WorldWideScience

Sample records for beta d-glucan synthase

  1. Characterization of a 1,4-. beta. -D-glucan synthase from Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, R.L.

    1992-01-15

    Various aspects of research concerning Dictyostelium discoideum are presented. The initial focus of this project was upon: the characterization of potential probes for the cellulose synthase (antibody and nucleic acid), the determination of the cultural induction conditions of cellulose synthesis, the solubilization of the enzyme activity, the development of a non-inhibitory disruption buffer, the generation and isolation of mutant strains deficient in cellulose synthesis, and the development of the capability to determine the degree of polymerization of the in vitro product. I have briefly summarized our most significant findings with only selected data sets being shown in this report in the interest of brevity.

  2. Characterization and partial purification of beta-1,3-D-glucan (callose) synthase from barley (Hordeum vulgare) leaves

    DEFF Research Database (Denmark)

    Pedersen, L.H.; Jacobsen, S.; Hejgaard, J.

    1993-01-01

    was inhibited by UDP and uridine 5' triphosphate (UTP). Glucanase digestion of the in vitro product showed that it was a beta-1,3-linked polysaccharide. Two different procedures were used for further enrichment of polypeptides involved in callose synthase activity. Sucrose gradient centrifugation...

  3. Beta-D-glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1-->3),(1-->4)beta-D-glucan synthase.

    Science.gov (United States)

    Vergara, C E; Carpita, N C

    2001-09-01

    Cellulose synthase genes (CesAs) encode a broad range of processive glycosyltransferases that synthesize (1-->4)beta-D-glycosyl units. The proteins predicted to be encoded by these genes contain up to eight membrane-spanning domains and four 'U-motifs' with conserved aspartate residues and a QxxRW motif that are essential for substrate binding and catalysis. In higher plants, the domain structure includes two plant-specific regions, one that is relatively conserved and a second, so-called 'hypervariable region' (HVR). Analysis of the phylogenetic relationships among members of the CesA multi-gene families from two grass species, Oryza sativa and Zea mays, with Arabidopsis thaliana and other dicotyledonous species reveals that the CesA genes cluster into several distinct sub-classes. Whereas some sub-classes are populated by CesAs from all species, two sub-classes are populated solely by CesAs from grass species. The sub-class identity is primarily defined by the HVR, and the sequence in this region does not vary substantially among members of the same sub-class. Hence, we suggest that the region is more aptly termed a 'class-specific region' (CSR). Several motifs containing cysteine, basic, acidic and aromatic residues indicate that the CSR may function in substrate binding specificity and catalysis. Similar motifs are conserved in bacterial cellulose synthases, the Dictyostelium discoideum cellulose synthase, and other processive glycosyltransferases involved in the synthesis of non-cellulosic polymers with (1-->4)beta-linked backbones, including chitin, heparan, and hyaluronan. These analyses re-open the question whether all the CesA genes encode cellulose synthases or whether some of the sub-class members may encode other non-cellulosic (1-->4)beta-glycan synthases in plants. For example, the mixed-linkage (1-->3)(1-->4)beta-D-glucan synthase is found specifically in grasses and possesses many features more similar to those of cellulose synthase than to those of

  4. Characterization of a 1,4-{beta}-D-glucan synthase from Dictyostelium discoideum. Progress report, May 1990--January 1992

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, R.L.

    1992-01-15

    Various aspects of research concerning Dictyostelium discoideum are presented. The initial focus of this project was upon: the characterization of potential probes for the cellulose synthase (antibody and nucleic acid), the determination of the cultural induction conditions of cellulose synthesis, the solubilization of the enzyme activity, the development of a non-inhibitory disruption buffer, the generation and isolation of mutant strains deficient in cellulose synthesis, and the development of the capability to determine the degree of polymerization of the in vitro product. I have briefly summarized our most significant findings with only selected data sets being shown in this report in the interest of brevity.

  5. Regulation of (1,3;1,4)-beta-D-glucan synthesis in developing endosperm of barley lys mutants

    DEFF Research Database (Denmark)

    Christensen, Ulla; Scheller, Henrik Vibe

    2012-01-01

    The mechanism behind altered content of (1,3:1,4)-beta-D-glucan was investigated in developing endosperm of barley lys3 and lys5 mutants. Both types of mutants are primarily affected in starch biosynthesis, and hence effects on (1,3;1,4)-beta-D-glucan are likely to be pleiotropic. The mutant alle...

  6. High plasma concentration of beta-D-glucan after administration of sizofiran for cervical cancer

    Directory of Open Access Journals (Sweden)

    Hirokazu Tokuyasu

    2010-09-01

    Full Text Available Hirokazu Tokuyasu1, Kenichi Takeda1, Yuji Kawasaki1, Yasuto Sakaguchi2, Noritaka Isowa2, Eiji Shimizu3, Yasuto Ueda31Divisions of Respiratory Medicine, 2Thoracic Surgery, Matsue Red Cross Hospital, 200 Horomachi, Matsue, Shimane; 3Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, JapanAbstract: A 69-year-old woman with a history of cervical cancer was admitted to our hospital for further investigation of abnormal shadows on her chest roentgenogram. Histologic examination of transbronchial lung biopsy specimens revealed epithelioid cell granuloma, and Mycobacterium intracellulare was detected in the bronchial lavage fluid. The plasma level of (1→3-beta-D-glucan was very high, and this elevated level was attributed to administration of sizofiran for treatment of cervical cancer 18 years previously. Therefore, in patients with cervical cancer, it is important to confirm whether or not sizofiran has been administered before measuring (1→3-beta-D-glucan levels.Keywords: (1→3-beta-D-glucan, cervical cancer, Mycobacterium intracellulare, sizofiran

  7. Potentiation of histamine release by Microfungal (1-->3)- and (1-->6)-beta-D-glucans

    DEFF Research Database (Denmark)

    Holck, Peter; Sletmoen, Marit; Stokke, Bjørn Torger

    2007-01-01

    : curdlan [a linear (1-->3)-beta-D-glucan], laminarin and scleroglucan, and furthermore with pustulan, a linear (1-->6)-beta-D-glucan. Histamine release was not observed on exposure to the glucans only, but in the presence of anti-immunoglobulin E (IgE) antibody or specific antigens, all the glucans...... investigated led to an enhancement of the IgE-mediated histamine release. The glucans induced a significant potentiation of the mediator release when present at concentrations in the range of 2-5 x 10(-5) M. These results suggest that (1-->3)-beta-D-glucan as well as (1-->6)-beta-D-glucan aggravates Ig......E-mediated histamine release. Knowledge concerning the effects of glucans on immune responses may be of importance for understanding and treating inflammatory and allergic diseases....

  8. New method development for nanoparticle extraction of water-soluble beta-(1-->3)-D-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus.

    Science.gov (United States)

    Park, Hyuk-Gu; Shim, Youn Young; Choi, Seung-Oh; Park, Won-Mok

    2009-03-25

    Sparassis crispa and Phellinus linteus are edible/medicinal mushrooms that have remarkably high contents of beta-(1-->3)-D-glucan, which acts as a biological response modifier, but difficulty in cultivating the fruiting bodies and extraction of beta-D-glucan have restricted detailed studies. Therefore, a novel process for nanoparticle extraction of Sparan, the beta-D-glucan from Sparassis crispa, and Phellin, the beta-D-glucan from Phellinus linteus, has been investigated using insoluble tungsten carbide as a model for nanoknife technology. This is the first report showing that the nanoknife method results in high yields of Sparan (70.2%) and Phellin (65.2%) with an average particle size of 150 and 390 nm, respectively. The extracted Sparan with beta-(1-->3) linkages showed a remarkably high water solubility of 90% even after 10 min of incubation at room temperature. Therefore, it is likely that this nanoknife method could be used to produce beta-D-glucan for food, cosmetic, and pharmaceutical industries.

  9. beta-d-Glucan Antibodies Inhibit Auxin-Induced Cell Elongation and Changes in the Cell Wall of Zea Coleoptile Segments.

    Science.gov (United States)

    Hoson, T; Nevins, D J

    1989-08-01

    Antiserum was raised against the Avena sativa L. caryopsis beta-d-glucan fraction with an average molecular weight of 1.5 x 10(4). Polyclonal antibodies recovered from the serum after Protein A-Sepharose column chromatography precipitated when cross-reacted with high molecular weight (1-->3), (1-->4)-beta-d-glucans. These antibodies were effective in suppression of cell wall autohydrolytic reactions and auxin-induced decreases in noncellulosic glucose content of the cell wall of maize (Zea mays L.) coleoptiles. The results indicate antibody-mediated interference with in situ beta-d-glucan degradation. The antibodies at a concentration of 200 micrograms per milliliter also suppress auxin-induced elongation by about 40% and cell wall loosening (measured by the minimum stress-relaxation time of the segments) of Zea coleoptiles. The suppression of elongation by antibodies was imposed without a lag period. Auxin-induced elongation, cell wall loosening, and chemical changes in the cell walls were near the levels of control tissues when segments were subjected to antibody preparation precipitated by a pretreatment with Avena caryopsis beta-d-glucans. These results support the idea that the degradation of (1-->3), (1-->4)-beta-d-glucans by cell wall enzymes is associated with the cell wall loosening responsible for auxin-induced elongation.

  10. Efficacy of caspofungin, a 1,3-β-D-glucan synthase inhibitor, on Pneumocystis carinii pneumonia in rats.

    Science.gov (United States)

    Sun, Peipei; Tong, Zhaohui

    2014-11-01

    Pneumocystis carinii pneumonia (PcP) is a common and potentially fatal opportunistic infection in immunosuppressed patients, and the standard trimethoprim-sulfamethoxazole (TMP-SMZ) treatment has serious side effects. The cell wall of the causative fungal pathogen is enriched in 1-3-β-D-glucan, providing an alternative therapeutic target. We directly compared the efficacy of the 1,3-β-D-glucan synthase inhibitor caspofungin to TMP-SMZ for promoting survival and reducing lung cyst number during the early phase of treatment in a rat model of PcP. Rats were immunosuppressed using dexamethasone for 8 weeks and PcP infection confirmed in test animals by lung print smear. The remaining rats were randomly divided into three control groups, a baseline group and two observed for 7 or 14 days, two caspofungin groups treated intravenously for 7 or 14 days (1 mg/kg/d), and 2 TMP-SMZ positive control groups treated by oral gavage for 7 or 14 days (300 mg/kg/d). Mortality was markedly reduced by both caspofungin and TMP-SMZ after 14 days (caspofungin: 20.0%, TMP-SMZ: 13.3%, Control: 40.0%). Body weight gain in caspofungin-treated rats after 7 (3.04 ± 3.54%) and 14 (4.27 ± 2.79%) days was similar to that in TMP-SMZ-treated rats (3.35 ± 1.88% and 5.85 ± 2.78%, respectively), whereas untreated controls showed weight loss. Lung weight to body weight ratio, and mean cyst number per 50 microscopic fields were significantly lower (all P caspofungin-treated rats than untreated controls at both 7 and 14 days, and similar to those in the TMP-SMZ-treated rats (all P > 0.05 vs. caspofungin). Caspofungin exhibited similar efficacy to TMP-SMZ for enhancing survival and reducing lung edema and cyst load in a rat model of PcP, suggesting potential clinical utility against PcP.

  11. Enzymatic method for determination of (1-->3)(1-->4)-beta-D-glucans in grains and cereals: collaborative study.

    Science.gov (United States)

    Zygmunt, L C; Paisley, S D

    1993-01-01

    The McCleary enzymatic assay for mixed linkage (1-->3)(1-->4)-beta-D-glucans has been modified to apply to oat and barley fractions and ready-to-eat (RTE) cereals. The proposed method involves lower sample concentrations; stirring the samples; a longer, warmer lichenase digestion; and longer beta-glucosidase digestion. These changes result in higher recovery of beta-glucan. This modification expands on the American Association of Cereal Chemists (AACC) Method 32-22 by the addition of a desugaring procedure, which is necessary for RTE cereals. Results from collaborative studies sponsored by AACC and AOAC demonstrate good precision for an enzymatic assay. The average relative standard deviation for reproducibility (RSDR, a measure of interlaboratory variation) for 20 oat, barley, and cereal samples was 9.7%. The average RSD for repeatability (RSDr, intralaboratory variation) was 5.0%. The enzymatic method has been adopted first action by AOAC International for determination of beta-glucans in oat and barley fractions, and ready-to-eat cereals.

  12. Three exopolysaccharides of the beta-(1-->6)-D-glucan type and a beta-(1-->3;1-->6)-D-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit.

    Science.gov (United States)

    Vasconcelos, Ana Flora D; Monteiro, Nilson K; Dekker, Robert F H; Barbosa, Aneli M; Carbonero, Elaine R; Silveira, Joana L M; Sassaki, Guilherme L; da Silva, Roberto; de Lourdes Corradi da Silva, Maria

    2008-09-22

    Four exopolysaccharides (EPS) obtained from Botryosphaeria rhodina strains isolated from rotting tropical fruit (graviola, mango, pinha, and orange) grown on sucrose were purified on Sepharose CL-4B. Total acid hydrolysis of each EPS yielded only glucose. Data from methylation analysis and (13)C NMR spectroscopy indicated that the EPS from the graviola isolate consisted of a main chain of glucopyranosyl (1-->3) linkages substituted at O-6 as shown in the putative structure below: [carbohydrate structure: see text]. The EPS of the other fungal isolates consisted of a linear chain of (1-->6)-linked glucopyranosyl residues of the following structure: [carbohydrate structure: see text]. FTIR spectra showed one band at 891 cm(-1), and (13)C NMR spectroscopy showed that all glucosidic linkages were of the beta-configuration. Dye-inclusion studies with Congo Red indicated that each EPS existed in a triple-helix conformational state. beta-(1-->6)-d-Glucans produced as exocellular polysaccharides by fungi are uncommon.

  13. In vitro release by Aspergillus fumigatus of galactofuranose antigens, 1,3-beta-D-glucan, and DNA, surrogate markers used for diagnosis of invasive aspergillosis.

    OpenAIRE

    Mennink-Kersten, M.A.S.H.; Ruegebrink, D.; Wasei, N.; Melchers, W. J. G.; Verweij, P. E.

    2006-01-01

    Aspergillus markers are becoming increasingly important for the early diagnosis of invasive aspergillosis. The kinetics of release of these surrogate markers, however, is largely unknown. We investigated the release of beta-(1-5)-galactofuranosyl (galf) antigens (Platelia Aspergillus), 1,3-beta-D-glucan (BG) (Fungitell), and DNA (PCR) in an in vitro model of Aspergillus fumigatus. The results showed that release is correlated to the growth phase of the fungus, which depends on available nutri...

  14. Molecular dynamics studies of side chain effect on the beta-1,3-D-glucan triple helix in aqueous solution.

    Science.gov (United States)

    Okobira, Tadashi; Miyoshi, Kentaro; Uezu, Kazuya; Sakurai, Kazuo; Shinkai, Seiji

    2008-03-01

    beta-1,3-D-glucans have been isolated from fungi as right-handed 6(1) triple helices. They are categorized by the side chains bound to the main triple helix through beta-(1-->6)-D-glycosyl linkage. Indeed, since a glucose-based side chain is water soluble, the presence and frequency of glucose-based side chains give rise to significant variation in the physical properties of the glucan family. Curdlan has no side chains and self-assembles to form an water-insoluble triple helical structure, while schizophyllan, which has a 1,6-D-glucose side chain on every third glucose unit along the main chain, is completely water soluble. A thermal fluctuation in the optical rotatory dispersion is observed for the side chain, indicating probable co-operative interaction between the side chains and water molecules. This paper documents molecular dynamics simulations in aqueous solution for three models of the beta-1,3-D-glucan series: curdlan (no side chain), schizophyllan (a beta-(1-->6)-D-glycosyl side-chain at every third position), and a hypothetical triple helix with a side chain at every sixth main-chain glucose unit. A decrease was observed in the helical pitch as the population of the side chain increased. Two types of hydrogen bonding via water molecules, the side chain/main chain and the side chain/side chain hydrogen bonding, play an important role in determination of the triple helix conformation. The formation of a one-dimensional cavity of diameter about 3.5 A was observed in the schizophyllan triple helix, while curdlan showed no such cavity. The side chain/side chain hydrogen bonding in schizophyllan and the hypothetical beta-1,3-D-glucan triple helix could cause the tilt of the main-chain glucose residues to the helix.

  15. Increase of hematopoietic responses by triple or single helical conformer of an antitumor (1-->3)-beta-D-glucan preparation, Sonifilan, in cyclophosphamide-induced leukopenic mice.

    Science.gov (United States)

    Tsuzuki, A; Tateishi, T; Ohno, N; Adachi, Y; Yadomae, T

    1999-01-01

    It has been suggested that the immunopharmacological activity of soluble (1-->3)-beta-D-glucan depends on its conformation in mice. In this study, we examined the relationship between the conformation of Sonifilan (SPG) and hematopietic responses in cyclophosphamide (Cy)-induced leukopenic mice. SPG, a high molecular weight (1-->3)-beta-D-glucan, has a triple helical conformation in water, and it was changed by treatment with aqueous sodium hydroxide to the single helical conformer (SPG-OH). The effects of SPG or SPG-OH on hematopoietic responses in cyclophosphamide induced leukopenic mice were investigated by monitoring i) gene expression of cytokines by RT-PCR, ii) protein synthesis of interleukin 6 (IL-6) by ELISA and iii) colony formation of bone marrow cells (BMC). The mice administered Cy and SPG or SPG-OH expressed and produced higher levels of IL-6 mRNA and protein than the mice administered only Cy. Gene expression of NK1.1 was also induced by Cy/SPG (or SPG-OH) treatment. Induced gene expression of stem cell factor (SCF) and macrophage-colony stimulating factor (M-CSF) by SPG/SPG-OH were also found in in vitro culture of BMC from Cy treated mice. These results strongly suggested that conformation of the glucans, single and triple helix, are independent of the hematopietic response.

  16. Antifungal Activity of Salvia miltiorrhiza Against Candida albicans Is Associated with the Alteration of Membrane Permeability and (1,3)-β-D-Glucan Synthase Activity.

    Science.gov (United States)

    Lee, Heung-Shick; Kim, Younhee

    2016-03-01

    Candidiasis has posed a serious health risk to immunocompromised patients owing to the increase in resistant yeasts, and Candida albicans is the prominent pathogen of fungal infections. Therefore, there is a critical need for the discovery and characterization of novel antifungals to treat infections caused by C. albicans. In the present study, we report on the antifungal activity of the ethanol extract from Salvia miltiorrhiza against C. albicans and the possible mode of action against C. albicans. The increase in the membrane permeability was evidenced by changes in diphenylhexatriene binding and release of both 260-nm-absorbing intracellular materials and protein. In addition, inhibition of cell wall synthesis was demonstrated by the enhanced minimal inhibitory concentration in the presence of sorbitol and reduced (1,3)-β-D-glucan synthase activity. The above evidence supports the notion that S. miltiorrhiza has antifungal activity against C. albicans by the synergistic activity of targeting the cell membrane and cell wall. These findings indicate that S. miltiorrhiza displays effective activity against C. albicans in vitro and merits further investigation to treat C. albicans-associated infections.

  17. Structure and antitumor activity of a branched (1----3)-beta-D-glucan from the alkaline extract of Amanita muscaria.

    Science.gov (United States)

    Kiho, T; Katsuragawa, M; Nagai, K; Ukai, S; Haga, M

    1992-02-07

    A beta-(1----6)-branched (1----3)-beta-D-glucan(AM-ASN) was isolated from the alkaline extract of the fruiting bodies of Amanita muscaria. AM-ASN had [alpha]D - 11 degrees in 0.5 M sodium hydroxide. Its estimated molecular weight was 95,000 in this alkaline solution and 260,000 in a neutral solution. The branches in the glucan were primarily single, (1----6)-linked D-glucopyranosyl groups, two for every seven residues in the (1----3)-linked main chain. AM-ASN exhibited significant antitumor activity against Sarcoma 180 in mice, and a mixture of AM-ASN with mitomycin C was more effective against the tumor than mitomycin C only.

  18. A real-time PCR assay for detection and quantification of 2-branched (1,3)-beta-D-glucan producing lactic acid bacteria in cider.

    Science.gov (United States)

    Ibarburu, Idoia; Aznar, Rosa; Elizaquível, Patricia; García-Quintáns, Nieves; López, Paloma; Munduate, Arantza; Irastorza, Ana; Dueñas, María Teresa

    2010-09-30

    Ropiness in natural cider is a relatively frequent alteration, mainly found after bottling, leading to consumer rejection. It is derived from the production of exopolysaccharides (EPS) by some lactic acid bacteria most of which synthesize a 2-branched (1,3)-beta-D-glucan and belong to the genera Pediococcus, Lactobacillus and Oenococcus. This polysaccharide synthesis is controlled by a single transmembrane glycosyltransferase (GTF). In this work, a method based on quantitative PCR (qPCR) and targeting the gtf gene was developed for detection and quantification of these bacteria in cider. The newly designed primers GTF3/GTF4 delimit a 151bp fragment within the 417bp amplicon previously designed for conventional PCR. The inclusivity and exclusivity of the qPCR assay were assessed with 33 cider isolates belonging to genus Lactobacillus, Oenoccocus and Pedioccocus, together with reference strains of 16 species and five genera including beta-glucan, alpha-glucan and heteropolysaccharide (HePS) producing strains and non-EPS producers. The qPCR assay, followed by the melting curve analysis, confirmed the generation of a single PCR product from the beta-glucan producers with a T(m) of 74.28+/-0.08 and C(T) values (10ng DNA) ranging between 8.46 and 16.88 (average 12.67+/-3.5). Some EPS(-) LAB strains rendered C(T) values ranging from 28.04 to 37.75 but they were significantly higher (P(C(T)quantification range of 5 log units using calibrated cell suspensions of Pediococcus parvulus 2.6 and Oenococcus oeni I4. The linearity was extended over 7 log orders when calibration curves were obtained from DNA. The detection limit for beta-glucan producing LAB in artificially contaminated cider was about 3x10(2)CFU per ml. The newly developed qPCR assay was successfully applied to monitor the cidermaking process, in 13 tanks from two cider factories, revealing a decrease in C(T) values derived from an increase in beta-glucan producing LAB populations. In addition, 8 naturally spoiled

  19. The Mechanism of Synthesis of a Mixed-Linkage (1→3),(1→4)β-d-Glucan in Maize. Evidence for Multiple Sites of Glucosyl Transfer in the Synthase Complex1

    Science.gov (United States)

    Buckeridge, Marcos S.; Vergara, Claudia E.; Carpita, Nicholas C.

    1999-01-01

    We examined the mechanism of synthesis in vitro of (1→3),(1→4)β-d-glucan (β-glucan), a growth-specific cell wall polysaccharide found in grasses and cereals. β-Glucan is composed primarily of cellotriosyl and cellotetraosyl units linked by single (1→3)β-linkages. The ratio of cellotriosyl and cellotetraosyl units in the native polymer is strictly controlled at between 2 and 3 in all grasses, whereas the ratios of these units in β-glucan formed in vitro vary from 1.5 with 5 μm UDP-glucose (Glc) to over 11 with 30 mm substrate. These results support a model in which three sites of glycosyl transfer occur within the synthase complex to produce the cellobiosyl-(1→3)-d-glucosyl units. We propose that failure to fill one of the sites results in the iterative addition of one or more cellobiosyl units to produce the longer cellodextrin units in the polymer. Variations in the UDP-Glc concentration in excised maize (Zea mays) coleoptiles did not result in wide variations in the ratios of cellotriosyl and cellotetraosyl units in β-glucan synthesized in vivo, indicating that other factors control delivery of UDP-Glc to the synthase. In maize sucrose synthase is enriched in Golgi membranes and plasma membranes and may be involved in the control of substrate delivery to β-glucan synthase and cellulose synthase. PMID:10444094

  20. A phase I/II trial of beta-(1,3/(1,6 D-glucan in the treatment of patients with advanced malignancies receiving chemotherapy

    Directory of Open Access Journals (Sweden)

    Weitberg Alan B

    2008-09-01

    Full Text Available Abstract β-(1,3/(1,6 D-glucan, a component of the fungal cell wall, has been shown to stimulate the immune system, enhance hematopoiesis, amplify killing of opsonized tumor cells and increase neutrophil chemotaxis and adhesion. In view of these attributes, the β-glucans should be studied for both their therapeutic efficacy in patients with cancer as well as an adjunctive therapy in patients receiving chemotherapy as a maneuver to limit suppression of hematopoiesis. In this study, twenty patients with advanced malignancies receiving chemotherapy were given a β-(1,3/(1,6 D-glucan preparation (MacroForce plus IP6, ImmuDyne, Inc. and monitored for tolerability and effect on hematopoiesis. Our results lead us to conclude that β-glucan is well-tolerated in cancer patients receiving chemotherapy, may have a beneficial effect on hematopoiesis in these patients and should be studied further, especially in patients with chronic lymphocytic leukemia and lymphoma.

  1. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  2. In vitro release by Aspergillus fumigatus of galactofuranose antigens, 1,3-beta-D-glucan, and DNA, surrogate markers used for diagnosis of invasive aspergillosis.

    NARCIS (Netherlands)

    Mennink-Kersten, M.A.S.H.; Ruegebrink, D.; Wasei, N.; Melchers, W.J.G.; Verweij, P.E.

    2006-01-01

    Aspergillus markers are becoming increasingly important for the early diagnosis of invasive aspergillosis. The kinetics of release of these surrogate markers, however, is largely unknown. We investigated the release of beta-(1-5)-galactofuranosyl (galf) antigens (Platelia Aspergillus), 1,3-beta-D-gl

  3. Prevention of bacterial translocation using beta-(1-3-D-glucan in small bowel ischemia and reperfusion in rats Prevenção de translocação bacteriana com beta-(1-3-D-glucana em isquemia e reperfusão intestinal em ratos

    Directory of Open Access Journals (Sweden)

    Irami Araújo-Filho

    2006-01-01

    Full Text Available PURPOSE: To investigate the role of beta-(1-3-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. METHODS: Five groups (n=10 each of Wistar rats were subjected to control(C, sham(S, group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R, and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g. Serum TNFalpha, IL-1beta, IL-6, IL-10 were measured by ELISA. RESULTS: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFalpha, IL-1beta and, IL-6, compared to I/R untreated animals. CONCLUSION: The beta-(1-3-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria.OBJETIVO: Investigar o papel da beta-(1-3-D-glucana na translocação de Escherichia coli marcada com 99mTc e na secreção de citocinas em ratos submetidos a isquemia e reperfusão intestinal. MÉTODOS: Cinco grupos (n=10 cada de ratos Wistar foram denominados controle (C, sham (S, grupo IR submetido a 45 minutos de isquemia do intestino delgado e 60 minutos de reperfusão(I/R, grupo I/R+glucana com 45 minutos de isquemia e 60 minutos de reperfusão(I/R e tratados com glucana 2mg/Kg intramuscular. Translocação de Escherichia coli marcada com 99mTc, para Linfonodos mesentéricos, fígado, baço, pulmão e soro foi avaliada usando contagem de radioatividade e de unidades formadoras de colônias/g (UFC/g Dosagem sérica de TNFalfa, IL-1beta, IL-6, IL-10 foi

  4. Homocystinuria due to cystathionine beta synthase deficiency

    Directory of Open Access Journals (Sweden)

    Rao T

    2008-01-01

    Full Text Available A two year-old male child presented with cutis marmorata congenita universalis, brittle hair, mild mental retardation, and finger spasms. Biochemical findings include increased levels of homocysteine in the blood-106.62 µmol/L (normal levels: 5.90-16µmol/L. Biochemical tests such as the silver nitroprusside and nitroprusside tests were positive suggesting homocystinuria. The patient was treated with oral pyridoxine therapy for three months. The child responded well to this therapy and the muscle spasms as well as skin manifestations such as cutis marmorata subsided. The treatment is being continued; the case is reported here because of its rarity. Homocysteinuria arising due to cystathionine beta-synthase (CBS deficiency is an autosomal recessive disorder of methionine metabolism that produces increased levels of urinary homocysteine and methionine It manifests itself in vascular, central nervous system, cutaneous, and connective tissue disturbances and phenotypically resembles Marfan′s syndrome. Skin manifestations include malar flush, thin hair, and cutis reticulata / marmorata.

  5. Activity of anidulafungin in a murine model of Candida krusei infection: evaluation of mortality and disease burden by quantitative tissue cultures and measurement of serum (1,3)-beta-D-glucan levels.

    Science.gov (United States)

    Ostrosky-Zeichner, Luis; Paetznick, Victor L; Rodriguez, Jose; Chen, Enuo; Sheehan, Daniel J

    2009-04-01

    Experience with anidulafungin against Candida krusei is limited. Immunosuppressed mice were injected with 1.3 x 10(7) to 1.5 x 10(7) CFU of C. krusei. Animals were treated with saline, 40 mg/kg fluconazole, 1 mg/kg amphotericin B, or 10 and 20 mg/kg anidulafungin for 5 days. Anidulafungin improved survival and significantly reduced the number of CFU/g in kidneys and serum beta-glucan levels.

  6. Prospective comparison of the diagnostic potential of real-time PCR, double-sandwich enzyme-linked immunosorbent assay for galactomannan, and a (1-->3)-beta-D-glucan test in weekly screening for invasive aspergillosis in patients with hematological disorders.

    Science.gov (United States)

    Kawazu, Masahito; Kanda, Yoshinobu; Nannya, Yasuhito; Aoki, Katsunori; Kurokawa, Mineo; Chiba, Shigeru; Motokura, Toru; Hirai, Hisamaru; Ogawa, Seishi

    2004-06-01

    The establishment of an optimal noninvasive method for diagnosing invasive aspergillosis (IA) is needed to improve the management of this life-threatening infection in patients with hematological disorders, and a number of noninvasive tests for IA that target different fungal components, including galactomannan, (1-->3)-beta-d-glucan (BDG), and Aspergillus DNA, have been developed. In this study, we prospectively evaluated the diagnostic potential of three noninvasive tests for IA that were used in a weekly screening strategy: the double-sandwich enzyme-linked immunosorbent assay (ELISA) for galactomannan (Platelia Aspergillus), a real-time PCR assay for Aspergillus DNA (GeniQ-Asper), and an assay for BDG (beta-glucan Wako). We analyzed 149 consecutive treatment episodes in 96 patients with hematological disorders who were at high risk for IA and diagnosed 9 proven IA cases, 2 probable IA cases, and 13 possible invasive fugal infections. In a receiver-operating characteristic (ROC) analysis, the area under the ROC curve was greatest for ELISA, using two consecutive positive results (0.97; P = 0.036 for ELISA versus PCR, P = 0.055 for ELISA versus BDG). Based on the ROC curve, the cutoff for the ELISA could be reduced to an optical density index (O.D.I.) of 0.6. With the use of this cutoff for ELISA and cutoffs for PCR and BDG that give a comparable level of specificity, the sensitivity/specificity/positive predictive value/negative predictive value of the ELISA and the PCR and BDG tests were 1.00/0.93/0.55/1.00, 0.55/0.93/0.40/0.96, and 0.55/0.93/0.40/0.96, respectively. In conclusion, among these weekly screening tests for IA, the double-sandwich ELISA test was the most sensitive at predicting the diagnosis of IA in high-risk patients with hematological disorders, using a reduced cutoff of 0.6 O.D.I.

  7. Polysaccharides in fungi. XXXVII. Immunomodulating activities of carboxymethylated derivatives of linear (1-->3)-alpha-D-glucans extracted from the fruiting bodies of Agrocybe cylindracea and Amanita muscaria.

    Science.gov (United States)

    Yoshida, I; Kiho, T; Usui, S; Sakushima, M; Ukai, S

    1996-01-01

    Immunomodulating activities of three carboxymethylated derivatives (AG-AL-CMS, AG-AL-CMI, and AM-APP-CM) of linear (1-->3)-alpha-D-glucans from Agrocybe cylindracea and Amanita muscaria were evaluated with murine peritoneal macrophages playing an important role in tumor immunity. The ratio of macrophages in peritoneal exudate cells increased more than 50% after the administration of three carboxymethylated (1-->3)-alpha-D-glucans. These carboxymethylated (1-->3)-alpha-D-glucans exhibited higher potentiating activities for macrophages than carboxymethylated linear (1-->3)-beta-D-glucan (CMPS) in the potency of reduction of nitro blue tetrazolium, products of nitric oxide and the soluble cytotoxic factor, the amount of glucose consumption, and the activation of acid phosphatase. AG-AL-CMS, AG-AL-CMI, and AM-APP-CM were found to induce the tumor regressing factor in mouse serum, although the ability of the induction of this factor was weaker than that of CMPS. The reticuloendothelial system-potentiating activation of three carboxymethylated alpha-D-glucans was similar to that of the carboxymethylated beta-D-glucan. AG-AL-CMS and AG-AL-CMI, but not AM-APP-CM, were suggested to possess a higher-order structure, resulting from the formation of a fluorescent complex with aniline blue.

  8. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta...

  9. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine [beta]-synthase

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma (Michigan-Med)

    2011-08-17

    The catalytic potential for H{sub 2}S biogenesis and homocysteine clearance converge at the active site of cystathionine {beta}-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes {beta}-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H{sub 2}S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 {angstrom}) and an aminoacrylate intermediate (1.55 {angstrom}) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory 'energy-sensing' CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.

  10. Cystathionine beta-synthase deficiency causes fat loss in mice.

    Directory of Open Access Journals (Sweden)

    Sapna Gupta

    Full Text Available Cystathionine beta synthase (CBS is the rate-limiting enzyme responsible for the de novo synthesis of cysteine. Patients with CBS deficiency have greatly elevated plasma total homocysteine (tHcy, decreased levels of plasma total cysteine (tCys, and often a marfanoid appearance characterized by thinness and low body-mass index (BMI. Here, we characterize the growth and body mass characteristics of CBS deficient TgI278T Cbs(-/- mice and show that these animals have significantly decreased fat mass and tCys compared to heterozygous sibling mice. The decrease in fat mass is accompanied by a 34% decrease in liver glutathione (GSH along with a significant decrease in liver mRNA and protein for the critical fat biosynthesizing enzyme Stearoyl CoA desaturase-1 (Scd-1. Because plasma tCys has been positively associated with fat mass in humans, we tested the hypothesis that decreased tCys in TgI278T Cbs(-/- mice was the cause of the lean phenotype by placing the animals on water supplemented with N-acetyl cysteine (NAC from birth to 240 days of age. Although NAC treatment in TgI278T Cbs(-/- mice caused significant increase in serum tCys and liver GSH, there was no increase in body fat content or in liver Scd-1 levels. Our results show that lack of CBS activity causes loss of fat mass, and that this effect appears to be independent of low serum tCys.

  11. Platensimycin activity against mycobacterial beta-ketoacyl-ACP synthases.

    Directory of Open Access Journals (Sweden)

    Alistair K Brown

    Full Text Available BACKGROUND: There is an urgent need for the discovery and development of new drugs against Mycobacterium tuberculosis, the causative agent of tuberculosis, especially due to the recent emergence of multi-drug and extensively-drug resistant strains. Herein, we have examined the susceptibility of mycobacteria to the natural product platensimycin. METHODS AND FINDINGS: We have demonstrated that platensimycin has bacteriostatic activity against the fast growing Mycobacterium smegmatis (MIC = 14 microg/ml and against Mycobacterium tuberculosis (MIC = 12 microg/ml. Growth in the presence of paltensimycin specifically inhibited the biosynthesis of mycolic acids suggesting that the antibiotic targeted the components of the mycolate biosynthesis complex. Given the inhibitory activity of platensimycin against beta-ketoacyl-ACP synthases from Staphylococcus aureus, M. tuberculosis KasA, KasB or FabH were overexpressed in M. smegmatis to establish whether these mycobacterial KAS enzymes were targets of platensimycin. In M. smegmatis overexpression of kasA or kasB increased the MIC of the strains from 14 microg/ml, to 30 and 124 microg/ml respectively. However, overexpression of fabH on did not affect the MIC. Additionally, consistent with the overexpression data, in vitro assays using purified proteins demonstrated that platensimycin inhibited Mt-KasA and Mt-KasB, but not Mt-FabH. SIGNIFICANCE: Our results have shown that platensimycin is active against mycobacterial KasA and KasB and is thus an exciting lead compound against M. tuberculosis and the development of new synthetic analogues.

  12. Diagnostic value of plasma(1,3)-beta-D-glucan detection for invasive fungal infection%血浆(1,3)-β-D 葡聚糖检测对侵袭性真菌感染的诊断价值

    Institute of Scientific and Technical Information of China (English)

    殷潇娴; 王玉月; 张淑瑛; 史伟峰

    2014-01-01

    Objective To explore the clinical value of plasma(1,3)-β-D-glucan detection(G test)in the diagnosis of invasive fun-gal infections(IFI).Methods The plasma samples were collected in 67 cases of IFI,61 cases of non-IFI and 48 healthy controls from January to September 2013.The level of(1,3)-D-glucan in plasma was detected by the kinetic turbidimetric assay and the opti-mal critical value of the G test was determined by receiver operating characteristic curve(ROC).Results The levels of(1,3)-β-D glucan in the IFI,non-IFI and healthy control groups showed the non-normal distribution.However,the median level of plasma(1, 3)-β-D glucan in the IFI group was 208.00pg/mL,which was significantly higher than 61.30 pg/mL(Z =-5.083,P <0.01)in the non-IFI group and 31.16 pg/mL(Z =-8.288,P <0.01)in the healthy control group.The area under ROC of the G test for diag-nosing IFI was 0.846 and the optimal critical value was 90.49pg/mL.The corresponding sensitivity,specificity,positive and nega-tive predictive values were 86.6%,77.1%,69.9% and 90.3%,respectively;at the same time,which of the fungal culture for diag-nosing IFI were 53.7%,94.5%,85.7% and 61.9% respectively.Conclusion Plasma(1,3)-β-D-glucan detection exhibits the high sensitivity and the better negative predictive value for the diagnosis of IFI.But the false positive results occur at times.It is sugges-ted that the G test can be dynamically conducted combined with the fungal culture for improving the efficiency of IFI diagnosis.%目的:探讨血浆(1,3)-β-D 葡聚糖检测(G 试验)对侵袭性真菌感染(IFI)的临床诊断价值。方法2013年1~9月收集 IFI 组67例、非 IFI 组61例及健康对照组48例血浆标本,应用动态浊度法检测血浆(1,3)-β-D 葡聚糖水平,通过受试者工作特征曲线(ROC)确定 G 试验最佳临界值。结果 IFI 组、非 IFI 组及健康对照组血浆(1,3)-β-D 葡聚糖水平皆为非正态分布。IFI 组的血浆(1,3

  13. Novel polyol-responsive monoclonal antibodies against extracellular β-D-glucans from Pleurotus ostreatus.

    Science.gov (United States)

    Semedo, Magda C; Karmali, Amin; Martins, Sónia; Fonseca, Luís

    2016-01-01

    β-D-glucans from mushroom strains play a major role as biological response modifiers in several clinical disorders. Therefore, a specific assay method is of critical importance to find useful and novel sources of β-d-glucans with anti-tumor activity. Hybridoma technology was used to raise monoclonal antibodies (Mabs) against extracellular β-d-glucans (EBG) from Pleurotus ostreatus. Two of these hybridoma clones (3F8_3H7 and 1E6_1E8_B3) secreting Mabs against EBG from P. ostreatus were selected and 3F8_3H7 was used to investigate if they are polyol-responsive Mabs (PR-Mabs) by using ELlSA-elution assay. This hybridoma cell line secreted Mab of IgM class, which was purified in a single step by gel filtration chromatography on Sephacryl S-300HR, which revealed a protein band on native PAGE with Mr of 917 kDa. Specificity studies of Mab 3F8_3H7 revealed that it recognized a common epitope on several β-d-glucans from different basidiomycete strains as determined by indirect ELlSA and Western blotting under native conditions. This Mab exhibited high apparent affinity constant (KApp) for β-d-glucans from several mushroom strains. However, it revealed differential reactivity to some heat-treated β-d-glucans compared with the native forms suggesting that it binds to a conformation-sensitive epitope on β-d-glucan molecule. Epitope analysis of Mab 3F8_3H7 and 1E6_1E8_B3 was investigated by additivity index parameter, which revealed that they bound to the same epitope on some β-d-glucans and to different epitopes in other antigens. Therefore, these Mab can be used to assay for β-d-glucans as well as to act as powerful probes to detect conformational changes in these biopolymers.

  14. Molecular cloning, functional expression and characterization of (E)-beta farnesene synthase from Citrus junos.

    Science.gov (United States)

    Maruyama, T; Ito, M; Honda, G

    2001-10-01

    We cloned the gene of the acyclic sesquiterpene synthase, (E)-beta-farnesene synthase (CJFS) from Yuzu (Citrus junos, Rutaceae). The function of CJFS was elucidated by the preparation of recombinant protein and subsequent enzyme assay. CJFS consisted of 1867 nucleotides including 1680 bp of coding sequence encoding a protein of 560 amino acids with a molecular weight of 62 kDa. The deduced amino acid sequence possessed characteristic amino acid residues, such as the DDxxD motif, which are highly conserved among terpene synthases. This is the first report of the cloning of a terpene synthase from a Rutaceous plant. A possible reaction mechanism for terpene biosynthesis is also discussed on the basis of sequence comparison of CJFS with known sesquiterpene synthase genes.

  15. Ultrasound-assisted extraction of β-d-glucan from hull-less barley: Assessment of physicochemical and functional properties.

    Science.gov (United States)

    Hematian Sourki, Abdollah; Koocheki, Arash; Elahi, Mohammad

    2017-02-01

    The present study was carried out to investigate the effect of ultrasound-assisted extraction (UAE) method on physicochemical and molecular properties of hull-less barley β-d-glucan. With increasing sonication time, β-d-glucan flow behavior index (n) and its extraction yield significantly increased while its consistency coefficient and lightness decreased. Sonication time had no significant effect on β-d-glucan purity, emulsion and foam stabilizing effect and colour. Increasing pH from 5 to 9 significantly enhanced extraction yield, purity, consistency coefficient (k), emulsion stabilizing effect and yellowness of the final product. At higher pHs, flow behavior index (n) and redness and yellowness decreased. With increasing the amplitude, extracted β-d-glucan flow behavior index (n), redness significantly increased. In contrast, β-d-glucan purity, emulsion stability, consistency coefficient (k) and yellowness decreased as a result of increase in sound amplitude. However, sound amplitude had no significant effect on β-d-glucan lightness. Models presented in this study were highly significant and the correlation coefficient could be used for optimization of β-d-glucan extraction from hull-less barley. Considering the importance and desirability of the response variables, the best results were obtained when the sonication time, amplitude and pH were 4.8min, 50% and 9, respectively. β-d-Glucans extracted by UAE had lower average molecular weight compared to those extracted by water extraction method. There was no difference between the chemical structures of β-d-glucans extracted by UAE and conventional method. This means that short time ultrasonic extraction had no effect on chemical structure of β-d-glucan. These results indicate that UAE method was a very effective tool for extraction of β-d-glucan as a potential hydrocolloid agent for food industries.

  16. Inhalation toxicity of (1→3-β-D glucan: recent advances

    Directory of Open Access Journals (Sweden)

    Birgitta Fogelmark

    1997-01-01

    Full Text Available To investigate the effects of (1→3-β-D-glucan after inhalation, animals were exposed to different forms of glucan and the number of lung lavage cells was determined 24 h after exposure. None of the different forms assayed caused any increase in cell numbers. In animals exposed to endotoxin, all types of cells were increased after 24 h. A simultaneous exposure to curdlan reduced this increase in a dose-related fashion. The results suggest that (1→3-β-D-glucan-related acute injury to the lung is induced by mechanisms other than those induced by inflammagenic agents such as endotoxin.

  17. A revisit to the natural history of homocystinuria due to cystathionine beta-synthase deficiency

    DEFF Research Database (Denmark)

    Skovby, Flemming; Gaustadnes, Mette; Mudd, S Harvey

    2010-01-01

    We review the evidence that in Denmark and probably certain other European countries the number of individuals identified with homocystinuria due to homozygosity for the widespread c.833T>C (p.I278T) mutation in the gene that encodes cystathionine beta-synthase (CBS) falls far short of the number...

  18. Yeast beta-alanine synthase shares a structural scaffold and origin with dizinc-dependent exopeptidases

    DEFF Research Database (Denmark)

    Lundgren, S.; Gojkovic, Zoran; Piskur, Jure

    2003-01-01

    beta-Alanine synthase (betaAS) is the final enzyme of the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of pyrimidine bases, including several anticancer drugs. In eukaryotes, betaASs belong to two subfamilies, which exhibit a low degree of sequence similarity. We...... determined the structure of betaAS from Saccharomyces kluyveri to a resolution of 2.7 Angstrom. The subunit of the homodimeric enzyme consists of two domains: a larger catalytic domain with a dizinc metal center, which represents the active site of betaAS, and a smaller domain mediating the majority...... of the intersubunit contacts. Both domains exhibit a mixed alpha/beta-topology. Surprisingly, the observed high structural homology to a family of dizinc-dependent exopeptidases suggests that these two enzyme groups have a common origin. Alterations in the ligand composition of the metal-binding site can be explained...

  19. Determinants of house dust, endotoxin, and β-(1→3)-D-glucan in homes of Danish children

    NARCIS (Netherlands)

    Holst, G; Høst, A; Doekes, G; Meyer, H W; Madsen, A M; Sigsgaard, T

    2015-01-01

    Little is known about the geographic variation and determinants of bacterial endotoxin and β-(1,3)-D-glucan in Danish house dust. In a population of 317 children, we: (i) described loads and concentrations of floor dust, endotoxin, and β-(1→3)-D-glucan and (ii) their correlations and (iii) assessed

  20. Antioxidant activity of carboxymethyl (1→3)-β-d-glucan (from the sclerotium of Poria cocos) sulfate (in vitro).

    Science.gov (United States)

    Wang, Qing; Chen, Sha; Han, Lin; Lian, Mengting; Wen, Zhili; Jiayinaguli, Telieke; Liu, Lina; Sun, Renqiang; Cao, Yu

    2014-08-01

    (1→3)-β-d-glucan derived from Poria cocos hardly exhibits bioactivities. To extend its use, three types of (1→3)-β-d-glucan derivatives, which were sulfated (1→3)-β-d-glucan (S-P), carboxymethyl (1→3)-β-d-glucan (CMP) and carboxylmethyl (1→3)-β-d-glucan sulfate (S-CMP), were synthesized. Potential antioxidant activities of S-P, CMP and S-CMP were evaluated in vitro. The experiments of scavenging abilities of free radicals were carried out, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide anion and hydroxyl. Deeply study of the derivatives' inhibitory effect for lipid peroxidation, DNA oxidative damage, erythrocyte hemolysis, and malondialdehyde (MDA) production were determined. And S-CMP significantly (P<0.01) increased the antioxidant activity of β-glucan. These results showed that multiple modifications of polysaccharides may bring the derivatives with excellent properties and various applications.

  1. Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3beta, beta-catenin, and neurotrophin cascades.

    Science.gov (United States)

    Wada, Akihiko

    2009-05-01

    Mood disorders are not merely attributed to the functional defect of neurotransmission, but also are due to the structural impairment of neuroplasticity. Chronic stress decreases neurotrophin levels, precipitating or exacerbating depression; conversely, antidepressants increase expression of various neurotrophins (e.g., brain-derived neurotrophic factor and vascular endothelial growth factor), thereby blocking or reversing structural and functional pathologies via promoting neurogenesis. Since the worldwide approval of lithium therapy in 1970, lithium has been used for its anti-manic, antidepressant, and anti-suicidal effects, yet the therapeutic mechanisms at the cellular level remain not-fully defined. During the last five years, multiple lines of evidence have shown that the mood stabilization and neurogenesis by lithium are due to the lithium-induced inhibition of glycogen synthase kinase-3beta (GSK-3beta), allowing accumulation of beta-catenin and beta-catenin-dependent gene transcriptional events. Altered levels of GSK-3beta and beta-catenin are associated with various neuropsychiatric and neurodegenerative diseases, while various classical neuropsychiatric drugs inhibit GSK-3beta and up-regulate beta-catenin expression. In addition, evidence has emerged that insulin-like growth factor-I enhances antidepression, anti-anxiety, memory, neurogenesis, and angiogenesis; antidepressants up-regulate expression of insulin-like growth factor-I, while insulin-like growth factor-I up-regulates brain-derived neurotrophic factor expression and its receptor TrkB level, as well as brain-derived neurotrophic factor-induced synaptic protein levels. More importantly, physical exercise and healthy diet raise transport of peripheral circulating insulin-like growth factor I into the brain, reinforcing the expression of neurotrophins (e.g., brain-derived neurotrophic factor) and the strength of cell survival signalings (e.g., phosphoinositide 3-kinase / Akt / GSK-3beta pathway

  2. Facile preparation of highly crystalline lamellae of (1 → 3)-β-D-glucan using an extract of Euglena gracilis.

    Science.gov (United States)

    Ogawa, Yu; Noda, Kazuhiro; Kimura, Satoshi; Kitaoka, Motomitsu; Wada, Masahisa

    2014-03-01

    In vitro synthesis of (1 → 3)-β-D-glucan was performed using laminaribiose phosphorylase obtained by an extraction of Euglena gracilis with sucrose phosphorylase. The synthetic product was a linear (1 → 3)-β-D-glucan with a narrow distribution of degree of polymerization (DP) centered on DP=30. X-ray diffraction and electron microscopy revealed that the glucan molecules obtained were self-organized as highly crystalline hexagonal lamellae. This synthetic product has quite high structural homogeneity at every level from primary to higher-order structure, which is a great advantage for the detailed analyses of physiological functions of (1 → 3)-β-D-glucan.

  3. Foliar application of β-D-glucan nanoparticles to control rhizome rot disease of turmeric.

    Science.gov (United States)

    Anusuya, Sathiyanarayanan; Sathiyabama, Muthukrishnan

    2015-01-01

    The soilborne Oomycete Pythium aphanidermatum is the causal agent of rhizome rot disease, one of the most serious threats to turmeric crops. At present, effective fungicides are not available. Researches on nanoparticles in a number of crops have evidenced the positive changes in gene expression indicating their potential use in crop improvement. Hence, experiments were carried out to determine the effect of β-D-glucan nanoparticles (nanobiopolymer) in protection of turmeric plants against rot disease by the way of products that reinforce plant's own defense mechanism. Foliar spray of β-D-glucan nanoparticles (0.1%, w/v) elicited marked increase in the activity of defense enzymes such as peroxidases (E.C.1.11.1.7), polyphenol oxidases (E.C.1.14.18.1), protease inhibitors (E.C.3.4.21.1) and β-1,3-glucanases (E.C.3.2.1.39) at various age levels. Constitutive and induced isoforms of these enzymes were investigated during this time-course study. β-D-glucan nanoparticles (GNPs) significantly reduced the rot incidence offering 77% protection. Increased activities of defense enzymes in GNPs-applied turmeric plants may play a role in restricting the development of disease symptoms. These results demonstrated that GNPs could be used as an effective resistance activator in turmeric for control of rhizome rot disease.

  4. D-glucans from edible mushrooms: a review on the extraction, purification and chemical characterization approaches.

    Science.gov (United States)

    Ruthes, Andrea Caroline; Smiderle, Fhernanda Ribeiro; Iacomini, Marcello

    2015-03-06

    D-Glucans from edible mushrooms present diversified chemical structures. The most common type consists of a backbone of β-D-glucose (1→3)-linked frequently branched at O-6 by β-D-glucose residues as side chains. However it is possible to distinguish α-, β- and mixed D-glucans. Further discrimination could be made on the basis of glycosidic bond position in a pyranoid ring, distribution of specific glycosidic bonds along the chain, branching and molecular weight. The present manuscript reviews the processes of extraction, purification and chemical characterization of D-glucans, such as NMR studies, methylation analysis, Smith degradation, and some other methodologies employed in carbohydrate chemistry characterization. In addition, these polysaccharides are important because they can provide many therapeutic benefits related to their biological activity in animals and humans, either immunostimulatory activity, inhibiting tumor growth, as well as exerting antinociceptive and anti-inflammatory action, among others, which are usually attached to their structure, molecular weight and degree of branching.

  5. Cytotoxic effect of Agaricus bisporus and Lactarius rufus β-D-glucans on HepG2 cells.

    Science.gov (United States)

    Pires, Amanda do Rocio Andrade; Ruthes, Andrea Caroline; Cadena, Silvia Maria Suter Correia; Acco, Alexandra; Gorin, Philip Albert James; Iacomini, Marcello

    2013-07-01

    The cytotoxic activity of β-D-glucans isolated from Agaricus bisporus and Lactarius rufus fruiting bodies was evaluated on human hepatocellular carcinoma cells (HepG2). NMR and methylation analysis suggest that these β-d-glucans were composed of a linear (1→6)-linked and a branched (1→3), (1→6)-linked backbone, respectively. They both decreased cell viability at concentrations of up to 100 μg mL(-1), as shown by MTT assay. The amount of LDH released and the analysis of cell morphology corroborated these values and also showed that the β-D-glucan of L. rufus was more cytotoxic to HepG2 cells than that of A. bisporus. The treatment of HepG2 cells with L. rufus and A. bisporus β-D-glucans at a dose of 200 μg mL(-1) for 24h promoted an increase of cytochrome c release and a decrease of ATP content, suggesting that these polysaccharides could promote cell death by apoptosis. Both β-D-glucans were tested against murine primary hepatocytes at a dose of 200 μg mL(-1). The results suggest that the L. rufus β-d-glucan was as cytotoxic for hepatocytes as for HepG2 cells, whereas the A. bisporus β-D-glucan, under the same conditions, was cytotoxic only for HepG2 cells, suggesting cell selectivity. These results open new possibilities for use of mushroom β-D-glucans in cancer therapy.

  6. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    Science.gov (United States)

    Croteau, Rodney Bruce; Crock, John E.

    2005-01-25

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-famesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-famesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  7. Isolation and bacterial expression of a sesquiterpene synthase CDNA clone from peppermint(mentha .chi. piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    Science.gov (United States)

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Crock, John E.

    1999-01-01

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-farnesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-farnesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  8. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases

    DEFF Research Database (Denmark)

    Reimers, J I; Bjerre, U; Mandrup-Poulsen, T

    1994-01-01

    , glucagon, corticosterone and leukocyte- and differential-counts in normal rats injected once daily for 5 days with interleukin 1 beta (IL-1 beta) (0.8 microgram/rat = 4.0 micrograms/kg). Inhibition of both the constitutive and the inducible forms of nitric oxide synthase prevented IL-1 beta-induced fever......Substantial in vitro evidence suggests that nitric oxide may be a major mediator of interleukin 1 (IL-1) induced pancreatic beta-cell inhibition and destruction in the initial events leading to insulin-dependent diabetes mellitus. Using NG-nitro-L-arginine methyl ester, an inhibitor of both......, hyperglycaemia, hypoinsulinemia, and hyperglucagonemia, and partially prevented lymphopenia and neutrophilia, but had no effect on IL-1 beta-induced anorexia and changes in plasma corticosterone. Preferential inhibition of the inducible form of nitric oxide synthase using two daily injections of 5 mg...

  9. Synthesis of O- and C-glycosides derived from β-(1,3)-D-glucans.

    Science.gov (United States)

    Marca, Eduardo; Valero-Gonzalez, Jessika; Delso, Ignacio; Tejero, Tomás; Hurtado-Guerrero, Ramon; Merino, Pedro

    2013-12-15

    A series of β-(1,3)-d-glucans have been synthesized incorporating structural variations specifically on the reducing end of the oligomers. Both O- and C-glucosides derived from di- and trisaccharides have been obtained in good overall yields and with complete selectivity. Whereas the O-glycosides were obtained via a classical Koenigs-Knorr glycosylation, the corresponding C-glycosides were obtained through allylation of the anomeric carbon and further cross-metathesis reaction. Finally, the compounds were evaluated against two glycosidases and two endo-glucanases and no inhibitory activity was observed.

  10. Structure of soybean [beta]-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Hankuil; Juergens, Matthew; Jez, Joseph M. (WU)

    2012-09-07

    Plants produce cyanide (CN{sup -}) during ethylene biosynthesis in the mitochondria and require {beta}-cyanoalanine synthase (CAS) for CN{sup -} detoxification. Recent studies show that CAS is a member of the {beta}-substituted alanine synthase (BSAS) family, which also includes the Cys biosynthesis enzyme O-acetylserine sulfhydrylase (OASS), but how the BSAS evolved distinct metabolic functions is not understood. Here we show that soybean (Glycine max) CAS and OASS form {alpha}-aminoacrylate reaction intermediates from Cys and O-acetylserine, respectively. To understand the molecular evolution of CAS and OASS in the BSAS enzyme family, the crystal structures of Gm-CAS and the Gm-CAS K95A mutant with a linked pyridoxal phosphate (PLP)-Cys molecule in the active site were determined. These structures establish a common fold for the plant BSAS family and reveal a substrate-induced conformational change that encloses the active site for catalysis. Comparison of CAS and OASS identified residues that covary in the PLP binding site. The Gm-OASS T81M, S181M, and T185S mutants altered the ratio of OASS:CAS activity but did not convert substrate preference to that of a CAS. Generation of a triple mutant Gm-OASS successfully switched reaction chemistry to that of a CAS. This study provides new molecular insight into the evolution of diverse enzyme functions across the BSAS family in plants.

  11. Identification of a Glycogen Synthase Kinase-3[beta] Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice

    Energy Technology Data Exchange (ETDEWEB)

    Kozikowski, Alan P.; Gunosewoyo, Hendra; Guo, Songpo; Gaisina, Irina N.; Walter, Richard L.; Ketcherside, Ariel; McClung, Colleen A.; Mesecar, Andrew D.; Caldarone, Barbara (Psychogenics); (Purdue); (UIC); (UTSMC)

    2012-05-02

    Bipolar disorder is characterized by a cycle of mania and depression, which affects approximately 5 million people in the United States. Current treatment regimes include the so-called 'mood-stabilizing drugs', such as lithium and valproate that are relatively dated drugs with various known side effects. Glycogen synthase kinase-3{beta} (GSK-3{beta}) plays a central role in regulating circadian rhythms, and lithium is known to be a direct inhibitor of GSK-3{beta}. We designed a series of second generation benzofuran-3-yl-(indol-3-yl)maleimides containing a piperidine ring that possess IC{sub 50} values in the range of 4 to 680 nM against human GSK-3{beta}. One of these compounds exhibits reasonable kinase selectivity and promising preliminary absorption, distribution, metabolism, and excretion (ADME) data. The administration of this compound at doses of 10 to 25 mg kg{sup -1} resulted in the attenuation of hyperactivity in amphetamine/chlordiazepoxide-induced manic-like mice together with enhancement of prepulse inhibition, similar to the effects found for valproate (400 mg kg{sup -1}) and the antipsychotic haloperidol (1 mg kg{sup -1}). We also tested this compound in mice carrying a mutation in the central transcriptional activator of molecular rhythms, the CLOCK gene, and found that the same compound attenuates locomotor hyperactivity in response to novelty. This study further demonstrates the use of inhibitors of GSK-3{beta} in the treatment of manic episodes of bipolar/mood disorders, thus further validating GSK-3{beta} as a relevant therapeutic target in the identification of new therapies for bipolar patients.

