WorldWideScience

Sample records for bess observed cosmic

  1. The Bess Investigation of the Origin of Cosmic-ray Antiprotons and Search for Cosmological Antimatter

    Science.gov (United States)

    Mitchell, John; Yamamoto, Akira; Yoshimura, Koji; Makida, Yasuhiro; Matsuda, Shinya; Hasegawa, Masaya; Horikoshi, Atsushi; Tanaka,Ken-ichi; Suzuki, Junichi; Nishimura, Jun; hide

    2008-01-01

    The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) collaboration has made precise measurements of the spectra of cosmic ray antiprotons and light nuclei and conducted a sensitive search for antinuclei. Ten BESS high-latitude flights, eight from Canada and two from Antarctica, span more than a Solar cycle between 1993 and 2007/2008. BESS measurements of low-energy antiprotons constrain candidate models for dark matter including the possible signature of primordial black hole evaporation. The stringent BESS measurements of antiprotons and the elemental and isotopic spectra of H and He provide strong constraints on models of cosmic-ray transport in the Galaxy and Solar System. BESS has also reported the first antideuterium upper limit. BESS employs a superconducting magnetic-rigity spectrometer with time-of-flight and aerogel Cherenkov detectors to identify incident particles by charge, charge sign, mass, and energy. The BESS-Polar long-duration instrument has reduced lower energy limit of 100 MeV (top of the atmosphere) to increase its sensitivity to possible primary antiproton sources. BESS-Polar II was rebuilt with extended magnet lifetime, improved detector and electronic performance, and greater data storage capacity. It was flown fro Antarctica December 2007-January 2008, recording about 4.6 bission events during 24.5 days at float altitude with the magnet on. During the flight the influence of a high-speed stream in the Solar wind was observed. Details of the BESS-Polar II instrument and flight performance are reported elsewhere at this conference. The successful BESS-Polar II flight at Solar minimum is especially important. Most cosmic-ray antiprotons are secondary products of nuclear interactions of primary cosmic-ray nuclei with the interstellar gas, giving a spectrum that peaks at about 2 GeV and falls rapidly to higher and lower energies. However, BESS data taken in the previous Solar minimum show a small excess over secondary

  2. Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter with BESS

    Science.gov (United States)

    Yamamoto, A.; Mitchell, J. W.; Yoshimura, K.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; hide

    2011-01-01

    The balloon-borne experiment with a superconducting spectrometer (BESS) has performed cosmic-ray observations as a US-Japan cooperative space science program, and has provided fundamental data on cosmic rays to study elementary particle phenomena in the early Universe. The BESS experiment has measured the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic origins such as dark matter candidates or primordial black holes. and searched for heavier antinuclei that might reach Earth from antimatter domains formed in the early Universe. The apex of the BESS program was reached with the Antarctic flight of BESS-Polar II, during the 2007- 2008 Austral Summer, that obtained over 4.7 billion cosmic-ray events from 24.5 days of observation. The flight took place at the expected solar minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. Here, we report the scientific restults, focusing on the long-duration flights of BESS-Polar I (2004) and BESS-Polar II (2007-2008).

  3. The BESS Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter

    Science.gov (United States)

    Mitchell, John; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer (BESS) program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier antinuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of antideuterons and antihelium. The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  4. Measurements of Cosmic-Ray Proton and Helium Spectra from the BESS-Polar Long-Duration Balloon Flights Over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.; hide

    2016-01-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.15-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 GV to 160 GV and compare to ratios from PAMELA and AMS-02.

  5. MEASUREMENTS OF COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE BESS-POLAR LONG-DURATION BALLOON FLIGHTS OVER ANTARCTICA

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Itazaki, A.; Kusumoto, A.; Matsukawa, Y.; Orito, R. [Kobe University, Kobe, Hyogo 657-8501 (Japan); Fuke, H. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Haino, S.; Hasegawa, M.; Horikoshi, A.; Kumazawa, T.; Makida, Y.; Matsuda, S.; Matsumoto, K.; Nozaki, M. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Hams, T.; Mitchell, J. W. [NASA-Goddard Space Flight Center (NASA-GSFC), Greenbelt, MD 20771 (United States); Kim, K. C.; Lee, M. H.; Myers, Z. [IPST, University of Maryland, College Park, MD 20742 (United States); Nishimura, J., E-mail: Kenichi.Sakai@nasa.gov [The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); and others

    2016-05-10

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2–160 GeV and helium nuclei in the range 0.15–80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6–160 GV for protons and 1.1–160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02.

  6. Ground level cosmic ray observations

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements); Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Piccardi, S. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    Cosmic rays at ground level have been collected using the NMSU/Wizard - MASS2 instrument. The 17-hr observation run was made on September 9. 1991 in Fort Sumner, New Mexico, Usa. Fort Sumner is located at 1270 meters a.s.l., corresponding to an atmospheric depth of about 887 g/cm{sup 2}. The geomagnetic cutoff is 4.5 GV/c. The charge ratio of positive and negative muons and the proton to muon ratio have been determined. These observations will also be compared with data collected at a higher latitude using the same basic apparatus.

  7. Observational probes of cosmic acceleration

    International Nuclear Information System (INIS)

    Weinberg, David H.; Mortonson, Michael J.; Eisenstein, Daniel J.; Hirata, Christopher; Riess, Adam G.; Rozo, Eduardo

    2013-01-01

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of “dark energy” with exotic physical properties, or that Einstein’s theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious efforts to understand its origin, with experiments that aim to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and the abundance of galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit “Stage IV” dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock–Paczynski effect, and direct measurements of the Hubble constant H 0 . We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from General Relativity, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and cosmic microwave background data. We also show the level of precision required for clusters or other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets that support a wide range of scientific investigations, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over ever

  8. Observational probes of cosmic acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, David H., E-mail: dhw@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH (United States); Mortonson, Michael J. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH (United States); Eisenstein, Daniel J. [Steward Observatory, University of Arizona, Tucson, AZ (United States); Harvard College Observatory, Cambridge, MA (United States); Hirata, Christopher [California Institute of Technology, Pasadena, CA (United States); Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD (United States); Rozo, Eduardo [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL (United States)

    2013-09-10

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of “dark energy” with exotic physical properties, or that Einstein’s theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious efforts to understand its origin, with experiments that aim to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and the abundance of galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit “Stage IV” dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock–Paczynski effect, and direct measurements of the Hubble constant H{sub 0}. We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from General Relativity, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and cosmic microwave background data. We also show the level of precision required for clusters or other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets that support a wide range of scientific investigations, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over

  9. Cosmology with cosmic shear observations: a review.

    Science.gov (United States)

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  10. Antimatter and Dark Matter Search in Space: BESS-Polar Results

    Science.gov (United States)

    Mitchell, John W.; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier anti-nuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of anti-deuterons and anti-helium, The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  11. Structure formation cosmic rays: Identifying observational constraints

    Directory of Open Access Journals (Sweden)

    Prodanović T.

    2005-01-01

    Full Text Available Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be Li. The rare isotope Li is produced only by cosmic rays, dominantly in αα → 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metalpoor halo stars. Given the already existing problem of establishing the concordance between Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model-independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1 we establish the connection between gamma-ray and Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB; 2 we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs, which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using them in

  12. Observational Bounds on Cosmic Doomsday

    Energy Technology Data Exchange (ETDEWEB)

    Shmakova, Marina

    2003-07-11

    Recently it was found, in a broad class of models, that the dark energy density may change its sign during the evolution of the universe. This may lead to a global collapse of the universe within the time t{sub c} {approx} 10{sup 10}-10{sup 11} years. Our goal is to find what bounds on the future lifetime of the universe can be placed by the next generation of cosmological observations. As an example, we investigate the simplest model of dark energy with a linear potential V({phi}) = V{sub 0}(1 + {alpha}{phi}). This model can describe the present stage of acceleration of the universe if {alpha} is small enough. However, eventually the field {phi} rolls down, V({phi}) becomes negative, and the universe collapses. The existing observational data indicate that the universe described by this model will collapse not earlier than t{sub c} {approx_equal} 10 billion years from the present moment. We show that the data from SNAP and Planck satellites may extend the bound on the ''doomsday'' time to tc 40 billion years at the 95% confidence level.

  13. Impact of cosmic inhomogeneities on SNe observations

    Science.gov (United States)

    Kainulainen, Kimmo; Marra, Valerio

    2010-06-01

    We study the impact of cosmic inhomogeneities on the interpretation of SNe observations. We build an inhomogeneous universe model that can confront supernova data and yet is reasonably well compatible with the Copernican Principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizeable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

  14. Davis-Besse uncertainty study

    International Nuclear Information System (INIS)

    Davis, C.B.

    1987-08-01

    The uncertainties of calculations of loss-of-feedwater transients at Davis-Besse Unit 1 were determined to address concerns of the US Nuclear Regulatory Commission relative to the effectiveness of feed and bleed cooling. Davis-Besse Unit 1 is a pressurized water reactor of the raised-loop Babcock and Wilcox design. A detailed, quality-assured RELAP5/MOD2 model of Davis-Besse was developed at the Idaho National Engineering Laboratory. The model was used to perform an analysis of the loss-of-feedwater transient that occurred at Davis-Besse on June 9, 1985. A loss-of-feedwater transient followed by feed and bleed cooling was also calculated. The evaluation of uncertainty was based on the comparisons of calculations and data, comparisons of different calculations of the same transient, sensitivity calculations, and the propagation of the estimated uncertainty in initial and boundary conditions to the final calculated results

  15. Science with Future Cosmic Microwave Background Observations

    Energy Technology Data Exchange (ETDEWEB)

    Bernardis, P. de; Calvo, M.; Giordano, C.; Masi, S.; Nati, F.; Piacentini, F.; Schillaci, A. [Dipartimento di Fisica, Universita di Roma La Sapienza, P.le A. Moro 2, 00185 Roma (Italy)

    2009-10-15

    After the successful measurements of many ground based, balloon-borne and satellite experiments, which started the era of 'Precision Cosmology', Cosmic Microwave Background (CMB) observations are now focusing on two targets: the precision measurement of B-modes in the polarization field, and the measurement of the Sunyaev-Zeldovich effect in distant clusters of galaxies. Polarization measurements represent the best way to probe the very early universe, and the energy scale of inflation. Fine-scale anisotropy measurements, possibly with spectral capabilities, can provide important information on dark matter and dark energy. Here we describe original approaches to these measurements.

  16. Science with Future Cosmic Microwave Background Observations

    International Nuclear Information System (INIS)

    Bernardis, P. de; Calvo, M.; Giordano, C.; Masi, S.; Nati, F.; Piacentini, F.; Schillaci, A.

    2009-01-01

    After the successful measurements of many ground based, balloon-borne and satellite experiments, which started the era of 'Precision Cosmology', Cosmic Microwave Background (CMB) observations are now focusing on two targets: the precision measurement of B-modes in the polarization field, and the measurement of the Sunyaev-Zeldovich effect in distant clusters of galaxies. Polarization measurements represent the best way to probe the very early universe, and the energy scale of inflation. Fine-scale anisotropy measurements, possibly with spectral capabilities, can provide important information on dark matter and dark energy. Here we describe original approaches to these measurements.

  17. Cosmic curvature tested directly from observations

    Science.gov (United States)

    Denissenya, Mikhail; Linder, Eric V.; Shafieloo, Arman

    2018-03-01

    Cosmic spatial curvature is a fundamental geometric quantity of the Universe. We investigate a model independent, geometric approach to measure spatial curvature directly from observations, without any derivatives of data. This employs strong lensing time delays and supernova distance measurements to measure the curvature itself, rather than just testing consistency with flatness. We define two curvature estimators, with differing error propagation characteristics, that can crosscheck each other, and also show how they can be used to map the curvature in redshift slices, to test constancy of curvature as required by the Robertson-Walker metric. Simulating realizations of redshift distributions and distance measurements of lenses and sources, we estimate uncertainties on the curvature enabled by next generation measurements. The results indicate that the model independent methods, using only geometry without assuming forms for the energy density constituents, can determine the curvature at the ~6×10‑3 level.

  18. Interpretation of observed cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alfven, H.; Mendis, A.

    1977-01-01

    It is stated that the observed cosmic microwave background radiation, which closely fits a 2.7 K black body spectrum, is generally claimed to be the strongest piece of evidence in support of hot big bang cosmologies by its proponents. It is here stated that the observed radiation corresponds to the distribution of dust in galaxies or protogalaxies with a temperature approximately 110 K at the epoch corresponding to Z approximately 40, and not to a plasma of temperature > approximately 3000 K at an earlier epoch (Z > approximately 1000), as indicated by the canonical model of big bang cosmologies. The claim that the latter lends strong support to hot big bang cosmologies is stated to be without foundation. It is concluded that the microwave background radiation must be explained not in terms of a coupling between matter and radiation at the present epoch, but in terms of a coupling in a previous epoch within the framework of an evolutionary cosmology. (U.K.)

  19. Progress in Search for Antihelium with BESS

    Science.gov (United States)

    Sasaki, M.; Matsumoto, H.; Nozaki, M.; Saeki, T.; Abe, K.; Anraku, K.; Asoka, Y.; Fujikawa, M.; Fuke, H.; Imori, M.

    2002-01-01

    We have searched for antihelium nuclei in cosmic rays using the data obtained from balloon flights of the BESS magnetic spectrometer. The search was mainly based on track-quality selection, followed by rigidity analysis, and on the time-of-flight and dE/dx measurements by the scintillation counter hodoscope. We analysed all the data collected during 1993-2000 with a common analysis procedure. No antihelium nuclei events were found in the energy range from 1 to 14 GV. In order to determine a new upper limit, we have simulated the loss in the air and in the instrument of He (He-bar) using the GEANT/GHEISHA code. Combined with the data collected in 1993 through 2000, a new 95 % confidence upper limit for the ratio of He-bar/He at the top of the atmosphere of 6.8 x 10(exp -7) has been obtained to be after correcting for the interactions in the air and in the instruments.

  20. COSMOS: the COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-11-01

    Full Text Available The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS. The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes.

  1. Cosmic ray observations of Cygnus X-3: some theoretical implications

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Halzen, F.

    1986-01-01

    We describe how the discovery of surface showers from Cygnus X-3 and other compact X-ray binaries may resolve the long-standing question of the origin of cosmic rays above 10 15 eV. In contrast, we show how possible underground muon observations raise rather than answer questions. 5 figs.; 17 refs

  2. Cosmic microwave background observables of small field models of inflation

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Brustein, Ram

    2010-01-01

    We construct a class of single small field models of inflation that can predict, contrary to popular wisdom, an observable gravitational wave signal in the cosmic microwave background anisotropies. The spectral index, its running, the tensor to scalar ratio and the number of e-folds can cover all the parameter space currently allowed by cosmological observations. A unique feature of models in this class is their ability to predict a negative spectral index running in accordance with recent cosmic microwave background observations. We discuss the new class of models from an effective field theory perspective and show that if the dimensionless trilinear coupling is small, as required for consistency, then the observed spectral index running implies a high scale of inflation and hence an observable gravitational wave signal. All the models share a distinct prediction of higher power at smaller scales, making them easy targets for detection

  3. Heliospheric modulation of cosmic rays: model and observation

    Directory of Open Access Journals (Sweden)

    Gerasimova S.K.

    2017-03-01

    Full Text Available This paper presents the basic model of cosmic ray modulation in the heliosphere, developed in Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy of Sciences. The model has only one free modulation parameter: the ratio of the regular magnetic field to the turbulent one. It may also be applied to the description of cosmic ray intensity variations in a wide energy range from 100 MeV to 100 GeV. Possible mechanisms of generation of the turbulent field are considered. The primary assumption about the electrical neutrality of the heliosphere appears to be wrong, and the zero potential needed to match the model with observations in the solar equatorial plane can be achieved if the frontal point of the heliosphere, which is flowed around by interstellar gas, lies near the plane. We have revealed that the abnormal rise of cosmic ray intensity at the end of solar cycle 23 is related to the residual modulation produced by the subsonic solar wind behind the front of a standing shock wave. The model is used to describe features of cosmic ray intensity variations in several solar activity cycles.

  4. Can we observationally test the weak cosmic censorship conjecture?

    International Nuclear Information System (INIS)

    Kong, Lingyao; Malafarina, Daniele; Bambi, Cosimo

    2014-01-01

    In general relativity, gravitational collapse of matter fields ends with the formation of a spacetime singularity, where the matter density becomes infinite and standard physics breaks down. According to the weak cosmic censorship conjecture, singularities produced in the gravitational collapse cannot be seen by distant observers and must be hidden within black holes. The validity of this conjecture is still controversial and at present we cannot exclude that naked singularities can be created in our Universe from regular initial data. In this paper, we study the radiation emitted by a collapsing cloud of dust and check whether it is possible to distinguish the birth of a black hole from the one of a naked singularity. In our simple dust model, we find that the properties of the radiation emitted in the two scenarios is qualitatively similar. That suggests that observational tests of the cosmic censorship conjecture may be very difficult, even in principle. (orig.)

  5. Can we observationally test the weak cosmic censorship conjecture?

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingyao; Malafarina, Daniele; Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China)

    2014-08-15

    In general relativity, gravitational collapse of matter fields ends with the formation of a spacetime singularity, where the matter density becomes infinite and standard physics breaks down. According to the weak cosmic censorship conjecture, singularities produced in the gravitational collapse cannot be seen by distant observers and must be hidden within black holes. The validity of this conjecture is still controversial and at present we cannot exclude that naked singularities can be created in our Universe from regular initial data. In this paper, we study the radiation emitted by a collapsing cloud of dust and check whether it is possible to distinguish the birth of a black hole from the one of a naked singularity. In our simple dust model, we find that the properties of the radiation emitted in the two scenarios is qualitatively similar. That suggests that observational tests of the cosmic censorship conjecture may be very difficult, even in principle. (orig.)

  6. THE Be STAR SPECTRA (BeSS) DATABASE

    International Nuclear Information System (INIS)

    Neiner, C.; De Batz, B.; Cochard, F.; Floquet, M.; Mekkas, A.; Desnoux, V.

    2011-01-01

    Be stars vary on many timescales, from hours to decades. A long time base of observations to analyze certain phenomena in these stars is therefore necessary. Collecting all existing and future Be star spectra into one database has thus emerged as an important tool for the Be star community. Moreover, for statistical studies, it is useful to have centralized information on all known Be stars via an up-to-date catalog. These two goals are what the Be Star Spectra (BeSS, http://basebe.obspm.fr) database proposes to achieve. The database contains an as-complete-as-possible catalog of known Be stars with stellar parameters, as well as spectra of Be stars from all origins (any wavelength, any epoch, any resolution, etc.). It currently contains over 54,000 spectra of more than 600 different Be stars among the ∼2000 Be stars in the catalog. A user can access and query this database to retrieve information on Be stars or spectra. Registered members can also upload spectra to enrich the database. Spectra obtained by professional as well as amateur astronomers are individually validated in terms of format and science before being included in BeSS. In this paper, we present the database itself as well as examples of the use of BeSS data in terms of statistics and the study of individual stars.

  7. Measurement of Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight in Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.

  8. A cosmic ray-climate link and cloud observations

    Directory of Open Access Journals (Sweden)

    Dunne Eimear M.

    2012-11-01

    Full Text Available Despite over 35 years of constant satellite-based measurements of cloud, reliable evidence of a long-hypothesized link between changes in solar activity and Earth’s cloud cover remains elusive. This work examines evidence of a cosmic ray cloud link from a range of sources, including satellite-based cloud measurements and long-term ground-based climatological measurements. The satellite-based studies can be divided into two categories: (1 monthly to decadal timescale analysis and (2 daily timescale epoch-superpositional (composite analysis. The latter analyses frequently focus on sudden high-magnitude reductions in the cosmic ray flux known as Forbush decrease events. At present, two long-term independent global satellite cloud datasets are available (ISCCP and MODIS. Although the differences between them are considerable, neither shows evidence of a solar-cloud link at either long or short timescales. Furthermore, reports of observed correlations between solar activity and cloud over the 1983–1995 period are attributed to the chance agreement between solar changes and artificially induced cloud trends. It is possible that the satellite cloud datasets and analysis methods may simply be too insensitive to detect a small solar signal. Evidence from ground-based studies suggests that some weak but statistically significant cosmic ray-cloud relationships may exist at regional scales, involving mechanisms related to the global electric circuit. However, a poor understanding of these mechanisms and their effects on cloud makes the net impacts of such links uncertain. Regardless of this, it is clear that there is no robust evidence of a widespread link between the cosmic ray flux and clouds.

  9. Observational constraints on dark energy and cosmic curvature

    International Nuclear Information System (INIS)

    Wang Yun; Mukherjee, Pia

    2007-01-01

    Current observational bounds on dark energy depend on our assumptions about the curvature of the universe. We present a simple and efficient method for incorporating constraints from cosmic microwave background (CMB) anisotropy data and use it to derive constraints on cosmic curvature and dark energy density as a free function of cosmic time using current CMB, Type Ia supernova (SN Ia), and baryon acoustic oscillation data. We show that there are two CMB shift parameters, R≡√(Ω m H 0 2 )r(z CMB ) (the scaled distance to recombination) and l a ≡πr(z CMB )/r s (z CMB ) (the angular scale of the sound horizon at recombination), with measured values that are nearly uncorrelated with each other. Allowing nonzero cosmic curvature, the three-year WMAP (Wilkinson Microwave Anisotropy Probe) data give R=1.71±0.03, l a =302.5±1.2, and Ω b h 2 =0.02173±0.00082, independent of the dark energy model. The corresponding bounds for a flat universe are R=1.70±0.03, l a =302.2±1.2, and Ω b h 2 =0.022±0.00082. We give the covariance matrix of (R,l a ,Ω b h 2 ) from the three-year WMAP data. We find that (R,l a ,Ω b h 2 ) provide an efficient and intuitive summary of CMB data as far as dark energy constraints are concerned. Assuming the Hubble Space Telescope (HST) prior of H 0 =72±8 (km/s) Mpc -1 , using 182 SNe Ia (from the HST/GOODS program, the first year Supernova Legacy Survey, and nearby SN Ia surveys), (R,l a ,Ω b h 2 ) from WMAP three-year data, and SDSS (Sloan Digital Sky Survey) measurement of the baryon acoustic oscillation scale, we find that dark energy density is consistent with a constant in cosmic time, with marginal deviations from a cosmological constant that may reflect current systematic uncertainties or true evolution in dark energy. A flat universe is allowed by current data: Ω k =-0.006 -0.012-0.025 +0.013+0.025 for assuming that the dark energy equation of state w X (z) is constant, and Ω k =-0.002 -0.018-0.032 +0.018+0.041 for w X (z

  10. An observation on a cosmic-ray induced event

    International Nuclear Information System (INIS)

    Sawayanagi, K.

    1990-01-01

    The authors observed a big A-jet family in the chamber No. 21. In this paper summary of the family is given though some of the results are preliminary. Emulsion chamber technique has been giving a way of observing ultrahigh energy atmospheric interactions made by cosmic-ray radiations with fine spacial resolution and good stability for a long duration of exposure. The two-story structure of emulsion chamber adopted by Brasil-Japan Collaboration on Emulsion Chamber Experiments at Mt. Chacaltaya makes it possible to observe local interactions within the chamber in addition to atmospheric interactions at the same time. For this purpose an inner target layer of plastic/petroleum pitch is located between the upper and the lower parts of the chamber. The observation of these local interactions, called C-jets, is used to make auto-calibration of energies of observed cascade showers

  11. Deconvolution map-making for cosmic microwave background observations

    International Nuclear Information System (INIS)

    Armitage, Charmaine; Wandelt, Benjamin D.

    2004-01-01

    We describe a new map-making code for cosmic microwave background observations. It implements fast algorithms for convolution and transpose convolution of two functions on the sphere [B. Wandelt and K. Gorski, Phys. Rev. D 63, 123002 (2001)]. Our code can account for arbitrary beam asymmetries and can be applied to any scanning strategy. We demonstrate the method using simulated time-ordered data for three beam models and two scanning patterns, including a coarsened version of the WMAP strategy. We quantitatively compare our results with a standard map-making method and demonstrate that the true sky is recovered with high accuracy using deconvolution map-making

  12. High Energy Galactic Cosmic Rays Observed by RUNJOB Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hareyama, Makoto [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2006-03-21

    Galactic cosmic rays (GCRs) from proton to iron with the energy of 10{sup 13} - 10{sup 15} eV were observed by RUssia-Nippon JOint Balloon (RUNJOB) experiments. Each energy spectrum of the primary nuclear components except for helium is in agreement with the results obtained by other observations in the same energy region as the RUNJOB observation within statistical errors, while the intensity of the helium component is nearly half that obtained by the JACEE and the SOKOL observations. The spectrum slopes seem to be almost parallel or become gradually harder as mass becomes heavier. The power indices of the spectra are nearly -2.75 in the energy range of 20-500 TeV/nucleous. These our results support the acceleration mechanism and the propagation process in Galaxy of GCRs depend on its rigidity.

  13. Exploring cosmic origins with CORE: Effects of observer peculiar motion

    Science.gov (United States)

    Burigana, C.; Carvalho, C. S.; Trombetti, T.; Notari, A.; Quartin, M.; Gasperis, G. D.; Buzzelli, A.; Vittorio, N.; De Zotti, G.; de Bernardis, P.; Chluba, J.; Bilicki, M.; Danese, L.; Delabrouille, J.; Toffolatti, L.; Lapi, A.; Negrello, M.; Mazzotta, P.; Scott, D.; Contreras, D.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Cabella, P.; Cai, Z.-Y.; Calvo, M.; Castellano, M. G.; Challinor, A.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; Diego, J.-M.; Di Marco, A.; Di Valentino, E.; Errard, J.; Feeney, S.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Tucker, C.; Väliviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Young, K.; Zannoni, M.

    2018-04-01

    We discuss the effects on the cosmic microwave background (CMB), cosmic infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion of an observer with respect to the CMB rest frame, which induces boosting effects. After a brief review of the current observational and theoretical status, we investigate the scientific perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together with its high resolution over a wide frequency range, will provide a more accurate estimate of the CMB dipole. The extension of boosting effects to polarization and cross-correlations will enable a more robust determination of purely velocity-driven effects that are not degenerate with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13; this improves on the Planck detection and essentially equals that of an ideal cosmic-variance-limited experiment up to a multipole lsimeq2000. Precise inter-frequency calibration will offer the opportunity to constrain or even detect CMB spectral distortions, particularly from the cosmological reionization epoch, because of the frequency dependence of the dipole spectrum, without resorting to precise absolute calibration. The expected improvement with respect to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a factor of several hundred for an ideal experiment with the CORE configuration) ranges from a factor of several up to about 50, depending on the quality of foreground removal and relative calibration. Even in the case of simeq1 % accuracy in both foreground removal and relative calibration at an angular scale of 1o, we find that dipole analyses for a mission like CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor simeq 17 in comparison with current results based on COBE-FIRAS. In addition to the

  14. Technologies for Low Frequency Radio Observations of the Cosmic Dawn

    Science.gov (United States)

    Jones, Dayton L.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.

  15. Observation of cosmic gamma ray burst by Hinotori

    International Nuclear Information System (INIS)

    Okudaira, Kiyoaki; Yoshimori, Masato; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma ray detecor (SGR) on Hinotori has no collimator, and the collimator of a hard X-ray monitor is not effective for gamma ray with energy more than 100 KeV. Accordingly, the detection system can detect cosmic gamma ray burst, and two bursts were observed. The first burst was detected on February 28, 1981, and the source of the burst was in the direction of 81 degree from Venus. The time profile and the spectrum were observed. In July 21, 1981, the second burst was detected. The time profile obtained with the SGR was compared with those of PVO (Pioneer Venus Orbiter) and LASL-ISEE. The time difference among the data of time profiles indicated that the source of the burst was not the sun. The spectrum was also measured. (Kato, T.)

  16. New observational constraints on f ( T ) gravity from cosmic chronometers

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Rafael C. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG (Brazil); Pan, Supriya [Department of Physical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur—741246, West Bengal (India); Saridakis, Emmanuel N., E-mail: nunes@ecm.ub.edu, E-mail: span@iiserkol.ac.in, E-mail: Emmanuel_Saridakis@baylor.edu [Instituto de Física, Pontificia Universidad de Católica de Valparaíso, Casilla 4950, Valparaíso (Chile)

    2016-08-01

    We use the local value of the Hubble constant recently measured with 2.4% precision, as well as the latest compilation of cosmic chronometers data, together with standard probes such as Supernovae Type Ia and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f ( T ) gravity models, where T is the torsion scalar in teleparallel gravity. In particular, we consider three f ( T ) models with two parameters, out of which one is independent, and we quantify their deviation from ΛCDM cosmology through a sole parameter. Our analysis reveals that for one of the models a small but non-zero deviation from ΛCDM cosmology is slightly favored, while for the other models the best fit is very close to ΛCDM scenario. Clearly, f ( T ) gravity is consistent with observations, and it can serve as a candidate for modified gravity.

  17. New observational constraints on f ( R ) gravity from cosmic chronometers

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Rafael C. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG (Brazil); Pan, Supriya [Department of Physical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur—741246, West Bengal (India); Saridakis, Emmanuel N. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Abreu, Everton M.C., E-mail: rcnunes@fisica.ufjf.br, E-mail: span@iiserkol.ac.in, E-mail: Emmanuel_Saridakis@baylor.edu, E-mail: evertonabreu@ufrrj.br [Grupo de Física Teórica e Matemática Física, Universidade Federal Rural do Rio de Janeiro, 23890-971, Seropédica, RJ (Brazil)

    2017-01-01

    We use the recently released cosmic chronometer data and the latest measured value of the local Hubble parameter, combined with the latest joint light curves of Supernovae Type Ia, and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f ( R ) gravity models. We consider four f ( R ) models, namely the Hu-Sawicki, the Starobinsky, the Tsujikawa, and the exponential one, and we parametrize them introducing a distortion parameter b that quantifies the deviation from ΛCDM cosmology. Our analysis reveals that a small but non-zero deviation from ΛCDM cosmology is slightly favored, with the corresponding fittings exhibiting very efficient AIC and BIC Information Criteria values. Clearly, f ( R ) gravity is consistent with observations, and it can serve as a candidate for modified gravity.

