminary comparison of the simulation results with transport modeling by TRANSP indicate that the convection is currently underestimated. Supported by US DOE Contracts DE-SC0011810, DE-FG02-99ER54527 & DE-AC02-09CH11466.
International Nuclear Information System (INIS)
Neutral-beam ions that are deflected onto loss orbits by Alfvén eigenmodes (AE) on their first bounce orbit and are detected by a fast-ion loss detector (FILD) satisfy the “local resonance” condition proposed by Zhang et al. [Nucl. Fusion 55, 22002 (2015)]. This theory qualitatively explains FILD observations for a wide variety of AE-particle interactions. When coherent losses are measured for multiple AE, oscillations at the sum and difference frequencies of the independent modes are often observed in the loss signal. The amplitudes of the sum and difference peaks correlate weakly with the amplitudes of the fundamental loss-signal amplitudes but do not correlate with the measured mode amplitudes. In contrast to a simple uniform-plasma theory of the interaction [Chen et al., Nucl. Fusion 54, 083005 (2014)], the loss-signal amplitude at the sum frequency is often larger than the loss-signal amplitude at the difference frequency, indicating a more detailed computation of the orbital trajectories through the mode eigenfunctions is needed
Gulati, Mamta
2016-01-01
The short--wave asymptotics (WKB) of spiral density waves in self-gravitating stellar discs is well suited for the study of the dynamics of tightly--wound wavepackets. But the textbook WKB theory is not well adapted to the study of the linear eigenmodes in a collisionless self-gravitating disc because of the transcendental nature of the dispersion relation. We present a modified WKB of spiral density waves, for collisionless discs in the epicyclic limit, in which the perturbed gravitational potential is related to the perturbed surface density by the Poisson integral in Kalnaj's logarithmic spiral form. An integral equation is obtained for the surface density perturbation, which is seen to also reduce to the standard WKB dispersion relation. We specialize to a low mass (or Keplerian) self-gravitating disc around a massive black hole, and derive an integral equation governing the eigenspectra and eigenfunctions of slow precessional modes. For a prograde disc, the integral kernel turns out be real and symmetric...
Gulati, Mamta; Saini, Tarun Deep
2016-07-01
The short-wave asymptotics (WKB) of spiral density waves in self-gravitating stellar discs is well suited for the study of the dynamics of tightly-wound wavepackets. But the textbook WKB theory is not well adapted to the study of the linear eigenmodes in a collisionless self-gravitating disc because of the transcendental nature of the dispersion relation. We present a modified WKB theory of spiral density waves, for collisionless discs in the epicyclic limit, in which the perturbed gravitational potential is related to the perturbed surface density by the Poisson integral in Kalnaj's logarithmic spiral form. An integral equation is obtained for the surface density perturbation, which is seen to also reduce to the standard WKB dispersion relation. Although our formulation is general and applies to all discs, we present our analysis only for nearly Keplerian, low-mass, self-gravitating discs revolving around massive central objects, and derive an integral equation governing the slow precessional modes of such discs. For a prograde disc, the integral kernel turns out be real and symmetric, implying that all slow modes are stable. We apply the slow mode integral equation to two unperturbed disc profiles, the Jalali-Tremaine annular discs, and the Kuzmin disc. We determine eigenvalues and eigenfunctions for both m = 1 and m = 2 slow modes for these profiles and discuss their properties. Our results compare well with those of Jalali-Tremaine.
Energy Technology Data Exchange (ETDEWEB)
Heidbrink, W. W.; Persico, E. A. D. [University of California Irvine, Irvine, California 92697 (United States); Austin, M. E. [University of Texas, Austin, Texas 78705 (United States); Chen, Xi; Pace, D. C.; Van Zeeland, M. A. [General Atomics, San Diego, California 92186 (United States)
2016-02-15
Neutral-beam ions that are deflected onto loss orbits by Alfvén eigenmodes (AE) on their first bounce orbit and are detected by a fast-ion loss detector (FILD) satisfy the “local resonance” condition proposed by Zhang et al. [Nucl. Fusion 55, 22002 (2015)]. This theory qualitatively explains FILD observations for a wide variety of AE-particle interactions. When coherent losses are measured for multiple AE, oscillations at the sum and difference frequencies of the independent modes are often observed in the loss signal. The amplitudes of the sum and difference peaks correlate weakly with the amplitudes of the fundamental loss-signal amplitudes but do not correlate with the measured mode amplitudes. In contrast to a simple uniform-plasma theory of the interaction [Chen et al., Nucl. Fusion 54, 083005 (2014)], the loss-signal amplitude at the sum frequency is often larger than the loss-signal amplitude at the difference frequency, indicating a more detailed computation of the orbital trajectories through the mode eigenfunctions is needed.