  12. Prevention of Aflatoxin B1-Induced DNA Breaks by β-D-Glucan

    Directory of Open Access Journals (Sweden)

    Eduardo Madrigal-Bujaidar

    2015-06-01

    Full Text Available Aflatoxins are a group of naturally-occurring carcinogens that are known to contaminate different human and animal foodstuffs. Aflatoxin B1 (AFB1 is the most genotoxic hepatocarcinogenic compound of all of the aflatoxins. In this report, we explore the capacity of β-D-glucan (Glu to reduce the DNA damage induced by AFB1 in mouse hepatocytes. For this purpose, we applied the comet assay to groups of animals that were first administered Glu in three doses (100, 400 and 700 mg/kg bw, respectively and, 20 min later, 1.0 mg/kg of AFB1. Liver cells were obtained at 4, 10 and 16 h after the chemical administration and examined. The results showed no protection of the damage induced by AFB1 with the low dose of the polysaccharide, but they did reveal antigenotoxic activity exerted by the two high doses. In addition, we induced a co-crystallization between both compounds, determined their fusion points and analyzed the molecules by UV spectroscopy. The data suggested the formation of a supramolecular complex between AFB1 and β-D-glucan.

  13. Children’s residential exposure to selected allergens and microbial indicators: endotoxins and (1→3)-β-D-glucans

    OpenAIRE

    2013-01-01

    Objectives: The study was aimed at assessment of exposure to endotoxins, (1→3)-β-D-glucans and mite, cockroach, cat, dog allergens present in settled dust in premises of children as agents which may be significantly correlated with the occurrence of allergic symptoms and diseases in children. Materials and Methods: The study covered 50 homes of one- or two-year-old children in Poland. Samples of settled dust were taken from the floor and the child's bed. The levels of (1→3)-β-D-glucans (floor...

  14. Determining the Subcellular Location of Synthesis and Assembly of the Cell Wall Polysaccharide (1,3; 1,4)-β-d-Glucan in Grasses[OPEN

    Science.gov (United States)

    Wilson, Sarah M.; Ho, Yin Ying; Lampugnani, Edwin R.; Van de Meene, Allison M.L.; Bain, Melissa P.; Bacic, Antony; Doblin, Monika S.

    2015-01-01

    The current dogma for cell wall polysaccharide biosynthesis is that cellulose (and callose) is synthesized at the plasma membrane (PM), whereas matrix phase polysaccharides are assembled in the Golgi apparatus. We provide evidence that (1,3;1,4)-β-d-glucan (mixed-linkage glucan [MLG]) does not conform to this paradigm. We show in various grass (Poaceae) species that MLG-specific antibody labeling is present in the wall but absent over Golgi, suggesting it is assembled at the PM. Antibodies to the MLG synthases, cellulose synthase-like F6 (CSLF6) and CSLH1, located CSLF6 to the endoplasmic reticulum, Golgi, secretory vesicles, and the PM and CSLH1 to the same locations apart from the PM. This pattern was recreated upon expression of VENUS-tagged barley (Hordeum vulgare) CSLF6 and CSLH1 in Nicotiana benthamiana leaves and, consistent with our biochemical analyses of native grass tissues, shown to be catalytically active with CSLF6 and CSLH1 in PM-enriched and PM-depleted membrane fractions, respectively. These data support a PM location for the synthesis of MLG by CSLF6, the predominant enzymatically active isoform. A model is proposed to guide future experimental approaches to dissect the molecular mechanism(s) of MLG assembly. PMID:25770111

  15. The association of single nucleotide polymorphisms of the maternal cystathionine-beta-synthase gene with early-onset preeclampsia

    NARCIS (Netherlands)

    Holwerda, Kim M.; Weedon-Fekjaer, M. Susanne; Staff, Anne C.; Nolte, Ilja M.; van Goor, Harry; Lely, A. Titia; Faas, Marijke M.

    2016-01-01

    Objectives: Preeclampsia (PE) is a pregnancy complication, characterized by hypertension and proteinuria. The transsulfuration pathway may be involved in its pathophysiology, since homocysteine, cystathionine and cysteine are increased in PE. Cystathionine-beta-synthase (CBS) is a key-enzyme in the

  16. Cystathionine beta-synthase (CBS contributes to advanced ovarian cancer progression and drug resistance.

    Directory of Open Access Journals (Sweden)

    Sanjib Bhattacharyya

    Full Text Available BACKGROUND: Epithelial ovarian cancer is the leading cause of gynecologic cancer deaths. Most patients respond initially to platinum-based chemotherapy after surgical debulking, however relapse is very common and ultimately platinum resistance emerges. Understanding the mechanism of tumor growth, metastasis and drug resistant relapse will profoundly impact the therapeutic management of ovarian cancer. METHODS/PRINCIPAL FINDINGS: Using patient tissue microarray (TMA, in vitro and in vivo studies we report a role of of cystathionine-beta-synthase (CBS, a sulfur metabolism enzyme in ovarian carcinoma. We report here that the expression of cystathionine-beta-synthase (CBS, a sulfur metabolism enzyme, is common in primary serous ovarian carcinoma. The in vitro effects of CBS silencing can be reversed by exogenous supplementation with the GSH and H2S producing chemical Na2S. Silencing CBS in a cisplatin resistant orthotopic model in vivo by nanoliposomal delivery of CBS siRNA inhibits tumor growth, reduces nodule formation and sensitizes ovarian cancer cells to cisplatin. The effects were further corroborated by immunohistochemistry that demonstrates a reduction of H&E, Ki-67 and CD31 positive cells in si-RNA treated as compared to scrambled-RNA treated animals. Furthermore, CBS also regulates bioenergetics of ovarian cancer cells by regulating mitochondrial ROS production, oxygen consumption and ATP generation. This study reports an important role of CBS in promoting ovarian tumor growth and maintaining drug resistant phenotype by controlling cellular redox behavior and regulating mitochondrial bioenergetics. CONCLUSION: The present investigation highlights CBS as a potential therapeutic target in relapsed and platinum resistant ovarian cancer.

  17. (1→3)-α-D-Glucan hydrolases in dental biofilm prevention and control: A review.

    Science.gov (United States)

    Pleszczyńska, Małgorzata; Wiater, Adrian; Janczarek, Monika; Szczodrak, Janusz

    2015-08-01

    Dental plaque is a highly diverse biofilm, which has an important function in maintenance of oral and systemic health but in some conditions becomes a cause of oral diseases. In addition to mechanical plaque removal, current methods of dental plaque control involve the use of chemical agents against biofilm pathogens, which however, given the complexity of the oral microbiome, is not sufficiently effective. Hence, there is a need for development of new anti-biofilm approaches. Polysaccharides, especially (1→3),(1→6)-α-D-glucans, which are key structural and functional constituents of the biofilm matrix, seem to be a good target for future therapeutic strategies. In this review, we have focused on (1→3)-α-glucanases, which can limit the cariogenic properties of the dental plaque extracellular polysaccharides. These enzymes are not widely known and have not been exhaustively described in literature.

  18. In vivo immunological activity of carboxymethylated-sulfated (1→3)-β-D-glucan from sclerotium of Poria cocos.

    Science.gov (United States)

    Wang, Haili; Mukerabigwi, Jean Felix; Zhang, Yuannian; Han, Lin; Jiayinaguli, Telieke; Wang, Qing; Liu, Lina; Cao, Yu; Sun, Renqiang; Huang, Xueying

    2015-08-01

    β-Glucans are one of the polysaccharides known as biological response modifiers extracted from the sclerotium of Poria cocos which has been used for several decades as Traditional Chinese Medicine. Due to its ability to activate immune system, it can be applied in chemotherapy after being chemically modified. In this study, sulfated (1→3)-β-D-glucan (S-P), carboxymethyl (1→3)-β-D-glucan (CMP), and carboxymethylated-sulfated (1→3)-β-D-glucan (S-CMP), which are (1→3)-β-D-glucan derivatives were synthesized. The current study was aimed to investigate in vivo potential immunological activity of S-CMP in mice. In addition, mice were separately treated with S-P, CMP and S-CMP to evaluate the relationship between single and multiple functional groups. Interestingly, S-CMP exhibited the best in vivo immunological activities and the highest inhibition rate against the implanted HepG2 tumor in BALB/c mice, with significant increase in serum hemolysin antibody titer, spleen antibody production as well as delayed type hypersensitivity compared with S-P and CMP. Furthermore, it was assumed that simultaneous introduction of carboxymethyl and sulfate groups also had great potential effect on antioxidant activity, as substantial decrease in malondialdehyde (MDA) content was remarked. Therefore, it may suggest that S-CMP has better immunological and anti-tumor effects on mice in vivo.

  19. Association between circulating DNA, serum (1->3)-β-D-glucan, and pulmonary fungal burden in Pneumocystis pneumonia.

    Science.gov (United States)

    Costa, Jean-Marc; Botterel, Françoise; Cabaret, Odile; Foulet, Françoise; Cordonnier, Catherine; Bretagne, Stéphane

    2012-07-01

    Circulating Pneumocystis jirovecii DNA and (1→3)-β-d-glucan determined in 70 serum samples from immunocompromised patients were compared to fungal load in bronchoalveolar lavage fluids assessed using quantitative polymerase chain reaction. Both serum biomarkers are influenced by pulmonary fungal load, which should be taken into account when diagnosing Pneumocystis infection.

  20. Accumulation of mixed linkage (1¿3) (1¿4)-ß-D-glucan during grain filling in barley

    DEFF Research Database (Denmark)

    Seefeldt, Helene Fast; Blennow, Per Gunnar Andreas; Jespersen, Birthe P Møller

    2009-01-01

    The accumulation of mixed linkage barley (1 → 3) (1 → 4)-β-d-glucan (BG) during grain filling at eight stages was studied using standard reference methods and infrared spectroscopy. Two mutant barley genotypes having higher (starch mutant lys5f) and lower (high lysine mutant lys3a) BG content tha...

  1. Determinants of house dust, endotoxin, and β-(1→3)-d-glucan in homes of Danish children

    DEFF Research Database (Denmark)

    Holst, Gitte Juel; Høst, Arne; Doekes, G

    2015-01-01

    Little is known about the geographic variation and determinants of bacterial endotoxin and β -(1,3)-d-glucan in Danish house dust. In a population of 317 children, we: (i) described loads and concentrations of floor dust, endotoxin, and β-(1→3)-d-glucan and (ii) their correlations and (iii......) assessed their determinants; (iv) Finally, we compared our findings with previous European studies. Bedroom floor dust was analyzed for endotoxin content by the kinetic limulus amoebocyte lysate assay and for β-(1→3)-d-glucan by the inhibition enzyme immunoassay. The parents answered questions regarding...... potential determinants. We found: geometric means (geometric standard deviations) 186 mg/m(2) (4.3) for dust; 5.46 × 10(3) EU/m(2) (8.0) and 31.1 × 10(3) EU/g (2.6) for endotoxin; and 142 μg/m(2) (14.3) and 0.71 × 10(3) μg/g (7.3) for β-(1→3)-d-glucan. High correlations (r > 0.75) were found between floor...

  2. Nuclear glycogen synthase kinase-3 {beta} (GSK-3) in Rhipicephalus (Boophilus) microplus tick embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Mentzingen, Leticia; Andrade, Josiana G. de; Logullo, Carlos [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ (Brazil). Centro de Biociencias e Biotecnologia. Lab. de Quimica e Funcao de Proteinas e Peptideos (LQFPP); Andrade, Caroline P. de; Vaz Junior, Itabajara [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Biotecnologia

    2008-07-01

    Full text: Glycogen synthase kinase-3 (GSK3) is recognized as a key component of a large number of cellular processes and diseases. Several mechanisms play a part in controlling the actions of GSK3, including phosphorylation, protein complex formation, and subcellular distribution. Recent observations point to functions for phosphorylases several transcription factors in the nucleus. Also, GSK3b participate of the canonical W nt signalling pathway, which has been studied intensively in embryonic and cancer cells. Like in many other signaling pathways, most components in W nt signal transduction were highly conserved during the evolution. More than 40 proteins have been reported to be phosphorylated by GSK3, including over a dozen transcription factors. Although the mechanisms regulating GSK3 are not fully understood, precise control appears to be achieved by a combination of phosphorylation, localization, and interactions with GSK3-binding proteins. Although GSK3 is traditionally considered a cytosolic protein, it is also present in nuclei. Nuclear GSK3 is particularly interesting because of the many transcription factors that it regulates enabling GSK3 to influence many signaling pathways that converge on these transcription factors, thereby regulating the expression of many genes. Our group identified that GSK-3 {beta} could be detected in different stage eggs of R. micro plus. In this work we detected the GSK-3 in isolated nuclear fraction from the egg homogenates of R. micro plus by western-blot analysis, using anti-GSK- 3 {beta} antibodies. The enzyme activity was also detected radiochemically throughout embryogenesis in same fraction. The GSK-3 activity was inhibiting by using SB 216763 (selective molecule inhibitors of GSK-3). Taken together our results suggest that GSK-3 {beta} isoform probably is involved in gene transcription factors during R. micro plus embryo development.

  3. Glycogen synthase kinase 3beta phosphorylates p21WAF1/CIP1 for proteasomal degradation after UV irradiation.

    Science.gov (United States)

    Lee, Ji Young; Yu, Su Jin; Park, Yun Gyu; Kim, Joon; Sohn, Jeongwon

    2007-04-01

    UV irradiation has been reported to induce p21(WAF1/CIP1) protein degradation through a ubiquitin-proteasome pathway, but the underlying biochemical mechanism remains to be elucidated. Here, we show that ser-114 phosphorylation of p21 protein by glycogen synthase kinase 3beta (GSK-3beta) is required for its degradation in response to UV irradiation and that GSK-3beta activation is a downstream event in the ATR signaling pathway triggered by UV. UV transiently increased GSK-3beta activity, and this increase could be blocked by caffeine or by ATR small interfering RNA, indicating ATR-dependent activation of GSK-3beta. ser-114, located within the putative GSK-3beta target sequence, was phosphorylated by GSK-3beta upon UV exposure. The nonphosphorylatable S114A mutant of p21 was protected from UV-induced destabilization. Degradation of p21 protein by UV irradiation was independent of p53 status and prevented by proteasome inhibitors. In contrast to the previous report, the proteasomal degradation of p21 appeared to be ubiquitination independent. These data show that GSK-3beta is activated by UV irradiation through the ATR signaling pathway and phosphorylates p21 at ser-114 for its degradation by the proteasome. To our knowledge, this is the first demonstration of GSK-3beta as the missing link between UV-induced ATR activation and p21 degradation.

  4. Involvement of central microsomal prostaglandin E synthase-1 in IL-1beta-induced anorexia.

    Science.gov (United States)

    Pecchi, E; Dallaporta, M; Thirion, S; Salvat, C; Berenbaum, F; Jean, A; Troadec, J-D

    2006-05-16

    In response to infection or inflammation, individuals develop a set of symptoms referred to as sickness behavior, which includes a decrease in food intake. The characterization of the molecular mechanisms underlying this hypophagia remains critical, because chronic anorexia may represent a significant health risk. Prostaglandins (PGs) constitute an important inflammatory mediator family whose levels increase in the brain during inflammatory states, and their involvement in inflammatory-induced anorexia has been proposed. The microsomal PGE synthase (mPGES)-1 enzyme is involved in the last step of PGE2 biosynthesis, and its expression is stimulated by proinflammatory agents. The present study attempted to determine whether an upregulation of mPGES-1 gene expression may account for the immune-induced anorexic behavior. We focused our study on mPGES-1 expression in the hypothalamus and dorsal vagal complex, two structures strongly activated during peripheral inflammation and involved in the regulation of food intake. We showed that mPGES-1 gene expression was robustly upregulated in these structures after intraperitoneal and intracerebroventricular injections of anorexigenic doses of IL-1beta. This increase was correlated with the onset of anorexia. The concomitant reduction in food intake and central mPGES-1 gene upregulation led us to test the feeding behavior of mice lacking mPGES-1 during inflammation. Interestingly, IL-1beta failed to decrease food intake in mPGES-1(-/-) mice, although these animals developed anorexia in response to a PGE2 injection. Taken together, our results demonstrate that mPGES-1, which is strongly upregulated during inflammation in central structures involved in feeding control, is essential for immune anorexic behavior and thus may constitute a potential therapeutic target.

  5. Relationship Between Polymorphism of Cystathionine beta Synthase Gene and Congenital Heart Disease in Chinese Nuclear Families

    Institute of Scientific and Technical Information of China (English)

    XIAO-MING SONG; XIAO-YING ZHENG; WEN-LI ZHU; LEI HUANG; YONG LI

    2006-01-01

    Objective To study the relationship between polymorphism of cystathionine beta synthase (CBS) gene and development of congenital heart disease (CHD). Methods One hundred and twenty-seven CHD case-parent triads were recruited from Liaoning Province as patient group, and 129 healthy subjects without family history of birth defect were simultaneously recruited as control group together with their biological parents. For all subjects the polymorphism of CBS gene G919A locus was examined by PCR-ARMS method. Results The frequencies of three genotypes (w/w, w/m, and m/m) in control group were 27.2%, 58.4%, and 14.4%, respectively, with no significant difference in gender. A significant difference in the allele frequency was found between CHD patients and controls, the wild allele frequency was 67.9% in patients and 55.7% in controls.CHD parents' genotype distribution was significantly different from that in controls. Further comparison of each type of CHD showed that genotype frequencies in several CHD subtypes were significantly different from those in their corresponding controls. The results of TDT analysis showed that no allele transmission disequilibrium existed in CHD nuclear families.Conclusions CBS gene G919A mutation is associated with the development of CHD, and the mutated allele may decrease the risk of CHD.

  6. Elevation in sphingomyelin synthase activity is associated with increases in amyloid-beta peptide generation.

    Directory of Open Access Journals (Sweden)

    Jen-Hsiang T Hsiao

    Full Text Available A pathological hallmark of Alzheimer's disease (AD is the presence of amyloid-beta peptide (Aβ plaques in the brain. Aβ is derived from a sequential proteolysis of the transmenbrane amyloid precursor protein (APP, a process which is dependent on the distribution of lipids present in the plasma membrane. Sphingomyelin is a major membrane lipid, however its role in APP processing is unclear. Here, we assessed the expression of sphingomyelin synthase (SGMS1; the gene responsible for sphingomyelin synthesis in human brain and found that it was significantly elevated in the hippocampus of AD brains, but not in the cerebellum. Secondly, we assessed the impact of altering SGMS activity on Aβ generation. Inhibition of SGMS activity significantly reduced the level of Aβ in a dose- and time dependent manner. The decrease in Aβ level occurred without changes in APP expression or cell viability. These results when put together indicate that SGMS activity impacts on APP processing to produce Aβ and it could be a contributing factor in Aβ pathology associated with AD.

  7. Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various beta-glucan synthases in the stem.

    Science.gov (United States)

    Konishi, Teruko; Ohmiya, Yasunori; Hayashi, Takahisa

    2004-03-01

    Sucrose (Suc) synthase (SuSy) is believed to function in channeling UDP-Glc from Suc to various beta-glucan synthases. We produced transgenic poplars (Populus alba) overexpressing a mutant form (S11E) of mung bean (Vigna radiata) SuSy, which appeared in part in the microsomal membranes of the stems. Expression of SuSy in these membranes enhanced the incorporation of radioactive Suc into cellulose, together with the metabolic recycling of fructose (Fru), when dual-labeled Suc was fed directly into the phloem of the leaf. This overexpression also enhanced the direct incorporation of the glucosyl moiety of Suc into the glucan backbone of xyloglucan and increased recycling of Fru, although the Fru recycling system for cellulose synthesis at the plasma membrane might differ from that for xyloglucan synthesis in the Golgi network. These findings suggest that some of the Suc loaded into the phloem of a poplar leaf is used directly by SuSys associated with xyloglucan and cellulose synthases in the stem. This may be a key function of SuSy because the high-energy bond between the Glc and Fru moieties of Suc is conserved and used for polysaccharide syntheses in this sink tissue.

  8. Dendrimer-like alpha-d-glucan nanoparticles activate dendritic cells and are effective vaccine adjuvants.

    Science.gov (United States)

    Lu, Fangjia; Mencia, Alejandra; Bi, Lin; Taylor, Aaron; Yao, Yuan; HogenEsch, Harm

    2015-04-28

    The use of nanoparticles for delivery of vaccine antigens and as vaccine adjuvants is appealing because their size allows efficient uptake by dendritic cells and their biological properties can be tailored to the desired function. Here, we report the effect of chemically modified phytoglycogen, a dendrimer-like α-d-glucan nanoparticle, on dendritic cells in vitro, and the utility of this type of nanoparticle as a vaccine adjuvant in vivo. The modified phytoglycogen nanoparticle, termed Nano-11, has a positive surface charge which enabled electrostatic adsorption of negatively charged protein antigens. The Nano-11-antigen complexes were efficiently phagocytized by dendritic cells. Nano-11 induced increased expression of costimulatory molecules and the secretion of IL-1β and IL-12p40 by dendritic cells. Intramuscular injection of Nano-11-antigen formulations induced a significantly enhanced immune response to two different protein antigens. Examination of the injection site revealed numerous monocytes and relatively few neutrophils at one day after injection. The inflammation had nearly completely disappeared by 2 weeks after injection. These studies indicate that Nano-11 is an effective vaccine delivery vehicle that significantly enhances the immune response. This type of plant based nanoparticle is considered highly cost-effective compared with fully synthetic nanoparticles and appears to have an excellent safety profile making them an attractive adjuvant candidate for prophylactic vaccines.

  9. Galactomannan and 1,3-β-d-Glucan Testing for the Diagnosis of Invasive Aspergillosis

    Directory of Open Access Journals (Sweden)

    Frédéric Lamoth

    2016-07-01

    Full Text Available Invasive aspergillosis (IA is a severe complication among hematopoietic stem cell transplant recipients or patients with hematological malignancies and neutropenia following anti-cancer therapy. Moreover, IA is increasingly observed in other populations, such as solid-organ transplant recipients, patients with solid tumors or auto-immune diseases, and among intensive care unit patients. Frequent delay in diagnosis is associated with high mortality rates. Cultures from clinical specimens remain sterile in many cases and the diagnosis of IA often only relies on non-specific radiological signs in the presence of host risk factors. Tests for detection of galactomannan- (GM and 1,3-β-d-glucan (BDG are useful adjunctive tools for the early diagnosis of IA and may have a role in monitoring response to therapy. However, the sensitivity and specificity of these fungal biomarkers are not optimal and variations between patient populations are observed. This review discusses the role and interpretation of GM and BDG testing for the diagnosis of IA in different clinical samples (serum, bronchoalveolar lavage fluid, cerebrospinal fluid and different groups of patients (onco-hematological patients, solid-organ transplant recipients, other patients at risk of IA.

  10. Yeast β-d-glucans induced antimicrobial peptide expressions against Salmonella infection in broiler chickens.

    Science.gov (United States)

    Shao, Yujing; Wang, Zhong; Tian, Xiangyu; Guo, Yuming; Zhang, Haibo

    2016-04-01

    The present study was designed to investigate the effects of yeast β-d-glucans (YG) on gene expression of endogenous β-defensins (AvBDs), cathelicidins (Cath) and liver-expressed antimicrobial peptide-2 (LEAP-2) in broilers challenged with Salmonella enteritidis (SE). 240 day-old Cobb male broilers were randomly assigned to 2×2 factorial arrangements of treatments with two levels of dietary YG (0 or 200mg/kg in diet) and two levels of SE challenge (0 or 1×10(9) SE at 7-9 days of age). The results showed SE infection reduced growth performance,and increased salmonella cecal colonization and internal organs invasion, increased concentration of intestinal specific IgA and serum specific IgG antibody, as compared to uninfected birds. SE challenge differentially regulated AvBDs, Caths and LEAP-2 gene expression in the jejunum and spleen of broiler chickens during the infection period. However, YG supplementation inhibited the growth depression by SE challenge, and further increased level of serum specific IgG and intestinal specific IgA antibody. Higher level of salmonella colonization and internal organs invasion in the SE-infected birds were reduced by YG. SE-induced differentially expression patterns of AMPs genes was inhibited or changed by YG. Results indicated YG enhance chicken's resistance to salmonella infection.

  11. β-D-Glucan nanoparticle pre-treatment induce resistance against Pythium aphanidermatum infection in turmeric.

    Science.gov (United States)

    Anusuya, Sathiyanarayanan; Sathiyabama, Muthukrishnan

    2015-03-01

    In vitro experiments were carried out to test the efficacy of GNP (β-D-glucan nanoparticle prepared from mycelium of Pythium aphanidermatum) against rhizome rot disease of turmeric (Curcuma longa L.) caused by P. aphanidermatum. GNP (0.1%, w/v) was applied to rhizome prior to inoculation with P. aphanidermatum (0 h, 24 h). Cell death, activities of defense enzymes such as peroxidase, polyphenol oxidase, protease inhibitor and β-1,3 glucanase were monitored. Prior application of GNP (24 h) to turmeric rhizome effectively controls P. aphanidermatum infection. The increase in defense enzyme activities occurred more rapidly and was enhanced in P. aphanidermatum infected rhizomes that were pre-treated with GNP. Pre-treatment also induced new isoforms of defense enzymes. Increased activities of defense enzymes suggest that they play a key role in restricting the development of disease symptoms in the rhizomes as evidenced by a reduction in cell death. The results demonstrated that GNP can be used as a potential agent for control of rhizome rot disease.

  12. INFLUENCE OF MOLECULAR WEIGHT AND PERIODATE-MODIFICATION OF β-D-GLUCANS FROM PORIA COCOS SCLEROTIUM ON ANTITUMOR ACTIVITIES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    In this work, influence of molecular weight and periodate modification of β-D-glucans isolated from Poria cocos sclerotium on the antitumor activities against Sarcoma 180 and Ehrlich ascites carcinoma (EAC) tumor was studied. The results show that two glucans PC3 (linear β-(1 → 3)-D-glucan) and PC4 [β-(1 → 3)-D-glucan with a few of branches and glucuronic acid] are devoid of antitumor activity. However, when the glucans were modified by periodate oxidation, borohydride reduction and mild hydrolysis or partially hydrolysis, the derivatives have obvious antitumor activities. The decrease in molecular weight of glucans after periodate modification hardly affects their antitumor actions, but on the other hand, the decrease of molecular weight without periodate modification could lead to an enhancement of the antitumor activities. Moreover, the glucans and these derivatives have much higher enhancement ratios of body weight of mice than that of 5-Fluorouracil (5-Fu), suggesting that they are less toxic than 5-Fu.

  13. Effect of particle size and temperature on rheology and creep behavior of barley β-d-glucan concentrate dough.

    Science.gov (United States)

    Ahmed, Jasim

    2014-10-13

    Concentrated β-D-glucan has been added in the formulation of food products development that attributing human health. The purpose of this study is to assess the role of particle size (74, 105, 149, 297 and 595 μm) of barley β-D-glucan concentrate (BGC) on two fundamental rheological properties namely oscillatory rheology and creep in a dough system (sample to water = 1:2). The water holding capacity, sediment volume fraction and protein content increased with an increase in particle size from 74 μm to 595 μm, which directly influences the mechanical strength and visco-elasticity of the dough. The dough exhibited predominating solid-like behavior (elastic modulus, G'>viscous modulus, G"). The G' decreased systematically with increasing temperature from 25 to 85 °C at the frequency range of 0.1-10 Hz except for the dough having particle size of 105 μm, which could be associated with increase in protein content in the fraction. A discrete retardation spectrum is employed to the creep data to obtain retardation time and compliance parameters which varied significantly with particle size and the process temperature. All those information could be helpful to identify the particle size range of BGC that could be useful to produce a β-D-glucan enriched designed food.

  14. Crystallization and preliminary X-ray analysis of beta-alanine synthase from the yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Dobritzsch, D.; Gojkovic, Zoran; Andersen, Birgit

    2003-01-01

    In eukaryotes and some bacteria, the third step of reductive pyrimidine catabolism is catalyzed by beta-alanine synthase (EC 3.5.1.6). Crystals of the recombinant enzyme from the yeast Saccharomyces kluyveri were obtained using sodium citrate as a precipitant. The crystals belong to space group P2......(1) (unit-cell parameters a=117.2, b=77.1, c=225.5 Angstrom, beta=95.0degrees) and contain four homodimers per asymmetric unit. Data were collected to 2.7 Angstrom resolution. Introduction of heavy atoms into the crystal lattice induced a different set of unit-cell parameters (a=61.0, b=77.9, c=110.......1 Angstrom, beta=97.2degrees) in the same space group P2(1), with only one homodimer per asymmetric unit....

  15. An ancient repeat sequence in the ATP synthase beta-subunit gene of forcipulate sea stars.

    Science.gov (United States)

    Foltz, David W

    2007-11-01

    A novel repeat sequence with a conserved secondary structure is described from two nonadjacent introns of the ATP synthase beta-subunit gene in sea stars of the order Forcipulatida (Echinodermata: Asteroidea). The repeat is present in both introns of all forcipulate sea stars examined, which suggests that it is an ancient feature of this gene (with an approximate age of 200 Mya). Both stem and loop regions show high levels of sequence constraint when compared to flanking nonrepetitive intronic regions. The repeat was also detected in (1) the family Pterasteridae, order Velatida and (2) the family Korethrasteridae, order Velatida. The repeat was not detected in (1) the family Echinasteridae, order Spinulosida, (2) the family Astropectinidae, order Paxillosida, (3) the family Solasteridae, order Velatida, or (4) the family Goniasteridae, order Valvatida. The repeat lacks similarity to published sequences in unrestricted GenBank searches, and there are no significant open reading frames in the repeat or in the flanking intron sequences. Comparison via parametric bootstrapping to a published phylogeny based on 4.2 kb of nuclear and mitochondrial sequence for a subset of these species allowed the null hypothesis of a congruent phylogeny to be rejected for each repeat, when compared separately to the published phylogeny. In contrast, the flanking nonrepetitive sequences in each intron yielded separate phylogenies that were each congruent with the published phylogeny. In four species, the repeat in one or both introns has apparently experienced gene conversion. The two introns also show a correlated pattern of nucleotide substitutions, even after excluding the putative cases of gene conversion.

  16. Germination and microwave processing of barley (Hordeum vulgare L) changes the structural and physicochemical properties of β-d-glucan & enhances its antioxidant potential.

    Science.gov (United States)

    Ahmad, Mudasir; Gani, Adil; Shah, Asima; Gani, Asir; Masoodi, F A

    2016-11-20

    The nutraceutical potential of β-d-glucan is largely dependent on its structure, size and viscosity. The present study analyzed the effect of germination and microwave processing of barley on the structural, size, antioxidant and thermal characteristics of β-d-glucan. The molecular weight and viscosity of β-d-glucan obtained from germinated barley (GGB) were the lowest (144kDa and 37.33cp) as compared to β-d-glucan from microwave processed barley (GMB) and unprocessed barley (GUB). The GGB exhibited higher antioxidant potential than GMB and GUB. The Structural elucidation by ATR-FTIR revealed scission in polymeric chain and β glycosydic linkage of β-d-glucan obtained from processed barley. The highest peak intensity at glycosydic linkage in GGB confirms more scission in the molecule. The DSC curve of GGB showed the highest transition temperature. It was concluded that germination of barley can be a good approach for enhancing the antioxidant potential of β-d-glucan.

  17. Distinction between infection and inflammation by a {sup 99m}Tc-labeled anti (1→3) – β - D - glucans aptamer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Camila M.S.; Ferreira, Ieda M.; Andrade, S.R., E-mail: cmslacerda@gmail.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, Andre L.B.; Fernandes, Simone O.A.; Cardoso, Valbert N., E-mail: valbertcardoso@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Farmacia. Departamento de Analises Clinicas e Toxicologicas

    2015-07-01

    The difficulty in the early diagnosis of infectious foci, whether caused by fungus or bacteria has raised the need to research new methods for this purpose. The distinction between inflammation and infection as well as the pathogen identification in cases of infection are of great relevance to decision-making in therapy and follow-up treatments. The aim of this study was to evaluate the anti (1→3) – β - D - glucans aptamer Seq6, labeled with {sup 99m}Tc , to distinguish between infection and inflammation. Firstly, in vitro studies were carried out by labeling the aptamer with {sup 32}P to evaluate its binding capacity for (1→3) – β - D - glucans (main fungal cell wall polysaccharide), peptidoglycan (polysaccharide of bacterial cell wall) and also for Candida albicans and Staphylococcus aureus cells. The aptamers were labeled with {sup 99m}Tc by the direct labeling method. The stability of the {sup 99m}Tc -labeled aptamer was evaluated in saline, plasma, and cysteine excess. The biodistribution studies were approved by the Ethics Committee for Animal Experimentation of the Federal University of Minas Gerais (CETEA/UFMG), protocol. 143/2013. The aptamer labeled with {sup 99m}Tc was intravenously administered in three groups (n=6) of male Swiss mice (weight: 25-30g): infected with S. aureus or C. albicans, or with experimental inflammation induced by zymosan. The {sup 32}P aptamer showed high binding affinity for beta-glucan and peptidoglycan. Binding to C. albicans and S. aureus cells also occurred. The radiolabel yield for the aptamer labeling with {sup 99m}Tc was higher than 90%. Stability tests in saline, plasma and excess of cysteine provided satisfactory results, since no significant variation in the radiolabel yield percentage was verified up to 24 hours, even increasing the cysteine concentration. In the biodistribution studies was analyzed the radiolabeled aptamer uptake by the animal infected thigh relative to the uninfected one. The animals

  18. Developmental Regulation of the (1,3)-beta-Glucan (Callose) Synthase from Tomato : Possible Role of Endogenous Phospholipases.

    Science.gov (United States)

    Ma, S; Gross, K C; Wasserman, B P

    1991-06-01

    Activity levels of UDP-glucose: (1,3)-beta-glucan (callose) synthase in microsomal membranes of pericarp tissue from tomato fruit (Lycoperisicon esculentum Mill, cv Rutgers) were determined during development and ripening. Addition of the phospholipase inhibitors O-phosphorylcholine and glycerol-1-phosphate to homogenization buffers was necessary to preserve enzyme activity during homogenization and membrane isolation. Enzyme activity declined 90% from the immature green to the red ripe stage. The polypeptide composition of the membranes did not change significantly during ripening. The enzyme from immature fruit was inactivated by exogenously added phospholipases A(2), C, and D. These results suggest that the decline in callose synthase activity during ontogeny may be a secondary effect of endogenous lipase action.

  19. Transforming growth factor beta 1 prevents cytokine-mediated inhibitory effects and induction of nitric oxide synthase in the RINm5F insulin-containing beta-cell line.

    Science.gov (United States)

    Mabley, J G; Cunningham, J M; John, N; Di Matteo, M A; Green, I C

    1997-12-01

    The aim of this study was to examine if the growth factor, transforming growth factor beta 1 (TGF beta 1), could prevent induction of nitric oxide synthase and cytokine-mediated inhibitory effects in the insulin-containing, clonal beta cell line RINm5F. Treatment of RINm5F cells for 24 h with interleukin-1 beta (IL-1 beta) (100 pM) induced expression of nitric oxide synthase and inhibited glyceraldehyde-stimulated insulin secretion. Combinations of IL-1 beta (100 pM), tumour necrosis factor-alpha (100 pM) and interferon-gamma (100 pM) reduced RINm5F cell viability (determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium (MTT) reduction assay) and de novo protein synthesis, as measured by incorporation of radiolabelled amino acids into perchloric acid-precipitable protein. Pretreatment of RINm5F cells with TGF beta 1 (10 pM) for 18 or 24 h, prior to the addition of either IL-1 beta or combined cytokines, prevented cytokine-induced inhibition of insulin secretion, protein synthesis and the loss of cell viability. TGF beta 1 pretreatment inhibited cytokine-induced expression and activity of nitric oxide synthase in RINm5F cells as determined by Western blotting and by cytosolic conversion of radiolabelled arginine into labelled citrulline and nitric oxide. Chemically generated superoxide also induced expression of nitric oxide synthase possibly due to direct activation of the nuclear transcription factor NF kappa B, an effect prevented by both an antioxidant and TGF beta 1 pretreatment. In conclusion, the mechanism of action of TGF beta 1 in blocking cytokine inhibitory effects was by preventing induction of nitric oxide synthase.

  20. Identification, expression and serological evaluation of the recombinant ATP synthase beta subunit of Mycoplasma pneumoniae

    Directory of Open Access Journals (Sweden)

    Nuyttens Hélène

    2010-08-01

    Full Text Available Abstract Background Mycoplasma pneumoniae is responsible for acute respiratory tract infections (RTIs common in children and young adults. As M. pneumoniae is innately resistant to β-lactams antibiotics usually given as the first-line treatment for RTIs, specific and early diagnosis is important in order to select the right treatment. Serology is the most used diagnostic method for M. pneumoniae infections. Results In this study, we identified the M. pneumoniae ATP synthase beta subunit (AtpD by serologic proteome analysis and evaluated its usefulness in the development of a serological assay. We successfully expressed and purified recombinant AtpD (rAtpD protein, which was recognised by serum samples from M. pneumoniae-infected patient in immunoblots. The performance of the recombinant protein rAtpD was studied using a panel of serum samples from 103 infected patients and 86 healthy blood donors in an in-house IgM, IgA and IgG enzyme-linked immunosorbent assay (ELISA. The results of this assay were then compared with those of an in-house ELISA with a recombinant C-terminal fragment of the P1 adhesin (rP1-C and of the commercial Ani Labsystems ELISA kit using an adhesin P1-enriched whole-cell extract. Performances of the rAtpD and rP1-C antigen combination were further assessed by binary logistic regression analysis. We showed that combination of rAtpD and rP1-C discriminated maximally between the patients infected with M. pneumoniae (children and adults and the healthy subjects for the IgM class, performing better than the single recombinant antigens or the commercial whole-cell extract. Conclusion These results suggest that AtpD can be used as an antigen for the immunodiagnosis of early and acute M. pneumoniae infection in association with adhesin P1, providing an excellent starting point for the development of point-of-care diagnostic assays.

  1. Airway smooth muscle hyperplasia and hypertrophy correlate with glycogen synthase kinase-3(beta) phosphorylation in a mouse model of asthma.

    Science.gov (United States)

    Bentley, J Kelley; Deng, Huan; Linn, Marisa J; Lei, Jing; Dokshin, Gregoriy A; Fingar, Diane C; Bitar, Khalil N; Henderson, William R; Hershenson, Marc B

    2009-02-01

    Increased airway smooth muscle (ASM) mass, a characteristic finding in asthma, may be caused by hyperplasia or hypertrophy. Cell growth requires increased translation of contractile apparatus mRNA, which is controlled, in part, by glycogen synthase kinase (GSK)-3beta, a constitutively active kinase that inhibits eukaryotic initiation factor-2 activity and binding of methionyl tRNA to the ribosome. Phosphorylation of GSK-3beta inactivates it, enhancing translation. We sought to quantify the contributions of hyperplasia and hypertrophy to increased ASM mass in ovalbumin (OVA)-sensitized and -challenged BALB/c mice and the role of GSK-3beta in this process. Immunofluorescent probes, confocal microscopy, and stereological methods were used to analyze the number and volume of cells expressing alpha-smooth muscle actin and phospho-Ser(9) GSK-3beta (pGSK). OVA treatment caused a 3-fold increase in ASM fractional unit volume or volume density (Vv) (PBS, 0.006 +/- 0.0003; OVA, 0.014 +/- 0.001), a 1.5-fold increase in ASM number per unit volume (Nv), and a 59% increase in volume per cell (Vv/Nv) (PBS, 824 +/- 76 microm(3); OVA, 1,310 +/- 183 mum(3)). In OVA-treated mice, there was a 12-fold increase in the Vv of pGSK (+) ASM, a 5-fold increase in the Nv of pGSK (+) ASM, and a 1.6-fold increase in Vv/Nv. Lung homogenates from OVA-treated mice showed increased GSK-3beta phosphorylation and lower GSK-3beta activity. Both hyperplasia and hypertrophy are responsible for increased ASM mass in OVA-treated mice. Phosphorylation and inactivation of GSK-3beta are associated with ASM hypertrophy, suggesting that this kinase may play a role in asthmatic airway remodeling.

  2. Children’s residential exposure to selected allergens and microbial indicators: endotoxins and (1→3-β-D-glucans

    Directory of Open Access Journals (Sweden)

    Anna Kozajda

    2013-12-01

    Full Text Available Objectives: The study was aimed at assessment of exposure to endotoxins, (1→3-β-D-glucans and mite, cockroach, cat, dog allergens present in settled dust in premises of children as agents which may be significantly correlated with the occurrence of allergic symptoms and diseases in children. Materials and Methods: The study covered 50 homes of one- or two-year-old children in Poland. Samples of settled dust were taken from the floor and the child's bed. The levels of (1→3-β-D-glucans (floor, endotoxins (floor and allergens of mite, cat, dog and cockroach (floor and bed were analyzed. Results: Average geometric concentrations (geometric standard deviation of endotoxins, (1→3-β-D-glucans, Der p1, Fel d1, Can f1 and Bla g1 in children homes were on the floor 42 166.0 EU/g (3.2, 20 478.4 ng/g (2.38, 93.9 ng/g (6.58, 119.8 ng/g (13.0, 288.9 ng/g (3.4, 0.72 U/g (4.4 and in their beds (only allergens 597.8 ng/g (14.2, 54.1 ng/g (4.4, 158.6 ng/g (3.1 0.6 U/g (2.9, respectively. When the floor was covered with the carpet, higher concentrations of endotoxins, (1→3-β-D-glucans and allergens (each type were found in the settled dust (p < 0.05. The trend was opposite in case of allergens (except dog analyzed from bed dust and significantly higher concentrations were found in the rooms with smooth floor (p < 0.05. Conclusions: Among the analyzed factors only the type of floor significantly modified both the level of biological indicators and allergens. The results of this study could be the base for verifying a hypothesis that carpeting may have a protective role against high levels of cockroach, dog and cat allergens.

  3. Lithium chloride ameliorates learning and memory ability and inhibits glycogen synthase kinase-3 beta activity in a mouse model of fragile X syndrome

    Institute of Scientific and Technical Information of China (English)

    Shengqiang Chen; Xuegang Luo; Quan Yang; Weiwen Sun; Kaiyi Cao; Xi Chen; Yueling Huang; Lijun Dai; Yonghong Yi

    2011-01-01

    In the present study, Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome. The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error counts, indicating a learning and memory disorder. After treatment with 30, 60, 90, 120, or 200 mg/kg lithium chloride, the learning and memory abilities of the Fmr1 KO mice were significantly ameliorated, in particular, the 200 mg/kg lithium chloride treatment had the most significant effect. Western blot analysis showed that lithium chloride significantly enhanced the expression of phosphorylated glycogen synthase kinase 3 beta, an inactive form of glycogen synthase kinase 3 beta, in the cerebral cortex and hippocampus of the Fmr1 KO mice. These results indicated that lithium chloride improved learning and memory in the Fmr1 KO mice, possibly by inhibiting glycogen synthase kinase 3 beta activity.

  4. Platelet-derived growth factor-DD targeting arrests pathological angiogenesis by modulating glycogen synthase kinase-3beta phosphorylation.

    Science.gov (United States)

    Kumar, Anil; Hou, Xu; Lee, Chunsik; Li, Yang; Maminishkis, Arvydas; Tang, Zhongshu; Zhang, Fan; Langer, Harald F; Arjunan, Pachiappan; Dong, Lijin; Wu, Zhijian; Zhu, Linda Y; Wang, Lianchun; Min, Wang; Colosi, Peter; Chavakis, Triantafyllos; Li, Xuri

    2010-05-14

    Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.

  5. Optimization of ultrasound induced emulsification on the formulation of palm-olein based nanoemulsions for the incorporation of antioxidant β-D-glucan polysaccharides.

    Science.gov (United States)

    Alzorqi, Ibrahim; Ketabchi, Mohammad Reza; Sudheer, Surya; Manickam, Sivakumar

    2016-07-01

    Polysaccharides of β-D-glucan configuration have well-known antioxidant activity against reactive free radicals generated from the oxidation of metabolic processes. In this study, β-D-glucan-polysaccharides extracted from Ganoderma lucidum were incorporated in palm olein based nanoemulsions which act as carrier systems to enhance the delivery and bioactivity of these polysaccharides and could be potentially useful for skin care applications. Initially response surface statistical design (Central Composite Design--CCD) was subjected to optimize the formulation variables of oil-in-water (O/W) nanoemulsions induced by ultrasound. The optimal formulation variables as predicted by CCD resulted in considerably improving the physical characteristics of ultrasonically formulated nanoemulsions by minimizing their droplet size, polydispersity index and viscosity. Moreover, the β-D-glucan-loaded nanoemulsions exhibited good stability over 90 days under different storage conditions (4 °C and 25 °C). The studies using palm olein based β-D-glucan-loaded nanoemulsion generated using ultrasound confirm higher antioxidant activity as compared to free β-D-glucan.

  6. β-d-Glucan Antibodies Inhibit Auxin-Induced Cell Elongation and Changes in the Cell Wall of Zea Coleoptile Segments 1

    Science.gov (United States)

    Hoson, Takayuki; Nevins, Donald J.

    1989-01-01

    Antiserum was raised against the Avena sativa L. caryopsis β-d-glucan fraction with an average molecular weight of 1.5 × 104. Polyclonal antibodies recovered from the serum after Protein A-Sepharose column chromatography precipitated when cross-reacted with high molecular weight (1→3), (1→4)-β-d-glucans. These antibodies were effective in suppression of cell wall autohydrolytic reactions and auxin-induced decreases in noncellulosic glucose content of the cell wall of maize (Zea mays L.) coleoptiles. The results indicate antibody-mediated interference with in situ β-d-glucan degradation. The antibodies at a concentration of 200 micrograms per milliliter also suppress auxin-induced elongation by about 40% and cell wall loosening (measured by the minimum stress-relaxation time of the segments) of Zea coleoptiles. The suppression of elongation by antibodies was imposed without a lag period. Auxin-induced elongation, cell wall loosening, and chemical changes in the cell walls were near the levels of control tissues when segments were subjected to antibody preparation precipitated by a pretreatment with Avena caryopsis β-d-glucans. These results support the idea that the degradation of (1→3), (1→4)-β-d-glucans by cell wall enzymes is associated with the cell wall loosening responsible for auxin-induced elongation. PMID:16666935

  7. Cystathionine beta-Synthase (CBS) Domains 1 and 2 Fulfill Different Roles in Ionic Strength Sensing of the ATP-binding Cassette (ABC) Transporter OpuA

    NARCIS (Netherlands)

    Karasawa, Akira; Erkens, Guus B.; Berntsson, Ronnie P. -A.; Otten, Renee; Schuurman-Wolters, Gea K.; Mulder, Frans A. A.; Poolman, Bert

    2011-01-01

    The cystathionine beta-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are crit

  8. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong; (Houston)

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  9. PREPARATION AND STRUCTURE OF FIVE DERIVATIVES OF β-(1→3)-D-GLUCAN ISOLATED FROM PORIA COCOS SCLEROTIUM

    Institute of Scientific and Technical Information of China (English)

    Yi-feng Wang; Li-na Zhang; Dong Ruan

    2004-01-01

    A new solvent of cellulose (1.5 mol/L NaOH/0.5 mol/L urea aqueous solution) was used as one of the homogeneous reaction media of polysaccharides for methylation, hydroxyethylation and hydroxypropylation. A water insoluble β-(l→3)-D-glucan, sample PCS3-II, isolated from fresh sclerotium of Poria cocos was sulfated in dimethyl sulfoxide (Me2SO), carboxymethylated in NaOH, isopropanol solution, as well as methylated, hydroxyethylated and hydroxypropylated in the new solvent system, respectively, to obtain five water-soluble derivatives coded as S-PCS3-Ⅱ, C-PCS3-Ⅱ, M-PCS3-Ⅱ, HE-PCS3-Ⅱ and HP-PCS3-Ⅱ. Their chemical structure and distribution of substitution were characterized by infrared spectroscopy (IR), elementary analysis (EA), 1H-NMR, 13C-NMR, 2D-COSY, 2D-TOCSY and 2D-1H-detected 1H 13C HMQC spectra. The results reveal that the relative reactivity of hydroxyl groups of the β-(l→3)-D-glucan is in the order C-6 > C-4 > C-2 on the whole. The substitution of the samples S-PCS3-Ⅱ, C-PCS3-Ⅱ and M-PCS3-Ⅱoccurred mainly at C-6 position and secondly at C-4 and C-2 positions, and that of HE-PCS3-II occurred at C-6 and C-4positions and of HP-PCS3-II almost completely occurred at C-6 position. The degrees of substitution (DS) obtained from 13C-NMR range from 0.23 to 1.27. The water solubility of the derivatives is in the order S-PCS3-Ⅱ> C-PCS3-Ⅱ> M-PCS3-Ⅱ> HE-PCS3-Ⅱ> HP-PCS3-Ⅱ. This work provides a novel and nonpolluting process for the methylation, hydroxyethylation and hydroxypropylation ofβ-(1→3)-D-glucan.

  10. Evolution of flavone synthase I from parsley flavanone 3beta-hydroxylase by site-directed mutagenesis.

    Science.gov (United States)

    Gebhardt, Yvonne Helen; Witte, Simone; Steuber, Holger; Matern, Ulrich; Martens, Stefan

    2007-07-01

    Flavanone 3beta-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the beta-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction).

  11. Protection of turmeric plants from rhizome rot disease under field conditions by β-D-glucan nanoparticle.

    Science.gov (United States)

    Anusuya, Sathiyanarayanan; Sathiyabama, Muthukrishnan

    2015-01-01

    The rhizome rot caused by Pythium aphanidermatum is one of the most devastating diseases of the turmeric crop. Fungicides are unable to control the rapidly evolving P. aphanidermatum and new control strategies are urgently needed. This study examined the effect of β-d-glucan nanoparticles (GNP) in turmeric plants under field condition by the foliar spray method. Enhanced plant growth, rhizome yield, and curcumin content demonstrate the positive effect of the GNP on turmeric plants. Rapid activation of various defense enzymes was also observed in leaves and rhizomes of treated plants. GNP-treated plants showed a decreased rot incidence. It may be possible that increased defense enzymes might have played a role in reducing the colonization of pathogen.

  12. Effects of β-(1,3-1,6)-D-glucan on irritable bowel syndrome-related colonic hypersensitivity.

    Science.gov (United States)

    Asano, Teita; Tanaka, Ken-ichiro; Suemasu, Shintaro; Ishihara, Tomoaki; Tahara, Kayoko; Suzuki, Toshio; Suzuki, Hidekazu; Fukudo, Shin; Mizushima, Tohru

    2012-04-06

    Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain associated with altered bowel habits. Since the prevalence of IBS is very high and thus, involves elevated health-care costs, treatment of this condition by methods other than prescribed medicines could be beneficial. β-(1,3)-D-glucan with β-(1,6) branches (β-glucan) has been used as a nutritional supplement for many years. In this study, we examined the effect of β-glucan on fecal pellet output and visceral pain response in animal models of IBS. Oral administration of β-glucan suppressed the restraint stress- or drug-induced fecal pellet output. β-Glucan also suppressed the visceral pain response to colorectal distension. These results suggest that β-glucan could be beneficial for the treatment and prevention of IBS.

  13. A food additive with prebiotic properties of an α-d-glucan from lactobacillus plantarum DM5.

    Science.gov (United States)

    Das, Deeplina; Baruah, Rwivoo; Goyal, Arun

    2014-08-01

    An α-d-glucan produced by Lactobacillus plantarum DM5 was explored for in vitro prebiotic activities. Glucan-DM5 demonstrated 21.6% solubility, 316.9% water holding capacity, 86.2% flocculation activity, 71.4% emulsification activity and a degradation temperature (Td) of 292.2°C. Glucan-DM5 exhibited lowest digestibility of 0.54% by artificial gastric juice, 0.21% by intestinal fluid and 0.32% by α-amylase whereas the standard prebiotic inulin, showed 25.23%, 5.97% and 19.13%, hydrolysis, respectively. Prebiotic activity assay of glucan-DM5 displayed increased growth of probiotic bacteria such as Bifidobacterium infantis and Lactobacillus acidophilus, but did not support the growth of non-probiotic bacteria such as Escherichia coli and Enterobacter aerogenes. The overall findings indicated that glucan from L. plantarum DM5 can serve as a potential prebiotic additive for food products.

  14. Development of adrenal zonation in fetal rats defined by expression of aldosterone synthase and 11beta-hydroxylase.

    Science.gov (United States)

    Wotus, C; Levay-Young, B K; Rogers, L M; Gomez-Sanchez, C E; Engeland, W C

    1998-10-01

    The adult rat adrenal cortex is comprised of three concentric steroidogenic zones that are morphologically and functionally distinguishable: the zona glomerulosa, zona intermedia, and the zona fasciculata/reticularis. Expression of the zone-specific steroidogenic enzymes, cytochrome P450 aldosterone synthase (P450aldo), and P450 11beta hydroxylase (P45011beta), produced by the zona glomerulosa and zona fasciculata/reticularis, respectively, can be used to define the adrenal cortical cell phenotype of these two zones. In this study, immunohistochemistry and in situ hybridization were used to determine the ontogeny of expression of P450aldo and P45011beta to monitor the pattern of development of the rat adrenal cortex. RIA was used to measure adrenal content of aldosterone and corticosterone, the resulting products of the two enzymatic pathways. Double immunofluorescent staining for both enzymes at gestational day 16 (E16) showed P45011beta protein expressed in cells distributed throughout most of the adrenal intermixed with a separate, but smaller, population of cells expressing P450aldo protein. Whereas expression of P45011beta protein retained a similar pattern of distribution from E16 to adulthood (ignoring distribution of SA-1 positive, presumptive medullary cells), P450aldo protein changed its pattern of distribution by E19, becoming localized in a discontinuous ring of cells adjacent to the capsule. By postnatal day 1, P450aldo protein distribution was similar to that observed in adult glands; P450aldo-positive cells formed a continuous zone underlying the capsule. In situ hybridization showed that the pattern of P45011beta messenger RNA expression paralleled protein expression at all times, whereas P450aldo messenger RNA paralleled protein at E19 and after, but was undetectable before E19. However, adrenal aldosterone and corticosterone, as measured by RIA, were detected by E16, supporting the functional capacity of both phenotypes for all ages studied. These

  15. Anti-Inflammatory Properties of the Medicinal Mushroom Cordyceps militaris Might Be Related to Its Linear (1→3)-β-D-Glucan

    Science.gov (United States)

    Smiderle, Fhernanda R.; Baggio, Cristiane H.; Borato, Débora G.; Santana-Filho, Arquimedes P.; Sassaki, Guilherme L.; Iacomini, Marcello; Van Griensven, Leo J. L. D.

    2014-01-01

    The Ascomycete Cordyceps militaris, an entomopathogenic fungus, is one of the most important traditional Chinese medicines. Studies related to its pharmacological properties suggest that this mushroom can exert interesting biological activities. Aqueous (CW and HW) and alkaline (K5) extracts containing polysaccharides were prepared from this mushroom, and a β-D-glucan was purified. This polymer was analysed by GC-MS and NMR spectrometry, showing a linear chain composed of β-D-Glcp (1→3)-linked. The six main signals in the 13C-NMR spectrum were assigned by comparison to reported data. The aqueous (CW, HW) extracts stimulated the expression of IL-1β, TNF-α, and COX-2 by THP-1 macrophages, while the alkaline (K5) extract did not show any effect. However, when the extracts were added to the cells in the presence of LPS, K5 showed the highest inhibition of the pro-inflammatory genes expression. This inhibitory effect was also observed for the purified β-(1→3)-D-glucan, that seems to be the most potent anti-inflammatory compound present in the polysaccharide extracts of C. militaris. In vivo, β-(1→3)-D-glucan also inhibited significantly the inflammatory phase of formalin-induced nociceptive response, and, in addition, it reduced the migration of total leukocytes but not the neutrophils induced by LPS. In conclusion, this study clearly demonstrates the anti-inflammatory effect of β-(1→3)-D-glucan. PMID:25330371

  16. Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1→3-β-D-glucan.

    Directory of Open Access Journals (Sweden)

    Fhernanda R Smiderle

    Full Text Available The Ascomycete Cordyceps militaris, an entomopathogenic fungus, is one of the most important traditional Chinese medicines. Studies related to its pharmacological properties suggest that this mushroom can exert interesting biological activities. Aqueous (CW and HW and alkaline (K5 extracts containing polysaccharides were prepared from this mushroom, and a β-D-glucan was purified. This polymer was analysed by GC-MS and NMR spectrometry, showing a linear chain composed of β-D-Glcp (1→3-linked. The six main signals in the 13C-NMR spectrum were assigned by comparison to reported data. The aqueous (CW, HW extracts stimulated the expression of IL-1β, TNF-α, and COX-2 by THP-1 macrophages, while the alkaline (K5 extract did not show any effect. However, when the extracts were added to the cells in the presence of LPS, K5 showed the highest inhibition of the pro-inflammatory genes expression. This inhibitory effect was also observed for the purified β-(1→3-D-glucan, that seems to be the most potent anti-inflammatory compound present in the polysaccharide extracts of C. militaris. In vivo, β-(1→3-D-glucan also inhibited significantly the inflammatory phase of formalin-induced nociceptive response, and, in addition, it reduced the migration of total leukocytes but not the neutrophils induced by LPS. In conclusion, this study clearly demonstrates the anti-inflammatory effect of β-(1→3-D-glucan.