  18. Technologies for low radio frequency observations of the Cosmic Dawn

    Science.gov (United States)

    Jones, D. L.

    2014-03-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts z > ~20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface. In addition, recent results from laboratory testing of low frequency receiver designs are presented. Finally, several concepts for space-based imaging interferometers utilizing deployable low frequency antennas are described. Some of these concepts involve large numbers of antennas and consequently a large digital cross-correlator will be needed. JPL has studied correlator architectures that greatly reduce the DC power required for this step, which can dominate the power consumption of real-time signal processing. Strengths and weaknesses of each mission concept are discussed in the context of the additional technology development required.

  19. Observational constraints on the types of cosmic strings

    International Nuclear Information System (INIS)

    Sazhina, Olga S.; Sazhin, Mikhail V.; Scognamiglio, Diana

    2014-01-01

    This paper is aimed at setting observational limits to the number of cosmic strings (Nambu-Goto, Abelian-Higgs, semilocal) and other topological defects (textures). Radio maps of CMB anisotropy, provided by the space mission Planck for various frequencies, were filtered and then processed by the method of convolution with modified Haar functions (MHF) to search for cosmic string candidates. This method was designed to search for solitary strings, without additional assumptions as regards the presence of networks of such objects. The sensitivity of the MHF method is δT ∼ 10 μK in a background of δT ∼ 100 μK. The comparison of these with previously known results on search string network shows that strings can only be semilocal in the range of 1 / 5, with the upper restriction on individual string tension (linear density) of Gμ/c 2 ≤ 7.36 x 10 -7 . The texture model is also legal. There are no strings with Gμ/c 2 > 7.36 x 10 -7 . However, a comparison with the data for the search of non-Gaussian signals shows that the presence of several (up to three) Nambu-Goto strings is also possible. For Gμ/c 2 ≤ 4.83 x 10 -7 the MHF method is ineffective because of unverifiable spurious string candidates. Thus the existence of strings with tensions Gμ/c 2 ≤ 4.83 x 10 -7 is not prohibited but it is beyond the Planck data possibilities. The same string candidates have been found in the WMAP 9-year data. Independence of Planck and WMAP data sets serves as an additional argument to consider those string candidates as very promising. However, the final proof should be given by optical deep surveys. (orig.)

  20. Cosmic Rays in the Heliosphere: Requirements for Future Observations

    Science.gov (United States)

    Mewaldt, R. A.

    2013-06-01

    Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.

  1. Observations of cosmic gamma ray bursts with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.; Castro-Tirado, A. J.

    1995-01-01

    19 Cosmic Gamma-Ray Bursts were detected by the WATCH wide field X-ray monitor during the 11 months flight of EURECA. The identification of the bursts were complicated by a high frequency of background of events caused by high energy cosmic ray interactions in the detector and by low energy, trap...

  2. The Cosmic Abundance of 3He: Green Bank Telescope Observations

    Science.gov (United States)

    Balser, Dana; Bania, Thomas

    2018-01-01

    The Big Bang theory for the origin of the Universe predicts that during the first ~1,000 seconds significant amounts of the light elements (2H, 3He, 4He, and 7Li) were produced. Many generations of stellar evolution in the Galaxy modifies these primordial abundances. Observations of the 3He+ hyperfine transition in Galactic HII regions reveals a 3He/H abundance ratio that is constant with Galactocentric radius to within the uncertainties, and is consistent with the primordial value as determined from cosmic microwave background experiments (e.g., WMAP). This "3He Plateau" indicates that the net production and destruction of 3He in stars is approximately zero. Recent stellar evolution models that include thermohaline mixing, however, predict that 3He/H abundance ratios should slightly decrease with Galactocentric radius, or in places in the Galaxy with lower star formation rates. Here we discuss sensitive Green Bank Telescope (GBT) observations of 3He+ at 3.46 cm in a subset of our HII region sample. We develop HII region models and derive accurate 3He/H abundance ratios to better constrain these new stellar evolution models.

  3. Areva's challenge for ''Georges Besse 2''

    International Nuclear Information System (INIS)

    Jemain, A.

    2003-01-01

    For its future uranium enrichment plant of its Tricastin site (Drome, France), the world nuclear leader Areva has abandoned the gaseous diffusion technique (of French origin) for the centrifugation technique, more economical and modular. This future plant, named 'Georges Besse 2' will require 3 billions of euros of investment and will supply a world market also estimated to 3 billions of euros and shared between Areva, Urenco (UK), Usec (US), Minatom (Russia), JNC (Japan) and CNNC (China). The first batches of enriched uranium will be produced using a thousand of centrifuges by 2007. (J.S.)

  4. Observational constraints on the possible existence of cosmological cosmic rays

    International Nuclear Information System (INIS)

    Montmerle, T.

    1977-01-01

    The possibility that cosmological cosmic rays (''CCR'': protons and α particles) may have existed in the post recombination era of the early universe (z approximately 100) is examined. In this context, the CCR interact with the ambient gaseous medium. High energy collisions ( (>=) 1 GeV/n ) give rise to diffuse background γ-rays via π deg decay, and low energy collisions (approximately 10-100 MeV/n) give rise to light nuclei: 6 Li, 7 Li and 7 Be (via the α + α sion and ionization losses into account, a system of coupled time-dependent transport equations is solved in the case of a CCR burst. The 1-100 MeV γ-ray background spectrum and the light element abundances are then taken as observational constraints on the CCR hypothesis. It is found that, in this framework, it is possible to account simultaneously for the γ-ray background spectrum and for the otherwise unexplained 7 Li/H ratio, but there are some difficulties with the 7 Li/ 6 Li ratio. To avoid these, it is possible, because of the spread in the γ-ray data, to lower the CCR flux, so that the CCR hypothesis cannot be ruled out on this basis at present. (author)

  5. Three-mirror anastigmat for cosmic microwave background observations.

    Science.gov (United States)

    Padin, S

    2018-03-20

    An off-axis three-mirror anastigmat is proposed for future cosmic microwave background observations. The telescope has a 5 m diameter primary, giving 1.5 ' angular resolution at λ=2  mm, which is sufficient for measurements of gravitational lensing and for galaxy cluster surveys. The design includes several key features, not previously combined in a large telescope, that are important for sensitive measurements, especially on large angular scales: (1) high throughput (8° diameter diffraction-limited field of view at λ=1  mm, and 12×8° at λ=3  mm, so a single telescope could support all the detectors for an optimistic, future experiment); (2) low scattering (all the mirrors are small enough to be monolithic, so there are no segment gaps); (3) full boresight rotation, over the full elevation range, for measuring polarization errors; and (4) a comoving shield or baffle around the entire telescope to control pickup.

  6. Th/U/Pu/Cm dating of galactic cosmic rays with the extremely heavy cosmic ray composition observer

    Science.gov (United States)

    Westphal, Andrew J.; Weaver, Benjamin A.; Tarlé, Gregory

    The principal goal of ECCO, the Extremely-heavy Cosmic-ray Composition Observer, is the measurement of the age of heavy galactic cosmic-ray nuclei using the extremely rare actinides (Th, U, Pu, Cm) as clocks. ECCO is one of two cosmic-ray instruments comprising the Heavy Nuclei Explorer (HNX), which was recently selected as one of several missions for Phase A study under NASA's Small class Explorer (SMEX) program. ECCO is based on the flight heritage of Trek, an array of barium-phosphate glass tracketch detectors deployed on the Russian space station Mir from 1991-1995. Using Trek, we measured the abundances of elements with Z > 70 in the galactic cosmic rays (GCRs). Trek consisted of a 1 m 2 array of stacks of individually polished thin BP-1 glass detectors. ECCO will be a much larger instrument, but will achieve both excellent resolution and low cost through use of a novel detector configuration. Here we report the results of recent accelerator tests of the ECCO detectors that verify detector performance. We also show the expected charge and energy resolution of ECCO as a function of energy.

  7. UHE Cosmic Ray Observations Using the Cygnus Water - Array

    Science.gov (United States)

    Dion, Cynthia L.

    1995-01-01

    The CYGNUS water-Cerenkov array, consisting of five surface water-Cerenkov detectors, was built in the CYGNUS extensive air shower array at Los Alamos, New Mexico (latitude 36^circ N, longitude 107^circ W, altitude 2310 meters) to search for point sources of ultra-high energy particles (>1014 eV per particle) with the CYGNUS extensive air shower array. The water-Cerenkov detectors are used to improve the angular resolution of the extensive air shower array. This experiment searches for point sources of UHE gamma-radiation that may be of galactic or extra-galactic origin. The data set from December 1991 to January 1994 consists of data from both the water-Cerenkov array and the CYGNUS extensive air shower array. These data are combined, and the angular resolution of this combined data set is measured to be 0.34^circ+0.03 ^circ-0.04^circ. The measurement is made by observing the cosmic-ray shadowing of the Sun and the Moon. Using a subset of these data, three potential sources of UHE emission are studied: the Crab Pulsar, and the active galactic nuclei Markarian 421 and Markarian 501. A search is conducted for continuous emission from these three sources, and emission over shorter time scales. This experiment is particularly sensitive to emission over these shorter time scales. There is no evidence of UHE emission from these three sources over any time scales studied, and upper bounds to the flux of gamma radiation are determined. The flux upper limit for continuous emission from the Crab Pulsar is found to be 1.2times10^ {-13}/rm cm^2/s above 70 TeV. The flux upper limit for continuous emission from Markarian 421 is found to be 1.3times10^ {-13}/rm cm^2/s above 50 TeV. The flux upper limit for continuous emission from Markarian 501 is found to be 3.8times10^ {-13}/rm cm^2/s above 50 TeV.

  8. SOLAR MODULATION OF THE LOCAL INTERSTELLAR SPECTRUM WITH VOYAGER 1 , AMS-02, PAMELA , AND BESS

    Energy Technology Data Exchange (ETDEWEB)

    Corti, C.; Bindi, V.; Consolandi, C.; Whitman, K., E-mail: corti@hawaii.edu [Physics and Astronomy Department, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-09-20

    In recent years, the increasing precision of direct cosmic rays measurements opened the door to high-sensitivity indirect searches of dark matter and to more accurate predictions for radiation doses received by astronauts and electronics in space. The key ingredients in the study of these phenomena are the knowledge of the local interstellar spectrum (LIS) of galactic cosmic rays and the understanding of how the solar modulation affects the LIS inside the heliosphere. Voyager 1 , AMS-02, PAMELA , and BESS measurements of proton and helium fluxes provide valuable information, allowing us to shed light on the shape of the LIS and the details of the solar modulation during solar cycles 22-24. A new parametrization of the LIS is presented, based on the latest data from Voyager 1 and AMS-02. Using the framework of the force-field approximation, the solar modulation parameter is extracted from the time-dependent fluxes measured by PAMELA and BESS . A modified version of the force-field approximation with a rigidity-dependent modulation parameter is introduced, yielding better fits than the force-field approximation. The results are compared with the modulation parameter inferred by neutron monitors.

  9. Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steer, D. A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-05-01

    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension G μ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.

  10. Georges Besse 2. A new era for enrichment

    International Nuclear Information System (INIS)

    2009-01-01

    Since 1978, AREVA group subsidiary EURODIF's Georges Besse plant has been using gaseous diffusion to enrich uranium and meet the requirements of electricity utilities. Georges Besse II plant, which will use far less electricity, will replace George Besse not so long. The Georges Besse II plant is located on the Tricastin nuclear site in southern France. AREVA ensure delivery of uranium enrichment services in accordance with customer expectations. AREVA obtained the right to use URENCO's centrifugation technology on July 3, 2006. This is the process to be used at Georges Besse II. The new uranium enrichment plant will comprise two enrichment units, with a total production capacity of 7.5 million separative work units, which can be extended to 11 million if needed. Each enrichment unit will include: a Centrifuge Assembly Building (CAB), a Centrifuge Utility Building (CUB) with offices and control room, annexes for purification, supply and extraction of uranium hexafluoride (UF 6 ), modules containing the halls that house the centrifuge cascades. The modular design of the Georges Besse II plant will allow production in the first cascade where as the others cascades are build. The first cascade should be operational in the first half of 2009. At an overall cost of 3 billion euros, this project is one of the largest investments of the decade in France On November 24, 2003, AREVA and URENCO signed an agreement under which AREVA would buy 50% of the shares in the Enrichment Technology Company (ETC), which designs and manufactures centrifuges

  11. On the observability of coupled dark energy with cosmic voids

    Science.gov (United States)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  12. Probing cosmic-ray acceleration and propagation with H{sub 3}{sup +} observations

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J. [3D University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-01-22

    As cosmic rays traverse the interstellar medium (ISM) they interact with the ambient gas in various ways. These include ionization of atoms and molecules, spallation of nuclei, excitation of nuclear states, and production of pions among others. All of these interactions produce potential observables which may be used to trace the flux of cosmic rays. One such observable is the molecular ion H{sub 3}{sup +}-produced via the ionization of an H{sub 2} molecule and its subsequent collision with another H{sub 2}-which can be identified by absorption lines in the 3.5-4 μm spectral region. We have detected H{sub 3}{sup +} in several Galactic diffuse cloud sight lines and used the derived column densities to infer ζ{sub 2}, the cosmic-ray ionization rate of H{sub 2}. Ionization rates determined in this way vary from about 7×10{sup −17} s{sup −1} to about 8×10{sup −16} s{sup −1}, and suggest the possibility of discrete sources producing high local fluxes of low-energy cosmic rays. Theoretical calculations of the ionization rate from postulated cosmic-ray spectra also support this possibility. Our recent observations of H{sub 3}{sup +} near the supernova remnant IC 443 (a likely site of cosmic-ray acceleration) point to even higher ionization rates, on the order of 10{sup −15} s{sup −1}. Together, all of these results can further our understanding of the cosmic-ray spectrum both near the acceleration source and in the general Galactic ISM.

  13. Observational properties of cosmic gamma-ray bursts

    International Nuclear Information System (INIS)

    Mazets, E.P.

    1986-01-01

    A brief overview of the major observational results obtained in gamma-ray burst studies is presented. Also discussed is to what extent the thermonuclear model, which appears at present to be the most plausible, can account for the observed properties of the bursts. The investigation of gamma-ray bursts should cover observations of the time histories of events, energy spectra, and their variablility, source localization, and inspection of the localization regions during the active and quiescent phases of the source in other wavelengths, as well as, evaluation of the statistical distributions of the data obtained

  14. Observational aspects of the microwave cosmic background spectrum

    International Nuclear Information System (INIS)

    Martin, D.H.

    1982-01-01

    The discovery of the isotropic microwave background, in 1964, was followed by a decade of careful measurements of the background flux throughout the centimetric and millimetric ranges of wavelength. The results of these measurements are not inconsistent with a Planckian spectrum but the absolute precision of the measurements is not as high as is frequently assumed. More recently attention has turned to searches for variations in the flux density with direction in the sky, while preparations are made in laboratories around the world for a second wave of measurements of the spectrum which are to have a much higher absolute precision. The author points out the limitations in present knowledge of the microwave background, identifies the observational difficulties in improving that knowledge and reports on some of the plans for future measurements. (Auth.)

  15. Observational Signatures Of Agn Feedback Across Cosmic Time

    Science.gov (United States)

    Wylezalek, Dominika

    2017-06-01

    While many compelling models of AGN feedback exist, there is no clear data-driven picture of how winds are launched, how they propagate through the galaxy and what impact they have on the galactic gas. Recent work suggests that AGN luminosity plays an important role. The following described projects focus on understanding the power, reach and impact of feedback processes exerted by AGN of different power. I first describe recent efforts in our group of relating feedback signatures in powerful quasars to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history. Feedback signatures seem to be best observable in gas-rich galaxies where the coupling of the AGN-driven wind to the gas is strongest, in agreement with recent simulations. But how and where does this quenching happen? Is it accomplished through the mechanical action of jets or through nuclear winds driven by radiation pressure? Finally, I show that AGN signatures and AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of a galaxy hosting a low/intermediate-luminosity AGN. Using data from the new SDSS-IV MaNGA survey, we have developed a new AGN selection algorithm tailored to IFU data and we are uncovering a much more nuanced picture of AGN activity allowing us to discover AGN signatures at large distances from the galaxy center. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and feedback signatures related to them. Outflows and feedback from low- and intermediate-luminosity AGN might have been underestimated in the past but can potentially significantly contribute to the AGN/host-galaxy self-regulation.

  16. The observable signature of late heating of the Universe during cosmic reionization.

    Science.gov (United States)

    Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli

    2014-02-13

    Models and simulations of the epoch of reionization predict that spectra of the 21-centimetre transition of atomic hydrogen will show a clear fluctuation peak, at a redshift and scale, respectively, that mark the central stage of reionization and the characteristic size of ionized bubbles. This is based on the assumption that the cosmic gas was heated by stellar remnants-particularly X-ray binaries-to temperatures well above the cosmic microwave background at that time (about 30 kelvin). Here we show instead that the hard spectra (that is, spectra with more high-energy photons than low-energy photons) of X-ray binaries make such heating ineffective, resulting in a delayed and spatially uniform heating that modifies the 21-centimetre signature of reionization. Rather than looking for a simple rise and fall of the large-scale fluctuations (peaking at several millikelvin), we must expect a more complex signal also featuring a distinct minimum (at less than a millikelvin) that marks the rise of the cosmic mean gas temperature above the microwave background. Observing this signal, possibly with radio telescopes in operation today, will demonstrate the presence of a cosmic background of hard X-rays at that early time.

  17. Cosmic strings and cosmic structure

    International Nuclear Information System (INIS)

    Albrecht, A.; Brandenberger, R.; Turok, N.

    1987-01-01

    The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)

  18. Constraints on majoron dark matter from cosmic microwave background and astrophysical observations

    Energy Technology Data Exchange (ETDEWEB)

    Lattanzi, Massimiliano, E-mail: lattanzi@fe.infn.it [Dipartimento di Fisica e Science della Terra, Università di Ferrara and INFN, sezione di Ferrara, Polo Scientifico e Tecnologico - Edificio C Via Saragat, 1, I-44122 Ferrara Italy (Italy); Riemer-Sørensen, Signe [School of Mathematics and Physics, University of Queensland, St Lucia, Brisbane 4072, Queensland (Australia); Tórtola, Mariam; Valle, J.W.F. [AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València Campus de Paterna, Apt 22085, E-46071 València (Spain)

    2014-04-01

    The origin of dark matter and the generation of neutrino masses could be related if neutrino masses arise from the spontaneous violation of ungauged lepton number. In this case the associated Nambu–Goldstone boson, the majoron, could acquire a mass from non-perturbative gravitational effects and play the role of DM. Here we report our cosmological and astrophysical constraints on majoron dark matter coming from Cosmic Microwave Background (CMB) and a variety of X- and γ-ray observations.

  19. Constraints on majoron dark matter from cosmic microwave background and astrophysical observations

    International Nuclear Information System (INIS)

    Lattanzi, Massimiliano; Riemer-Sørensen, Signe; Tórtola, Mariam; Valle, J.W.F.

    2014-01-01

    The origin of dark matter and the generation of neutrino masses could be related if neutrino masses arise from the spontaneous violation of ungauged lepton number. In this case the associated Nambu–Goldstone boson, the majoron, could acquire a mass from non-perturbative gravitational effects and play the role of DM. Here we report our cosmological and astrophysical constraints on majoron dark matter coming from Cosmic Microwave Background (CMB) and a variety of X- and γ-ray observations

  20. GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, A. C.; Stone, E. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Heikkila, B. C.; Lal, N. [Goddard Space Flight Center. Greenbelt, MD 20771 (United States); Webber, W. R. [New Mexico State University, Las Cruces, NM 88003 (United States); Jóhannesson, G. [University of Iceland, Reykjavik (Iceland); Moskalenko, I. V.; Orlando, E.; Porter, T. A. [HEPL and KIPAC, Stanford University, Stanford, CA 94305 (United States)

    2016-11-01

    Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc{sup -1} and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc{sup -1}, with a broad maximum in the 10–50 MeV nuc{sup -1} range and a H/He ratio of 12.2 ± 0.9. The peak H intensity is ∼15 times that observed at 1 AU, and the observed local interstellar gradient of 3–346 MeV H is -0.009 ± 0.055% AU{sup -1}, consistent with models having no local interstellar gradient. The energy spectrum of electrons ( e {sup -} + e {sup +}) with 2.7–74 MeV is consistent with E {sup -1.30±0.05} and exceeds the H intensity at energies below ∼50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc{sup -1} and electrons with >3 MeV is 0.83–1.02 eV cm{sup -3} and the ionization rate of atomic H is in the range of 1.51–1.64 × 10{sup -17} s{sup -1}. This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays.

  1. OBSERVATION OF COSMIC-RAY ANISOTROPY WITH THE ICETOP AIR SHOWER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 Australia (Australia); Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Abdou, Y. [Department of Physics and Astronomy, University of Gent, B-9000 Gent (Belgium); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A. [Departement de physique nucleaire et corpusculaire, Universite de Geneve, CH-1211 Geneve (Switzerland); Altmann, D. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, D-12489 Berlin (Germany); Bai, X. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Beattie, K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Bechet, S. [Science Faculty CP230, Universite Libre de Bruxelles, B-1050 Brussels (Belgium); Tjus, J. Becker [Fakultaet fuer Physik and Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Collaboration: IceCube Collaboration; and others

    2013-03-01

    We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10{sup -3} level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30 Degree-Sign and an amplitude of (- 1.58 {+-} 0.46{sub stat} {+-} 0.52{sub sys}) Multiplication-Sign 10{sup -3} at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (- 3.11 {+-} 0.38{sub stat} {+-} 0.96{sub sys}) Multiplication-Sign 10{sup -3}.

  2. HAWC Observations Strongly Favor Pulsar Interpretations of the Cosmic-Ray Positron Excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP; Fang, Ke [Maryland U.

    2017-11-17

    Recent measurements of the Geminga and B0656+14 pulsars by the gamma-ray telescope HAWC (along with earlier measurements by Milagro) indicate that these objects generate significant fluxes of very high-energy electrons. In this paper, we use the very high-energy gamma-ray intensity and spectrum of these pulsars to calculate and constrain their expected contributions to the local cosmic-ray positron spectrum. Among models that are capable of reproducing the observed characteristics of the gamma-ray emission, we find that pulsars invariably produce a flux of high-energy positrons that is similar in spectrum and magnitude to the positron fraction measured by PAMELA and AMS-02. In light of this result, we conclude that it is very likely that pulsars provide the dominant contribution to the long perplexing cosmic-ray positron excess.

  3. Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints

    International Nuclear Information System (INIS)

    Akarsu, Özgür; Kumar, Suresh; Myrzakulov, R.; Sami, M.; Xu, Lixin

    2014-01-01

    In this paper, we consider a simple form of expansion history of Universe referred to as the hybrid expansion law - a product of power-law and exponential type of functions. The ansatz by construction mimics the power-law and de Sitter cosmologies as special cases but also provides an elegant description of the transition from deceleration to cosmic acceleration. We point out the Brans-Dicke realization of the cosmic history under consideration. We construct potentials for quintessence, phantom and tachyon fields, which can give rise to the hybrid expansion law in general relativity. We investigate observational constraints on the model with hybrid expansion law applied to late time acceleration as well as to early Universe a la nucleosynthesis

  4. UF6 overfilling prevention at Eurodif production Georges Besse plant

    Energy Technology Data Exchange (ETDEWEB)

    Reneaud, J.M. [Eurodif Production, Pierrelatte (France)

    1991-12-31

    Risk of overfilling exists on different equipments of Georges BESSE Plant: cylinders, desublimers and intermediate tanks. The preventive measures are composed of technical devices: desublimers weighing, load monitoring alarms, automatic controls ... and procedures, training, safety organization. In thirteen years of operation, some incidents have occurred but none of them has caused any personal injuries. They are related and discussed. The main factors involved in the Sequoyah fuel facility accident on 1/4/1986 have been analyzed and taken into account.

  5. Observations of recurrent cosmic ray decreases during solar cycles 22 and 23

    International Nuclear Information System (INIS)

    Dunzlaff, P.; Heber, B.; Kopp, A.; Rother, O.; Mueller-Mellin, R.; Klassen, A.; Gomez-Herrero, R.; Wimmer-Schweingruber, R.

    2008-01-01

    During solar cycle 22, the modulation of several hundred MeV galactic cosmic rays (GCRs) by recurrent and transient cosmic ray decreases was observed by the Ulysses spacecraft on its descent towards the solar south pole. In solar cycle 23, Ulysses repeated this trajectory segment during a similar phase of the solar cycle, but with opposite heliospheric magnetic field polarity. Since cosmic ray propagation in the heliosphere should depend on drift effects, we determine in this study the latitudinal distribution of the amplitude of recurrent cosmic ray decreases in solar cycles 22 and 23. As long as we measure the recurrent plasma structures in situ, we find that these decreases behave nearly the same in both cycles. Measurements in the fast solar wind, however, show differences: in cycle 22 (A>0) the recurrent cosmic ray decreases show a clear maximum near 25 and are still present beyond 40 , whereas we see in cycle 23 (A<0) neither such a pronounced maximum nor significant decreases above 40 . In other words: the periodicity in the cosmic ray intensity, which can be clearly seen in the slow solar wind, appears to vanish there. Theoretical models for drift effects, however, predict quite the opposite behaviour for the two solar cycles. To closer investigate this apparent contradiction, we first put the visual inspection of the data onto a more solid basis by performing a detailed Lomb (spectral) analysis. The next step consists of an analysis of the resulting periodicities at 1 AU in order to distinguish between spatial and temporal variations, so that we can obtain statements about the question in how far there is a correlation between the in-situ data at 1 AU and those measured by Ulysses at larger latitudes. We find a good correlation being present during cycle 22, but not for cycle 23. As one potential explanation for this behaviour, we suggest the difference in the coronal hole structures between the cycles 22 and 23 due to a large, stable coronal hole

  6. Commentary about the large transverse momenta secondaries observed at the ISR-CERN (on basis of cosmic ray data)

    CERN Document Server

    Rodrigues, W A; Turtelli, A

    1974-01-01

    The authors discuss the large transverse momentum secondaries observed at CERN-ISR on the basis of high energy cosmic ray data which indicate the existence of a discrete mass spectrum for intermediate fireball states. (13 refs).

  7. Quasi-periodic fluctuations of atmospheric pressure and cosmic rays observed in the stratosphere

    International Nuclear Information System (INIS)

    Kodama, Masahiro; Abe, Toshiaki; Sakai, Takasuke; Kato, Masato; Kogami, Shinichi.

    1976-01-01

    Quasi-periodicities of barometric pressure and cosmic ray intensity, with 5.5-minute period and one hour persistency, have been observed by means of a high-precision barometer and a large plastic scintillation counter in a balloon at an altitude of --18 km over the Pacific Ocean. From characteristics of such short period fluctuations, it is suggested that the observed pressure fluctuation may possibly be caused by the internal atmospheric gravity wave whose amplitude and wave length are --30 m and --30 km respectively. (auth.)

  8. Cosmic ray nuclear interactions and EAS-triggered families observed by the Chacaltaya hybrid experiment

    International Nuclear Information System (INIS)

    Aoki, H.; Honda, K.; Inoue, N.; Ishii, T.; Kawasumi, N.; Martinic, N.; Ochi, N.; Ohmori, N.; Ohsawa, A.; Tamada, M.; Ticona, R.

    2008-01-01

    Longitudinal and lateral characteristics of the families detected by emulsion chambers in the hybrid experiment with AS-array at Mt. Chacaltaya are studied in detail. Although many groups discuss about an increase of the heavy component in primary cosmic-rays beyond the knee region, it is shown that the observed characteristics of the families accompanied by large shower size, Ne>10 6 , can not be explained by an increase of heavy primaries alone. It is necessary to assume some changes of nuclear interaction in order to explain the observed characteristics of the air-showers accompanied by families

  9. Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ

    Science.gov (United States)

    Bartoli, B.; Bernardini, P.; Bi, X. J.; Cao, Z.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gao, W.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Mastroianni, S.; Montini, P.; Ning, C. C.; Perrone, L.; Pistilli, P.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; D'Alessandro, F.; ARGO-YBJ Collaboration

    2018-02-01

    A correlation between the secondary cosmic ray flux and the near-earth electric field intensity, measured during thunderstorms, has been found by analyzing the data of the ARGO-YBJ experiment, a full coverage air shower array located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China). The counting rates of showers with different particle multiplicities (m =1 , 2, 3, and ≥4 ) have been found to be strongly dependent upon the intensity and polarity of the electric field measured during the course of 15 thunderstorms. In negative electric fields (i.e., accelerating negative charges downwards), the counting rates increase with increasing electric field strength. In positive fields, the rates decrease with field intensity until a certain value of the field EFmin (whose value depends on the event multiplicity), above which the rates begin increasing. By using Monte Carlo simulations, we found that this peculiar behavior can be well described by the presence of an electric field in a layer of thickness of a few hundred meters in the atmosphere above the detector, which accelerates/decelerates the secondary shower particles of opposite charge, modifying the number of particles with energy exceeding the detector threshold. These results, for the first time to our knowledge, give a consistent explanation for the origin of the variation of the electron/positron flux observed for decades by high altitude cosmic ray detectors during thunderstorms.