He, Yue-Jing; Hung, Wei-Chih; Lai, Zhe-Ping
2016-01-01
In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs) with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%). This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics) for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML), perfectly reflecting boundary (PRB), object meshing method (OMM), and boundary meshing method (BMM) into the finite element method (FEM) and eigenmode expansion method (EEM). The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size. PMID:26861322
Directory of Open Access Journals (Sweden)
Yue-Jing He
2016-02-01
Full Text Available In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%. This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML, perfectly reflecting boundary (PRB, object meshing method (OMM, and boundary meshing method (BMM into the finite element method (FEM and eigenmode expansion method (EEM. The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size.
Energy Technology Data Exchange (ETDEWEB)
Spong, Donald A [ORNL; Bass, Eric [General Atomics, San Diego; Deng, Wenjun [Princeton Plasma Physics Laboratory (PPPL); Heidbrink, W. [University of California, Irvine; Lin, Zhihong [University of California, Irvine; Tobias, Ben [University of California, Davis; Van Zeeland, Michael [General Atomics; Austin, M. E. [University of Texas, Austin; Domier, C. W. [University of California, Davis; Luhmann, N.C. [University of California, Davis
2012-01-01
A verification and validation study is carried out for a sequence of reversed shear Alfven instability time slices. The mode frequency increases in time as the minimum (q{sub min}) in the safety factor profile decreases. Profiles and equilibria are based upon reconstructions of DIII-D discharge (No.142111) in which many such frequency up-sweeping modes were observed. Calculations of the frequency and mode structure evolution from two gyrokinetic codes, GTC and GYRO, and a gyro-Landau fluid code TAEFL are compared. The experimental mode structure of the instability was measured using time-resolved two-dimensional electron cyclotron emission imaging. The three models reproduce the frequency upsweep event within {+-}10% of each other, and the average of the code predictions is within {+-}8% of the measurements; growth rates are predicted that are consistent with the observed spectral line widths. The mode structures qualitatively agree with respect to radial location and width, dominant poloidal mode number, ballooning structure, and the up-down asymmetry, with some remaining differences in the details. Such similarities and differences between the predictions of the different models and the experimental results are a valuable part of the verification/validation process and help to guide future development of the modeling efforts.
A synopsis of collective alpha effects and implications for ITER
Energy Technology Data Exchange (ETDEWEB)
Sigmar, D.J.
1990-10-01
This paper discusses the following: Alpha Interaction with Toroidal Alfven Eigenmodes; Alpha Interaction with Ballooning Modes; Alpha Interaction with Fishbone Oscillations; and Implications for ITER.
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2007-01-01
We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.
... and deterioration of the lining of the mouth (oral mucositis). Taking beta-carotene by mouth doesn’t appear to prevent the development of oral mucositis during radiation therapy or chemotherapy. Pancreatic cancer. Taking ...
Neutrinoless double beta decay
International Nuclear Information System (INIS)
The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given. (author)
Neutrinoless double beta decay
Indian Academy of Sciences (India)
Kai Zuber
2012-10-01
The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.
International Nuclear Information System (INIS)
Our activities on High Beta Tokamak Research during the past 20 months of the present grant period can be divided into six areas: reconstruction and modeling of high beta equilibria in HBT; measurement and analysis of MHD instabilities observed in HBT; measurements of impurity transport; diagnostic development on HBT; numerical parameterization of the second stability regime; and conceptual design and assembly of HBT-EP. Each of these is described in some detail in the sections of this progress report
International Nuclear Information System (INIS)
Multipoles are being employed as devices to study fusion issues and plasma phenomena at high values of beta (plasma pressure/magnetic pressure) in a controlled manner. Due to their large volume, low magnetic field (low synchrotron radiation) region, they are also under consideration as potential steady state advanced fuel (low neutron yield) reactors. Present experiments are investigating neoclassical (bootstrap and Pfirsch-Schlueter) currents and plasma stability at extremely high beta
Autoregressive conditional beta
Yunmi Kim
2012-01-01
The capital asset pricing model provides various predictions about equilibrium expected returns on risky assets. One key prediction is that the risk premium on a risky asset is proportional to the nondiversifiable market risk measured by the asset's beta coefficient. This paper proposes a new method for estimating and drawing inferences from a time-varying capital asset pricing model. The proposed method, which can be considered a vector autoregressive model for multiple beta coefficients, is...
Che, H; Viñas, A F
2013-01-01
The observed sub-proton scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quite-time suggest them as possible source of free energy to drive the turbulence. Using particle-in-cell simulations, we explore how free energy in energetic electrons, released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfv\\'enic and whistler waves are excited that evolve through inverse and forward magnetic energy cascades.