  17. Pro-apoptotic properties of (1,3)(1,4)-β-D-glucan from Avena sativa on human melanoma HTB-140 cells in vitro.

    Science.gov (United States)

    Parzonko, Andrzej; Makarewicz-Wujec, Magdalena; Jaszewska, Edyta; Harasym, Joanna; Kozłowska-Wojciechowska, Małgorzata

    2015-01-01

    In this study, the growth-inhibitory effect of polysaccharide (1,3)(1,4)-β-D-glucan from oat, Avena sativa L. grains was explored on the human skin melanoma HTB-140 cells in vitro. The oat β-D-glucan (OBG) exerted cytotoxic action on HTB-140 cells. After 24h of incubation, LD50 (concentration at which 50% of the cells were found dead) was obtained of 194.6 ± 9.8 μg/mL. The oat β-D-glucan caused a concentration-dependent increase of caspase-3/-7 activation and appearance of phosphatidylserine on the external surface of cellular membranes where it was bound to annexin V-FITC, demonstrating the induction of apoptosis. Intracellular ATP level decreased along with the mitochondrial potential, which suggested a mitochondrial pathway of apoptosis. A cell cycle analysis showed increase in the number of apoptotic cells, increase in the number of cells in G1 phase and decrease in the number of cells in G2/M. Although the detailed mechanism for the anti-tumor activity of the oat β-D-glucan still needs further investigation, this study provides preliminary insights into this direction along with perspectives of developing it as an anti-tumor agent.

  18. The structure and molecular mechanics calculations of the cyclic (1 → 2)-β- D-glucan secreted by Rhizobium tropici CIAT 899

    Science.gov (United States)

    Gil Serrano, Antonio M.; Franco-Rodríguez, Guillermo; González-Jiménez, Isabel; Tejero-Mateo, Pilar; Molina, José Molina; Dobado, J. A.; Megías, Manuel; Romero, Maria Jesús

    1993-12-01

    The structure of the extracellular cyclic (1 → 2)-β- D-glucan secreted by Rhizobium tropici CIAT 899 has been studied by methylation analysis, 1D and 2D NMR experiments, HPLC and FAB-MS. Molecular mechanics (MM2) and theoretical 3JHH coupling constants calculations were performed.

  19. Distribution of (1,3(1,4-β-D-Glucans in Grains of Polish Oat Cultivars and Lines (Avena sativa L. – Short Report

    Directory of Open Access Journals (Sweden)

    Sykut-Domańska Emilia

    2016-03-01

    Full Text Available The distribution of a fraction of soluble dietary fibre (1,3(1,4-β-D-glucans was depicted in selected Polish oat grains (Avena sativa L.. Localisation of β-glucans within the grains was visualised by the light microscopy with Calcofluor white as a fluorescence agent. The content of β-glucans varied in samples from 3.08% d.m. to 5.04% d.m. Analysis of distribution of (1,3(1,4-β-D-glucans showed that the localization of β-glucans varied between various cultivars and lines. It was demonstrated that the total content of (1,3(1,4-β-D-glucans in oat kernels had an effect on their distribution. All the lines and cultivars tested displayed the greatest accumulation of (1,3(1,4-β-D-glucans in the cells of the subaleurone layer. With increase in the levels of β-glucans in high-glucan oat cultivars and lines, a tendency was observed towards their greater accumulation in the central parts of the kernel. It makes oat grain particularly suitable for the production of wholemeal foods. It is important not only to focus on increasing the content of β-glucans, but also to investigate molecules distribution in the seed. It was also demonstrated that Dukat cultivar was characterised by an especially valuable triple aleurone layer, which makes this cultivar predestined for further breeding studies as an extremely valuable carrier of genetic information.

  20. Wound healing activity and docking of glycogen-synthase-kinase-3-beta-protein with isolated triterpenoid lupeol in rats.

    Science.gov (United States)

    Harish, B G; Krishna, V; Santosh Kumar, H S; Khadeer Ahamed, B M; Sharath, R; Kumara Swamy, H M

    2008-09-01

    A triterpene compound lupeol isolated from petroleum ether extract of leaves of Celastrus paniculatus was screened for wound healing activity (8 mg/ml of 0.2% sodium alginate gel) by excision, incision and dead space wound models on Swiss Albino rats (175-225 g). In lupeol treated groups wound healing activity was more significant (17.83+/-0.48) than the standard skin ointment nitrofurazone (18.33+/-0.42). Epithelialization of the incision wound was faster with a high rate of wound contraction (571.50+/-5.07) as compared with the control group. In dead space wound model also the weight of the granulation tissue of the lupeol treated animal was increased indicating increase of collagenation and absence of monocytes. The comparative docking of isolated lupeol molecule and standard drug nitrofurazone to glycogen synthase kinase 3-beta protein by Wnt signaling pathway also supported the wound healing property of lupeol. The activation domain of GSK3-beta consisted of Tyr216, with residues Asn64, Gly65, Ser66, Phe67, Gly68, Val70, Lys85, Leu132, Val135, Asp181 in the active pocket docked with lupeol at the torsional degree of freedom 0.5 units with Lamarckian genetic algorithm showed the inhibition constant of 1.38 x 10(-7). The inhibition constant of nitrofurazone was only 1.35 x 10(-4).

  1. Cloning and functional characterization of a beta-pinene synthase from Artemisia annua that shows a circadian pattern of expression.

    Science.gov (United States)

    Lu, Shan; Xu, Ran; Jia, Jun-Wei; Pang, Jihai; Matsuda, Seiichi P T; Chen, Xiao-Ya

    2002-09-01

    Artemisia annua plants produce a broad range of volatile compounds, including monoterpenes, which contribute to the characteristic fragrance of this medicinal species. A cDNA clone, QH6, contained an open reading frame encoding a 582-amino acid protein that showed high sequence identity to plant monoterpene synthases. The prokaryotically expressed QH6 fusion protein converted geranyl diphosphate to (-)-beta-pinene and (-)-alpha-pinene in a 94:6 ratio. QH6 was predominantly expressed in juvenile leaves 2 weeks postsprouting. QH6 transcript levels were transiently reduced following mechanical wounding or fungal elicitor treatment, suggesting that this gene is not directly involved in defense reaction induced by either of these treatments. Under a photoperiod of 12 h/12 h (light/dark), the abundance of QH6 transcripts fluctuated in a diurnal pattern that ebbed around 3 h before daybreak (9th h in the dark phase) and peaked after 9 h in light (9th h in the light phase). The contents of (-)-beta-pinene in juvenile leaves and in emitted volatiles also varied in a diurnal rhythm, correlating strongly with mRNA accumulation. When A. annua was entrained by constant light or constant dark conditions, QH6 transcript accumulation continued to fluctuate with circadian rhythms. Under constant light, advanced cycles of fluctuation of QH6 transcript levels were observed, and under constant dark, the cycle was delayed. However, the original diurnal pattern could be regained when the plants were returned to the normal light/dark (12 h/12 h) photoperiod. This is the first report that monoterpene biosynthesis is transcriptionally regulated in a circadian pattern.

  2. Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle

    DEFF Research Database (Denmark)

    Højlund, K; Yi, Z; Lefort, N;

    2009-01-01

    AIMS/HYPOTHESIS: Insulin resistance in skeletal muscle is linked to mitochondrial dysfunction in obesity and type 2 diabetes. Emerging evidence indicates that reversible phosphorylation regulates oxidative phosphorylation (OxPhos) proteins. The aim of this study was to identify and quantify site......-specific phosphorylation of the catalytic beta subunit of ATP synthase (ATPsyn-beta) and determine protein abundance of ATPsyn-beta and other OxPhos components in skeletal muscle from healthy and insulin-resistant individuals. METHODS: Skeletal muscle biopsies were obtained from lean, healthy, obese, non-diabetic and type...... 2 diabetic volunteers (each group n = 10) for immunoblotting of proteins, and hypothesis-driven identification and quantification of phosphorylation sites on ATPsyn-beta using targeted nanospray tandem mass spectrometry. Volunteers were metabolically characterised by euglycaemic...

  3. Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase.

    Science.gov (United States)

    Peebles, Christie A M; Hong, Seung-Beom; Gibson, Susan I; Shanks, Jacqueline V; San, Ka-Yiu

    2006-02-20

    Among the pharmacologically important terpenoid indole alkaloids produced by Catharanthus roseus are the anti-cancer drugs vinblastine and vincristine. These two drugs are produced in small yields within the plant, which makes them expensive to produce commercially. Metabolic engineering has focused on increasing flux through this pathway by various means such as elicitation, precursor feeding, and introduction of genes encoding specific metabolic enzymes into the plant. Recently in our lab, a feedback-resistant anthranilate synthase alpha subunit was over-expressed in C. roseus hairy roots under the control of a glucocorticoid inducible promoter system. Upon induction we observed a large increase in the indole precursors, tryptophan, and tryptamine. The current work explores the effects of over-expressing the anthranilate synthase alpha or alpha and beta subunits in combination with feeding with the terpenoid precursors 1-deoxy-D-xylulose, loganin, and secologanin. In feeding 1-deoxy-D-xylulose to the hairy root line expressing the anthranilate synthase alpha subunit, we observed an increase of 125% in hörhammericine levels in the induced samples, while loganin feeding increased catharanthine by 45% in the induced samples. Loganin feeding to the hairy root line expressing anthranilate synthase alpha and beta subunits increases catharanthine by 26%, ajmalicine by 84%, lochnericine by 119%, and tabersonine by 225% in the induced samples. These results suggest that the terpenoid precursors to the terpenoid indole alkaloids are important factors in terpenoid indole alkaloid production.

  4. Functional modeling of vitamin responsiveness in yeast: a common pyridoxine-responsive cystathionine beta-synthase mutation in homocystinuria.

    Science.gov (United States)

    Kim, C E; Gallagher, P M; Guttormsen, A B; Refsum, H; Ueland, P M; Ose, L; Folling, I; Whitehead, A S; Tsai, M Y; Kruger, W D

    1997-12-01

    Cystathionine beta-synthase (CBS) deficiency is an autosomal recessive disorder which results in extremely elevated levels of total plasma homocysteine (tHcy) and high risk of thromboembolic events. About half of all patients diagnosed with CBS deficiency respond to pyridoxine treatment with a significant lowering of tHcy levels. We examined 12 CBS-deficient patients from 10 Norwegian families for mutations in the CBS gene and identified mutations in 18 of the 20 CBS alleles. Five of the seven patients classified as pyridoxine-responsive contain the newly identified point mutation, G797A (R266K). This point mutation is tightly linked with a previously identified 'benign' 68 bp duplication of the intron 7-exon 8 boundary within the CBS gene. We tested the effect of all of the mutations identified on human CBS function utilizing a yeast system. Five of the six mutations had a distinguishable phenotype in yeast, indicating that they were in fact pathogenic. Interestingly, the G797A allele had no phenotype when the yeast were grown in high concentrations of pyridoxine, but a severe phenotype when grown in low concentrations, thus mirroring the behavior in humans. These studies show that the G797A mutation is an important cause of pyridoxine-responsive CBS deficiency and demonstrate the utility of yeast functional assays in the analysis of human mutations.

  5. The effects of glycogen synthase kinase-3beta in serotonin neurons.

    Directory of Open Access Journals (Sweden)

    Wenjun Zhou

    Full Text Available Glycogen synthase kinase-3 (GSK3 is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.

  6. β-D-Glucan Screening for Detection of Invasive Fungal Disease in Children Undergoing Allogeneic Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Koltze, Antonia; Rath, Peter; Schöning, Stefan; Steinmann, Jörg; Wichelhaus, Thomas A; Bader, Peter; Bochennek, Konrad; Lehrnbecher, Thomas

    2015-08-01

    While the assessment of β-D-glucan (BDG) levels in adults improves the early diagnosis of invasive fungal disease (IFD), data on BDG levels in children are limited. We therefore assessed in a prospective cohort study the value of serial BDG screening for early detection of IFD in children undergoing allogeneic hematopoietic stem cell transplantation (HSCT). IFD was defined according to the revised European Organization for Research and Treatment of Cancer/Mycosis Study Group (EORTC/MSG) criteria, with the necessary modification that BDG was not included as a microbiological criterion. For the analysis, a total of 702 serum samples were obtained in 34 pediatric HSCT recipients. Proven IFD occurred in two patients (fusariosis and Candida sepsis, respectively), and probable invasive aspergillosis was diagnosed in four patients. Analyses including different cutoff values for BDG levels and different definitions of the onset of IFD demonstrated that the BDG assay has a relatively high sensitivity and good negative predictive value, whereas the positive predictive value has major limitations (screening in pediatric HSCT recipients has a low positive predictive value and is therefore of limited usefulness.

  7. β-1,3-D-glucan schizophyllan/poly(dA) triple-helical complex in dilute solution.

    Science.gov (United States)

    Sanada, Yusuke; Matsuzaki, Tsubasa; Mochizuki, Shinichi; Okobira, Tadashi; Uezu, Kazuya; Sakurai, Kazuo

    2012-01-12

    A certain length of poly(deoxyadenylic acid) (dA(X)) can form a novel complex with β-1,3-D-glucan schizophyllan (SPG) with a stoichiometric composition of one dA binding two main chain glucoses. We measured dilute solution properties for the complex with light and small-angle X-ray scattering as well as intrinsic viscosity and found that the complex behaves as a semiflexible rod without branching or cross-linking. We analyzed the data with the wormlike cylinder model, and the chain dimensions and the persistence length for the complexes were consistently determined. The chain flexibility was reduced to almost 25% upon complexation for dA/SPG and to 15% for S-dA/SPG, where S-dA denotes the phosphorothioated DNA analogue. The changes in the molar mass per unit length and the diameter indicated that the helix was elongated or stretched along the axis direction upon the complexation.

  8. SOLUTION PROPERTIES OF ANTITUMOR CARBOXYMETHYLATED DERIVATIVES OF α-(1→3)-D-GLUCAN FROM GANODERMA LUCIDUM

    Institute of Scientific and Technical Information of China (English)

    Li-na Zhang; Mei Zhang; Jing-hua Chen; Fan-bo Zeng

    2001-01-01

    Fractions of a water insoluble α-(1→3)-D-glucan (GL) extracted from Ganoderma lucidum were carboxymethylated (CM) to obtain water-soluble carboxymethylated derivatives (CM-GL) having a degree of substitution (DS) of 0.38~0.51. Weight-average molecular weight Mw and intrinsic viscosity [η] of the samples CM-GL were measured by gel permeation chromatography combined with laser light scattering (GPC-LLS) and viscometry. The CM-GL exhibits a stiffer chain in aqueous solution at 25℃ than the original glucan. The antitumor activities against Ehrlich ascites carcinoma (EAC,5 × 106) of the carboxymethylated derivatives from the α-glucan and curdlan, a β-glucan, are significantly higher than those of the original glucans. The effects of the relatively low molecular weight, expanded chains and better water-solubility of the CM-GL on the enhancement of antitumor activity could not be neglected. The chain stiffness decreased speedily with increase of temperature from 40 to 60℃ or NaOH concentration from 0.1 to 0.4 in the solution, respectively, and the change of the chain stiffness is reversible.

  9. Serum 1,3-ßD-Glucan assay in the diagnosis of invasive fungal disease in neonates

    Directory of Open Access Journals (Sweden)

    Cheryl Anne Mackay

    2011-02-01

    Full Text Available Invasive fungal disease is a significant cause of morbidity and mortality in the neonate. The current study aims to assess the 1, 3-ßD-Glucan (BG assay in a prospective analysis in neonates with suspected fungaemia. A multicentre, prospective cohort study was conducted in Johannesburg, South Africa. The study included 72 neonates with clinically suspected late onset sepsis who were at high risk of fungaemia. A BG assay was performed on each patient and correlated with a sepsis classification based on the full blood count, C-reactive protein and blood culture results as no fungaemia, possible fungaemia, probable fungaemia or definite fungaemia. Sensitivity and specificity of the BG assay at levels of 60pg/ml are 73.2% and 71.0% respectively and at levels of 80pg/ml are 70.7% and 77.4% respectively. Positive and negative predictive values at 60pg/ml are 76.9% and 66.7% respectively and at 80pg/ml are 80.6% and 66.7% respectively. The area under the receiver operating curve is 0.753. The BG assay is a useful adjunct to the diagnosis of invasive fungal disease in neonates. It does, however, need to be considered in the context of the clinical picture and supplementary laboratory investigations.

  10. Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB).

    OpenAIRE

    Hoang, T.T.; Schweizer, H P

    1997-01-01

    The Pseudomonas aeruginosa fabA and fabB genes, encoding beta-hydroxyacyl-acyl carrier protein dehydratase and beta-ketoacyl-acyl carrier protein synthase I, respectively, were cloned, sequenced, and expressed in Escherichia coli. Northern analysis demonstrated that fabA and fabB are cotranscribed and most probably form a fabAB operon. The FabA and FabB proteins were similar in size and amino acid composition to their counterparts from Escherichia coli and to the putative homologs from Haemop...

  11. Hydroxypropyl cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimers as effective carbohydrate-solubilizers for polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Choi, Jae Min; Jeong, Daham; Piao, Jinglan; Kim, Kyoungtea; Nguyen, Andrew Bao Loc; Kwon, Nak-Jung; Lee, Mi-Kyung; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho

    2015-01-12

    The removal of polycyclic aromatic hydrocarbons by soil washing using water is extremely difficult due to their intrinsic hydrophobic nature. In this study, the effective aqueous solubility enhancements of seven polycyclic aromatic hydrocarbons by chemically modified hydroxypropyl rhizobial cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimer have been investigated for the first time. In the presence of hydroxypropyl cyclic β-(1 → 2)-D-glucans, the solubility of benzo[a]pyrene is increased up to 38 fold of its native solubility. The solubility of pyrene and phenanthrene dramatically increased up to 160 and 359. Coronene, chrysene, perylene, and fluoranthene also show an increase of 11, 23, 23, and 97 fold, respectively, of enhanced solubility by complexation with synthetic epichlorohydrin β-cyclodextrin dimer. The physicochemical properties of the complex are characterized by Fourier-transform infrared spectra and differential scanning calorimetry. Utilizing a scanning electron microscopy, the morphological structures of native benzo[a]pyrene, pyrene, phenanthrene, coronene, chrysene, perylene, fluoranthene and their complex with novel carbohydrate-solubilizers are studied. These results elucidate that polycyclic aromatic hydrocarbons are able to form an efficient complex with hydroxypropyl cyclic β-(1 → 2)-D-glucans and β-cyclodextrin dimer, suggesting the potential usage of chemically modified novel carbohydrate-solubilizers.

  12. Agaricus bisporus and Agaricus brasiliensis (1→6)-β-D-glucans show immunostimulatory activity on human THP-1 derived macrophages.

    Science.gov (United States)

    Smiderle, Fhernanda R; Alquini, Giovana; Tadra-Sfeir, Michelle Z; Iacomini, Marcello; Wichers, Harry J; Van Griensven, Leo J L D

    2013-04-15

    The (1→6)-β-D-glucans from Agaricus bisporus and Agaricus brasiliensis were purified to evaluate their effects on the innate immune system. THP-1 macrophages were used to investigate the induction of the expression of TNF-α, IL1β, and COX-2 by RT-PCR. The purification of the polysaccharides gave rise to fractions containing 96-98% of glucose. The samples were analyzed by GC-MS, HPSEC and (13)C NMR, which confirmed the presence of homogeneous (1→6)-β-D-glucans. The β-glucans were incubated with THP-1 derived macrophages, for 3 h and 6 h to evaluate their effects on the expression of pro-inflammatory genes. Both β-glucans stimulated the expression of such genes as much as the pro-inflammatory control (LPS). When the cells were incubated with LPS+β-glucan, a significant inhibition of the expression of IL-1β and COX-2 was observed for both treatments after 3 h of incubation. By the results, we conclude that the (1→6)-β-D-glucans present an immunostimulatory activity when administered to THP-1 derived macrophages.

  13. Crystal structures of yeast beta-alanine synthase complexes reveal the mode of substrate binding and large scale domain closure movements.

    Science.gov (United States)

    Lundgren, Stina; Andersen, Birgit; Piskur, Jure; Dobritzsch, Doreen

    2007-12-07

    Beta-alanine synthase is the final enzyme of the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of uracil and thymine in higher organisms. The fold of the homodimeric enzyme from the yeast Saccharomyces kluyveri identifies it as a member of the AcyI/M20 family of metallopeptidases. Its subunit consists of a catalytic domain harboring a di-zinc center and a smaller dimerization domain. The present site-directed mutagenesis studies identify Glu(159) and Arg(322) as crucial for catalysis and His(262) and His(397) as functionally important but not essential. We determined the crystal structures of wild-type beta-alanine synthase in complex with the reaction product beta-alanine, and of the mutant E159A with the substrate N-carbamyl-beta-alanine, revealing the closed state of a dimeric AcyI/M20 metallopeptidase-like enzyme. Subunit closure is achieved by a approximately 30 degrees rigid body domain rotation, which completes the active site by integration of substrate binding residues that belong to the dimerization domain of the same or the partner subunit. Substrate binding is achieved via a salt bridge, a number of hydrogen bonds, and coordination to one of the zinc ions of the di-metal center.

  14. Augmented H2S production via cystathionine-beta-synthase upregulation plays a role in pregnancy-associated uterine vasodilation†.

    Science.gov (United States)

    Sheibani, Lili; Lechuga, Thomas J; Zhang, Honghai; Hameed, Afshan; Wing, Deborah A; Kumar, Sathish; Rosenfeld, Charles R; Chen, Dong-Bao

    2017-01-24

    Endogenous hydrogen sulfide (H2S) synthesized via metabolizing L-cysteine by cystathionine-beta-synthase (CBS) and cystathionine-gamma-lyase (CSE) is a potent vasodilator and angiogenic factor. The objectives of this study were to determine if human uterine artery (UA) H2S production increases with augmented expression and/or activity of CBS and/or CSE during the menstrual cycle and pregnancy and whether exogenous H2S dilates UA. Uterine arteries from nonpregnant (NP) premenopausal proliferative (pPRM) and secretory (sPRM) phases of the menstrual cycle and pregnant (P) women were studied. H2S production was measured by the methylene blue assay. CBS and CSE mRNAs were assessed by quantitative real-time PCR, and proteins were assessed by immunoblotting and semiquantitative immunofluorescence microscopy. Effects of H2S on rat UA relaxation were determined by wire myography ex vivo. H2S production was greater in NP pPRM and P than NP sPRM UAs and inhibited by the specific CBS but not CSE inhibitor. CBS but not CSE mRNA and protein were greater in NP pPRM and P than NP sPRM UAs. CBS protein was localized to endothelium and smooth muscle and its levels were in a quantitative order of P >NP UAs of pPRM>sPRM. CSE protein was localized in UA endothelium and smooth muscle with no difference among groups. A H2S donor relaxed P > NP UAs but not mesentery artery. Thus, human UA H2S production is augmented with endothelium and smooth muscle CBS upregulation, contributing to UA vasodilation in the estrogen-dominant physiological states in the proliferative phase of the menstrual cycle and pregnancy.

  15. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson's disease by suppressing glycogen synthase kinase-3 beta activity

    Science.gov (United States)

    Ren, Zhao-xiang; Zhao, Ya-fei; Cao, Ting; Zhen, Xue-chu

    2016-01-01

    Aim: It is general believed that mitochondrial dysfunction and oxidative stress play critical roles in the pathology of Parkinson's disease (PD). Dihydromyricetin (DHM), a natural flavonoid extracted from Ampelopsis grossedentata, has recently been found to elicit potent anti-oxidative effects. In the present study, we explored the role of DHM in protecting dopaminergic neurons. Methods: Male C57BL/6 mice were intraperitoneally injected with 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 d to induce PD. Additionally, mice were treated with either 5 or 10 mg/kg DHM for a total of 13 d (3 d before the start of MPTP, during MPTP administration (7 d) and 3 d after the end of MPTP). For the saline or DHM alone treatment groups, mice were injected with saline or DHM for 13 d. On d 14, behavioral tests (locomotor activity, the rotarod test and the pole test) were administered. After the behavioral tests, the mice were sacrificed, and brain tissue was collected for immunofluorescence staining and Western blotting. In addition, MES23.5 cells were treated with MPP+ and DHM, and evaluated using cell viability assays, reactive oxygen species (ROS) measurements, apoptosis analysis and Western blotting. Results: DHM significantly attenuated MPTP-induced mouse behavioral impairments and dopaminergic neuron loss. In the MES23.5 cells, DHM attenuated MPP+-induced cell injury and ROS production in a dose-dependent manner. In addition, DHM increased glycogen synthase kinase-3 beta phosphorylation in a dose- and time-dependent manner, which may be associated with DHM-induced dopaminergic neuronal protection. Conclusion: The present study demonstrated that DHM is a potent neuroprotective agent for DA neurons by modulating the Akt/GSK-3β pathway, which suggests that DHM may be a promising therapeutic candidate for PD. PMID:27374489

  16. Glycogen synthase kinase 3 beta positively regulates Notch signaling in vascular smooth muscle cells: role in cell proliferation and survival.

    Science.gov (United States)

    Guha, Shaunta; Cullen, John P; Morrow, David; Colombo, Alberto; Lally, Caitríona; Walls, Dermot; Redmond, Eileen M; Cahill, Paul A

    2011-09-01

    The role of glycogen synthase kinase 3 beta (GSK-3β) in modulating Notch control of vascular smooth muscle cell (vSMC) growth (proliferation and apoptosis) was examined in vitro under varying conditions of cyclic strain and validated in vivo following changes in medial tension and stress. Modulation of GSK-3β in vSMC following ectopic expression of constitutively active GSK-3β, siRNA knockdown and pharmacological inhibition with SB-216763 demonstrated that GSK-3β positively regulates Notch intracellular domain expression, CBF-1/RBP-Jκ transactivation and downstream target gene mRNA levels, while concomitantly promoting vSMC proliferation and inhibiting apoptosis. In contrast, inhibition of GSK-3β attenuated Notch signaling and decreased vSMC proliferation and survival. Exposure of vSMC to cyclic strain environments in vitro using both a Flexercell™ Tension system and a novel Sylgard™ phantom vessel following bare metal stent implantation revealed that cyclic strain inhibits GSK-3β activity independent of p42/p44 MAPK and p38 activation concomitant with reduced Notch signaling and decreased vSMC proliferation and survival. Exposure of vSMC to changes in medial strain microenvironments in vivo following carotid artery ligation revealed that enhanced GSK-3β activity was predominantly localized to medial and neointimal vSMC concomitant with increased Notch signaling, proliferating nuclear antigen and decreased Bax expression, respectively, as vascular remodeling progressed. GSK-3β is an important modulator of Notch signaling leading to altered vSMC cell growth where low strain/tension microenvironments prevail.

  17. Endotoxin and β-1,3-d-Glucan in Concentrated Ambient Particles Induce Rapid Increase in Blood Pressure in Controlled Human Exposures.

    Science.gov (United States)

    Zhong, Jia; Urch, Bruce; Speck, Mary; Coull, Brent A; Koutrakis, Petros; Thorne, Peter S; Scott, James; Liu, Ling; Brook, Robert D; Behbod, Behrooz; Gibson, Heike; Silverman, Frances; Mittleman, Murray A; Baccarelli, Andrea A; Gold, Diane R

    2015-09-01

    Short-term exposure to particulate matter (PM) is associated with increased blood pressure (BP) in epidemiological studies. Understanding the impact of specific PM components on BP is essential in developing effective risk-reduction strategies. We investigated the association between endotoxin and β-1,3-d-Glucan-two major biological PM components-and BP. We also examined whether vascular endothelial growth factor, a vasodilatory inflammatory marker, modified these associations. We conducted a single-blind, randomized, crossover trial of controlled human exposure to concentrated ambient particles with 50 healthy adults. Particle-associated-endotoxin and β-1,3-d-Glucan were sampled using polycarbonate-membrane-filters. Supine resting systolic BP and diastolic BP were measured pre-, 0.5-hour post-, and 20-hour postexposure. Urine vascular endothelial growth factor concentration was determined using enzyme-linked immunosorbant assay and creatinine-corrected. Exposures to endotoxin and β-1,3-d-Glucan for 130 minutes were associated with increases in BPs: at 0.5-hour postexposure, every doubling in endotoxin concentration was associated with 1.73 mm Hg higher systolic BP (95% confidence interval, 0.28, 3.18; P=0.02) and 2.07 mm Hg higher diastolic BP (95% confidence interval, 0.74, 3.39; P=0.003); every doubling in β-1,3-d-Glucan concentration was associated with 0.80 mm Hg higher systolic BP (95% confidence interval, -0.07, 1.67; P=0.07) and 0.88 mm Hg higher diastolic BP (95% confidence interval, 0.09, 1.66; P=0.03). Vascular endothelial growth factor rose after concentrated ambient particle endotoxin exposure and attenuated the association between endotoxin and 0.5-hour postexposure diastolic BP (Pinteraction=0.02). In healthy adults, short-term endotoxin and β-1,3-d-Glucan exposures were associated with increased BP. Our findings suggest that the biological PM components contribute to PM-related cardiovascular outcomes, and postexposure vascular endothelial

  18. CRITICAL CONCENTRATIONS OF α-(1→3)-D-GLUCAN FROM LENTINUS EDODES IN NaOH AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Ping-yi Zhang; Li-na Zhang; Shu-yao Cheng

    2000-01-01

    Critical concentrations of α-(1→3)-D-glucan L-FV-Ⅱ from Lentinus edodes were studied by viscometry and fluorescence probe techniques. The dependence of the reduced viscosity on concentration of the glucan in 0.5 mol/L NaOH aqueous solutions with or without urea showed two turning points corresponding to the dynamic contact concentration cs and the overlap concentration c* of the polymer. The values of cs and c* were found to be 1 × 10-3 gcm-3 and 1.1 × 10-2 g cm-3,respectively, for L-FV-Ⅱ in 0.5 mol/L NaOH aqueous solutions. The two critical concentrations of L-FV-Ⅱ in 0.5 mol/L NaOH aqueous solutions were also found to be 1.2 × 10-3 g cm-3 for cs and 9.2 × 10-3 gcm-3 for c* from the concentration dependence of phenanthrene fluorescence intensities. The overlap concentration c* of L-FV-Ⅱ in 0.5 mol/L NaOH aqueous solutions was lower than that of polystyrene with same molecular weight in benzene, owing to the fact that polysaccharide tends to undergo aggregation caused by intermolecular hydrogen bonding. A normal viscosity behavior of L-FV-Ⅱ in 0.5 mol/L urea/0.5 mol/L NaOH aqueous solutions can still be observed in an extremely low concentration range at 25℃.

  19. Water-soluble low-molecular-weight -(1, 3–1, 6 D-Glucan inhibit cedar pollinosis

    Directory of Open Access Journals (Sweden)

    Tomoko Jippo

    2015-02-01

    Full Text Available Background: The incidence of allergic diseases such as allergic rhinitis, atopic dermatitis, asthma, and food allergies has increased in several countries. Mast cells have critical roles in various biologic processes related to allergic diseases. Mast cells express the high-affinity receptor for immunoglobulin (Ig E on their surface. The interaction of multivalent antigens with surface-bound IgE causes the secretion of granule-stored mediators, as well as the de novosynthesis of cytokines. Those mediators and cytokines proceed the allergic diseases. We investigated the effects of water-soluble, low-molecular-weight -(1, 3–1, 6 D-glucan isolated from Aureobasidium pullulans 1A1 strain black yeast (LMW--glucan on mast cell-mediated anaphylactic reactions. We reported that LMW--glucan dose-dependently inhibited the degranulation of mast cells. Furthermore, we found that orally administered LMW--glucan inhibited the IgE-mediated passive cutaneous anaphylaxis (PCA reaction in mice. Here, we examined if LMW--glucan had effects on Japanese cedar pollinosis. Findings: In a clinical study, a randomized, single-blind, placebo-controlled, parallel group study in 65 subjects (aged 2262 was performed. This study was undertaken 3 weeks before and until the end of the cedar pollen season. During the study, all subjects consumed one bottle of placebo or LMW--glucan daily and all subjects were required to record allergic symptoms in a diary. The LMW--glucan group had a significantly lower prevalence of sneezing, nose-blowing, tears, and hindrance to the activities of daily living than the placebo group. Conclusions: These results suggested that LMW--glucan could be an effective treatment for allergic diseases

  20. Intracellular domains of amyloid precursor-like protein 2 interact with CP2 transcription factor in the nucleus and induce glycogen synthase kinase-3beta expression.

    Science.gov (United States)

    Xu, Y; Kim, H-S; Joo, Y; Choi, Y; Chang, K-A; Park, C H; Shin, K-Y; Kim, S; Cheon, Y-H; Baik, T-K; Kim, J-H; Suh, Y-H

    2007-01-01

    Amyloid precursor protein (APP) is a member of a gene family that includes two APP-like proteins, APLP1 and 2. Recently, it has been reported that APLP1 and 2 undergo presenilin-dependent gamma-secretase cleavage, as does APP, resulting in the release of an approximately 6 kDa intracellular C-terminal domain (ICD), which can translocate into the nucleus. In this study, we demonstrate that the APLP2-ICDs interact with CP2/LSF/LBP1 (CP2) transcription factor in the nucleus and induce the expression of glycogen synthase kinase 3beta (GSK-3beta), which has broad-ranged substrates such as tau- and beta-catenin. The significance of this finding is substantiated by the in vivo evidence of the increase in the immunoreactivities for the nuclear C-terminal fragments of APLP2, and for GSK-3beta in the AD patients' brain. Taken together, these results suggest that APLP2-ICDs contribute to the AD pathogenesis, by inducing GSK-3beta expression through the interaction with CP2 transcription factor in the nucleus.

  1. Visible fungi growth and dampness assessed using a questionnaire versus airborne fungi, (1→3-β-d-glucan and fungal spore concentrations in flats

    Directory of Open Access Journals (Sweden)

    Małgorzata Sowiak

    2015-02-01

    Full Text Available Introduction The study aimed at determination of the usefulness of the subjective assessment of selected signs of fungi growth in flats and microclimate parameters to indicate the actual air contamination with culturable fungi, (1→3-β-D-glucans and fungal spores. Material and methods This analysis covered 22 flats, the inhabitants of which declared in a questionnaire interview the presence of the developed mycelium on solid surfaces in the flat. Air samples for determination of the culturable fungi, (1→3-β-D-glucans and (viable and non-viable fungal spores concentrations indoor and outdoor the flats during the heating period were collected. During bioaerosol sampling microclimate parameters were measured. Predictive models for concentrations of the tested biological agents with regard to various ways to assess fungal contamination of air in a flat (on the basis of a questionnaire or a questionnaire and microclimate measurements were built. Results The arithmetic means of temperature, relative humidity, CO2 concentration and air flow velocity in the flats were respectively: 20.5°C, 53%, 1431.6 ppm and 0 m/s. The geometric mean concentrations of airborne fungi, (1→3-β-D-glucans and fungal spores in these premises amounted to 2.9×102 cfu/m3, 1.6 ng/m3 and 5.7×103 spores/m3, respectively. The subjective assessment of fungi growth signs and microclimate characteristics were moderately useful for evaluation of the actual airborne fungi and (1→3-β-D-glucan concentrations (maximum percent of explained variance (VE = 61% and 67%, respectively, and less useful in evaluation of the actual fungal spore concentrations (VE < 29%. In the case of fungi, higher usefulness was indicated of the questionnaire evaluation supported by microclimate measurements (VE = 61.2%, as compared to the evaluation only by means of a questionnaire (VE = 46.9%. Conclusions Subjective evaluation of fungi growth signs in flats, separately or combined with microclimate

  2. Sequence analysis of a 9873 bp fragment of the left arm of yeast chromosome XV that contains the ARG8 and CDC33 genes, a putative riboflavin synthase beta chain gene, and four new open reading frames.

    Science.gov (United States)

    Casas, C; Aldea, M; Casamayor, A; Lafuente, M J; Gamo, F J; Gancedo, C; Ariño, J; Herrero, E

    1995-09-15

    The DNA sequence of a 9873 bp fragment located near the left telomere of chromosome XV has been determined. Sequence analysis reveals seven open reading frames. One is the ARG8 gene coding for N-acetylornithine aminotransferase. Another corresponds to CDC33, which codes for the initiation factor 4E or cap binding protein. The open reading frame AOE169 can be considered as the putative gene for the Saccharomyces cerevisiae riboflavin synthase beta chain, since its translation product shows strong homology with four prokaryotic riboflavin synthase beta chains.

  3. New insights into the structure of (1→3,1→6-β-D-glucan side chains in the Candida glabrata cell wall.

    Directory of Open Access Journals (Sweden)

    Douglas W Lowman

    Full Text Available β-Glucan is a (1→3-β-linked glucose polymer with (1→6-β-linked side chains and a major component of fungal cell walls. β-Glucans provide structural integrity to the fungal cell wall. The nature of the (1-6-β-linked side chain structure of fungal (1→3,1→6-β-D-glucans has been very difficult to elucidate. Herein, we report the first detailed structural characterization of the (1→6-β-linked side chains of Candida glabrata using high-field NMR. The (1→6-β-linked side chains have an average length of 4 to 5 repeat units spaced every 21 repeat units along the (1→3-linked polymer backbone. Computer modeling suggests that the side chains have a bent curve structure that allows for a flexible interconnection with parallel (1→3-β-D-glucan polymers, and/or as a point of attachment for proteins. Based on these observations we propose new approaches to how (1→6-β-linked side chains interconnect with neighboring glucan polymers in a manner that maximizes fungal cell wall strength, while also allowing for flexibility, or plasticity.

  4. Systematic determination of the peptide acceptor preferences for the human UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase).

    Science.gov (United States)

    Perrine, Cynthia; Ju, Tongzhong; Cummings, Richard D; Gerken, Thomas A

    2009-03-01

    Mucin-type protein O-glycosylation is initiated by the addition of alpha-GalNAc to Ser/Thr residues of a polypeptide chain. The addition of beta-Gal to GalNAc by the UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase), forming the Core 1 structure (beta-Gal(1-3)-alpha-GalNAc-O-Ser/Thr), is a common and biologically significant subsequent step in O-glycan biosynthesis. What dictates the sites of Core 1 glycosylation is poorly understood; however, the peptide sequence and neighboring glycosylation effects have been implicated. To systematically address the role of the peptide sequence on the specificity of T-synthase, we used the oriented random glycopeptide: GAGAXXXX(T-O-GalNAc)XXXXAGAG (where X = G, A, P, V, I, F, Y, S, N, D, E, H, R, and K) as a substrate. The Core 1 glycosylated product was isolated on immobilized PNA (Arachis hypogaea) lectin and its composition determined by Edman amino acid sequencing for comparison with the initial substrate composition, from which transferase preferences were obtained. From these studies, elevated preferences for Gly at the +1 position with moderately high preferences for Phe and Tyr in the +3 position relative to the acceptor Thr-O-GalNAc were found. A number of smaller Pro enhancements were also observed. Basic residues, i.e., Lys, Arg, and His, in any position were disfavored, suggesting electrostatic interactions as an additional important component modulating transferase specificity. This work suggests that there are indeed subtle specific and nonspecific protein-targeting sequence motifs for this transferase.

  5. Production of Ginkgo leaf-shaped basidiocarps of the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes), containing high levels of α- and β-D-glucan and ganoderic acid A.

    Science.gov (United States)

    Yajima, Yuka; Miyazaki, Minoru; Okita, Noriyasu; Hoshino, Tamotsu

    2013-01-01

    Ganoderic acid A and α- and β-D-glucan content were compared among morphologically different basidiocarps of the medicinal mushroom Ganoderma lucidum. Ginkgo leaf-shaped basidiocarps gradually hardened from the base to the pileus and accumulated a higher amount of bioactive components than normal (kidney-shaped) and antler/deer horn-shaped basidiocarps. In the normal G. lucidum stipe, the outer context contained the highest amount of α- and β-D-glucan (approximately 55%) and the highest amount of ganoderic acid A (approximately 0.3%). Ginkgo leaf-shaped G. lucidum had a large area of outer layer and stout outer context, which contributed to their high α- and β-D-glucan and ganoderic acid A content.

  6. LCMS-QTOF Determination of Lentinan-Like β-D-Glucan Content Isolated by Hot Water and Alkaline Solution from Tiger’s Milk Mushroom, Termite Mushroom, and Selected Local Market Mushrooms

    OpenAIRE

    Nor Azreen Mohd Jamil; Norasfaliza Rahmad; Noraswati Mohd Nor Rashid; Mohd Hafis Yuswan Mohd Yusoff; Nur Syahidah Shaharuddin; Norihan Mohd Saleh

    2013-01-01

    Lentinan, 1152 Dalton β-D-glucan found in Shiitake Mushroom (Lentinus edodes), has been claimed to have anticancer and immunomodulatory activity. Several extraction methods have been used by researchers to isolate Lentinan including hot water and alkaline solution (1.25 M NaOH). In this study, hot water and alkaline solution (1.25 M NaOH) were used to extract the Lentinan-like β-D-glucan (1151 Dalton) from Tiger’s Milk Mushroom, Termite Mushroom, and selected local market mushrooms. The isola...

  7. Probing the Mechanism of the Mycobacterium tuberculosis [beta]-Ketoacyl-Acyl Carrier Protein Synthase III mtFabH: Factors Influencing Catalysis and Substrate Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent; Lindenberg, Sandra; Dover, Lynn G.; Sacchettini, James C.; Besra, Gurdyal S. (TAM); (Birmingham); (CNRS)

    2010-11-30

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH was assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.

  8. Chemical structure and biological activity of a highly branched (1 → 3,1 → 6)-β-D-glucan from Isochrysis galbana.

    Science.gov (United States)

    Sadovskaya, Irina; Souissi, Anissa; Souissi, Sami; Grard, Thierry; Lencel, Philippe; Greene, Catherine M; Duin, Sarah; Dmitrenok, Pavel S; Chizhov, Alexander O; Shashkov, Alexander S; Usov, Anatolii I

    2014-10-13

    A highly branched (1 → 3,1 → 6)-β-D-glucan was isolated from the microalga Isochrysis galbana Parke (Isochrysidales, Haptophyta). The polysaccharide structure was analyzed by methylation and Smith degradation, as well as by ESI and MALDI TOF mass spectrometry and NMR spectroscopy. The glucan was shown to contain a (1 → 6)-linked backbone, where every residue is substituted at position 3 by Glc, which in turn may be substituted at C-6 by a single Glc or by rather short (up to tetrasaccharide) oligosaccharide chains. All the 3-linked Glc residues are present in these side chains. In the biological activity experiments it was demonstrated that the polysaccharide directly inhibits the proliferation of U937 human leukemic monocyte lymphoma cells and therefore has potential anti-tumor activity.

  9. Fruiting bodies of Hericium erinaceus (Bull. Pers. – a new source of water-insoluble (1→3-α-d-glucan

    Directory of Open Access Journals (Sweden)

    Adrian Wiater

    2016-09-01

    Full Text Available A water-insoluble polysaccharide (WIP was isolated from the fruiting bodies of Hericium erinaceus HE01 by an alkaline solution with the yield of 5%. Structural and compositional analyses by total acid hydrolysis, methylation analysis, FT-IR, FT-Raman, and 1H NMR spectroscopy as well as other instrumental techniques showed predominantly glucose linked by α-glycosidic bonds and small amounts of mannose, xylose, rhamnose, galactose, and ribose. The methylation analysis showed that (1→3-linked Glcp is the major constituent (70.8% of the polymer, while the 3,4 substituted d-Glcp represents the main branching residue of the glucan. The presence of (1→3-α-d-glucan in the hyphae of H. erinaceus was additionally confirmed by the use of specific fluorophore-labeled antibodies.

  10. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol-Hee [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Lee, Byung-Hoon [College of Pharmacy and Multiscreening Center for Drug Development, Seoul National University, Seoul 151-742 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of); Oh, Seon-Hee, E-mail: oshccw@hanmail.net [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our

  11. Infantile Refsum disease: deficiency of catalase-containing particles (peroxisomes), alkyldihydroxyacetone phosphate synthase and peroxisomal beta-oxidation enzyme proteins.

    Science.gov (United States)

    Wanders, R J; Schutgens, R B; Schrakamp, G; van den Bosch, H; Tager, J M; Schram, A W; Hashimoto, T; Poll-Thé, B T; Saudubrau, J M

    1986-08-01

    In recent years a number of biochemical abnormalities have been described in patients with the infantile form of Refsum disease, including the accumulation of very long chain fatty acids, trihydroxycoprostanoic acid and pipecolic acid. In this paper we show that catalase-containing particles (peroxisomes), alkyl dihydroxyacetone phosphate synthase and acyl-CoA oxidase protein are deficient in patients with infantile Refsum disease. These findings suggest that in the infantile form of Refsum disease, as in the cerebro-hepato-renal (Zellweger) syndrome the multiplicity of biochemical abnormalities is due to a deficiency of peroxisomes and hence to a generalized loss of peroxisomal functions. As a consequence the infantile form of Refsum disease can be diagnosed biochemically by methods already available for the prenatal and postnatal diagnosis of the cerebro-hepato-renal (Zellweger) syndrome.

  12. The ligand-receptor-G-protein ternary complex as a GTP-synthase. steady-state proton pumping and dose-response relationships for beta -adrenoceptors.

    Science.gov (United States)

    Broadley, K J; Nederkoorn, P H; Timmerman, H; Timms, D; Davies, R H

    2000-07-21

    Steady-state solutions are developed for the rate of G alpha.GTP production in a synthase model of the ligand-receptor-G-protein ternary complex activated by a ligand-receptor proton pumping mechanism. The effective rate, k(31), defining the proton transfer, phosphorylation and G alpha.GTP release is a controlling rate of the synthase in the presence of a ligand with an efficient mode of signal activation, the ligand-receptor interaction taking place under effectively equilibrium conditions. The composite rate, however, becomes an amplifying factor in any dose-response relationship. The amplification is a triple product of the rate, k(31), the equilibrium constant associated with the activation of the proton signal, K(act)and the fraction of agonist conformer transmitting the signal, f(*). Where the rate of activation of the proton signal becomes critically inefficient, the rate of activation, k(act 1)replaces k(31)K(act). A correlation between beta(1)-adrenergic receptor-stimulated GDP release and adenylate cyclase activation shows that this correlation is not unique to an exchange reaction. Within the initiating Tyr-Arg-Tyr receptor proton shuttle mechanism, the position of Arg(r156) paralleldictates the high-(R(p)) and low-(R(u)) ligand-binding affinities. These states are close to R(*)and R(0)of the equilibrium model (De Lean et al., 1980, J. Biol. Chem.255, 7108-7117). An increased rate of hydrogen ion diffusion into a receptor mutant can give rise to constitutive activity while increased rates of G-protein release and changes in receptor state balance can contribute to the resultant level of action. Constitutive action will arise from a faster rate of G-protein release alone if proton diffusion in the wild-type receptor contributes to a basal level of G-protein activation. Competitive ligand-receptor occupancy for constitutive mutants shows that, where the rate of G-protein activation from the proportion of ligand-occupied receptors is less than the

  13. Melatonin attenuated adipogenesis through reduction of the CCAAT/enhancer binding protein beta by regulating the glycogen synthase 3 beta in human mesenchymal stem cells.

    Science.gov (United States)

    Rhee, Yun-Hee; Ahn, Jin-Chul

    2016-06-01

    Adipogenic differentiation is characterized by an increase in two major transcription factors: peroxisome proliferator-activated receptor gamma (PPARγ) and the CCAAT/enhancer binding protein alpha (C/EBPα). These two signals are influenced by C/EBPβ and C/EBPδ and cross-regulate each other's expression during the initial stages of adipogenesis. Melatonin has been known to act as not only a direct scavenger of free radicals but also an inhibitor of glycogen synthase kinase 3β (GSK-3β). Here, we report that melatonin inhibits the adipogenic differentiation of human mesenchymal stem cells (hMSCs) which is due to the regulations of C/EBPβ in the early stage of adipogenic differentiation. Melatonin reduced the lipid accumulation, adiponectin, and lipoprotein lipase (LPL) during the adipogenic differentiation of hMSCs. Since C/EBPβ has been associated with the activation of PPARγ and the consensus site of ERK/GSK-3β, PPARγ and β-catenin were detected by immunofluorescence staining after pretreatment of melatonin. Melatonin blocked the activation of PPARγ which induced the degradation of β-catenin. Melatonin also decreased the levels of cyclic adenosine-3,5-monophosphate (cAMP) and reactive oxygen species (ROS). The cAMP triggered the activity of C/EBPβ which is a critical inducer of PPARγ and C/EBPα activation in the early stage of adipogenic differentiation, and this is further affected by ROS production. The adipogenic marker proteins such as PPARγ, C/EBPα, C/EBPβ, and pERK were also decreased by melatonin. In summary, melatonin inhibited the cAMP synthesis through ROS reduction and the phosphorylation of the ERK/GSK-3β site which is known to be responsible for C/EBPβ activation for adipogenic differentiation in hMSCs.

  14. Nerve growth factor treatment of sensory neuron primary cultures causes elevated levels of the mRNA encoding the ATP synthase beta-subunit as detected by a novel PCR-based differential cloning method.

    Science.gov (United States)

    Kendall, G; Ensor, E; Crankson, H D; Latchman, D S

    1996-03-01

    The mRNA encoding the rat ATP synthase beta-subunit was rapidly induced by nerve growth factor, within 60 min, in cultured adult rat dorsal root ganglion neurons. ATP synthase beta-subunit cDNA clones were isolated from a lambda library. The library was constructed using rat dorsal root ganglion mRNA that was differentially screened with cDNA-derived probes from untreated and nerve-growth-factor-treated primary cultures of adult rat dorsal root ganglion sensory neurons. Radiolabelled probes were made from submicrogram quantities of RNA, by a novel PCR-based technique, which allows small amounts of primary tissue to be used for library screening. The use of this technique in isolating novel differentially expressed mRNAs is discussed.

  15. Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53's transcriptional activity

    Directory of Open Access Journals (Sweden)

    Price Brendan D

    2001-07-01

    Full Text Available Abstract Background The p53 protein is activated by genotoxic stress, oncogene expression and during senescence, p53 transcriptionally activates genes involved in growth arrest and apoptosis. p53 activation is regulated by post-translational modification, including phosphorylation of the N-terminal transactivation domain. Here, we have examined how Glycogen Synthase Kinase (GSK3, a protein kinase involved in tumorigenesis, differentiation and apoptosis, phosphorylates and regulates p53. Results The 2 isoforms of GSK3, GSK3α and GSK3β, phosphorylate the sequence Ser-X-X-X-Ser(P when the C-terminal serine residue is already phosphorylated. Several p53 kinases were examined for their ability to create GSK3 phosphorylation sites on the p53 protein. Our results demonstrate that phosphorylation of serine 37 of p53 by DNA-PK creates a site for GSK3β phosphorylation at serine 33 in vitro. GSK3α did not phosphorylate p53 under any condition. GSK3β increased the transcriptional activity of the p53 protein in vivo. Mutation of either serine 33 or serine 37 of p53 to alanine blocked the ability of GSK3β to regulate p53 transcriptional activity. GSK3β is therefore able to regulate p53 function in vivo. p53's transcriptional activity is commonly increased by DNA damage. However, GSK3β kinase activity was inhibited in response to DNA damage, suggesting that GSK3β regulation of p53 is not involved in the p53-DNA damage response. Conclusions GSK3β can regulate p53's transcriptional activity by phosphorylating serine 33. However, GSK3β does not appear to be part of the p53-DNA damage response pathway. Instead, GSK3β may provide the link between p53 and non-DNA damage mechanisms for p53 activation.

  16. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.

    Science.gov (United States)

    Lassner, M W; Lardizabal, K; Metz, J G

    1996-02-01

    beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils.

  17. Crystal structure and substrate specificity of the [beta]-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiayang; Choudhry, Anthony E.; Janson, Cheryl A.; Grooms, Michael; Daines, Robert A.; Lonsdale, John T.; Khandekar, Sanjay S. (GSK)

    2010-07-20

    {beta}-Ketoacyl-ACP synthase III (FabH), an essential enzyme for bacterial viability, catalyzes the initiation of fatty acid elongation by condensing malonyl-ACP with acetyl-CoA. We have determined the crystal structure of FabH from Staphylococcus aureus, a Gram-positive human pathogen, to 2 {angstrom} resolution. Although the overall structure of S. aureus FabH is similar to that of Escherichia coli FabH, the primer binding pocket in S. aureus FabH is significantly larger than that present in E. coli FabH. The structural differences, which agree with kinetic parameters, provide explanation for the observed varying substrate specificity for E. coli and S. aureus FabH. The rank order of activity of S. aureus FabH with various acyl-CoA primers was as follows: isobutyryl- > hexanoyl- > butyryl- > isovaleryl- >> acetyl-CoA. The availability of crystal structure may aid in designing potent, selective inhibitors of S. aureus FabH.

  18. Gclust Server: 104287 [Gclust Server

    Lifescience Database Archive (English)

    Full Text Available tic subunit of 1,3-beta-D-glucan synthase, functionally redundant with alternate catalytic subunit Gsc2p Num...104287 SCE_YLR342W=FKS1 Cluster Sequences - 1876 Catalytic subunit of 1,3-beta-D-glucan synthase, functional...ly redundant with alternate catalytic subunit Gsc2p 1 1.00e+00 0.0 0.0 0.0 0.0 0.0

  19. (1→3)-β-D-glucan and galactomannan testing for the diagnosis of fungal peritonitis in peritoneal dialysis patients, a pilot study.

    Science.gov (United States)

    Worasilchai, Navaporn; Leelahavanichkul, Asada; Kanjanabuch, Talerngsak; Thongbor, Nisa; Lorvinitnun, Pichet; Sukhontasing, Kanya; Finkelman, Malcolm; Chindamporn, Ariya

    2015-05-01

    Fungal peritonitis is an uncommon but serious complication of peritoneal dialysis (PD) due to the fact that routine culture to recovered the etiologic agents are time consuming and KOH staining has very low sensitivity. Peritoneal (1→3)-β-D-glucan (BG) or galactomannan (GM), both fungal cell wall components, are candidate biomarkers of fungal peritonitis. Hence, a comparative cross-sectional analysis of peritoneal dialysis fluid (PDF) BG (Fungitell, Cape Cod, MA, USA) and GM (Platelia Aspergillus Ag kits, Bio-rad, France) from all PD patients with and without fungal peritonitis (13 cases, identified by culture), over a 1 year period, was performed. PDF of the fungal peritonitis group showed very high BG (494 ± 19 pg/ml) and high GM (3.41 ± 1.24) similar results were noted in specimens from cases of peritonitis with other causes, especially gram negative bacterial peritonitis. A BG cut-off value at 240 pg/ml and GM at 0.5 showed sensitivity/ specificity at 100%/ 83% and 77%/ 58%, respectively. A concomitantly positive GM reduced the false positive rate of BG from nonfungal peritonitis. In conclusion, BG and GM in peritoneal fluid with provisional cut-off values were applicable as surrogate biomarkers for the diagnosis of fungal peritonitis in PD patients.

  20. A comb-like branched β-D-glucan produced by a Cordyceps sinensis fungus and its protective effect against cyclophosphamide-induced immunosuppression in mice.

    Science.gov (United States)

    Hu, Ting; Jiang, Chenbo; Huang, Qilin; Sun, Fengyuan

    2016-05-20

    An exopolysaccharide (EPS) was fractionated from fermentation media of a Cordyceps sinensis fungus (Cs-HK1) by ethanol precipitation at 2/5 volume ratio of ethanol/media. Its structural characteristics were elucidated by FT-IR, GC, GC-MS, 1D and 2D NMR combined with periodate oxidation, Smith degradation, partial acid hydrolysis, and methylation analysis. Furthermore, the immunomodulatory activity of EPS was evaluated by the model of cyclophosphamide-induced immunosuppression. The results from monosaccharide composition and partial acid hydrolysis indicated that EPS almost consisted of glucose excluding a trace amount of mannose. GC-MS and NMR analysis further confirmed EPS had a linear backbone of (1→3)-β-D-glucopyranosyl residues with a single (1→6)-β-D-glucopyranosyl side-branching unit for every three β-D-glucopyranosyl residues, showing a comb-like β-D-glucan with short and intensive branches, which was responsible for high viscosity. Moreover, EPS could significantly enhance immune organs and stimulate the release of major cytokines TNF-α and INF-γ, suggesting that EPS exhibited protective effect in immunocompromised mice.

  1. Lactose in diet influences the degradation of mixed linked β(1-3;1-4)-D-glucan in the small intestine of pigs

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach

    The objective of the current study was to investigate if lactose in diet would influence the degradation of mixed linked β(1–3;1–4)-D-glucan (β-glucan) in the small intestine. Β-glucan is an important cell wall (dietary fiber, DF) component of the endosperm of barley and oats. The digestibility...... of β-glucan in the small intestine from both cereals is among the highest of all DF components, but in one particular study with oat-based diets it was significantly lower than what was found in other studies. In this study whey protein containing lactose was used as protein supplement. Lactose...... is slowly digestible in the small intestine. To investigate if lactose could be causative for the lower digestibility of β-glucan in the study with whey protein, it was decided to quantify the content of lactose in the diets and to analyze for lactose in digesta samples from the small intestine (the small...

  2. Comparative evaluation of pan-fungal real-time PCR, galactomannan and (1-3)-β-D-glucan assay for invasive fungal infection in paediatric cancer patients.

    Science.gov (United States)

    Gupta, Prashant; Ahmad, Abrar; Khare, Vineeta; Kumar, Archana; Banerjee, Gopa; Verma, Nitya; Singh, Mastan

    2017-04-01

    Limited specific data and investigations are available for the diagnosis of Invasive Fungal Infection (IFI) in paediatrics cancer patients. Three non-invasive tests; Platelia Aspergillus EIA for galactomannan (GM), β-D-glucan (BDG) assay and pan-fungal real-time PCR for fungal DNA in blood were evaluated. One hundred twenty-five paediatrics cancer patients at the high risk of IFI were enrolled. Single blood and serum samples were evaluated by all the three methods. Patients were classified into 10 proven, 52 probable and 63 no IFI cases in accordance with EORTC MSG 2008 revised guidelines. The sensitivity, specificity, PPV and NPV of all the three tests in proven, probable and no IFIs cases were analysed singly and in combination. The sensitivity, specificity, PPV and NPV of GM, BDG and pan-fungal real-time PCR were: 87%, 61%, 81%, 69.5% for GM, 88%, 59.5%, 81%, 71.4% for BDG and 89%, 69.2%, 85%, 67.5% for PCR (95% CI). Among different combinations, best combination was found to be GM and PCR with sensitivity, specificity, PPV and NPV of 98.2%, 89.3%, 97.1% and 90% respectively. Single samples must be evaluated by combination of tests.