  10. Cosmic Ray Experiments and the Implications for Indirect Detection of Dark Matter

    Science.gov (United States)

    Mitchell, John W.; Ormes, Jonathan F.; Streitmatter, Robert E.

    2013-01-01

    Detection of cosmic-ray antiprotons was first reported by Golden et al. in 1979 and their existence was firmly established by the BESS and IMAX collaborations in the early 1990s. Increasingly precise measurements of the antiproton spectrum, most recently from BESS-Polar and PAMELA, have made it an important tool for investigating cosmic-ray transport in the galaxy and heliosphere and for constraining dark-matter models. The history of antiproton measurements will be briefly reviewed. The current status will be discussed, focusing on the results of BESS-Polar II and their implications for the possibility of antiprotons from primordial black hole evaporation. The current results of the BESS-Polar II antihelium search are also presented.

  11. Erzion interpretation of negative penetrating cosmic ray particles excess flux observed in bubble chamber "SKAT"

    Science.gov (United States)

    Bazhutov, Yu. N.

    2001-08-01

    It is discussed the interpretation of negative penetrating cosmic ray particles excess flux observed in bubble chamber "SKAT" for the momentum range P > P0 = 30 GeV/c by Erzions, hypothetical heavy stable penetrating hadrons, proposed to explain the anomalous vertical muons energy spectrum at small depth underground. Here it is shown that negative charge of p articles observed in "SKAT" is the same as predicted by theoretical Erzion model. The excess particles flux ( J ˜ 10-5 cm-2 s-1 sr-1 ) corresponds to the Erzion intensity observed by scintillation telescope in our previous experiment. The threshold momentum ( P0 ) and the track length threshold ( L0 = 50 cm of liquid BrF3C) are in good accordance with Erzion stop path as for the single charged particle with mass M ≅ 200 GeV/c2 . But to don't contradict with all previous charge ratio results for cosmic ray muons in 30 - 100 GeV/c momentum range it is necessary to propose for such particles the Solar sporadic origin taking to account that both Erzion observations were in the active Sun years (April 23,1979 & July, 1999). INTRODUCTION. 20 years ago to explain anomalous energy spectrum of vertical cosmic ray muons, observed at sea level and small depth underground (particles were started [4,5,6]. Later the theoretical model U(1)xSUl(2)xSU r(2)xSU(3) of such particles (Erzions) has been created in framework of "mirror" models [7,8], which without contradictions to elementary particles Standard Model has explained large kind of another anomalous results in cosmic rays and nuclear physics [9-19]. At last after almost 20 years Erzions search they have been observed due to small vertical original scintillation telescope "Doch-4" [20,21,22]. The observed Erz ions mass was ME = (175+/-25) GeV/c2 and intensity at sea level - JE = (1.8+/-0.4)ṡ10-6 cm-2 sr-1 s-1 (at EE ≤ 6 GeV, PE ≤ 50 GeV/c2 ). To confirm such Erzion discovery it was undertook the attempt of Erzions search on one of the largest bubble chamber (BC

  12. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    Science.gov (United States)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  13. GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles

    Directory of Open Access Journals (Sweden)

    P. Xia

    2013-10-01

    Full Text Available Traditionally, balloon-based radiosonde soundings are used to study the spatial distribution of atmospheric water vapour. However, this approach cannot be frequently employed due to its high cost. In contrast, GPS tomography technique can obtain water vapour in a high temporal resolution. In the tomography technique, an iterative or non-iterative reconstruction algorithm is usually utilised to overcome rank deficiency of observation equations for water vapour inversion. However, the single iterative or non-iterative reconstruction algorithm has their limitations. For instance, the iterative reconstruction algorithm requires accurate initial values of water vapour while the non-iterative reconstruction algorithm needs proper constraint conditions. To overcome these drawbacks, we present a combined iterative and non-iterative reconstruction approach for the three-dimensional (3-D water vapour inversion using GPS observations and COSMIC profiles. In this approach, the non-iterative reconstruction algorithm is first used to estimate water vapour density based on a priori water vapour information derived from COSMIC radio occultation data. The estimates are then employed as initial values in the iterative reconstruction algorithm. The largest advantage of this approach is that precise initial values of water vapour density that are essential in the iterative reconstruction algorithm can be obtained. This combined reconstruction algorithm (CRA is evaluated using 10-day GPS observations in Hong Kong and COSMIC profiles. The test results indicate that the water vapor accuracy from CRA is 16 and 14% higher than that of iterative and non-iterative reconstruction approaches, respectively. In addition, the tomography results obtained from the CRA are further validated using radiosonde data. Results indicate that water vapour densities derived from the CRA agree with radiosonde results very well at altitudes above 2.5 km. The average RMS value of their

  14. Ashra Neutrino Telescope Array (NTA): Combined Imaging Observation of Astroparticles — For Clear Identification of Cosmic Accelerators and Fundamental Physics Using Cosmic Beams —

    Science.gov (United States)

    Sasaki, Makoto; Kifune, Tadashi

    In VHEPA (very high energy particle astronomy) 2014 workshop, focused on the next generation explorers for the origin of cosmic rays, held in Kashiwa, Japan, reviewing and discussions were presented on the status of the observation of GeV-TeV photons, TeV-PeV neutrinos, EeV-ZeV hadrons, test of interaction models with Large Hadron Collider (LHC), and theoretical aspects of astrophysics. The acceleration sites of hadrons, i.e., sources of PeV-EeV cosmic rays, should exist in the universe within the GZK-horizon even in the remotest case. We also affirmed that the hadron acceleration mechanism correlates with cosmic ray composition so that it is important to investigate the acceleration mechanism in relevance to the composition survey at PeV-EeV energy. We regard that LHC and astrophysics theories are ready to be used to probe into hadron acceleration mechanism in the universe. Recently, IceCube has reported detection of three events of neutrinos with energies around 1 PeV and additional events at lower energies, which significantly deviate from the expected level of background events. It is necessary to observe GeV-TeV photon, EeV-ZeV hadron and TeV-PeV neutrino all together, in order to understand hadronic interactions of cosmic rays in the PeV-EeV energy region. It is required to make a step further toward exploring the PeV-EeV universe with high accuracy and high statistics observations for both neutrinos and gamma rays simultaneously, by using the instrument such as Ashra Neutrino Telescope Array (NTA). Wide and fine survey of gamma-rays and neutrinos with simultaneously detecting Cherenkov and fluorescence light with NTA will guide us to a new intriguing stage of recognizing astronomical objects and non-thermal phenomena in ultra-high energy region, in addition, new aspect about the fundamental concepts of physics beyond our presently limited understanding; the longstanding problem of cosmic ray origin, the radiation mechanism of gamma-rays, neutrino and

  15. Testing theories of gravity and supergravity with inflation and observations of the cosmic microwave background

    Science.gov (United States)

    Chakravarty, G. K.; Mohanty, S.; Lambiase, G.

    Cosmological and astrophysical observations lead to the emerging picture of a universe that is spatially flat and presently undertaking an accelerated expansion. The observations supporting this picture come from a range of measurements encompassing estimates of galaxy cluster masses, the Hubble diagram derived from type-Ia supernovae observations, the measurements of Cosmic Microwave Background radiation anisotropies, etc. The present accelerated expansion of the universe can be explained by admitting the existence of a cosmic fluid, with negative pressure. In the simplest scenario, this unknown component of the universe, the Dark Energy, is represented by the cosmological constant (Λ), and accounts for about 70% of the global energy budget of the universe. The remaining 30% consist of a small fraction of baryons (4%) with the rest being Cold Dark Matter (CDM). The Lambda Cold Dark Matter (ΛCDM) model, i.e. General Relativity with cosmological constant, is in good agreement with observations. It can be assumed as the first step towards a new standard cosmological model. However, despite the satisfying agreement with observations, the ΛCDM model presents lack of congruence and shortcomings and therefore theories beyond Einstein’s General Relativity are called for. Many extensions of Einstein’s theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature R, coupling the Ricci curvature with scalar fields and generalized functions of R. In addition, when viewed from the perspective of Supergravity (SUGRA), many of these theories may originate from the same SUGRA theory, but interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these

  16. Cosmic rays

    International Nuclear Information System (INIS)

    Tkachev, I.I.

    2014-01-01

    In this talk I will review results of cosmic ray observations at the highest energies. This year the new results on energy spectra, composition and the study of arrival directions of cosmic ray primaries came from the Telescope Array collaboration. I present these results in comparison with measurements done by other recent experiments and discuss their implications for the search of cosmic ray sources. Some related results in gamma-ray astronomy and selected recent advances in theory are also covered. (author)

  17. A constraint on prompt supernova cosmic ray production from γ-ray observations

    International Nuclear Information System (INIS)

    Morfill, G.E.; Drury, L.O'C.

    1981-01-01

    The consequences of prompt cosmic ray production intrinsic to supernovae are examined for supernova explosions occurring in dense molecular clouds. For reasonable parameters it is shown that prompt cosmic ray production cannot exceed 10 48 erg per supernova. This suggests that cosmic ray production takes place mainly in the intercloud medium. (author)

  18. High resolution observations of cosmic rays of Z greater than or equal to 30

    International Nuclear Information System (INIS)

    Love, P.T.

    1977-01-01

    Results of two high altitude balloon flights of a 6.6 m 2 steradian detector designed to measure the charge composition of the elements with 30 less than or equal to Z less than or equal to 60 are reported. For charge groups with 30 less than or equal to Z less than or equal to 60 we observe lower abundances of 30 less than or equal to Z less than or equal to 32 and 32 less than or equal to Z less than or equal to 34 and higher abundances of 35 less than or equal to Z less than or equal to 39, 45 less than or equal to Z less than or equal to 49, and 50 less than or equal to Z less than or equal to 54 compared to previous measurements. Measurements of these abundances agree within one sigma with the solar system abundances apart from the significantly lower cosmic ray abundances of 30 less than or equal to Z less than or equal to 32 and the less significant lower abundances of 32 less than or equal to Z less than or equal to 34 and 40 less than or equal to Z less than or equal to 44. Individual elemental abundances measured for 26 less than or equal to Z less than or equal to 40 are consistent with the solar system composition apart from a significant underabundance of cosmic-ray zinc (Z = 30). A superposition of the theoretically postulated helium burning s-process and the r-process compositions, both the result of nucleosynthesis at supernovae, altered slightly by interstellar propagation, seem to fit the measurements, except for the underabundance of cosmic-ray zinc. It was impossible to distinguish between cosmic ray compositions resulting from the acceleration of solar system like interstellar material and those resulting from the acceleration of material synthesized in a supernova event. Finally, no evidence was observed for an energy dependence of the abundance ratios 30 less than or equal to Z less than or equal to 32 to iron and 33 less than or equal to Z less than or equal to 40 to iron over energy ranges 560 to 1030 MeV/amu and bigger than 590 MeV/ amu

  19. Recurrent modulation of galactic cosmic ray electrons and protons: Ulysses COSPIN/KET observations

    International Nuclear Information System (INIS)

    Heber, B.; Blake, J.B.; Paizis, C.; Bothmer, V.; Kunow, H.; Wibberenz, G.; Burger, R.A.; Potgieter, M.S.

    2000-01-01

    Since measurements of space probes in the interplanetary space became available it has been known that associated with the occurrence of recurrent fast and slow solar wind streams, forming Corotating Interaction Regions, recurrent variations in the cosmic ray nuclei flux are observed. As pointed out recently by Jokipii and Kota (2) recurrent modulation for positively and negatively charged particles may be different. In the time interval extending from July 1992 to July 1994, Ulysses on its journey to high heliographic latitudes registered ∼20 stable and long-lasting Corotating Interaction Regions (CIRs). In this work we use data from the Cosmic Ray and Solar Particle Investigation Kiel Electron Telescope (COSPIN/KET) instrument on board Ulysses to study the recurrent variation of 2.5 GV electrons and protons. We find that 1) electrons are indeed periodically modulated, but that 2) the periodicity of ∼29 days is longer than the period of ∼26 days for protons, and that 3) the amplitude is larger than the one observed for protons

  20. The Anisotropy of the Microwave Background to l=3500: Mosaic Observations with the Cosmic Background Imager

    Science.gov (United States)

    Pearson, T. J.; Mason, B. S.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J. L.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    Using the Cosmic Background Imager, a 13-element interferometer array operating in the 26-36 GHz frequency band, we have observed 40 deg (sup 2) of sky in three pairs of fields, each approximately 145 feet x 165 feet, using overlapping pointings: (mosaicing). We present images and power spectra of the cosmic microwave background radiation in these mosaic fields. We remove ground radiation and other low-level contaminating signals by differencing matched observations of the fields in each pair. The primary foreground contamination is due to point sources (radio galaxies and quasars). We have subtracted the strongest sources from the data using higher-resolution measurements, and we have projected out the response to other sources of known position in the power-spectrum analysis. The images show features on scales approximately 6 feet-15 feet, corresponding to masses approximately 5-80 x 10(exp 14) solar mass at the surface of last scattering, which are likely to be the seeds of clusters of galaxies. The power spectrum estimates have a resolution delta l approximately 200 and are consistent with earlier results in the multipole range l approximately less than 1000. The power spectrum is detected with high signal-to-noise ratio in the range 300 approximately less than l approximately less than 1700. For 1700 approximately less than l approximately less than 3000 the observations are consistent with the results from more sensitive CBI deep-field observations. The results agree with the extrapolation of cosmological models fitted to observations at lower l, and show the predicted drop at high l (the "damping tail").

  1. Testing the Interacting Dark Energy Model with Cosmic Microwave Background Anisotropy and Observational Hubble Data

    Directory of Open Access Journals (Sweden)

    Weiqiang Yang

    2017-07-01

    Full Text Available The coupling between dark energy and dark matter provides a possible approach to mitigate the coincidence problem of the cosmological standard model. In this paper, we assumed the interacting term was related to the Hubble parameter, energy density of dark energy, and equation of state of dark energy. The interaction rate between dark energy and dark matter was a constant parameter, which was, Q = 3 H ξ ( 1 + w x ρ x . Based on the Markov chain Monte Carlo method, we made a global fitting on the interacting dark energy model from Planck 2015 cosmic microwave background anisotropy and observational Hubble data. We found that the observational data sets slightly favored a small interaction rate between dark energy and dark matter; however, there was not obvious evidence of interaction at the 1 σ level.

  2. Circles-in-the-sky searches and observable cosmic topology in a flat universe

    International Nuclear Information System (INIS)

    Mota, B.; Reboucas, M. J.; Tavakol, R.

    2010-01-01

    In a universe with a detectable nontrivial spatial topology, the last scattering surface contains pairs of matching circles with the same distribution of temperature fluctuations--the so-called circles-in-the-sky. Searches for nearly antipodal circles-in-the-sky in maps of cosmic microwave background radiation have so far been unsuccessful. This negative outcome, along with recent theoretical results concerning the detectability of nearly flat compact topologies, is sufficient to exclude a detectable nontrivial topology for most observers in very nearly flat positively and negatively curved universes, whose total matter-energy density satisfies 0 tot -1| -5 . Here, we investigate the consequences of these searches for observable nontrivial topologies if the Universe turns out to be exactly flat (Ω tot =1). We demonstrate that in this case, the conclusions deduced from such searches can be radically different. We show that, although there is no characteristic topological scale in the flat manifolds, for all multiply-connected orientable flat manifolds, it is possible to directly study the action of the holonomies in order to obtain a general upper bound on the angle that characterizes the deviation from antipodicity of pairs of matching circles associated with the shortest closed geodesic. This bound is valid for all observers and all possible values of the compactification length parameters. We also show that in a flat universe, there are observers for whom the circles-in-the-sky searches already undertaken are insufficient to exclude the possibility of a detectable nontrivial spatial topology. It is remarkable how such small variations in the spatial curvature of the Universe, which are effectively indistinguishable geometrically, can have such a drastic effect on the detectability of cosmic topology. Another important outcome of our results is that they offer a framework with which to make statistical inferences from future circles-in-the-sky searches on whether

  3. The genusGuenthera Andr. in Bess. (Brassicaceae, Brassiceae

    Directory of Open Access Journals (Sweden)

    Gómez-Campo, César

    2003-12-01

    Full Text Available A group of nine species -now included in Brassica— differ from all the other species in several characters, mainly in the stylar portion of their pistils always without seed primordia. Also in their branched subterranean stem (caudex with several leaf rosettes, their leaves entire to deeply pinnatifid but never pinnatisect, their shallowly notched cotyledons and their flattened, elliptic or ovoid seed contour. It is suggested to include these species under the generic denomination Guenthera Andr, in Bess. New ñames for the species and subspecies are provided, as well as a determination key for the species.Un grupo de nueve especies actualmente incluidas en Brassica difiere de todas las demás por varios caracteres, sobre todo por la porción estilar de sus pistilos, que siempre carece de primordios seminales. Además, por su tallo subterráneo ramificado, que forma un cáudex con varias rosetas; sus hojas de enteras hasta profundamente pinnatífidas, pero nunca pinnatisectas; sus cotiledones solo muy ligeramente escotados, y sus semillas, que tienden a ser elipsoidales o aplanadas. Se propone agruparlas todas bajo la denominación genérica Guenthera Andr, in Bess. Se detallan los nuevos nombres para las especies y Subespecies y se añade una clave para diferenciar las especies.

  4. Sway Area and Velocity Correlated With MobileMat Balance Error Scoring System (BESS) Scores.

    Science.gov (United States)

    Caccese, Jaclyn B; Buckley, Thomas A; Kaminski, Thomas W

    2016-08-01

    The Balance Error Scoring System (BESS) is often used for sport-related concussion balance assessment. However, moderate intratester and intertester reliability may cause low initial sensitivity, suggesting that a more objective balance assessment method is needed. The MobileMat BESS was designed for objective BESS scoring, but the outcome measures must be validated with reliable balance measures. Thus, the purpose of this investigation was to compare MobileMat BESS scores to linear and nonlinear measures of balance. Eighty-eight healthy collegiate student-athletes (age: 20.0 ± 1.4 y, height: 177.7 ± 10.7 cm, mass: 74.8 ± 13.7 kg) completed the MobileMat BESS. MobileMat BESS scores were compared with 95% area, sway velocity, approximate entropy, and sample entropy. MobileMat BESS scores were significantly correlated with 95% area for single-leg (r = .332) and tandem firm (r = .474), and double-leg foam (r = .660); and with sway velocity for single-leg (r = .406) and tandem firm (r = .601), and double-leg (r = .575) and single-leg foam (r = .434). MobileMat BESS scores were not correlated with approximate or sample entropy. MobileMat BESS scores were low to moderately correlated with linear measures, suggesting the ability to identify changes in the center of mass-center of pressure relationship, but not higher-order processing associated with nonlinear measures. These results suggest that the MobileMat BESS may be a clinically-useful tool that provides objective linear balance measures.

  5. Observation of terrestrial orbital motion using the cosmic-ray Compton-Getting effect

    International Nuclear Information System (INIS)

    Cutler, D.J.; Groom, D.E.

    1986-01-01

    Using underground observations, the authors have found a small diurnal amplitude modulation of the cosmic-ray muon intensity which agrees in amplitude and phase with a first-order relativistic effect due to the Earth's motion, as discussed by Compton and Getting :1935, Phys. Rev., 47, 817:. Analysis of the arrival times of 5x10 8 muons during a period of 5.4 yr yields a fractional amplitude variation of 2.5sub(-0.6) sup(+0.7) x 10 -4 , with a maximum near dawn, at 08:18+-1.0 h local mean solar time (LT). The expected amplitude is 3.40 x 10 -4 , with the maximum at 06:00LT. (author)

  6. Nuclear interactions of super high energy cosmic-rays observed by mountain emulsion chambers

    International Nuclear Information System (INIS)

    1981-01-01

    Here is presented a summary of joint discussions on the results of three mountain experiments with large-scale emulsion chambers, at Pamir, Mt. Fuji and Chacaltaya. The observation covers gamma-quanta, hadrons and their clusters (called ''families''). Following topics are covered concerning on characteristics of nuclear interactions in energy region of 10 14 - 10 16 eV: 1) rapid dissipation seen in atmospheric diffusion of high energy cosmic-rays, 2) multiplicity and p sub(t) increase in produced pimesons in the fragmentation region, 3) existence of large p sub(t) jets, 4) extremely-hadron-rich family of Centauro type, 5) exotic phenomena at extremely high energy region beyond 10 16 eV. (author)

  7. Seasonal variation of the underground cosmic muon flux observed at Daya Bay

    Science.gov (United States)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Khan, A.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, R. M.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sebastiani, C.; Steiner, H.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Yang, Y. Z.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhou, L.; Zhuang, H. L.; Zou, J. H.

    2018-01-01

    The Daya Bay Experiment consists of eight identically designed detectors located in three underground experimental halls named as EH1, EH2, EH3, with 250, 265 and 860 meters of water equivalent vertical overburden, respectively. Cosmic muon events have been recorded over a two-year period. The underground muon rate is observed to be positively correlated with the effective atmospheric temperature and to follow a seasonal modulation pattern. The correlation coefficient α, describing how a variation in the muon rate relates to a variation in the effective atmospheric temperature, is found to be αEH1 = 0.362±0.031, αEH2 = 0.433±0.038 and αEH3 = 0.641±0.057 for each experimental hall.

  8. THE TEMPERATURE EFFECT IN SECONDARY COSMIC RAYS (MUONS) OBSERVED AT THE GROUND: ANALYSIS OF THE GLOBAL MUON DETECTOR NETWORK DATA

    Energy Technology Data Exchange (ETDEWEB)

    De Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Rockenbach, M.; Schuch, N. J. [Space Geophysics Division, National Institute for Space Research, São José dos Campos, SP, 12227-010 (Brazil); Munakata, K.; Kato, C. [Physics Department, Shinshu University, Matsumoto, Nagano, 390-8621 (Japan); Kuwabara, T. [Graduate School of Science, Chiba University, Chiba City, Chiba 263-8522 (Japan); Kozai, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Al Jassar, H. K.; Sharma, M. M. [Physics Department, Kuwait University, Kuwait City, 13060 (Kuwait); Tokumaru, M. [Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, 464-8601 (Japan); Duldig, M. L.; Humble, J. E. [School of Physical Sciences, University of Tasmania, Hobart, Tasmania, 7001 (Australia); Evenson, P. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Sabbah, I. [Department of Natural Sciences, College of Health Sciences, Public Authority for Applied Education and Training, Kuwait City, 72853 (Kuwait)

    2016-10-20

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  9. THE TEMPERATURE EFFECT IN SECONDARY COSMIC RAYS (MUONS) OBSERVED AT THE GROUND: ANALYSIS OF THE GLOBAL MUON DETECTOR NETWORK DATA

    International Nuclear Information System (INIS)

    De Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Rockenbach, M.; Schuch, N. J.; Munakata, K.; Kato, C.; Kuwabara, T.; Kozai, M.; Al Jassar, H. K.; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-01-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  10. Temperature Effect in Secondary Cosmic Rays (MUONS) Observed at the Ground: Analysis of the Global MUON Detector Network Data

    Science.gov (United States)

    de Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Kozai, M.; Kato, C.; Rockenbach, M.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-10-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  11. Periodic variations of cosmic ray intensity with period of -37 minute observed on April 25th, 1984

    International Nuclear Information System (INIS)

    Sakai, Takasuke; Kato, Masahito; Takei, Ryoji; Tamai, Eiji

    1985-01-01

    Existence of cosmic ray variation with period ranging from a few hours to seconds during geomagnetically quiet and perturb period at different altitude with different detector, was reported previously. As short period variation is thought to be transient with small amplitude fluctuation, consequently high counting rate of cosmic ray and appropriate method for finding short periodicity, is required. Further, there is similar phenomenon in which short variation, followed by storm sudden commencement (SSC) and/or Forbush decrease (FD) occurs. In 1979, Kato et al. used 3 minutes data at Mt. Norikura and obtained -6 x 10 5 count/min, and tried to find out short periodicity of cosmic ray around SSC, but no clear conclusion was obtained. T. Sakai, et al., used plastic scintillation counter of Akeno observatory, following their preceding work. The counter has an area about 154 m 2 . High counting rate of -2 x 10 6 counts/min. was observed at Akeno which revealed the existence of -37 minute periodical oscillation with an amplitude of 0.1 % in p-p during the time period of 1300 - 1900 UT on April 25th 1984, one day before FD. Observed periodical oscillation of cosmic ray counting rate may be the result of the changes in magnetic field. But, it must be noted that there remains possibility of oscillation of cosmic ray intensity in the interplanetary space during the period, independent of geomagnetic field. (author)

  12. Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons.

    Science.gov (United States)

    Morishima, Kunihiro; Kuno, Mitsuaki; Nishio, Akira; Kitagawa, Nobuko; Manabe, Yuta; Moto, Masaki; Takasaki, Fumihiko; Fujii, Hirofumi; Satoh, Kotaro; Kodama, Hideyo; Hayashi, Kohei; Odaka, Shigeru; Procureur, Sébastien; Attié, David; Bouteille, Simon; Calvet, Denis; Filosa, Christopher; Magnier, Patrick; Mandjavidze, Irakli; Riallot, Marc; Marini, Benoit; Gable, Pierre; Date, Yoshikatsu; Sugiura, Makiko; Elshayeb, Yasser; Elnady, Tamer; Ezzy, Mustapha; Guerriero, Emmanuel; Steiger, Vincent; Serikoff, Nicolas; Mouret, Jean-Baptiste; Charlès, Bernard; Helal, Hany; Tayoubi, Mehdi

    2017-12-21

    The Great Pyramid, or Khufu's Pyramid, was built on the Giza plateau in Egypt during the fourth dynasty by the pharaoh Khufu (Cheops), who reigned from 2509 bc to 2483 bc. Despite being one of the oldest and largest monuments on Earth, there is no consensus about how it was built. To understand its internal structure better, we imaged the pyramid using muons, which are by-products of cosmic rays that are only partially absorbed by stone. The resulting cosmic-ray muon radiography allows us to visualize the known and any unknown voids in the pyramid in a non-invasive way. Here we report the discovery of a large void (with a cross-section similar to that of the Grand Gallery and a minimum length of 30 metres) situated above the Grand Gallery. This constitutes the first major inner structure found in the Great Pyramid since the nineteenth century. The void, named ScanPyramids' Big Void, was first observed with nuclear emulsion films installed in the Queen's chamber, then confirmed with scintillator hodoscopes set up in the same chamber and finally re-confirmed with gas detectors outside the pyramid. This large void has therefore been detected with high confidence by three different muon detection technologies and three independent analyses. These results constitute a breakthrough for the understanding of the internal structure of Khufu's Pyramid. Although there is currently no information about the intended purpose of this void, these findings show how modern particle physics can shed new light on the world's archaeological heritage.

  13. Detection of the cosmic γ-ray horizon from multiwavelength observations of blazars

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, A. [Univ. of California, Riverside, CA (United States); Finke, J. D. [U.S. Naval Research Lab., Washington, DC (United States); Prada, F. [Campus of International Excellence UAM_CSIC, Madrid (Spain); Universidad Autonoma de Madrid (Spain); Instituto de Astrofisica de Andalucia, Granada (Spain); Primack, J. R. [Univ. of California, Santa Cruz, CA (United States); Kitaura, F. S. [Leibniz-Institut fuer Astrophysik, Potsdam (Germany); Siana, B. [Univ. Of California, Riverside, CA (United States); Paneque, D. [Stanford Univ., Stanford, CA (United States). Kavli Inst. sor Particle Astrophysics and Cosmology; Max-Planck-Institut fuer Physik, Munich (Germany)

    2013-05-24

    The first statistically significant detection of the cosmic γ-ray horizon (CGRH) that is independent of any extragalactic background light (EBL) model is presented. The CGRH is a fundamental quantity in cosmology. It gives an estimate of the opacity of the Universe to very high energy (VHE) γ-ray photons due to photon-photon pair production with the EBL. The only estimations of the CGRH to date are predictions from EBL models and lower limits from γ-ray observations of cosmological blazars and γ-ray bursts. Here, we present homogeneous synchrotron/synchrotron self-Compton (SSC) models of the spectral energy distributions of 15 blazars based on (almost) simultaneous observations from radio up to the highest energy γ-rays taken with the Fermi satellite. These synchrotron/SSC models predict the unattenuated VHE fluxes, which are compared with the observations by imaging atmospheric Cherenkov telescopes. The comparison provides an estimate of the optical depth of the EBL, which allows a derivation of the CGRH through a maximum likelihood analysis that is EBL-model independent. We find that the observed CGRH is compatible with the current knowledge of the EBL.

  14. Observation of cosmic hard x-ray by L-3H-9 rocket

    International Nuclear Information System (INIS)

    Hayakawa, Sachio; Makino, Fumiyoshi; Matsui, Yutaka; Fukada, Yutaka.

    1978-01-01

    It has been considered that the isotropic constituents of cosmic hard X-ray have their origins outside the galactic system. As the spectra are uncertain, the generation mechanism of X-ray has not been clearly known yet. It was attempted to make more reliable observation by shutter method and the technique removing charged particles, using the L-3H-8 rocket. The equipment consists of NaI scintillation counter, a front counter, a Xenon counter, a UV sensor, a collimator, a shutter and a shutter-driving device. The L-3H-9 rocket was launched on August 16, 1977, and reached height of 310 km in about 300 seconds. Then the observation was started, but it was not able to observe the isotropic constituents of hard X-ray which were aimed at, as the shutter didn't work normally. It is expected to make another observation with the K-9M-64 rocket in August, 1978, after investigating the action of the shutter and employing and improved driving device. (Kobatake, H.)