Turbulence in the sub-Alfv\\'enic solar wind driven by reflection of low-frequency Alfv\\'en waves
Verdini, A; Buchlin, E
2009-01-01
We study the formation and evolution of a turbulent spectrum of Alfv\\'en waves driven by reflection off the solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfv\\'enic critical point. The background solar wind is assigned and 2D shell models are used to describe nonlinear interactions. We find that the turbulent spectra are influenced by the nature of reflected waves. Close to the base, these give rise to a flatter and steeper spectrum for the outgoing and reflected waves respectively. At higher heliocentric distance both spectra evolve toward an asymptotic Kolmogorov spectrum. The turbulent dissipation is found to account for at least half of the heating required to sustain the background imposed solar wind and its shape is found to be determined by the reflection-determined turbulent heating below 1.5 solar radii. Therefore reflection and reflection-driven turbulence are shown to play a key role in the accelerationof the fast solar wind and origin of the tur...
Bastrukov, S I; Molodtsova, I V; Takata, J
2008-01-01
The two-component, core-crust, model of a neutron star with homogenous internal and dipolar external magnetic field is studied responding to quake-induced perturbation by substantially nodeless differentially rotational Alfv\\'en oscillations of the perfectly conducting crustal matter about axis of fossil magnetic field frozen in the immobile core. The energy variational method of the magneto-solid-mechanical theory of a viscoelastic perfectly conducting medium pervaded by magnetic field is utilized to compute the frequency and lifetime of nodeless torsional vibrations of crustal solid-state plasma about the dipole magnetic-moment axis of the star. It is found that obtained two-parametric spectral formula for the frequency of this toroidal Alfven mode provides fairly accurate account of rapid oscillations of the X-ray flux during the flare of SGR 1806-20 and SGR 1900+14, supporting the investigated conjecture that these quasi-periodic oscillations owe its origin to axisymmetric torsional oscillations predomina...
Belova, E V; Gorelenkov, N N; Fredrickson, E D; Tritz, K; Crocker, N A
2015-07-01
An energy-channeling mechanism is proposed to explain flattening of the electron temperature profiles at a high beam power in the beam-heated National Spherical Torus Experiment (NSTX). Results of self-consistent simulations of neutral-beam-driven compressional Alfvén eigenmodes (CAEs) in NSTX are presented that demonstrate strong coupling of CAEs to kinetic Alfvén waves at the Alfvén resonance location. It is suggested that CAEs can channel energy from the beam ions to the location of the resonant mode conversion at the edge of the beam density profile, modifying the energy deposition profile. PMID:26182100
International Nuclear Information System (INIS)
The great sensitivity of double beta decay to neutrino mass and right handed currents has motivated many new and exciting attempts to observe this elusive nuclear phenomenon directly. Experiments in operation and other coming on line in the next one or two years are expected to result in order-of-magnitude improvements in detectable half lives for both the two-neutrino and no-neutrino modes. A brief history of double beta decay experiments is presented together with a discussion of current experimental efforts, including a gas filled time projection chamber being used to study selenium-82. (author)
International Nuclear Information System (INIS)
There are three important indications for the early diagnosis of pregnancy through the determination of the beta sub-unit of chorionic gonadotrophin using radioimmunoassay: 1) some patient's or doctor's anxiety to discover the problem; 2) when it will be necessary to employ diagnostic or treatment procedures susceptible to affect the ovum; and 3) in the differential diagnosis of amenorrhoea, uterine hemorrhage and abdominal tumors. Other user's are the diagnosis of missed absortion, and the diagnosis and follow-up of chrorioncarcinoma. The AA. studied 200 determinations of plasma beta-HCG, considering the main difficulties occuring in the clinical use of this relevant laboratory tool in actual Obstetrics. (author)
DEFF Research Database (Denmark)
Løvborg, Leif; Gaffney, C. F.; Clark, P. A.;
1985-01-01
Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions of...... differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears that the...
International Nuclear Information System (INIS)
The mechanism of momentum and energy transfer by internal Alfven-gravity waves is studied in a turbulent plasma flow, modelling astrophysical and geophysical situations. The difficulty of the indeterminate system of equations is solved by using gradient diffusion model as a suitable closure. It is found that the weak stratification and the magnetic field decrease the intensity of the turbulence. (D.Gy.)
Evaluation of neutrino masses from $m_{\\beta\\beta}$ values
Khrushchov, V V
2008-01-01
A neutrino mass matrix is considered under conditions of the CP invariance and the negligible reactor mixing $\\theta_{13}$ angle. Absolute mass values for three neutrinos are evaluated in normal and inverted hierarchy spectra on the ground of data for oscillation mixing neutrino parameters and effective neutrino mass entering into a probability of neutrinoless two beta decay $m_{\\beta\\beta}$ values.