  3. Oscillatory rheology and creep behavior of barley β-D-glucan concentrate dough: effect of particle size, temperature, and water content.

    Science.gov (United States)

    Ahmed, Jasim; Thomas, Linu; Al-Attar, Hasan

    2015-01-01

    Small amplitude oscillatory rheology and creep behavior of β-glucan concentrate (BGC) dough were studied as function of particle size (74, 105, 149, 297, and 595 μm), BGC particle-to-water ratio (1:4, 1:5, and 1:6), and temperature (25, 40, 55, 70, and 85 °C). The color intensity and protein content increased with decreasing particle size by creating more surface areas. The water holding capacity (WHC) and sediment volume fraction increased with increasing particle size from 74 to 595 μm, which directly influences the mechanical rigidity and viscoelasticity of the dough. The dough exhibited predominating solid-like behavior (elastic modulus, G' > viscous modulus, G″). A discrete retardation spectrum is employed to the creep data to obtain retardation time and compliance parameters, which varied significantly with particle size and the process temperature. Creep tests exhibited more pronounced effect on dough behavior compared to oscillatory measurement. The protein denaturation temperature was insignificantly increased with particle fractions from 107 to 110 °C. All those information could be helpful to identify the particle size range and WHC of BGC that could be useful to produce a β-d-glucan enriched designed food.

  4. Evaluation of the antischistosomal activity of sulfated α-D-glucan from the lichen Ramalina celastri free and encapsulated into liposomes

    Directory of Open Access Journals (Sweden)

    R.V.S. Araújo

    2011-04-01

    Full Text Available The antischistosomal activity of the sulfated polysaccharide α-D-glucan (Glu.SO4 extracted from Ramalina celastri was evaluated after encapsulation into liposomes (Glu.SO4-LIPO in Schistosoma mansoni-infected mice. The effect of treatment with Glu.SO4 and Glu.SO4-LIPO (10 mg/kg on egg elimination, worm burden and hepatic granuloma formation was assessed using female albino Swiss mice, 35-40 days of age, weighing 25 ± 2 g, infected with 150 cercariae/animal (Biomphalaria glabrata, BH strain. Four groups (N = 10 were studied, two controls (empty liposomes and NaCl and two treated groups (Glu.SO4-LIPO and Glu.SO4 using a single dose. Parasitological analysis revealed that Glu.SO4-LIPO was as efficient as Glu.SO4 in reducing egg elimination and worm burden. Treatment with free Glu.SO4 and Glu.SO4-LIPO induced a statistically significant reduction in the number of granulomas (62 and 63%, respectively. Lectin histochemistry showed that wheat germ agglutinin intensely stained the egg-granuloma system in all treated groups. On the other hand, peanut agglutinin stained cells in the control groups, but not in the treated groups. The present results suggest a correlation between the decreasing number of hepatic egg-granulomas and the glycosylation profile of the egg-granuloma system in animals treated with free Glu.SO4 or Glu.SO4-LIPO.

  5. Structural changes of cellobiohydrolase I (1,4-β-D-glucan-cellobiohydrolase I, CBHI) and PNPC (p-nitro-phenyl-β-D-cellobioside) during the binding process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Conformational changes to 1,4-β-D-glucan cellobiohydrolase I (CBHI) in response to its binding with p-nitrophenyl β-D-cellobioside (PNPC) were analyzed by second-derivative fluorescence spectrometry at the saturation binding point. Irreversible changes to the configuration of PNPC during the course of the binding process were characterized by UV spectral analysis. Isothermal titration calorimetry (ITC) was used to determine the stoichiometry of binding (i.e. the number of molar binding sites) of PNPC to CBHI. Two points on the surface of the CBHI molecule interact with PNPC, and irreversible changes to the configuration of PNPC occur during its conversion to p-nitrophenyl (PNP). The ITC studies demonstrated that the binding of PNPC to CBHI is an irreversible process, in which heat is released, but where there is no reversible equilibrium between PNPC-CBHI and CBHI and PNPC. On the other hand, PNP and cellobiose need to be released from the PNPC-CBHI complex to facilitate the repeated binding of new PNPC molecules to the renewable CBHI molecules. Therefore, we speculate that the energy, which powers the configurational change of PNPC as it is converted to PNP, is generated from cyclic changes in the conformation of CBHI during the binding/de-sorption process. These new insights may provide a basis for a better understanding of the binding mechanism in enzyme-substrate interactions.

  6. Interactions between beta D372 and gamma subunit N-terminus residues gamma K9 and gamma S12 are important to catalytic activity catalyzed by Escherichia coli F1F0-ATP synthase.

    Science.gov (United States)

    Lowry, David S; Frasch, Wayne D

    2005-05-17

    Substitution of Escherichia coli F(1)F(0) ATP synthase residues betaD372 or gammaS12 with groups that are unable to form a hydrogen bond at this location decreased ATP synthase-dependent cell growth by 2 orders of magnitude, eliminated the ability of F(1)F(0) to catalyze ATPase-dependent proton pumping in inverted E. coli membranes, caused a 15-20% decrease in the coupling efficiency of the membranes as measured by the extent of succinate-dependent acridine orange fluorescence quenching, but increased soluble F(1)-ATPase activity by about 10%. Substitution of gammaK9 to eliminate the ability to form a salt bridge with betaD372 decreased soluble F(1)-ATPase activity and ATPase-driven proton pumping by 2-fold but had no effect on the proton gradient induced by addition of succinate. Mutations to eliminate the potential to form intersubunit hydrogen bonds and salt bridges between other less highly conserved residues on the gamma subunit N-terminus and the beta subunits had little effect on ATPase or ATP synthase activities. These results suggest that the betaD372-gammaK9 salt bridge contributes significantly to the rate-limiting step in ATP hydrolysis of soluble F(1) while the betaD372-gammaS12 hydrogen bond may serve as a component of an escapement mechanism for ATP synthesis in which alphabetagamma intersubunit interactions provide a means to make substrate binding a prerequisite of proton gradient-driven gamma subunit rotation.

  7. Residential culturable fungi, (1-3, 1-6)-β-d-glucan, and ergosterol concentrations in dust are not associated with asthma, rhinitis, or eczema diagnoses in children.

    Science.gov (United States)

    Choi, H; Byrne, S; Larsen, L S; Sigsgaard, T; Thorne, P S; Larsson, L; Sebastian, A; Bornehag, C-G

    2014-04-01

    Qualitative reporting of home indoor moisture problems predicts respiratory diseases. However, causal agents underlying such qualitative markers remain unknown. In the homes of 198 multiple allergic case children and 202 controls in Sweden, we cultivated culturable fungi by directly plating dust, and quantified (1-3, 1-6)-β-D-glucan and ergosterol in dust samples from the child's bedroom. We examined the relationship between these fungal agents and degree of parent or inspector-reported home indoor dampness, and microbiological laboratory's mold index. We also compared the concentrations of these agents between multiple allergic cases and healthy controls, as well as IgE-sensitization among cases. The concentrations of culturable fungal agents were comparable between houses with parent and inspector-reported mold issues and those without. There were no differences in concentrations of the individual or the total summed culturable fungi, (1-3, 1-6)-β-D-glucan, and ergosterol between the controls and the multiple allergic case children, or individual diagnosis of asthma, rhinitis, or eczema. Culturable fungi, (1-3, 1-6)-β-D-glucan, and ergosterol in dust were not associated with qualitative markers of indoor dampness or mold or indoor humidity. Furthermore, these agents in dust samples were not associated with any health outcomes in the children.

  8. A novel mechanism of hepatocellular carcinoma cell apoptosis induced by lupeol via Brain-Derived Neurotrophic Factor Inhibition and Glycogen Synthase Kinase 3 beta reactivation.

    Science.gov (United States)

    Zhang, Lingli; Tu, Yi; He, Wen; Peng, Yan; Qiu, Zhenpeng

    2015-09-05

    Lupeol is a naturally available triterpenoid with selective anticancerous potential on various human cancer cells. The present study shows that lupeol can inhibit cell proliferation of hepatocellular carcinoma (HCC) HCCLM3 cells in a time- and dose-dependent manner, through caspase-3 dependent activation and Poly ADP-Ribose Polymerase (PARP) cleavage. Lupeol-induced cell death is associated with a marked decrease in the protein expression of Brain-Derived Neurotrophic Factor (BDNF) and ser-9-phosphoryltion of Glycogen Synthase Kinase 3 Beta (GSK-3β), with concomitant suppression of Akt1, phosphatidyl inositol 3-kinase (PI3K), β-catenin, c-Myc and Cyclin D1 mRNA expression. Suppressing overexpression of BDNF by lupeol results in decreased protein expression of p-Akt and PI3K (p110α), as well as reactivation of GSK-3β function in HepG2 cells. Lupeol treatment also inhibits LiCl-induced activation of Wnt signaling pathway and exerts the in vitro anti-invasive activity in Huh-7 cells. LiCl-triggered high expression of β-catenin, c-Myc and Cyclin D1 protein is reduced followed by lupeol exposure. The findings suggest a mechanistic link between caspase dependent pathway, BDNF secretion and Akt/PI3K/GSK-3β in HCC cells. These results indicate that lupeol can suppress HCC cell proliferation by inhibiting BDNF secretion and phosphorylation of GSK-3β(Ser-9), cooperated with blockade of Akt/PI3K and Wnt signaling pathway.

  9. The role of beta-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower.

    Science.gov (United States)

    González-Mellado, Damián; von Wettstein-Knowles, Penny; Garcés, Rafael; Martínez-Force, Enrique

    2010-05-01

    The beta-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons. Heterologous expression of HaKAS III in Escherichia coli altered their fatty acid content and composition implying an interaction of HaKAS III with the bacterial FAS complex. Testing purified HaKAS III recombinant protein by adding to a reconstituted E. coli FAS system lacking condensation activity revealed a novel substrate specificity. In contrast to all hitherto characterized plant KAS IIIs, the activities of which are limited to the first cycles of intraplastidial fatty acid biosynthesis yielding C6 chains, HaKAS III participates in at least four cycles resulting in C10 chains.

  10. Identification of 2-aminothiazole-4-carboxylate derivatives active against Mycobacterium tuberculosis H37Rv and the beta-ketoacyl-ACP synthase mtFabH.

    Directory of Open Access Journals (Sweden)

    Qosay Al-Balas

    Full Text Available BACKGROUND: Tuberculosis (TB is a disease which kills two million people every year and infects approximately over one-third of the world's population. The difficulty in managing tuberculosis is the prolonged treatment duration, the emergence of drug resistance and co-infection with HIV/AIDS. Tuberculosis control requires new drugs that act at novel drug targets to help combat resistant forms of Mycobacterium tuberculosis and reduce treatment duration. METHODOLOGY/PRINCIPAL FINDINGS: Our approach was to modify the naturally occurring and synthetically challenging antibiotic thiolactomycin (TLM to the more tractable 2-aminothiazole-4-carboxylate scaffold to generate compounds that mimic TLM's novel mode of action. We report here the identification of a series of compounds possessing excellent activity against M. tuberculosis H(37R(v and, dissociatively, against the beta-ketoacyl synthase enzyme mtFabH which is targeted by TLM. Specifically, methyl 2-amino-5-benzylthiazole-4-carboxylate was found to inhibit M. tuberculosis H(37R(v with an MIC of 0.06 microg/ml (240 nM, but showed no activity against mtFabH, whereas methyl 2-(2-bromoacetamido-5-(3-chlorophenylthiazole-4-carboxylate inhibited mtFabH with an IC(50 of 0.95+/-0.05 microg/ml (2.43+/-0.13 microM but was not active against the whole cell organism. CONCLUSIONS/SIGNIFICANCE: These findings clearly identify the 2-aminothiazole-4-carboxylate scaffold as a promising new template towards the discovery of a new class of anti-tubercular agents.

  11. Evaluation of yogurt and various beverages as carriers of lactic acid bacteria producing 2-branched (1,3)-β-D-glucan.

    Science.gov (United States)

    Elizaquível, P; Sánchez, G; Salvador, A; Fiszman, S; Dueñas, M T; López, P; Fernández de Palencia, P; Aznar, R

    2011-07-01

    Probiotic cultures are increasingly being incorporated into a wide variety of food products. Although lactobacilli and bifidobacteria are the most frequently used, other lactic acid bacteria (LAB) have been reported to be potential probiotics. Of these, the cider isolates Pediococccus parvulus (strains 2.6 and CUPV22) and Lactobacillus suebicus CUPV221 produce a 2-branched (1,3)-β-d-glucan exopolysaccharide that decreases serum cholesterol levels and affects the activation of human macrophages. For this reason, these 3 strains were incorporated into yogurt, orange juice, and 2 juice-milk beverages to evaluate the effect of the food matrix on the resistance of these strains to simulated gastrointestinal tract conditions. Our results showed that incorporation of the LAB did not significantly affect the physical and rheological properties of the food matrices tested. When incorporated in yogurt, LAB strains population decreased by 2 to 3 log orders of magnitude during the shelf life of the product (28 d). However, no significant decrease was observed in the juice and juice-milk beverages during the same storage period, except for Lb. suebicus, whose viability decreased by 3 log orders of magnitude. When strains were subjected to gastrointestinal tract conditions, a decrease in the survival was observed at the lower pH (1.8). However, incorporation of these LAB strains into orange juice increases their resistance to lower pH conditions, thus improving survival to gastrointestinal stress. Moreover, a protective effect was observed for P. parvulus CUPV22 and 2.6 to gastric stress in juice-milk beverages and to gastrointestinal stress in yogurt. Lactobacillus suebicus CUPV221 did not survive when incorporated into yogurt and juice-milk beverage.

  12. Serum Levels of Lipopolysaccharide and 1,3-β-D-Glucan Refer to the Severity in Patients with Crohn’s Disease

    Directory of Open Access Journals (Sweden)

    Yanmin Guo

    2015-01-01

    Full Text Available Objectives. Interactions between the host and gut microbial community contribute to the pathogenesis of Crohn’s disease (CD. In this study, we aimed to detect lipopolysaccharide (LPS and 1,3-β-D-glucan (BG in the sera of CD patients and clarify the potential role in the diagnosis and therapeutic approaches. Materials and Methods. Serum samples were collected from 46 patients with active CD (A-CD, 22 CD patients at remission stage (R-CD, and 20 healthy controls, and the levels of LPS, BG, and TNF in sera were determined by ELISA. Moreover, sixteen patients with A-CD received anti-TNF monoclonal antibody therapy (infliximab, IFX at a dose of 5 mg/kg body weight at weeks 0, 2, and 6, and the levels of LPS and BG were also tested at week 12 after the first intravenous infusion. Results. Serum levels of LPS and BG were found to be markedly increased in A-CD patients compared with R-CD patients and healthy controls (P<0.05. They were also observed to be positively correlated with CDAI, ESR, and SES-CD, respectively (P<0.05. Furthermore, the levels of TNF in sera had a significant correlation with LPS and BG, respectively. The concentrations of LPS and BG were demonstrated to be significantly downregulated in the sera of A-CD patients 12 weeks after IFX treatment (P<0.05, suggesting that blockade of TNF could inhibit bacterial endotoxin absorption, partially through improving intestinal mucosal barrier. Conclusions. Serum levels of LPS and BG are significantly increased in A-CD patients and positively correlated with the severity of the disease. Blockade of intestinal mucosal inflammation with IFX could reduce the levels of LPS and BG in sera. Therefore, this study has shed some light on measurement of serum LPS and BG in the diagnosis and treatment of CD patients.

  13. Antimicrobial Properties and Cytotoxicity of Sulfated (1,3)-β-D-Glucan from the Mycelium of the Mushroom Ganoderma lucidum.

    Science.gov (United States)

    Wan-Mohtar, Wan Abd Al Qadr Imad; Young, Louise; Abbott, Gráinne M; Clements, Carol; Harvey, Linda M; McNeil, Brian

    2016-06-28

    Ganoderma lucidum BCCM 31549 has a long established role for its therapeutic activities. In this context, much interest has focused on the possible functions of the (1,3)-β-D-glucan (G) produced by these cultures in a stirred-tank bioreactor and extracted from their underutilized mycelium. In the existing study, we report on the systematic production of G, and its sulfated derivative (GS). The aim of this study was to investigate G and its GS from G. lucidum in terms of their antibacterial properties and cytotoxicity spectrum against human prostate cells (PN2TA) and human caucasian histiocytic lymphoma cells (U937). (1)H NMR for both G and GS compounds showed β-glycosidic linkages and structural similarities when compared with two standards (laminarin and fucoidan). The existence of characteristic absorptions at 1,170 and 867 cm(-1) in the FTIR (Fourier Transform Infrared Spectroscopy) for GS demonstrated the successful sulfation of G. Only GS exhibited antimicrobial activity against a varied range of test bacteria of relevance to foodstuffs and human health. Moreover, both G and GS did not show any cytotoxic effects on PN2TA cells, thus helping demonstrate the safety of these polymers. Moreover, GS showed 40% antiproliferation against cancerous U937 cells at the low concentration (60 μg/ ml) applied in this study compared with G (10%). Together, this demonstrates that sulfation clearly improved the solubility and therapeutic activities of G. The water-soluble GS demonstrates the potential multifunctional effects of these materials in foodstuffs.

  14. STRUCTURE, MOLECULAR WEIGHT AND BIOACTIVITIES OF (1→3)-β-D- GLUCANS AND ITS SULFATED DERIVATIVES FROM FOUR KINDS OF LENTINUS EDODES

    Institute of Scientific and Technical Information of China (English)

    Unursaikhan Surenjav; Li-na Zhang; Xiao-juan Xu; Mei Zhang; Peter Chi Keung Cheung; Fan-bo Zeng

    2005-01-01

    Lentinan samples, (1→3)-β-D-glucans containing 4.6-15.2 wt% proteins, coded as L-I1, L-I2, L-I3 and L-I4 (L-I)were isolated from four kinds of Lentinus edodes. These glucans were treated with acetone to remove the protein in order to obtain free protein glucans coded as LNP-I1, LNP-I2, LNP-I3 and LNP-I4 (LNP-I). The free-protein polysaccharides were sulfated to give derivatives (S-LNP-I) with degree of substitution (DS) from 0.4-0.8. The structural features and weight- average molecular weight (Mw) of the samples were investigated by using infrared spectroscopy, elemental analysis,13C-NMR, size exclusion chromatography combined with laser light scattering (SEC-LLS) and viscometry. The effects of structure and conformation of the polysaccharides on antitumor activities were assayed in vivo (Sarcoma 180 solid tumors)and in vitro (Sarcoma 180, HL-60, MCF-7 and Vero tumors). The results indicated that the predominant species of the samples L-I and LNP-I in 0.2 mol/L NaCl aqueous solution existed as triple-helical chains with high rigidity and in dimethyl sulfoxide (DMSO) as single-flexible chains. Interestingly, the antitumor activities of LNP-I are lower than those of the native glucans (L-I), whereas their sulfated derivatives have higher inhibition ratio against Sarcoma 180 than LNP-I. The results reveal that the binding of protein, sulfated modification and the triple helix conformation are important factors in the enhancement of the antitumor activities of polysaccharides on the whole.

  15. Chromosomal mapping and mutational analysis of the coding region of the glycogen synthase kinase-3alpha and beta isoforms in patients with NIDDM

    DEFF Research Database (Denmark)

    Hansen, L; Arden, K C; Rasmussen, S B

    1997-01-01

    Activation of glycogen synthesis in skeletal muscle in response to insulin results from the combined inactivation of glycogen synthase kinase-3 (GSK-3) and activation of the protein phosphatase-1, changing the ratio between the inactive phosphorylated state of the glycogen synthase to the active ...

  16. Identification of ATP synthase beta subunit (ATPB on the cell surface as a non-small cell lung cancer (NSCLC associated antigen

    Directory of Open Access Journals (Sweden)

    Qian Zhi

    2009-01-01

    Full Text Available Abstract Background Antibody-based immuneotherapy has achieved some success for cancer. But the main problem is that only a few tumor-associated antigens or therapeutic targets have been known to us so far. It is essential to identify more immunogenic antigens (especially cellular membrane markers for tumor diagnosis and therapy. Methods The membrane proteins of lung adenocarcinoma cell line A549 were used to immunize the BALB/c mice. A monoclonal antibody 4E7 (McAb4E7 was produced with hybridoma technique. MTT cell proliferation assay was carried out to evaluate the inhibitory effect of McAb4E7 on A549 cells. Flow cytometric assay, immunohistochemistry, western blot and proteomic technologies based on 2-DE and mass spectrometry were employed to detect and identify the corresponding antigen of McAb4E7. Results The monoclonal antibody 4E7 (McAb4E7 specific against A549 cells was produced, which exhibited inhibitory effect on the proliferation of A549 cells. By the proteomic technologies, we identified that ATP synthase beta subunit (ATPB was the corresponding antigen of McAb4E7. Then, flow cytometric analysis demonstrated the localization of the targeting antigen of McAb4E7 was on the A549 cells surface. Furthermore, immunohistochemstry showed that the antigen of McAb4E7 mainly aberrantly expressed in tumor cellular membrane in non-small cell lung cancer (NSCLC, but not in small cell lung cancer (SCLC. The rate of ectopic expressed ATPB in the cellular membrane in lung adenocarcinoma, squamous carcinoma and their adjacent nontumourous lung tissues was 71.88%, 66.67% and 25.81% respectively. Conclusion In the present study, we identified that the ectopic ATPB in tumor cellular membrane was the non-small cell lung cancer (NSCLC associated antigen. ATPB may be a potential biomarker and therapeutic target for the immunotherapy of NSCLC.

  17. Insulin-like growth factor I reverses interleukin-1beta inhibition of insulin secretion, induction of nitric oxide synthase and cytokine-mediated apoptosis in rat islets of Langerhans.

    Science.gov (United States)

    Mabley, J G; Belin, V; John, N; Green, I C

    1997-11-10

    We have previously observed that treatment of rat islets of Langerhans with interleukin-1beta for 12 h results in nitric oxide-dependent inhibition of insulin secretion, while 48 h treatment increased rates of islet cell death by apoptosis. Here, we demonstrate that interleukin-1beta-mediated nitric oxide formation and inhibition of insulin secretion are significantly reduced by 24 h pretreatment of rat islets of Langerhans with insulin-like growth factor I (IGF-I). IGF-I decreased cytokine induction of nitric oxide synthase in islets. Use of an arginine analogue in culture or IGF-I pretreatment of islets were also effective in protecting islets against cytokine-mediated apoptotic cell death. We conclude that IGF-I antagonises inhibitory and cytotoxic effects of cytokines in rat islets.

  18. Beta-glucan from Saccharomyces cerevisiae reduces plasma lipid peroxidation induced by haloperidol.

    Science.gov (United States)

    Dietrich-Muszalska, Anna; Olas, Beata; Kontek, Bogdan; Rabe-Jabłońska, Jolanta

    2011-07-01

    Since oxidative stress observed in schizophrenia may be caused partially by the treatment of patients with various antipsychotics, the aim of the study was to establish the effects of beta-d-glucan, polysaccharide derived from the yeast cell walls of species such as Saccharomyces cerevisiae, and the antipsychotics (the first generation antipsychotic (FGA) - haloperidol and the second generation antipsychotic (SGA) - amisulpride) action on plasma lipid peroxidation in vitro. Lipid peroxidation in human plasma was measured by the level of thiobarbituric acid reactive species (TBARS). The samples of plasma from healthy subjects were incubated with haloperidol or amisulpride in the presence of beta-glucan (4 μg/ml). The action of beta-d-glucan was also compared with the properties of a well characterized commercial monomeric polyphenol - resveratrol (3,4',5-trihydroxystilbene, the final concentration - 4 μg/ml). The two-way analysis variance showed that the differences in TBARS levels were depended on the type of tested drugs (p=7.9 × 10(-6)). We observed a statistically increase of the level of biomarker of lipid peroxidation such as TBARS after 1 and 24h incubation of plasma with haloperidol compared to the control samples (p0.05). We showed that in the presence of beta-glucan, lipid peroxidation in plasma samples treated with haloperidol was significantly decreased. Moreover, we did not observe the synergistic action of beta-glucan and amisulpride on the inhibition of plasma lipid peroxidation. However, the beta-d-glucan was found to be more effective antioxidant, than the solution of pure resveratrol. The presented results indicate that beta-glucan seems to have distinctly protective effects against the impairment of plasma lipid molecules induced by haloperidol.

  19. Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase (GSK)-3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G. [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada); Werstuck, Geoff H., E-mail: Geoff.Werstuck@taari.ca [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix gla protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.

  20. 啤酒废酵母中β-D-葡聚糖非降解提取工艺%A Novel Method for Non-degradative Extraction of β-D-Glucans from Spent Yeast Cells

    Institute of Scientific and Technical Information of China (English)

    朱益波; 翟丽君; 朱明; 齐斌

    2011-01-01

    We here present a novel method to extract non-degraded β-D-glucans from spent yeast cells,mainly based on induced yeast autolysis,hot water extraction,cell wall disruption,defatting and protease hydrolysis.One-factor-at-a-time coupled with orthogonal array design method was applied to the process conditions of induced yeast autolysis and cell wall disruption.The extract obtained under optimized conditions had a total sugar content of 84.9% with an extraction yield of 13.7%.Its purity and yield were both higher than previously reported.Induced yeast autolysis and hot water extraction had a significant effect on β-D-glucan purity and yield.Moreover,protease treatment could further remove protein impurities and increase β-D-glucan purity.The absence of strong acid,strong alkali and oxidant throughout the process helped to protect the physiological activity of products and the environment.%采用单因素及正交试验研究新型非降解法提取废啤酒酵母β-D-葡聚糖工艺。该工艺主要包括诱导自溶、热水浸提、破壁、脱脂、蛋白酶处理等过程。结果表明,提取物中总糖质量百分含量为84.9%,得率为13.7%。与已有报道相比具备较高的纯度和得率。诱导自溶及热水浸提处理对于提取物的得率和纯度具有重要影响,蛋白酶处理对于进一步减少蛋白质含量和提高产物纯度也有显著作用。整个提取过程没有采用强酸、碱和氧化剂有助于保护产物的生理活性和环境。

  1. Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a beta-carotene 3-hydroxylase/4-ketolase.

    Science.gov (United States)

    Ojima, Kazuyuki; Breitenbach, Jürgen; Visser, Hans; Setoguchi, Yutaka; Tabata, Kazuyuki; Hoshino, Tatsuo; van den Berg, Johan; Sandmann, Gerhard

    2006-02-01

    A gene has been cloned from Xanthophyllomyces dendrorhous by complementation of astaxanthin formation in a beta-carotene accumulating mutant. It consists of 3,166 bp and contains 17 introns. For the beta-carotene mutant ATCC 96815, a single point mutation in the splicing sequence of intron 8 was found. The resulting improper splicing of the mRNA results in an inactive protein. The cDNA of this beta-carotene oxygenase encodes a cytochrome P450 monooxygenase belonging to the 3A subfamily. P450-specific domains were identified including a cytochrome P450 and an oxygen binding motif. Electrons are provided by a cytochrome P450 reductase. Functional characterization of the enzyme by genetic modification of X. dendrorhous demonstrated that this P450 monooxygenase is multifunctional catalyzing all steps from beta-carotene to astaxanthin formation by oxygenation of carbon 3 and 4. The reaction sequence is first 4-ketolation of beta-carotene followed by 3-hydroxylation. A hydroxylation mechanism at allylic carbon atoms has been proposed for the generation of 4-keto and 3-hydroxy groups at both beta-ionone ends.

  2. Structural Characterisation of the Beta-Ketoacyl-Acyl Carrier Protein Synthases, FabF and FabH, of Yersinia pestis

    OpenAIRE

    Jeffrey D. Nanson; Himiari, Zainab; Swarbrick, Crystall M. D.; Forwood, Jade K.

    2015-01-01

    Yersinia pestis, the causative agent of bubonic, pneumonic, and septicaemic plague, remains a major public health threat, with outbreaks of disease occurring in China, Madagascar, and Peru in the last five years. The existence of multidrug resistant Y. pestis and the potential of this bacterium as a bioterrorism agent illustrates the need for new antimicrobials. The β-ketoacyl-acyl carrier protein synthases, FabB, FabF, and FabH, catalyse the elongation of fatty acids as part of the type II f...

  3. 从产黄青霉菌丝体中联合提取麦角固醇、壳聚糖和(1→3)-α-D葡聚糖%Integrative Extraction of Ergosterol, (1→3)-a-D-Glucan and Chitosan from Penicillium chrysogenum Mycelia

    Institute of Scientific and Technical Information of China (English)

    王天奇; 李翰祥; 王满意; 谭天伟

    2007-01-01

    Ergosterol,(1→3)-α-D-glucan and chitosan are important biomaterials. In this research, a process has been developed to integratively extract ergosterol, (1→3)-α-D-glucan, and chitosan from Penicillium chrysongenum mycelium. First, the mycelia are pretreated with 0.1mol·L-1 of NaOH. After recovery by centrifugation, the solid portion is made to undergo saponification and deacetylation reactions by addition of 2mol·L-1 NaOH and ethanol. After reaction, extraction is carried out by addition of petroleum ether, which separates the reaction mixture into two phases. The upper layer of petroleum ether contains extracted ergosterol, and the bottom layer of NaOH solution contains (1→3)-α-D-glucan; the chitosan is on the mycelia residuum. After isolation, the recovery yield of ergosterol is 0.52% of dry mycelium. That of (1→3)-α-D-glucan is about 8.2%; and chitosan is 5.7% with 86%deacetylation. The compositions have been characterized by IR, HPLC analyses.

  4. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  5. Pseudouridine synthases.

    Science.gov (United States)

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  6. Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1beta through suppression of NF-kappaB activation by 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L.

    Science.gov (United States)

    Raghav, Sunil Kumar; Gupta, Bhawna; Shrivastava, Anju; Das, Hasi Rani

    2007-03-29

    The Ruta graveolens L. plant is used in traditional medicine to treat a large number of diseases. The methanol (50%) extract of the whole plant was observed to inhibit the expression of inducible nitric oxide synthase (iNOS) and the cycloxygenase-2 (COX-2) gene in lipopolysaccharide (LPS)-induced macrophage cells (J774A.1, [Raghav, S.K., Gupta, B., Agrawal, C., Goswami, K., Das, H.R., 2006b. Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J. Ethnopharmacol. 104, 234-239]). The effect of whole plant extract on the expression of other pro-inflammatory genes such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-12, interferon-gamma (IFN-gamma) and the activation of nuclear factor-kB (NF-kappaB) were investigated in LPS stimulated macrophage cells. An active compound was isolated from this methanol extract by further solvent fractionation and reverse phase high performance liquid chromatography (RP-HPLC). The purified compound was identified as 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin having IUPAC nomenclature of 6-hydroxy-7-methoxy-3-(2-methyl but-3-en-2yl)-2H-chromen-2-one by ESI-MS, MALDI, FT-IR and NMR. Effect of this purified compound was assessed on iNOS, COX-2 and various pro-inflammatory cytokine genes and was observed to inhibit both the protein and mRNA expression of iNOS and IL-1beta in LPS challenged macrophages. Electrophoretic mobility shift assay (EMSA) and Western blot analyses indicated that the plant extract and the isolated active compound blocked the LPS-induced activation of NF-kappaB through the prevention of inhibitor-kB (IkB) degradation. The purified compound also showed the anti-oxidant activity. The active compound at a dose of 40 mg/kg body weight was observed to inhibit the iNOS and IL-1beta gene expression significantly in endotoxin-induced inflammatory model of BALB/c mice. The low level of nitric oxide production was also observed in the sera of compound treated mice

  7. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W. (UIUC); (Iowa State); (Penn)

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  8. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  9. Inactivation of glycogen synthase kinase-3beta and up-regulation of LINGO-1 are involved in LINGO-1 antagonist regulated survival of cerebellar granular neurons.

    Science.gov (United States)

    Zhao, Xiang-Hui; Jin, Wei-Lin; Wu, Jiang; Mi, Sha; Ju, Gong

    2008-08-01

    LINGO-1 has been critically implicated in the central regulation of CNS axon regeneration and oligodendrocyte maturation. We have recently demonstrated that pretreatment with LINGO-1 antagonist (LINGO-1-Fc) inhibited low potassium-induced cerebellar granular neurons (CGNs) apoptosis. In the present study, we examined the neuroprotective mechanism of LINGO-1-Fc by Western blot and in situ GST pull-down assay. CGN cultures were preincubated in medium with LINGO-1-Fc or control protein at the concentration of 10 mug/ml for 2 h and then switched to low potassium medium in the presence of corresponding proteins. Cultures were harvested at indicated time intervals for successive analysis. Several apoptosis-associated signaling factors, GSK-3beta, ERK1/2, and Rho GTPases, were observed to be activated in response to potassium deprivation and the activation/dephosphorylation of GSK-3beta was suppressed by LINGO-1-Fc pretreatment compared with control group. Besides, the endogenous LINGO-1 expression level of CGN cultures was augmented by low potassium stimuli and restrained by LINGO-1 antagonist treatment. Although the protein level of p75(NTR) and Nogo-A were down-regulated in different patterns during apoptosis, neither of them was affected by LINGO-1-Fc application. Taken together, these results suggest a new mechanism of LINGO-1 antagonist regulated neuronal survival involving protein synthesis of LINGO-1 and inactivation of GSK-3 pathway.

  10. Determination of cystathionine beta-synthase activity in human plasma by LC-MS/MS: potential use in diagnosis of CBS deficiency.

    LENUS (Irish Health Repository)

    Krijt, Jakub

    2011-02-01

    Cystathionine β-synthase (CBS) deficiency is usually confirmed by assaying the enzyme activity in cultured skin fibroblasts. We investigated whether CBS is present in human plasma and whether determination of its activity in plasma could be used for diagnostic purposes. We developed an assay to measure CBS activity in 20 μL of plasma using a stable isotope substrate - 2,3,3-(2)H serine. The activity was determined by measurement of the product of enzyme reaction, 3,3-(2)H-cystathionine, using LC-MS\\/MS. The median enzyme activity in control plasma samples was 404 nmol\\/h\\/L (range 66-1,066; n = 57). In pyridoxine nonresponsive CBS deficient patients, the median plasma activity was 0 nmol\\/ho\\/L (range 0-9; n = 26), while in pyridoxine responsive patients the median activity was 16 nmol\\/hour\\/L (range 0-358; n = 28); this overlapped with the enzyme activity from control subject. The presence of CBS in human plasma was confirmed by an in silico search of the proteome database, and was further evidenced by the activation of CBS by S-adenosyl-L-methionine and pyridoxal 5\\'-phosphate, and by configuration of the detected reaction product, 3,3-(2)H-cystathionine, which was in agreement with the previously observed CBS reaction mechanism. We hypothesize that the CBS enzyme in plasma originates from liver cells, as the plasma CBS activities in patients with elevated liver aminotransferase activities were more than 30-fold increased. In this study, we have demonstrated that CBS is present in human plasma and that its catalytic activity is detectable by LC-MS\\/MS. CBS assay in human plasma brings new possibilities in the diagnosis of pyridoxine nonresponsive CBS deficiency.

  11. A comprehensive diagnostic approach using galactomannan, targeted β-d-glucan, baseline computerized tomography and biopsy yields a significant burden of invasive fungal disease in at risk haematology patients.

    Science.gov (United States)

    Ceesay, M Mansour; Desai, Sujal R; Berry, Lisa; Cleverley, Joanne; Kibbler, Christopher C; Pomplun, Sabine; Nicholson, Andrew G; Douiri, Abdel; Wade, Jim; Smith, Melvyn; Mufti, Ghulam J; Pagliuca, Antonio

    2015-01-01

    Invasive fungal disease (IFD) is difficult to diagnose. We investigated the incidence of IFD and risk factors using the revised European Organization for Research and Treatment of Cancer (EORTC) and the Mycoses Study Group (MSG) definitions. Patients (N = 203) undergoing intensive therapy with expected neutropenia ≥10 d were recruited prospectively and followed for a median (range) of 556 (12-730) d. Baseline chest computerized tomography (CT) was performed pre-therapy. Twice-weekly surveillance with galactomannan (GM) was combined with targeted β-d-glucan (BDG) testing on patients with possible IFD or who were GM-positive. Tissue diagnosis was obtained whenever possible. The cumulative incidence of proven/probable IFD among the 202 evaluable cases after 2 years follow-up was 21%, including 14 proven and 30 probable IFDs. Using either GM or BDG as the sole biomarker (plus host and clinical evidence) the apparent overall incidence of proven/probable IFD was 11% and 16%, respectively. Combined GM/BDG detected all biopsy-proven mould IFD. Baseline CT abnormalities were found in 76/202 (38%) patients. Baseline CT abnormalities and Karnofsky score 10 d and bacteraemia were independent risk factors associated with greater than twofold increased IFD risk. This combined diagnostic approach identified a high incidence of IFD and important risk factors in this cohort.

  12. Detection of fungal DNA in peritoneal fluids by a PCR DNA low-density microarray system and quantitation of serum (1-3)-β-D-glucan in the diagnosis of peritoneal candidiasis.

    Science.gov (United States)

    Corrales, Isabel; Giménez, Estela; Aguilar, Gerardo; Delgado, Carlos; Puig, Jaime; Izquierdo, Ana; Belda, Javier; Navarro, David

    2015-02-01

    Microbiological documentation of peritoneal candidiasis (PC) is hampered by the low numbers of yeasts observable by direct microscopic examination and recoverable by culture methods. The performance of a polymerase chain reaction (PCR) DNA Low-Density Microarray System (CLART STIs B) was compared to that of BACTEC FX automated culture method for the detection of Candida spp. in 161 peritoneal fluids (PF) from patients with peritonitis. The clinical utility of (1-3)-β-d-glucan (BDG) antigenemia in the diagnosis of PC was evaluated in 42 of these patients. The overall agreement between the PCR assay and the culture method was good (κ = 0.790), and their sensitivities were 93.5% and 74.19%, respectively. Serum BDG levels in patients with Candida spp. in PFs (median, 200.3 pg/mL; Range, 22.0-523.4 pg/mL) was significantly higher (P = 0.002) than those found in patients without the yeast (median, 25.3 pg/mL; Range, 0-523.4 pg/mL). Our study demonstrates the potential clinical utility of molecular methods and the measurement of serum BDG levels for the diagnosis of PC.

  13. c-Src regulates cell cycle proteins expression through protein kinase B/glycogen synthase kinase 3 beta and extracellular signal-regulated kinases 1/2 pathways in MCF-7 cells.

    Science.gov (United States)

    Liu, Xiang; Du, Liying; Feng, Renqing

    2013-07-01

    We have demonstrated that c-Src suppression inhibited the epithelial to mesenchymal transition in human breast cancer cells. Here, we investigated the role of c-Src on the cell cycle progression using siRNAs and small molecule inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Western blot analysis demonstrated the down-regulation of cyclin D1 and cyclin E and up-regulation of p27 Kip1 after c-Src suppression by PP2. Incubation of cells in the presence of PP2 significantly blocked the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), protein kinase B (AKT), and glycogen synthase kinase 3 beta (GSK3β). Specific pharmacological inhibitors of MEK1/2/ERK1/2 and phosphatidylinositide 3-kinase/AKT pathways were used to demonstrate the relationship between the signal cascade and cell cycle proteins expression. The expression of cyclin D1 and cyclin E were decreased after inhibition of ERK1/2 or AKT activity, whereas the p27 Kip1 expression was increased. In addition, knockdown of c-Src by siRNAs reduced cell proliferation and phosphorylation of ERK1/2, AKT, and GSK3β. After c-Src depletion by siRNAs, we observed significant down-regulation of cyclin D1 and cyclin E, and up-regulation of p27 Kip1. These results suggest that c-Src suppression by PP2 or siRNAs may regulate the progression of cell cycle through AKT/GSK3β and ERK1/2 pathways.

  14. Heterogeneity in hand veins responses to acetylcholine is not associated with polymorphisms in the G-protein beta3-subunit (C825T) and endothelial nitric oxide synthase (G894T) genes but with serum low density lipoprotein cholesterol.

    Science.gov (United States)

    Grossmann, M; Dobrev, D; Siffert, W; Kirch, W

    2001-06-01

    Vascular responses to acetylcholine (ACh) are notoriously variable, the reason for this phenomenon is unknown. We tested the hypothesis that the variability in venous response to acetylcholine may be associated with two recently identified genetic polymorphisms for proteins involved in the signal transduction pathway, i.e. the G-protein beta3-subunit (GNB3) and endothelial nitric oxide synthase (eNOS). The dorsal hand vein technique was used in 37 healthy subjects. Hand veins were preconstricted with the alpha1-adrenoceptor agonist phenylephrine and the venodilator response to local ACh infusion was measured with and without comedication of acetylsalicylic acid or co-infusion of N(G)-monomethyl-L-arginine (L-NMMA). In addition, all subjects received routine laboratory tests and 26 of them were genotyped for the C825T polymorphism of the GNB3 gene and for the G894T polymorphism of the eNOS gene. A striking variability in venous response to ACh was found with dilation observed in the low ACh concentration range and reduced dilation or even constriction at high concentrations. ACh-induced venodilation was mediated by muscarinic receptors and abolished in the presence of both acetylsalicylic acid and L-NMMA suggesting dependence on endothelium. We did not find any association of the variability in ACh response with GNB3 or eNOS allele status. On the other hand, a significant positive correlation between ACh responsiveness and low density lipoprotein-cholesterol status was detected. Two recently discovered gene polymorphisms are not responsible for the profound heterogeneity in venodilator response to ACh. Surprisingly, this variability appears to relate to the lipid status of the subjects. The exact nature of this new finding requires further study.

  15. c-Src regulates cell cycle proteins expression through protein kinase B/glycogen synthase kinase 3 beta and extracellular signal-regulated kinases 1/2 pathways in MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    Xiang Liu; Liying Du; Renqing Feng

    2013-01-01

    We have demonstrated that c-Src suppression inhibited the epithelial to mesenchymal transition in human breast cancer cells.Here,we investigated the role of c-Src on the cell cycle progression using siRNAs and small molecule inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine (PP2).Western blot analysis demonstrated the downregulation of cyclin D1 and cyclin E and up-regulation of p27 Kip1 after c-Src suppression by PP2.Incubation of cells in the presence of PP2 significantly blocked the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2),protein kinase B (AKT),and glycogen synthase kinase 3 beta (GSK3β).Specific pharmacological inhibitors of MEK1/2/ERK1/2 and phosphatidylinositide 3-kinase/AKTpathways were used to demonstrate the relationship between the signal cascade and cell cycle proteins expression.The expression of cyclin D1 and cyclin E were decreased after inhibition of ERK1/2 or AKT activity,whereas the p27 Kip1 expression was increased.In addition,knockdown of c-Src by siRNAs reduced cell proliferation and phosphorylation of ERK1/2,AKT,and GSK3β.After c-Src depletion by siRNAs,we observed significant down-regulation of cyclin D1 and cyclin E,and up-regulation of p27 Kip1.These results suggest that c-Src suppression by PP2 or siRNAs may regulate the progression of cell cycle through AKT/GSK3β and ERK1/2 pathways.

  16. Initial serum (1,3)-β-D-glucan as a predictor of mortality in proven candidaemia: findings from a retrospective study in two teaching hospitals in Italy and Brazil.

    Science.gov (United States)

    Giacobbe, D R; Esteves, P; Bruzzi, P; Mikulska, M; Furfaro, E; Mesini, A; Tatarelli, P; Grignolo, S; Viscoli, C; Colombo, A L; Del Bono, V

    2015-10-01

    A retrospective study was conducted to assess the role of initial serum (1,3)-β-d-glucan (BDG) values in predicting mortality in proven candidaemia. The study was conducted in two large teaching hospitals in Italy and Brazil. From January 2009 to June 2014, all patients with proven candidaemia who underwent a BDG test within 96 hours before or after the first positive blood culture were included in the study. The primary end point was 28-day mortality, with the role of initial BDG being assessed by univariate and multivariate analyses. A total of 104 patients met the inclusion criteria. Overall, the crude 28-day mortality was 30% (31/104). In the final multivariate model, an initial BDG of >287 pg/mL (odds ratio (OR) 4.40, 95% confidence interval (CI) 1.56-12.39, p 0.005), haemodialysis (OR 4.33, 95% CI 1.24-15.17, p 0.022) and a Pitt score of ≥ 2 (OR 4.10, 95% CI 1.24-13.54, p 0.021) were significant predictors of 28-day mortality. The >287 pg/mL cutoff predicted 28-day mortality with 65% sensitivity and 70% specificity. Centre of enrolment (p for interaction 0.012), haemodialysis (p for interaction 0.062) and timing of BDG test of more than 24 hours before or after the positive culture (p for interaction 0.143) appeared to interact with BDG's ability to predict mortality. Although not statistically significant, the last two of these interactions might partially explain why BDG's ability to predict mortality was present only in the Italian cohort.

  17. Beta-ketoacyl-acyl carrier protein synthase III from pea (Pisum sativum L.): properties, inhibition by a novel thiolactomycin analogue and isolation of a cDNA clone encoding the enzyme.

    Science.gov (United States)

    Jones, A Lesley; Gane, Andy M; Herbert, Derek; Willey, David L; Rutter, Andrew J; Kille, Peter; Dancer, Jane E; Harwood, John L

    2003-03-01

    A beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III; short-chain condensing enzyme) has been partly purified from pea leaves. The enzyme, which had acetyl-CoA:ACP acyltransferase (ACAT) activity, was resolved from a second, specific, ACAT protein. The KAS III enzyme had a derived molecular mass of 42 kDa (from its cDNA sequence) and operated as a dimer. Its enzymological characteristics were similar to those of two other plant KAS III enzymes except for its inhibition by thiolactomycin. A derivative of thiolactomycin containing a longer (C8 saturated) hydrophobic side-chain (compound 332) was a more effective inhibitor of pea KAS III and showed competitive inhibition towards malonyl-ACP whereas thiolactomycin showed uncompetitive characteristics at high concentrations. This difference may be due to the better fit of compound 332 into a hydrophobic pocket at the active site. A full-length cDNA for the pea KAS III was isolated. This was expressed in Escherichia coli as a fusion protein with glutathione S-transferase in order to facilitate subsequent purification. Demonstrated activity in preparations from E. coli confirmed that the cDNA encoded a KAS III enzyme. Furthermore, the expressed KAS III had ACAT activity, showing that the latter was inherent. The derived amino acid sequence of the pea cDNA showed 81-87% similarity to that for other plant dicotyledon KAS IIIs, somewhat less for Allium porrum (leek, 71%) and for Porphyra spp. (62%), Synechocystis spp. (65%) and various bacteria (42-65%). The pea KAS III exhibited four areas of homology, three of which were around the active-site Cys(123), His(323) and Asn(353). In addition, a stretch of 23 amino acids (residues 207-229 in the pea KAS III) was almost completely conserved in the plant KAS IIIs. Modelling this stretch showed they belonged to a peptide fragment that fitted over the active site and contained segments suggested to be involved in substrate binding and in conformational changes during

  18. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    Science.gov (United States)

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  19. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    Science.gov (United States)

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  20. General Biochemical Characterization of Thermostable Extracellular beta-Amylase from Clostridium thermosulfurogenes.

    Science.gov (United States)

    Hyun, H H; Zeikus, J G

    1985-05-01

    Clostridium thermosulfurogenes, an anaerobic bacterium which ferments starch into ethanol at 62 degrees C, produced an active extracellular amylase and contained intracellular glucoamylase but not pullulanase activity. The extracellular amylase was purified 2.4-fold, and its general physicochemical and catalytic properties were examined. The extracellular amylase was characterized as a beta-amylase (1,4-alpha-d-glucan maltohydrolase) based on demonstration of exocleavage activity and the production of maltose with a beta-anomeric configuration from starch. The beta-amylase activity was stable and optimally active at 80 and 75 degrees C, respectively. The pH optimum for activity and the pH stability range was 5.5 to 6 and 3.5 to 6.5, respectively. The apparent [S](0.5V) and V(max) for beta-amylase activity on starch was 1 mg/ml and 60 U/mg of protein. Similar to described beta-amylase, the enzyme was inhibited by p-chloromercuribenzoate, Cu, and Hg; however, alpha- and beta-cyclodextrins were not competitive inhibitors. The beta-amylase was active and stable in the presence of air or 10% (vol/vol) ethanol. The beta-amylase and glucoamylase activities enabled the organism to actively ferment raw starch in the absence of significant pullulanase or alpha-amylase activity.

  1. 葡萄酒泥酵母制备水溶性β-D-葡聚糖工艺优化及其纯化后抗氧化性分析%Purification and Antioxidant Activities of Water-Solubleβ-D-Glucan from Waste Wine Yeast

    Institute of Scientific and Technical Information of China (English)

    杨学山; 祝霞; 李颍; 杨婷; 马腾臻; 韩舜愈

    2016-01-01

    以诱导自溶后的葡萄酒泥酵母细胞壁为试材,采用蛋白酶水解法,通过响应面分析法确定制备水溶性β-D-葡聚糖的最佳工艺条件,将粗品经Sephacryl S-400 HR凝胶柱层析纯化后,对其抗氧化性进行分析。结果表明,酶解制备水溶性β-D-葡聚糖的最佳工艺条件为浸提温度60℃、加酶量247 U/mL、pH 7.5、浸提时间1.5 h,得率为80.91%。凝胶柱层析纯化后得到3种组分,比例依次为组分Ⅰ68.08%、组分Ⅱ13.97%、组分Ⅲ8.79%,其中组分Ⅰ分子质量为100065.18 D。纯化后的水溶性β-D-葡聚糖清除ABTS+·、羟自由基、DPPH自由基、O2-·和螯合Fe2+的EC50值分别为2.035、6.352、16.773、5.238、1.061 mg/mL,具有良好的抗氧化活性。%An enzymatic method was used to prepare water-solubleβ-D-glucan from the autolyzed cell wall of waste wine yeast. Single factor method and response surface methodology were applied to optimize the extraction conditions. The water-solubleβ-D-glucan was purified by Sephacryl S-400 HR gel column chromatography to investigate its antioxidant activities. The optimum conditions forβ-D-glucan extraction were determined as follows:temperature, 60℃;enzyme dosage, 247 U/mL;pH, 7.5;and time, 1.5 h. Under these conditions, the yield of water-solubleβ-D-glucan was 80.91%. Three components designated asⅠ,ⅡandⅢwere eluted from the chromatographic column, the contents of which were 68.08%, 13.97%and 8.79%, respectively. The relative molecular weight of componentⅠwas 100 065.18 D. Antioxidant activity studies showed that the puriifed water-solubleβ-D-glucan had good antioxidant activities with EC50 values for scavenging, 2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS+·), hydroxyl radical, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) radical and superoxide anion radical and chelating Fe2+of 2.035, 6.352, 16.773, 5.238 and 1.061 mg/mL, respectively.

  2. Biochemistry: Acetohydroxyacid Synthase

    Directory of Open Access Journals (Sweden)

    Pham Ngoc Chien

    2010-02-01

    Full Text Available Acetohydroxyacid synthase (AHAS, EC 2.2.1.6; formerly known as acetolactate synthase, ALS is a thiamin-and FAD-dependent enzyme which catalyses the first common step in the biosynthesis of the branched-chain amino acids (BCAA isoleucine, leucine and valine. The enzyme is inhibited by several commercial herbicides and has been studied over the last 20 to 30 years. A short introductory note about acetohydroxyacid synthase has been provided.

  3. Association study between cystathione-beta-synthase gene polymorphism and schizophrenia%胱硫醚-β-合成酶基因多态性与精神分裂症的关联研究

    Institute of Scientific and Technical Information of China (English)

    张文跃; 祁小飞; 王梅芬; 宣春明; 顾凤华; 韩晓东

    2009-01-01

    Objective To explore the relationship between cystathione-beta-synthase(CBS) gene T833C,G919A polymorphisms and schizophrenia. Methods The CBS gene polymorphism was detected by polymerase chain reaction and DNA sequencing technique in 93 patients with schizophrenia and 102 healthy people as normal control. Results ⑴ No CBS gene T833C ,G919A polymorphisms were found in all subjects,but mutation of G→A was detected at the 33th base in intron 8-9. Both heterozygote G/A and homozygote A/A were found in patient group,only heterozygote G/A was found in control group. ⑵ There was no significant difference of genotype distribution for mutation of G→A between patient group and control group(P>0.05). The frequency of A allele in patient group (8.07%)was higher than that in control group(3.43%) (χ2=3.92,P=0.048,OR=2.47,95%CI=1.01~6.05). ⑶ There was no significant difference of genotype distribution for mutation of G→A between clinic subgroups and control group(all P>0.05). The frequency of A allele in positive subgroup(8.70%) and later first-onset age subgroup(8.93%) were higher than that in control group(χ2=4.35,P=0.037,OR=2.68,95%CI=1.06~6.77; χ2=4.29,P=0.038,OR=2.76,95%CI=1.06~6.43). Conclusion The finding suggests that mutation of CBS gene T833C ,G919A is very low and it may be not correlated with schizophrenia. Mutation of G→A at the 33th base in intron 8-9 of CBS gene may be one of risk factors for schizophrenia with later first-onset age or positive symptom.%目的 探讨胱硫醚-β-合成酶(CBS) 基因T833C、G919A多态性与精神分裂症的关系.方法 采用聚合酶链式反应(PCR)和DNA测序技术,对93例精神分裂症患者(病例组)和102例正常对照者(对照组)的CBS基因多态性进行检测.结果 ⑴所有受检者均未发现CBS基因T833C、G919A多态性,但在下游8-9内含子33bp处检测到G→A突变;病例组见G/A杂合和A/A纯合,对照组仅见G/A杂合.⑵病例组与对照组在G→A突变的基因型

  4. Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specifity.

    NARCIS (Netherlands)

    Tamer, el M.K.; Lucker, J.; Bosch, D.; Verhoeven, H.A.; Verstappen, F.W.A.; Schwab, W.; Tunen, van A.J.; Voragen, A.G.J.; Maagd, de R.A.; Bouwmeester, H.J.

    2003-01-01

    Monoterpene cyclases are the key enzymes in the monoterpene biosynthetic pathway, as they catalyze the cyclization of the ubiquitous geranyl diphosphate (GDP) to the specific monoterpene skeletons. From Citrus limon, four monoterpene synthase-encoding cDNAs for a P-pinene synthase named Cl(-)betaPIN

  5. Change of (1,3)-β-D-glucan in tear before and after penetrating keratoplasty for fungal keratitis%真菌性角膜溃疡患者穿透角膜移植术前后泪液(1,3)-β-D-葡聚糖的变化

    Institute of Scientific and Technical Information of China (English)

    喻文倩; 梁涛; 刘珂凤; 王婷

    2014-01-01

    timing of glucocorticoids after PKP is still unclear.Literature reported that the concentration of tear (1,3)-β-D-glucan in fungal keratitis was significantly higher than that in normal.Objective This study was to investigate the change of tear (1,3)-β-D-glucan before and after PKP in fungal keratitis and to explore the application duration of anti-fungal drugs and application timing of glucocorticoids.Methods This study protocol was approved by ethic committee of Affiliated Hospital of Qingdao University.A serial cases-observational study was performed from August,2011 to December,2012.Twenty eyes of 20 patients with fungal keratitis were collected in Affiliated Hospital of Qingdao University.PKP was performed in affected eyes,and the fellow health eyes served as controls.Tear of 50 μl was obtained in the controls on 1 day before operation and 1 day,7,14,21 and 28 days after operation to detect tear (1,3)-β-D-glucan levels.Results Tear (1,3)-β-D-glucan levels were (14.67±3.84)mg/L,(1 861.66±196.17) mg/L,(927.71±155.82)mg/L,(392.30±71.22)mg/L,(179.60±40.47) mg/L,(40.20± 12.46) mg/L and (15.12± 1.80) mg/L in the control group,preoperative 1 day,postoperative 1 day,7,14,21,28 days,respectively,showing a significant difference among various time points (F=883.45,P=0.00).Tear (1,3)-β3-D-glucan levels were gradually reduced with the lapse of the postoperative time,with significant differences between adjacent timepoints (t' =13.84,t =16.67,t' =11.02,t' =13.97,t' =-8.45,all at P=0.00).Tear (1,3)-β-D-glucan levels in postoperative 28 days came near that of normal control group,without significant difference between them (P =0.64).Fungal keratitis recurred in 2 eyes on the fifth and sixth day after operation,with the tear (1,3)-β-D-glucan levels of 2 350.24 mg/L and 1 992.82 mg/L,respectively.Conclusions The concentration of (1,3)-β-D-glucan in the tears increases in the eyes with fungal keratitis and drops to normal range at 28 days after PKP,indicating that the

  6. Catalytic properties and mode of action of endo-(1-->3)-beta-D-glucanase and beta-D-glucosidase from the marine mollusk Littorina kurila.

    Science.gov (United States)

    Pesentseva, Maria S; Kusaykin, Mikhail I; Anastyuk, Stanislav D; Sova, Victoria V; Zvyagintseva, Tatyana N

    2008-09-22

    A complex of the enzymes from the liver of the marine mollusk Littorina kurila that hydrolyzes laminaran was investigated. Two (1-->3)-beta-d-glucanases (G-I and G-II) were isolated. The molecular mass of G-I as estimated by gel-permeation chromatography and SDS-PAGE analysis was 32 and 40kDa, respectively. The G-II molecular mass according to SDS-PAGE analysis was about 200kDa. The pH optimum for both G-I and G-II was pH 5.4. The G-I had narrow substrate specificity and hydrolyzed only the (1-->3)-beta-d-glucosidic bonds in the mixed (1-->3),(1-->6)- and (1-->3),(1-->4)-beta-d-glucans down to glucose and glucooligosaccharides. This enzyme acted with retention of the anomeric configuration and catalyzed a transglycosylation reaction. G-I was classified as the glucan endo-(1-->3)-beta-d-glucosidase (EC 3.2.1.39). G-II exhibited both exo-glucanase and beta-d-glucoside activities. This enzyme released from the laminaran glucose as a single product, but retained the anomeric center configuration and possessed transglycosylation activity. The hydrolysis rate of glucooligosaccharides by G-I decreased with an increase of the substrate's degree of polymerization. In addition to (1-->3)-beta-d-glucanase activity, the enzyme had the ability to hydrolyze p-nitrophenyl beta-d-glucoside and beta-d-glucobioses: laminaribiose, gentiobiose, and cellobiose, with the rate ratio of 50:12:1. G-II may correspond to beta-d-glucoside glucohydrolase (EC 3.2.1.21).