  15. Observing the Cosmic Microwave Background Radiation: A Unique Window on the Early Universe

    Science.gov (United States)

    Hinshaw, Gary; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics,of the early universe. Within the framework of inflationary dark matter models observations of the anisotropy on sub-degree angular scales will reveal the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. The validity of inflationary models will be tested and, if agreement is found, accurate values for most of the key cosmological parameters will result. If disagreement is found, we will need to rethink our basic ideas about the physics of the early universe. I will present an overview of the physical processes at work in forming the anisotropy and discuss what we have already learned from current observations. I will conclude with a brief overview of the recently launched Microwave Anisotropy Probe (MAP) mission which will observe the anisotropy over the full sky with 0.21 degree angular resolution. At the time of this meeting, MAP will have just arrived at the L2 Lagrange point, marking the start of its observing campaign. The MAP hardware is being produced by Goddard in partnership with Princeton University.

  16. THE LARGE-SCALE COSMIC-RAY ANISOTROPY AS OBSERVED WITH MILAGRO

    International Nuclear Information System (INIS)

    Abdo, A. A.; Allen, B. T.; Chen, C.; Aune, T.; Berley, D.; Goodman, J. A.; Hopper, B.; Lansdell, C. P.; Casanova, S.; Dingus, B. L.; Hoffman, C. M.; Huentemeyer, P. H.; Ellsworth, R. W.; Fleysher, L.; Fleysher, R.; Kolterman, B. E.; Mincer, A. I.; Gonzalez, M. M.; Linnemann, J. T.; McEnery, J. E.

    2009-01-01

    Results are presented of a harmonic analysis of the large-scale cosmic-ray (CR) anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension (R.A.) generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field of view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven-year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for CRs with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 ± 0.02 stat. ± 0.09 sys.) x10 -3 in the direction of the Galactic north pole centered at 189 deg R.A. We observe a steady increase in the magnitude of the signal over seven years.

  17. Observation of cosmic-ray particles with artificial satellites in Japan

    International Nuclear Information System (INIS)

    Nagata, Katsuaki

    1981-01-01

    The present status are described on the cosmic-ray observation with artificial satellites in Japan. In 1978, an electrostatic analyzer was loaded on the satellite EXOS-A to measure low energy electrons. The spectra taken on April 27, 1978, showed that the electron flux decreased exponentially with the increasing electron energy. A space environment monitor (SEM) was loaded on a geostationary meteorological satellite (GMS) in 1977. The SEM consists of 5 Si detectors, with which particle identification can be made, and protons with the energy of 500 MeV and alpha particles with the energy of 370 MeV were observed. The time variation of particle flux was large in the low energy part and small in the high energy part. In 1984, the satellite EXOS-C will be launched. The purposes of this project are general observation of the middle atmosphere composition and the study of the anomaly of the ionosphere above the Brazilian Anomaly. Measurement of low energy particles will be done with an electrostatic analyzer, and that of high energy particles with a telescope with Si detectors. Other projects designed in Japan are OPEN-J and EXOS-D. (Kato, T.)

  18. ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Da Cunha, Elisabete; Groves, Brent; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Weiss, Axel [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Bertoldi, Frank [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Daddi, Emanuele; Sargent, Mark [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Elbaz, David; Ivison, Rob [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Riechers, Dominik [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Smail, Ian, E-mail: cunha@mpia.de [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2013-03-20

    Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z > 5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g., carbon monoxide, CO) in two ways: (1) it provides an additional source of (both dust and gas) heating and (2) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift, and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account.

  19. Describing the observed cosmic neutrinos by interactions of nuclei with matter

    International Nuclear Information System (INIS)

    Winter, Walter

    2014-07-01

    IceCube have observed neutrinos which are presumably of extra-galactic origin. Since specific sources have not yet been identified, we discuss what could be learned from the conceptual point of view. We use a simple model for neutrino production from the interactions between nuclei and matter, and we focus on the description of the spectral shape and flavor composition observed by IceCube. Our main parameters are spectral index, maximal energy, magnetic field, and composition of the accelerated nuclei. We show that a cutoff at PeV energies can be achieved by soft enough spectra, a cutoff of the primary energy, or strong enough magnetic fields. These options, however, are difficult to reconcile with the hypothesis that these neutrinos originate from the same sources as the ultra-high energy cosmic rays. We demonstrate that heavier nuclei accelerated in the sources may be a possible way out if the maximal energy scales appropriately with the mass number of the nuclei. In this scenario, neutrino observations can actually be used to test the UHECR acceleration mechanism. We also emphasize the need for a volume upgrade of the IceCube detector for future precision physics, for which the flavor information becomes a statistical meaningful model discriminator as qualitatively new ingredient.

  20. A Comparison of Balance and Postural Stability Assessment Tools: BESS Versus NeuroCom Balance Manager

    OpenAIRE

    Joliffe, Jamie

    2012-01-01

    Postural stability assessment tools are one of the many ways concussions can be assessed and return to play decisions can be made; two of which are the Balance Error Scoring System (BESS) and force plate technology. OBJECTIVE: Validate the modified BESS used by Utah State University by comparing it to equivalent tests on the NeuroCom Balance Manager System. METHODS: 114 current or previous Utah State football players ranging in age from 18-24. Each athlete conducted a baseline BESS test durin...

  1. Validation of SMAP Root Zone Soil Moisture Estimates with Improved Cosmic-Ray Neutron Probe Observations

    Science.gov (United States)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Franz, T.; Jones, S. B.

    2017-12-01

    Soil Moisture Active Passive (SMAP) soil moisture products are commonly validated based on point-scale reference measurements, despite the exorbitant spatial scale disparity. The difference between the measurement depth of point-scale sensors and the penetration depth of SMAP further complicates evaluation efforts. Cosmic-ray neutron probes (CRNP) with an approximately 500-m radius footprint provide an appealing alternative for SMAP validation. This study is focused on the validation of SMAP level-4 root zone soil moisture products with 9-km spatial resolution based on CRNP observations at twenty U.S. reference sites with climatic conditions ranging from semiarid to humid. The CRNP measurements are often biased by additional hydrogen sources such as surface water, atmospheric vapor, or mineral lattice water, which sometimes yield unrealistic moisture values in excess of the soil water storage capacity. These effects were removed during CRNP data analysis. Comparison of SMAP data with corrected CRNP observations revealed a very high correlation for most of the investigated sites, which opens new avenues for validation of current and future satellite soil moisture products.

  2. Predicted versus observed cosmic-ray-produced noble gases in lunar samples: improved Kr production ratios

    International Nuclear Information System (INIS)

    Regnier, S.; Hohenberg, C.M.; Marti, K.; Reedy, R.C.

    1979-01-01

    New sets of cross sections for the production of krypton isotopes from targets of Rb, Sr, Y, and Zr were constructed primarily on the bases of experimental excitation functions for Kr production from Y. These cross sections were used to calculate galactic-cosmic-ray and solar-proton production rates for Kr isotopes in the moon. Spallation Kr data obtained from ilmenite separates of rocks 10017 and 10047 are reported. Production rates and isotopic ratios for cosmogenic Kr observed in ten well-documented lunar samples and in ilmenite separates and bulk samples from several lunar rocks with long but unknown irradiation histories were compared with predicted rates and ratios. The agreements were generally quite good. Erosion of rock surfaces affected rates or ratios for only near-surface samples, where solar-proton production is important. There were considerable spreads in predicted-to-observed production rates of 83 Kr, due at least in part to uncertainties in chemical abundances. The 78 Kr/ 83 Kr ratios were predicted quite well for samples with a wide range of Zr/Sr abundance ratios. The calculated 80 Kr/ 83 Kr ratios were greater than the observed ratios when production by the 79 Br(n,γ) reaction was included, but were slightly undercalculated if the Br reaction was omitted; these results suggest that Br(n,γ)-produced Kr is not retained well by lunar rocks. The productions of 81 Kr and 82 Kr were overcalculated by approximately 10% relative to 83 Kr. Predicted-to-observed 84 Kr/ 83 ratios scattered considerably, possibly because of uncertainties in corrections for trapped and fission components and in cross sections for 84 Kr production. Most predicted 84 Kr and 86 Kr production rates were lower than observed. Shielding depths of several Apollo 11 rocks were determined from the measured 78 Kr/ 83 Kr ratios of ilmenite separates. 4 figures, 5 tables

  3. Observations of Equatorial Kelvin Wave Modes in FORMOSAT-3/COSMIC GPS RO Temperature Profiles

    Directory of Open Access Journals (Sweden)

    Potula Sree Brahmanandam

    2010-01-01

    Full Text Available In this study, we analyze FORMOSAT-3/COSMIC (F3/C GPS radio occultation (RO derived temperature components for the period September 2006 to February 2008. Results show the presence of slow Kelvin waves (wave period > 10 days with higher zonal wavenumbers (either one or two in the upper troposphere and lower stratosphere (UTLS. The vertical wavelengths of these waves are found to be in the range of 5 - 12 km. The predominant Kelvin waves observed in the temperature fluctuations are in the altitude range between 15 and 28 km and centered on the tropical tropopause. The downward phase progression of these waves suggests that the derived waves are propagating upward, with the source region located at lower altitudes possibly due to tropical convective heating. The zonal winds retrieved using radiosonde observations over Singapore (1¢XN, 104¢XE during this period show a periodicity of ~24 - 26 months in the stratosphere, and quasi-biennial oscillation (QBO characteristics with eastward zonal winds from March 2006 to May 2007 and westward winds from June 2007 to July 2008 respectively. Our results further show that the Kelvin wave characteristics are enhanced during the westward phase of QBO and diminish during the eastward phase, in line with the previous reported results. Furthermore, an examination of outgoing longwave radiation (OLR data shows that deep convection activity is developed episodically over the Indonesian archipelago during the observation period, thereby indicating that the Kelvin wave events observed in temperature fluctuations are either driven by convective activity (convectively coupled waves or by a broad spectrum of convective variability (free waves over the Indonesian region.

  4. Cosmic strings in an open universe: Quantitative evolution and observational consequences

    International Nuclear Information System (INIS)

    Avelino, P.P.; Caldwell, R.R.; Martins, C.J.

    1997-01-01

    The cosmic string scenario in an open universe is developed - including the equations of motion, a model of network evolution, the large angular scale cosmic microwave background (CMB) anisotropy, and the power spectrum of density fluctuations produced by cosmic strings with dark matter. We first derive the equations of motion for a cosmic string in an open Friedmann-Robertson-Walker (FRW) space-time. With these equations and the cosmic string stress-energy conservation law, we construct a quantitative model of the evolution of the gross features of a cosmic string network in a dust-dominated, Ω 2 /Mpc. In a low density universe the string+CDM scenario is a better model for structure formation. We find that for cosmological parameters Γ=Ωh∼0.1 - 0.2 in an open universe the string+CDM power spectrum fits the shape of the linear power spectrum inferred from various galaxy surveys. For Ω∼0.2 - 0.4, the model requires a bias b approx-gt 2 in the variance of the mass fluctuation on scales 8h -1 Mpc. In the presence of a cosmological constant, the spatially flat string+CDM power spectrum requires a slightly lower bias than for an open universe of the same matter density. copyright 1997 The American Physical Society

  5. Energy and flux measurements of ultra-high energy cosmic rays observed during the first ANITA flight

    Energy Technology Data Exchange (ETDEWEB)

    Schoorlemmer, H.; Belov, K.; Romero-Wolf, A.; García-Fernández, D.; Bugaev, V.; Wissel, S. A.; Allison, P.; Alvarez-Muñiz, J.; Barwick, S. W.; Beatty, J. J.; Besson, D. Z.; Binns, W. R.; Carvalho Jr., W. R.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dowkontt, P. F.; DuVernois, M. A.; Field, R. C.; Goldstein, D.; Gorham, P. W.; Hast, C.; Huege, T.; Heber, C. L.; Hoover, S.; Israel, M. H.; Javaid, A.; Kowalski, J.; Lam, J.; Learned, J. G.; Link, J. T.; Lusczek, E.; Matsuno, S.; Mercurio, B. C.; Miki, C.; Miočinović, P.; Mulrey, K.; Nam, J.; Naudet, C. J.; Ng, J.; Nichol, R. J.; Palladino, K.; Rauch, B. F.; Roberts, J.; Reil, K.; Rotter, B.; Rosen, M.; Ruckman, L.; Saltzberg, D.; Seckel, D.; Urdaneta, D.; Varner, G. S.; Vieregg, A. G.; Walz, D.; Wu, F.; Zas, E.

    2016-04-01

    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. The dominant contribution to the radiation comes from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. For 14 of these events, this radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of ~36 km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 × 1018 eV, which is significantly lower than the previous estimate. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations and find agreement with measurements performed at other observatories. In addition, we find that the ANITA data set is consistent with Monte Carlo simulations for the total number of observed events and with the properties of those events.

  6. THE COSMIC-RAY ENERGY SPECTRUM OBSERVED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W. [High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Azuma, R.; Fukuda, T. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Cheon, B. G.; Cho, E. J. [Department of Physics and Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Department of Physics, Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Department of Physics, Kinki University, Higashi Osaka, Osaka (Japan); Cho, W. R. [Department of Physics, Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Graduate School of Science, Osaka City University, Osaka, Osaka (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); and others

    2013-05-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays (UHECRs) with primary energies above 1.6 Multiplication-Sign 10{sup 18} eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 Multiplication-Sign 10{sup 18} eV and a steepening at 5.4 Multiplication-Sign 10{sup 19} eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of UHECR surface detector data, that involves generating a complete simulation of UHECRs striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the ''thinning'' approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  7. Recovering the observed b/c ratio in a dynamic spiral-armed cosmic ray model

    International Nuclear Information System (INIS)

    Benyamin, David; Piran, Tsvi; Shaviv, Nir J.; Nakar, Ehud

    2014-01-01

    We develop a fully three-dimensional numerical code describing the diffusion of cosmic rays (CRs) in the Milky Way. It includes the nuclear spallation chain up to oxygen, and allows the study of various CR properties, such as the CR age, grammage traversed, and the ratio between secondary and primary particles. This code enables us to explore a model in which a large fraction of the CR acceleration takes place in the vicinity of galactic spiral arms that are dynamic. We show that the effect of having dynamic spiral arms is to limit the age of CRs at low energies. This is because at low energies the time since the last spiral arm passage governs the CR age, and not diffusion. Using the model, the observed spectral dependence of the secondary to primary ratio is recovered without requiring any further assumptions such as a galactic wind, re-acceleration or various assumptions on the diffusivity. In particular, we obtain a secondary to primary ratio which increases with energy below about 1 GeV.

  8. CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Steven L.; Pawlik, Andreas H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Papovich, Casey [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Dickinson, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Finlator, Kristian [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Giavalisco, Mauro [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dunlop, James S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh (United Kingdom); Faber, Sandy M.; Kocevski, Dale D. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Newman, Jeffrey A., E-mail: stevenf@astro.as.utexas.edu [Department of Physics and Astronomy and Pitt-PACC, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2012-10-20

    We present measurements of the specific ultraviolet luminosity density from a sample of 483 galaxies at 6 {approx}< z {approx}< 8. These galaxies were selected from new deep near-infrared Hubble Space Telescope imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Hubble UltraDeep Field 2009, and Wide Field Camera 3 Early Release Science programs. We investigate the contribution to reionization from galaxies that we observe directly, thus sidestepping the uncertainties inherent in complementary studies that have invoked assumptions regarding the intrinsic shape or the faint-end cutoff of the galaxy ultraviolet (UV) luminosity function. Due to our larger survey volume, wider wavelength coverage, and updated assumptions about the clumping of gas in the intergalactic medium (IGM), we find that the observable population of galaxies can sustain a fully reionized IGM at z = 6, if the average ionizing photon escape fraction (f {sub esc}) is {approx}30%. Our result contrasts with a number of previous studies that have measured UV luminosity densities at these redshifts that vary by a factor of five, with many concluding that galaxies could not complete reionization by z = 6 unless a large population of galaxies fainter than the detection limit were invoked, or extremely high values of f {sub esc} were present. The specific UV luminosity density from our observed galaxy samples at z = 7 and 8 is not sufficient to maintain a fully reionized IGM unless f {sub esc} > 50%. We examine the contribution from galaxies in different luminosity ranges and find that the sub-L* galaxies we detect are stronger contributors to the ionizing photon budget than the L > L* population, unless f {sub esc} is luminosity dependent. Combining our observations with constraints on the emission rate of ionizing photons from Ly{alpha} forest observations at z = 6, we find that we can constrain f {sub esc} < 34% (2{sigma}) if the observed galaxies are the only contributors to

  9. Receiver system for radio observation of high-energy cosmic ray air showers and its behaviour in self trigger mode

    International Nuclear Information System (INIS)

    Kroemer, Oliver

    2008-04-01

    The observation of high-energy cosmic rays is carried out by indirect measurements. Thereby the primary cosmic particle enters into the earth's atmosphere and generates a cosmic ray air shower by interactions with the air molecules. The secondary particles arriving at ground level are detected with particle detector arrays. The fluorescence light from the exited nitrogen molecules along the shower axis is observed with reflector telescopes in the near-ultraviolet range. In addition to these well-established detection methods, the radio observation of the geosynchrotron emission from cosmic ray air showers is investigated at present as a new observation method. Geosynchrotron emission is generated by the acceleration of the relativistic electron-positron-pairs contained in the air shower by Lorentz forces in the earth's magnetic field. At ground level this causes a single pulse of the electric field strength with a continuous frequency spectrum ranging from a few MHz to above 100 MHz. In this work, a suitable receiver concept is developed based on the signal properties of the geosynchrotron emission and the analysis of the superposed noise and radio frequency interferences. As the required receiver system was not commercially available, it was designed in the framework of this work and realised as system including the antenna, the receiver electronics and suitable data acquisition equipment. In this concept considerations for a large scale radio detector array have already been taken into account, like low power consumption to enable solar power supply and cost effectiveness. The result is a calibrated, multi-channel, digital wideband receiver for the complete range from 40 MHz to 80 MHz. Its inherent noise and RFI suppression essentially results from the antenna directional characteristic and frequency selectivity and allows effective radio observation of cosmic ray air showers also in populated environment. Several units of this receiver station have been deployed

  10. Imprints of cosmic rays in multifrequency observations of the interstellar emission

    Science.gov (United States)

    Orlando, E.

    2018-04-01

    Ever since the discovery of cosmic rays (CRs), significant advancements have been made in modelling their propagation in the Galaxy and in the Heliosphere. However, propagation models suffer from degeneracy of many parameters. To complicate the picture, the precision of recent data have started challenging existing models. To tackle these issues, we use available multifrequency observations of the interstellar emission from radio to gamma rays, together with direct CR measurements, to study local interstellar spectra (LIS) and propagation models. As a result, the electron LIS is characterized without any assumption on solar modulation, and favourite propagation models are put forwards. More precisely, our analysis leads to the following main conclusions: (1) the electron injection spectrum needs at least a break below a few GeV; (2) even though consistent with direct CR measurements, propagation models producing a LIS with large all-electron density from a few hundreds of MeV to a few GeV are disfavoured by both radio and gamma-ray observations; (3) the usual assumption that direct CR measurements, after accounting for solar modulation, are representative of the proton LIS in our ˜1 kpc region is challenged by the observed local gamma-ray H I emissivity. We provide the resulting proton LIS, all-electron LIS, and propagation parameters based on synchrotron, gamma-ray, and direct CR data. A plain diffusion model and a tentative diffusive-reacceleration model are put forwards. The various models are investigated in the inner-Galaxy region in X-rays and gamma rays. Predictions of the interstellar emission for future gamma-ray instruments (e-ASTROGAM and AMEGO) are derived.

  11. Observation of cosmic-ray anisotropy in the decade below 1 PeV with a pentagon array

    Science.gov (United States)

    Moghaddam, S. Mortazavi; Bahmanabadi, M.

    2018-03-01

    The study of the anisotropy of the arrival directions is an essential tool to investigate the origin and propagation of cosmic rays primaries. A pentagon array has been designed to collect data around the knee region of cosmic ray spectrum. The experimental results of this array obtained from October 2016 to October 2017. During this period, more than 5.3 ×105 extensive air shower events at energies in the decade below 1 PeV has been accumulated by this array at Sharif University of Technology in Tehran (3 5 ° 4 3'N , 5 1 ° 2 0'E , 1200m a .s .l =890 g cm-2 ). In analyzing the data set, we have used appropriate techniques of analysis and considered environmental effects. We report the analysis of the sidereal anisotropy of Galactic cosmic rays (GCRs). In this analysis, in addition to the Compton- Getting effect due to the motion of the earth in the Galaxy, an anisotropy has been observed which is due to a unidirectional anisotropy of cosmic ray flow along the Galactic arms.

  12. AVERAGE SPATIAL DISTRIBUTION OF COSMIC RAYS BEHIND THE INTERPLANETARY SHOCK—GLOBAL MUON DETECTOR NETWORK OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, M.; Munakata, K.; Kato, C. [Department of Physics, Shinshu University, Matsumoto, Nagano 390-8621 (Japan); Kuwabara, T. [Graduate School of Science, Chiba University, Chiba City, Chiba 263-8522 (Japan); Rockenbach, M.; Lago, A. Dal; Braga, C. R.; Mendonça, R. R. S. [National Institute for Space Research (INPE), 12227-010 São José dos Campos, SP (Brazil); Schuch, N. J. [Southern Regional Space Research Center (CRS/INPE), P.O. Box 5021, 97110-970, Santa Maria, RS (Brazil); Jassar, H. K. Al; Sharma, M. M. [Physics Department, Kuwait University, P.O. Box 5969 Safat, 13060 (Kuwait); Duldig, M. L.; Humble, J. E. [School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001 (Australia); Evenson, P. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Sabbah, I. [Department of Natural Sciences, College of Health Sciences, Public Authority of Applied Education and Training, Kuwait City 72853 (Kuwait); Tokumaru, M., E-mail: 13st303f@shinshu-u.ac.jp, E-mail: kmuna00@shinshu-u.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2016-07-10

    We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in the western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east–west asymmetry is more prominent in GMDN data responding to ∼60 GV GCRs than in NM data responding to ∼10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic- y component of the density gradient, G {sub y}, shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G {sub z} shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G {sub z} changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.

  13. Observations of galactic cosmic-ray energy spectra between 1 and 9 AU

    International Nuclear Information System (INIS)

    McDonald, F.B.; Lal, N.; Trainor, J.H.; Van Hollebeke, M.A.I.; Webber, W.R.

    1977-01-01

    The variation of the 5--500 MeV per nucleon cosmic-ray helium component has been studied between 1 and 9 AU with essentially identical detector systems on Pioneer 10, Pioneer 11, and Helios I. Between 100 and 200 MeV per nucleon, a radial gradient of 3.3% +- 1.3% per AU is found. At 15 MeV per nucleon, this value increases to 20% +- 4% per AU. Between 4 and 9 AU a well-defined intensity maximum is observed at approx.17 MeV per nucleon. The average adiabatic energy loss between 1 and 9 AU is approx.4 MeV per nucleon per AU. In the inner solar system between 1 and 4 AU this value increases to 7 MeV per nucleon. The observed radial variation between 1 and 9 AU is well described by the Gleeson-Axford force-field solution of the modulation equations over an enrgy range extending from 15 to 500 MeV per nucleon and is in good agreement with the results reported by other Pioneer experiments. These values are much smaller than had been theoretically predicted. The data can be interpreted either in terms of large residual modulation with phi (1 AU) approx. =320 MV and with a modulation region which extends to 50--100 AU or with a significantly reduced modulation parameter of approx.150 MV. These values appear to represent reasonable upper and lower limits on the residual modulation for this period. For the lower limit of phi (1 AU) =150 MV, the low-energy helium component can originate outside the heliosphere, while for phi (1 AU) =320 MV, an interplanetary origin appears most probable

  14. AVERAGE SPATIAL DISTRIBUTION OF COSMIC RAYS BEHIND THE INTERPLANETARY SHOCK—GLOBAL MUON DETECTOR NETWORK OBSERVATIONS

    International Nuclear Information System (INIS)

    Kozai, M.; Munakata, K.; Kato, C.; Kuwabara, T.; Rockenbach, M.; Lago, A. Dal; Braga, C. R.; Mendonça, R. R. S.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.; Tokumaru, M.

    2016-01-01

    We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in the western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east–west asymmetry is more prominent in GMDN data responding to ∼60 GV GCRs than in NM data responding to ∼10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic- y component of the density gradient, G y , shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G z shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G z changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.

  15. VizieR Online Data Catalog: Local interstellar spectra of cosmic-ray species (Boschini+, 2017)

    Science.gov (United States)

    Boschini, M. J.; Torre, S. D.; Gervasi, M.; Grandi, D.; Johannesson, G.; Kachelriess, M.; La Vacca, G.; Masi, N.; Moskalenko, I. V.; Orlando, E.; Ostapchenko, S. S.; Pensotti, S.; Porter, T. A.; Quadrani, L.; Rancoita, P. G.; Rozza, D.; Tacconi, M.

    2017-11-01

    Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of cosmic-ray (CR) species at different modulation levels and at both polarities of the solar magnetic field. To do so in a self-consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed into HelMod, providing modulated spectra for specific time periods of selected experiments to compare with the data; the HelMod parameter optimization is performed at this stage and looped back to adjust the LIS using the new GALPROP run. The parameters were tuned with the maximum likelihood procedure using an extensive data set of proton spectra from 1997 to 2015. The proposed LIS accommodate both the low-energy interstellar CR spectra measured by Voyager 1 and the high-energy observations by BESS, Pamela, AMS-01, and AMS-02 made from the balloons and near-Earth payloads; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The found solution is in a good agreement with proton, helium, and antiproton data by AMS-02, BESS, and PAMELA in the whole energy range. (3 data files).

  16. Solution of Heliospheric Propagation: Unveiling the Local Interstellar Spectra of Cosmic-ray Species

    Energy Technology Data Exchange (ETDEWEB)

    Boschini, M. J.; Torre, S. Della; Gervasi, M.; Grandi, D.; Vacca, G. La; Pensotti, S.; Rancoita, P. G.; Rozza, D.; Tacconi, M. [INFN, Milano-Bicocca, Milano (Italy); Jóhannesson, G. [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Kachelriess, M. [Institutt for fysikk, NTNU, NO-7491 Trondheim (Norway); Masi, N.; Quadrani, L. [INFN, Bologna (Italy); Moskalenko, I. V.; Orlando, E.; Porter, T. A. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Ostapchenko, S. S. [Frankfurt Institute of Advanced Studies, Frankfurt (Germany)

    2017-05-10

    Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of cosmic-ray (CR) species at different modulation levels and at both polarities of the solar magnetic field. To do so in a self-consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed into HelMod, providing modulated spectra for specific time periods of selected experiments to compare with the data; the HelMod parameter optimization is performed at this stage and looped back to adjust the LIS using the new GALPROP run. The parameters were tuned with the maximum likelihood procedure using an extensive data set of proton spectra from 1997 to 2015. The proposed LIS accommodate both the low-energy interstellar CR spectra measured by Voyager 1 and the high-energy observations by BESS, Pamela, AMS-01, and AMS-02 made from the balloons and near-Earth payloads; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The found solution is in a good agreement with proton, helium, and antiproton data by AMS-02, BESS, and PAMELA in the whole energy range.

  17. Aerial radiological survey of the Davis-Besse Nuclear power Station and surrounding area, Oak Harbor, Ohio. Date of survey: 26-29 May 1980

    International Nuclear Information System (INIS)

    Hilton, L.K.

    1980-12-01

    An airborne radiological survey of a 130 km 2 area centered on the Davis-Besse Nuclear Power Station was made 26-29 May 1980. Count rates observed at 90 m altitude were converted to exposure rates at 1 m above the ground and are presented in the form of an isopleth map. Detected radioisotopes and their associated gamma ray exposure rates were consistent with that expected from normal background emitters, except directly over the station

  18. Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon

    International Nuclear Information System (INIS)

    2010-01-01

    The shadowing of cosmic ray primaries by the the moon and sun was observed by the MINOS far detector at a depth of 2070 mwe using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the 5.6 σ level and the shadow of the sun at the 3.8 σ level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17 ± 0.12 o . Hints of Interplanetary Magnetic Field effects were observed in both the sun and moon shadow.

  19. Transient Cosmic-ray Events beyond the Heliopause: Interpreting Voyager-1 Observations

    Energy Technology Data Exchange (ETDEWEB)

    Kóta, J.; Jokipii, J. R. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 (United States)

    2017-04-20

    In 2013 March and 2014 May, Voyager-1 ( V1 ) experienced small but significant increases in the flux of galactic cosmic rays (GCRs) in the hundred MeV/n range. Additionally, V1 also saw episodic depletion of GCR flux around perpendicular pitch angles. We discuss the pitch-angle distribution and the time profiles of these events. In a previous paper, we interpreted the 2013 “bump” as the GCRs remotely sensing a shock that reached the magnetic field line passing through V1 : particles gained energy as they were reflected on the approaching region of the stronger magnetic field of the disturbance. Here, we point out that energy gain is not restricted to reflected particles—GCRs passing through the disturbance also gain energy. The effect should be present in a broad range of pitch angles with the maximum increase of GCR intensity predicted to occur at the critical reflection angle. In this paper, the shock is not step-like, but a gradual increase of the magnetic field strength, B , taking a few days, in agreement with V1 measurements. This smoothens the profile of the predicted bump in the GCR flux. We also address the linear episodic decreases seen around perpendicular pitch angles. These events are interpreted in terms of adiabatic cooling behind the shock due to the slow weakening of B . We present simple numerical model calculations and find that a gradual shock followed by a slow decrease of B , as observed, may account for both the episodic increases and the anisotropic depletion of GCR fluxes.

  20. Recent cosmic microwave background observations and the ionization history of the universe

    International Nuclear Information System (INIS)

    Hannestad, Steen; Scherrer, Robert J.

    2001-01-01

    Interest in nonstandard recombination scenarios has been spurred by recent cosmic microwave background (CMB) results from BOOMERANG and MAXIMA, which show an unexpectedly low second acoustic peak, resulting in a best-fit baryon density that is 50% larger than the prediction of big-bang nucleosynthesis (BBN). This apparent discrepancy can be avoided if the universe has a nonstandard ionization history in which the recombination of hydrogen is significantly delayed relative to the standard model. While future CMB observations may eliminate this discrepancy, it is useful to develop a general framework for analyzing nonstandard ionization histories. We develop such a framework, examining nonstandard models in which the hydrogen binding energy E b and the overall expression for the time rate of change of the ionized fraction of electrons are multiplied by arbitrary factors. This set of models includes a number of previously proposed models as special cases. We find a wide range of models with delayed recombination that are able to fit the CMB data with a baryon density in accordance with BBN, but there are even allowed models with earlier recombination than in the standard model. A generic prediction of these models is that the third acoustic CMB peak should be very low relative to what is found in the standard model. This is the case even for the models with earlier recombination than in the standard model, because here the third peak is lowered by an increased diffusion damping at recombination relative to the standard model. Interestingly, the specific height of the third peak depends sensitively on the model parameters, so that future CMB measurements will be able to distinguish between different nonstandard recombination scenarios

  1. Decadal trends in the diurnal variation of galactic cosmic rays observed using neutron monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Simon [Reading Univ. (United Kingdom). Dept. of Meteorology; Univ. College London, Dorking (United Kingdom). Mullard Space Science Lab.; Owens, Mathew; Lockwood, Mike [Reading Univ. (United Kingdom). Dept. of Meteorology; Owen, Chris [Univ. College London, Dorking (United Kingdom). Mullard Space Science Lab.

    2017-10-01

    The diurnal variation (DV) in galactic cosmic ray (GCR) flux is a widely observed phenomenon in neutron monitor data. The background variation considered primarily in this study is due to the balance between the convection of energetic particles away from the Sun and the inward diffusion of energetic particles along magnetic field lines. However, there are also times of enhanced DV following geomagnetic disturbances caused by coronal mass ejections or corotating interaction regions. In this study we investigate changes in the DV over four solar cycles using ground-based neutron monitors at different magnetic latitudes and longitudes at Earth. We divide all of the hourly neutron monitor data into magnetic polarity cycles to investigate cycle-to-cycle variations in the phase and amplitude of the DV. The results show, in general, a similarity between each of the A<0 cycles and A>0 cycles, but with a phase change between the two. To investigate this further, we split the neutron monitor data by solar magnetic polarity between times when the dominant polarity was either directed outward (positive) or inward (negative) at the northern solar pole. We find that the maxima and minima of the DV changes by, typically, 1-2 h between the two polarity states for all non-polar neutron monitors. This difference between cycles becomes even larger in amplitude and phase with the removal of periods with enhanced DV caused by solar wind transients. The time difference between polarity cycles is found to vary in a 22-year cycle for both the maximum and minimum times of the DV. The times of the maximum and minimum in the DV do not always vary in the same manner between A>0 and A<0 polarity cycles, suggesting a slight change in the anisotropy vector of GCRs arriving at Earth between polarity cycles. Polar neutron monitors show differences in phase between polarity cycles which have asymptotic directions at mid-to-high latitudes. All neutron monitors show changes in the amplitude of the

  2. Observation of Galactic and Solar Cosmic Rays from October 13, 1959 to February 17, 1961 with Explorer VII (Satellite 1959 Iota)

    Science.gov (United States)

    Lin, Wei Ching

    1961-01-01

    This paper gives a comprehensive summary of cosmic-ray intensity observations at high latitudes over North America and over Australia in the altitude range 550 to 1100 km by means of Geiger tubes in Explorer VII (Earth satellite 1959 Iota). The time period covered is October 13, 1959 to February 17, 1961. Of special interest are the observational data on some 20 solar cosmic-ray events including major events of early April 1960, early September 1960, and of mid-November 1960. Detailed study of the latitude dependence of solar cosmic ray intensity will be presented in a later companion paper.

  3. Cosmic vacuum

    International Nuclear Information System (INIS)

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  4. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  5. Observations of the anisotropy in the cosmic microwave background by the FIRS, SK93, and MSAM-I experiments

    Science.gov (United States)

    Kowitt, Matt; Cheng, Ed; Silverberg, Bob; Ganga, Ken; Page, Lyman; Jarosik, Norm; Netterfield, Barth; Wilkinson, Dave; Meyer, Stephan; Inman, Casey; hide

    1994-01-01

    The observations and results from the FIRS, SK93, and MSAM-1, experiments are discussed. These experiments search for anisotropy in the cosmic microwave background over a range in angular scale from 180 deg to 0.5 deg and a range in frequency from 26 to 680 GHz. Emphasis is placed on the observing strategy and potential systematic errors. Contamination of the data by galactic sources is addressed. Future directions are indicated. The results for all three experiments, as found by us and others, are given in the context of the standard CDM model, Q(sub CDM), and the model-independent band-power estimates.

  6. Life extension program initiation at Davis-Besse nuclear power station

    International Nuclear Information System (INIS)

    Staudinger, Deborah K.

    1991-01-01

    Davis-Besse is a 900 MW Babcock and Wilcox designed plant located in Northwest Ohio. Effective December 31, 1990, the construction period was recovered making the current license expiration 2007. The economic effects of this extension reduced the depreciation expense for 1990 by $9,790,000 and increased earnings per share by $.04. This positive impact has resulted in an evaluation of pursuing license renewal for Davis-Besse in accordance with the proposed rule on license renewal (10CFR54 'Requirements for renewal of operating licenses for nuclear power plants'). This paper reviews preliminary efforts to evaluate these actions and summarizes strategies planned to ensure continued operation of Davis-Besse remains a viable option for base load generation for Toledo Edison. (author)

  7. Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Burger, W. J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dadzie, K.; Dai, Y. M.; Datta, A.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jia, Yi; Jinchi, H.; Kang, S. C.; Kanishev, K.; Khiali, B.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Kulemzin, A.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, Q.; Li, T. X.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lyu, S. S.; Machate, F.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palermo, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Perrina, C.; Phan, H. D.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wu, H.; Wu, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zannoni, M.; Zeissler, S.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, J. H.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration

    2018-01-01

    We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4 ×106 nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li /Be flux ratio of 2.0 ±0.1 . The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays.

  8. Cosmic strings

    International Nuclear Information System (INIS)

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs

  9. Summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The diagrams in this section of the publication illustrate the summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow observed in Japan. For convenience, the observational results are arranged by the solar rotation number. The aim of this illustration is to disseminate an outline of daily events observed in Japan for the benefit of active research workers who plan to make detailed study of the specific solar and terrestrial events. Therefore, the illustrations do not show all observational results in Japan but only representative ones at some key stations in Japan. They will suffice for the present purpose. The method of illustration shown in the instruction on the next page is still a preliminary one, and it is subject to change resulting from the kind advice of the users of this part of the publication. We welcome any advice for making the data arrangement and expression better and more convenient. (auth.)

  10. Instrument for observing transient cosmic gamma-ray sources for the ISEE-C Heliocentric spacecraft

    International Nuclear Information System (INIS)

    Evans, W.D.; Aiello, W.P.; Klebesadel, R.W.

    1977-12-01

    Satellite instrumentation that would serve as one element of a three-satellite network to provide precise directional information for the recently discovered cosmic gamma-ray bursts is described. The proposed network would be capable of determining source locations with uncertainties of less than one arc minute, sufficient for a meaningful optical and radio search. The association of the gamma bursts with a known type of astrophysical object provides the most direct method for establishing source distances and thus defining the overall energetics of the emission process

  11. Beryllium isotopes in primary cosmic radiation and light nuclei fragmentation observed in plastic detectors

    International Nuclear Information System (INIS)

    Fukui, Katsura.

    1975-01-01

    Plastic sheets consisting of 50 layers of Daicel and Kodak cellulose nitrate were flown from Fort Churchill, Canada in 1971 for the study of isotopic components of light nuclei, especially beryllium, in primary cosmic rays. In this plastic stack, 59 Be normals and 24 Be albedos as well as 109 Li normals and 53 Li albedos were identified. The center of mass and the standard deviation for Be 7 and Be 9+10 may be derived from the mass spectrum. (orig./WL) [de

  12. COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS OF TRANSLUCENT CLOUDS: Cyg OB2 8A

    International Nuclear Information System (INIS)

    Snow, Theodore P.; Destree, Joshua D.; Burgh, Eric B.; Ferguson, Ryan M.; Danforth, Charles W.; Cordiner, Martin

    2010-01-01

    Data from the Cosmic Origins Spectrograph (COS) are presented for the first highly reddened target (Cyg OB2 8A) under the COS Science Team's guaranteed time allocation. Column densities of ionic, atomic, and molecular species are reported and implications are discussed. Data from Cyg OB2 8A demonstrate the ability to analyze highly reddened interstellar sight lines with the COS that were unavailable to previous UV instruments. Measured column densities indicate that the Cyg OB2 8A line of sight contains multiple diffuse clouds rather than a dominant translucent cloud.

  13. Cosmic ray observations deep underground and further analysis of the evidence for the production of new particles

    International Nuclear Information System (INIS)

    Krishnaswamy, M.R.; Menon, M.G.K.; Narasimham, V.S.; Ito, N.; Kawakami, S.; Miyake, S.

    1976-01-01

    In a cosmic ray experiment at a depth of 7000 kg/cm 2 three clear new particle events are found, out of a total of 17 events, in which the zenith angle of the penetrating particles is greater than 50 0 , and which have so far been identified as arising from neutrino interactions. The new heavy particles, charged or neutral, must have had low momenta to be consistent which the large opening angles of their decay products. There exists so far no observation of these Kolar events in accelerator experiments with neutrinos. (BJ) [de

  14. The Anisotropy of the Microwave Background to l = 3500: Deep Field Observations with the Cosmic Background Imager

    Science.gov (United States)

    Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.

  15. Observation of galactic cosmic ray spallation events from the SoHO mission 20-Year operation of LASCO

    Science.gov (United States)

    Koutchmy, S.; Tavabi, E.; Urtado, O.

    2018-05-01

    A shower of secondary Cosmic Ray (CR) particles is produced at high altitudes in the Earth's atmosphere, so the primordial Galactic Cosmic Rays (GCRs) are never directly measured outside the Earth magnetosphere and atmosphere. They approach the Earth and other planets in the complex pattern of rigidity's dependence, generally excluded by the magnetosphere. GCRs revealed by images of single nuclear reactions also called spallation events are described here. Such an event was seen on Nov. 29, 2015 using a unique LASCO C3 space coronagraph routine image taken during the Solar and Heliospheric Observatory (SoHO) mission observing uninterruptedly at the Lagrangian L1 point. The spallation signature of a GCR identified well outside the Earth's magnetosphere is obtained for the 1st time. The resulting image includes different diverging linear "tracks" of varying intensity, leading to a single pixel; this frame identifies the site on the silicon CCD chip of the coronagraph camera. There was no solar flare reported at that time, nor Coronal Mass Ejection (CME) and no evidence of optical debris around the spacecraft. More examples of smaller CR events have been discovered through the 20 years of continuous observations from SoHO. This is the first spallation event from a CR, recorded outside the Earth's magnetosphere. We evaluate the probable energy of these events suggesting a plausible galactic source.

  16. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    Science.gov (United States)

    Ng, C. K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.

  17. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    International Nuclear Information System (INIS)

    Ng, C.K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation

  18. Optimization of Transition Edge Sensor Arrays for Cosmic Microwave Background Observations With the South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Junjia; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Cukierman, A.; Czaplewski, D.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Gannon, R.; Guyser, R.; Halverson, N. W.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Hubmayr, J.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thakur, R. B.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Yefremenko, V.; Yoon, K. W.

    2017-06-01

    In this paper, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South PoleTelescope. The camera, which contains similar to 16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs.

  19. Observation of the Crab Nebula with cosmic rays in the UV, or 'gamma astronomy at the moonlight'

    International Nuclear Information System (INIS)

    Sarazin, Xavier

    1994-01-01

    The aim of ARTEMIS (Antimatter Research Through the Earth Moon Ion Spectrometer) is to detect extragalactic antimatter at Very High (TeV) Energies in cosmic rays. The Earth's magnetic field is used as deflector of these ions, the moon serves as an absorber, and the atmosphere as a giant calorimeter. The cosmic rays are detected by Cerenkov imaging in the atmosphere. This Cerenkov flash must be detected in the UV because of the presence of moonlight, necessitating the construction of a novel UV camera. This is the first time Cerenkov imaging has been performed in the UV. The Crab Nebula, which has become a reference source for Very High Energy Gamma-ray Astronomy, enabled evaluation of the UV method in low moonlight. Our detection of a signal from the Crab validates, on the one hand, the Cerenkov imaging technique in the UV and, on the other hand, offers the possibility of uninterrupted nightly observations of a source, regardless of the moon's phase. (author) [fr

  20. Natural inflation: consistency with cosmic microwave background observations of Planck and BICEP2

    International Nuclear Information System (INIS)

    Freese, Katherine; Kinney, William H.

    2015-01-01

    Natural inflation is a good fit to all cosmic microwave background (CMB) data and may be the correct description of an early inflationary expansion of the Universe. The large angular scale CMB polarization experiment BICEP2 has announced a major discovery, which can be explained as the gravitational wave signature of inflation, at a level that matches predictions by natural inflation models. The natural inflation (NI) potential is theoretically exceptionally well motivated in that it is naturally flat due to shift symmetries, and in the simplest version takes the form V(φ) = Λ 4  [1 ± cos(Nφ/f)]. A tensor-to-scalar ratio r > 0.1 as seen by BICEP2 requires the height of any inflationary potential to be comparable to the scale of grand unification and the width to be comparable to the Planck scale. The Cosine Natural Inflation model agrees with all cosmic microwave background measurements as long as f ≥ m Pl (where m Pl  = 1.22 × 10 19  GeV) and Λ ∼ m GUT  ∼ 10 16  GeV. This paper also discusses other variants of the natural inflation scenario: we show that axion monodromy with potential V∝ φ 2/3 is inconsistent with the BICEP2 limits at the 95% confidence level, and low-scale inflation is strongly ruled out. Linear potentials V ∝ φ are inconsistent with the BICEP2 limit at the 95% confidence level, but are marginally consistent with a joint Planck/BICEP2 limit at 95%. We discuss the pseudo-Nambu Goldstone model proposed by Kinney and Mahanthappa as a concrete realization of low-scale inflation. While the low-scale limit of the model is inconsistent with the data, the large-field limit of the model is marginally consistent with BICEP2. All of the models considered predict negligible running of the scalar spectral index, and would be ruled out by a detection of running

  1. The Classroom Observation Schedule to Measure Intentional Communication (COSMIC): an observational measure of the intentional communication of children with autism in an unstructured classroom setting.

    Science.gov (United States)

    Pasco, Greg; Gordon, Rosanna K; Howlin, Patricia; Charman, Tony

    2008-11-01

    The Classroom Observation Schedule to Measure Intentional Communication (COSMIC) was devised to provide ecologically valid outcome measures for a communication-focused intervention trial. Ninety-one children with autism spectrum disorder aged 6 years 10 months (SD 16 months) were videoed during their everyday snack, teaching and free play activities. Inter-rater reliability was high and relevant items showed significant associations with comparable items from concurrent Autism Diagnostic Observation Schedule-Generic (Lord et al. 2000, J Autism Dev Disord 30(3):205-223) assessments. In a subsample of 28 children initial differences in rates of initiations, initiated speech/vocalisation and commenting were predictive of language and communication competence 15 months later. Results suggest that the use of observational measures of intentional communication in natural settings is a valuable assessment strategy for research and clinical practice.

  2. MODULATION OF GALACTIC COSMIC RAYS OBSERVED AT L1 IN SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Fludra, A., E-mail: Andrzej.Fludra@stfc.ac.uk [RAL Space, STFC Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX (United Kingdom)

    2015-01-20

    We analyze a unique 15 yr record of galactic cosmic-ray (GCR) measurements made by the SOHO Coronal Diagnostic Spectrometer NIS detectors, recording integrated GCR numbers with energies above 1.0 GeV between 1996 July and 2011 June. We are able to closely reproduce the main features of the SOHO/CDS GCR record using the modulation potential calculated from neutron monitor data by Usoskin et al. The GCR numbers show a clear solar cycle modulation: they decrease by 50% from the 1997 minimum to the 2000 maximum of the solar cycle, then return to the 1997 level in 2007 and continue to rise, in 2009 December reaching a level 25% higher than in 1997. This 25% increase is in contrast with the behavior of Ulysses/KET GCR protons extrapolated to 1 AU in the ecliptic plane, showing the same level in 2008-2009 as in 1997. The GCR numbers are inversely correlated with the tilt angle of the heliospheric current sheet. In particular, the continued increase of SOHO/CDS GCRs from 2007 until 2009 is correlated with the decrease of the minimum tilt angle from 30° in mid-2008 to 5° in late 2009. The GCR level then drops sharply from 2010 January, again consistent with a rapid increase of the tilt angle to over 35°. This shows that the extended 2008 solar minimum was different from the 1997 minimum in terms of the structure of the heliospheric current sheet.

  3. Long-Duration, Balloon-Borne Observations of Cosmic Microwave Background Anisotropy

    Science.gov (United States)

    1997-01-01

    Funds from this grant were used to support the continuing development of BOOMERANG, a 1.3 m, balloon-borne, attitude-stabilized telescope designed to measure the anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 12 min to 10 degrees. By the end of the funding period covered by this grant, the fabrication of most of the BOOMERANG sub-systems was completed, and integration and test of the payload at Caltech had begun. The project was continued under a new grant from NASA and continuing funding from the NSF. Payload integration and test was completed in April, 1997. A campaign to Palestine, Texas, resulted in two test flights during 1997. A flight on August 12, 1997 was terminated on ascent due to a leaky balloon. The payload was successfully recovered, refurbished, and flown again on August 29, 1997. The second flight was completely successful, and qualified the payload for an LDB flight from McMurdo Stn., Antarctica, in December 1998.

  4. The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    Science.gov (United States)

    Kogut, Alan J.; Fixsen, D. J.; Chuss, D. T.; Dotson, J.; Dwek, E.; Halpern, M.; Hinshaw, G. F.; Meyer, S. M.; Moseley, S. H.; Seiffert, M. D.; hide

    2011-01-01

    The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10..3 at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.

  5. Evolution of cosmic ray fluxes during the rising phase of solar cycle 23: ULYSSES EPAC and COSPIN/KET observations

    International Nuclear Information System (INIS)

    Heber, B.; Keppler, E.; Blake, J.B.; Fraenz, M.; Kunow, H.

    2000-01-01

    Galactic cosmic rays are entering the heliosphere from the interstellar medium, while anomalous cosmic rays are believed to be pickup ions accelerated at the heliospheric termination shock. Both particle species are modulated by the solar wind and the heliospheric magnetic field. Since 1997 solar activity increased and as a consequence the flux of galactic and anomalous cosmic ray decreased. In this paper we will discuss the variation of low energy anomalous cosmic rays as measured by the Ulysses Energetic Particle Composition Experiment (EPAC) and the Kiel Electron Telescope (KET) on board Ulysses. Specifically we are addressing the question: Are there differences in the modulation of galactic and anomalous cosmic rays and what are possible implication for the modulation of cosmic rays in the heliosphere?

  6. Parity violation constraints using cosmic microwave background polarization spectra from 2006 and 2007 observations by the QUaD polarimeter.

    Science.gov (United States)

    Wu, E Y S; Ade, P; Bock, J; Bowden, M; Brown, M L; Cahill, G; Castro, P G; Church, S; Culverhouse, T; Friedman, R B; Ganga, K; Gear, W K; Gupta, S; Hinderks, J; Kovac, J; Lange, A E; Leitch, E; Melhuish, S J; Memari, Y; Murphy, J A; Orlando, A; Piccirillo, L; Pryke, C; Rajguru, N; Rusholme, B; Schwarz, R; O'Sullivan, C; Taylor, A N; Thompson, K L; Turner, A H; Zemcov, M

    2009-04-24

    We constrain parity-violating interactions to the surface of last scattering using spectra from the QUaD experiment's second and third seasons of observations by searching for a possible systematic rotation of the polarization directions of cosmic microwave background photons. We measure the rotation angle due to such a possible "cosmological birefringence" to be 0.55 degrees +/-0.82 degrees (random) +/-0.5 degrees (systematic) using QUaD's 100 and 150 GHz temperature-curl and gradient-curl spectra over the spectra over the multipole range 200

  7. Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2012-01-01

    The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.

  8. VizieR Online Data Catalog: Cosmic flows observations (Courtois+, 2011)

    Science.gov (United States)

    Courtois, H. M.; Tully, R. B.; Makarov, D. I.; Mitronova, S.; Koribalski, B.; Karachentsev, I. D.; Fisher, J. R.

    2012-02-01

    Observations with the Green Bank Telescope (GBT) were carried out from 2007 February to 2010 June. The Parkes 64-m radiotelescope observations released in this paper were carried out in 2009 February 1-10. (1 data file).

  9. Cosmic Topology

    Science.gov (United States)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  10. Coordinated Control Scheme of Battery Energy Storage System (BESS) and Distributed Generations (DGs) for Electric Distribution Grid Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Zhao, Haoran; Wu, Qiuwei

    2012-01-01

    into the islanding operation mode, while the centralized joint load frequency control (CJLFC) utilizing DGs handles the secondary frequency regulation. The BESS with the associated controllers has been modelled in Real-time digital simulator (RTDS) in order to identify the improvement of the frequency and voltage......This paper describes a coordinated control scheme of battery energy storage system (BESS) and distributed generations (DGs) for electric distribution grid operation. The BESS is designed to stabilize frequency and voltages as a primary control after the electric distribution system enters...... response. The modified IEEE 9-bus system, which is comprised of several DG units, wind power plant and the BESS, has been employed to illustrate the performance of the proposed coordinated flexible control scheme using RTDS in order to verify its practical efficacy....

  11. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond

    NARCIS (Netherlands)

    Bajracharya, S.; Sharma, M.; Mohanakrishna, Gunda; Benneton, Xochitl Dominguez; Strik, D.P.B.T.B.; Sarma, Priyangshu M.; Pant, Deepak

    2016-01-01

    Bioelectrochemical systems (BESs) are unique systems capable of converting chemical energy into electrical energy (and vice-versa) while employing microbes as catalysts. Such organic wastes including low-strength wastewaters and lignocellulosic biomass were converted into electricity with microbial

  12. SVD/MCMC Data Analysis Pipeline for Global Redshifted 21-cm Spectrum Observations of the Cosmic Dawn and Dark Ages

    Science.gov (United States)

    Burns, Jack O.; Tauscher, Keith; Rapetti, David; Mirocha, Jordan; Switzer, Eric

    2018-01-01

    We have designed a complete data analysis pipeline for constraining Cosmic Dawn physics using sky-averaged spectra in the VHF range (40-200 MHz) obtained either from the ground (e.g., the Experiment to Detect Global Epoch of Reionization Signal, EDGES; and the Cosmic Twilight Polarimeter, CTP) or from orbit above the lunar farside (e.g., the Dark Ages Radio Explorer, DARE). In the case of DARE, we avoid Earth-based RFI, ionospheric effects, and radio solar emissions (when observing at night). To extract the 21-cm spectrum, we parametrize the cosmological signal and systematics with two separate sets of modes defined through Singular Value Decomposition (SVD) of training set curves. The training set for the 21-cm spin-flip brightness temperatures is composed of theoretical models of the first stars, galaxies and black holes created by varying physical parameters within the ares code. The systematics training set is created using sky and beam data to model the beam-weighted foregrounds (which are about four orders of magnitude larger than the signal) as well as expected lab data to model receiver systematics. To constrain physical parameters determining the 21-cm spectrum, we apply to the extracted signal a series of consecutive fitting techniques including two usages of a Markov Chain Monte Carlo (MCMC) algorithm. Importantly, our pipeline efficiently utilizes the significant differences between the foreground and the 21-cm signal in spatial and spectral variations. In addition, it incorporates for the first time polarization data, dramatically improving the constraining power. We are currently validating this end-to-end pipeline using detailed simulations of the signal, foregrounds and instruments. This work was directly supported by the NASA Solar System Exploration Research Virtual Institute cooperative agreement number 80ARC017M0006 and funding from the NASA Ames Research Center cooperative agreement NNX16AF59G.

  13. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, T.H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /Royal Inst. Tech., Stockholm /Stockholm U., OKC /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Bari U. /INFN, Bari /INFN, Bari; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  14. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons

    Science.gov (United States)

    Morishima, Kunihiro; Kuno, Mitsuaki; Nishio, Akira; Kitagawa, Nobuko; Manabe, Yuta; Moto, Masaki; Takasaki, Fumihiko; Fujii, Hirofumi; Satoh, Kotaro; Kodama, Hideyo; Hayashi, Kohei; Odaka, Shigeru; Procureur, Sébastien; Attié, David; Bouteille, Simon; Calvet, Denis; Filosa, Christopher; Magnier, Patrick; Mandjavidze, Irakli; Riallot, Marc; Marini, Benoit; Gable, Pierre; Date, Yoshikatsu; Sugiura, Makiko; Elshayeb, Yasser; Elnady, Tamer; Ezzy, Mustapha; Guerriero, Emmanuel; Steiger, Vincent; Serikoff, Nicolas; Mouret, Jean-Baptiste; Charlès, Bernard; Helal, Hany; Tayoubi, Mehdi

    2017-12-01

    The Great Pyramid, or Khufu’s Pyramid, was built on the Giza plateau in Egypt during the fourth dynasty by the pharaoh Khufu (Cheops), who reigned from 2509 BC to 2483 BC. Despite being one of the oldest and largest monuments on Earth, there is no consensus about how it was built. To understand its internal structure better, we imaged the pyramid using muons, which are by-products of cosmic rays that are only partially absorbed by stone. The resulting cosmic-ray muon radiography allows us to visualize the known and any unknown voids in the pyramid in a non-invasive way. Here we report the discovery of a large void (with a cross-section similar to that of the Grand Gallery and a minimum length of 30 metres) situated above the Grand Gallery. This constitutes the first major inner structure found in the Great Pyramid since the nineteenth century. The void, named ScanPyramids’ Big Void, was first observed with nuclear emulsion films installed in the Queen’s chamber, then confirmed with scintillator hodoscopes set up in the same chamber and finally re-confirmed with gas detectors outside the pyramid. This large void has therefore been detected with high confidence by three different muon detection technologies and three independent analyses. These results constitute a breakthrough for the understanding of the internal structure of Khufu’s Pyramid. Although there is currently no information about the intended purpose of this void, these findings show how modern particle physics can shed new light on the world’s archaeological heritage.

  15. Observation of superheavy primary cosmic ray nuclei with solid state track detectors and x-ray films

    International Nuclear Information System (INIS)

    Doke, Tadayoshi; Hayashi, Takayoshi; Ito, Kensai; Yanagimachi, Tomoki; Kobayashi, Shigeru.

    1977-01-01

    The measurements of energy spectra and the nuclear charge distribution of superheavy nuclei heavier than iron in primary cosmic ray can provide information on the origin, propagation and life time of the cosmic ray. Since incident particles are in the region of relativistic velocity (the low energy cosmic ray below the cutoff energy is forbidden from entering), the charges of cosmic ray nuclei can be determined without knowing the energy of particles. The balloon-borne solid state track detector and plastic and X-ray films were employed for the detection of superheavy cosmic ray, and the five events were detected with the cellulose nitrate film. The flux of superheavy nuclei is predicted from the present analysis. (Yoshimori, M.)

  16. Interfacing systems loss of coolant accident (ISLOCA) pressure capacity methodology and Davis-Besse results

    International Nuclear Information System (INIS)

    Wesley, D.A.

    1991-01-01

    A loss of coolant accident resulting from the overpressurization by reactor coolant fluid of a system designed for low-pressure, low-temperature service has been identified as a potential contributor to nuclear power plant risk. In this paper, the methodology developed to assess the probability of failure as a function of internal pressure is presented, and sample results developed for the controlling failure modes and locations of four fluid systems at the Davis-Besse Plant are shown. Included in this evaluation are the tanks, heat exchangers, filters, pumps, valves, and flanged connections for each system. The variability in the probability of failure is included, and the estimated leak rates or leak areas are given for the controlling modes of failure. For this evaluation, all failures are based on quasistatic pressures since the probability of dynamic effects resulting from such causes as water hammer have been initially judged to be negligible for the Davis-Besse plant ISLOCA

  17. The new enrichment plant of AREVA, a worthy heir of Georges Besse's industrial visions

    International Nuclear Information System (INIS)

    Oursel, L.

    2011-01-01

    The Georges Besse II enrichment plant was inaugurated on December 14., 2010. This plant was the most important investment in France during the last decade, about 3 billion euros. This plant is based on the centrifugation technology instead of the gaseous diffusion that is still in operation in the Georges Besse plant of EURODIF. This plant has been designed in an environment-friendly approach: the centrifugation technology uses 50 times less electricity than gaseous diffusion, does not require taking water from the Rhone river for cooling, does not produce sound nuisances, and the moderate height of the buildings allows a better integration in the environment. The low amount of matter involved in the centrifugation process gives the plant a high level of safety. The plant has a capacity of 7.5 millions UTS with a possible extension to 11 millions UTS. (A.C.)

  18. Developing excellence awareness at Davis-Besse through engineering quality management

    International Nuclear Information System (INIS)

    Gaudette, M.R.; Lash, J.H.; Haiman, D.L.