  7. Beta Thalassemia

    Science.gov (United States)

    Beta thalassemia is found in people of Mediterranean, Middle Eastern, African, South Asian (Indian, Pakistani, etc.), Southeast Asian and Chinese descent. 1 Beta Thalassemia ßß Normal beta globin genes found on chromosomes ...

  8. Main: 1IEX [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available m Vulgare Molecule: Beta-D-Glucan Glucohydrolase Isoenzyme Exo1; Chain: A; Synonym: Beta-D-Glucan Exohydrola...Of A Plant Beta-D-Glucan Glucohydrolase Structure V. 9 1005 2001 2-Domain Fold GB:AAD23382,4566505|EMBL; AF1...YADPAMAEQLGKQEHRDLAREAARKSLVLLKNGKTSTDAPLLPLPKKAPKILVAGSHADNLGYQCGGWTIEWQGDTGRTTVGTTILEAVKAAVDPSTVVVFAENPDAEFVKSGGFSYAI

  9. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  10. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  11. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases.

    Science.gov (United States)

    Shibuya, M; Zhang, H; Endo, A; Shishikura, K; Kushiro, T; Ebizuka, Y

    1999-11-01

    Two new triterpene synthase cDNAs, named as OEW and TRW, were cloned from olive leaves (Olea europaea) and from dandelion roots (Taraxacum officinale), respectively, by the PCR method with primers designed from the conserved sequences found in the known oxidosqualene cyclases. Their ORFs consisted of 2274 bp nucleotides and coded for 758 amino acid long polypeptides. They shared high sequence identity (78%) to each other, while they showed only about 60% identities to the known triterpene synthases LUPI (lupeol synthase clone from Arabidopsis thaliana) and PNY (beta-amyrin synthase clone from Panax ginseng) at amino acid level. To determine the enzyme functions of the translates, they were expressed in an ERG7 deficient yeast mutant. Accumulation of lupeol in the cells of yeast transformants proved both of these clones code for lupeol synthase proteins. An EST (expression sequence tag) clone isolated from Medicago truncatula roots as a homologue of cycloartenol synthase gene, exhibits high sequence identity (75-77%) to these two lupeol synthase cDNAs, suggesting it to be another lupeol synthase clone. Comparatively low identity (approximately 57%) of LUP1 from Arabidopsis thaliana to either one of these clones leaves LUP1 as a distinct clone among lupeol synthases. From these sequence comparisons, now we propose that two branches of lupeol synthase gene have been generated in higher plants during the course of evolution.

  12. Development of a monoclonal antibody-based enzyme-linked immunosorbent assay to quantify soluble beta-glucans in oats and barley.

    Science.gov (United States)

    Rampitsch, Christof; Ames, Nancy; Storsley, Joanne; Marien, Lindsay

    2003-09-24

    A set of 31 murine monoclonal antibodies was produced against (1-->3,1-->4)beta-d-glucan from oats (Avena sativa L.) chemically cross-linked to keyhole limpet hemocyanin. Monoclonal antibodies were tested for their cross-reactivity to related and unrelated polysaccharides. The antibodies reacted strongly to unmodified beta-glucan from oats and barley (Hordeum vulgare L.) and to lichenan from Icelandic moss, a polysaccharide with a structure similar to that of beta-glucan but which is not encountered in cereals. Cross-reaction to other polysaccharides tested was minimal at physiological levels. An enzyme-linked immunosorbent assay (ELISA) that could routinely detect and quantify nanogram levels of soluble beta-glucan extracted from the flour of oats or barley was designed with one of these monoclonal antibodies. The beta-glucan extraction procedure from ground oat and barley samples and the ELISA were both optimized for reproducibility, accuracy, and throughput, and results were compared to values obtained from an established, commercially available enzyme-based assay. Correlations between the two assays were consistently high (r (2) > 0.9), indicating that the ELISA presented in this paper is a valuable alternative for assaying beta-glucan levels in cereals and cereal products, both routinely and in preparations in which beta-glucans are present in nanogram amounts. Development of the extraction procedure for ELISA is discussed.

  13. Strain-dependent differences in sensitivity of rat beta-cells to interleukin 1 beta in vitro and in vivo

    DEFF Research Database (Denmark)

    Reimers, J I; Andersen, H U; Mauricio, D

    1996-01-01

    The aim of this study was to investigate whether strain-dependent differences in beta-cell sensitivity to interleukin (IL) 1 beta exist in vitro and in vivo and if so, whether these differences correlate to variations in IL-1 beta-induced islet inducible nitric oxide synthase (iNOS) mRNA expression....../kg) or vehicle for 5 days. All the strains investigated were susceptible to IL-1 beta-induced changes in body weight, food intake, temperature, and plasma glucagon and corticosterone. However, IL-1 beta induced hyperglycemia and impairment of beta-cell glucose responsiveness in WK/Mol and LS/Mol rats...

  14. Malarial pigment haemozoin, IFN-gamma, TNF-alpha, IL-1beta and LPS do not stimulate expression of inducible nitric oxide synthase and production of nitric oxide in immuno-purified human monocytes

    Directory of Open Access Journals (Sweden)

    Ceretto Monica

    2007-06-01

    Full Text Available Abstract Background Enhanced production of nitric oxide (NO following upmodulation of the inducible isoform of NO synthase (iNOS by haemozoin (HZ, inflammatory cytokines and LPS may provide protection against Plasmodium falciparum malaria by killing hepatic and blood forms of parasites and inhibiting the cytoadherence of parasitized erythrocytes (RBC to endothelial cells. Monocytes and macrophages are considered to contribute importantly to protective upregulation of iNOS and production of NO. Data obtained with murine phagocytes fed with human HZ and synthetic HZ (sHZ indicate that supplemental treatment of those cells with IFN-gamma elicited significant increases in protein and mRNA expression of iNOS and NO production, providing a potential mechanism linking HZ phagocytosis and increased production of NO. Purpose of this study was to analyse the effect of P. falciparum HZ and sHZ supplemental to treatment with IFN-gamma and/or a stimulatory cytokine-LPS mix on iNOS protein and mRNA expression in immuno-purified human monocytes. Methods Adherent immunopurified human monocytes (purity >85%, and murine phagocytic cell lines RAW 264.7, N11 and ANA1 were fed or not with P. falciparum HZ or sHZ and treated or not with IFN-gamma or a stimulatory cytokine-LPS mix. Production of NO was quantified in supernatants, iNOS protein and mRNA expression were measured after immunoprecipitation and Western blotting and quantitative RT-PCT, respectively. Results Phagocytosis of HZ/sHZ by human monocytes did not increase iNOS protein and mRNA expression and NO production either after stimulation by IFN-gamma or the cytokine-LPS mix. By contrast, in HZ/sHZ-laden murine macrophages, identical treatment with IFN-gamma and the cytokine-LPS mix elicited significant increases in protein and mRNA expression of iNOS and NOS metabolites production, in agreement with literature data. Conclusion Results indicate that human monocytes fed or not with HZ/sHZ were constantly

  15. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  16. Crystal structure of TruD, a novel pseudouridine synthase with a new protein fold.

    Science.gov (United States)

    Kaya, Yusuf; Del Campo, Mark; Ofengand, James; Malhotra, Arun

    2004-04-30

    TruD, a recently discovered novel pseudouridine synthase in Escherichia coli, is responsible for modifying uridine13 in tRNA(Glu) to pseudouridine. It has little sequence homology with the other 10 pseudouridine synthases in E. coli which themselves have been grouped into four related protein families. Crystal structure determination of TruD revealed a two domain structure consisting of a catalytic domain that differs in sequence but is structurally very similar to the catalytic domain of other pseudouridine synthases and a second large domain (149 amino acids, 43% of total) with a novel alpha/beta fold that up to now has not been found in any other protein.

  17. ESR-spektroskopische Untersuchungen der F0F1-ATP-Synthase aus Escherichia coli

    OpenAIRE

    Motz, Christian

    1999-01-01

    Die FoF1-ATP-Synthase katalysiert die Synthese von ATP aus ADP und Pi bei der oxidativen bzw. Photophosphorylierung. Der ATP-Synthase-Komplex läßt sich in zwei funktionelle Einheiten unterteilen: Fo ist ein integraler Membranproteinkomplex, der den Protonenkanal bildet. F1 hingegen ist ein wasserlöslicher Proteinkomplex, der die Nukleotidbindungsstellen trägt. Die ATP-Synthase aus Escherichia coli hat die Zusammensetzung alpha3beta3gamma delta epsilon für die F1 und ab2c9-12 für den Fo-Teil. ...

  18. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  19. Prenyldiphosphate synthases and gibberellin biosynthesis

    NARCIS (Netherlands)

    van Schie, C.C.N.; Haring, M.A.; Schuurink, R.C.; Bach, T.J.; Rohmer, M.

    2013-01-01

    Gibberellins are derived from the diterpene precursor geranylgeranyl diphophosphate (GGPP). GGPP is converted to ent-kaurene, which contains the basic structure of gibberellins, in the plastids by the combined actions of copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Generally, ge

  20. Production and characterisation of monoclonal antibodies to phytoene synthase of Lycopersicon esculentum.

    Science.gov (United States)

    Fraser, P D; Misawa, N; Sandmann, G; Johnson, J; Schuch, W; Bramley, P M

    1998-10-01

    Monoclonal antibodies have been prepared against the tomato (Lycopersicon esculentum Mill.) fruit ripening-enhanced phytoene synthase (PSY1). The antigen was prepared as a beta-galactosidase fusion protein by cloning a 1.13 kb fragment of Psy1 cDNA into pUR291, followed by transformation of E. coli. The fusion protein, induced by IPTG, was purified by preparative SDS-PAGE and used to elicit an immune response. The cell lines were screened for cross-reactivity against beta-galactosidase-phytoene synthase fusion protein in E. coli extracts using western blotting and ELISA detection procedures. Positive clones were further screened for their ability to cross-react with the mature phytoene synthase protein on western blots as well as their ability to inhibit enzyme activity. Eleven monoclonal lines were obtained. Nine of these, all of the IgM isotype, exhibited strong responses to phytoene synthase of ripe tomato fruit on western blots, but did not inhibit enzyme activity effectively. The other two lines (IgG/la 2 isotypes) inhibited phytoene synthase activity in ripe tomato stroma, but produced a poor response to the protein on western blots. The monoclonals identified a ripe fruit phytoene synthase of 38 kDa, exclusively located in the chromoplast. In contrast, antibodies were unable to detect microbial phytoene synthases, nor phytoene synthase of maize leaf, tomato chloroplast or mango fruit extracts, either on western blots or from inhibition of phytoene synthase activity. However, they did cross-react with a 44 kDa protein from carrot leaf stroma and with three different proteins (44, 41, and 37 kDa) in carrot root. Cross-reactivity was also found with a 37 kDa protein from pumpkin fruit stroma.

  1. Prospective Comparison of the Diagnostic Potential of Real-Time PCR, Double-Sandwich Enzyme-Linked Immunosorbent Assay for Galactomannan, and a (1→3)-β-d-Glucan Test in Weekly Screening for Invasive Aspergillosis in Patients with Hematological Disorders

    Science.gov (United States)

    Kawazu, Masahito; Kanda, Yoshinobu; Nannya, Yasuhito; Aoki, Katsunori; Kurokawa, Mineo; Chiba, Shigeru; Motokura, Toru; Hirai, Hisamaru; Ogawa, Seishi

    2004-01-01

    The establishment of an optimal noninvasive method for diagnosing invasive aspergillosis (IA) is needed to improve the management of this life-threatening infection in patients with hematological disorders, and a number of noninvasive tests for IA that target different fungal components, including galactomannan, (1→3)-β-d-glucan (BDG), and Aspergillus DNA, have been developed. In this study, we prospectively evaluated the diagnostic potential of three noninvasive tests for IA that were used in a weekly screening strategy: the double-sandwich enzyme-linked immunosorbent assay (ELISA) for galactomannan (Platelia Aspergillus), a real-time PCR assay for Aspergillus DNA (GeniQ-Asper), and an assay for BDG (β-glucan Wako). We analyzed 149 consecutive treatment episodes in 96 patients with hematological disorders who were at high risk for IA and diagnosed 9 proven IA cases, 2 probable IA cases, and 13 possible invasive fugal infections. In a receiver-operating characteristic (ROC) analysis, the area under the ROC curve was greatest for ELISA, using two consecutive positive results (0.97; P = 0.036 for ELISA versus PCR, P = 0.055 for ELISA versus BDG). Based on the ROC curve, the cutoff for the ELISA could be reduced to an optical density index (O.D.I.) of 0.6. With the use of this cutoff for ELISA and cutoffs for PCR and BDG that give a comparable level of specificity, the sensitivity/specificity/positive predictive value/negative predictive value of the ELISA and the PCR and BDG tests were 1.00/0.93/0.55/1.00, 0.55/0.93/0.40/0.96, and 0.55/0.93/0.40/0.96, respectively. In conclusion, among these weekly screening tests for IA, the double-sandwich ELISA test was the most sensitive at predicting the diagnosis of IA in high-risk patients with hematological disorders, using a reduced cutoff of 0.6 O.D.I. PMID:15184460

  2. THUMP--a predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases.

    Science.gov (United States)

    Aravind, L; Koonin, E V

    2001-04-01

    Sequence profile searches were used to identify an ancient domain in ThiI-like thiouridine synthases, conserved RNA methylases, archaeal pseudouridine synthases and several uncharacterized proteins. We predict that this domain is an RNA-binding domain that adopts an alpha/beta fold similar to that found in the C-terminal domain of translation initiation factor 3 and ribosomal protein S8.

  3. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    Science.gov (United States)

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  4. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr;

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichin......Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  5. Biphenyl synthase, a novel type III polyketide synthase.

    Science.gov (United States)

    Liu, B; Raeth, T; Beuerle, T; Beerhues, L

    2007-05-01

    Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.

  6. Comparison of wild-type and UV-mutant beta-glucanase-producing strains of Talaromyces emersonii with potential in brewing applications.

    Science.gov (United States)

    McCarthy, Tracey C; Lalor, Eoin; Hanniffy, Orla; Savage, Angela V; Tuohy, Maria G

    2005-04-01

    A screen of 46 UV-mutant strains of the moderately thermophilic fungus Talaromyces emersonii yielded two mutants (TC2, TC5) that displayed gross morphological differences to the parent strain and enhanced activity against mixed linkage cereal beta-glucans. Activity against beta-(1, 3)(1, 4)-D: -glucan from barley (BBGase) was measured during growth of the mutant and wild-type strains on a variety of carbon sources, ranging from solka floc to crude cereal fractions. In liquid culture, TC2 and TC5 secreted 1.2- to 8.6-fold more BBGase than the parent strain and markedly less beta-glucosidase (exo-activity); enzyme levels were dependent on the carbon source. Cellulose induced high BBGase. However, beet pulp, wheat bran, carob and tea-leaves were cheap and effective inducers. T. emersonii wild-type, TC2 and TC5 crude enzyme preparations achieved similar end-points during the hydrolysis of commercial barley beta-glucan (13.0-16.9%), but were more active against crude beta-glucan from barley (16.0-24.2% hydrolysis). The products of hydrolysis were quantified by high-performance anion-exchange chromatography. Mash trials indicated that enzyme preparations from all three organisms effected a significant reduction in wort viscosity and residual mash beta-glucan. Finally, TC2 and TC5 produce more efficient beta-glucan-depolymerizing enzymes; and wheat bran and solka floc can be used to provide inexpensive and potent enzyme cocktails with potential in brewing applications.

  7. Genetics Home Reference: GM3 synthase deficiency

    Science.gov (United States)

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions GM3 synthase deficiency GM3 synthase ...

  8. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    Science.gov (United States)

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  9. Cholesterol-Lowering Effect of Beta Glucan Extracted from Saccharomyces cerevisiae in Rats.

    Science.gov (United States)

    Kusmiati; Dhewantara, F X Rizky

    2016-01-01

    Glucans are present in fungi, plants, algae, and bacteria. β-Glucan, one of the major cell wall components of Saccharomyces cerevisiae, has been found to enhance immune functions. Glucans are glucose polymers with an α- or β-type glycosidic chain. The role of (1→3)-β-D-glucan is in the maintenance of yeast cell wall shape and rigidity. Studies reveal that soluble glucans can lower total cholesterol and LDL levels in patients with hypercholesterolemia. The important benefit of β-glucan is to improve the immune system and to decrease cholesterol levels in the blood. Several studies have reported the benefits of β-glucan as: antiseptic, antioxidant, anti-aging, immune system activators, protection against radiation, anti-inflammatory, anti-diabetic, anti-cholesterol etc. In this research S. cerevisiae was cultured in yeast extract-peptone-glucose (YPG) broth medium to produce beta-glucan. Cells were harvested at the stationary phase, washed, and disrupted by means of sonication method. The obtained cell walls were used to prepare alkali-soluble β-glucan (glucan-S1). In this regard, 2% sodium hydroxide (NaOH) and 3% acetic acid were used in alkaline-acid extraction, respectively. Potential use of beta-glucan extract as an anticholesterol agent was tested using Sprague dawley strain rats. The experiments were divided into eight groups with four replicates: Group I (normal control), group II (fed with cholesterol without beta-glucan), group III (fed with cholesterol + atorvastatin), group IV (fed with cholesterol + β-glucan standard), group V-VIII (fed of cholesterol + β-glucan of S. cerevisiae with each dose of 10, 20, 30, and 40 mg / BW. Rats were fed with cholesterol for 14 days, except for group I. Analysis of blood was carried out to determine total cholesterol, triglycerides, and malondialdehyde. The results showed that beta-glucan crude obtained from S. cerevisiae cultures was 6.890g.L(-1). Βeta-glucan extract of S. cerevisiae can reduce total

  10. POTATO GRANULE-BOUND STARCH SYNTHASE PROMOTER-CONTROLLED GUS EXPRESSION - REGULATION OF EXPRESSION AFTER TRANSIENT AND STABLE TRANSFORMATION

    NARCIS (Netherlands)

    VANDERSTEEGE, G; NIEBOER, M; SWAVING, J; TEMPELAAR, MJ

    1992-01-01

    Chimaeric genes of promoter sequences from the potato gene encoding granule-bound starch synthase (GBSS) and the beta-glucuronidase (GUS) reporter gene were used to study GBSS expression and regulation. Analysis of stable transformants revealed that a GBSS promoter sequence of 0.4 kb was sufficient

  11. The roles of nitric oxide synthase and nitric oxide in beta-amyloid neurotoxicity and pathogenesis of Alzheimer's disease%NOS及NO在介导Aβ神经毒性和阿尔茨海默病发病机制中的作用

    Institute of Scientific and Technical Information of China (English)

    刘辉; 陈俊抛; 梁丰; 李欣

    2003-01-01

    Aim To investigate the causative role of nitric oxide synthase (NOS) and nitric oxide (NO) in neurotoxicity of beta-Amyloid( Aβ) and the pathogenesis of Alzheimer disease (AD) by the intervention of Aminoguanidine (AG),a selective inducible NOS (iNOS) inhibitor,and 7-nitroindazole (7-NI), a selective neuronal NOS (nNOS) inhibitor, in the neurotoxicity of Aβ 1-40.Methods 35 adult SD rats selected from Y maze were divided into 7 groups:normal,saline,Aβ 1-40,AG+ Aβ 1-40,7-NI+ Aβ 1-40,Peanut oil(PO)+ Aβ 1-40 and saline+ Aβ 1-40.Using behavioral and neuropathological methods to observed the effects of Aβ 1-40 injection into hippocampi on rats learning and memory in Y maze and on the neuropathology in hippocampi.The intervention by intraperitoneal administration of AG and 7-NI in the neurotoxicity of Aβ 1-40 was studied then.Results In Aβ 1-40 injection group, the numbers of trial of acquisition and retrieval in Y maze were significantly increased (27.8± 2.3 and 19.7± 4.7),and the lesion length of DGCs was (1.93± 0.26) mm rounding with reactive glia.Intraperitoneal administration of AG, but not 7-NI,could reverse the damages caused by Aβ 1-40.In AG + Aβ 1-40 group, the numbers of trial of acquisition and retrieval were (14.6± 4.9) and (8.5± 2.1)(Facquisition=146.438,Pacquisition=0.000;Fretrieval=113.654,Pretrieval=0.000), and the lesion length of DGCs was (0.41± 0.21) mm with less reactive glia(Facquisition=146.438,Pacquisition=0.000;Fretrieval=113.654,Pretrieval=0.000).Conclusion iNOS/NO participates in the mechanisms of Aβ-induced neurotoxicity and may play an important role in the pathogenesis of AD.%目的观察诱导型一氧化氮合酶( iNOS)抑制剂胍氨酸( AG)及神经元型一氧化氮合酶( nNOS)抑制剂 7-硝基吲哚( 7-NI)对β淀粉样蛋白 1-40( Aβ 1-40)在体神经毒性的干预,进一步探讨一氧化氮合酶( NOS)及一氧化氮( NO)在 Aβ神经毒性和 Alzheimer病( AD)发病机制中的介导作用.方法雄性 SD

  12. 醛固酮合酶基因和11-β羟化酶基因多态性及其单体型与醛固酮瘤发病风险的关系%Association of aldosterone synthase and 11-beta hydroxylase genes polymorphism and haplotype with susceptibility of aldosterone producing adenoma

    Institute of Scientific and Technical Information of China (English)

    王保军; 陈路遥; 李新涛; 马鑫; 杨素霞; 欧阳金芝; 张旭

    2014-01-01

    目的 探讨醛固酮合酶基因(CYP11B2)和11-β羟化酶基因(CYP11B1)多态性及其单体型与醛固酮瘤发病风险的关系.方法 提取81例醛固酮瘤患者和103例对照人群外周血DNA,应用2个独立聚合酶链反应(PCR)和TaqMan探针技术对CYP11B2和CYP11B1基因的7个多态性位点(rs6387、rs6410、rs3097、rs4539、intron2转位、rs1799998、rs 13268025)进行基因分型,采用Logistic回归模型分析不同等位基因、基因型和单体型与醛固酮瘤发病风险的相关性.结果 intron2转位多态性位点C等位基因在病例组中的分布频率(25.3%)高于对照组(15.0%),携带C等位基因的个体较携带W等位基因的个体发生醛固酮瘤的风险增加了1.04倍(P<0.01).rs13268025位点中携带C等位基因的个体较携带T等位基因的个体发生醛固酮瘤的风险增加了0.91倍(P<0.05).7个多态性位点间存在着不同程度的连锁不平衡.单体型分析示AGGAWTT为最常见的单体型,单体型GAGAWTT是AGGAWTT发病风险的4.43倍(P<0.01).结论 CYP11B2和CYP11B1基因多态性与醛固酮瘤发病风险明显相关,intron2转位多态性位点的C等位基因、rs13268025位点的C等位基因、单体型GAGAWTT是醛固酮瘤发病的危险因素.%Objective To evaluate the effects of aldosterone synthase (CYP1 1B2) and 11-beta hydroxylase (CYP1 1 B1) genes polymorphism and haplotype on the susceptibility of aldosterone producing adenoma.Methods Peripheral blood DNA was extracted from 81 aldosterone producing adenoma patients and 103 control subjects.Real-time TaqMan probes technique and two seperate PCRs were used for genotyping seven polymorphism sites of the CYP1 1B2 and CYP11B1 genes (rs6387,rs6410,rs3097,rs4539,intron 2 conversion,rs1799998,rs13268025).Logistic regression model was performed to analyze the relationship of different genotypes or haplotype and the susceptibility of aldosterone producing adenoma.Results The frequency for allele C at site intron 2

  13. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  14. β受体激动增加人脐静脉内皮细胞内皮型一氧化氮合酶活性的细胞内机制%Protein kinases involved in the endothelial nitric oxide synthase activation by beta-adrenoceptors stimulation in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    蒲娟娟; 徐标

    2008-01-01

    .72)%(P0.05).结论:β-肾上腺素能受体激动剂异丙肾上腺素能激活内皮型一氧化氮合酶活性的信号通路,在此过程中蛋白激酶A及磷脂酰肌醇3激酶均有参与.%BACKGROUND: Beta-adrenergic activation can enhance signal-transduction pathway of endothelial nitric oxide (NO). Vascular endothelial NO production in response to β -adrenergic activation is important in the normal control of vessel tone by the sympatheadrenal system. Previous trials have demonstrated that endothelial nitric oxide synthase (eNOS) activated by isoprenaline, β -adrenergic agonist, may be correlated with phosphorylation of eNOS. OBJECTIVE: To investigate the possible protein kinase involved in the signal transduction of the eNOS activation by β -adrenoceptor (β AR) stimulation in human vascular endothelium. DESIGN: Comparative observation. SETTING: Department of Geriatrics, First Affiliated Hospital of Zhengzhou University. MATERIALS: The experiment was performed at the Open Key Clinic Medical Experimental Laboratory of University of Henan Province between September 2006 and June 2007. Fresh umbilical cords were obtained following delivery of healthy babies to healthy normotensive mothers, either by vaginal delivery or by elective Caesarean section. The written informed consent was obtained from all donors. Approval was granted by the Affiliated Hospital of Zhengzhou University. Isoprenaline, H-89, Wortmannin, [3H]-L-arginine were from Sigma, USA. METHODS: Blank control group, H-89 group (protein kinase inhibitor), Wortmannin group (phosphatidylinositol 3-kinase inhibitor) and H-89+Wortmannin group were set up, and isoprenaline subgroup and blank subgroup were subdivided with 3 tubes in each group. Human umbilical vein endothelial cells (HUVECs) were cultured with H-89 and Wortmannin, separately for 10 minutes, then agonist isoprenaline or vehicle was added and the incubation continued for another 30 minutes, eNOS activity was determined by the conversion of [3H

  15. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  16. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    Science.gov (United States)

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  17. Variação no conteúdo de beta-glucanas em cultivares brasileiros de aveia Beta-glucan content variation in brasilian oat cultivars

    Directory of Open Access Journals (Sweden)

    Roberta M. de SÁ

    2000-04-01

    Full Text Available Com o crescente interesse em alimentos funcionais e nutracêuticos, a aveia (Avena sativa L. tem se destacado, devido ao seu teor de fibras alimentares e principalmente às beta-glucanas. As (1,3(1,4-beta-D-glucanas, fibras alimentares na maioria solúveis, atuam na redução do colesterol em indivíduos com hipercolesterolemia. Existem estudos para determinar as causas de variação do teor desta fibra em aveia, porém, pouco se sabe sobre a aveia cultivada no Brasil. O objetivo deste trabalho foi verificar se existem diferenças no conteúdo de beta-glucanas entre cultivares brasileiros e se há variação na porcentagem desta fibra devido ao ano de cultivo. Os cultivares IAC7, UFRGS14, UPF16 e UPF17 (3 amostras de cada, e ainda três amostras do cultivar IAC7 para cada ano de cultivo (97 e 98, foram analisados segundo os métodos da AACC (American Association of Cereal Chemists. Os teores médios (peso seco de beta-glucanas foram 6,50% (IAC7, 4,30% (UFRGS14, 3,51% (UPF16 e 3,78% (UPF17, com erro padrão de ±0,084 e coeficiente de variação de 7,89 %. Observou-se efeito significativo dos cultivares (p=0,03 e grande variabilidade entre as amostras (p=0,0001. O cultivar IAC7 apresentou média de beta-glucanas de 5,11% em 97 e 6,50 % em 98 (erro padrão ±0,14; CV=10,53% e observou-se efeito significativo do ano de cultivo.With the increasing interest in functional foods and nutraceuticals, oats (Avena sativa L. have received special attention because of their dietary fiber contents, and specially of their beta-glucans. The mostly soluble dietary fibers (1,3(1,4-beta-D-glucans, reduce serum cholesterol in individuals with hypercholesterolemia. There are studies about the causes of variation in the contents of this fiber in oats, however, very little is known about Brazilian cultivars. The objective of this work was to verify if there were differences in the beta-glucan contents among brazilian cultivars and if there was variation in the

  18. GSK3beta is a negative regulator of the transcriptional coactivator MAML1.

    Science.gov (United States)

    Saint Just Ribeiro, Mariana; Hansson, Magnus L; Lindberg, Mikael J; Popko-Scibor, Anita E; Wallberg, Annika E

    2009-11-01

    Glycogen synthase kinase 3beta (GSK3beta) is involved in several cellular signaling systems through regulation of the activity of diverse transcription factors such as Notch, p53 and beta-catenin. Mastermind-like 1 (MAML1) was originally identified as a Notch coactivator, but has also been reported to function as a transcriptional coregulator of p53, beta-catenin and MEF2C. In this report, we show that active GSK3beta directly interacts with the MAML1 N-terminus and decreases MAML1 transcriptional activity, suggesting that GSK3beta might target a coactivator in its regulation of gene expression. We have previously shown that MAML1 increases global acetylation of histones, and here we show that the GSK3 inhibitor SB41, further enhances MAML1-dependent histone acetylation in cells. Finally, MAML1 translocates GSK3beta to nuclear bodies; this function requires full-length MAML1 protein.

  19. The nonsteroidal anti-inflammatory drug, nabumetone, differentially inhibits beta-catenin signaling in the MIN mouse and azoxymethane-treated rat models of colon carcinogenesis.

    Science.gov (United States)

    Roy, Hemant K; Karolski, William J; Wali, Ramesh K; Ratashak, Anne; Hart, John; Smyrk, Thomas C

    2005-01-20

    The mechanisms through which beta-catenin signaling is inhibited during colorectal cancer chemoprevention by nonsteroidal anti-inflammatory agents is incompletely understood. We report that nabumetone decreased uninvolved intestinal mucosal beta-catenin levels in the MIN mouse with a concomitant increase in glycogen synthase kinase (GSK)-3beta levels, an enzyme that targets beta-catenin for destruction. However, in the azoxymethane-treated rat, where beta-catenin is frequently rendered GSK-3beta-insensitive, nabumetone failed to alter beta-catenin levels but did decrease beta-catenin nuclear localization and transcriptional activity as gauged by cyclin D1. In conclusion, we demonstrate that the differential mechanisms for beta-catenin suppression may be determined, at least partly, by GSK-3beta.

  20. Phenotype abnormality: 107 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 107 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u613i decreased densi...ty of (1->4)-beta-D-glucan in organ named whole plant ... whole plant ... decreased mass density ... (1->4)-beta-D-glucan ...

  1. Environ: E00815 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available E00815 Maitake Medicinal herb 1,3-beta-D-Glucan [CPD:C00965], Protein [CPD:C00017],...-beta-D-Glucan [CPD:C00965] Medicinal herbs [BR:br08322] Fungi Basidiomycetes E00815 Maitake ...

  2. Solid-state cultivation of Grifola frondosa (Dicks: Fr) S.F. Gray biomass and immunostimulatory effects of fungal intra- and extracellular beta-polysaccharides.

    Science.gov (United States)

    Svagelj, Mirjan; Berovic, Marin; Boh, Bojana; Menard, Anja; Simcic, Sasa; Wraber, Branka

    2008-01-01

    Grifola frondosa strain GF3, was cultivated on solid-state substrate consisting of milled whole corn plant (Zea mays) and olive press cake supplemented with mineral additives and olive oil. Maintenance of the moisture content in the solid substrate is of crucial importance. Moistures higher than 70% promote growth of G. frondosa mycelium and polysaccharide production. Four fractions of pure extracellular beta-D-glucans with total mass 127.2mg and four fractions of intracellular polysaccharides with total mass 47.2mg were isolated. Polysaccharides were further separated by ion-exchange, gel and affinity chromatography. Isolated polysaccharide fractions from fungal mycelium proved to induce moderate amounts of TNF-alpha in PBMC cells in vitro. The extent of TNF-alpha induction was up to 322pgmL(-1) at a polysaccharide concentration of 200microgmL(-1) for the intracellular fraction. The TNF-alpha inducing activity is comparable to romurtide, which has been used as a supporting therapy in cancer patients treated with radiotherapy and/or chemotherapy.

  3. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    OpenAIRE

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic ch...

  4. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    Science.gov (United States)

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  5. Beta-carotene

    Science.gov (United States)

    ... patches on the tongue and mouth called oral leukoplakia. Taking beta-carotene by mouth for up to 12 months seems to decrease symptoms of oral leukoplakia. Osteoarthritis. Beta-carotene taken by mouth may prevent ...

  6. Signal transduction and metabolic flux of beta-thujaplicin and monoterpene biosynthesis in elicited Cupressus lusitanica cell cultures.

    Science.gov (United States)

    Zhao, Jian; Matsunaga, Yoko; Fujita, Koki; Sakai, Kokki

    2006-01-01

    beta-Thujaplicin is an antimicrobial tropolone derived from geranyl pyrophosphate(GPP) and monoterpene intermediate. Yeast elicitor-treated Cupressus lusitanica cell cultures accumulate high levels of beta-thujaplicin at early stages and other monoterpenes at later stages post-elicitation. The different regulation of beta-thujaplicin and monoterpene biosynthesis and signal transduction directing metabolic flux to beta-thujaplicin firstly and then shifting metabolic flow from beta-thujaplicin to other monoterpene biosynthesis were investigated. The earlier rapid induction of beta-thujaplicin accumulation and a later stimulation of monoterpene biosynthesis by yeast elicitor are in well agreement with elicitor-induced changes in activity of three monoterpene biosynthetic enzymes including isopentenyl pyrophosphate isomerase, GPP synthase, and monoterpene synthase. Yeast elicitor induces an earlier and stronger beta-thujaplicin production and monoterpene biosynthetic enzyme activity than methyl jasmonate (MeJA) does. Profiling all monoterpenes produced by C. lusitanica cell cultures under different conditions reveals that beta-thujaplicin biosynthesis parallels with other monoterpenes and competes for common precursor pools. Yet beta-thujaplicin is produced pre-dominantly at early stage of elicitation whereas other monoterpenes are mainly accumulated at late stage while beta-thujaplicin is metabolized. It is suggested that yeast elicitor-treated C. lusitanica cells preferentially accumulate beta-thujaplicin as a primary defense and other monoterpenes as a secondary defense. Inhibitor treatments suggest that immediate production of beta-thujaplicin post-elicitation largely depends on pre-existing enzymes and translation of pre-existing transcripts as well as recruitment of precursor pools from both the cytosol and plastids. The later beta-thujaplicin and other monoterpene accumulation strictly depends on active transcription and translation. Induction of beta

  7. Cloning and analysis of valerophenone synthase gene expressed specifically in lupulin gland of hop (Humulus lupulus L.).

    Science.gov (United States)

    Okada, Y; Ito, K

    2001-01-01

    Resin and essential oil derived from hop (Humulus lupulus L.) cones are very important compounds for beer brewing, and they specifically accumulate in the lupulin gland of hop cones. In order to identify the genes responsible for the biosynthetic pathway of these compounds and use the identified genes for hop breeding using Marker Assisted Selection and transformation techniques, genes expressed specifically in the lupulin gland were cloned and sequenced. One of them was suggested to be similar to the chalcone synthase gene from the DNA sequence. The translation product of the gene had the activity of valerophenone synthase, which catalyzes a part of the synthesis reaction of alpha-acid and beta-acid. Northern analysis showed that the valerophenone synthase gene seemed to be expressed specifically in the lupulin gland.

  8. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian B; Nielsen, Jakob N.; Birk, Jesper Bratz

    2004-01-01

    The 5'AMP-activated protein kinase (AMPK) is a potential antidiabetic drug target. Here we show that the pharmacological activation of AMPK by 5-aminoimidazole-1-beta-4-carboxamide ribofuranoside (AICAR) leads to inactivation of glycogen synthase (GS) and phosphorylation of GS at Ser 7 (site 2). ...

  9. Diversity of cystathionine ß-synthase haplotypes bearing the most common homocystinuria mutation c.833T>C: a possible role for gene conversion

    DEFF Research Database (Denmark)

    Vyletal, P; Sokolová, J; Cooper, DN;

    2007-01-01

    Homozygosity or compound heterozygosity for the c.833T>C transition (p.I278 T) in the cystathionine beta-synthase (CBS) gene represents the most common cause of pyridoxine-responsive homocystinuria in Western Eurasians. However, the frequency of the pathogenic c.833C allele, as observed in healthy...

  10. Mammalian N-acetylglutamate synthase.

    Science.gov (United States)

    Morizono, Hiroki; Caldovic, Ljubica; Shi, Dashuang; Tuchman, Mendel

    2004-04-01

    N-Acetylglutamate synthase (NAGS, E.C. 2.3.1.1) is a mitochondrial enzyme that catalyzes the formation of N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthetase I (CPSI). The mouse and human NAGS genes have been identified based on similarity to regions of NAGS from Neurospora crassa and cloned from liver cDNA libraries. These genes were shown to complement an argA- (NAGS) deficient Escherichia coli strain, and enzymatic activity of the proteins was confirmed by a new stable isotope dilution assay. The deduced amino acid sequence of mammalian NAGS contains a putative mitochondrial-targeting signal at the N-terminus. The mouse NAGS preprotein was overexpressed in insect cells to determine post-translational modifications and two processed proteins with different N-terminal truncations have been identified. Sequence analysis using a hidden Markov model suggests that the vertebrate NAGS protein contains domains with a carbamate kinase fold and an acyl-CoA N-acyltransferase fold, and protein crystallization experiments are currently underway. Inherited NAGS deficiency results in hyperammonemia, presumably due to the loss of CPSI activity. We, and others, have recently identified mutations in families with neonatal and late-onset NAGS deficiency and the identification of the gene has now made carrier testing and prenatal diagnosis feasible. A structural analog of NAG, carbamylglutamate, has been shown to bind and activate CPSI, and several patients have been reported to respond favorably to this drug (Carbaglu).

  11. Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1.

    Science.gov (United States)

    Koeberle, Andreas; Northoff, Hinnak; Werz, Oliver

    2009-08-01

    Prostaglandin E(2) (PGE(2)) plays a crucial role in the apparent link between tumor growth and chronic inflammation. Cyclooxygenase (COX)-2 and microsomal PGE(2) synthase-1, which are overexpressed in many cancers, are functionally coupled and thus produce massive PGE(2) in various tumors. Curcumin, a polyphenolic beta-diketone from tumeric with anti-carcinogenic and anti-inflammatory activities, was shown to suppress PGE(2) formation and to block the expression of COX-2 and of microsomal PGE(2) synthase-1. Here, we identified microsomal PGE(2) synthase-1 as a molecular target of curcumin and we show that inhibition of microsomal PGE(2) synthase-1 activity is the predominant mechanism of curcumin to suppress PGE(2) biosynthesis. Curcumin reversibly inhibited the conversion of PGH(2) to PGE(2) by microsomal PGE(2) synthase-1 in microsomes of interleukin-1beta-stimulated A549 lung carcinoma cells with an IC(50) of 0.2 to 0.3 micromol/L. Closely related polyphenols (e.g., resveratrol, coniferyl alcohol, eugenol, rosmarinic acid) failed in this respect, and isolated ovine COX-1 and human recombinant COX-2 were not inhibited by curcumin up to 30 micromol/L. In lipopolysaccharide-stimulated human whole blood, curcumin inhibited COX-2-derived PGE(2) formation from endogenous or from exogenous arachidonic acid, whereas the concomitant formation of COX-2-mediated 6-keto PGF(1)alpha and COX-1-derived 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid was suppressed only at significant higher concentrations. Based on the key function of PGE(2) in inflammation and carcinogenesis, inhibition of microsomal PGE(2) synthase-1 by curcumin provides a molecular basis for its anticarcinogenic and anti-inflammatory activities.

  12. Forward-Looking Betas

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory

    Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward......-looking. This paper introduces a radically different approach to estimating market betas. Using the tools in Bakshi and Madan (2000) and Bakshi, Kapadia and Madan (2003) we employ the information embedded in the prices of individual stock options and index options to compute our forward-looking market beta...

  13. Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L.

    Science.gov (United States)

    Li, Meng-Jun; Li, Ai-Qin; Xia, Han; Zhao, Chuan-Zhi; Li, Chang-Sheng; Wan, Shu-Bo; Bi, Yu-Ping; Wang, Xing-Jun

    2009-06-01

    The cultivated peanut is a valuable source of dietary oil and ranks fifth among the world oil crops. Plant fatty acid biosynthesis is catalysed by type II fatty acid synthase (FAS) in plastids and mitochondria. By constructing a full-length cDNA library derived from immature peanut seeds and homology-based cloning, candidate genes of acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, beta-ketoacyl-ACP synthase (I, II, III), beta-ketoacyl-ACP reductase, beta-hydroxyacyl-ACP dehydrase and enoyl-ACP reductase were isolated. Sequence alignments revealed that primary structures of type II FAS enzymes were highly conserved in higher plants and the catalytic residues were strictly conserved in Escherichia coli and higher plants. Homologue numbers of each type II FAS gene expressing in developing peanut seeds varied from 1 in KASII, KASIII and HD to 5 in ENR. The number of single-nucleotide polymorphisms (SNPs) was quite different in each gene. Peanut type II FAS genes were predicted to target plastids except ACP2 and ACP3. The results suggested that peanut may contain two type II FAS systems in plastids and mitochondria. The type II FAS enzymes in higher plants may have similar functions as those in E. coli.

  14. Insights into Diterpene Cyclization from Structure of Bifunctional Abietadiene Synthase from Abies grandis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ke; Gao, Yang; Hoy, Julie A.; Mann, Francis M.; Honzatko, Richard B.; Peters, Reuben J. (Iowa State)

    2013-09-24

    Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 {angstrom} resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains ({alpha}, {beta}, and {gamma}). The class I active site is within the C-terminal {alpha} domain, and the class II active site is between the N-terminal {gamma} and {beta} domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg{sup 2+} complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This 'loop-in' conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the 'loop-out' conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities.

  15. Critical aspartic acid residues in pseudouridine synthases.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  16. Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka spruce.

    Science.gov (United States)

    McKay, S Ashley Byun; Hunter, William L; Godard, Kimberley-Ann; Wang, Shawn X; Martin, Diane M; Bohlmann, Jörg; Plant, Aine L

    2003-09-01

    Conifers possess inducible terpenoid defense systems. These systems are associated with the formation of traumatic resin ducts (TRD) and are underpinned by enhanced gene expression and activity of terpene synthases (TPS), enzymes responsible for oleoresin formation. We first determined that Sitka spruce (Picea sitchensis [Bong.] Carriere) had the capacity for TRD formation by mechanically wounding representative trees. We then proceeded to investigate whether the white pine weevil (Pissodes strobi Peck.), a stem-boring insect, can influence the expression of genes encoding monoterpene synthases (mono-tps) in Sitka spruce. We went on to compare this response with the effects of a simulated insect attack by drill wounding. A significant increase in mono-tps transcript level was observed in the leaders of lateral branches of weevil-attacked and mechanically wounded trees. In this study, weevils induced a more rapid enhancement of mono-tps gene expression. A full-length Sitka spruce mono-tps cDNA (PsTPS2) was isolated, expressed in Escherichia coli, and functionally identified as (-)-pinene synthase. The recombinant (-)-pinene synthase catalyzes the formation of (-)-alpha-pinene and (-)-beta-pinene, both of which are known constituents of stem oleoresin in Sitka spruce and increase in abundance after weevil attack. These data suggest that increased (-)-pinene synthase gene expression is an important element of the direct defense system deployed in Sitka spruce after insect attack.

  17. An investigation into eukaryotic pseudouridine synthases.

    Science.gov (United States)

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  18. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  19. Betting against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    2014-01-01

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model's five central predictions: (1) Because constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for......, the return of the BAB factor is low. (4) Increased funding liquidity risk compresses betas toward one. (5) More constrained investors hold riskier assets....... for US equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures. (2) A betting against beta (BAB) factor, which is long leveraged low-beta assets and short high-beta assets, produces significant positive risk-adjusted returns. (3) When funding constraints tighten...

  20. Betting Against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model’s five central predictions: (1) Since constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for U...... of the BAB factor is low; (4) Increased funding liquidity risk compresses betas toward one; (5) More constrained investors hold riskier assets........S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return...

  1. Imperfect World of $\\beta\\beta$-decay Nuclear Data Sets

    CERN Document Server

    Pritychenko, B

    2015-01-01

    The precision of double-beta ($\\beta\\beta$) decay experimental half lives and their uncertainties is reanalyzed. The method of Benford's distributions has been applied to nuclear reaction, structure and decay data sets. First-digit distribution trend for $\\beta\\beta$-decay T$_{1/2}^{2\

  2. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Gye Won [Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711 (Korea, Republic of); Yun, Mi-Young [Department of Beauty Health Care, Daejeon University, Daejeon 305-764 (Korea, Republic of); Cuong, Nguyen Manh [Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Gyu-Yong, E-mail: gysong@cnu.ac.kr [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2010-01-01

    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  3. Linkage of subunit interactions, structural changes, and energetics of coenzyme binding in tryptophan synthase.

    Science.gov (United States)

    Wiesinger, H; Hinz, H J

    1984-10-09

    The energetics of binding of the coenzyme pyridoxal 5'-phosphate (PLP) to both the apo beta 2 subunit and the apo alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli has been investigated as a function of pH and temperature by direct microcalorimetric methods. At 25 degrees C, pH 7.5, the binding process proceeds in the time range of minutes and shows a biphasic heat output which permits resolution of the overall reaction into different reaction steps. Binding studies on the coenzyme analogues pyridoxal (PAL), pyridoxine 5'-phosphate (PNP), and pyridoxine (POL) to the protein as well as a comparison of these results with data from studies on PLP binding to epsilon-aminocaproic acid have led to a deconvolution of the complex heat vs. time curves into fast endothermic contributions from electrostatic interaction and Schiff base formation and slow exothermic contributions from the interactions between PLP and the binding domain. The pH-independent, large negative change in heat capacity of about -9.1 kJ/(mol of beta 2 X K) when binding PLP to beta 2 is indicative of major structural changes resulting from complex formation. The much smaller value of delta Cp = -1.7 kJ/(mol of beta 2 X K) for binding of PLP to alpha 2 beta 2 clearly demonstrates the energetic linkage of protein-protein and protein-ligand interactions. Calorimetric titrations of the apo beta 2 subunit with PLP at 35 degrees C have shown that also at this temperature positive cooperativity between the two binding sites occurs. On the basis of these measurements a complete set of site-specific thermodynamic parameters has been established.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. beta-Catenin/TCF pathway plays a vital role in selenium induced-growth inhibition and apoptosis in esophageal squamous cell carcinoma (ESCC) cells.

    Science.gov (United States)

    Zhang, Wei; Yan, Shuang; Liu, Mei; Zhang, Guo; Yang, Shangbin; He, Shun; Bai, Jinfeng; Quan, Lanping; Zhu, Hongxia; Dong, Yan; Xu, Ningzhi

    2010-10-01

    Epidemiological and experimental studies have indicated selenium could reduce the risk of some cancers. In our present study, growth inhibition and apoptosis were detected upon methylseleninic acid (MSA) treatment in human esophageal squamous cell carcinoma cell lines EC9706 and KYSE150. MSA reduced beta-catenin protein levels, while there was no significant change observed on transcriptional levels. Moreover, we found MSA accelerated the degradation of beta-catenin and activated glycogen synthase kinase 3beta (GSK-3beta). Some targets of beta-catenin/TCF pathway and apoptosis-related genes altered after MSA treatment. Notably, utilizing the inducible 293-TR/beta-catenin cell line, we found the apoptotic phenotypes induced by MSA were partially reversed by the overexpression of beta-catenin. Overall, our data indicate the effects induced by MSA in ESCC cells may act on the inhibition of beta-catenin/TCF pathway.

  5. The tomato terpene synthase gene family

    NARCIS (Netherlands)

    Falara, V.; Akhtar, T.A.; Nguyen, T.T.H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Matsuba, Y.; Bonini, M.E.; Schilmiller, A.L.; Last, R.L.; Schuurink, R.C.; Pichersky, E.

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28

  6. Cloning of parsley flavone synthase I.

    Science.gov (United States)

    Martens, S; Forkmann, G; Matern, U; Lukacin, R

    2001-09-01

    A cDNA encoding flavone synthase I was amplified by RT-PCR from leaflets of Petroselinum crispum cv. Italian Giant seedlings and functionally expressed in yeast cells. The identity of the recombinant, 2-oxoglutarate-dependent enzyme was verified in assays converting (2S)-naringenin to apigenin.

  7. Inducible nitric oxide synthase in renal transplantation

    NARCIS (Netherlands)

    Joles, JA; Vos, IH; Grone, HJ; Rabelink, TJ

    2002-01-01

    The importance of the endothelial isoform of nitric oxide synthase (eNOS) has been well established. Endothelium-derived nitric oxide has been shown to be essential for vascular homeostasis and modulation of eNOS has thus become a target in prevention of cardiovascular disease. The role of the induc

  8. Main: 1AQ0 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1,3-1,4-Beta-Glucanase; Chain: A, B; Synonym: 1,3-1,4-Beta-D-Glucan 4-Glucanohydrolase; Other_details: Isoen...KVSFRYVCVGNEVAGGATRNLVPAMKNVHGALVAAGLGHIKVTTSVSQAILGVFSPPSAGSFTGEAAAFMGPVVQFLARTNAPLMANIYPYLAWAYNPSAMDMGYALF...NASGTVVRDGAYGYQNLFDTTVDAFYTAMGKHGGSSVKLVVSESGWPSGGGTAATPANARFYNQHLINHVGRGTPRHPGAIETYIFAMFNENQKDSGVEQNWGLFYPNMQHVYPINF barley_1AQ0.jpg ...

  9. Negative Beta Encoder

    CERN Document Server

    Kohda, Tohru; Aihara, Kazuyuki

    2008-01-01

    A new class of analog-digital (A/D), digital-analog (D/A) converters as an alternative to conventional ones, called $\\beta$-encoder, has been shown to have exponential accuracy in the bit rates while possessing self-correction property for fluctuations of amplifier factor $\\beta$ and quantizer threshold $\

  10. Double beta decay experiments

    CERN Document Server

    Barabash, A S

    2011-01-01

    The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.

  11. Genetics Home Reference: beta thalassemia

    Science.gov (United States)

    ... Understand Genetics Home Health Conditions beta thalassemia beta thalassemia Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Beta thalassemia is a blood disorder that reduces the production ...

  12. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...... I NO synthase immunoreactivity and NADPH diaphorase activity. Type III NO synthase immunoreactivity was observed both in the endothelium of larger vessels and of microvessels. The results establish that human skeletal muscle expresses two different constitutive isoforms of NO synthase in different...... endothelium is consistent with a role for NO in the control of blood flow in human skeletal muscle....

  13. Rapid synthesis of beta zeolites

    Science.gov (United States)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  14. Monoterpene synthases of loblolly pine (Pinus taeda) produce pinene isomers and enantiomers.

    Science.gov (United States)

    Phillips, M A; Savage, T J; Croteau, R

    1999-12-01

    The turpentine fraction of conifer oleoresin is a complex mixture of monoterpene olefins and plays important roles in defense and in the mediation of chemical communication between conifer hosts and insect predators. The stereochemistry of the turpentine monoterpenes is critical in these interactions, influencing host recognition, toxicity, and potency of derived pheromones, and the stereochemical composition of these compounds lends insight into their biogenetic origin, with implications for the numbers and types of enzymes responsible and their corresponding genes. Analysis of the oleoresin from several tissues of loblolly pine (Pinus taeda) showed the derived turpentine to consist mainly of (+)-(3R:5R)-alpha-pinene and (-)-(3S:5S)-beta-pinene. Cell-free extracts from xylem tissue yielded three monoterpene synthases which together account for the monoterpene isomer and enantiomer content of the turpentine of this tissue. The major products of these enzymes, produced from the universal precursor of monoterpenes, geranyl diphosphate, were shown to be (+)-alpha-pinene, (-)-alpha-pinene, and (-)-beta-pinene, respectively. In most properties (molecular mass of approximately 60 kDa, K(m) for geranyl diphosphate of 3 microM, requirement for monovalent and divalent cations), these enzymes resemble other monoterpene synthases from conifer species.

  15. Leptin- or troglitazone-induced lipopenia protects islets from interleukin 1beta cytotoxicity.

    Science.gov (United States)

    Shimabukuro, M; Koyama, K; Lee, Y; Unger, R H

    1997-01-01

    Interleukin 1beta (IL-1beta)-induced beta cell cytotoxicity has been implicated in the autoimmune cytotoxicity of insulin-dependent diabetes mellitus. These cytotoxic effects may be mediated by nitric oxide (NO). Since long-chain fatty acids (FFA), like IL-1beta, upregulate inducible nitric oxide synthase and enhance NO generation in islets, it seemed possible that islets might be protected from IL-1beta-induced damage by lowering their lipid content. We found that IL-1beta-induced NO production varied directly and islet cell viability inversely with islet triglyceride (TG) content. Fat-laden islets of obese rats were most vulnerable to IL-1beta, while moderately fat-depleted islets of food-restricted normal rats were less vulnerable than those of free-feeding normal rats. Severely lipopenic islets of rats made chronically hyperleptinemic by adenoviral leptin gene transfer resisted IL-1beta cytotoxicity even at 300 pg/ml, the maximal concentration. Troglitazone lowered islet TG in cultured islets from both normal rats and obese, leptin-resistant rats and reduced NO production and enhanced cell survival. We conclude that measures that lower islet TG content protect against IL-1beta-induced NO production and cytotoxicity. Leptin or troglitazone could provide in vivo protection against insulin-dependent diabetes mellitus. PMID:9312173

  16. Interleukin-1 beta inhibits rat thyroid cell function in vivo and in vitro by an NO-independent mechanism and induces hypothyroidism and accelerated thyroiditis in diabetes-prone BB rats

    DEFF Research Database (Denmark)

    Reimers, J I; Rasmussen, A K; Karlsen, A E;

    1996-01-01

    Interleukin-1 beta has been implicated as a pathogenic factor in the development of autoimmune thyroiditis. When given for 5 days to normal non-diabetes-prone Wistar Kyoto rats, it decreased plasma concentrations of total tri-iodothyronine and thyroxine and increased plasma TSH. These effects were...... to interleukin-1 beta. However, reverse transcription PCR analysis of mRNA isolated from interleukin-1 beta-exposed FRTL-5 cells revealed a transitory expression of the inducible NO synthase, which was markedly lower than inducible NO synthase induction in interleukin-1 beta-exposed isolated rat islets...... hypothyroidism in non-diabetic diabetes-prone BB rats. The data suggest that NO does not mediate interleukin-1 beta-induced inhibition of rat thyroid function in vivo or in vitro in FRTL-5 cells, and the induction of hypothyroidism by interleukin-1 beta in diabetes-prone BB rats is speculated to be due...

  17. Apoptosis of beta cells in diabetes mellitus.

    Science.gov (United States)

    Anuradha, Rachakatla; Saraswati, Mudigonda; Kumar, Kishore G; Rani, Surekha H

    2014-11-01

    Diabetes mellitus is a multifactorial metabolic disorder characterized by hyperglycemia. Apoptosis in beta cells has been observed in response to diverse stimuli, such as glucose, cytokines, free fatty acids, leptin, and sulfonylureas, leading to the activation of polyol, hexosamine, and diacylglycerol/protein kinase-C (DAG/PKC) pathways that mediate oxidative and nitrosative stress causing the release of different cytokines. Cytokines induce the expression of Fas and tumor necrosis factor-alpha (TNF-α) by activating the transcription factor, nuclear factor-κb, and signal transducer and activator of transcription 1 (STAT-1) in the β cells in the extrinsic pathway of apoptosis. Cytokines produced in beta cells also induce proapoptotic members of the intrinsic pathway of apoptosis. The genetic alterations in apoptosis signaling machinery and the pathogenesis of diabetes include Fas, FasL, Akt, caspases, calpain-10, and phosphatase and tensin homolog (Pten). The other gene products that are involved in diabetes are nitric oxide synthase-2 (NOS2), small ubiquitin-like modifier (SUMO), apolipoprotein CIII (ApoCIII), forkhead box protein O1 (FOXO1), and Kruppel-like zinc finger protein Gli-similar 3 (GLIS3). The gene products having antiapoptotic nature are Bcl-2 and Bcl-XL. Epigenetic mechanisms play an important role in type I and type II diabetes. Further studies on the apoptotic genes and gene products in diabetics may be helpful in pharmacogenomics and individualized treatment along with antioxidants targeting apoptosis in diabetes.

  18. 1-(beta-D-Erythrofuranosyl)adenosine.

    Science.gov (United States)

    Kline, Paul C; Zhao, Hongqiu; Noll, Bruce C; Oliver, Allen G; Serianni, Anthony S

    2010-04-01

    The title compound, also known as beta-erythroadenosine, C(9)H(11)N(5)O(3), (I), a derivative of beta-adenosine, (II), that lacks the C5' exocyclic hydroxymethyl (-CH(2)OH) substituent, crystallizes from hot ethanol with two independent molecules having different conformations, denoted (IA) and (IB). In (IA), the furanose conformation is (O)T(1)-E(1) (C1'-exo, east), with pseudorotational parameters P and tau(m) of 114.4 and 42 degrees, respectively. In contrast, the P and tau(m) values are 170.1 and 46 degrees, respectively, in (IB), consistent with a (2)E-(2)T(3) (C2'-endo, south) conformation. The N-glycoside conformation is syn (+sc) in (IA) and anti (-ac) in (IB). The crystal structure, determined to a resolution of 2.0 A, of a cocrystal of (I) bound to the enzyme 5'-fluorodeoxyadenosine synthase from Streptomyces cattleya shows the furanose ring in a near-ideal (O)E (east) conformation (P = 90 degrees and tau(m) = 42 degrees) and the base in an anti (-ac) conformation.

  19. Cellulose Synthases and Synthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Anne Endler; Staffan Persson

    2011-01-01

    Plant cell walls are complex structures composed of high-molecular-weight polysaccharides,proteins,and lignins. Among the wall polysaccharides,cellulose,a hydrogen-bonded β-1,4-linked glucan microfibril,is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes,tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition,our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.

  20. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    Kai Zuber

    2012-10-01

    The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

  1. Building-block selectivity of polyketide synthases.

    Science.gov (United States)

    Liou, Grace F; Khosla, Chaitan

    2003-04-01

    For the past decade, polyketide synthases have presented an exciting paradigm for the controlled manipulation of complex natural product structure. These multifunctional enzymes catalyze the biosynthesis of polyketide natural products by stepwise condensation and modification of metabolically derived building blocks. In particular, regioselective modification of polyketide structure is possible by alterations in either intracellular acyl-CoA pools or, more commonly, by manipulation of acyl transferases that act as the primary gatekeepers for building blocks.