    1989-01-01

    At Davis-Besse nuclear power station engineering quality management includes a variety of chartered functions whose ultimate objective is to improve product and service quality and process efficiency. These functions were assigned in late 1988 to engineering assurance personnel, a section of the engineering department which reports directly to the engineering director but is independent of design activities. This independence ensures objectivity and allows the improvement process to span functional areas so that changes made in one engineering section do not negatively impact the activities of another section. The engineering quality management functions performed by the engineering assurance group are summarized. Engineering quality management at Davis-Besse has increased the degree of excellence evident in engineering products and services

  19. Cosmic Ether

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.

  20. Space Telescope and Optical Reverberation Mapping Project.I. Ultraviolet Observations of the Seyfert 1 Galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope

    NARCIS (Netherlands)

    De Rosa, G.; Peterson, B.M.; Ely, J.; Kriss, G.A.; Crenshaw, D.M.; Horne, K.; Korista, K.T.; Netzer, H.; Pogge, R.W.; Arévalo, P.; Barth, A.J.; Bentz, M.C.; Brandt, W.N.; Breeveld, A.A.; Brewer, B.J.; Dalla Bontà, E.; De Lorenzo-Cáceres, A.; Denney, K.D.; Dietrich, M.; Edelson, R.; Evans, P.A.; Fausnaugh, M.M.; Gehrels, N.; Gelbord, J.M.; Goad, M.R.; Grier, C.J.; Grupe, D.; Hall, P.B.; Kaastra, J.; Kelly, B.C.; Kennea, J.A.; Kochanek, C.S.; Lira, P.; Mathur, S.; McHardy, I.M.; Nousek, J.A.; Pancoast, A.; Papadakis, I.; Pei, L.; Schimoia, J.S.; Siegel, M.; Starkey, D.; Treu, T.; Uttley, P.; Vaughan, S.; Vestergaard, M.; Villforth, C.; Yan, H.; Young, S.; Zu, Y.

    2015-01-01

    We describe the first results from a six-month long reverberation-mapping experiment in the ultraviolet based on 171 observations of the Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Significant correlated variability is found in the continuum and

  1. Cosmic Accelerators: An Introduction

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2005-01-01

    High energy, relativistic, particles are an essential component of the Universe and play a major role in astrophysics. In a few years we will reach the centennial of the discovery of cosmic rays; all through this century the properties, origin, and effects of this radiation have intrigued researchers in astrophysics and elementary particles alike. We briefly review the history, current status, and future perspectives of cosmic ray research. Emphasis will be placed on the multitude of cosmic accelerators, direct observations of these objects, and the effects of cosmic rays in the Galaxy and beyond

  2. Possible cosmic effects on growth rythms observed in M. bovis BGG ''Praha'' in the years 1964 to 1976

    International Nuclear Information System (INIS)

    Sula, L.; Krivsky, L.

    1977-01-01

    Over a period of 12 years the variability was observed of the growth of the Mycobacterium bovis BCG Praha strain. The total weight of the biomass, the number of live embryos, acidoresistance, the morphology, the lipid, protein and polysaccharide contents were studied. The protein and polysaccharide contents varied within the range of 39 to 41% and 16 to 18%. Acidoresistance and micromorphology did not show any significant changes. Changes were observed in the biomass yields in the individual batches of the BCG strain. These changes did not have a cyclic character but recurred in short intervals and no appropriate explanation was found for their occurrence. The correlation was studied between the growth of the biomass and solar activity and the effect was studied of short solar activity on the subsequent trend of the weight curve of medium dry BCG. It was found that following solar proton flares the weight curve tended to increase in a greater number of cases. The Forbush effect was used in the study. It was found in 145 (68%) cases that in the following days an increase occurred in the medium-dry weight of the BCG while in 68 cases (32%) the weight curve showed a decreasing trend. It thus appears that the level of cosmic radiation could influence the curve of the medium-dry weight of the BCG. (J.P.)

  3. Advanced techniques for high resolution spectroscopic observations of cosmic gamma-ray sources

    International Nuclear Information System (INIS)

    Matteson, J.L.; Pelling, M.R.; Peterson, L.E.

    1985-08-01

    We describe an advanced gamma-ray spectrometer that is currently in development. It will obtain a sensitivity of -4 ph/cm -2 -sec in a 6 hour balloon observation and uses innovative techniques for background reduction and source imaging

  4. Deriving the solar activity cycle modulation on cosmic ray intensity observed by Nagoya muon detector from October 1970 until December 2012

    Science.gov (United States)

    de Mendonça, Rafael R. S.; Braga, Carlos. R.; Echer, Ezequiel; Dal Lago, Alisson; Rockenbach, Marlos; Schuch, Nelson J.; Munakata, Kazuoki

    2017-10-01

    It is well known that the cosmic ray intensity observed at the Earth's surface presents an 11 and 22-yr variations associated with the solar activity cycle. However, the observation and analysis of this modulation through ground muon detectors datahave been difficult due to the temperature effect. Furthermore, instrumental changes or temporary problems may difficult the analysis of these variations. In this work, we analyze the cosmic ray intensity observed since October 1970 until December 2012 by the Nagoya muon detector. We show the results obtained after analyzing all discontinuities and gaps present in this data and removing changes not related to natural phenomena. We also show the results found using the mass weighted method for eliminate the influence of atmospheric temperature changes on muon intensity observed at ground. As a preliminary result of our analyses, we show the solar cycle modulation in the muon intensity observed for more than 40 years.

  5. OBSERVATIONS OF HIGH-ENERGY COSMIC-RAY ELECTRONS FROM 30 GeV TO 3 TeV WITH EMULSION CHAMBERS

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T. [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara 252-5258 (Japan); Komori, Y. [Faculty of Health and Social Services, Kanagawa University of Human Services, Yokosuka 238-0013 (Japan); Yoshida, K.; Yanagisawa, K. [College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570 (Japan); Nishimura, J.; Yamagami, T.; Saito, Y. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 229-8510 (Japan); Tateyama, N. [Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Yuda, T. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Wilkes, R. J., E-mail: tadasik-112850@jasper.dti.ne.jp, E-mail: komori-y@kuhs.ac.jp, E-mail: yoshida@shibaura-it.ac.jp, E-mail: nisimura@icrr.u-tokyo.ac.jp, E-mail: tateyama@n.kanagawa-u.ac.jp, E-mail: yuda@icrr.u-tokyo.ac.jp, E-mail: wilkes@u.washington.edu [Department of Physics, University of Washington, Seattle, WA 98195-1560 (United States)

    2012-12-01

    We have performed a series of cosmic-ray electron observations using balloon-borne emulsion chambers since 1968. While we previously reported the results from subsets of the exposures, the final results of the total exposures up to 2001 are presented here. Our successive experiments have yielded a total exposure of 8.19 m{sup 2} sr day at altitudes of 4.0-9.4 g cm{sup -2}. The performance of the emulsion chambers was examined by accelerator beam tests and Monte Carlo simulations, and the on-board calibrations were carried out by using the flight data. In this work, we present the cosmic-ray electron spectrum in the energy range from 30 GeV to 3 TeV at the top of the atmosphere, which is well represented by a power-law function with an index of -3.28 {+-} 0.10. The observed data can also be interpreted in terms of diffusive propagation models. The evidence of cosmic-ray electrons up to 3 TeV suggests the existence of cosmic-ray electron sources at distances within {approx}1 kpc and times within {approx}1 Multiplication-Sign 10{sup 5} yr ago.

  6. Validation of Refractivity Profiles Retrieved from FORMOSAT-3/COSMIC Radio Occultation Soundings: Preliminary Results of Statistical Comparisons Utilizing Balloon-Borne Observations

    Directory of Open Access Journals (Sweden)

    Hiroo Hayashi

    2009-01-01

    Full Text Available The GPS radio occultation (RO soundings by the FORMOSAT-3/COSMIC (Taiwan¡¦s Formosa Satellite Misssion #3/Constellation Observing System for Meteorology, Ionosphere and Climate satellites launched in mid-April 2006 are compared with high-resolution balloon-borne (radiosonde and ozonesonde observations. This paper presents preliminary results of validation of the COSMIC RO measurements in terms of refractivity through the troposphere and lower stratosphere. With the use of COSMIC RO soundings within 2 hours and 300 km of sonde profiles, statistical comparisons between the collocated refractivity profiles are erformed for some tropical regions (Malaysia and Western Pacific islands where moisture-rich air is expected in the lower troposphere and for both northern and southern polar areas with a very dry troposphere. The results of the comparisons show good agreement between COSMIC RO and sonde refractivity rofiles throughout the troposphere (1 - 1.5% difference at most with a positive bias generally becoming larger at progressively higher altitudes in the lower stratosphere (1 - 2% difference around 25 km, and a very small standard deviation (about 0.5% or less for a few kilometers below the tropopause level. A large standard deviation of fractional differences in the lowermost troposphere, which reaches up to as much as 3.5 - 5%at 3 km, is seen in the tropics while a much smaller standard deviation (1 - 2% at most is evident throughout the polar troposphere.

  7. Observation of intensity of cosmic rays and daily magnetic shifts near meridian 70° in the South America

    Science.gov (United States)

    Cordaro, E. G.; Gálvez, D.; Laroze, D.

    2016-05-01

    In analysis of experiments carried during September 2008 using secondary cosmic ray detectors located in Chacaltaya (Bolivia) and Niteroi (Brazil), Augusto et al. (2010) showed an increase in the intensity of charged particles which takes place 3 h after sunrise and lasts until 1 h after sunset, furthermore they said that during this period the solar magnetic field lines overtake the Earth‧s surface. These stations are located within the South Atlantic Magnetic Anomaly (SAMA), having both different magnetic rigidities. To reproduce data from the Niteroi and Chacaltaya stations, we record data during the same hours and days using our neutron monitors, muon telescopes and magnetometers within the stations Putre and Los Cerrillos. Our observation stations in Putre and Cerrillos are located at 18°11‧47.8″S, 69°33‧10.9″W at an altitude of 3600 m and 33°29‧42.3″S, 70°42‧59.81″W with 570 m height above sea level, respectively. These stations are located within the South Atlantic Anomaly (SAMA) and are separated approximately 1700 km from each other and 1700 km from the center of the anomaly. Our network is composed furthermore by two auxiliary Cosmic Ray and/or Geomagnetic stations located at different latitudes along 70°W meridian, LARC and O'Higgins stations, which are located within Antarctic territory, covering a broad part of the Southern Hemisphere. Our magnetometer data shows that for each of the components, shifts in the magnetic field intensity for every station (even for those out of the SAMA) lasted between 3 and 4 h after sunrise and 1 and 2 h past sunset, which are the periods when the geomagnetic field is modulated by the transit of the dayside to nightside and nightside to dayside. We believe that, although the magnetometric data indicates the magnetic reconnection for the Chilean region, there is no direct influence from the SAMA other than the lower rigidity cut-off that leads to an increased count rate. Other details about the

  8. Atmospheric gravity wave detection following the 2011 Tohoku earthquakes combining COSMIC occultation and GPS observations

    Science.gov (United States)

    Yan, X.; Tao, Y.; Xia, C.; Qi, Y.; Zuo, X.

    2017-12-01

    Several studies have reported the earthquake-induced atmospheric gravity waves detected by some new technologies such as airglow (Makela et al., 2011), GOCE (Garcia et al., 2013), GRACE (Yang et al., 2014), F3/C radio occultation sounding (Coïsson et al., 2015). In this work, we collected all occultation events on 11 March, and selected four events to analyze at last. The original and filtered podTEC is represented as function of the altitude of the impact parameter and UT of the four events. Then, the travel time diagrams of filtered podTEC derived from the events were analyzed. The occultation signal from one event (marked as No.73) is consistent with the previous results reported by Coïsson. 2015, which is corresponds to the ionospheric signal induced from tsunami gravity wave. What is noticeable, in this work, is that three occultation events of No.403, 77 and 118 revealed a disturbance of atmospheric gravity wave with velocity 300m/s, preceding the tsunami. It would probably be correspond to the gravity waves caused by seismic rupture but not tsunami. In addition, it can be seen that the perturbation height of occultation observation TEC is concentrated at 200-400km, corresponding ionosphere F region. The signals detected above are compared with GPS measurements of TEC from GEONET and IGS. From GPS data, traveling ionospheric disturbances were observed spreading out from the epicenter as a quasi-circular propagation pattern with the time. Exactly, we observed an acoustic wave coupled with Rayleigh wave starting from the epicenter with a speed of 3.0km/s and a superimposed acoustic-gravity wave moving with a speed of 800m/s. The acoustic-gravity wave generated at the epicenter and gradually attenuated 800km away, then it is replaced by a gravity wave coupled with the tsunami that moves with a speed of between 100 and 300m/s. It is necessary to confirm the propagation process of the waves if we attempt to evaluate the use of ionospheric seismology as a

  9. Observing the Cosmic Microwave Background Polarization with Variable-delay Polarization Modulators for the Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; CLASS Collaboration

    2018-01-01

    The search for inflationary primordial gravitational waves and the optical depth to reionization, both through their imprint on the large angular scale correlations in the polarization of the cosmic microwave background (CMB), has created the need for high sensitivity measurements of polarization across large fractions of the sky at millimeter wavelengths. These measurements are subjected to instrumental and atmospheric 1/f noise, which has motivated the development of polarization modulators to facilitate the rejection of these large systematic effects.Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a moveable flat mirror; varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The reflective and scalable nature of the VPM enables its placement as the first optical element in a reflecting telescope. This simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization farther along in the optical chain.The Q-Band CLASS VPM was the first VPM to begin observing the CMB full time in 2016. I will be presenting its design and characterization as well as demonstrating how modulating polarization significantly rejects atmospheric and instrumental long time scale noise.

  10. HelMod in the Works: From Direct Observations to the Local Interstellar Spectrum of Cosmic-Ray Electrons

    Science.gov (United States)

    Boschini, M. J.; Della Torre, S.; Gervasi, M.; Grandi, D.; Jóhannesson, G.; La Vacca, G.; Masi, N.; Moskalenko, I. V.; Pensotti, S.; Porter, T. A.; Quadrani, L.; Rancoita, P. G.; Rozza, D.; Tacconi, M.

    2018-02-01

    The local interstellar spectrum (LIS) of cosmic-ray (CR) electrons for the energy range 1 MeV to 1 TeV is derived using the most recent experimental results combined with the state-of-the-art models for CR propagation in the Galaxy and in the heliosphere. Two propagation packages, GALPROP and HELMOD, are combined to provide a single framework that is run to reproduce direct measurements of CR species at different modulation levels, and at both polarities of the solar magnetic field. An iterative maximum-likelihood method is developed that uses GALPROP-predicted LIS as input to HELMOD, which provides the modulated spectra for specific time periods of the selected experiments for model-data comparison. The optimized HelMod parameters are then used to adjust GALPROP parameters to predict a refined LIS with the procedure repeated subject to a convergence criterion. The parameter optimization uses an extensive data set of proton spectra from 1997 to 2015. The proposed CR electron LIS accommodates both the low-energy interstellar spectra measured by Voyager 1 as well as the high-energy observations by PAMELA and AMS-02 that are made deep in the heliosphere; it also accounts for Ulysses counting rate features measured out of the ecliptic plane. The interstellar and heliospheric propagation parameters derived in this study agree well with our earlier results for CR protons, helium nuclei, and anti-protons propagation and LIS obtained in the same framework.

  11. Inferred Cosmic-Ray Spectrum from Fermi Large Area Telescope γ-Ray Observations of Earth’s Limb

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; et al.

    2014-04-17

    Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly-discovered features may offer a clue to the origin of high-energy CRs. We use the ${\\it Fermi}$ Large Area Telescope observations of the $\\gamma$-ray emission from the Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range $\\sim 90~$GeV-$6~$TeV (derived from a photon energy range $15~$GeV-$1~$TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index $2.68 \\pm 0.04$ and $2.61 \\pm 0.08$ above $\\sim 200~$GeV, respectively.

  12. Summary of exotic cosmic-ray events observed with the Mt. Fuji emulsion chambers

    International Nuclear Information System (INIS)

    Akashi, M.; Amenomori, M.; Konishi, E.

    1982-01-01

    The characters of peculiar gamma-ray families observed by a total of 700 m 2 year exposure of emulsion chambers at Mt.Fuji are presented. Their peculiarities are investigated in terms of clusterization and intercorrelation of various quantities of families. Double core families having clearly separated cores are selected by the cluster analysis method, and their structures are discussed in connection with large Pt and the type of incident primaries. The cluster analysis method is also applied to the examination of large multiplicity events so that we are free the limitation of spatial resolution. From the analysis of intercorrelation, it is stressed that the experimental data show larger fluctuations than expected ones from some model calculations

  13. Cosmic ray: Studying the origin

    International Nuclear Information System (INIS)

    Szabelski, J.

    1997-01-01

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10 15 eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O 19 eV (for these are the highest energies observed in nature). (author)

  14. ASSOCIATIONS BETWEEN SMALL-SCALE STRUCTURE IN LOCAL GALACTIC NEUTRAL HYDROGEN AND IN THE COSMIC MICROWAVE BACKGROUND OBSERVED BY PLANCK

    Energy Technology Data Exchange (ETDEWEB)

    Verschuur, Gerrit L., E-mail: gverschu@naic.edu [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States)

    2015-11-01

    High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While several attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.

  15. ASSOCIATIONS BETWEEN SMALL-SCALE STRUCTURE IN LOCAL GALACTIC NEUTRAL HYDROGEN AND IN THE COSMIC MICROWAVE BACKGROUND OBSERVED BY PLANCK

    International Nuclear Information System (INIS)

    Verschuur, Gerrit L.

    2015-01-01

    High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While several attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data

  16. Testing a direction-dependent primordial power spectrum with observations of the cosmic microwave background

    International Nuclear Information System (INIS)

    Ma Yinzhe; Efstathiou, George; Challinor, Anthony

    2011-01-01

    Statistical isotropy is often assumed in cosmology and should be tested rigorously against observational data. We construct simple quadratic estimators to reconstruct asymmetry in the primordial power spectrum from CMB temperature and polarization data and verify their accuracy using simulations with quadrupole power asymmetry. We show that the Planck mission, with its millions of signal-dominated modes of the temperature anisotropy, should be able to constrain the amplitude of any spherical multipole of a scale-invariant quadrupole asymmetry at the 0.01 level (2σ). Almost independent constraints can be obtained from polarization at the 0.03 level after four full-sky surveys, providing an important consistency test. If the amplitude of the asymmetry is large enough, constraining its scale dependence should become possible. In scale-free quadrupole models with 1% asymmetry, consistent with the current limits from WMAP temperature data (after correction for beam asymmetries), Planck should constrain the spectral index q of power-law departures from asymmetry to Δq=0.3. Finally, we show how to constrain models with axisymmetry in the same framework. For scale-free quadrupole models, Planck should constrain the direction of the asymmetry to a 1σ accuracy of about 2 degrees using one year of temperature data.

  17. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  18. Evidence for massive neutrinos from cosmic microwave background and lensing observations.

    Science.gov (United States)

    Battye, Richard A; Moss, Adam

    2014-02-07

    We discuss whether massive neutrinos (either active or sterile) can reconcile some of the tensions within cosmological data that have been brought into focus by the recently released Planck data. We point out that a discrepancy is present when comparing the primary CMB and lensing measurements both from the CMB and galaxy lensing data using CFHTLenS, similar to that which arises when comparing CMB measurements and SZ cluster counts. A consistent picture emerges and including a prior for the cluster constraints and BAOs we find that for an active neutrino model with three degenerate neutrinos, ∑m(ν)=(0.320±0.081)  eV, whereas for a sterile neutrino, in addition to 3 neutrinos with a standard hierarchy and ∑m(ν)=0.06  eV, m(ν,sterile)(eff)=(0.450±0.124)  eV and ΔN(eff)=0.45±0.23. In both cases there is a significant detection of modification to the neutrino sector from the standard model and in the case of the sterile neutrino it is possible to reconcile the BAO and local H0 measurements. However, a caveat to our result is some internal tension between the CMB and lensing and cluster observations, and the masses are in excess of those estimated from the shape of the matter power spectrum from galaxy surveys.

  19. Temperature properties in the tropical tropopause layer and their correlations with Outgoing Longwave Radiation: FORMOSAT-3/COSMIC observations

    Science.gov (United States)

    Wang, Kaiti; Wu, Yi-chao; Lin, Jia-Ting; Tan, Pei-Hua

    2018-06-01

    The properties of temperature at the level of lapse rate minimum (LRM) in the tropical tropopause layer between 20°S and 20°N are investigated using 3-year radio occultation observations based on the FORMOSAT-3/COSMIC mission from November of 2006 to October of 2009. The correlations between this LRM temperature and Outgoing Longwave Radiation (OLR) are analyzed by 5° × 5° grids in longitude and latitude. Two primary regions, one from 60°E to 180°E and the other from 90°W to 30°E, are found to have higher correlations and can be associated with regions of lower OLR values. The patterns of this spatial distributions of regions with higher correlations begin to change more obviously when the altitude ascends to the level of Cold Point Tropopause (CPT). This correlation at the LRM altitude in annual and seasonal scales also shows spatial distributions associated with OLR intensities. The altitudinal dependence of the correlations between temperature and OLR is further analyzed based on grids of high correlations with significance at LRM altitude, for the two primary regions. The results show that for the different time scales in this analysis (3-year, annual, and seasonal), the correlations all gradually decrease above the LRM levels but maintain a significant level to as high as 2.5-3.5 km. Below the LRM level, the correlation decreases with a slower rate as the altitude descends and still keeps significant at the deep 5 km level. These suggest that the vertical temperature profiles could be affected by the convection mechanism for a wide range of altitudes in the troposphere even above LRM altitude. Applying the same analysis on one complete La Niña event during the survey period also reveals similar features.

  20. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    International Nuclear Information System (INIS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B.S.; Adamczyk, L.; Adams, D.L.; Adelman, J.

    2016-01-01

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β * are studied.

  1. Modeling supernova remnants: effects of diffusive cosmic-ray acceleration on the evolution and application to observations

    NARCIS (Netherlands)

    Kosenko, D.; Blinnikov, S.; Vink, J.

    2011-01-01

    We present numerical models for supernova remnant evolution, using a new version of the hydrodynamical code SUPREMNA. We added a cosmic-ray diffusion equation to the code scheme, employing a two-fluid approximation. We investigate the dynamics of the simulated supernova remnants with different

  2. Pressure-dependent fragilities for piping components: Pilot study on Davis-Besse Nuclear Power Station

    International Nuclear Information System (INIS)

    Wesley, D.A.; Nakaki, D.K.; Hadidi-Tamjed, H.; Kipp, T.R.

    1990-10-01

    The capacities of four, low-pressure fluid systems to withstand pressures and temperatures above the design levels were established for the Davis-Besse Nuclear Power Station. The results will be used in evaluating the probability of plant damage from Interfacing System Loss of Coolant Accidents (ISLOCA) as part of the probabilistic risk assessment of the Davis-Besse nuclear power station undertaken by EG ampersand G Idaho, Inc. Included in this evaluation are the tanks, heat exchangers, filters, pumps, valves, and flanged connections for each system. The probabilities of failure, as a function of internal pressure, are evaluated as well as the variabilities associated with them. Leak rates or leak areas are estimated for the controlling modes of failure. The pressure capacities for the pipes and vessels are evaluated using limit-state analyses for the various failure modes considered. The capacities are dependent on several factors, including the material properties, modeling assumptions, and the postulated failure criteria. The failure modes for gasketed-flange connections, valves, and pumps do not lend themselves to evaluation by conventional structural mechanics techniques and evaluation must rely primarily on the results from ongoing gasket research test programs and available vendor information and test data. 21 refs., 7 figs., 52 tabs

  3. Optimal Operation and Management of Smart Grid System with LPC and BESS in Fault Conditions

    Directory of Open Access Journals (Sweden)

    Ryuto Shigenobu

    2016-12-01

    Full Text Available Distributed generators (DG using renewable energy sources (RESs have been attracting special attention within distribution systems. However, a large amount of DG penetration causes voltage deviation and reverse power flow in the smart grid. Therefore, the smart grid needs a solution for voltage control, power flow control and power outage prevention. This paper proposes a decision technique of optimal reference scheduling for a battery energy storage system (BESS, inverters interfacing with a DG and voltage control devices for optimal operation. Moreover, the reconfiguration of the distribution system is made possible by the installation of a loop power flow controller (LPC. Two separate simulations are provided to maintain the reliability in the stable power supply and economical aspects. First, the effectiveness of the smart grid with installed BESS or LPC devices is demonstrated in fault situations. Second, the active smart grid using LCPs is proposed. Real-time techniques of the dual scheduling algorithm are applied to the system. The aforementioned control objective is formulated and solved using the particle swarm optimization (PSO algorithm with an adaptive inertia weight (AIW function. The effectiveness of the optimal operation in ordinal and fault situations is verified by numerical simulations.

  4. Report of the independent Ad Hoc Group for the Davis-Besse incident

    International Nuclear Information System (INIS)

    1986-06-01

    The Nuclear Regulatory Commission established an independent Ad Hoc Group in January 1986 to review issues subsequent to a complete loss of feedwater event at Davis-Besse Nuclear Power Station on June 9, 1985, including the NRC Incident Investigation Team (IIT) investigation of that event. The Commission asked the Group to identify additional lessons that might be learned and from these to make recommendations to improve NRC oversight of reactor licensees. To fulfill its charter, the Ad Hoc Group examined the following: (1) pre-event interactions between the licensee and NRC concerning reliability of the auxiliary feedwater system and associated systems; (2) pre-event probabilistic assessments of the reliability of plant safety systems, NRC's review of them, and their use in regulatory decisionmaking; (3) licensee management, operation and maintenance programs as they may have contributed to equipment failures and NRC oversight of such programs; and (4) the mandate, capabilities of members, operation, and results of the NRC Davis-Besse IIT, and the use to which its report was put by the regulatory staff

  5. Loss of main and auxiliary feedwater event at the Davis-Besse Plant on June 9, 1985

    International Nuclear Information System (INIS)

    1985-07-01

    On June 9, 1985, Toledo Edison Company's Davis-Besse Nuclear Power Plant, located in Ottawa County, Ohio, experienced a partial loss of feedwater while the plant was operating at 90% power. Following a reactor trip, a loss of all feedwater occurred. The event involved a number of equipment malfunctions and extensive operator actions, including operator actions outside the control room. Several operator errors also occurred during the event. This report documents the findings of an NRC Team sent to Davis-Besse by the NRC Executive Director for Operations in conformance with the staff-proposed Incident Investigation Program

  6. Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arduini, Gianluigi; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruce, Roderik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kentaro, Kawade; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muskinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palm, Marcus; Palma, Alberto; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-05-20

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was obse...

  7. ARGO-YBJ OBSERVATION OF THE LARGE-SCALE COSMIC RAY ANISOTROPY DURING THE SOLAR MINIMUM BETWEEN CYCLES 23 AND 24

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S.; Piazzoli, B. D’Ettorre; Girolamo, T. Di [Dipartimento di Fisica dell’Università di Napoli “Federico II”, Complesso Universitario di Monte Sant’Angelo, via Cinthia, I-80126 Napoli (Italy); Bernardini, P.; D’Amone, A.; Mitri, I. De [Dipartimento Matematica e Fisica ”Ennio De Giorgi”, Università del Salento, via per Arnesano, I-73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z.; Feng, Zhaoyang; Gou, Q. B. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Chen, T. L.; Danzengluobu [Tibet University, 850000 Lhasa, Xizang (China); Cui, S. W.; Gao, W. [Hebei Normal University, 050024, Shijiazhuang Hebei (China); Dai, B. Z. [Yunnan University, 2 North Cuihu Road, 650091 Kunming, Yunnan (China); Sciascio, G. Di [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Feng, C. F. [Shandong University, 250100 Jinan, Shandong (China); Feng, Zhenyong, E-mail: cuisw@ihep.ac.cn [Southwest Jiaotong University, 610031 Chengdu, Sichuan (China); Collaboration: ARGO-YBJ Collaboration; and others

    2015-08-10

    This paper reports on the measurement of the large-scale anisotropy in the distribution of cosmic-ray arrival directions using the data collected by the air shower detector ARGO-YBJ from 2008 January to 2009 December, during the minimum of solar activity between cycles 23 and 24. In this period, more than 2 × 10{sup 11} showers were recorded with energies between ∼1 and 30 TeV. The observed two-dimensional distribution of cosmic rays is characterized by two wide regions of excess and deficit, respectively, both of relative intensity ∼10{sup −3} with respect to a uniform flux, superimposed on smaller size structures. The harmonic analysis shows that the large-scale cosmic-ray relative intensity as a function of R.A. can be described by the first and second terms of a Fouries series. The high event statistics allow the study of the energy dependence of the anistropy, showing that the amplitude increases with energy, with a maximum intensity at ∼10 TeV, and then decreases while the phase slowly shifts toward lower values of R.A. with increasing energy. The ARGO-YBJ data provide accurate observations over more than a decade of energy around this feature of the anisotropy spectrum.

  8. Cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Capdevielle, J N

    1984-01-01

    First, the different instruments and techniques of cosmic particle detection are presented. Then the passage of the cosmic particles through the atmosphere is studied: electrons, photons, muons. The collective behavior of the different categories is also studied, the electromagnetic cascade is distinguished from the hadron cascade. Through the principal physical properties of the radiation and the medium, the ''mean'' aspects of the radiation are then successively dealt with out of the atmosphere, at different altitudes until the sea level, then at great depths. A chapter is devoted to cosmic radiation of more than 10,000 GeV, studied separately. Then solar radiation in universe is studied through their propagation in solar system and their origin. At last, the cosmic radiation effects are studied in environment (cosmic biophysics) and some applications of cosmic radiation are presented.