  2. Caffeine synthase and related methyltransferases in plants.

    Science.gov (United States)

    Misako, Kato; Kouichi, Mizuno

    2004-05-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid present in high concentrations in tea and coffee and it is also found in a number of beverages such as coca cola. It is necessary to elucidate the caffeine biosynthetic pathway and to clone the genes related to the production of caffeine not only to determine the metabolism of the purine alkaloid but also to control the content of caffeine in tea and coffee. The available data support the operation of a xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine pathway as the major route to caffeine. Since the caffeine biosynthetic pathway contains three S-adenosyl-L-methionine (SAM) dependent methylation steps, N-methyltransferases play important roles. This review focuses on the enzymes and genes involved in the methylation of purine ring. Caffeine synthase, the SAM-dependent methyltransferase involved in the last two steps of caffeine biosynthesis, was originally purified from young tea leaves (Camellia sinensis). The isolated cDNA, termed TCS1, consists of 1,483 base pairs and encodes a protein of 369 amino acids. Subsequently, the homologous genes that encode caffeine biosynthetic enzymes from coffee (Coffea arabica) were isolated. The recombinant proteins are classified into the three types on the basis of their substrate specificity i.e. 7-methylxanthosine synthase, theobromine synthase and caffeine synthase. The predicted amino acid sequences of caffeine biosynthetic enzymes derived from C. arabica exhibit more than 80% homology with those of the clones and but show only 40% homology with TCS1 derived from C. sinensis. In addition, they share 40% homology with the amino acid sequences of salicylic carboxyl methyltransferase, benzoic acid carboxyl methyltransferase and jasmonic acid carboxyl methyltransferase which belong to a family of motif B' methyltransferases which are novel plant methyltransferases with motif B' instead of motif B as the conserved region.

  3. SLIT2 attenuation during lung cancer progression deregulates beta-catenin and E-cadherin and associates with poor prognosis.

    Science.gov (United States)

    Tseng, Ruo-Chia; Lee, Shih-Hua; Hsu, Han-Shui; Chen, Ben-Han; Tsai, Wan-Ching; Tzao, Ching; Wang, Yi-Ching

    2010-01-15

    Chromosome 4p15.3 is frequently deleted in late-stage lung cancer. We investigated the significance of the SLIT2 gene located in this region to lung cancer progression. SLIT2 encodes an extracellular glycoprotein that can suppress breast cancer by regulating beta-catenin. In this study, we examined alterations in the structure or expression of SLIT2, its receptor ROBO1, and beta-catenin, along with the AKT/glycogen synthase kinase 3beta (GSK3beta)/beta-transducin repeat-containing protein (betaTrCP) pathway in lung cancer cell lines and patients. Low SLIT2 expression correlated with an upward trend of pathological stage and poorer survival in lung cancer patients. Importantly, SLIT2, betaTrCP, and beta-catenin expression levels predicted postoperative recurrence of lung cancer in patients. Stimulating SLIT2 expression by various methods increased the level of E-cadherin caused by attenuation of its transcriptional repressor SNAI1. Conversely, knocking down SLIT2 expression increased cell migration and reduced cell adhesion through coordinated deregulation of beta-catenin and E-cadherin/SNAI1 in the AKT/GSK3beta/betaTrCP pathway. Our findings indicate that SLIT2 suppresses lung cancer progression, defining it as a novel "theranostic" factor with potential as a therapeutic target and prognostic predictor in lung cancer. Cancer Res; 70(2); 543-51.

  4. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    Science.gov (United States)

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  5. Alpha and Beta Determinations

    CERN Document Server

    Dunietz, Isard

    1999-01-01

    Because the Bd -> J/psi Ks asymmetry determines only sin(2 beta), a discrete ambiguity in the true value of beta remains. This note reviews how the ambiguity can be removed. Extractions of the CKM angle alpha are discussed next. Some of the methods require very large data samples and will not be feasible in the near future. In the near future, semi-inclusive CP-violating searches could be undertaken, which are reviewed last.

  6. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  7. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  8. Beta cell dynamics: beta cell replenishment, beta cell compensation and diabetes.

    Science.gov (United States)

    Cerf, Marlon E

    2013-10-01

    Type 2 diabetes, characterized by persistent hyperglycemia, arises mostly from beta cell dysfunction and insulin resistance and remains a highly complex metabolic disease due to various stages in its pathogenesis. Glucose homeostasis is primarily regulated by insulin secretion from the beta cells in response to prevailing glycemia. Beta cell populations are dynamic as they respond to fluctuating insulin demand. Beta cell replenishment and death primarily regulate beta cell populations. Beta cells, pancreatic cells, and extra-pancreatic cells represent the three tiers for replenishing beta cells. In rodents, beta cell self-replenishment appears to be the dominant source for new beta cells supported by pancreatic cells (non-beta islet cells, acinar cells, and duct cells) and extra-pancreatic cells (liver, neural, and stem/progenitor cells). In humans, beta cell neogenesis from non-beta cells appears to be the dominant source of beta cell replenishment as limited beta cell self-replenishment occurs particularly in adulthood. Metabolic states of increased insulin demand trigger increased insulin synthesis and secretion from beta cells. Beta cells, therefore, adapt to support their physiology. Maintaining physiological beta cell populations is a strategy for targeting metabolic states of persistently increased insulin demand as in diabetes.

  9. An X11alpha/FSBP complex represses transcription of the GSK3beta gene promoter.

    LENUS (Irish Health Repository)

    Lau, Kwok-Fai

    2010-08-04

    X11alpha is a neuronal adaptor protein that interacts with the amyloid precursor protein (APP) through a centrally located phosphotyrosine binding domain to inhibit the production of Abeta peptide that is deposited in Alzheimer\\'s disease brains. X11alpha also contains two C-terminal postsynaptic density-95, large discs, zona occludens 1 (PDZ) domains, and we show here that through its PDZ domains, X11alpha interacts with a novel transcription factor, fibrinogen silencer binding protein. Moreover, we show that an X11alpha\\/fibrinogen silencer binding protein complex signals to the nucleus to repress glycogen synthase kinase-3beta promoter activity. Glycogen synthase kinase-3beta is a favoured candidate kinase for phosphorylating tau in Alzheimer\\'s disease. Our findings show a new function for X11alpha that may impact on Alzheimer\\'s disease pathogenesis.

  10. Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769.

    Science.gov (United States)

    Tajima, K; Nakajima, K; Yamashita, H; Shiba, T; Munekata, M; Takai, M

    2001-12-31

    The beta-glucosidase gene (bglxA) was cloned from the genomic DNA of Acetobacter xylinum ATCC 23769 and its nucleotide sequence (2200 bp) was determined. This bglxA gene was present downstream of the cellulose synthase operon and coded for a polypeptide of molecular mass 79 kDa. The overexpression of the beta-glucosidase in A. xylinum caused a tenfold increase in activity compared to the wild-type strain. In addition, the action pattern of the enzyme was identified as G3ase activity. The deduced amino acid sequence of the bglxA gene showed 72.3%, 49.6%, and 45.1% identity with the beta-glucosidases from A. xylinum subsp. sucrofermentans, Cellvibrio gilvus, and Mycobacterium tuberculosis, respectively. Based on amino acid sequence similarities, the beta-glucosidase (BglxA) was assigned to family 3 of the glycosyl hydrolases.

  11. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    Science.gov (United States)

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  12. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  13. Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae.

    Science.gov (United States)

    Keszei, Andras; Brubaker, Curt L; Carter, Richard; Köllner, Tobias; Degenhardt, Jörg; Foley, William J

    2010-06-01

    Myrtaceae is one of the chemically most variable and most significant essential oil yielding plant families. Despite an abundance of chemical information, very little work has focussed on the biochemistry of terpene production in these plants. We describe 70 unique partial terpene synthase transcripts and eight full-length cDNA clones from 21 myrtaceous species, and compare phylogenetic relationships and leaf oil composition to reveal clades defined by common function. We provide further support for the correlation between function and phylogenetic relationships by the first functional characterisation of terpene synthases from Myrtaceae: a 1,8-cineole synthase from Eucalyptus sideroxylon and a caryophyllene synthase from Eucalyptusdives.

  14. Enzymatic functions of wild tomato methylketone synthases 1 and 2.

    Science.gov (United States)

    Yu, Geng; Nguyen, Thuong T H; Guo, Yongxia; Schauvinhold, Ines; Auldridge, Michele E; Bhuiyan, Nazmul; Ben-Israel, Imri; Iijima, Yoko; Fridman, Eyal; Noel, Joseph P; Pichersky, Eran

    2010-09-01

    The trichomes of the wild tomato species Solanum habrochaites subsp. glabratum synthesize and store high levels of methylketones, primarily 2-tridecanone and 2-undecanone, that protect the plants against various herbivorous insects. Previously, we identified cDNAs encoding two proteins necessary for methylketone biosynthesis, designated methylketone synthase 1 (ShMKS1) and ShMKS2. Here, we report the isolation of genomic sequences encoding ShMKS1 and ShMKS2 as well as the homologous genes from the cultivated tomato, Solanum lycopersicum. We show that a full-length transcript of ShMKS2 encodes a protein that is localized in the plastids. By expressing ShMKS1 and ShMKS2 in Escherichia coli and analyzing the products formed, as well as by performing in vitro assays with both ShMKS1and ShMKS2, we conclude that ShMKS2 acts as a thioesterase hydrolyzing 3-ketoacyl-acyl carrier proteins (plastid-localized intermediates of fatty acid biosynthesis) to release 3-ketoacids and that ShMKS1 subsequently catalyzes the decarboxylation of these liberated 3-ketoacids, forming the methylketone products. Genes encoding proteins with high similarity to ShMKS2, a member of the "hot-dog fold" protein family that is known to include other thioesterases in nonplant organisms, are present in plant species outside the genus Solanum. We show that a related enzyme from Arabidopsis (Arabidopsis thaliana) also produces 3-ketoacids when recombinantly expressed in E. coli. Thus, the thioesterase activity of proteins in this family appears to be ancient. In contrast, the 3-ketoacid decarboxylase activity of ShMKS1, which belongs to the alpha/beta-hydrolase fold superfamily, appears to have emerged more recently, possibly within the genus Solanum.

  15. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    OpenAIRE

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity ...

  16. Beta and Gamma Gradients

    DEFF Research Database (Denmark)

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.;

    1985-01-01

    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...

  17. Beta-Glucans Improve Growth, Viability and Colonization of Probiotic Microorganisms

    Directory of Open Access Journals (Sweden)

    Daniela Fiocco

    2012-05-01

    Full Text Available Probiotics, prebiotics and synbiotics are frequently-used components for the elaboration of functional food. Currently, most of the commercialized probiotics are limited to a few strains of the genera Bifidobacteria, Lactobacillus and Streptococcus, most of which produce exopolysaccharides (EPS. This suggests that the beneficial properties of these microorganisms may be related to the biological activities of these biopolymers. In this work we report that a 2-substituted-(1,3-β-D-glucan of non-dairy bacterial origin has a prebiotic effect on three probiotic strains. Moreover, the presence of this β-D-glucan potentiates in vitro adhesion of the probiotic Lactobacillus plantarum WCFS1 to human intestinal epithelial cells.

  18. A hyperbranched β-d-glucan with compact coil conformation from Lignosus rhinocerotis sclerotia.

    Science.gov (United States)

    Hu, Ting; Huang, Qilin; Wong, Kahing; Yang, Hong; Gan, Jingsi; Li, Yanru

    2017-06-15

    An alkali-soluble polysaccharide was extracted from Lignosus rhinocerotis sclerotia (LRP). Its structural characteristics were determined by GC-MS, FT-IR, GC, 1D and 2D NMR combined with Smith degradation and methylation analysis. The LRP had a (1→3)-β-d-Glcp backbone with every three residues bearing a (1→6)-linked and hyperbranched side chain that contained three (1→6)-β-d-Glcp residues as secondary main chain and two terminal β-d-Glcp residues linked at O3. The degree of branching was 0.76 from GC-MS analysis, implying a highly branched structure for LRP. The Mw, z(1/2), Rh and [η] values of LRP in 0.25M LiCl/DMSO were measured by SEC-MALLS-Vis-RI combination technology to be 2.88×10(5)g/mol, 30.36nm, 22.34nm and 131.50ml/g, respectively. Furthermore, the exponent α of [η]-Mw, β of z(1/2)-Mw, the fractal dimension df and molecular parameter ρ were determined to be 0.20, 0.33, 2.50 and 1.36, demonstrating that the LRP was a hyperbranched polysaccharide and adopted a compact coil conformation in LiCl/DMSO.

  19. Evolution and function of phytochelatin synthases.

    Science.gov (United States)

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  20. Torque generation mechanism of ATP synthase

    Science.gov (United States)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  1. Applied Beta Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rich, B.L.

    1986-01-01

    Measurements of beta and/or nonpenetrating exposure results is complicated and past techniques and capabilities have resulted in significant inaccuracies in recorded results. Current developments have resulted in increased capabilities which make the results more accurate and should result in less total exposure to the work force. Continued development of works in progress should provide equivalent future improvements.

  2. Beta Thalassemia (For Parents)

    Science.gov (United States)

    ... had their spleens removed. Slower growth rates. The anemia resulting from beta thalassemia can cause children to grow more slowly and also can lead ... boost production of new red blood cells. Some children with moderate anemia may require an occasional blood transfusion , particularly after ...

  3. Trichoderma .beta.-glucosidase

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-01-03

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  4. Roughing up Beta

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Li, Sophia Zhengzi; Todorov, Viktor

    Motivated by the implications from a stylized equilibrium pricing framework, we investigate empirically how individual equity prices respond to continuous, or \\smooth," and jumpy, or \\rough," market price moves, and how these different market price risks, or betas, are priced in the cross-section...

  5. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS...... maltoligosaccharides and not polysaccharides as its preferred substrates....

  6. Nitric oxide contributes to cytokine-induced apoptosis in pancreatic beta cells via potentiation of JNK activity and inhibition of Akt

    DEFF Research Database (Denmark)

    Størling, J; Binzer, J; Andersson, Annica;

    2005-01-01

    Pro-inflammatory cytokines cause beta cell secretory dysfunction and apoptosis--a process implicated in the pathogenesis of type 1 diabetes. Cytokines induce the expression of inducible nitric oxide (NO) synthase (iNOS) leading to NO production. NO contributes to cytokine-induced apoptosis, but t...

  7. Isolation and characterization of a cDNA from Cuphea lanceolata encoding a beta-ketoacyl-ACP reductase.

    Science.gov (United States)

    Klein, B; Pawlowski, K; Höricke-Grandpierre, C; Schell, J; Töpfer, R

    1992-05-01

    A cDNA encoding beta-ketoacyl-ACP reductase (EC 1.1.1.100), an integral part of the fatty acid synthase type II, was cloned from Cuphea lanceolata. This cDNA of 1276 bp codes for a polypeptide of 320 amino acids with 63 N-terminal residues presumably representing a transit peptide and 257 residues corresponding to the mature protein of 27 kDa. The encoded protein shows strong homology with the amino-terminal sequence and two tryptic peptides from avocado mesocarp beta-ketoacyl-ACP reductase, and its total amino acid composition is highly similar to those of the beta-ketoacyl-ACP reductases of avocado and spinach. Amino acid sequence homologies to polyketide synthase, beta-ketoreductases and short-chain alcohol dehydrogenases are discussed. An engineered fusion protein lacking most of the transit peptide, which was produced in Escherichia coli, was isolated and proved to possess beta-ketoacyl-ACP reductase activity. Hybridization studies revealed that in C. lanceolata beta-ketoacyl-ACP reductase is encoded by a small family of at least two genes and that members of this family are expressed in roots, leaves, flowers and seeds.

  8. Interleukin-1 beta-induced nitric oxide production from isolated rat islets is modulated by D-glucose and 3-isobutyl-1-methyl xanthine

    DEFF Research Database (Denmark)

    Andersen, H U; Mauricio, D; Karlsen, Allan Ertman

    1996-01-01

    Interleukin-1 beta has been proposed to cause selective beta-cell destruction via the induction of nitric oxide synthesis. The cytotoxic effect of interleukin-1 beta is modulated by the concentration of D-glucose in the medium. The aim of this study was to investigate if D-glucose-mediated modula......Interleukin-1 beta has been proposed to cause selective beta-cell destruction via the induction of nitric oxide synthesis. The cytotoxic effect of interleukin-1 beta is modulated by the concentration of D-glucose in the medium. The aim of this study was to investigate if D...... effects on acute insulin release was found at high (28 mmol/l) concentrations of D-glucose, and blocking nitrite production by the L-arginine analog aminoguanidine, which selectively inhibits the cytokine-inducible nitric oxide synthase, did not result in protection against the inhibitory action...... that could be reproduced by the cAMP analog dibutyryl cAMP. Addition of 3-isobutyl-1-methyl xanthine resulted in a threefold reduction in the mRNA level of interleukin-1 beta-induced inducible nitric oxide synthase. We conclude that interleukin-1 beta-induced islet nitric oxide synthesis is augmented by D...

  9. [Four cases of aldosterone synthase deficiency in childhood].

    Science.gov (United States)

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  10. Molecular Cloning and Characterization of Citrate Synthase Gene in Rice( Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shan-shan; MING Feng; LU Qun; GUO Bin; SHEN Da-leng

    2005-01-01

    The full-length OsCS encoding citrate synthase was isolated from rice (Oryza sativa L. subsp. japonica). OsCS is 1477-bp long and encodes a 474 amino acid polypeptide. Its putative protein sequence is highly identical to Daucus carota, Nicotiana tabacum,Beta vulgaris subsp., Arabidopsis thaliana, and Citrus junos (>70%). The deduced amino-terminal sequence of OsCS showes characteristics of mitochondrial targeting signal. Southern blot analysis using ORF of the OsCS as the probe indicated that this gene exists in multiple copies in rice genome. The band with predicated size of 82 kD was detected by Western blot after being induced by 0.4 mmol/L IPTG.

  11. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullar, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Bitsche, Mario, E-mail: Mario.Bitsche@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Schartinger, Volker, E-mail: Volker.Schartinger@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest (Hungary); Sprinzl, Georg Mathias, E-mail: Georg.Sprinzl@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: Herbert.Riechelmann@i-med.ac.at [Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  12. TGF-beta and osteoarthritis.

    NARCIS (Netherlands)

    Blaney Davidson, E.N.; Kraan, P.M. van der; Berg, W.B. van den

    2007-01-01

    OBJECTIVE: Cartilage damage is a major problem in osteoarthritis (OA). Growth factors like transforming growth factor-beta (TGF-beta) have great potential in cartilage repair. In this review, we will focus on the potential therapeutic intervention in OA with TGF-beta, application of the growth facto

  13. Pseudouridines and pseudouridine synthases of the ribosome.

    Science.gov (United States)

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  14. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  15. Differential regulation of chemoattractant-stimulated beta 2, beta 3, and beta 7 integrin activity.

    Science.gov (United States)

    Sadhu, C; Masinovsky, B; Staunton, D E

    1998-06-01

    Leukocyte adhesion to endothelium and extravasation are dynamic processes that require activation of integrins. Chemoattractants such as IL-8 and FMLP are potent activators of leukocyte integrins. To compare the chemoattractant-stimulated activation of three integrins, alpha 4 beta 7, alpha L beta 2, and alpha V beta 3, in the same cellular context, we expressed an IL-8 receptor (IL-8RA) and FMLP receptor (FPR) in the lymphoid cell line JY. Chemoattractants induced a rapid increase in alpha L beta 2- and alpha V beta 3-dependent JY adhesion within 5 min, and it was sustained for 30 min. In contrast, stimulation of alpha 4 beta 7-dependent adhesion was transient, returning to basal levels by 30 min. The activation profiles of the integrins were similar regardless of whether IL-8 or FMLP was used for induction. We also demonstrate that alpha 4 beta 7-dependent adhesion was uniquely responsive to the F actin-disrupting agent cytochalasin D and the protein kinase C (PKC) inhibitor chelerythrin. While alpha V beta 3- and alpha L beta 2-mediated cell adhesion was significantly reduced by cytochalasin D, alpha 4 beta 7-mediated adhesion was enhanced. Chelerythrin inhibited both the IL-8 and PMA activation of alpha L beta 2 and alpha V beta 3. In contrast, inducible alpha 4 beta 7 activity was unaffected, and basal activity was increased. These findings demonstrate that the mechanism of alpha 4 beta 7 regulation by chemoattractants is different from that of alpha L beta 2 and alpha V beta 3 and that it appears to involve distinct cytoskeletal and PKC dependencies. In addition, PKC activity may be a positive or negative regulator of integrin-dependent adhesion.

  16. Lupeol inhibits proliferation of human prostate cancer cells by targeting beta-catenin signaling.

    Science.gov (United States)

    Saleem, Mohammad; Murtaza, Imtiyaz; Tarapore, Rohinton S; Suh, Yewseok; Adhami, Vaqar Mustafa; Johnson, Jeremy James; Siddiqui, Imtiaz Ahmad; Khan, Naghma; Asim, Mohammad; Hafeez, Bilal Bin; Shekhani, Mohammed Talha; Li, Benyi; Mukhtar, Hasan

    2009-05-01

    Lupeol, a dietary triterpene, was shown to decrease serum prostate-specific antigen levels and inhibit the tumorigenicity of prostate cancer (CaP) cells in vivo. Here, we show that Lupeol inhibits the proliferative potential of CaP cells and delineated its mechanism of action. Employing a focused microarray of human CaP-associated genes, we found that Lupeol significantly modulates the expression level of genes such as ERBB2, tissue inhibitor of metalloproteinases-3, cyclin D1 and matrix metalloproteinase (MMP)-2 that are known to be associated with proliferation and survival. A common feature of these genes is that all of them are known to either regulate or act as downstream target of beta-catenin signaling that is highly aberrant in CaP patients. Lupeol treatment significantly (1) reduced levels of beta-catenin in the cytoplasmic and nuclear fractions, (2) modulated expression levels of glycogen synthase kinase 3 beta (GSK3beta)-axin complex (regulator of beta-catenin stability), (3) decreased the expression level and enzymatic activity of MMP-2 (downstream target of beta-catenin), (4) reduced the transcriptional activation of T Cell Factor (TCF) responsive element (marker for beta-catenin signaling) in pTK-TCF-Luc-transfected cells and (5) decreased the transcriptional activation of MMP-2 gene in pGL2-MMP-2-Luc-transfected cells. Effects of Lupeol treatment on beta-catenin degradation were significantly reduced in CaP cells where axin is knocked down through small interfering RNA transfection and GSK3beta activity is blocked. Collectively, these data suggest the multitarget efficacy of Lupeol on beta-catenin-signaling network thus resulting in the inhibition CaP cell proliferation. We suggest that Lupeol could be developed as an agent for chemoprevention as well as chemotherapy of human CaP.

  17. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway.

    Science.gov (United States)

    Taura, Futoshi; Tanaka, Shinji; Taguchi, Chiho; Fukamizu, Tomohide; Tanaka, Hiroyuki; Shoyama, Yukihiro; Morimoto, Satoshi

    2009-06-18

    Alkylresorcinol moieties of cannabinoids are derived from olivetolic acid (OLA), a polyketide metabolite. However, the polyketide synthase (PKS) responsible for OLA biosynthesis has not been identified. In the present study, a cDNA encoding a novel PKS, olivetol synthase (OLS), was cloned from Cannabis sativa. Recombinant OLS did not produce OLA, but synthesized olivetol, the decarboxylated form of OLA, as the major reaction product. Interestingly, it was also confirmed that the crude enzyme extracts from flowers and rapidly expanding leaves, the cannabinoid-producing tissues of C. sativa, also exhibited olivetol-producing activity, suggesting that the native OLS is functionally expressed in these tissues. The possibility that OLS could be involved in OLA biosynthesis was discussed based on its catalytic properties and expression profile.

  18. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    Science.gov (United States)

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  19. Endothelial nitric oxide synthase in the microcirculation.

    Science.gov (United States)

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  20. The nitric oxide synthase of mouse spermatozoa.

    Science.gov (United States)

    Herrero, M B; Goin, J C; Boquet, M; Canteros, M G; Franchi, A M; Perez Martinez, S; Polak, J M; Viggiano, J M; Gimeno, M A

    1997-07-01

    Nitric oxide synthase (NOS) was evidenced in mature mouse spermatozoa by means of biochemical techniques and Western blot. During 120 min of incubation, 10(7) spermatozoa synthesized 7 +/- 2 pmol of L-[14C]citrulline. Besides, L-citrulline formation depended on the incubation time and on the concentration of L-arginine present in the incubation medium. Different concentrations of N(G)-nitro-L-arginine methyl ester (L-NAME) but not aminoguanidine, inhibited L-[14C]citrulline formation. Western-blot analysis of solubilized sperm proteins revealed a unique band of M(r)=140 kDa with the neural, endothelial and inducible NOS antisera tested. These results provide evidence that mature mouse sperm contains a NOS isoform and that spermatozoa have the potential ability to synthesize NO, suggesting a role for endogenous NO on mammalian sperm function.

  1. Beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Origa Raffaella

    2010-05-01

    Full Text Available Abstract Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands, dilated myocardiopathy, liver fibrosis and cirrhosis. Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes, gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely

  2. Beta-thalassemia.

    Science.gov (United States)

    Galanello, Renzo; Origa, Raffaella

    2010-05-21

    Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC) transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands), dilated myocardiopathy, liver fibrosis and cirrhosis). Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes), gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely, deletions in the beta

  3. Beta and muon decays

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A.; Pascual, P.

    1967-07-01

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  4. Realized Beta GARCH

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger; Voev, Valeri Radkov

    2014-01-01

    We introduce a multivariate generalized autoregressive conditional heteroskedasticity (GARCH) model that incorporates realized measures of variances and covariances. Realized measures extract information about the current levels of volatilities and correlations from high-frequency data, which...... is particularly useful for modeling financial returns during periods of rapid changes in the underlying covariance structure. When applied to market returns in conjunction with returns on an individual asset, the model yields a dynamic model specification of the conditional regression coefficient that is known...... as the beta. We apply the model to a large set of assets and find the conditional betas to be far more variable than usually found with rolling-window regressions based exclusively on daily returns. In the empirical part of the paper, we examine the cross-sectional as well as the time variation...

  5. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    Science.gov (United States)

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic change in both substrate and product specificities of BPS was rationalized by homology modeling. The mutation may open a new pocket that accommodates the phenyl moiety of the triketide intermediate but limits polyketide elongation to two reactions, resulting in phenylpyrone formation. 3-Hydroxybenzoyl-CoA is the second best starter molecule for BPS but a poor substrate for PPS. The aryl moiety of the triketide intermediate may be trapped in the new pocket by hydrogen bond formation with the backbone, thereby acting as an inhibitor. PPS is a promising biotechnological tool for manipulating benzoate-primed biosynthetic pathways to produce novel compounds. PMID:19710020

  6. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    Science.gov (United States)

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  7. Coroutine Sequencing in BETA

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger;

    In object-oriented programming, a program execution is viewed as a physical model of some real or imaginary part of the world. A language supporting object-oriented programming must therefore contain comprehensive facilities for modeling phenomena and concepts form the application domain. Many ap...... applications in the real world consist of objects carrying out sequential processes. Coroutines may be used for modeling objects that alternate between a number of sequential processes. The authors describe coroutines in BETA...

  8. Magic Baseline Beta Beam

    CERN Document Server

    Agarwalla, Sanjib Kumar; Raychaudhuri, Amitava

    2007-01-01

    We study the physics reach of an experiment where neutrinos produced in a beta-beam facility at CERN are observed in a large magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO). The CERN-INO distance is close to the so-called "magic" baseline which helps evade some of the parameter degeneracies and allows for a better measurement of the neutrino mass hierarchy and $\\theta_{13}$.

  9. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    2016-01-01

    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades......, but the mechanisms involved are still not clarified. In this review the information obtained in previous studies is recapitulated together with some of the current attempts to resolve the controversy in the field: identification of the putative progenitor cells, identification of the factors involved...

  10. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  11. LHCb: $2\\beta_s$ measurement at LHCb

    CERN Multimedia

    Conti, G

    2009-01-01

    A measurement of $2\\beta_s$, the phase of the $B_s-\\bar{B_s}$ oscillation amplitude with respect to that of the ${\\rm b} \\rightarrow {\\rm c^{+}}{\\rm W^{-}}$ tree decay amplitude, is one of the key goals of the LHCb experiment with first data. In the Standard Model (SM), $2\\beta_s$ is predicted to be $0.0360^{+0.0020}_{-0.0016} \\rm rad$. The current constraints from the Tevatron are: $2\\beta_{s}\\in[0.32 ; 2.82]$ at 68$\\%$CL from the CDF experiment and $2\\beta_{s}=0.57^{+0.24}_{-0.30}$ from the D$\\oslash$ experiment. Although the statistical uncertainties are large, these results hint at the possible contribution of New Physics in the $B_s-\\bar{B_s}$ box diagram. After one year of data taking at LHCb at an average luminosity of $\\mathcal{L}\\sim2\\cdot10^{32}\\rm cm^{-2} \\rm s^{-1}$ (integrated luminosity $\\mathcal{L}_{\\rm int}\\sim 2 \\rm fb^{-1}$), the expected statistical uncertainty on the measurement is $\\sigma(2\\beta_s)\\simeq 0.03$. This uncertainty is similar to the $2\\beta_s$ value predicted by the SM.

  12. Role of cysteine residues in pseudouridine synthases of different families.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  13. Mutagenesis of residue betaArg-246 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F1-ATPase.

    Science.gov (United States)

    Ahmad, Zulfiqar; Senior, Alan E

    2004-07-23

    Residues responsible for phosphate binding in F(1)F(0)-ATP synthase catalytic sites are of significant interest because phosphate binding is believed linked to proton gradient-driven subunit rotation. From x-ray structures, a phosphate-binding subdomain is evident in catalytic sites, with conserved betaArg-246 in a suitable position to bind phosphate. Mutations betaR246Q, betaR246K, and betaR246A in Escherichia coli were found to impair oxidative phosphorylation and to reduce ATPase activity of purified F(1) by 100-fold. In contrast to wild type, ATPase of mutants was not inhibited by MgADP-fluoroaluminate or MgADP-fluoroscandium, showing the Arg side chain is required for wild-type transition state formation. Whereas 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) inhibited wild-type ATPase essentially completely, ATPase in mutants was inhibited maximally by approximately 50%, although reaction still occurred at residue betaTyr-297, proximal to betaArg-246 in the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts in betaE (empty) catalytic sites, as shown previously by x-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild type but not in mutants. The results show that phosphate can bind in the betaE catalytic site of E. coli F(1) and that betaArg-246 is an important phosphate-binding residue.

  14. Structure of the ent -Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf, Jeffrey D.; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  15. Subcellular localization of the homocitrate synthase in Penicillium chrysogenum.

    Science.gov (United States)

    Bañuelos, O; Casqueiro, J; Steidl, S; Gutiérrez, S; Brakhage, A; Martín, J F

    2002-01-01

    There are conflicting reports regarding the cellular localization in Saccharomyces cerevisiae and filamentous fungi of homocitrate synthase, the first enzyme in the lysine biosynthetic pathway. The homocitrate synthase (HS) gene (lys1) of Penicillium chrysogenum was disrupted in three transformants (HS(-)) of the Wis 54-1255 pyrG strain. The three mutants named HS1(-), HS2(-) and HS3(-) all lacked homocitrate synthase activity and showed lysine auxotrophy, indicating that there is a single gene for homocitrate synthase in P. chrysogenum. The lys1 ORF was fused in frame to the gene for the green fluorescent protein (GFP) gene of the jellyfish Aequorea victoria. Homocitrate synthase-deficient mutants transformed with a plasmid containing the lys1-GFP fusion recovered prototrophy and showed similar levels of homocitrate synthase activity to the parental strain Wis 54-1255, indicating that the hybrid protein retains the biological function of wild-type homocitrate synthase. Immunoblotting analysis revealed that the HS-GFP fusion protein is maintained intact and does not release the GFP moiety. Fluorescence microscopy analysis of the transformants showed that homocitrate synthase was mainly located in the cytoplasm in P. chrysogenum; in S. cerevisiae the enzyme is targeted to the nucleus. The control nuclear protein StuA was properly targeted to the nucleus when the StuA (targeting domain)-GFP hybrid protein was expressed in P. chrysogenum. The difference in localization of homocitrate synthase between P. chrysogenum and S. cerevisiae suggests that this protein may play a regulatory function, in addition to its catalytic function, in S. cerevisiae but not in P. chrysogenum.

  16. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily.

    Directory of Open Access Journals (Sweden)

    Nils Widderich

    Full Text Available Ectoine is a compatible solute and chemical chaperone widely used by members of the Bacteria and a few Archaea to fend-off the detrimental effects of high external osmolarity on cellular physiology and growth. Ectoine synthase (EctC catalyzes the last step in ectoine production and mediates the ring closure of the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid through a water elimination reaction. However, the crystal structure of ectoine synthase is not known and a clear understanding of how its fold contributes to enzyme activity is thus lacking. Using the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis (Sa, we report here both a detailed biochemical characterization of the EctC enzyme and the high-resolution crystal structure of its apo-form. Structural analysis classified the (SaEctC protein as a member of the cupin superfamily. EctC forms a dimer with a head-to-tail arrangement, both in solution and in the crystal structure. The interface of the dimer assembly is shaped through backbone-contacts and weak hydrophobic interactions mediated by two beta-sheets within each monomer. We show for the first time that ectoine synthase harbors a catalytically important metal co-factor; metal depletion and reconstitution experiments suggest that EctC is probably an iron-dependent enzyme. We found that EctC not only effectively converts its natural substrate N-gamma-acetyl-L-2,4-diaminobutyric acid into ectoine through a cyclocondensation reaction, but that it can also use the isomer N-alpha-acetyl-L-2,4-diaminobutyric acid as its substrate, albeit with substantially reduced catalytic efficiency. Structure-guided site-directed mutagenesis experiments targeting amino acid residues that are evolutionarily highly conserved among the extended EctC protein family, including those forming the presumptive iron-binding site, were conducted to functionally analyze the properties of the resulting EctC variants. An assessment of

  17. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily.

    Science.gov (United States)

    Widderich, Nils; Kobus, Stefanie; Höppner, Astrid; Riclea, Ramona; Seubert, Andreas; Dickschat, Jeroen S; Heider, Johann; Smits, Sander H J; Bremer, Erhard

    2016-01-01

    Ectoine is a compatible solute and chemical chaperone widely used by members of the Bacteria and a few Archaea to fend-off the detrimental effects of high external osmolarity on cellular physiology and growth. Ectoine synthase (EctC) catalyzes the last step in ectoine production and mediates the ring closure of the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid through a water elimination reaction. However, the crystal structure of ectoine synthase is not known and a clear understanding of how its fold contributes to enzyme activity is thus lacking. Using the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis (Sa), we report here both a detailed biochemical characterization of the EctC enzyme and the high-resolution crystal structure of its apo-form. Structural analysis classified the (Sa)EctC protein as a member of the cupin superfamily. EctC forms a dimer with a head-to-tail arrangement, both in solution and in the crystal structure. The interface of the dimer assembly is shaped through backbone-contacts and weak hydrophobic interactions mediated by two beta-sheets within each monomer. We show for the first time that ectoine synthase harbors a catalytically important metal co-factor; metal depletion and reconstitution experiments suggest that EctC is probably an iron-dependent enzyme. We found that EctC not only effectively converts its natural substrate N-gamma-acetyl-L-2,4-diaminobutyric acid into ectoine through a cyclocondensation reaction, but that it can also use the isomer N-alpha-acetyl-L-2,4-diaminobutyric acid as its substrate, albeit with substantially reduced catalytic efficiency. Structure-guided site-directed mutagenesis experiments targeting amino acid residues that are evolutionarily highly conserved among the extended EctC protein family, including those forming the presumptive iron-binding site, were conducted to functionally analyze the properties of the resulting EctC variants. An assessment of enzyme activity

  18. The Pseudouridine Synthases Proceed through a Glycal Intermediate.

    Science.gov (United States)

    Veerareddygari, Govardhan Reddy; Singh, Sanjay K; Mueller, Eugene G

    2016-06-29

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2'. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases.

  19. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    Science.gov (United States)

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  20. Effects of leflunomide on hyaluronan synthases (HAS): NF-kappa B-independent suppression of IL-1-induced HAS1 transcription by leflunomide.

    Science.gov (United States)

    Stuhlmeier, Karl M

    2005-06-01

    Despite evidence that points to unfettered hyaluronic acid (HA) production as a culprit in the progression of rheumatic disorders, little is known about differences in regulation and biological functions of the three hyaluronan synthase (HAS) genes. Testing the effects of drugs with proven anti-inflammatory effects could help to clarify biological functions of these genes. In this study, we demonstrate that leflunomide suppresses HA release in fibroblast-like synoviocytes (FLS) in a dose-dependent manner. We further demonstrate that leflunomide suppresses HA synthase activity, as determined by (14)C-glucuronic acid incorporation assays. Additional experiments revealed that in FLS, leflunomide specifically blocked the induction of HAS1. HAS2 and HAS3, genes that are, in contrast to HAS1, constitutively expressed in FLS, are not significantly affected. Leflunomide can function as a NF-kappaB inhibitor. However, EMSA experiments demonstrate that at the concentrations used, leflunomide neither interferes with IL-1beta- nor with PMA-induced NF-kappaB translocation. Furthermore, reconstituting the pyrimidine synthase pathway did not lead to the restoration of IL-1beta-induced HAS1 activation. More importantly, two tyrosine kinase inhibitors mimicked the effect of leflunomide in that both blocked IL-1beta-induced HAS1 activation without affecting HAS2 or HAS3. These data point at HAS1 activation as the possible cause for unfettered HA production in rheumatoid arthritis and might explain, at least in part, the beneficial effects of leflunomide treatment. These findings also support the concept that IL-1beta-induced HAS1 activation depends on the activation of tyrosine kinases, and indicate that leflunomide blocks HA release by suppressing tyrosine kinases rather than through inhibition of NF-kappaB translocation.

  1. Efficient derivation of embryonic stem cells by inhibition of glycogen synthase kinase-3.

    Science.gov (United States)

    Umehara, Hiroki; Kimura, Tohru; Ohtsuka, Satoshi; Nakamura, Toshinobu; Kitajima, Kenji; Ikawa, Masahito; Okabe, Masaru; Niwa, Hitoshi; Nakano, Toru

    2007-11-01

    Embryonic stem (ES) cells are derived from the inner cell mass (ICM) of blastocysts. The use of ES cells as a source of differentiated cells holds great promise for cell transplantation therapy. The efficiency of ES cell derivation is affected by genetic variation in mice; that is, some mouse strains, such as C57BL/6, are amenable to ES cell derivation, whereas others, such as BALB/c, are refractory. Developing an efficient method to establish ES cells from strains of various genetic backgrounds should be valuable for derivation of ES cells in various mammalian species, including human. Although it is well-established that various signaling pathways, including phosphoinositide 3-kinase (PI3K)/Akt and Wnt/beta-catenin, regulate the maintenance of ES cell pluripotency, little is known about the signaling pathways involved in the derivation of ES cells from ICMs. In this study, we demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3), one of the crucial molecules in the regulation of the Wnt/beta-catenin, Hedgehog, and Notch signaling pathways, dramatically augmented ES cell derivation from both C57BL/6 and BALB/c mouse strains. In contrast, Akt signaling activation enhanced the growth of ICM but did not increase the efficiency of ES cell derivation. Our study establishes an efficient means for ES cell derivation by pharmacological inhibition of GSK-3.

  2. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Calabrese, J.C.; Wawrzak, Z.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    3,4-Dihydroxy-2-butanone-4-phosphate synthase catalyzes a commitment step in the biosynthesis of riboflavin. On the enzyme, ribulose 5-phosphate is converted to 3,4-dihydroxy-2-butanone 4-phosphate and formate in steps involving enolization, ketonization, dehydration, skeleton rearrangement, and formate elimination. The enzyme is absent in humans and an attractive target for the discovery of antimicrobials for pathogens incapable of acquiring sufficient riboflavin from their hosts. The homodimer of 23 kDa subunits requires Mg{sup 2+} for activity. The first three-dimensional structure of the enzyme was determined at 1.4 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on Escherichia coli protein crystals containing gold. The protein consists of an {alpha} + {beta} fold having a complex linkage of {beta} strands. Intersubunit contacts are mediated by numerous hydrophobic interactions and three hydrogen bond networks. A proposed active site was identified on the basis of amino acid residues that are conserved among the enzyme from 19 species. There are two well-separated active sites per dimer, each of which comprise residues from both subunits. In addition to three arginines and two threonines, which may be used for recognizing the phosphate group of the substrate, the active site consists of three glutamates, two aspartates, two histidines, and a cysteine which may provide the means for general acid and base catalysis and for coordinating the Mg{sup 2+} cofactor within the active site.

  3. Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter.

    Science.gov (United States)

    Filali, Mohammed; Cheng, Ningli; Abbott, Duane; Leontiev, Vladimir; Engelhardt, John F

    2002-09-06

    Members of the Wnt family of secreted molecules have been established as key factors in determining cell fate and morphogenic signaling. It has long been recognized that Wnt induces morphogenic signaling through the Tcf/LEF-1 cascade by regulating free intracellular levels of beta-catenin, a co-factor for Tcf/LEF-1 transcription factors. In the present study, we have demonstrated that Wnt-3A can also directly induce transcription from the LEF-1 promoter. This induction was dependent on glycogen synthase kinase 3beta inactivation, a rise in free intracellular beta-catenin, and a short 110-bp Wnt-responsive element (WRE) in the LEF-1 promoter. Linear and internal deletion of this WRE led to a dramatic increase in constitutive LEF-1 promoter activity and loss of Wnt-3A responsiveness. In isolation, the 110-bp WRE conferred context-independent Wnt-3A or beta-catenin(S37A) responsiveness to a heterologous SV40 promoter. Studies expressing dominant active and negative forms of LEF-1, beta-catenin, GSK-3beta, and beta-catenin/LEF-1 fusions suggest that Wnt-3A activates the LEF-1 promoter through a beta-catenin-dependent and LEF-1-independent process. Wnt-3A expression also induced multiple changes in the binding of factors to the WRE and suggests that regulatory mechanisms may involve modulation of a multiprotein complex. In summary, these results provide evidence for transcriptional regulation of the LEF-1 promoter by Wnt and enhance the mechanistic understanding of Wnt/beta-catenin signaling in the regulation of LEF-1-dependent developmental processes.

  4. Crystal structure of the catalytic domain of RluD, the only rRNA pseudouridine synthase required for normal growth of Escherichia coli.

    Science.gov (United States)

    Del Campo, Mark; Ofengand, James; Malhotra, Arun

    2004-02-01

    Escherichia coli pseudouridine synthase RluD makes pseudouridines 1911, 1915, and 1917 in the loop of helix 69 in 23S RNA. These are the most highly conserved ribosomal pseudouridines known. Of 11 pseudouridine synthases in E. coli, only cells lacking RluD have severe growth defects and abnormal ribosomes. We have determined the 2.0 A structure of the catalytic domain of RluD (residues 77-326), the first structure of an RluA family member. The catalytic domain folds into a mainly antiparallel beta-sheet flanked by several loops and helices. A positively charged cleft that presumably binds RNA leads to the conserved Asp 139. The RluD N-terminal S4 domain, connected by a flexible linker, is disordered in our structure. RluD is very similar in both catalytic domain structure and active site arrangement to the pseudouridine synthases RsuA, TruB, and TruA. We identify five sequence motifs, two of which are novel, in the RluA, RsuA, TruB, and TruA families, uniting them as one superfamily. These results strongly suggest that four of the five families of pseudouridine synthases arose by divergent evolution. The RluD structure also provides insight into its multisite specificity.

  5. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila; Hove-Jensen, Bjarne

    2015-01-01

    PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate......The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg2+-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP....... A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii...

  6. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ahmad

    Full Text Available We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  7. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Science.gov (United States)

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  8. Prostaglandin H synthase immunoreactivity in human gut. An immunohistochemical study

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J; Qvortrup, Klaus

    1991-01-01

    Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase...... in the human duodenum, jejunum, ileum and colon by immunohistochemistry. PGH synthase immunoreactivity appeared to be similar in all segments of the intestine. Most smooth muscle cells seemed to contain PGH synthase; however, the reaction in the lamina muscularis mucosae was much stronger than...... in the longitudinal and circular muscle layers. Endothelial cells in capillaries and larger vessels showed a positive reaction. In addition, unidentified cells in subserosa, at the level of Auerbach's plexus and in the submucosa were stained. We concluded that the smooth muscle cells of the human gut has a rather...

  9. Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences.

    Directory of Open Access Journals (Sweden)

    Andrew eCarroll

    2011-03-01

    Full Text Available The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lacking an extensive analysis of the evolution, specialization, and regulation of the proteins that compose this complex. Here we perform an in-depth analysis of the sequences in the cellulose synthase (CesA family. We investigate the phylogeny of the CesA family, with emphasis on evolutionary specialization. We define specialized subfamilies and identify the class-specific regions within the CesA sequence that may explain this specialization. We investigate changes in regulation of CesAs by looking at the conservation of proposed phosphorylation sites. We investigate the conservation of sites where mutations have been documented that impair cellulose synthase function, and compare these sites to those observed in the closest cellulose synthase-like (Csl families to better understand what regions may separate the CesAs from other Csls. Finally we identify two positions with strong conservation of the aromatic trait, but lacking conservation of amino acid identity, which may represent residues important for positioning the sugar substrate for catalysis. These analyses provide useful tools for understanding characterized mutations and post-translational modifications, and for informing further experiments to probe CesA assembly, regulation, and function through site-directed mutagenesis or domain swapping experiments.

  10. Simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  11. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase.

    Science.gov (United States)

    Bergstrom, J D; Bostedor, R G; Masarachia, P J; Reszka, A A; Rodan, G

    2000-01-01

    Alendronate, a nitrogen-containing bisphosphonate, is a potent inhibitor of bone resorption used for the treatment and prevention of osteoporosis. Recent findings suggest that alendronate and other N-containing bisphosphonates inhibit the isoprenoid biosynthesis pathway and interfere with protein prenylation, as a result of reduced geranylgeranyl diphosphate levels. This study identified farnesyl disphosphate synthase as the mevalonate pathway enzyme inhibited by bisphosphonates. HPLC analysis of products from a liver cytosolic extract narrowed the potential targets for alendronate inhibition (IC(50) = 1700 nM) to isopentenyl diphosphate isomerase and farnesyl diphosphate synthase. Recombinant human farnesyl diphosphate synthase was inhibited by alendronate with an IC(50) of 460 nM (following 15 min preincubation). Alendronate did not inhibit isopentenyl diphosphate isomerase or GGPP synthase, partially purified from liver cytosol. Recombinant farnesyl diphosphate synthase was also inhibited by pamidronate (IC(50) = 500 nM) and risedronate (IC(50) = 3.9 nM), negligibly by etidronate (IC50 = 80 microM), and not at all by clodronate. In osteoclasts, alendronate inhibited the incorporation of [(3)H]mevalonolactone into proteins of 18-25 kDa and into nonsaponifiable lipids, including sterols. These findings (i) identify farnesyl diphosphate synthase as the selective target of alendronate in the mevalonate pathway, (ii) show that this enzyme is inhibited by other N-containing bisphosphonates, such as risendronate, but not by clodronate, supporting a different mechanism of action for different bisphosphonates, and (iii) document in purified osteoclasts alendronate inhibition of prenylation and sterol biosynthesis.

  12. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    Directory of Open Access Journals (Sweden)

    Ting Xu

    2015-03-01

    Full Text Available The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.

  13. Linking pseudouridine synthases to growth, development and cell competition.

    Science.gov (United States)

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  14. Beta section Beta: biogeographical patterns of variation and taxonomy.

    NARCIS (Netherlands)

    Letschert, J.P.W.

    1993-01-01

    In Chapter 1 an account is given of the historical subdivision of the genus Beta and its sections, and the relations of the sections are discussed. Emphasis is given to the taxonomic treatment of wild section Beta by various authors. The Linnaean names B. vulgaris L. and B. maritima L. are lectotypi

  15. Cyclic modular beta-sheets.

    Science.gov (United States)

    Woods, R Jeremy; Brower, Justin O; Castellanos, Elena; Hashemzadeh, Mehrnoosh; Khakshoor, Omid; Russu, Wade A; Nowick, James S

    2007-03-07

    The development of peptide beta-hairpins is problematic, because folding depends on the amino acid sequence and changes to the sequence can significantly decrease folding. Robust beta-hairpins that can tolerate such changes are attractive tools for studying interactions involving protein beta-sheets and developing inhibitors of these interactions. This paper introduces a new class of peptide models of protein beta-sheets that addresses the problem of separating folding from the sequence. These model beta-sheets are macrocyclic peptides that fold in water to present a pentapeptide beta-strand along one edge; the other edge contains the tripeptide beta-strand mimic Hao [JACS 2000, 122, 7654] and two additional amino acids. The pentapeptide and Hao-containing peptide strands are connected by two delta-linked ornithine (deltaOrn) turns [JACS 2003, 125, 876]. Each deltaOrn turn contains a free alpha-amino group that permits the linking of individual modules to form divalent beta-sheets. These "cyclic modular beta-sheets" are synthesized by standard solid-phase peptide synthesis of a linear precursor followed by solution-phase cyclization. Eight cyclic modular beta-sheets 1a-1h containing sequences based on beta-amyloid and macrophage inflammatory protein 2 were synthesized and characterized by 1H NMR. Linked cyclic modular beta-sheet 2, which contains two modules of 1b, was also synthesized and characterized. 1H NMR studies show downfield alpha-proton chemical shifts, deltaOrn delta-proton magnetic anisotropy, and NOE cross-peaks that establish all compounds but 1c and 1g to be moderately or well folded into a conformation that resembles a beta-sheet. Pulsed-field gradient NMR diffusion experiments show little or no self-association at low (

  16. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.).

    Science.gov (United States)

    Lahuta, Lesław B; Pluskota, Wioletta E; Stelmaszewska, Joanna; Szablińska, Joanna

    2014-09-01

    The exposition of 7-day-old pea seedlings to dehydration induced sudden changes in the concentration of monosaccharides and sucrose in epicotyl and roots tissues. During 24h of dehydration, the concentration of glucose and, to a lesser extent, fructose in seedling tissues decreased. The accumulation of sucrose was observed in roots after 4h and in epicotyls after 8h of stress. Epicotyls and roots also began to accumulate galactinol and raffinose after 8h of stress, when small changes in the water content of tissues occurred. The accumulation of galactinol and raffinose progressed parallel to water withdrawal from tissues, but after seedling rehydration both galactosides disappeared. The synthesis of galactinol and raffinose by an early induction (during the first hour of treatment) of galactinol synthase (PsGolS) and raffinose synthase (PsRS) gene expression as well as a later increase in the activity of both enzymes was noted. Signals possibly triggering the induction of PsGolS and PsRS gene expression and accumulation of galactinol and raffinose in seedlings are discussed.

  17. Cloning and characterization of squalene synthase and cycloartenol synthase from Siraitia grosvenorii

    Directory of Open Access Journals (Sweden)

    Huan Zhao

    2017-03-01

    Full Text Available Mogrosides and steroid saponins are tetracyclic triterpenoids found in Siraitia grosvenorii. Squalene synthase (SQS and cycloartenol synthase (CAS are key enzymes in triterpenoid and steroid biosynthesis. In this study, full-length cDNAs of SgSQS and SgCAS were cloned by a rapid amplification of cDNA-ends with polymerase chain reaction (RACE-PCR approach. The SgSQS cDNA has a 1254 bp open reading frame (ORF encoding 417 amino acids, and the SgCAS cDNA contains a 2298 bp ORF encoding 765 amino acids. Bioinformatic analysis showed that the deduced SgSQS protein has two transmembrane regions in the C-terminal. Both SgSQS and SgCAS have significantly higher levels in fruits than in other tissues, suggesting that steroids and mogrosides are competitors for the same precursors in fruits. Combined in silico prediction and subcellular localization, experiments in tobacco indicated that SgSQS was probably in the cytoplasm or on the cytoskeleton, and SgCAS was likely located in the nucleus or cytosol. These results will provide a foundation for further study of SgSQS and SgCAS gene functions in S. grosvenorii, and may facilitate improvements in mogroside content in fruit by regulating gene expression.

  18. Integration of BETA with Eclipse

    DEFF Research Database (Denmark)

    Andersen, Peter; Madsen, Ole Lehrmann; Enevoldsen, Mads Brøgger

    2004-01-01

    This paper presents language interoperability issues appearing in order to implement support for the BETA language in the Java-based Eclipse integrated development environment. One of the challenges is to implement plug-ins in BETA and be able to load them in Eclipse. In order to do this, some form...

  19. Measurements of sin 2 $\\beta$

    CERN Document Server

    Tricomi, A

    2000-01-01

    A review of the most recent measurements of the CP violating parameter sin 2 beta from LEP and CDF is reported. These yield an average value of sin 2 beta =0.91+or-0.35, giving a confidence level that CP violation in the B system has been observed of almost 99%. (10 refs).

  20. Beta decay of Cu-56

    NARCIS (Netherlands)

    Borcea, R; Aysto, J; Caurier, E; Dendooven, P; Doring, J; Gierlik, M; Gorska, M; Grawe, H; Hellstrom, M; Janas, Z; Jokinen, A; Karny, M; Kirchner, R; La Commara, M; Langanke, K; Martinez-Pinedo, G; Mayet, P; Nieminen, A; Nowacki, F; Penttila, H; Plochocki, A; Rejmund, M; Roeckl, E; Schlegel, C; Schmidt, K; Schwengner, R; Sawicka, M

    2001-01-01

    The proton-rich isotope Cu-56 was produced at the GSI On-Line Mass Separator by means of the Si-28(S-32, p3n) fusion-evaporation reaction. Its beta -decay properties were studied by detecting beta -delayed gamma rays and protons. A half-Life of 93 +/- 3 ms was determined for Cu-56. Compared to the p

  1. Beta Function and Anomalous Dimensions

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2011-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalou...

  2. RAVEN Beta Release

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Congjian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Daniel Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul William [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This documents the release of the Risk Analysis Virtual Environment (RAVEN) code. A description of the RAVEN code is provided, and discussion of the release process for the M2LW-16IN0704045 milestone. The RAVEN code is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN has now increased in maturity enough for the Beta 1.0 release.

  3. Characterisation of the tryptophan synthase alpha subunit in maize

    Directory of Open Access Journals (Sweden)

    Gierl Alfons

    2008-04-01

    Full Text Available Abstract Background In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA and β (TSB homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS complex in Arabidopsis. On the other hand maize (Zea mays expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB. Results In order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase α-reaction (cleavage of IGP, and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the α-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native α-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves. Conclusion It was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as α-subunit in this complex.

  4. [Serum beta 2 microglobulin (beta 2M) following renal transplantation].

    Science.gov (United States)

    Pacheco-Silva, A; Nishida, S K; Silva, M S; Ramos, O L; Azjen, H; Pereira, A B

    1994-01-01

    Although there was an important improvement in graft and patient survival the last 10 years, graft rejection continues to be a major barrier to the success of renal transplantation. Identification of a laboratory test that could help to diagnose graft rejection would facilitate the management of renal transplanted patients. PURPOSE--To evaluate the utility of monitoring serum beta 2M in recently transplanted patients. METHODS--We daily determined serum beta 2M levels in 20 receptors of renal grafts (10 from living related and 10 from cadaveric donors) and compared them to their clinical and laboratory evolution. RESULTS--Eight patients who presented immediate good renal function following grafting and did not have rejection had a mean serum beta 2M of 3.7 mg/L on the 4th day post transplant. The sensitivity of the test for the diagnosis of acute rejection was 87.5%, but the specificity was only 46%. Patients who presented acute tubular necrosis (ATN) without rejection had a progressive decrease in their serum levels of beta 2M, while their serum creatinine changed as they were dialyzed. In contrast, patients with ATN and concomitance of acute rejection or CSA nephrotoxicity presented elevated beta 2M and creatinine serum levels. CONCLUSION--Daily monitoring of serum beta 2M does not improve the ability to diagnose acute rejection in patients with good renal function. However, serum beta 2M levels seemed to be useful in diagnosing acute rejection or CSA nephrotoxicity in patients with ATN.

  5. Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test

    Science.gov (United States)

    Markova, Nataliia; Shevtsova, Elena; Bakhmet, Anastassia; Steinbusch, Harry M.

    2016-01-01

    While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta) mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome. PMID:27478647

  6. Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test

    Directory of Open Access Journals (Sweden)

    Tatyana Strekalova

    2016-01-01

    Full Text Available While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome.

  7. p35/Cyclin-dependent kinase 5 is required for protection against beta-amyloid-induced cell death but not tau phosphorylation by ceramide.

    Science.gov (United States)

    Seyb, Kathleen I; Ansar, Sabah; Li, Guibin; Bean, Jennifer; Michaelis, Mary L; Dobrowsky, Rick T

    2007-01-01

    Ceramide is a bioactive sphingolipid that can prevent calpain activation and beta-amyloid (A beta) neurotoxicity in cortical neurons. Recent evidence supports A beta induction of a calpain-dependent cleavage of the cyclin-dependent kinase 5 (cdk5) regulatory protein p35 that contributes to tau hyperphosphorylation and neuronal death. Using cortical neurons isolated from wild-type and p35 knockout mice, we investigated whether ceramide required p35/cdk5 to protect against A beta-induced cell death and tau phosphorylation. Ceramide inhibited A beta-induced calpain activation and cdk5 activity in wild-type neurons and protected against neuronal death and tau hyperphosphorylation. Interestingly, A beta also increased cdk5 activity in p35-/- neurons, suggesting that the alternate cdk5 regulatory protein, p39, might mediate this effect. In p35 null neurons, ceramide blocked A beta-induced calpain activation but did not inhibit cdk5 activity or cell death. However, ceramide blocked tau hyperphosphorylation potentially via inhibition of glycogen synthase kinase-3beta. These data suggest that ceramide can regulate A beta cell toxicity in a p35/cdk5-dependent manner.

  8. Experiments on double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Busto, J. [Neuchatel Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  9. Dosimetry of {beta} extensive sources; Dosimetria de fuentes {beta} extensas

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L.; Lallena R, A.M. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)

    2002-07-01

    In this work, we have been studied, making use of the Penelope Monte Carlo simulation code, the dosimetry of {beta} extensive sources in situations of spherical geometry including interfaces. These configurations are of interest in the treatment of the called cranealfaringyomes of some synovia leisure of knee and other problems of interest in medical physics. Therefore, its application can be extended toward problems of another areas with similar geometric situation and beta sources. (Author)

  10. Thiazolidinediones mimic glucose starvation in facilitating Sp1 degradation through the up-regulation of beta-transducin repeat-containing protein.

    Science.gov (United States)

    Wei, Shuo; Chuang, Hsiao-Ching; Tsai, Wan-Chi; Yang, Hsiao-Ching; Ho, Shiuh-Rong; Paterson, Andrew J; Kulp, Samuel K; Chen, Ching-Shih

    2009-07-01

    This study investigated the mechanism by which the transcription factor Sp1 is degraded in prostate cancer cells. We recently developed a thiazolidinedione derivative, (Z)-5-(4-hydroxy-3-trifluoromethylbenzylidene)-3-(1-methylcyclohexyl)-thiazolidine-2,4-dione (OSU-CG12), that induces Sp1 degradation in a manner paralleling that of glucose starvation. Based on our finding that thiazolidinediones suppress beta-catenin and cyclin D1 by up-regulating the E3 ligase SCF(beta-TrCP), we hypothesized that beta-transducin repeat-containing protein (beta-TrCP) targets Sp1 for proteasomal degradation in response to glucose starvation or OSU-CG12. Here we show that either treatment of LNCaP cells increased specific binding of Sp1 with beta-TrCP. This direct binding was confirmed by in vitro pull-down analysis with bacterially expressed beta-TrCP. Although ectopic expression of beta-TrCP enhanced the ability of OSU-CG12 to facilitate Sp1 degradation, suppression of endogenous beta-TrCP function by a dominant-negative mutant or small interfering RNA-mediated knockdown blocked OSU-CG12-facilitated Sp1 ubiquitination and/or degradation. Sp1 contains a C-terminal conventional DSG destruction box ((727)DSGAGS(732)) that mediates beta-TrCP recognition and encompasses a glycogen synthase kinase 3beta (GSK3beta) phosphorylation motif (SXXXS). Pharmacological and molecular genetic approaches and mutational analyses indicate that extracellular signal-regulated kinase-mediated phosphorylation of Thr739 and GSK3beta-mediated phosphorylation of Ser728 and Ser732 were critical for Sp1 degradation. The ability of OSU-CG12 to mimic glucose starvation to activate beta-TrCP-mediated Sp1 degradation has translational potential to foster novel strategies for cancer therapy.

  11. Bacillus caldolyticus prs gene encoding phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-1-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  12. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal...... and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant i......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  13. Properties of peroxisomal and mitochondrial citrate synthase from Agave americana.

    Science.gov (United States)

    Segovia, J L; Zafra, M F; Alejandre, M J; García-Peregrín, E

    1982-09-01

    Adenine nucleotides were tested as effectors of peroxisomal and mitochondrial citrate synthase from Agave americana leaves in the presence of different concentrations of acetyl-CoA and oxalacetate substrates. ATP inhibited both enzyme activities but with a different inhibition profile. 1.0-7.5 mM ADP did not inhibit the peroxisomal citrate synthase in the presence of high substrate concentrations, while the mitochondrial enzyme was strongly inhibited by 1.0 mM ADP in the same conditions. Likewise, a different pattern was obtained with AMP on both peroxisomal and mitochondrial activities. The rate of citrate formation as function of acetyl-CoA and oxalacetate concentration was also studied in both fractions. Maximal velocity was highest in the peroxisomal fraction, whether acetyl-CoA or oxalacetate were the variable substrates. These differences indicate that peroxisomal and mitochondrial citrate synthases seem to be two different isoenzymes.

  14. Evolution of outer membrane beta-barrels from an ancestral beta beta hairpin.

    Science.gov (United States)

    Remmert, M; Biegert, A; Linke, D; Lupas, A N; Söding, J

    2010-06-01

    Outer membrane beta-barrels (OMBBs) are the major class of outer membrane proteins from Gram-negative bacteria, mitochondria, and plastids. Their transmembrane domains consist of 8-24 beta-strands forming a closed, barrel-shaped beta-sheet around a central pore. Despite their obvious structural regularity, evidence for an origin by duplication or for a common ancestry has not been found. We use three complementary approaches to show that all OMBBs from Gram-negative bacteria evolved from a single, ancestral beta beta hairpin. First, we link almost all families of known single-chain bacterial OMBBs with each other through transitive profile searches. Second, we identify a clear repeat signature in the sequences of many OMBBs in which the repeating sequence unit coincides with the structural beta beta hairpin repeat. Third, we show that the observed sequence similarity between OMBB hairpins cannot be explained by structural or membrane constraints on their sequences. The third approach addresses a longstanding problem in protein evolution: how to distinguish between a very remotely homologous relationship and the opposing scenario of "sequence convergence." The origin of a diverse group of proteins from a single hairpin module supports the hypothesis that, around the time of transition from the RNA to the protein world, proteins arose by amplification and recombination of short peptide modules that had previously evolved as cofactors of RNAs.

  15. Exploiting the Biosynthetic Potential of Type III Polyketide Synthases

    Directory of Open Access Journals (Sweden)

    Yan Ping Lim

    2016-06-01

    Full Text Available Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development.

  16. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides

    OpenAIRE

    2010-01-01

    Previously melittin, the α-helical basic honey bee venom peptide, was shown to inhibit F1-ATPase by binding at the β-subunit DELSEED motif of F1Fo ATP synthase. Herein, we present the inhibitory effects of the basic α-helical amphibian antimicrobial peptides, ascaphin-8, aurein 2.2, aurein 2.3, carein 1.8, carein 1.9, citropin 1.1, dermaseptin, maculatin 1.1, maganin II, MRP, or XT-7, on purified F1 and membrane bound F1Fo E. coli ATP synthase. We found that the extent of inhibition by amphib...

  17. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    OpenAIRE

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control...

  18. Questions Students Ask: Beta Decay.

    Science.gov (United States)

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  19. Beta Function and Anomalous Dimensions

    CERN Document Server

    Pica, Claudio

    2010-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous dimension of the fermion masses at the infrared fixed point, and the resulting values compare well with the lattice determinations.

  20. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    Science.gov (United States)

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  1. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages.

    Science.gov (United States)

    Belkheir, Asma K; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents.

  2. An Unusual Chimeric Diterpene Synthase from Emericella variecolor and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping.

    Science.gov (United States)

    Qin, Bin; Matsuda, Yudai; Mori, Takahiro; Okada, Masahiro; Quan, Zhiyang; Mitsuhashi, Takaaki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-26

    Di- and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene (1), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.

  3. Synthetic resveratrol aliphatic acid inhibits TLR2-mediated apoptosis and an involvement of Akt/GSK3beta pathway.

    Science.gov (United States)

    Chen, Lin; Zhang, Yi; Sun, Xiuli; Li, Hui; LeSage, Gene; Javer, Avani; Zhang, Xiumei; Wei, Xinbing; Jiang, Yulin; Yin, Deling

    2009-07-01

    As resveratrol derivatives, resveratrol aliphatic acids were synthesized in our laboratory. Previously, we reported the improved pharmaceutical properties of the compounds compared to resveratrol, including better solubility in water and much tighter binding with human serum albumin. Here, we investigate the role of resveratrol aliphatic acids in Toll-like receptor 2 (TLR2)-mediated apoptosis. We showed that resveratrol aliphatic acid (R6A) significantly inhibits the expression of TLR2. In addition, overexpression of TLR2 in HEK293 cells caused a significant decrease in apoptosis after R6A treatment. Moreover, inhibition of TLR2 by R6A decreases serum deprivation-reduced the levels of phosphorylated Akt and phosphorylated glycogen synthase kinase 3beta (GSK3beta). Our study thus demonstrates that the resveratrol aliphatic acid inhibits cell apoptosis through TLR2 by the involvement of Akt/GSK3beta pathway.

  4. Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase.

    Science.gov (United States)

    Neily, Mohamed Hichem; Matsukura, Chiaki; Maucourt, Mickaël; Bernillon, Stéphane; Deborde, Catherine; Moing, Annick; Yin, Yong-Gen; Saito, Takeshi; Mori, Kentaro; Asamizu, Erika; Rolin, Dominique; Moriguchi, Takaya; Ezura, Hiroshi

    2011-02-15

    Polyamines are involved in crucial plant physiological events, but their roles in fruit development remain unclear. We generated transgenic tomato plants that show a 1.5- to 2-fold increase in polyamine content by over-expressing the spermidine synthase gene, which encodes a key enzyme for polyamine biosynthesis. Pericarp-columella and placental tissue from transgenic tomato fruits were subjected to (1)H-nuclear magnetic resonance (NMR) for untargeted metabolic profiling and high-performance liquid chromatography-diode array detection for carotenoid profiling to determine the effects of high levels of polyamine accumulation on tomato fruit metabolism. A principal component analysis of the quantitative (1)H NMR data from immature green to red ripe fruit showed a clear discrimination between developmental stages, especially during ripening. Quantification of 37 metabolites in pericarp-columella and 41 metabolites in placenta tissues revealed distinct metabolic profiles between the wild type and transgenic lines, particularly at the late ripening stages. Notably, the transgenic tomato fruits also showed an increase in carotenoid accumulation, especially in lycopene (1.3- to 2.2-fold), and increased ethylene production (1.2- to 1.6-fold) compared to wild-type fruits. Genes responsible for lycopene biosynthesis, including phytoene synthase, phytoene desaturase, and deoxy-d-xylulose 5-phosphate synthase, were significantly up-regulated in ripe transgenic fruits, whereas genes involved in lycopene degradation, including lycopene-epsilon cyclase and lycopene beta cyclase, were down-regulated in the transgenic fruits compared to the wild type. These results suggest that a high level of accumulation of polyamines in the tomato regulates the steady-state level of transcription of genes responsible for the lycopene metabolic pathway, which results in a higher accumulation of lycopene in the fruit.

  5. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Morant, Marc

    2017-02-07

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. The Remarkable Character of Porphobilinogen Synthase.

    Science.gov (United States)

    Jaffe, Eileen K

    2016-11-15

    Porphobilinogen synthase (PBGS), also known as 5-aminolevulinate dehydratase, is an essential enzyme in the biosynthesis of all tetrapyrroles, which function in respiration, photosynthesis, and methanogenesis. Throughout evolution, PBGS adapted to a diversity of cellular niches and evolved to use an unusual variety of metal ions both for catalytic function and to control protein multimerization. With regard to the active site, some PBGSs require Zn(2+); a subset of those, including human PBGS, contain a constellation of cysteine residues that acts as a sink for the environmental toxin Pb(2+). PBGSs that do not require the soft metal ion Zn(2+) at the active site instead are suspected of using the hard metal Mg(2+). The most unexpected property of the PBGS family of enzymes is a dissociative allosteric mechanism that utilizes an equilibrium of architecturally and functionally distinct protein assemblies. The high-activity assembly is an octamer in which intersubunit interactions modulate active-site lid motion. This octamer can dissociate to dimer, the dimer can undergo a hinge twist, and the twisted dimer can assemble to a low-activity hexamer. The hexamer does not have the intersubunit interactions required to stabilize a closed conformation of the active site lid. PBGS active site chemistry benefits from a closed lid because porphobilinogen biosynthesis includes Schiff base formation, which requires deprotonated lysine amino groups. N-terminal and C-terminal sequence extensions dictate whether a specific species of PBGS can sample the hexameric assembly. The bulk of species (nearly all except animals and yeasts) use Mg(2+) as an allosteric activator. Mg(2+) functions allosterically by binding to an intersubunit interface that is present in the octamer but absent in the hexamer. This conformational selection allosteric mechanism is purported to be essential to avoid the untimely accumulation of phototoxic chlorophyll precursors in plants. For those PBGSs that do

  7. Biochemical and Structural Basis for Inhibition of Enterococcus faecalis Hydroxymethylglutaryl-CoA Synthase, mvaS, by Hymeglusin

    Energy Technology Data Exchange (ETDEWEB)

    Skaff, D. Andrew; Ramyar, Kasra X.; McWhorter, William J.; Barta, Michael L.; Geisbrecht, Brian V.; Miziorko, Henry M. (UMKC)

    2012-07-25

    Hymeglusin (1233A, F244, L-659-699) is established as a specific {beta}-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct; substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 {angstrom}) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity.

  8. Geosmin biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/geosmin synthase.

    Science.gov (United States)

    Cane, David E; He, Xiaofei; Kobayashi, Seiji; Omura, Satoshi; Ikeda, Haruo

    2006-08-01

    Geosmin (1) is responsible for the characteristic odor of moist soil. The Gram-positive soil bacterium Streptomyces avermitilis produces geosmin (1) as well as its precursor germacradienol (3). The S. avermitilis gene SAV2163 (geoA) is extremely similar to the S. coelicolor A3(2) SCO6073 gene that encodes a germacradienol/geosmin synthase. S. avermitilis mutants with a deleted geoA were unable to produce either germacradienol (3) or geosmin (1). Biosynthesis of both compounds was restored by introducing an intact geoA gene into the mutants. Incubation of recombinant GeoA, encoded by the SAV2163 gene of S. avermitilis, with farnesyl diphosphate (2) in the presence of Mg2+ gave a mixture of (4S,7R)-germacra-1(10)E,5E-diene-11-ol (3) (66%), (7S)-germacrene D (4) (24%), geosmin (1) (8%), and a hydrocarbon, tentatively assigned the structure of octalin 5 (2%). Incubation of this germacradienol/geosmin synthase with [1,1-(2)H2] FPP (2a) gave geosmin-d1 (1a), as predicted. When recombinant GeoA from either S. avermitilis or S. coelicolor A3(2) was incubated with nerolidyl diphosphate (8), only the acyclic elimination products beta3-farnesene (10), (Z)-alpha-farnesene (11), and (E)-alpha-farnesene (12) were formed, thereby ruling out nerolidyl diphosphate as an intermediate in the conversion of farnesyl diphosphate to geosmin, germacradienol, and germacrene D.

  9. Homology analyses of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soo-Ik (Harvard Medical School, Boston, MA (USA)); Hammes, G.G. (Univ. of California, Santa Barbara (USA))

    1989-11-01

    Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chicken and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the {beta}-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution.

  10. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Verwaal, René; Wang, Jing; Meijnen, Jean-Paul; Visser, Hans; Sandmann, Gerhard; van den Berg, Johan A; van Ooyen, Albert J J

    2007-07-01

    To determine whether Saccharomyces cerevisiae can serve as a host for efficient carotenoid and especially beta-carotene production, carotenogenic genes from the carotenoid-producing yeast Xanthophyllomyces dendrorhous were introduced and overexpressed in S. cerevisiae. Because overexpression of these genes from an episomal expression vector resulted in unstable strains, the genes were integrated into genomic DNA to yield stable, carotenoid-producing S. cerevisiae cells. Furthermore, carotenoid production levels were higher in strains containing integrated carotenogenic genes. Overexpression of crtYB (which encodes a bifunctional phytoene synthase and lycopene cyclase) and crtI (phytoene desaturase) from X. dendrorhous was sufficient to enable carotenoid production. Carotenoid production levels were increased by additional overexpression of a homologous geranylgeranyl diphosphate (GGPP) synthase from S. cerevisiae that is encoded by BTS1. Combined overexpression of crtE (heterologous GGPP synthase) from X. dendrorhous with crtYB and crtI and introduction of an additional copy of a truncated 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (tHMG1) into carotenoid-producing cells resulted in a successive increase in carotenoid production levels. The strains mentioned produced high levels of intermediates of the carotenogenic pathway and comparable low levels of the preferred end product beta-carotene, as determined by high-performance liquid chromatography. We finally succeeded in constructing an S. cerevisiae strain capable of producing high levels of beta-carotene, up to 5.9 mg/g (dry weight), which was accomplished by the introduction of an additional copy of crtI and tHMG1 into carotenoid-producing yeast cells. This transformant is promising for further development toward the biotechnological production of beta-carotene by S. cerevisiae.

  11. The GERDA experiment on 0{nu}{beta}{beta} decay

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Kai [Eberhard Karls Universitaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2012-07-01

    The Gerda (Germanium Detector Array) collaboration searches for the neutrinoless double beta decay (0{nu}{beta}{beta}) of {sup 76}Ge. The existence of this decay would give rise to the assumption that the neutrino is a Majorana particle, i.e. its own antiparticle. A measured half-life could be used to determine the effective neutrino mass and hence resolve the neutrino mass hierarchy problem. Germanium diodes, isotopically enriched in {sup 76}Ge, are used as both source and detector. Due to the low rate of this decay (T{sub 1/2}>10{sup 25} y), the experimental background must be reduced to a level of 10{sup -2}counts/(kg y keV) or better in the region around Q{sub {beta}{beta}}. To minimize background from cosmogenically produced secondary particles, a low Z shielding is employed. Thus, the naked diodes are operated in a liquid argon cryostat, which is surrounded by a water tank acting as both passive shield and active muon Cherenkov veto. Gerda started the commissioning runs in 2010 and in November 2011, the first phase of data taking with enriched detectors has begun. In this talk, the first year of the experiment is summarized.

  12. Functional Characterization of Sesquiterpene Synthase from Polygonum minus

    Directory of Open Access Journals (Sweden)

    Su-Fang Ee

    2014-01-01

    Full Text Available Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS has a complete open reading frame (ORF of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β-sesquiphellandrene.

  13. Absence of Pneumocystis dihydropteroate synthase mutants in Brittany, France.

    Science.gov (United States)

    Le Gal, Solène; Robert-Gangneux, Florence; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Damiani, Céline; Totet, Anne; Gangneux, Jean-Pierre; Nevez, Gilles

    2013-05-01

    Archival Pneumocystis jirovecii specimens from 84 patients monitored at Rennes University Hospital (Rennes, France) were assayed at the dihydropteroate synthase (DHPS) locus. No patient was infected with mutants. The results provide additional data showing that P. jirovecii infections involving DHPS mutants do not represent a public health issue in Brittany, western France.

  14. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance

    DEFF Research Database (Denmark)

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara

    2004-01-01

    in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim...

  15. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    NARCIS (Netherlands)

    Nina, Praveen Balabaskaran; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.; Eisen, Jonathan A.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are highl

  16. Biosynthesis of polyketides by trans-AT polyketide synthases.

    Science.gov (United States)

    Piel, Jörn

    2010-07-01

    This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that have recently been recognized as one of the major group of proteins involved in the production of bioactive polyketides. 436 references are cited.

  17. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    Science.gov (United States)

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2 was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s−1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s−1 μM−1 for TgTPS2. The kinetic parameters were in agreement with previously published data. PMID:27721652

  18. Characterising the cellulose synthase complexes of cell walls

    NARCIS (Netherlands)

    Mansoori Zangir, N.

    2012-01-01

    One of the characteristics of the plant kingdom is the presence of a structural cell wall. Cellulose is a major component in both the primary and secondary cell walls of plants. In higher plants cellulose is synthesized by so called rosette protein complexes with cellulose synthases (CESAs) as the c

  19. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene

    DEFF Research Database (Denmark)

    Edman, U; Edman, J C; Lundgren, B;

    1989-01-01

    The thymidylate synthase (TS) gene from Pneumocystis carinii has been isolated from complementary and genomic DNA libraries and expressed in Escherichia coli. The coding sequence of TS is 891 nucleotides, encoding a 297-amino acid protein of Mr 34,269. The deduced amino acid sequence is similar...

  20. Assessment of response to beta-blockers by expression of βArr2 and RhoA/ROCK2 in antrum mucosa in cirrhotic patients

    DEFF Research Database (Denmark)

    Trebicka, Jonel; von Heydebrand, Matthias; Lehmann, Jennifer

    2016-01-01

    BACKGROUND & AIMS: Non-selective beta-blockers (NSBB) are first choice for prevention of variceal bleeding. But possible deleterious effects in refractory ascites and frequent non-response are clinical drawbacks. Since levels of vasoactive proteins in antrum mucosa reflect vascular dysfunction...... and protein expression of Ras homolog family member A (RhoA), Rho-kinase (ROCK)2, beta-arrestin2 (βArr2), endothelial nitric oxide synthase (eNOS) and the phosphorylation of downstream effectors VASP and moesin were analyzed using PCR and Western blot. Further 21 patients on NSBB were evaluated...

  1. Protective effect of niacinamide on interleukin-1beta-induced annulus fibrosus type II collagen degeneration in vitro.

    Science.gov (United States)

    Duan, Deyu; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiong, Xiaoqian

    2007-02-01

    The protective effect of niacinamide on interleukin-1beta (IL-1beta)-induced annulus fibrosus (AF) type II collagen degeneration in vitro and the mechanism were investigated. Chiba's intervertebral disc (IVD) culture models in rabbits were established and 48 IVDs from 12 adult Japanese white rabbits were randomly divided into 4 groups: normal control group, niacinamide-treated group, type II collagen degneration group (IL-1beta) and treatment group (niacinamide+IL-1beta). After culture for one week, AFs were collected for inducible nitric oxide synthase (iNOS), cysteine containing aspartate specific protease-3 (Caspase-3) and type II collagen immunohistochemical examination, and type II collagen reverse transcription polymerase chain reaction (RT-PCR). The results showed that rate of iNOS positive staining AF cells in the 4 groups was 17.6%, 10.9%, 73.9% and 19.3% respectively. The positive rate in treatment group was significantly lower than in the type II collagen degeneration group (Pniacinamide could effectively inhibit IL-1beta stimulated increase of iNOS and Caspase-3 in AF, and alleviate IL-1beta-caused destruction and synthesis inhibition of type II collagen. Niacinamide is of potential for clinical treatment of IVD degeneration.

  2. In-trap decay spectroscopy for {beta}{beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Thomas

    2011-01-18

    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge

  3. Analysis of betaS and betaA genes in a Mexican population with African roots.

    Science.gov (United States)

    Magaña, María Teresa; Ongay, Zoyla; Tagle, Juan; Bentura, Gilberto; Cobián, José G; Perea, F Javier; Casas-Castañeda, Maricela; Sánchez-López, Yoaly J; Ibarra, Bertha

    2002-01-01

    To investigate the origin of the beta(A) and beta(S) genes in a Mexican population with African roots and a high frequency of hemoglobin S, we analyzed 467 individuals (288 unrelated) from different towns in the states of Guerrero and Oaxaca in the Costa Chica region. The frequency of the sickle-cell trait was 12.8%, which may represent a public health problem. The frequencies of the beta-haplotypes were determined from 350 nonrelated chromosomes (313 beta(A) and 37 beta(S)). We observed 15 different beta(A) haplotypes, the most common of which were haplotypes 1 (48.9%), 2 (13.4%), and 3 (13.4%). The calculation of pairwise distributions and Nei's genetic distance analysis using 32 worldwide populations showed that the beta(A) genes are more closely related to those of Mexican Mestizos and North Africans. Bantu and Benin haplotypes and haplotype 9 were related to the beta(S) genes, with frequencies of 78.8, 18.2, and 3.0%, respectively. Comparison of these haplotypes with 17 other populations revealed a high similitude with the population of the Central African Republic. These data suggest distinct origins for the beta(A) and beta(S) genes in Mexican individuals from the Costa Chica region.

  4. Detailed characterization of the substrate specificity of mouse wax synthase.

    Science.gov (United States)

    Miklaszewska, Magdalena; Kawiński, Adam; Banaś, Antoni

    2013-01-01

    Wax synthases are membrane-associated enzymes catalysing the esterification reaction between fatty acyl-CoA and a long chain fatty alcohol. In living organisms, wax esters function as storage materials or provide protection against harmful environmental influences. In industry, they are used as ingredients for the production of lubricants, pharmaceuticals, and cosmetics. Currently the biological sources of wax esters are limited to jojoba oil. In order to establish a large-scale production of desired wax esters in transgenic high-yielding oilseed plants, enzymes involved in wax esters synthesis from different biological resources should be characterized in detail taking into consideration their substrate specificity. Therefore, this study aims at determining the substrate specificity of one of such enzymes -- the mouse wax synthase. The gene encoding this enzyme was expressed heterologously in Saccharomyces cerevisiae. In the in vitro assays (using microsomal fraction from transgenic yeast), we evaluated the preferences of mouse wax synthase towards a set of combinations of 11 acyl-CoAs with 17 fatty alcohols. The highest activity was observed for 14:0-CoA, 12:0-CoA, and 16:0-CoA in combination with medium chain alcohols (up to 5.2, 3.4, and 3.3 nmol wax esters/min/mg microsomal protein, respectively). Unsaturated alcohols longer than 18°C were better utilized by the enzyme in comparison to the saturated ones. Combinations of all tested alcohols with 20:0-CoA, 22:1-CoA, or Ric-CoA were poorly utilized by the enzyme, and conjugated acyl-CoAs were not utilized at all. Apart from the wax synthase activity, mouse wax synthase also exhibited a very low acyl-CoA:diacylglycerol acyltransferase activity. However, it displayed neither acyl-CoA:monoacylglycerol acyltransferase, nor acyl-CoA:sterol acyltransferase activity.

  5. Phytochelatin synthase: of a protease a peptide polymerase made.

    Science.gov (United States)

    Rea, Philip A

    2012-05-01

    Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.

  6. Significance of nitric oxide synthases: Lessons from triple nitric oxide synthases null mice.

    Science.gov (United States)

    Tsutsui, Masato; Tanimoto, Akihide; Tamura, Masahito; Mukae, Hiroshi; Yanagihara, Nobuyuki; Shimokawa, Hiroaki; Otsuji, Yutaka

    2015-01-01

    Nitric oxide (NO) is synthesized by three distinct NO synthases (neuronal, inducible, and endothelial NOSs), all of which are expressed in almost all tissues and organs in humans. The regulatory roles of NOSs in vivo have been investigated in pharmacological studies with non-selective NOS inhibitors. However, the specificity of the inhibitors continues to be an issue of debate, and the authentic significance of NOSs is still poorly understood. To address this issue, we generated mice in which all three NOS genes are completely disrupted. The triple NOSs null mice exhibited cardiovascular abnormalities, including hypertension, arteriosclerosis, myocardial infarction, cardiac hypertrophy, diastolic heart failure, and reduced EDHF responses, with a shorter survival. The triple NOSs null mice also displayed metabolic abnormalities, including metabolic syndrome and high-fat diet-induced severe dyslipidemia. Furthermore, the triple NOSs null mice showed renal abnormalities (nephrogenic diabetes insipidus and pathological renal remodeling), lung abnormalities (accelerated pulmonary fibrosis), and bone abnormalities (increased bone mineral density and bone turnover). These results provide evidence that NOSs play pivotal roles in the pathogenesis of a wide variety of disorders. This review summarizes the latest knowledge on the significance of NOSs in vivo, based on lessons learned from experiments with our triple mutant model.

  7. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor.

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, S.; Ikeguchi, Y.; Skarina, T.; Beasley, S.; Arrowsmith, C.; Edwards, A.; Joachimiak, A.; Pegg, A. E.; Savchenko, A.; Pennsylvania State Univ. Coll. of Medicine; Milton S. Hershey Medical Center; Banting and Best Department of Medical Research; Univ. of Health Network

    2002-01-01

    Polyamines are essential in all branches of life. Spermidine synthase (putrescine aminopropyltransferase, PAPT) catalyzes the biosynthesis of spermidine, a ubiquitous polyamine. The crystal structure of the PAPT from Thermotoga maritima (TmPAPT) has been solved to 1.5 Angstroms resolution in the presence and absence of AdoDATO (S-adenosyl-1,8-diamino-3-thiooctane), a compound containing both substrate and product moieties. This, the first structure of an aminopropyltransferase, reveals deep cavities for binding substrate and cofactor, and a loop that envelops the active site. The AdoDATO binding site is lined with residues conserved in PAPT enzymes from bacteria to humans, suggesting a universal catalytic mechanism. Other conserved residues act sterically to provide a structural basis for polyamine specificity. The enzyme is tetrameric; each monomer consists of a C-terminal domain with a Rossmann-like fold and an N-terminal {beta}-stranded domain. The tetramer is assembled using a novel barrel-type oligomerization motif.

  8. Linkage of the human inducible nitric oxide synthase gene to type 1 diabetes.

    Science.gov (United States)

    Johannesen, J; Pie, A; Pociot, F; Kristiansen, O P; Karlsen, A E; Nerup, J

    2001-06-01

    Exposure of human pancreatic islets to a mixture of cytokines induces expression of the inducible nitric oxide synthase (iNOS), impairs beta-cell function, and induces apoptosis. We performed a mutational scanning of all 27 exons of the human NOS2 gene and linkage transmission disequilibrium testing of identified NOS2 polymorphisms in a Danish nationwide type 1 diabetes mellitus (IDDM) family collection. Mutational screening was performed using PCR-amplified exons, followed by single stranded conformation polymorphism and verification of potential polymorphisms by sequencing. The transmission disequilibrium test was performed in an IDDM family material comprising 257 Danish families; 154 families were affected sibling pair families, and 103 families were simplex families. In total, 10 polymorphisms were identified in 8 exons, of which 4 were tested in the family material. A C/T single nucleotide polymorphism in exon 16 resulting in an amino acid substitution, Ser(608)Leu, showed linkage to IDDM in human leukocyte antigen DR3/4-positive affected offspring (P = 0.008; corrected P = 0.024). No other distorted transmission patterns were found for any other tested single nucleotide polymorphism or constructed haplotypes with the exception of those including data from exon 16. In conclusion, linkage of the human NOS2 gene to IDDM in a subset of patients supports a pathogenic role of nitric oxide in human IDDM.

  9. The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens.

    Science.gov (United States)

    Roberts, Alison W; Bushoven, John T

    2007-01-01

    The CESA gene superfamily of Arabidopsis and other seed plants comprises the CESA family, which encodes the catalytic subunits of cellulose synthase, and eight families of CESA-like (CSL) genes whose functions are largely unknown. The CSL genes have been proposed to encode processive beta-glycosyl transferases that synthesize noncellulosic cell wall polysaccharides. BLAST searches of EST and shotgun genomic sequences from the moss Physcomitrella patens (Hedw.) B.S.G. were used to identify genes with high similarity to vascular plant CESAs, CSLAs, CSLCs, and CSLDs. However, searches using Arabidopsis CSLBs, CSLEs, and CSLGs or rice CSLFs or CSLHs as queries identified no additional CESA superfamily members in P. patens, indicating that this moss lacks representatives of these families. Intron insertion sites are highly conserved between Arabidopsis and P. patens in all four shared gene families. However, phylogenetic analysis strongly supports independent diversification of the shared families in mosses and vascular plants. The lack of orthologs of vascular plant CESAs in the P. patens genome indicates that the divergence of mosses and vascular plants predated divergence and specialization of CESAs for primary and secondary cell wall syntheses and for distinct roles within the rosette terminal complexes. In contrast to Arabidopsis, the CSLD family is highly represented among P. patens ESTs. This is consistent with the proposed function of CSLDs in tip growth and the central role of tip growth in the development of the moss protonema.

  10. Subunit movements in single membrane-bound H+-ATP synthases from chloroplasts during ATP synthesis.

    Science.gov (United States)

    Bienert, Roland; Rombach-Riegraf, Verena; Diez, Manuel; Gräber, Peter

    2009-12-25

    Subunit movements within the H(+)-ATP synthase from chloroplasts (CF(0)F(1)) are investigated during ATP synthesis. The gamma-subunit (gammaCys-322) is covalently labeled with a fluorescence donor (ATTO532). A fluorescence acceptor (adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP)-ATTO665) is noncovalently bound to a noncatalytic site at one alpha-subunit. The labeled CF(0)F(1) is integrated into liposomes, and a transmembrane pH difference is generated by an acid base transition. Single-pair fluorescence resonance energy transfer is measured in freely diffusing proteoliposomes with a confocal two-channel microscope. The fluorescence time traces reveal a repetitive three-step rotation of the gamma-subunit relative to the alpha-subunit during ATP synthesis. Some traces show splitting into sublevels with fluctuations between the sublevels. During catalysis the central stalk interacts, with equal probability, with each alphabeta-pair. Without catalysis the central stalk interacts with only one specific alphabeta-pair, and no stepping between FRET levels is observed. Two inactive states of the enzyme are identified: one in the presence of AMPPNP and one in the presence of ADP.

  11. Crystal Structure and Functional Analysis of Homocitrate Synthase, an Essential Enzyme in Lysine Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Scott, Erin M.; Couture, Jean-François; Pillus, Lorraine; Trievel, Raymond C.; (Michigan); (UCSD)

    2010-01-12

    Homocitrate synthase (HCS) catalyzes the first and committed step in lysine biosynthesis in many fungi and certain Archaea and is a potential target for antifungal drugs. Here we report the crystal structure of the HCS apoenzyme from Schizosaccharomyces pombe and two distinct structures of the enzyme in complex with the substrate 2-oxoglutarate (2-OG). The structures reveal that HCS forms an intertwined homodimer stabilized by domain-swapping between the N- and C-terminal domains of each monomer. The N-terminal catalytic domain is composed of a TIM barrel fold in which 2-OG binds via hydrogen bonds and coordination to the active site divalent metal ion, whereas the C-terminal domain is composed of mixed {alpha}/{beta} topology. In the structures of the HCS apoenzyme and one of the 2-OG binary complexes, a lid motif from the C-terminal domain occludes the entrance to the active site of the neighboring monomer, whereas in the second 2-OG complex the lid is disordered, suggesting that it regulates substrate access to the active site through its apparent flexibility. Mutations of the active site residues involved in 2-OG binding or implicated in acid-base catalysis impair or abolish activity in vitro and in vivo. Together, these results yield new insights into the structure and catalytic mechanism of HCSs and furnish a platform for developing HCS-selective inhibitors.

  12. beta (+)-Thalassaemia in the Po river delta region (northern Italy): genotype and beta globin synthesis.

    Science.gov (United States)

    Del Senno, L; Pirastu, M; Barbieri, R; Bernardi, F; Buzzoni, D; Marchetti, G; Perrotta, C; Vullo, C; Kan, Y W; Conconi, F

    1985-01-01

    Six beta(+)-thalassaemic patients from the Po river delta region have been studied. Using synthetic oligonucleotides as specific hybridisation probes, the beta(+) IVS I mutation (G----A at position 108) was demonstrated. This lesion and the enzyme polymorphism pattern in the subjects examined are the same as have been described for other Mediterranean beta(+)-thalassaemias. Antenatal diagnosis through DNA analysis of beta(+)-thalassaemia is therefore possible. The production of beta globin in a beta(+), homozygote and in a beta (+), beta(0) 39 (nonsense mutation at codon 39) double heterozygote is approximately 20% and 10% respectively of total non-alpha globin synthesis. Despite some overlapping of the results, similar beta globin synthesis levels have been obtained in 43 beta(+)-thalassaemia patients. This suggests that in the Po river delta region the most common thalassaemic genes are beta(0) 39 and beta(+) IVS I. Images PMID:2580095

  13. Smart Beta or Smart Alpha

    DEFF Research Database (Denmark)

    Winther, Kenneth Lillelund; Steenstrup, Søren Resen

    2016-01-01

    Smart beta has become the flavor of the decade in the investment world with its low fees, easy access to rewarded risk premiums, and appearance of providing good investment results relative to both traditional passive benchmarks and actively managed funds. Although we consider it well documented...... that smart beta investing probably will do better than passive market capitalization investing over time, we believe many are coming to a conclusion too quickly regarding active managers. Institutional investors are able to guide managers through benchmarks and risk frameworks toward the same well......-documented smart beta risk premiums and still motivate active managers to avoid value traps, too highly priced small caps, defensives, etc. By constructing the equity portfolios of active managers that resemble the most widely used risk premiums, we show that the returns and risk-adjusted returns measures...

  14. The microbial oxidation of (-)-beta-pinene by Botrytis cinerea.

    Science.gov (United States)

    Farooq, Afgan; Choudhary, M Iqbal; Tahara, Satoshi; Rahman, Atta-ur; Başer, K Hüsnü Can; Demirci, Fatih

    2002-01-01

    (-)-beta-pinene, a flavor and fragrance monoterpene is an important constituent of essential oils of many aromatic plants. It was oxidized by a plant-pathogenic fungus, Botrytis cinerea to afford four metabolites characterized as (-)-6a-hydroxy-beta-pinene, (-)-4beta,5beta-dihydroxy-beta-pinene, (-)-2beta,3beta-dihydroxypinane, and (-)-4beta-hydroxy-beta-pinene-6-one by detailed spectroscopic studies along with other known metabolites.

  15. Neutrinoless double beta decay experiments

    CERN Document Server

    Zuber, K

    2006-01-01

    The study of neutrinoless double beta decay is of outmost importance for neutrino physics. It is considered to be the gold plated channel to probe the fundamental character of neutrinos and to determine the neutrino mass. From the experimental point about nine different isotopes are explored for the search. After a general introduction follows a short discussion on nuclear matrix element calculations and supportive measurements. The current experimental status of double beta searches is presented followed by a short discussion of the ideas and proposals for large scale experiments.

  16. A {beta} - {gamma} coincidence; Metodo de coincidencias {beta} - {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Agullo, F.

    1960-07-01

    A {beta} - {gamma} coincidence method for absolute counting is given. The fundamental principles are revised and the experimental part is detailed. The results from {sup 1}98 Au irradiated in the JEN 1 Swimming pool reactor are given. The maximal accuracy is 1 per cent. (Author) 11 refs.

  17. Beta thalassaemia mutations in Turkish Cypriots.

    Science.gov (United States)

    Sozuoz, A; Berkalp, A; Figus, A; Loi, A; Pirastu, M; Cao, A

    1988-01-01

    Using oligonucleotide hybridisation or restriction endonuclease analysis, we have characterised the molecular defect in 94 patients with thalassaemia major and four with thalassaemia intermedia of Turkish Cypriot descent. We found that four mutations, namely beta+ IVS-1 nt 110, beta zero IVS-1 nt, beta+ IVS-1 nt 6, and beta+ IVS-2 nt 745 were prevalent, accounting for 69.9%, 11.7%, 8.7%, and 5.6% respectively of the beta thalassaemia chromosomes. This information may help in the organisation of a large scale prevention programme based on fetal diagnosis of beta thalassaemia by DNA analysis in the Turkish population. PMID:3236356

  18. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    Science.gov (United States)

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  19. Beta Cell Workshop 2013 Kyoto

    DEFF Research Database (Denmark)

    Heller, R Scott; Madsen, Ole D; Nielsen, Jens Høiriis

    2013-01-01

    The very modern Kyoto International Conference Center provided the site for the 8th workshop on Beta cells on April 23-26, 2013. The preceding workshops were held in Boston, USA (1991); Kyoto, Japan (1994); Helsingør, Denmark (1997); Helsinki, Finland (2003); El Perello, Spain (2006); Peebles...

  20. Estimating $\\beta$-mixing coefficients

    CERN Document Server

    McDonald, Daniel J; Schervish, Mark

    2011-01-01

    The literature on statistical learning for time series assumes the asymptotic independence or ``mixing' of the data-generating process. These mixing assumptions are never tested, nor are there methods for estimating mixing rates from data. We give an estimator for the $\\beta$-mixing rate based on a single stationary sample path and show it is $L_1$-risk consistent.

  1. Beta-carotene as antioxidant

    NARCIS (Netherlands)

    Bast, A.; Plas, R.M. van der; Berg, H. van den; Haenen, G.R.M.M.

    1996-01-01

    Objective: Beta-carotene has been shown to exhibit a good radical-trapping antioxidant activity in vitro. We were interested to see if dietary β-carotene in combination with various intake levels for vitamin A would also inhibit lipid peroxidation. Design: Sixty male Wistar rats received vitamin A (

  2. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    DEFF Research Database (Denmark)

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with ...... was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s-1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s-1 μM-1 for TgTPS2. The kinetic parameters were in agreement with previously published data....

  3. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian;

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS...... classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes....... Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results...

  4. Site-directed mutagenesis of bacterial cellulose synthase highlights sulfur–arene interaction as key to catalysis

    OpenAIRE

    Sun, Shi-jing; Horikawa, Yoshiki; Wada, Masahisa; SUGIYAMA, Junji; Imai, Tomoya

    2016-01-01

    Cellulose is one of the most abundant biological polymers on Earth, and is synthesized by the cellulose synthase complex in cell membranes. Although many cellulose synthase genes have been identified over the past 25 years, functional studies of cellulose synthase using recombinant proteins have rarely been conducted. In this study, we conducted a functional analysis of cellulose synthase with site-directed mutagenesis, by using recombinant cellulose synthase reconstituted in living Escherich...

  5. Use of linalool synthase in genetic engineering of scent production

    Energy Technology Data Exchange (ETDEWEB)

    Pichersky, Eran (Chelsea, MI)

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  6. Use of linalool synthase in genetic engineering of scent production

    Energy Technology Data Exchange (ETDEWEB)

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  7. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review...... will discuss the latest advances in the understanding of the molecular mechanisms underlying insulin resistance in human skeletal muscle in type 2 diabetes with focus on possible links between impaired glycogen synthase activity and mitochondrial dysfunction....

  8. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

  9. The cellulose synthase superfamily in fully sequenced plants and algae

    Directory of Open Access Journals (Sweden)

    Xu Ying

    2009-07-01

    Full Text Available Abstract Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl families and one cellulose synthase (CesA family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ, providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants.

  10. Structure and Mechanistic Implications of a Tryptophan Synthase Quinonoid Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Barends,T.; Domratcheva, T.; Kulik, V.; Blumenstein, L.; Niks, D.; Dunn, M.; Schlichting, I.

    2008-01-01

    Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Whereas structures of other PLP-bound reaction intermediates have been determined, a high-quality structure of a quinonoid species has not been reported. We present the crystal structure of the indoline quinonoid intermediate of tryptophan synthase (see figure) and discuss its implications for the enzymatic mechanism and allosteric regulation.

  11. Dihydrodipicolinate synthase in opaque and floury maize mutants

    NARCIS (Netherlands)

    Varisi, V.A.; Medici, L.O.; Meer, van der I.M.; Lea, P.J.; Azevedo, J.L.

    2007-01-01

    Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) was isolated and studied in four high-lysine maize mutants (Oh43o1, Oh43o2, Oh43fl1 and Oh43fl2). The activity of DHDPS was analyzed at 16, 20, and 24 DAP and characterized in the presence of the amino acids, lysine, S-(2-aminoethyl)-l-cysteine (AEC)

  12. Reduced Expression of Lipoic Acid Synthase Accelerates Diabetic Nephropathy

    OpenAIRE

    Yi, Xianwen; Xu, Longquan; Hiller, Sylvia; Kim, Hyung-Suk; Nickeleit, Volker; James, Leighton R; Maeda, Nobuyo

    2011-01-01

    Oxidative stress contributes to the pathogenesis of diabetic nephropathy. In mitochondria, lipoic acid synthase produces α-lipoic acid, an antioxidant and an essential cofactor in α-ketoacid dehydrogenase complexes, which participate in glucose oxidation and ATP generation. Administration of lipoic acid abrogates diabetic nephropathy in animal models, but whether lower production of endogenous lipoic acid promotes diabetic nephropathy is unknown. Here, we crossed mice heterozygous for lipoic ...

  13. Neutron Beta Decay Studies with Nab

    CERN Document Server

    Baeßler, S; Alonzi, L P; Balascuta, S; Barrón-Palos, L; Bowman, J D; Bychkov, M A; Byrne, J; Calarco, J R; Chupp, T; Vianciolo, T V; Crawford, C; Frlež, E; Gericke, M T; Glück, F; Greene, G L; Grzywacz, R K; Gudkov, V; Harrison, D; Hersman, F W; Ito, T; Makela, M; Martin, J; McGaughey, P L; McGovern, S; Page, S; Penttilä, S I; Počanić, D; Rykaczewski, K P; Salas-Bacci, A; Tompkins, Z; Wagner, D; Wilburn, W S; Young, A R

    2012-01-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  14. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance

    Science.gov (United States)

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  15. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    Science.gov (United States)

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  16. Phytochelatin synthase activity as a marker of metal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Adam, Vojtech [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Zehnalek, Josef; Beklova, Miroslava [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kizek, Rene, E-mail: kizek@sci.muni.cz [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic)

    2011-08-30

    Highlights: {yields} New tool for determination of phytochelatin synthase activity. {yields} The optimization of experimental condition for determination of the enzyme activity. {yields} First evaluation of K{sub m} for the enzyme. {yields} The effects of cadmium (II) not only on the activity of the enzyme but also on K{sub m}. -- Abstract: The synthesis of phytochelatins is catalyzed by {gamma}-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO{sub 3}){sub 2} for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35 {sup o}C for 30 min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270 fkat) in treated cells was more than seven times higher in comparison to control ones. K{sub m} for PCS was estimated as 2.3 mM.

  17. The pseudouridine synthases: revisiting a mechanism that seemed settled.

    Science.gov (United States)

    Spedaliere, Christopher J; Ginter, Joy M; Johnston, Murray V; Mueller, Eugene G

    2004-10-13

    RNA containing 5-fluorouridine, [f 5U]RNA, has been used as a mechanistic probe for the pseudouridine synthases, which convert uridine in RNA to its C-glycoside isomer, pseudouridine. Hydrated products of f 5U were attributed to ester hydrolysis of a covalent complex between an essential aspartic acid residue and f 5U, and the results were construed as strong support for a mechanism involving Michael addition by the aspartic acid residue. Labeling studies with [18O]water are now reported that rule out such ester hydrolysis in one pseudouridine synthase, TruB. The aspartic acid residue does not become labeled, and the hydroxyl group in the hydrated product of f 5U derives directly from solvent. The hydrated product, therefore, cannot be construed to support Michael addition during the conversion of uridine to pseudouridine, but the results do not rule out such a mechanism. A hypothesis is offered for the seemingly disparate behavior of different pseudouridine synthases toward [f 5U]RNA.

  18. From bacterial to human dihydrouridine synthase: automated structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Fiona, E-mail: fiona.whelan@york.ac.uk; Jenkins, Huw T., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Griffiths, Samuel C. [University of Oxford, Headington, Oxford OX3 7BN (United Kingdom); Byrne, Robert T. [Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich (Germany); Dodson, Eleanor J.; Antson, Alfred A., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  19. Mechanism of Action and Inhibition of dehydrosqualene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    F Lin; C Liu; Y Liu; Y Zhang; K Wang; W Jeng; T Ko; R Cao; A Wang; E Oldfield

    2011-12-31

    'Head-to-head' terpene synthases catalyze the first committed steps in sterol and carotenoid biosynthesis: the condensation of two isoprenoid diphosphates to form cyclopropylcarbinyl diphosphates, followed by ring opening. Here, we report the structures of Staphylococcus aureus dehydrosqualene synthase (CrtM) complexed with its reaction intermediate, presqualene diphosphate (PSPP), the dehydrosqualene (DHS) product, as well as a series of inhibitors. The results indicate that, on initial diphosphate loss, the primary carbocation so formed bends down into the interior of the protein to react with C2,3 double bond in the prenyl acceptor to form PSPP, with the lower two-thirds of both PSPP chains occupying essentially the same positions as found in the two farnesyl chains in the substrates. The second-half reaction is then initiated by the PSPP diphosphate returning back to the Mg{sup 2+} cluster for ionization, with the resultant DHS so formed being trapped in a surface pocket. This mechanism is supported by the observation that cationic inhibitors (of interest as antiinfectives) bind with their positive charge located in the same region as the cyclopropyl carbinyl group; that S-thiolo-diphosphates only inhibit when in the allylic site; activity results on 11 mutants show that both DXXXD conserved domains are essential for PSPP ionization; and the observation that head-to-tail isoprenoid synthases as well as terpene cyclases have ionization and alkene-donor sites which spatially overlap those found in CrtM.

  20. The structural basis of Erwinia rhapontici isomaltulose synthase.

    Science.gov (United States)

    Xu, Zheng; Li, Sha; Li, Jie; Li, Yan; Feng, Xiaohai; Wang, Renxiao; Xu, Hong; Zhou, Jiahai

    2013-01-01

    Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop(330-339) in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations.

  1. Multi-substrate terpene synthases: their occurrence and physiological significance

    Directory of Open Access Journals (Sweden)

    Leila Pazouki

    2016-07-01

    Full Text Available Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15, and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5, mono- (C10 and diterpenes (C20. Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.

  2. The beta-decay of Al-22

    NARCIS (Netherlands)

    Achouri, NL; Santos, FDO; Lewitowicz, M; Blank, B; Aysto, J; Canchel, G; Czajkowski, S; Dendooven, P; Emsallem, A; Giovinazzo, J; Guillet, N; Jokinen, A; Larid, AM; Longour, C; Perajarvi, K; Smirnova, N; Stanoiu, M

    2006-01-01

    In an experiment performed at the LISE3 facility of GANIL, we studied the decay of Al-22 produced by the fragmentation of a Ar-36 primary beam. A beta-decay half-life of T-1/2 = 91.1 +/- 0.5ms was measured. The beta-delayed one- and two-proton emission as well as beta-alpha and beta-delayed gamma-de

  3. Traumatic Brain Injury, Microglia, and Beta Amyloid

    OpenAIRE

    Mannix, Rebekah C.; Whalen, Michael J

    2012-01-01

    Recently, there has been growing interest in the association between traumatic brain injury (TBI) and Alzheimer's Disease (AD). TBI and AD share many pathologic features including chronic inflammation and the accumulation of beta amyloid (A\\(\\beta\\)). Data from both AD and TBI studies suggest that microglia play a central role in A\\(\\beta\\) accumulation after TBI. This paper focuses on the current research on the role of microglia response to A\\(\\beta\\) after TBI.

  4. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.

    Directory of Open Access Journals (Sweden)

    Hyun Jo Koo

    Full Text Available The essential oils of ginger (Zingiber officinale and turmeric (Curcuma longa contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+-germacrene D synthase and (S-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (--caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+-α-turmerone and (+-β-turmerone, are produced from (--α-zingiberene and (--β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.

  5. THE ALPHA/BETA-HYDROLASE FOLD

    NARCIS (Netherlands)

    OLLIS, DL; CHEAH, E; CYGLER, M; FROLOW, F; FRANKEN, SM; HAREL, M; REMINGTON, SJ; SILMAN, [No Value; SCHRAG, J; SUSSMAN, JL; VERSCHUEREN, KHG; GOLDMAN, A

    1992-01-01

    We have identified a new protein fold-the alpha/beta-hydrolase fold-that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta-sheet, not barrel, of eight beta-sheets connected by alpha-helices. These

  6. Beta-lactamases in Enterobacteriaceae in broilers

    NARCIS (Netherlands)

    Dierikx, C.M.

    2013-01-01

    Resistance to cephalosprins due to the production of extended spectrum beta-lactamases (ESBLs) or plasmid mediated AmpC beta-lactamases is increasingly found in infections in humans outside the hospital. The genes encoding for these beta-lactamases are located on mobile DNA (plasmids), which can be

  7. Higher-Order Beta Matching with Solutions in Long Beta-Eta Normal Form

    DEFF Research Database (Denmark)

    Støvring, Kristian

    2006-01-01

    up to beta-eta equivalence is a long-standing open problem.We show that higher-order matching up to beta-eta equivalence is decidable if and only if a restricted form of higher-order matching up to beta equivalence is decidable: the restriction is that solutions must be in long beta-eta normal form....

  8. Role of neuronal nitric oxide synthase and inducible nitric oxide synthase in intestinal injury in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Hui LU; Bing Zhu; Xin-Dong Xue

    2006-01-01

    AIM: To investigate the dynamic change and role of neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) in neonatal rat with intestinal injury and to define whether necrotizing enterocolitis (NEC) is associated with the levels of nitric oxide synthase (NOS) in the mucosa of the affected intestine tissue.METHODS: Wistar rats less than 24 h in age received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileum tissues were collected at 1, 3, 6, 12 and 24 h following LPS challenge for histological evaluation of NEC and for measurements of nNOS and iNOS. The correlation between the degree of intestinal injury and levels of NOS was determined.RESULTS: The LPS-injected pups showed a significant increase in injury scores versus the control. The expression of nNOS protein and mRNA was diminished after LPS injection. There was a negative significant correlation between the nNOS protein and the grade of median intestinal injury within 24 h. The expression of iNOS protein and mRNA was significantly increased in the peak of intestinal injury.CONCLUSION: nNOS and iNOS play different roles in LPS-induced intestinal injury. Caution should be exerted concerning potential therapeutic uses of NOS inhibitors in NEC.

  9. beta (+)-Thalassaemia in the Po river delta region (northern Italy): genotype and beta globin synthesis.

    OpenAIRE

    del Senno, L; Pirastu, M; Barbieri, R.; De Bernardi, F.; Buzzoni, D; Marchetti, G.; Perrotta, C; Vullo, C; Kan, Y W; Conconi, F

    1985-01-01

    Six beta(+)-thalassaemic patients from the Po river delta region have been studied. Using synthetic oligonucleotides as specific hybridisation probes, the beta(+) IVS I mutation (G----A at position 108) was demonstrated. This lesion and the enzyme polymorphism pattern in the subjects examined are the same as have been described for other Mediterranean beta(+)-thalassaemias. Antenatal diagnosis through DNA analysis of beta(+)-thalassaemia is therefore possible. The production of beta globin in...

  10. Structural characterization of bioengineered α-D-glucans produced by mutant glucansucrase GTF180 enzymes of lactobacillus reuteri strain 180

    NARCIS (Netherlands)

    Leeuwen, S.S. van; Kralj, S.; Eeuwema, W.; Gerwig, G.J.; Dijkhuizen, L.; Kamerling, J.P.

    2009-01-01

    Mutagenesis of specific amino acid residues of the glucansucrase (GTF180) enzyme from Lactobacillus reuteri strain 180 yielded 12 mutant enzymes that produced modified exopolysaccharides (mEPSs) from sucrose. Ethanol-precipitated and purified mEPSs were subjected to linkage analysis, Smith degradati

  11. Specific Triazine Herbicides Induce Amyloid-beta(42) Production

    NARCIS (Netherlands)

    Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloise; Oumata, Nassima; Galons, Herve; Lee, Jung Yeol; Chang, Young-Tae; Stuber, Kathrin; Koch, Philipp; Fontaine, Gaelle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D.; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent

    2016-01-01

    Proteolytic cleavage of the amyloid-beta protein precursor (A beta PP) ecretases leads to extracellular release of amyloid-beta (A beta) peptides. Increased production of A beta(42) over A beta(40) and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifyin

  12. Future double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal, F. [Laboratoire Souterrain de Modane, Modane (France); Centre d' Etudes Nucleaire, Bordeaux-Gradignan (France)

    2013-02-15

    The search of neutrinoless double beta decay is very challenging because of the expected half-life of the process and the backgrounds from the natural radioactivity. Many projects exist to try to reach a sensitivity of ∼50 meV on the effective neutrino mass corresponding to a mass of isotopes of ∼100 kg. In this article some of the futur projects are presented.

  13. Alzheimer Disease: Crosstalk between the Canonical Wnt/Beta-Catenin Pathway and PPARs Alpha and Gamma

    Science.gov (United States)

    Vallée, Alexandre; Lecarpentier, Yves

    2016-01-01

    The molecular mechanisms underlying the pathophysiology of Alzheimer's disease (AD) are still not fully understood. In AD, Wnt/beta-catenin signaling has been shown to be downregulated while the peroxisome proliferator-activated receptor (PPAR) gamma (mARN and protein) is upregulated. Certain neurodegenerative diseases share the same Wnt/beta-catenin/PPAR gamma profile, such as bipolar disorder and schizophrenia. Conversely, other NDs share an opposite profile, such as amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, multiple sclerosis, and Friedreich's ataxia. AD is characterized by the deposition of extracellular Abeta plaques and the formation of intracellular neurofibrillary tangles in the central nervous system (CNS). Activation of Wnt signaling or inhibition of both glycogen synthase kinase-3beta and Dickkopf 1, two key negative regulators of the canonical Wnt pathway, are able to protect against Abeta neurotoxicity and to ameliorate cognitive performance in AD patients. Although PPAR gamma is upregulated in AD patients, and despite the fact that it has been shown that the PPAR gamma and Wnt/beta catenin pathway systems work in an opposite manner, PPAR gamma agonists diminish learning and memory deficits, decrease Abeta activation of microglia, and prevent hippocampal and cortical neurons from dying. These beneficial effects observed in AD transgenic mice and patients might be partially due to the anti-inflammatory properties of PPAR gamma agonists. Moreover, activation of PPAR alpha upregulates transcription of the alpha-secretase gene and represents a new therapeutic treatment for AD. This review focuses largely on the behavior of two opposing pathways in AD, namely Wnt/beta-catenin signaling and PPAR gamma. It is hoped that this approach may help to develop novel AD therapeutic strategies integrating PPAR alpha signaling.

  14. Enhanced negative chronotropy by inhibitory receptors in transgenic heart overexpressing beta(2)-adrenoceptors.

    Science.gov (United States)

    Du, X J; Vincan, E; Percy, E; Woodcock, E A

    2000-03-15

    Transgenic (TG) mice overexpressing beta(2)-adrenoceptors (AR) in the heart have enhanced beta-adrenergic activity. Since the degree of beta-adrenergic activation influences the negative chronotropic control of heart rate (HR), we studied the inhibitory effect of cholinergic and purinergic stimulation on HR in TG and wild-type (WT) control mice. Bradycardia in response to vagal nerve stimulation and administration of acetylcholine or adenosine was studied in anesthetised animals and perfused hearts. Basal HR was significantly higher in TG than WT mice (P<0.01). Electrical stimulation of vagal nerves (1-32 Hz) induced a Hz-dependent reduction in HR and the response was more pronounced in TG than WT groups (P<0.01). In perfused hearts, HR reduction by acetylcholine (ACh) was more pronounced with EC(50) 110-fold lower in TG than WT hearts. Adenosine-induced bradycardia, which was abolished by a P(1) antagonist, was more pronounced in TG hearts. After pre-treatment with pertussis toxin (PT, 100 microg/kg), bradycardia by vagal nerve stimulation or ACh remained unchanged in WT, but markedly inhibited in TG hearts (both P<0.01). Conversely, inhibiting guanylyl cyclase with LY83583 (30 microM) or nitric oxide synthase with L-NMMA (100 microM) attenuated HR reduction by vagal nerve stimulation in WT but not in TG hearts. Immunobloting assay showed similar G(ialpha2) abundance in TG and WT hearts. Thus, cardiac overexpression of beta(2)AR with high beta-adrenergic activity leads to hypersensitivity of inhibitory receptors controlling HR due to increase in activity of PT-sensitive G-proteins.

  15. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase

    OpenAIRE

    Bunney, Tom D.; van Walraven, Hendrika S.; de Boer, Albertus H.