  9. Observation of the suppression of the flux of cosmic rays above 4x10(19) eV

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argiro, S.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Backer, T.; Badagnani, D.; Barbosa, A. F.; Barnhill, D.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Mer, H. Blu; Bohacova, M.; Bonifazi, C.; Bonino, R.; Brack, J.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Chye, J.; Clark, P. D. J.; Clay, R. W.; Colombo, E.; Conceicao, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Donato, C.; de Jong, S. J.; De La Vega, G.; Junior, W. J. M. de Mello; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Engel, R.; Epele, L.; Escobar, C. O.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferrero, A.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fracchiolla, C. E.; Fulgione, W.; Garcia, B.; Gamez, D. Garcia; Garcia-Pinto, D.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Albarracin, F. Gomez; Berisso, M. Gomez; Goncalves, P.; do Amaral, M. Goncalves; Gonzalez, D.; Gonzalez, J. G.; Gonzalez, M.; Gora, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A. F.; Grunfeld, C.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutierrez, J.; Hague, J. D.; Halenka, V.; Hamilton, J. C.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hauschildt, T.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Horandel, J. R.; Horneffer, A.; Hrabovsky, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kegl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Kroemer, O.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lebrun, D.; Lebrun, P.; Lee, J.; de Oliveira, M. A. Leigui; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; Lopez, R.; Aguera, A. Lopez; Bahilo, J. Lozano; Lucero, A.; Garcia, R. Luna; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mancarella, G.; Mancenido, M. E.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Falcon, H. R. Marquez; Martello, D.; Martinez, J.; Bravo, O. Martinez; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, M. C.; Medina-Tanco, G.; Melo, D.; Menichetti, E.; Menschikov, A.; Meurer, C.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafa, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Ohnuki, T.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Ostapchenko, S.; Otero, L.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petrera, S.; Petrinca, P.; Petrov, Y.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Riviere, C.; Rizi, V.; Roberts, M.; Robledo, C.; Rodriguez, G.; Martino, J. Rodriguez; Rojo, J. Rodriguez; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scherini, V.; Schieler, H.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuessler, F.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; De Grande, N. Smetniansky; Smialkowski, A.; Smida, R.; Smith, A. G. K.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Takahashi, J.; Tamashiro, A.; Tamburro, A.; Tarutina, T.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tome, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tuci, V.; Tueros, M.; Tunnicliffe, V.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdes; Valino, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vazquez, R. A.; Veberic, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walker, P.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2008-01-01

    The energy spectrum of cosmic rays above 2.5 x 10(18) eV, derived from 20 000 events recorded at the Pierre Auger Observatory, is described. The spectral index gamma of the particle flux, J proportional to E(-gamma), at energies between 4 x 10(18) eV and 4 x 10(19) eV is 2.69 +/- 0.02(stat) +/-

  10. French Regulatory Framework for the Recycling/Reuse of Nuclear Waste and the Dismantling of George Besse Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Themines, R., E-mail: robert.themines@areva.com [AREVA (France)

    2011-07-15

    The regulatory framework in France governing the management of materials containing low levels of radionuclides is described. The plans for the management of the materials arising from the dismantling of the Georges Besse Gaseous Diffusion Plant are described as an example of the application of the regulations. (author)

  11. Knowledge Brokerage for Environmentally Sustainable Sanitation. Position Paper and Guidelines from the EU-FP7 BESSE project.

    NARCIS (Netherlands)

    BESSE, Project team; Bijker, W.E.; Caiati, Giovanni; d'Andrea, Luciano

    2012-01-01

    The EU-funded BESSE project explores how sanitation in Europe can be made more sustainable. European sanitation is still based on 19th and early 20th century technologies and management systems. These systems do not adequately respond to the sustainable development needs of the 21st century, such as

  12. New Configuration and Novel Reclosing Procedure of Distribution System for Utilization of BESS as UPS in Smart Grid

    Directory of Open Access Journals (Sweden)

    Hun-Chul Seo

    2017-03-01

    Full Text Available This paper proposes a new configuration and novel reclosing procedure of a distribution system with a battery energy storage system (BESS used as an uninterruptible power supply (UPS in a smart grid. The proposed new configurations of the distribution systems are the installation of a circuit breaker (CB on both sides of the distribution line, the replacement of the recloser with a CB and protective relay, and the requirement of a communication method. The proposed reclosing procedure performs the reclosing of the CB at the load side and then judges the fault clearance using the load current. If the fault is cleared, the synchronism checking between the main source and the BESS is performed. After completing this, the CB at the main source side is reclosed. The smart grid environment, including a new distribution system, BESS, and reclosing method are modeled with the Electromagnetic Transients Program (EMTP/ATPDraw. To verify the proposed method, the various simulations according to the fault clearance time are performed and analyzed. The simulation results show that the BESS can be operated as a UPS and successful reclosing is possible.

  13. Root-cause analysis - An essential culture at Davis-Besse

    International Nuclear Information System (INIS)

    Garver, R.G.; Gerren, D.W.; Jain, S.C.

    1990-01-01

    An ingrained cultural attitude toward diligent pursuit of the root causes of plant anomalies and equipment malfunctions, and effective implementation of corrective actions is essential to achieve and maintain desired safety and performance standards at a nuclear power plant. At the Davis-Besse nuclear power station, a demonstrated management commitment to these actions, coupled with an effective root-cause training program has made root-cause analysis an important engineering function. The dedication of engineering and maintenance department resources to problem investigation and troubleshooting, root-cause analysis, and corrective action implementation has eliminated several complex operational problems. Reactor trips, unplanned challenges to safety systems, and unplanned plant transients have been significantly reduced as a result. The benefits of these plant performance improvements far outweigh the expense of these resources

  14. Seeing your way to health: the visual pedagogy of Bess Mensendieck's physical culture system.

    Science.gov (United States)

    Veder, Robin

    2011-01-01

    This essay examines the images and looking practices central to Bess M. Mensendieck's (c.1866-1959) 'functional exercise' system, as documented in physical culture treatises published in Germany and the United States between 1906 and 1937. Believing that muscular realignment could not occur without seeing how the body worked, Mensendieck taught adult non-athletes to see skeletal alignment and muscular movement in their own and others' bodies. Three levels of looking practices are examined: didactic sequences; penetrating inspection and appreciation of physiological structures; and ideokinetic visual metaphors for guiding movement. With these techniques, Mensendieck's work bridged the body cultures of German Nacktkultur (nudism), American labour efficiency and the emerging physical education profession. This case study demonstrates how sport historians could expand their analyses to include practices of looking as well as questions of visual representation.

  15. Summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow. During October 1973 through September 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    The diagrams in this section of the publication illustrate the summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow observed in Japan. For convenience, the observational results are arranged by the solar rotation number. The aim of this illustration is to disseminate an outline of daily events observed in Japan for the benefit of active research workers who plan to make detailed study of the specific solar and terrestrial events. Therefore, the illustrations do not show all observational results in Japan but only representative ones at some key stations in Japan. They will suffice for the present purpose. The method of illustration shown in the instruction on the next page is still a preliminary one, and it is subject to change resulting from the kind advice of the users of this part of the publication.

  16. Observations of cosmic ray positrons during the 1993 flight of the NMSU/WiZard-TS93 balloon borne apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Bellotti, R.; Cafagna, F.; Circella, M.; De Cataldo, G.; De Marzo, C.N. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Brunetti, M.T.; Codini, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Aversa, F. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    As a part of a series of experiments to search for antimatter in the primary cosmic ray, the NMSU balloon borne apparatus was configured for a flight dedicated to the search of positrons. Two completely new instruments were added to the magnetic spectrometer: a transition radiation detector (TRD) and a silicon-tungsten tracking calorimeter. The function of these two instruments complemented one another and the combined action provided a proton rejection factor better than 5x10{sup 5}. The paper shows the results from the analysis on the complete set of data. All the presented spectra are at the level of the spectrometer.

  17. Observation of high-energy cosmic rays by very inclined muon bundles in the NEVOD-DECOR experiment

    Directory of Open Access Journals (Sweden)

    Saavedra O.

    2017-01-01

    Full Text Available The Russian-Italian NEVOD-DECOR experiment on measurements of the local muon density spectra at various zenith angles gave the possibility to obtain important information on the primary cosmic ray flux and interaction characteristics in a wide energy range from 1015 to more than 1018 eV. At large zenith angles and high muon densities, a considerable excess of muon bundles has been found in comparison with expectation. In this paper, an update of these investigations is presented and some new results obtained by the collaboration are discussed.

  18. Observation of a VHE Cosmic-Ray Flare-Signal with the L3+C Muon Spectrometer

    CERN Document Server

    Adriani, O; Aziz, T; Bähr, J; Banerjee, S; Becattini, F; Bellucci, L; Betev, B L; Blaising, J J; Bobbink, G J; Bottai, S; Bourilkov, D; Cartacci, A; Chemarin, M; Chen, G; Chen, G M; Chen, H S; Chiarusi, T; Coignet, G; Ding, L K; Duran, I; Eline, A; El Mamouni, H; Faber, G; Fay, J; Filthaut, F; Ganguli, S N; Gong, Z F; Grabosch, H J; Groenstege, H; Guo, Y N; Gupta, S; Gurtu, A; Haller, Ch; Hayashi, Y; He, Z X; Hebbeker, T; Herve, A; Hofer, H; Hoferjun, H; Huo, A X; Ito, N; Jing, C L; Jones, L W; Kantserov, V; Kawakami, S; Kittel, W; König, A C; Kok, E; Kuang, H H; Kuijpers, J; Ladron de Guevara, P; Le Coultre, P; Lei, Y; Leich, H; Leiste, R; Li, L; Li, Z C; Liu, Z A; Lohmann, W; Lu, Y S; Ma, W G; Ma, X H; Ma, Y Q; Mele, S; Meng, X W; Meschini, M; Metzger, W J; van Mil, A; Milcent, H; Mohanty, G B; Monteleoni, B; Nahnhauer, R; Naumov, V A; Nowak, H; Parriaud, J -F; Pauss, F; Petersen, B; Pieri, M; Pohl, M; Pojidaev, V; Qing, C R; Ramelli, R; Ranieri, R; Ravindran, K C; Rewiersma, P; Riemann, S; Rojkov, A; Romero, L; Schmitt, V; Schoeneich, B; Schotanus, D J; Shen, C Q; Spillantini, P; Sulanke, H; Tang, X W; Timmermans, C; Tonwar, S C; Trowitzsch, G; Unger, M; Verkooijen, H; Van de Walle, R T; Vogt, H; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Wijk, R van; Wijnen, T A M; Wilkens, H; Xu, Y P; Xu, J S; Xu, Z Z; Yang, C G; Yang, X F; Yao, Z G; Yu, Z Q; Zhang, C; Zhang, F; Zhang, J; Zhang, S; Zhou, S J; Zhu, G Y; Zhu, Q Q; Zhuang, H L; Zwart, A N M

    2010-01-01

    The data collected by the L3+C muon spectrometer at the CERN Large Electron-Positron collider, LEP, have been used to search for short duration signals emitted by cosmic point sources. A sky survey performed from July to November 1999 and from April to November 2000 has revealed one single flux enhancement (chance probability = 2.6X10^{-3}) between the 17th and 20th of August 2000 from a direction with a galactic longitude of (265.02+-0.42)^° and latitude of (55.58+-0.24)^°. The energy of the detected muons was above 15 GeV.

  19. Energy spectrum of primary cosmic rays from 1016eV to 1019eV determined from air showers observed at 5200 m a.s.l

    International Nuclear Information System (INIS)

    Aguirre, C.; Mejia, G.R.; Yoshii, H.; Toyoda, Y.

    1977-01-01

    Energy spectra of primary cosmic rays from 10 16 eV to 10 19 eV have been determined from electron-sizes as well as from muon-sizes of the same air showers observed at Mt. Chacaltaya. The spectrum from electron-sizes is significantly higher than that from muon-sizes. The discrepancy is discussed and an explanation is given under the assumption of possible existence of copious direct production of photons besides the production of charged and neutral pions at these high energies. The spectra are also compared with those by other groups and the discrepancies are discussed. (author)

  20. Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Burger, W. J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dadzie, K.; Dai, Y. M.; Datta, A.; Delgado, C.; Della Torre, S.; Demakov, O.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jia, Yi; Jinchi, H.; Kang, S. C.; Kanishev, K.; Khiali, B.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Kulemzin, A.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, Q.; Li, T. X.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lyu, S. S.; Machate, F.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Perrina, C.; Phan, H. D.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wu, H.; Wu, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zannoni, M.; Zeissler, S.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, J. H.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration

    2017-12-01

    We report the observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90 ×106 helium, 8.4 ×106 carbon, and 7.0 ×106 oxygen nuclei collected by the Alpha Magnetic Spectrometer (AMS) during the first five years of operation. Above 60 GV, these three spectra have identical rigidity dependence. They all deviate from a single power law above 200 GV and harden in an identical way.

  1. Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013

    Directory of Open Access Journals (Sweden)

    S.-P. Ho

    2018-01-01

    Full Text Available We compare atmospheric total precipitable water (TPW derived from the SSM/I (Special Sensor Microwave Imager and SSMIS (Special Sensor Microwave Imager/Sounder radiometers and WindSat to collocated TPW estimates derived from COSMIC (Constellation System for Meteorology, Ionosphere, and Climate radio occultation (RO under clear and cloudy conditions over the oceans from June 2006 to December 2013. Results show that the mean microwave (MW radiometer – COSMIC TPW differences range from 0.06 to 0.18 mm for clear skies, from 0.79 to 0.96 mm for cloudy skies, from 0.46 to 0.49 mm for cloudy but non-precipitating conditions, and from 1.64 to 1.88 mm for precipitating conditions. Because RO measurements are not significantly affected by clouds and precipitation, the biases mainly result from MW retrieval uncertainties under cloudy and precipitating conditions. All COSMIC and MW radiometers detect a positive TPW trend over these 8 years. The trend using all COSMIC observations collocated with MW pixels for this data set is 1.79 mm decade−1, with a 95 % confidence interval of (0.96, 2.63, which is in close agreement with the trend estimated by the collocated MW observations (1.78 mm decade−1 with a 95 % confidence interval of 0.94, 2.62. The sample of MW and RO pairs used in this study is highly biased toward middle latitudes (40–60° N and 40–65° S, and thus these trends are not representative of global average trends. However, they are representative of the latitudes of extratropical storm tracks and the trend values are approximately 4 to 6 times the global average trends, which are approximately 0.3 mm decade−1. In addition, the close agreement of these two trends from independent observations, which represent an increase in TPW in our data set of about 6.9 %, are a strong indication of the positive water vapor–temperature feedback on a warming planet in regions where precipitation from extratropical

  2. Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013

    Science.gov (United States)

    Ho, Shu-Peng; Peng, Liang; Mears, Carl; Anthes, Richard A.

    2018-01-01

    We compare atmospheric total precipitable water (TPW) derived from the SSM/I (Special Sensor Microwave Imager) and SSMIS (Special Sensor Microwave Imager/Sounder) radiometers and WindSat to collocated TPW estimates derived from COSMIC (Constellation System for Meteorology, Ionosphere, and Climate) radio occultation (RO) under clear and cloudy conditions over the oceans from June 2006 to December 2013. Results show that the mean microwave (MW) radiometer - COSMIC TPW differences range from 0.06 to 0.18 mm for clear skies, from 0.79 to 0.96 mm for cloudy skies, from 0.46 to 0.49 mm for cloudy but non-precipitating conditions, and from 1.64 to 1.88 mm for precipitating conditions. Because RO measurements are not significantly affected by clouds and precipitation, the biases mainly result from MW retrieval uncertainties under cloudy and precipitating conditions. All COSMIC and MW radiometers detect a positive TPW trend over these 8 years. The trend using all COSMIC observations collocated with MW pixels for this data set is 1.79 mm decade-1, with a 95 % confidence interval of (0.96, 2.63), which is in close agreement with the trend estimated by the collocated MW observations (1.78 mm decade-1 with a 95 % confidence interval of 0.94, 2.62). The sample of MW and RO pairs used in this study is highly biased toward middle latitudes (40-60° N and 40-65° S), and thus these trends are not representative of global average trends. However, they are representative of the latitudes of extratropical storm tracks and the trend values are approximately 4 to 6 times the global average trends, which are approximately 0.3 mm decade-1. In addition, the close agreement of these two trends from independent observations, which represent an increase in TPW in our data set of about 6.9 %, are a strong indication of the positive water vapor-temperature feedback on a warming planet in regions where precipitation from extratropical storms is already large.

  3. Cosmic ray modulation

    International Nuclear Information System (INIS)

    Ueno, Hirosachi

    1974-01-01

    It is important to know the physical state of solar plasma region by the observation of intensity variation of cosmic ray which passed through the solar plasma region, because earth magnetosphere is formed by the interaction between geomagnetic field and solar plasma flow. The observation of cosmic ray intensity is useful to know the average condition of the space of 0.1--3 A.U., and gives the structure of the magnetic field in solar wind affecting the earth magnetosphere. The observation of neutron component in cosmic ray has been carried out at Norikura, Tokyo, Fukushima and Morioka. The lower limit of the energy of incident cosmic ray which can be observed at each station is different, and the fine structure of the variation can be known by comparison. The intensity of meson component in cosmic ray has been measured in underground, and the state of solar plasma region 2--3 A.U. from the earth can be known. The underground measurement has been made at Takeyama and Matsumoto, and a new station at Sakashita is proposed. The measurement at Sakashita will be made by proportional counters at the depth of 100m (water equivalent). Arrangement of detectors is shown. (Kato, T.)

  4. A COSMIC VARIANCE COOKBOOK

    International Nuclear Information System (INIS)

    Moster, Benjamin P.; Rix, Hans-Walter; Somerville, Rachel S.; Newman, Jeffrey A.

    2011-01-01

    Deep pencil beam surveys ( 2 ) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by 'cosmic variance'. This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift z-bar and redshift bin size Δz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z-bar , Δz, and stellar mass m * . We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates (δσ v /σ v ) is shown to be better than 20%. We find that for GOODS at z-bar =2 and with Δz = 0.5, the relative cosmic variance of galaxies with m * >10 11 M sun is ∼38%, while it is ∼27% for GEMS and ∼12% for COSMOS. For galaxies of m * ∼ 10 10 M sun , the relative cosmic variance is ∼19% for GOODS, ∼13% for GEMS, and ∼6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z-bar =2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic

  5. Intergalactic medium emission observations with the cosmic web imager. II. Discovery of extended, kinematically linked emission around SSA22 Lyα BLOB 2

    International Nuclear Information System (INIS)

    Christopher Martin, D.; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin; Moore, Anna; Steidel, Charles C.; Matsuda, Yuichi

    2014-01-01

    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the intersections of these filaments. While observations of QSO absorption lines and the large-scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web of IGM has never been confirmed by direct imaging. Here we report our observation of the Lyα blob 2 (LAB2) in SSA22 with the Cosmic Web Imager (CWI). This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hr of total on- and off-source exposure, CWI has revealed that LAB2 has extended Lyα emission that is organized into azimuthal zones consistent with filaments. We perform numerous tests with simulations and the data to secure the robustness of this result, which relies on data with modest signal-to-noise ratios. We have developed a smoothing algorithm that permits visualization of data cube slices along image or spectral image planes. With both raw and smoothed data cubes we demonstrate that the filaments are kinematically associated with LAB2 and display double-peaked profiles characteristic of optically thick Lyα emission. The flux is 10-20 times brighter than expected for the average emission from the IGM but is consistent with boosted fluorescence from a buried QSO or gravitation cooling radiation. Using simple emission models, we infer a baryon mass in the filaments of at least 1-4 × 10 11 M ☉ , and the dark halo mass is at least 2 × 10 12 M ☉ . The spatial-kinematic morphology is more consistent with inflow from the cosmic web than outflow from LAB2, although an outflow feature maybe present at one azimuth. LAB2 and the surrounding gas have significant and

  6. Intergalactic medium emission observations with the cosmic web imager. II. Discovery of extended, kinematically linked emission around SSA22 Lyα BLOB 2

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Martin, D.; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 278-17, Pasadena, CA 91125 (United States); Moore, Anna [Caltech Optical Observatories, Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 11-17, Pasadena, CA 91125 (United States); Steidel, Charles C.; Matsuda, Yuichi, E-mail: cmartin@srl.caltech.edu [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 249-17, Pasadena, CA 91125 (United States)

    2014-05-10

    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the intersections of these filaments. While observations of QSO absorption lines and the large-scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web of IGM has never been confirmed by direct imaging. Here we report our observation of the Lyα blob 2 (LAB2) in SSA22 with the Cosmic Web Imager (CWI). This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hr of total on- and off-source exposure, CWI has revealed that LAB2 has extended Lyα emission that is organized into azimuthal zones consistent with filaments. We perform numerous tests with simulations and the data to secure the robustness of this result, which relies on data with modest signal-to-noise ratios. We have developed a smoothing algorithm that permits visualization of data cube slices along image or spectral image planes. With both raw and smoothed data cubes we demonstrate that the filaments are kinematically associated with LAB2 and display double-peaked profiles characteristic of optically thick Lyα emission. The flux is 10-20 times brighter than expected for the average emission from the IGM but is consistent with boosted fluorescence from a buried QSO or gravitation cooling radiation. Using simple emission models, we infer a baryon mass in the filaments of at least 1-4 × 10{sup 11} M {sub ☉}, and the dark halo mass is at least 2 × 10{sup 12} M {sub ☉}. The spatial-kinematic morphology is more consistent with inflow from the cosmic web than outflow from LAB2, although an outflow feature maybe present at one azimuth. LAB2 and the surrounding gas

  7. Cosmic ray: Studying the origin

    Energy Technology Data Exchange (ETDEWEB)

    Szabelski, J. [Cosmic Ray Laboratory, Soltan Institute for Nuclear Studies, Lodz (Poland)

    1997-12-31

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10{sup 15} eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O{sup 19} eV (for these are the highest energies observed in nature). (author) 101 refs, 19 figs, 7 tabs

  8. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    Science.gov (United States)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  9. Super-TIGER-2: A Very-Large-Area, High-Resolution Trans-Iron Cosmic Ray Investigation

    Science.gov (United States)

    Binns, Walter

    predominately r-process nuclei. Super-TIGER has unique capabilities to address the APRA program solicitation for investigations of particles of cosmic origin and will advance our understanding of the fundamental operational aspects of detectors for future space flight missions. As a dedicated UHCR instrument, Super-TIGER provides critical measurements to unravel the mystery of galactic cosmic ray (GCR) origins and complements instruments with different observational aims including AMS, CALET, BESS-Polar, CREAM, TRACER, Fermi, and PAMELA.

  10. Water vapor variability and comparisons in the subtropical Pacific from The Observing System Research and Predictability Experiment-Pacific Asian Regional Campaign (T-PARC) Driftsonde, Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), and reanalyses

    Science.gov (United States)

    Wang, Junhong; Zhang, Liangying; Lin, Po-Hsiung; Bradford, Mark; Cole, Harold; Fox, Jack; Hock, Terry; Lauritsen, Dean; Loehrer, Scot; Martin, Charlie; Vanandel, Joseph; Weng, Chun-Hsiung; Young, Kathryn

    2010-11-01

    During the THORPEX (The Observing System Research and Predictability Experiment) Pacific Asian Regional Campaign (T-PARC), from 1 August to 30 September 2008, ˜1900 high-quality, high vertical resolution soundings were collected over the Pacific Ocean. These include dropsondes deployed from four aircrafts and zero-pressure balloons in the stratosphere (NCAR's Driftsonde system). The water vapor probability distribution and spatial variability in the northern subtropical Pacific (14°-20°N, 140°E-155°W) are studied using Driftsonde and COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) data and four global reanalysis products. Driftsonde data analysis shows distinct differences of relative humidity (RH) distributions in the free troposphere between the Eastern and Western Pacific (EP and WP, defined as east and west of 180°, respectively), very dry with a single peak of ˜1% RH in the EP and bi-modal distributions in the WP with one peak near ice saturation and one varying with altitude. The frequent occurrences of extreme dry air are found in the driftsonde data with 59% and 19% of RHs less than or equal to 5% and at 1% at 500 hPa in the EP, respectively. RH with respect to ice in the free troposphere exhibits considerable longitudinal variations, very low (problems in Driftsonde, two National Center for Environmental Prediction (NCEP) reanalyses and COSMIC data. The moist layer at 200-100 hPa in the WP shown in the ERA-Interim, JRA and COSMIC is missing in Driftsonde data. Major problems are found in the RH means and variability over the study region for both NCEP reanalyses. Although the higher-moisture layer at 200-100 hPa in the WP in the COSMIC data agrees well with the ERA-Interim and JRA, it is primarily attributed to the first guess of the 1-Dimensional (1D) variational analysis used in the COSMIC retrieval rather than the refractivity measurements. The limited soundings (total 268) of Driftsonde data are capable of

  11. Cosmic Rays and Climate

    CERN Document Server

    Kirkby, Jasper

    2007-01-01

    Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic fiel...

  12. Sudden Intensity Increases and Radial Gradient Changes of Cosmic Ray Mev Electrons and Protons Observed at Voyager 1 Beyond 111 AU in the Heliosheath

    Science.gov (United States)

    Webber, W. R.; Mcdonald, F. B.; Cummings, A. C.; Stone, E. C.; Heikkila, B.; Lal, N.

    2012-01-01

    Voyager 1 has entered regions of different propagation conditions for energetic cosmic rays in the outer heliosheathat a distance of about 111 AU from the Sun. The low energy 614 MeV galactic electron intensity increased by 20over a time period 10 days and the electron radial intensity gradient abruptly decreased from 19AU to 8AU at2009.7 at a radial distance of 111.2 AU. At about 2011.2 at a distance of 116.6 AU a second abrupt intensity increase of25 was observed for electrons. After the second sudden electron increase the radial intensity gradient increased to18AU. This large positive gradient and the 13 day periodic variations of 200 MeV particles observed near theend of 2011 indicate that V1 is still within the overall heliospheric modulating region. The implications of these resultsregarding the proximity of the heliopause are discussed.

  13. Technical evaluation of the alternate to the keylock control to the bypass valves for the Davis-Besse nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Ibarra, J.G.

    1979-09-01

    This report documents the technical evaluation of the alternate to the keylock control to the bypass valves for the Davis-Besse nuclear power plant, Unit 1. The review criteria are inferred from the NRC Reactor Safety Study (WASH-1400) and the Safety Evaluation Report for Davis-Besse. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Program being conducted for the US Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  14. An evaluation of the Davis-Besse loss of feedwater event (June 1985) from an accident management perspective

    International Nuclear Information System (INIS)

    Di Salvo, R.; Leonard, M.T.; Wreathall, J.

    1986-01-01

    An accident management perspective is used to analyze events associated with a total loss-of-feedwater at the Davis-Besse nuclear power plant in June 1985. The relationships of accident management to the closely associated concepts of risk management and emergency management are delineated. The analysis shows that the principal contributors to the event's occurrence were shortcomings in risk management. Successful performance by the operators in accident management was principally responsible for terminating the event without consequence to public health

  15. Closing CMS to hunt cosmic rays

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Every second the Earth is bombarded by billions of cosmic rays and occasionally one of these cosmic particles will collide with the Earth's atmosphere generating a shower of particles known as an 'air shower'. This is similiar to the collisions and subsequent particle showers observed in accelerators such as the LHC. Here the CMS detector is closed so that systems can be tested using muon cosmic rays in the 'Cosmic Challenge'.

  16. Cosmic rays and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Erlykin, A.D. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Sloan, T. [Lancaster University (United Kingdom); Wolfendale, A.W. [Durham University (United Kingdom)

    2010-07-01

    The possible effects of cosmic rays on clouds could contribute to global warming. The argument is that the observed increased solar activity during the last century caused a decrease in the ionization due to cosmic rays since the lower energy cosmic particles are deflected by the magnetic field created by the increasing solar wind. This would lead to a decrease in cloud cover allowing more heating of the earth by the sun. Meteorological data combined to solar activity observations and simulations show that any effect of solar activity on clouds and the climate is likely to be through irradiance rather than cosmic rays. Since solar irradiance transfers 8 orders of magnitude more energy to the atmosphere than cosmic rays it is more plausible that this can produce a real effect. The total contribution of variable solar activity to global warming is shown to be less than 14% of the total temperature rise. (A.C.)

  17. Ranking of risk significant components for the Davis-Besse Component Cooling Water System

    International Nuclear Information System (INIS)

    Seniuk, P.J.

    1994-01-01

    Utilities that run nuclear power plants are responsible for testing pumps and valves, as specified by the American Society of Mechanical Engineers (ASME) that are required for safe shutdown, mitigating the consequences of an accident, and maintaining the plant in a safe condition. These inservice components are tested according to ASME Codes, either the earlier requirements of the ASME Boiler and Pressure Vessel Code, Section XI, or the more recent requirements of the ASME Operation and Maintenance Code, Section IST. These codes dictate test techniques and frequencies regardless of the component failure rate or significance of failure consequences. A probabilistic risk assessment or probabilistic safety assessment may be used to evaluate the component importance for inservice test (IST) risk ranking, which is a combination of failure rate and failure consequences. Resources for component testing during the normal quarterly verification test or postmaintenance test are expensive. Normal quarterly testing may cause component unavailability. Outage testing may increase outage cost with no real benefit. This paper identifies the importance ranking of risk significant components in the Davis-Besse component cooling water system. Identifying the ranking of these risk significant IST components adds technical insight for developing the appropriate test technique and test frequency

  18. Comparison of the Wii Balance Board and the BESS tool measuring postural stability in collegiate athletes.

    Science.gov (United States)

    Guzman, Jill; Aktan, Nadine

    2016-02-01

    Concussions are a major health concern for athletes given the potential for these injuries in a wide range of sport activities. The leading concern for clinicians is that athletes are at risk for devastating consequences if they are not evaluated properly and cleared too early to return to play or competition. The evaluation of postural stability has been identified as an important aspect to the comprehensive management of such injuries. Clinicians are in need of a portable tool they can use in various settings to aid in decision making and health care delivery for concussed athletes. The Nintendo Wii Balance Board (Nintendo of America Inc., Redmond, Washington) is a portable, cost-effective tool that has the potential to aid in the evaluation of postural stability in concussed individuals. The purpose of this study was to evaluate the Wii Balance Board as an objective, user-friendly, cost effective, valid alternative tool for the measurement of postural stability in college athletes. This study questioned whether the Wii Balance Board, when compared to the Balance Error Scoring System (BESS), is an objective tool that can be used as an acceptable measurement of postural stability in college athletes. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Simulating Cosmic Reionisation

    NARCIS (Netherlands)

    Pawlik, Andreas Heinz

    2009-01-01

    The first stars formed a few hundred million years after the Big Bang, when the Universe was only a small fraction of its present age. Their radiation transformed the previously cold and neutral hydrogen that filled intergalactic space into the hot and ionised cosmic plasma that is observed today.