    2001-01-01

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our und...

  16. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    Science.gov (United States)

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  17. Myokardinfarkt und Beta-Blocker

    Directory of Open Access Journals (Sweden)

    Stühlinger H-G

    2003-01-01

    Full Text Available Im Rahmen eines akuten koronaren Syndroms (akuter Herzinfarkt, Angina pectoris kommt es, aufgrund eines Ungleichgewichtes zwischen Angebot und Bedarf, zu einem akuten Mangel an Sauerstoff im Herzmuskel. Ursache ist eine reduzierte Sauerstoffzufuhr durch verengte bzw. verschlossene Gefäße. Bis zur Behebung der Ursache vergehen oft mehrere Stunden. In dieser Phase muß - durch Verminderung des Sauerstoffbedarfs im Herzmuskel - eine Verlangsamung der Nekroseentwicklung erreicht werden. Das Ausmaß der Nekrose wird reduziert, somit die für die Langzeitprognose wichtige Linksventrikelfunktion verbessert. Eine Verminderung des Sauerstoffbedarfs erreicht man durch kontrollierte Frequenzsenkung mittels intravenöser Beta-Blockade. In optimaler Weise wird diese Methode durch die Anwendung eines kardioselektiven Beta-Blockers mit kurzer Halbwertszeit durchgeführt. Beta-Blocker haben nicht nur auf die Nekroseentwicklung, sondern auch auf die Inzidenz von Rhythmusstörungen - besonders in der Akutphase - Auswirkungen. Vor allem die mit dieser therapeutischen Maßnahme verbundene Reduktion von Kammerflimmern ist von großer Bedeutung.

  18. Stabilization and enhanced reactivity of actinorhodin polyketide synthase minimal complex in polymer-nucleotide coacervate droplets.

    Science.gov (United States)

    Crosby, John; Treadwell, Tom; Hammerton, Michelle; Vasilakis, Konstantinos; Crump, Matthew P; Williams, David S; Mann, Stephen

    2012-12-18

    Compartmentalization of the minimal complex of actinorhodin polyketide synthase in coacervate liquid droplets produces enhanced yields of shunt polyketides under conditions of low and high ionic strength.

  19. Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel that Evolved by Gene Duplication

    Energy Technology Data Exchange (ETDEWEB)

    Pejcha, Robert; Ludwig, Martha L. (Michigan)

    2010-03-08

    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two ({beta}{alpha}){sub 8} barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys){sub 3}Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E {center_dot} Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  20. $\\beta$-particle energy-summing correction for $\\beta$-delayed proton emission measurements

    CERN Document Server

    Meisel, Z; Crawford, H L; Cyburt, R H; Grinyer, G F; Langer, C; Montes, F; Schatz, H; Smith, K

    2016-01-01

    A common approach to studying $\\beta$-delayed proton emission is to measure the energy of the emitted proton and corresponding nuclear recoil in a double-sided silicon-strip detector (DSSD) after implanting the $\\beta$-delayed proton emitting ($\\beta$p) nucleus. However, in order to extract the proton-decay energy, the measured energy must be corrected for the additional energy implanted in the DSSD by the $\\beta$-particle emitted from the $\\beta$p nucleus, an effect referred to here as $\\beta$-summing. We present an approach to determine an accurate correction for $\\beta$-summing. Our method relies on the determination of the mean implantation depth of the $\\beta$p nucleus within the DSSD by analyzing the shape of the total (proton + recoil + $\\beta$) decay energy distribution shape. We validate this approach with other mean implantation depth measurement techniques that take advantage of energy deposition within DSSDs upstream and downstream of the implantation DSSD.

  1. Cellulose synthase (CesA) genes in the green alga Mesotaenium caldariorum.

    Science.gov (United States)

    Roberts, Alison W; Roberts, Eric M; Delmer, Deborah P

    2002-12-01

    Cellulose, a microfibrillar polysaccharide consisting of bundles of beta-1,4-glucan chains, is a major component of plant and most algal cell walls and is also synthesized by some prokaryotes. Seed plants and bacteria differ in the structures of their membrane terminal complexes that make cellulose and, in turn, control the dimensions of the microfibrils produced. They also differ in the domain structures of their CesA gene products (the catalytic subunit of cellulose synthase), which have been localized to terminal complexes and appear to help maintain terminal complex structure. Terminal complex structures in algae range from rosettes (plant-like) to linear forms (bacterium-like). Thus, algal CesA genes may reveal domains that control terminal complex assembly and microfibril structure. The CesA genes from the alga Mesotaenium caldariorum, a member of the order Zygnematales, which have rosette terminal complexes, are remarkably similar to seed plant CesAs, with deduced amino acid sequence identities of up to 59%. In addition to the putative transmembrane helices and the D-D-D-QXXRW motif shared by all known CesA gene products, M. caldariorum and seed plant CesAs share a region conserved among plants, an N-terminal zinc-binding domain, and a variable or class-specific region. This indicates that the domains that characterize seed plant CesAs arose prior to the evolution of land plants and may play a role in maintaining the structures of rosette terminal complexes. The CesA genes identified in M. caldariorum are the first reported for any eukaryotic alga and will provide a basis for analyzing the CesA genes of algae with different types of terminal complexes.

  2. Inhibition of the ATPase activity of the catalytic portion of ATP synthases by cationic amphiphiles.

    Science.gov (United States)

    Datiles, Manuel J; Johnson, Eric A; McCarty, Richard E

    2008-04-01

    Melittin, a cationic, amphiphilic polypeptide, has been reported to inhibit the ATPase activity of the catalytic portions of the mitochondrial (MF1) and chloroplast (CF1) ATP synthases. Gledhill and Walker [J.R. Gledhill, J.E. Walker. Inhibition sites in F1-ATPase from bovine heart mitochondria, Biochem. J. 386 (2005) 591-598.] suggested that melittin bound to the same site on MF1 as IF1, the endogenous inhibitor polypeptide. We have studied the inhibition of the ATPase activity of CF1 and of F1 from Escherichia coli (ECF1) by melittin and the cationic detergent, cetyltrimethylammonium bromide (CTAB). The Ca2+- and Mg2+-ATPase activities of CF1 deficient in its inhibitory epsilon subunit (CF1-epsilon) are sensitive to inhibition by melittin and by CTAB. The inhibition of Ca2+-ATPase activity by CTAB is irreversible. The Ca2+-ATPase activity of F1 from E. coli (ECF1) is inhibited by melittin and the detergent, but Mg2+-ATPase activity is much less sensitive to both reagents. The addition of CTAB or melittin to a solution of CF1-epsilon or ECF1 caused a large increase in the fluorescence of the hydrophobic probe, N-phenyl-1-naphthylamine, indicating that the detergent and melittin cause at least partial dissociation of the enzymes. ATP partially protects CF1-epsilon from inhibition by CTAB. We also show that ATP can cause the aggregation of melittin. This result complicates the interpretation of experiments in which ATP is shown to protect enzyme activity from inhibition by melittin. It is concluded that melittin and CTAB cause at least partial dissociation of the alpha/beta heterohexamer.

  3. Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II.

    Science.gov (United States)

    Brown, Alistair K; Papaemmanouil, Athina; Bhowruth, Veemal; Bhatt, Apoorva; Dover, Lynn G; Besra, Gurdyal S

    2007-10-01

    Flavonoids comprise a large group of bioactive polyphenolic plant secondary metabolites. Several of these possess potent in vivo activity against Escherichia coli and Plasmodium falciparum, targeting enzymes involved in fatty acid biosynthesis, such as enoyl-ACP-reductase, beta-ketoacyl-ACP reductase and beta-hydroxyacyl-ACP dehydratase. Herein, we report that butein, isoliquirtigenin, 2,2',4'-trihydroxychalcone and fisetin inhibit the growth of Mycobacterium bovis BCG. Furthermore, in vitro inhibition of the mycolic-acid-producing fatty acid synthase II (FAS-II) of Mycobacterium smegmatis suggests a mode of action related to those observed in E. coli and P. falciparum. Through a bioinformatic approach, we have established the product of Rv0636 as a candidate for the unknown mycobacterial dehydratase, and its overexpression in M. bovis BCG conferred resistance to growth inhibition by butein and isoliquirtigenin, and relieved inhibition of fatty acid and mycolic acid biosynthesis in vivo. Furthermore, after overexpression of Rv0636 in M. smegmatis, FAS-II was less sensitive to these inhibitors in vitro. Overall, the data suggest that these flavonoids are inhibitors of mycobacterial FAS-II and in particular Rv0636, which represents a strong candidate for the beta-hydroxyacyl-ACP dehydratase enzyme of M. tuberculosis FAS-II.

  4. Structural and functional characterization of Staphylococcus aureus dihydrodipicolinate synthase.

    Science.gov (United States)

    Girish, Tavarekere S; Sharma, Eshita; Gopal, B

    2008-08-20

    Lysine biosynthesis is crucial for cell-wall formation in bacteria. Enzymes involved in lysine biosynthesis are thus potential targets for anti-microbial therapeutics. Dihydrodipicolinate synthase (DHDPS) catalyzes the first step of this pathway. Unlike its homologues, Staphylococcus aureus DHDPS is a dimer both in solution and in the crystal and is not feedback inhibited by lysine. The crystal structure of S. aureus DHDPS in the free and substrate bound forms provides a structural rationale for its catalytic mechanism. The structure also reveals unique conformational features of the S. aureus enzyme that could be crucial for the design of specific non-competitive inhibitors.

  5. Microsomal prostaglandin E synthase-1 in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Marina eKorotkova

    2011-01-01

    Full Text Available Microsomal prostaglandin E synthase-1 (mPGES-1 is a well recognized target for the development of novel anti-inflammatory drugs that can reduce symptoms of inflammation in rheumatic diseases and other inflammatory conditions. In this review, we focus on mPGES-1 in rheumatic diseases with the aim to cover the most recent advances in the understanding of mPGES-1 in rheumatoid arthritis, osteoarthritis and inflammatory myopathies. Novel findings regarding regulation of mPGES1 cell expression as well as enzyme inhibitors are also summarized.

  6. Argininosuccinate synthase as a novel biomarker for inflammatory conditions.

    Science.gov (United States)

    Cao, Mengde; George, Thomas J; Prima, Victor; Nelson, David; Svetlov, Stanislav

    2013-05-01

    Argininosuccinate synthase (ASS) plays an important role in regulating metabolic functions in mammals. We previously reported that hepatic ASS is released into circulation at very high concentrations in response to endotoxin and acute liver injury. We propose that ASS may serve as a novel biomarker for various inflammatory conditions. Our data showed that ASS accumulated in serum and urine of septic, obese or tumor mice in a condition-dependent fashion. Moreover, ASS significantly increased in urine within the first week after tumor cell implantation in mice which subsequently develop tumors. These results suggest that ASS is a novel biomarker increased upon diverse inflammatory conditions.

  7. Fatty acid synthase inhibitors isolated from Punica granatum L

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, He-Zhong [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, (China); Ma, Qing-Yun; Liang, Wen-Juan; Huang, Sheng-Zhuo; Dai, Hao-Fu; Wang, Peng-Cheng; Zhao, You-Xing, E-mail: zhaoyx1011@163.com [Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou (China); Fan, Hui-Jin; Ma, Xiao-Feng, E-mail: maxiaofeng@gucas.ac.cn [College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing (China)

    2012-05-15

    The aim of this work is the isolation of fatty acid synthase (FAS) inhibitors from the ethyl acetate extracts of fruit peels of Punica granatum L. Bioassay-guided chemical investigation of the fruit peels resulted in the isolation of seventeen compounds mainly including triterpenoids and phenolic compounds, from which one new oleanane-type triterpene (punicaone) along with fourteen known compounds were isolated for the first time from this plant. Seven isolates were evaluated for inhibitory activities of FAS and two compounds showed to be active. Particularly, flavogallonic acid exhibited strong FAS inhibitory activity with IC{sub 50} value of 10.3 {mu}mol L{sup -1}. (author)

  8. Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis.

    Science.gov (United States)

    Ferraris, Davide M; Spallek, Ralf; Oehlmann, Wulf; Singh, Mahavir; Rizzi, Menico

    2015-02-01

    The tricarboxylic acid (TCA) cycle is a central metabolic pathway of all aerobic organisms and is responsible for the synthesis of many important precursors and molecules. TCA cycle plays a key role in the metabolism of Mycobacterium tuberculosis and is involved in the adaptation process of the bacteria to the host immune response. We present here the first crystal structures of M. tuberculosis malate dehydrogenase and citrate synthase, two consecutive enzymes of the TCA, at 2.6 Å and 1.5 Å resolution, respectively. General analogies and local differences with the previously reported homologous protein structures are described.

  9. CTP limitation increases expression of CTP synthase in Lactococcus lactis

    DEFF Research Database (Denmark)

    Jørgensen, C.M.; Hammer, Karin; Martinussen, Jan

    2003-01-01

    for regulation of the pyrG gene. It is possible to fold the pyrG leader in an alternative structure that would prevent the formation of the terminator. We suggest a model for pyrG regulation in L. lactis, and probably in other gram-positive bacteria as well, in which pyrG expression is directly dependent...... on the CTP concentration through an attenuator mechanism. At normal CTP concentrations a terminator is preferentially formed in the pyrG leader, thereby reducing expression of CTP synthase. At low CTP concentrations the RNA polymerase pauses at a stretch of C residues in the pyrG leader, thereby allowing...

  10. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  11. Biphasic effect of IL-1beta on the activity of argininosuccinate synthetase in Caco-2 cells. Involvement of nitric oxide production.

    Science.gov (United States)

    Brasse-Lagnel, Carole; Lavoinne, Alain; Fairand, Alain; Vavasseur, Karine; Deniel, Nicolas; Husson, Annie

    2006-06-01

    The expression of the argininosuccinate synthetase gene (ASS), the limiting enzyme of arginine synthesis, was previously shown to be rapidly induced by a short-term (4 h) exposure to IL-1beta in Caco-2 cells [Biochimie, 2005, 403-409]. The present report shows that, by contrast, a long-term (24 h) exposure to IL-1beta inhibited the ASS activity despite an increase in both specific mRNA level and protein amount, demonstrating a post-translational effect. Concerning the mechanism involved, we demonstrate that the inhibiting effect is linked to the production of nitric oxide (NO) induced by IL-1beta. Indeed, the inhibiting effect of IL-1beta was totally blocked in the presence of l-NMMA, an inhibitor of the inducible nitric oxide synthase, or by culturing the cells in an arginine-deprived medium. Moreover, a decrease in the ASS activity was induced by culturing the cells in the presence of SNAP, a NO donor. Conversely, blocking the action of NO by antioxidant agents, the stimulatory effect of IL-1beta on ASS activity was restored, as measured at 24 h. Finally, such an inhibiting effect of NO on ASS activity may be related, at least in part, to S-nitrosylation of the protein. The physiological relevance of the antagonistic effects of IL-1beta and NO on ASS is discussed.

  12. The transcription factor C/EBP-beta and its role in ovarian function; evidence for direct involvement in the ovulatory process.

    Science.gov (United States)

    Pall, M; Hellberg, P; Brännström, M; Mikuni, M; Peterson, C M; Sundfeldt, K; Nordén, B; Hedin, L; Enerbäck, S

    1997-01-01

    Gonadotropins are responsible for maturation of the ovarian follicle and the oocyte. Ovulation is the ultimate step in this process and involves disintegration of the follicular wall and subsequent release of an oocyte into the oviduct. These events are triggered by a surge of luteinizing hormone (LH). Genes expressed in the ovary, that respond to LH, are likely to be involved in the biochemical pathways that regulate ovulation. The transcription factor C/EBP-beta is induced promptly in the ovary, as a response to an ovulatory dose of gonadotropins. We used an ex vivo perfusion system to demonstrate that a specific reduction in ovarian C/EBP-beta expression inhibits ovulation. In such ovaries the oocytes appeared to be entrapped within the follicle. We have found a correlation between the expression level of the activating isoform of C/EBP-beta and the number of oocytes ovulated in response to gonadotropins. Since a reduction in C/EBP-beta expression does not affect the level of the ovulatory mediator prostaglandin endoperoxide synthase-2 (PGS-2), these findings support the view of C/EBP-beta as an important factor in the ovulatory process and highlight a C/EBP-beta-dependent and PGS-2-independent pathway that takes part in regulation of ovulation. PMID:9311987

  13. Resistance training & beta-hydroxy-beta-methylbutyrate supplementation on hormones

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    2015-10-01

    Full Text Available RESUMOIntroduction:In recent years, there was an increased interest on the effects of beta-hydroxy-beta-methylbutyrate (HMB supplementation on skeletal muscle due to its anti-catabolic effects.Objectives:To investigate the effect of HMB supplementation on body composition, muscular strength and anabolic-catabolic hormones after resistance training.Methods:Twenty amateur male athletes were randomly assigned to supplement and control groups in a double-blind crossover design and participated in four weeks resistance training. Before and after the test period fasting blood samples were obtained to determine anabolic (the growth hormone and testosterone and catabolic (cortisol hormones, and fat mass, lean body mass (LBM and muscular strength were measured. Dependent and independent t-tests were used to analyze data.Results:After the training period, there were no significant differen-ces between the groups with respect to fat mass, LBM and anabolic-catabolic hormones. HMB supplementation resulted in a significantly greater strength gain (p≤0.05.Conclusion:Greater increase in strength for HMB group was not accompanied by body composition and basal circulating anabolic-catabolic hormonal changes. It seems that HMB supplementation may have beneficial effects on neurological adaptations of strength gain.

  14. Abstraction Mechanisms in the BETA Programming Language

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger

    1983-01-01

    ]) --- covering both data, procedural and control abstractions, substituting constructs like class, procedure, function and type. Correspondingly objects, procedure activation records and variables are all regarded as special cases of the basic building block of program executions: the entity. A pattern thus......The BETA programming language is developed as part of the BETA project. The purpose of this project is to develop concepts, constructs and tools in the field of programming and programming languages. BETA has been developed from 1975 on and the various stages of the language are documented in [BETA...... a]. The application area of BETA is programming of embedded as well as distributed computing systems. For this reason a major goal has been to develop constructs that may be efficiently implemented. Furthermore the BETA language is intended to have a few number of basic but general constructs...

  15. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  16. Tryptophan synthase of Phaeophyceae originated from the secondary host nucleus

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yalan; CHI Shan; WU Shuangxiu; LIU Cui; YU Jun; WANG Xumin; CHEN Shengping; LIU Tao

    2014-01-01

    Tryptophan synthase (TS, EC 4.2.1.20) catalyzes the last two steps of L-tryptophan biosynthesis. In pro-karyotes, tryptophan synthase is a multi-enzyme complex, and it consists ofαandβsubunit which forms anα-ββ-αcomplex. In fungi and diatoms, TS is a bifunctional enzyme. Because of the limited genomic and transcriptomic data of algae, there are few studies on TS evolution of algae. Here we analyzed the data of the 1000 Plants Project (1KP), and focused on red algae and brown algae. We found out that the TS of Phaeophy-ceae were fusion genes, which probably originated from the secondary host nucleus, and that the TS of Rho-dophyta contained two genes, TSA and TSB, which both display a possible cyanobacterial origin at the time of primary endosymbiosis. In addition, there were two types of TSB genes (TSB1 and TSB2). Through the multiple sequence alignment of TSB proteins, we found several residues conserved in TSB1 but variable in TSB2 which connect withαsubunit. The phenomenon may suggest that the TSB2 sequences of Rhodophyta cannot form stable complex with TSA.

  17. IPC synthase as a useful target for antifungal drugs.

    Science.gov (United States)

    Sugimoto, Yuichi; Sakoh, Hiroki; Yamada, Koji

    2004-12-01

    Inositol phosphorylceramide (IPC) synthase is a common and essential enzyme in fungi and plants, which catalyzes the transfer of phosphoinositol to the C-1 hydroxy of ceramide to produce IPC. This reaction is a key step in fungal sphingolipid biosynthesis, therefore the enzyme is a potential target for the development of nontoxic therapeutic antifungal agents. Natural products with a desired biological activity, aureobasidin A (AbA), khafrefungin, and galbonolide A, have been reported. AbA, a cyclic depsipeptide containing 8 amino acids and a hydroxyl acid, is a broad spectrum antifungal with strong activity against many pathogenic fungi such as Candida spp., Cryptococcus neoformans, and some Aspergillus spp. Khafrefungin, an aldonic acid ester with a C22 long alkyl chain, has antifungal activity against C. albicans, Cr. Neoformans, and Saccharomyces cerevisiae. Galbonolide A is a 14-membered macrolide with fungicidal activity against clinically important strains, and is especially potent against Cr. neoformans. These classes of natural products are potent and specific antifungal agents. We review current progress in the development of IPC synthase inhibitors with antifungal activities, and present structure-activity relationships (SAR), physicochemical and structural properties, and synthetic methodology for chemical modification.

  18. Phylogenetic analysis of uroporphyrinogen III synthase (UROS) gene.

    Science.gov (United States)

    Shaik, Abjal Pasha; Alsaeed, Abbas H; Sultana, Asma

    2012-01-01

    The uroporphyrinogen III synthase (UROS) enzyme (also known as hydroxymethylbilane hydrolyase) catalyzes the cyclization of hydroxymethylbilane to uroporphyrinogen III during heme biosynthesis. A deficiency of this enzyme is associated with the very rare Gunther's disease or congenital erythropoietic porphyria, an autosomal recessive inborn error of metabolism. The current study investigated the possible role of UROS (Homo sapiens [EC: 4.2.1.75; 265 aa; 1371 bp mRNA; Entrez Pubmed ref NP_000366.1, NM_000375.2]) in evolution by studying the phylogenetic relationship and divergence of this gene using computational methods. The UROS protein sequences from various taxa were retrieved from GenBank database and were compared using Clustal-W (multiple sequence alignment) with defaults and a first-pass phylogenetic tree was built using neighbor-joining method as in DELTA BLAST 2.2.27+ version. A total of 163 BLAST hits were found for the uroporphyrinogen III synthase query sequence and these hits showed putative conserved domain, HemD superfamily (as on 14(th) Nov 2012). We then narrowed down the search by manually deleting the proteins which were not UROS sequences and sequences belonging to phyla other than Chordata were deleted. A repeat phylogenetic analysis of 39 taxa was performed using PhyML and TreeDyn software to confirm that UROS is a highly conserved protein with approximately 85% conserved sequences in almost all chordate taxons emphasizing its importance in heme synthesis.

  19. Aldosterone synthase inhibitors in hypertension: current status and future possibilities

    Directory of Open Access Journals (Sweden)

    Milan Hargovan

    2014-02-01

    Full Text Available The renin-angiotensin aldosterone system is a critical mechanism for controlling blood pressure, and exerts most of its physiological effects through the action of angiotensin II. In addition to increasing blood pressure by increasing vascular resistance, angiotensin II also stimulates aldosterone secretion from the adrenal gland. Aldosterone acts to cause an increase in sodium and water reabsorption, thus elevating blood pressure. Although treatment with angiotensin converting enzyme inhibitors initially lowers circulating aldosterone, with chronic treatment aldosterone levels increase back to baseline, a phenomenon termed aldosterone escape; aldosterone blockade may therefore give added value in the treatment of hypertension. The first mineralocorticoid receptor antagonist developed was spironolactone, but its use has been severely hampered by adverse (notably oestrogenic effects. The more recently developed mineralocorticoid receptor antagonist eplerenone exhibits a better adverse effect profile, although it is not devoid of effects similar to spironolactone. In addition, aldosterone activates non-genomic receptors that are not inhibited by either eplerenone or spironolactone. It is believed that deleterious organ remodelling is mediated by aldosterone via such non-genomic pathways. A new class of drugs, the aldosterone synthase inhibitors, is currently under development. These may offer a novel therapeutic approach for both lowering blood pressure and preventing the non-genomic effects of aldosterone. Here, we will review the cardiovascular effects of aldosterone and review the drugs available that target this hormone, with a particular focus on the aldosterone synthase inhibitors.

  20. Aldosterone synthase inhibitors in hypertension: current status and future possibilities.

    Science.gov (United States)

    Hargovan, Milan; Ferro, Albert

    2014-01-01

    The renin-angiotensin aldosterone system is a critical mechanism for controlling blood pressure, and exerts most of its physiological effects through the action of angiotensin II. In addition to increasing blood pressure by increasing vascular resistance, angiotensin II also stimulates aldosterone secretion from the adrenal gland. Aldosterone acts to cause an increase in sodium and water reabsorption, thus elevating blood pressure. Although treatment with angiotensin converting enzyme inhibitors initially lowers circulating aldosterone, with chronic treatment aldosterone levels increase back to baseline, a phenomenon termed aldosterone escape; aldosterone blockade may therefore give added value in the treatment of hypertension. The first mineralocorticoid receptor antagonist developed was spironolactone, but its use has been severely hampered by adverse (notably oestrogenic) effects. The more recently developed mineralocorticoid receptor antagonist eplerenone exhibits a better adverse effect profile, although it is not devoid of effects similar to spironolactone. In addition, aldosterone activates non-genomic receptors that are not inhibited by either eplerenone or spironolactone. It is believed that deleterious organ remodelling is mediated by aldosterone via such non-genomic pathways. A new class of drugs, the aldosterone synthase inhibitors, is currently under development. These may offer a novel therapeutic approach for both lowering blood pressure and preventing the non-genomic effects of aldosterone. Here, we will review the cardiovascular effects of aldosterone and review the drugs available that target this hormone, with a particular focus on the aldosterone synthase inhibitors.

  1. Eugenol synthase genes in floral scent variation in Gymnadenia species.

    Science.gov (United States)

    Gupta, Alok K; Schauvinhold, Ines; Pichersky, Eran; Schiestl, Florian P

    2014-12-01

    Floral signaling, especially through floral scent, is often highly complex, and little is known about the molecular mechanisms and evolutionary causes of this complexity. In this study, we focused on the evolution of "floral scent genes" and the associated changes in their functions in three closely related orchid species of the genus Gymnadenia. We developed a benchmark repertoire of 2,571 expressed sequence tags (ESTs) in Gymnadenia odoratissima. For the functional characterization and evolutionary analysis, we focused on eugenol synthase, as eugenol is a widespread and important scent compound. We obtained complete coding complementary DNAs (cDNAs) of two copies of putative eugenol synthase genes in each of the three species. The proteins encoded by these cDNAs were characterized by expression and testing for activity in Escherichia coli. While G. odoratissima and Gymnadenia conopsea enzymes were found to catalyze the formation of eugenol only, the Gymnadenia densiflora proteins synthesize eugenol, as well as a smaller amount of isoeugenol. Finally, we showed that the eugenol and isoeugenol producing gene copies of G. densiflora are evolutionarily derived from the ancestral genes of the other species producing only eugenol. The evolutionary switch from production of one to two compounds evolved under relaxed purifying selection. In conclusion, our study shows the molecular bases of eugenol and isoeugenol production and suggests that an evolutionary transition in a single gene can lead to an increased complexity in floral scent emitted by plants.

  2. Cloning and Identification of Methionine Synthase Gene from Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Lan HUANG; Dong-Yang LI; Shao-Xiao WANG; Shi-Ming ZHANG; Jun-Hui CHEN; Xiang-Fu WU

    2005-01-01

    Methionine synthase (MS) is grouped into two classes. Class One MS (MetH) and Class Two MS (MetE) share no homology and differ in their catalytic model. Based on the conserved sequences of metE genes from different organisms, a segment of the metE gene was first cloned from Pichia pastoris genomic DNA by PCR, and its 5' and 3' regions were further cloned by 5'- and 3'-rapid amplification of cDNA ends (RACE), respectively. The assembled sequence reveals an open reading frame encoding a polypeptide of 768 residues, and the deduced product shares 76% identity with MetE of Saccharomyces cerevisiae. P. pastoris methionine synthase (PpMetE) consists of two domains common to MetEs. The active site is located in the C-terminal domain, in which the residues involved in the interaction of zinc with substrates are conserved. Homologous expression of PpMetE in P. pastoris was achieved, and the heterologous expression of PpMetE in the S. cerevisiae strain XJB3-1D that is MetE-defective restored the growth of the mutant on methionine-free minimal media. The gene sequence has been submitted to GenBank/EMBL/DDBJ under accession No. AY601648.

  3. Inhibitors of polyhydroxyalkanoate (PHA) synthases: synthesis, molecular docking, and implications.

    Science.gov (United States)

    Zhang, Wei; Chen, Chao; Cao, Ruikai; Maurmann, Leila; Li, Ping

    2015-01-01

    Polyhydroxyalkanoate (PHA) synthases (PhaCs) catalyze the formation of biodegradable PHAs that are considered to be ideal alternatives to non-biodegradable synthetic plastics. However, study of PhaCs has been challenging because the rate of PHA chain elongation is much faster than that of initiation. This difficulty, along with lack of a crystal structure, has become the main hurdle to understanding and engineering PhaCs for economical PHA production. Here we report the synthesis of two carbadethia CoA analogues--sT-CH2-CoA (26 a) and sTet-CH2-CoA (26 b)--as well as sT-aldehyde (saturated trimer aldehyde, 29), as new PhaC inhibitors. Study of these analogues with PhaECAv revealed that 26 a/b and 29 are competitive and mixed inhibitors, respectively. Both the CoA moiety and extension of PHA chain will increase binding affinity; this is consistent with our docking study. Estimation of the Kic values of 26 a and 26 b predicts that a CoA analogue incorporating an octameric hydroxybutanoate (HB) chain might facilitate the formation of a kinetically well-behaved synthase.

  4. In Vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    Directory of Open Access Journals (Sweden)

    Jose Antonio Cuesta-Seijo

    2016-01-01

    Full Text Available Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs. While the overall starch synthase (SS reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates.

  5. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  6. KORRIGAN1 Interacts Specifically with Integral Components of the Cellulose Synthase Machinery

    NARCIS (Netherlands)

    Mansoori Zangir, N.; Timmers, J.F.P.; Desprez, T.; Lessa Alvim Kamei, C.; Dees, D.C.T.; Vincken, J.P.; Visser, R.G.F.; Höfte, H.; Vernhettes, S.; Trindade, L.M.

    2014-01-01

    Cellulose is synthesized by the so called rosette protein complex and the catalytic subunits of this complex are the cellulose synthases (CESAs). It is thought that the rosette complexes in the primary and secondary cell walls each contains at least three different non-redundant cellulose synthases.

  7. Structure of the dimeric form of CTP synthase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Lauritsen, Iben; Willemoës, Martin; Jensen, Kaj Frank;

    2011-01-01

    CTP synthase catalyzes the last committed step in de novo pyrimidine-nucleotide biosynthesis. Active CTP synthase is a tetrameric enzyme composed of a dimer of dimers. The tetramer is favoured in the presence of the substrate nucleotides ATP and UTP; when saturated with nucleotide, the tetramer c...

  8. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli.

    Science.gov (United States)

    Del Campo, M; Kaya, Y; Ofengand, J

    2001-11-01

    There are 10 known putative pseudouridine synthase genes in Escherichia coli. The products of six have been previously assigned, one to formation of the single pseudouridine in 16S RNA, three to the formation of seven pseudouridines in 23S RNA, and three to the formation of three pseudouridines in tRNA (one synthase makes pseudouridine in 23S RNA and tRNA). Here we show that the remaining four putative synthase genes make bona fide pseudouridine synthases and identify which pseudouridines they make. RluB (formerly YciL) and RluE (formerly YmfC) make pseudouridine2605 and pseudouridine2457, respectively, in 23S RNA. RluF (formerly YjbC) makes the newly discovered pseudouridine2604 in 23S RNA, and TruC (formerly YqcB) makes pseudouridine65 in tRNA(Ile1) and tRNA(Asp). Deletion of each of these synthase genes individually had no effect on exponential growth in rich media at 25 degrees C, 37 degrees C, or 42 degrees C. A strain lacking RluB and RluF also showed no growth defect under these conditions. Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work.

  9. Insights into the subunit in-teractions of the chloroplast ATP synthase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Subunit interactions of the chloroplast F0F1- ATP synthase were studied using the yeast two-hybrid system. The coding sequences of all the nine subunits of spinach chloroplast ATP synthase were cloned in two-hybrid vectors. The vectors were transformed into the yeast strains HF7c and SFY526 by various pairwise combinations, and the protein interactions were analyzed by measuring the yeast growth on minimal SD medium without serine, lucine and histidine. Interactions of γ Subunit with wild type or two truncated mutants of γ sununit, △εN21 and △εC45, which lose their abilities to inhibit the ATP hydrolysis, were also detected by in vitro and in vivo binding assay. The present results are largely accordant to the common structure model of F0F1-ATP synthase. Different from that in the E. Coli F0F1-ATP synthase, the δ subunit of chloroplast ATP syn- thase could interact with β,γ,ε and all the CF0 subunits in the two-hybrid system. These results suggested that though the chloroplast ATP synthase shares the similar structure and composition of subunits with the enzyme from E. Coli, it may be different in the subunit interactions and con- formational change during catalysis between these two sources of ATP synthase. Based on the present results and our knowledge of structure model of E. Coli ATP synthase, a deduced structure model of chloroplast ATP synthase was proposed.

  10. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was ...

  11. Milk Intolerance, Beta-Casein and Lactose.

    Science.gov (United States)

    Pal, Sebely; Woodford, Keith; Kukuljan, Sonja; Ho, Suleen

    2015-08-31

    True lactose intolerance (symptoms stemming from lactose malabsorption) is less common than is widely perceived, and should be viewed as just one potential cause of cows' milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows' milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows' milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed.

  12. Sawtooth crashes at high beta on JET

    Energy Technology Data Exchange (ETDEWEB)

    Alper, B.; Huysmans, G.T.A.; Sips, A.C.C. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Nave, M.F.F. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior Tecnico

    1994-07-01

    The sawtooth crashes on JET display features which depend on beta. The main observation is a transient bulging of flux surfaces (duration inferior to 30 microsec.), which is predominantly on the low field side and extends to larger radii as beta increases. This phenomenon reaches the plasma boundary when beta{sub N} exceeds 0.5 and in these cases is followed by an ELM within 50 microsec. These sawtooth/ELM events limit plasma performance. Modelling of mode coupling shows qualitative agreement between observations of the structure of the sawtooth precursor and the calculated internal kink mode at high beta. (authors). 6 refs., 5 figs.

  13. Milk Intolerance, Beta-Casein and Lactose

    Directory of Open Access Journals (Sweden)

    Sebely Pal

    2015-08-01

    Full Text Available True lactose intolerance (symptoms stemming from lactose malabsorption is less common than is widely perceived, and should be viewed as just one potential cause of cows’ milk intolerance. There is increasing evidence that A1 beta-casein, a protein produced by a major proportion of European-origin cattle but not purebred Asian or African cattle, is also associated with cows’ milk intolerance. In humans, digestion of bovine A1 beta-casein, but not the alternative A2 beta-casein, releases beta-casomorphin-7, which activates μ-opioid receptors expressed throughout the gastrointestinal tract and body. Studies in rodents show that milk containing A1 beta-casein significantly increases gastrointestinal transit time, production of dipeptidyl peptidase-4 and the inflammatory marker myeloperoxidase compared with milk containing A2 beta-casein. Co-administration of the opioid receptor antagonist naloxone blocks the myeloperoxidase and gastrointestinal motility effects, indicating opioid signaling pathway involvement. In humans, a double-blind, randomized cross-over study showed that participants consuming A1 beta-casein type cows’ milk experienced statistically significantly higher Bristol stool values compared with those receiving A2 beta-casein milk. Additionally, a statistically significant positive association between abdominal pain and stool consistency was observed when participants consumed the A1 but not the A2 diet. Further studies of the role of A1 beta-casein in milk intolerance are needed.

  14. Indirubin-3′-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    Shu-gang Zhang; Xiao-shan Wang; Ying-dong Zhang; Qing Di; Jing-ping Shi; Min Qian; Li-gang Xu; Xing-jian Lin; Jie Lu

    2016-01-01

    Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apopto-sis in Alzheimer’s disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that in-dirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylationvia a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer’s disease.

  15. Mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase and carnitine palmitoyltransferase II as potential control sites for ketogenesis during mitochondrion and peroxisome proliferation.

    Science.gov (United States)

    Madsen, L; Garras, A; Asins, G; Serra, D; Hegardt, F G; Berge, R K

    1999-05-01

    3-Thia fatty acids are potent hypolipidemic fatty acid derivatives and mitochondrion and peroxisome proliferators. Administration of 3-thia fatty acids to rats was followed by significantly increased levels of plasma ketone bodies, whereas the levels of plasma non-esterified fatty acids decreased. The hepatic mRNA levels of fatty acid binding protein and formation of acid-soluble products, using both palmitoyl-CoA and palmitoyl-L-carnitine as substrates, were increased. Hepatic mitochondrial carnitine palmitoyltransferase (CPT) -II and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase activities, immunodetectable proteins, and mRNA levels increased in parallel. In contrast, the mitochondrial CPT-I mRNA levels were unchanged and CPT-I enzyme activity was slightly reduced in the liver. The CoA ester of the monocarboxylic 3-thia fatty acid, tetradecylthioacetic acid, which accumulates in the liver after administration, inhibited the CPT-I activity in vitro, but not that of CPT-II. Acetoacetyl-CoA thiolase and HMG-CoA lyase activities involved in ketogenesis were increased, whereas the citrate synthase activity was decreased. The present data suggest that 3-thia fatty acids increase both the transport of fatty acids into the mitochondria and the capacity of the beta-oxidation process. Under these conditions, the regulation of ketogenesis may be shifted to step(s) beyond CPT-I. This opens the possibility that mitochondrial HMG-CoA synthase and CPT-II retain some control of ketone body formation.

  16. Challenges in Double Beta Decay

    Directory of Open Access Journals (Sweden)

    Oliviero Cremonesi

    2014-01-01

    Full Text Available In the past ten years, neutrino oscillation experiments have provided the incontrovertible evidence that neutrinos mix and have finite masses. These results represent the strongest demonstration that the electroweak Standard Model is incomplete and that new Physics beyond it must exist. In this scenario, a unique role is played by the Neutrinoless Double Beta Decay searches which can probe lepton number conservation and investigate the Dirac/Majorana nature of the neutrinos and their absolute mass scale (hierarchy problem with unprecedented sensitivity. Today Neutrinoless Double Beta Decay faces a new era where large-scale experiments with a sensitivity approaching the so-called degenerate-hierarchy region are nearly ready to start and where the challenge for the next future is the construction of detectors characterized by a tonne-scale size and an incredibly low background. A number of new proposed projects took up this challenge. These are based either on large expansions of the present experiments or on new ideas to improve the technical performance and/or reduce the background contributions. In this paper, a review of the most relevant ongoing experiments is given. The most relevant parameters contributing to the experimental sensitivity are discussed and a critical comparison of the future projects is proposed.

  17. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgaris.

    Science.gov (United States)

    Rudolph, Kristin; Parthier, Christoph; Egerer-Sieber, Claudia; Geiger, Daniel; Muller, Yves A; Kreis, Wolfgang; Müller-Uri, Frieder

    2016-01-01

    The biosynthesis of γ-terpinene, a precursor of the phenolic isomers thymol and carvacrol found in the essential oil from Thymus sp., is attributed to the activitiy of γ-terpinene synthase (TPS). Purified γ-terpinene synthase from T. vulgaris (TvTPS), the Thymus species that is the most widely spread and of the greatest economical importance, is able to catalyze the enzymatic conversion of geranyl diphosphate (GPP) to γ-terpinene. The crystal structure of recombinantly expressed and purified TvTPS is reported at 1.65 Å resolution, confirming the dimeric structure of the enzyme. The putative active site of TvTPS is deduced from its pronounced structural similarity to enzymes from other species of the Lamiaceae family involved in terpenoid biosynthesis: to (+)-bornyl diphosphate synthase and 1,8-cineole synthase from Salvia sp. and to (4S)-limonene synthase from Mentha spicata.

  18. The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment: possible genetic and cell-signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Luong KV

    2012-12-01

    Full Text Available Khanh vinh quốc Lương, Lan Thi Hoàng NguyễnVietnamese American Medical Research Foundation, Westminster, California, USAAbstract: Cancer is the leading cause of death in the USA, and the incidence of cancer increases dramatically with age. Beta-adrenergic blockers appear to have a beneficial clinical effect in cancer patients. In this paper, we review the evidence of an association between β-adrenergic blockade and cancer. Genetic studies have provided the opportunity to determine which proteins link β-adrenergic blockade to cancer pathology. In particular, this link involves the major histocompatibility complex class II molecules, the renin–angiotensin system, transcription factor nuclear factor-kappa-light-chain-enhancer of activated B cells, poly(ADP-ribose polymerase-1, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate oxidase. Beta-adrenergic blockers also exert anticancer effects through non-genomic factors, including matrix metalloproteinase, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase-2, oxidative stress, and nitric oxide synthase. In conclusion, β-adrenergic blockade may play a beneficial role in cancer treatment. Additional investigations that examine β-adrenergic blockers as cancer therapeutics are required to further elucidate this role.Keywords: β-adrenergic blocker, neoplasm, β-adrenergic antagonism, non-genomic factor

  19. Structural studies on the reaction of isopenicillin N synthase with the substrate analogue delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-alpha-aminobutyrate.

    Science.gov (United States)

    Long, Alexandra J; Clifton, Ian J; Roach, Peter L; Baldwin, Jack E; Schofield, Christopher J; Rutledge, Peter J

    2003-06-15

    Isopenicillin N synthase (IPNS) is a non-haem iron(II) oxidase which catalyses the biosynthesis of isopenicillin N from the tripeptide delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV). Herein we report crystallographic studies to investigate the reaction of IPNS with the truncated substrate analogue delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-alpha-aminobutyrate (ACAb). It has been reported previously that this analogue gives rise to three beta-lactam products when incubated with IPNS: two methyl penams and a cepham. Crystal structures of the IPNS-Fe(II)-ACAb and IPNS-Fe(II)-ACAb-NO complexes have now been solved and are reported herein. These structures and modelling studies based on them shed light on the diminished product selectivity shown by IPNS in its reaction with ACAb and further rationalize the presence of certain key residues at the IPNS active site.

  20. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis.

    Science.gov (United States)

    Lardizabal, K D; Metz, J G; Sakamoto, T; Hutton, W C; Pollard, M R; Lassner, M W

    2000-03-01

    Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a beta-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. (13)C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds.

  1. The pharmacokinetics of beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin in the rat

    NARCIS (Netherlands)

    Frijlink, H W; Visser, J; Hefting, N R; Oosting, R; Meijer, D K; Lerk, C F

    1990-01-01

    Hydroxypropyl-beta-cyclodextrin was analyzed by HPLC using postcolumn complexation with phenolphthalein and negative colorimetric detection, with a detection limit of 20 micrograms/ml. The pharmacokinetics of beta-cyclodextrin and of hydroxypropyl-beta-cyclodextrin were studied after intravenous adm

  2. The impact of beta-elemene on beta-tubulin of human hepatoma hepg2 cells

    Institute of Scientific and Technical Information of China (English)

    Yuqiu Mao; Liying Ban; Jielin Zhang; Li Hou; Xiaonan Cui

    2014-01-01

    Objective:The aim of this study was to investigate the impact of beta-elemene injection on the growth and beta-tubulin of human hepatocarcinoma HepG2 cells. Methods:cellproliferation was assessed by MTT assay. cellcycle distribution was detected by flow cytometry (FCM). The mRNA expression of beta-tubulin was measured by RT-PCR. West-ern blot analysis was used to determine protein expression of beta-tubulin and the polymerization of beta-tubulin. Results:Beta-elemene injection inhibited HepG2 cells proliferation in a dose-and time-dependent manner;FCM analysis indicated beta-elemene injection induced cellcycle arrested at S phase. RT-PCR and western-blot analysis showed that beta-elemene injection down-regulated beta-tubulin expression at both mRNA and protein levels, presenting a dose-dependent manner. Moreover, beta-elemene injection reduced the polymerization of microtubules in a dose-dependent manner. Conclusion:Beta-elemene injection can inhibit the proliferation of hepatoma HepG2 cells, the mechanism might be partly related to the down-regulation of beta-tubulin and inhibition of microtubular polymerization.

  3. Expressions of GSK-3beta, Beta-Catenin and PPAR-Gamma in Medulloblastoma

    Institute of Scientific and Technical Information of China (English)

    Xiong Zhang; Lu Si; Yu Li; Can Mi

    2009-01-01

    Objective: To investigate the expressions of GSK-3beta, Beta-catenin and PPAR-gamma, and their relationship in medulloblastoma, and to explore their value in clinic application.Methods: Immunohistochemical staining with SP method was conducted to determine the expressions of GSK-3beta, Beta-catenin and PPAR-gamma in 48 cases of medulloblastoma and 10 normal cerebellar tissues.Results: The rate of abnormal expressions of beta-catenin and PPAR-gamma in MB was higher than that in normal. Conversely, GSK-3beta in MB was lower than that in the normal (P<0.05). Furthermore, in medulloblastoma, beta-catenin and GSK-3beta showed a negative correlation, PPAR-gamma and beta-catenin had a positive correlation.Conclusion: Abnormal expression of beta-catenin plays a crucial role in the development of medulloblastoma. Meanwhile, PPAR-gamma and GSK-3beta which are tightly related with beta-catenin are both involved in the genesis and development of medulloblastoma.

  4. A new member of the chalcone synthase (CHS family in sugarcane

    Directory of Open Access Journals (Sweden)

    Contessotto Miriam G.G.

    2001-01-01

    Full Text Available Sequences from the sugarcane expressed sequence tag (SUCEST database were analyzed based on their identities to genes encoding chalcone-synthase-like enzymes. The sorghum (Sorghum bicolor chalcone-synthase (CHS, EC 2.3.1.74 protein sequence (gi|12229613 was used to search the SUCEST database for clusters of sequencing reads that were most similar to chalcone synthase. We found 121 reads with homology to sorghum chalcone synthase, which we were then able to sort into 14 clusters which themselves were divided into two groups (group 1 and group 2 based on the similarity of their deduced amino acid sequences. Clusters in group 1 were more similar to the sorghum enzyme than those in group 2, having the consensus sequence of the active site of chalcone and stilbene synthase. Analysis of gene expression (based on the number of reads from a specific library present in each group indicated that most of the group 1 reads were from sugarcane flower and root libraries. Group 2 clusters were more similar to the amino acid sequence of an uncharacterized pathogen-induced protein (PI1, gi|9855801 from the S. bicolor expressed sequence tag (EST database. The group 2 clusters sequences and PI1 proteins are 90% identical, having two amino acid changes at the chalcone and stilbene synthase consensi but conserving the cysteine residue at the active site. The PI1 EST has not been previously associated with chalcone synthase and has a different consensus sequence from the previously described chalcone synthase of sorghum. Most of the group 2 reads were from libraries prepared from sugarcane roots and plants infected with Herbaspirillum rubrisubalbicans and Gluconacetobacter diazotroficans. Our results indicate that we have identified a sugarcane chalcone synthase similar to the pathogen-induced PI1 protein found in the sorghum cDNA libraries, and it appears that both proteins represent new members of the chalcone and stilbene synthase super-family.

  5. Radiation-induced polymerization of {beta}(+)-pinene and synthesis of optically active {beta}(+)/{beta}(-)pinene polymers and copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Franco, E-mail: franco.cataldo@fastwebnet.i [Lupi Chemical Research, Via Casilina 1626/A, 00133 Rome (Italy); Lilla, Edo; Ursini, Ornella [Institute of Chemical Methodologies, CNR, Via Salaria Km. 29300, Monterotondo Stazione 00016, Rome (Italy)

    2011-06-15

    Poly-{beta}(+)-pinene (pB(+)p) was synthesized with {gamma} irradiation of the monomer {beta}(+)-pinene in bulk under vacuum at 1181 kGy. Also scalemic mixtures of {beta}(+)-pinene and {beta}(-)-pinene were irradiated at 1181 kGy to obtain synthetic copolymers of pB(+)/B(-)p. For comparison also {beta}(-)-pinene was converted into poly-{beta}(-)-pinene (pB(-)p) under the identical conditions adopted for its enantiomer. Furthermore pB(+)p and pB(-)p were also synthesized by thermal processing under the action of a chemical free radical initiator. The optical rotatory dispersion (ORD) of all pBp resins synthesized were accurately studied in the spectral range comprised between 375 and 625 nm and a curious asymmetry in the ORD of pB(+)p versus the ORD of pB(-)p is reported. Furthermore, it is shown that (+)-p-menth-1-ene and (-)-p-menth-1-ene are useful as a model compounds for the pBp resins and for the explanation of the amplification of the optical activity of the {beta}(+)-pinene and {beta}(-)-pinene after their ring-opening polymerization to pB(+)p and pB(-)p. The pBp resins were studied also by FT-IR spectroscopy and by thermal analysis (TGA and DTG).

  6. Imperfect World of beta beta-decay Nuclear Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Pritychenko, B. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2015-01-03

    The precision of double-beta ββ-decay experimental half lives and their uncertainties is reanalyzed. The method of Benford's distributions has been applied to nuclear reaction, structure and decay data sets. First-digit distribution trend for ββ-decay T2v1/2 is consistent with large nuclear reaction and structure data sets and provides validation of experimental half-lives. A complementary analysis of the decay uncertainties indicates deficiencies due to small size of statistical samples, and incomplete collection of experimental information. Further experimental and theoretical efforts would lead toward more precise values of-decay half-lives and nuclear matrix elements.

  7. Beta-glucosidase I variants with improved properties

    Energy Technology Data Exchange (ETDEWEB)

    Bott, Richard R.; Kaper, Thijs; Kelemen, Bradley; Goedegebuur, Frits; Hommes, Ronaldus Wilhelmus; Kralj, Slavko; Kruithof, Paulien; Nikolaev, Igor; Van Der Kley, Wilhelmus Antonious Hendricus; Van Lieshout, Johannes Franciscus Thomas; Van Stigt Thans, Sander

    2016-09-20

    The present disclosure is generally directed to enzymes and in particular beta-glucosidase variants. Also described are nucleic acids encoding beta-glucosidase variants, compositions comprising beta-glucosidase variants, methods of using beta-glucosidase variants, and methods of identifying additional useful beta-glucosidase variants.

  8. Dosimetry of low-energy beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Borg, J.

    1996-08-01

    Useful techniques and procedures for determination of absorbed doses from exposure in a low-energy {beta} radiation field were studied and evaluated in this project. The four different techniques included were {beta} spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical low-energy {beta} radiation field a moderated spectrum from a {sup 14}C source (E{sub {beta}},{sub max} =156 keV) was chosen for the study. The measured response of a Si(Li) detector to photons (bremsstrahlung) showed fine agreement with the MC calculated photon response, whereas the difference between measured and MC calculated responses to electrons indicates an additional dead layer thickness of about 12 {mu}m in the Si(Li) detector. The depth-dose profiles measured with extrapolation chambers at two laboratories agreed very well, and it was confirmed that the fitting procedure previously reported for {sup 147}Pm depth-dose profiles is also suitable for {beta} radiation from {sup 14}C. An increasing difference between measured and MC calculated dose rates for increasing absorber thickness was found, which is explained by limitations of the EGS4 code for transport of very low-energy electrons (below 10-20 keV). Finally a study of the thermally stimulated exoelectron emission (TSEE) response of BeO thin film dosemeters to {beta} radiation for radiation fields with maximum {beta} energies ranging from 67 keV to 2.27 MeV is reported. For maximum {beta} energies below approximately 500 keV, a decrease in the response amounting to about 20% was observed. It is thus concluded that a {beta} dose higher than about 10 {mu}Gy can be measured with these dosemeters to within 0 to -20% independently of the {beta}energy for E{sub {beta}},{sub max} values down to 67 keV. (au) 12 tabs., 38 ills., 71 refs.

  9. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  10. The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli

    NARCIS (Netherlands)

    Müller, Patrick; Ewers, C.; Bertsche, U.; Anstett, M.; Kallis, T.; Breukink, E.J.; Fraipont, Claudine; Terrak, Mohammed; Nguyen-Distèche, Martine; Vollmer, W.

    2007-01-01

    Bacterial cell division requires the coordinated action of cell division proteins and murein (peptidoglycan) synthases. Interactions involving the essential cell division protein FtsN and murein synthases were studied by affinity chromatography with membrane fraction. The murein synthases PBP1A, PBP

  11. Main: 1V3I [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1V3I 大豆 Soybean Glycine max (L.) Merrill Beta-Amylase Name=Bmy1; Glycine Max Molecule: Beta-Amylase; Chain...: A; Synonym: 1,4-Alpha-D-Glucan Maltohydrolase; Engineered: Yes; Mutation: Yes Hydro

  12. Protons, the thylakoid membrane, and the chloroplast ATP synthase.

    Science.gov (United States)

    Junge, W

    1989-01-01

    According to the chemiosmotic theory, proton pumps and ATP synthases are coupled by lateral proton flow through aqueous phases. Three long-standing challenges to this concept, all of which have been loosely subsumed under 'localized coupling' in the literature, were examined in the light of experiments carried out with thylakoids: (1) Nearest neighbor interaction between pumps and ATP synthases. Considering the large distances between photosystem II and CFoCF1, in stacked thylakoids this is a priori absent. (2) Enhanced proton diffusion along the surface of the membrane. This could not be substantiated for the outer side of the thylakoid membrane. Even for the interface between pure lipid and water, two laboratories have reported the absence of enhanced diffusion. (3) Localized proton ducts in the membrane. Intramembrane domains that can transiently trap protons do exist in thylakoid membranes, but because of their limited storage capacity for protons, they probably do not matter for photophosphorylation under continuous light. Seemingly in favor of localized proton ducts is the failure of a supposedly permeant buffer to enhance the onset lag of photophosphorylation. However, it was found that failure of some buffers and the ability of others in this respect were correlated with their failure/ability to quench pH transients in the thylakoid lumen, as predicted by the chemiosmotic theory. It was shown that the chemiosmotic concept is a fair approximation, even for narrow aqueous phases, as in stacked thylakoids. These are approximately isopotential, and protons are taken in by the ATP synthase straight from the lumen. The molecular mechanism by which F0F1 ATPases couple proton flow to ATP synthesis is still unknown. The threefold structural symmetry of the headpiece that, probably, finds a corollary in the channel portion of these enzymes appeals to the common wisdom that structural symmetry causes functional symmetry. "Rotation catalysis" has been proposed. It is

  13. Signaling from beta1- and beta2-adrenergic receptors is defined by differential interactions with PDE4

    DEFF Research Database (Denmark)

    Richter, Wito; Day, Peter; Agrawal, Rani

    2008-01-01

    Beta1- and beta2-adrenergic receptors (betaARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by beta1AR but not beta2AR signaling, and chronic stimulation of the two receptors has opposing...

  14. Localization of thymosin beta-4 in tumors

    DEFF Research Database (Denmark)

    Larsson, L. -I.; Holck, Susanne

    2007-01-01

    Overexpression of thymosin beta-4 has been linked to malignant progression but the localization of this polypeptide within tumors is incompletely known. We therefore examined breast cancers for thymosin beta-4 using immunofluorescence. Reactive cells were identified with monoclonal cell marker...... in the tumor microenvironment may modulate tumor behavior....

  15. Nebivolol : third-generation beta-blockade

    NARCIS (Netherlands)

    de Boer, Rudolf A.; Voors, Adriaan A.; van Veldhuisen, Dirk J.

    2007-01-01

    Nebivolol is a third generation beta-blocker. It is highly selective for the beta 1-adrenoceptor, and has additional nitric oxide-mediated vasodilating and antioxidant properties, along with a favourable metabolic profile. Nebivolol is well tolerated by patients with hypertension and heart failure.

  16. The beta subunit of casein kinase II

    DEFF Research Database (Denmark)

    Boldyreff, B; Piontek, K; Schmidt-Spaniol, I;

    1991-01-01

    cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies....

  17. Venus: Geology of Beta Regio rift system

    Science.gov (United States)

    Nikishin, A. M.; Borozdin, V. K.; Bobina, N. N.

    1992-01-01

    Beta Regio is characterized by the existence of rift structures. We compiled new geologic maps of Beta Regio according to Magellan data. There are many large uplifted tesserae on beta upland. These tesserae are partly buried by younger volcanic cover. We can conclude, using these observations, that Beta upland formed mainly due to lithospheric tectonic uplifting and was only partly constructed by volcanism. Theia Mons is the center of the Beta rift system. Many rift belts are distributed radially to Theia Mons. Typical widths of rifts are 40-160 km. Rift valleys are structurally represented by crustal grabens or half-grabens. There are symmetrical and asymmetrical rifts. Many rifts have shoulder uplifts up to 0.5-1 km high and 40-60 km wide. Preliminary analysis for rift valley structural cross sections lead to the conclusion that rifts originated due to 5-10 percent crustal extension. Many rifts traverse Beta upland and spread to the surrounding lowlands. We can assume because of these data that Beta rift system has an active-passive origin. It formed due to regional tectonic lithospheric extension. Rifting was accelerated by upper-mantle hot spot origination under the center of passive extension (under the Beta Regio).

  18. Beta-agonists and animal welfare

    Science.gov (United States)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  19. Shielding for beta-gamma radiation.

    Science.gov (United States)

    Fletcher, J J

    1993-06-01

    The build-up factor, B, for lead was expressed as a polynominal cubic function of the relaxation length, mu x, and incorporated in a "general beta-gamma shielding equation." A computer program was written to determine shielding thickness for polyenergetic beta-gamma sources without resorting to the conventional "add-one-HVL" method.

  20. Recurrent encephalopathy: NAGS (N-acetylglutamate synthase) deficiency in adults.

    Science.gov (United States)

    Cartagena, A; Prasad, A N; Rupar, C A; Strong, M; Tuchman, M; Ah Mew, N; Prasad, C

    2013-01-01

    N-acetyl-glutamate synthase (NAGS) deficiency is a rare autosomal recessive urea cycle disorder (UCD) that uncommonly presents in adulthood. Adult presentations of UCDs include; confusional episodes, neuropsychiatric symptoms and encephalopathy. To date, there have been no detailed neurological descriptions of an adult onset presentation of NAGS deficiency. In this review we examine the clinical presentation and management of UCDs with an emphasis on NAGS deficiency. An illustrative case is provided. Plasma ammonia levels should be measured in all adult patients with unexplained encephalopathy, as treatment can be potentially life-saving. Availability of N-carbamylglutamate (NCG; carglumic acid) has made protein restriction largely unnecessary in treatment regimens currently employed. Genetic counselling remains an essential component of management of NAGS.