  20. Studies of Muons in Extensive Air Showers from Ultra-High Energy Cosmic Rays Observed with the Telescope Array Surface Detector

    Science.gov (United States)

    Takeishi, R.; Sagawa, H.; Fukushima, M.; Takeda, M.; Nonaka, T.; Kawata, K.; Kido, E.; Sakurai, N.; Okuda, T.; Ogio, S.; Matthews, J. N.; Stokes, B.

    The number of muons in the air shower induced by ultra-high energy cosmic rays (UHECRs) has been measured with surface detector (SD) arrays of various experiments. Monte Carlo (MC) prediction of the number of muons in air showers depends on hadronic interaction models and the primary cosmic ray composition. By comparing the measured number of muons with the MC prediction, hadronic interaction models can be tested. The Pierre Auger Observatory reported that the number of muons measured by water Cherenkov type SD is about 1.8 times larger than the MC prediction for proton with QGSJET II-03 model. The number of muons in the Auger data is also larger than the MC prediction for iron. The Telescope Array experiment adopts plastic scintillator type SD, which is sensitive to the electromagnetic component that is the major part of secondary particles in the air shower. To search for the high muon purity condition in air showers observed by the TA, we divided air shower events into subsets by the zenith angle θ, the azimuth angle ϕ relative to the shower arrival direction projected onto the ground, and the distance R from shower axis. As a result, we found subsets with the high muon purity 65%, and compared the charge density between observed data and MC. The typical ratios of the charge density of the data to that of the MC are 1.71 ± 0.10 at 1870 m muon purity. These results imply that the excess of the charge density in the data is partly explained by the muon excess.

  1. The distribution of cosmic rays in the galaxy and their dynamics as deduced from recent gamma ray observations. [noting maximum in toroidal region between 4 and 5 kpc from galactic center

    Science.gov (United States)

    Puget, J. L.; Stecker, F. W.

    1974-01-01

    Data from SAS-2 on the galactic gamma ray line flux as a function of longitude is examined. It is shown that the gamma ray emissivity varies with galactocentric distance and is about an order of magnitude higher than the local value in a toroidal region between 4 and 5 kpc from the galactic center. This enhancement is accounted for in part by first-order Fermi acceleration, compression, and trapping of cosmic rays consistent with present ideas of galactic dynamics and galactic structure theory. Calculations indicate that cosmic rays in the 4 to 5 kpc region are trapped and accelerated over a mean time of the order of a few million years or about 2 to 4 times the assumed trapping time in the solar region of the galaxy on the assumption that only an increased cosmic ray flux is responsible for the observed emission. Cosmic ray nucleons, cosmic ray electrons, and ionized hydrogen gas were found to have a strikingly similar distribution in the galaxy according to both the observational data and the theoretical model discussed.

  2. Cosmic microwave background, where next?

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Ground-based, balloon-borne and space-based experiments will observe the Cosmic Microwave Background in greater details to address open questions about the origin and the evolution of the Universe. In particular, detailed observations the polarization pattern of the Cosmic Microwave Background radiation have the potential to directly probe physics at the GUT scale and illuminate aspects of the physics of the very early Universe.

  3. Cosmic antimatter

    International Nuclear Information System (INIS)

    Tarle, G.; Swordy, S.

    1998-01-01

    In 1928 Paul Dirac forecasted the existence of antimatter and 4 years later Carl Anderson detected the first antiparticle: the positron in a cloud chamber while studying cosmic radiation. Antiprotons were more difficult to find but in 1955 physicists from Lawrence Berkeley Laboratory got some in a particle accelerator. In 1995 a team from the CERN synthesized atoms of anti-hydrogen by binding positrons to antiprotons in a particle accelerator. Astrophysicists have built more and more complex detectors to study cosmic rays. The detector HEAT (high energy antimatter telescope) has been designed to study positrons above the atmosphere. This detector has been launched for the first time in 1994 and has measured cosmic radiation for 32 hours at an altitude of 37000 meters. The results were challenging: whereas the number of low energy positrons detected agrees with the theory, the number of high energy positrons is too important. It suggests the existence of unknown sources of positrons somewhere in the universe. The massive particles that interact weakly (WIMP) could be such sources. This article draws the history of the quest for antimatter and its implications in cosmology, the detector HEAT is described. (A.C.)

  4. EOF analysis of COSMIC observations on the global zonal mean temperature structure of the Upper Troposphere and Lower Stratosphere from 2007 to 2013

    Science.gov (United States)

    Salinas, Cornelius Csar Jude H.; Chang, Loren C.

    2018-06-01

    This work presents the results of a Conventional Empirical Orthogonal Function Analysis on daily global zonal mean temperature profiles in the Upper Troposphere and Lower Stratosphere (15-35 km), as measured by the FORMOSAT-3/COSMIC mission from January 2007 to June 2013. For validation, results were compared with ERA-Interim reanalysis. Results show that, the leading global EOF mode (27%) from COSMIC is consistent with temperature anomalies due to the tropical cooling associated with boreal winter Sudden Stratospheric Warmings (SSW). The second global EOF mode from COSMIC (15.3%) is consistent with temperature anomalies due to the Quasi-biennial Oscillation (QBO). The third global mode from COSMIC (10.9%) is consistent with temperature anomalies due to the El Nino Southern Oscillation. This work also shows that the second northern hemisphere EOF mode from COSMIC (16.8%) is consistent with temperature anomalies due Rossby-wave breaking (RWB) which is expected to only be resolved by a high vertical and temporal resolution dataset like COSMIC. Our work concludes that the use of a high vertical and temporal resolution dataset like COSMIC yields non-seasonal EOF modes that are consistent with relatively more intricate temperature anomalies due to the SSW, QBO, ENSO and RWB.

  5. Temperature effect correction for the cosmic ray muon data observed at the Brazilian Southern Space Observatory in São Martinho da Serra

    International Nuclear Information System (INIS)

    Braga, C R; Dal Lago, A; Kuwabara, T; Schuch, N J; Munakata, K

    2013-01-01

    The negative atmospheric temperature effect observed in the muon intensity measured by surface-level detectors is related to the atmospheric expansion during summer periods. According the first explanation given, the path of muons from the higher atmospheric level (where they are generated) to the ground becomes longer, and more muons decay, leading to a muon intensity decrease. A significant negative correlation, therefore, is expected between the altitude of the equi-pressure surface and the muon intensity. We compared measurements of the altitude of 100 hPa equi-pressure surface and data from the multidirectional muon detector installed at the Brazilian Southern Space Observatory in São Martinho da Serra, RS. Significant correlation coefficient were found (up to 0.95) when using data observed in 2008. For comparison, data from the multidirectional muon detector of Nagoya, located in the opposite hemisphere, is studied and an anti-phase in the cosmic ray variation related with the temperature effect is expected between data from detectors of Nagoya and São Martinho da Serra. The temperature influence is higher for the directional channels of Nagoya than for ones of São Martinho da Serra.

  6. Anisotropy in the direction of cosmic-muon bundles observed at sea level in the Northern hemisphere

    International Nuclear Information System (INIS)

    Bressi, G.; Calligarich, E.; Cambiaghi, M.; Dolfini, R.; Genoni, M.; Gigli Berzolari, A.; Lanza, A.; Liguori, G.; Mauri, F.; Piazzoli, A.; Bini, C.; Conversi, M.; Zorzi, G. De; Gauzzi, P.; Massa, F.; Zanello, D.; Cardarelli, R.; Santonico, R.; Terrani, M.

    1990-01-01

    Parallel muon bundles have been observed utilizing a tracking calorimeter of flash chambers and lead-iron absorbers. The right ascension distribution of about 13 000 events collected in 27.8 days of run is anisotropic. Its first Fourier harmonic has an amplitude of (4.9 ± 1.2). 10 -2 and a phase of (236 ± 13) 0

  7. Solar flares and the cosmic ray intensity

    International Nuclear Information System (INIS)

    Hatton, C.J.

    1980-01-01

    The relationship between the cosmic ray intensity and solar activity during solar cycle 20 is discussed. A model is developed whereby it is possible to simulate the observed cosmic ray intensity from the observed number of solar flares of importance >= 1. This model leads to a radius for the modulation region of 60-70 AU. It is suggested that high speed solar streams also made a small contribution to the modulation of cosmic rays during solar cycle 20. (orig.)

  8. ON THE NATURE OF THE SMALL-SCALE STRUCTURE IN THE COSMIC MICROWAVE BACKGROUND OBSERVED BY PLANCK AND WMAP

    Energy Technology Data Exchange (ETDEWEB)

    Verschuur, G. L.; Schmelz, J. T., E-mail: gverschu@naic.edu [Arecibo Observatory, HC-3 Box 53995, Arecibo PR 00612 (Puerto Rico)

    2016-12-01

    Small-scale features observed by Wilkinson Microwave Anisotropy Probe  ( WMAP ) and PLANCK in the frequency range of 22–90 GHz show a nearly flat spectrum, which meets with expectations that they originate in the early universe. However, free–free emission from electrons in small angular scale galactic sources that suffer beam dilution very closely mimic the observed spectrum in this frequency range. Fitting such a model to the PLANCK and WMAP data shows that the angular size required to fit the data is comparable to the angular width of associated H i filaments found in the Galactic Arecibo L-Band Feed Array-H isurvey data. Also, the temperature of the electrons is found to be in the range of 100–300 K. The phenomenon revealed by these data may contribute to a more precise characterization of the foreground masks required to interpret the cosmological aspect of PLANCK and WMAP data.

  9. Cosmic Connections

    CERN Document Server

    Ellis, Jonathan Richard

    2003-01-01

    A National Research Council study on connecting quarks with the cosmos has recently posed a number of the more important open questions at the interface between particle physics and cosmology. These questions include the nature of dark matter and dark energy, how the Universe began, modifications to gravity, the effects of neutrinos on the Universe, how cosmic accelerators work, and whether there are new states of matter at high density and pressure. These questions are discussed in the context of the talks presented at this Summer Institute.

  10. A cosmic microwave background feature consistent with a cosmic texture.

    Science.gov (United States)

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-07

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.

  11. CORRELATIONS OF THE ARRIVAL DIRECTIONS OF ULTRA-HIGH ENERGY COSMIC RAYS WITH EXTRAGALACTIC OBJECTS AS OBSERVED BY THE TELESCOPE ARRAY EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W. [High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, UT (United States); Aida, R. [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi (Japan); Azuma, R.; Fukuda, T. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Cheon, B. G.; Cho, E. J. [Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Department of Physics, Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Department of Physics, Kinki University, Higashi Osaka, Osaka (Japan); Cho, W. R. [Department of Physics, Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Graduate School of Science, Osaka City University, Osaka (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); and others

    2013-11-10

    We search for correlations between the positions of extragalactic objects and the arrival directions of ultra-high energy cosmic rays (UHECRs) with primary energy E ≥ 40 EeV as observed by the surface detector array of the Telescope Array (TA) experiment during the first 40 months of operation. We examine several public astronomical object catalogs, including the Veron-Cetty and Veron catalog of active galactic nuclei. We count the number of TA events correlated with objects in each catalog as a function of three parameters: the maximum angular separation between a TA event and an object, the minimum energy of the events, and the maximum redshift of the objects. We determine the combination of these parameters that maximizes the correlations, and we calculate the probability of having the same levels of correlations from an isotropic distribution of UHECR arrival directions. No statistically significant correlations are found when penalties for scanning over the above parameters and for searching in several catalogs are taken into account.

  12. SMM observation of a cosmic gamma-ray burst from 20 keV to 100 MeV

    Science.gov (United States)

    Share, G. H.; Matz, S. M.; Messina, D. C.; Nolan, P. L.; Chupp, E. L.

    1986-01-01

    The Solar Maximum Mission gamma-ray spectrometer has detected an intense gamma-ray burst that occurred on August 5, 1984. The burst originated from a source in the constellation Hydra and lasted about 45 s. Its integral fluence at 20 keV was 0.003 erg/sq cm. Spectral evolution similar to other bursts detected by SMM was observed. The overall shape of the spectrum from 20 keV to 100 MeV, on timescales as short as 2 s, is relatively constant. This shape can be fitted by the sum of an exponential-type function and a power law. There is no evidence for narrow or broadened emission lines.

  13. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS

    International Nuclear Information System (INIS)

    Koekemoer, Anton M.; Ferguson, Henry C.; Grogin, Norman A.; Lotz, Jennifer M.; Lucas, Ray A.; Ogaz, Sara; Rajan, Abhijith; Casertano, Stefano; Dahlen, Tomas; Faber, S. M.; Kocevski, Dale D.; Koo, David C.; Lai, Kamson; McGrath, Elizabeth J.; Riess, Adam G.; Rodney, Steve A.; Dolch, Timothy; Strolger, Louis; Castellano, Marco; Dickinson, Mark

    2011-01-01

    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z ≈ 1.5-8, and to study Type Ia supernovae at z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multi-wavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 infrared channel (WFC3/IR) and the WFC3 ultraviolet/optical channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers ∼125 arcmin 2 within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of ∼800 arcmin 2 across GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-Deep Survey). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up-to-date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including charge transfer efficiency degradation for ACS, removal of electronic bias-striping present in ACS data after Servicing Mission 4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.

  14. Cosmic Complexity

    Science.gov (United States)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  15. Impact of Massive Neutrinos and Dark Radiation on the High-redshift Cosmic Web. I. Lyα Forest Observables

    Science.gov (United States)

    Rossi, Graziano

    2017-11-01

    With upcoming high-quality data from surveys such as the Extended Baryon Oscillation Spectroscopic Survey or the Dark Energy Spectroscopic Instrument, improving the theoretical modeling and gaining a deeper understanding of the effects of neutrinos and dark radiation on structure formation at small scales are necessary, to obtain robust constraints free from systematic biases. Using a novel suite of hydrodynamical simulations that incorporate dark matter, baryons, massive neutrinos, and dark radiation, we present a detailed study of their impact on Lyα forest observables. In particular, we accurately measure the tomographic evolution of the shape and amplitude of the small-scale matter and flux power spectra and search for unique signatures along with preferred scales where a neutrino mass detection may be feasible. We then investigate the thermal state of the intergalactic medium (IGM) through the temperature-density relation. Our findings suggest that at k˜ 5 h {{Mpc}}-1 the suppression on the matter power spectrum induced by \\sum {m}ν =0.1 {eV} neutrinos can reach ˜ 4 % at z˜ 3 when compared to a massless neutrino cosmology, and ˜ 10 % if a massless sterile neutrino is included; surprisingly, we also find good agreement (˜ 2 % ) with some analytic predictions. For the 1D flux power spectrum {P}{ F }1{{D}}, the highest response to free-streaming effects is achieved at k˜ 0.005 {[{km}/{{s}}]}-1 when \\sum {m}ν =0.1 {eV}; this k-limit falls in the Lyα forest regime, making the small-scale {P}{ F }1{{D}} an excellent probe for detecting neutrino and dark radiation imprints. Our results indicate that the IGM at z˜ 3 provides the best sensitivity to active and sterile neutrinos.

  16. Cumulative-Phase-Alteration of Galactic-Light Passing Through the Cosmic-Microwave-Background: A New Mechanism for Some Observed Spectral-Shifts

    Directory of Open Access Journals (Sweden)

    Tank H. K.

    2012-07-01

    Full Text Available Currently, whole of the measured “cosmological-red-shift ” is interpreted as due to the “metric-expansion-of-space”; so for the required “closer -density” of the universe, we need twenty times more mass-energy than the visible baryonic-matter contained in the universe. This paper proposes a new mechanism, which can account for good per- centage of the red-shift in the extra-galactic-light, greatly reducing the requirement of dark matter-energy. Also, this mechanism can cause a new kin d of blue-shift reported here, and their observational evidences. These spectral-s hifts are proposed to result due to cumulative phase-alteration of extra-galactic-light b ecause of vector-addition of: (i electric-field of extra-galactic-light and (ii that of the cosmic-microwave-background (CMB. Since the center-frequency of CMB is much lower than extra-galactic-light, the cumulative-phase-alteration results in red -shift, observed as an additional contribu- tor to the measured “cosmological red-shift”; and since the center-frequency of CMB is higher than the radio-frequency-signals used to measure velocity of space-probes like: Pioneer-10, Pioneer-11, Galileo and Ulysses, the cum ulative-phase-alteration re- sulted in blue-shift, leading to the interpretation of deceleration of these space-probes. While the galactic-light experiences the red-shift, and th e ranging-signals of the space- probes experience blue -shift, they are comparable in magnitude, providing a supportive- evidence for the new mechanism proposed here. More confirmative-experiments for this new mechanism are also proposed.

  17. A comparative evaluation of emerging methods for errors of commission based on applications to the Davis-Besse (1985) event

    Energy Technology Data Exchange (ETDEWEB)

    Reer, B.; Dang, V.N.; Hirschberg, S. [Paul Scherrer Inst., Nuclear Energy and Safety Research Dept., CH-5232 Villigen PSI (Switzerland); Straeter, O. [Gesellschaft fur Anlagen- und Reaktorsicherheit (Germany)

    1999-12-01

    In considering the human role in accidents, the classical PSA methodology applied today focuses primarily on the omissions of actions required of the operators at specific points in the scenario models. A practical, proven methodology is not available for systematically identifying and analyzing the scenario contexts in which the operators might perform inappropriate actions that aggravate the scenario. As a result, typical PSA's do not comprehensively treat these actions, referred to as errors of commission (EOCs). This report presents the results of a joint project of the Paul Scherrer Institut (PSI, Villigen, Switzerland) and the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Garching, Germany) that examined some methods recently proposed for addressing the EOC issue. Five methods were investigated: 1 ) ATHEANA, 2) the Borssele screening methodology. 3) CREAM, 4) CAHR, and 5) CODA. In addition to a comparison of their scope, basic assumptions, and analytical approach, the methods were each applied in the analysis of PWR Loss of Feedwater scenarios based on the 1985 Davis-Besse event, in which the operator response included actions that can be categorized as EOCs. The aim was to compare how the methods consider a concrete scenario in which EOCs have in fact been observed. These case applications show how the methods are used in practical terms and constitute a common basis for comparing the methods and the insights that they provide. The identification of the potentially significant EOCs to be analysed in the PSA is currently the central problem for their treatment. The identification or search scheme has to consider an extensive set of potential actions that the operators may take. These actions may take place instead of required actions, for example, because the operators fail to assess the plant state correctly, or they may occur even when no action is required. As a result of this broad search space, most methodologies apply multiple schemes to

  18. A comparative evaluation of emerging methods for errors of commission based on applications to the Davis-Besse (1985) event

    International Nuclear Information System (INIS)

    Reer, B.; Dang, V.N.; Hirschberg, S.; Straeter, O.

    1999-12-01

    In considering the human role in accidents, the classical PSA methodology applied today focuses primarily on the omissions of actions required of the operators at specific points in the scenario models. A practical, proven methodology is not available for systematically identifying and analyzing the scenario contexts in which the operators might perform inappropriate actions that aggravate the scenario. As a result, typical PSA's do not comprehensively treat these actions, referred to as errors of commission (EOCs). This report presents the results of a joint project of the Paul Scherrer Institut (PSI, Villigen, Switzerland) and the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Garching, Germany) that examined some methods recently proposed for addressing the EOC issue. Five methods were investigated: 1 ) ATHEANA, 2) the Borssele screening methodology. 3) CREAM, 4) CAHR, and 5) CODA. In addition to a comparison of their scope, basic assumptions, and analytical approach, the methods were each applied in the analysis of PWR Loss of Feedwater scenarios based on the 1985 Davis-Besse event, in which the operator response included actions that can be categorized as EOCs. The aim was to compare how the methods consider a concrete scenario in which EOCs have in fact been observed. These case applications show how the methods are used in practical terms and constitute a common basis for comparing the methods and the insights that they provide. The identification of the potentially significant EOCs to be analysed in the PSA is currently the central problem for their treatment. The identification or search scheme has to consider an extensive set of potential actions that the operators may take. These actions may take place instead of required actions, for example, because the operators fail to assess the plant state correctly, or they may occur even when no action is required. As a result of this broad search space, most methodologies apply multiple schemes to

  19. Cosmic rays and climate

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The current understanding of climate change in the industrial age is that it is predominantly caused by anthropogenic greenhouse gases, with relatively small natural contributions due to solar irradiance and volcanoes. However, palaeoclimatic reconstructions show that the climate has frequently varied on 100-year time scales during the Holocene (last 10 kyr) by amounts comparable to the present warming - and yet the mechanism or mechanisms are not understood. Some of these reconstructions show clear associations with solar variability, which is recorded in the light radio-isotope archives that measure past variations of cosmic ray intensity. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Estimated changes of solar irradiance on these time scales appear to be too small to account for the climate observations. This raises the question of whether cosmic rays may directly affect the climate, provi...

  20. Carl Sagan's Cosmic Connection

    Science.gov (United States)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  1. Constraints on Cosmic Rays, Magnetic Fields, and Dark Matter from Gamma-ray Observations of the Coma Cluster of Galaxies with VERITAS and FERMI

    Science.gov (United States)

    Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; hide

    2012-01-01

    Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E greater than100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99 confidence level were measured to be on the order of (2-5) x 10(sup -8) photons m(sup -2) s(sup -1) (VERITAS,greater than 220 GeV) and approximately 2 x 10(sup -6) photons m(sup -2) s(sup -1) (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be less than 16% from VERITAS data and less than 1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be 50. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of approximately (2-5.5)microG, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark

  2. Two-Stage Battery Energy Storage System (BESS in AC Microgrids with Balanced State-of-Charge and Guaranteed Small-Signal Stability

    Directory of Open Access Journals (Sweden)

    Bing Xie

    2018-02-01

    Full Text Available In this paper, a two-stage battery energy storage system (BESS is implemented to enhance the operation condition of conventional battery storage systems in a microgrid. Particularly, the designed BESS is composed of two stages, i.e., Stage I: integration of dispersed energy storage units (ESUs using parallel DC/DC converters, and Stage II: aggregated ESUs in grid-connected operation. Different from a conventional BESS consisting of a battery management system (BMS and power conditioning system (PCS, the developed two-stage architecture enables additional operation and control flexibility in balancing the state-of-charge (SoC of each ESU and ensures the guaranteed small-signal stability, especially in extremely weak grid conditions. The above benefits are achieved by separating the control functions between the two stages. In Stage I, a localized power sharing scheme based on the SoC of each particular ESU is developed to manage the SoC and avoid over-charge or over-discharge issues; on the other hand, in Stage II, an additional virtual impedance loop is implemented in the grid-interactive DC/AC inverters to enhance the stability margin with multiple parallel-connected inverters integrating at the point of common coupling (PCC simultaneously. A simulation model based on MATLAB/Simulink is established, and simulation results verify the effectiveness of the proposed BESS architecture and the corresponding control diagram.

  3. One century of cosmic rays – A particle physicist's view

    Directory of Open Access Journals (Sweden)

    Sutton Christine

    2015-01-01

    Full Text Available Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  4. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY-THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS

    NARCIS (Netherlands)

    Koekemoer, Anton M.; Faber, S. M.; Ferguson, Henry C.; Grogin, Norman A.; Kocevski, Dale D.; Koo, David C.; Lai, Kamson; Lotz, Jennifer M.; Lucas, Ray A.; McGrath, Elizabeth J.; Ogaz, Sara; Rajan, Abhijith; Riess, Adam G.; Rodney, Steve A.; Strolger, Louis; Casertano, Stefano; Castellano, Marco; Dahlen, Tomas; Dickinson, Mark; Dolch, Timothy; Fontana, Adriano; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Huang, Kuang-Han; van der Wel, Arjen; Yan, Hao-Jing; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Cassata, Paolo; Challis, Peter J.; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dave, Romeel; de Mello, Duilia F.; de Ravel, Loic; Dekel, Avishai; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Frazer, Chris; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Gruetzbauch, Ruth; Hartley, Will G.; Haeussler, Boris; Herrington, Jessica; Hopkins, Philip F.; Huang, Jia-Sheng; Jha, Saurabh W.; Johnson, Andrew; Kartaltepe, Jeyhan S.; Khostovan, Ali A.; Kirshner, Robert P.; Lani, Caterina; Lee, Kyoung-Soo; Li, Weidong; Madau, Piero; McCarthy, Patrick J.; McIntosh, Daniel H.; McLure, Ross J.; McPartland, Conor; Mobasher, Bahram; Moreira, Heidi; Mortlock, Alice; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Nielsen, Jennifer L.; Niemi, Sami; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Snyder, Diana; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; Vargas, Carlos; Villforth, Carolin; Wagner, Cory R.; Wandro, Pat; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yun, Min S.

    2011-01-01

    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z approximate to 1.5-8, and to study

  5. Cosmic Dawn with WFIRST

    Science.gov (United States)

    Rhoads, James

    Central objectives: WFIRST-AFTA has tremendous potential for studying the epoch of "Cosmic Dawn" the period encompassing the formation of the first galaxies and quasars, and their impact on the surrounding universe through cosmological reionization. Our goal is to ensure that this potential is realized through the middle stages of mission planning, culminating in designs for both WFIRST and its core surveys that meet the core objectives in dark energy and exoplanet science, while maximizing the complementary Cosmic Dawn science. Methods: We will consider a combined approach to studying Cosmic Dawn using a judicious mixture of guest investigator data analysis of the primary WFIRST surveys, and a specifically designed Guest Observer program to complement those surveys. The Guest Observer program will serve primarily to obtain deep field observations, with particular attention to the capabilities of WFIRST for spectroscopic deep fields using the WFI grism. We will bring to bear our years of experience with slitless spectroscopy on the Hubble Space Telescope, along with an expectation of JWST slitless grism spectroscopy. We will use this experience to examine the implications of WFIRST’s grism resolution and wavelength coverage for deep field observations, and if appropriate, to suggest potential modifications of these parameters to optimize the science return on WFIRST. We have assembled a team of experts specializing in (1) Lyman Break Galaxies at redshifts higher than 7 (2) Quasars at high redshifts (3) Lyman-alpha galaxies as probes of reionization (4) Theoretical simulations of high-redshift galaxies (5) Simulations of grism observations (6) post-processing analysis to find emission line galaxies and high redshift galaxies (7) JWST observations and calibrations. With this team we intend to do end-to-end simulations starting with halo populations and expected spectra of high redshift galaxies and finally extracting what we can learn about (a) reionization

  6. Cosmic odyssey

    International Nuclear Information System (INIS)

    Heidmann, J.

    1989-01-01

    The immensity of the cosmos, the richness of the universe, the limits of space and time: these are the themes of Cosmic Odyssey, which takes the reader on imaginary journeys through the past, present and future of our universe. After a first look at the starry night sky, the enigmas posed since ancient times by the universe are reviewed. There then follows a broadbrush view of the universe as we understand it today. Following this, a trio of chapters take us to ultimate questions about its nature. The author explores in turn the relativistic universe, the quantum universe and the inflationary universe. Finally the journey returns to questions that touch on our own presence in the universe. Cosmology, the science of understanding the nature of the universe as a whole, has gone through an extraordinary revolution in its approach. This book explains in detail the link between particle physics and cosmology, the very early universe, the significance of Grand Unified Theory and superstrings, the magical qualities of the inflationary universe, and the seemingly bleak scenarios for the farthest future. (author)

  7. Cosmic physics: the high energy frontier

    International Nuclear Information System (INIS)

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  8. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability......A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...

  9. The Cosmic Background Explorer

    Science.gov (United States)

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  10. Tracing Cosmic Dawn

    Science.gov (United States)

    Fialkov, Anastasia

    2018-05-01

    Observational effort is on the way to probe the 21-cm of neutral hydrogen from the epochs of Reionization and Cosmic Dawn. Our current poor knowledge of high redshift astrophysics results in a large uncertainty in the theoretically predicted 21-cm signal. A recent parameter study that is highlighted here explores the variety of 21-cm signals resulting from viable astrophysical scenarios. Model-independent relations between the shape of the signal and the underlying astrophysics are discussed. Finally, I briefly note on possible alternative probes of the high redshift Universe, specifically Fast Radio Bursts.

  11. Looking for Cosmic Neutrino Background

    Directory of Open Access Journals (Sweden)

    Chiaki eYanagisawa

    2014-06-01

    Full Text Available Since the discovery of neutrino oscillation in atmospheric neutrinos by the Super-Kamiokande experiment in 1998, study of neutrinos has been one of exciting fields in high-energy physics. All the mixing angles were measured. Quests for 1 measurements of the remaining parameters, the lightest neutrino mass, the CP violating phase(s, and the sign of mass splitting between the mass eigenstates m3 and m1, and 2 better measurements to determine whether the mixing angle theta23 is less than pi/4, are in progress in a well-controlled manner. Determining the nature of neutrinos, whether they are Dirac or Majorana particles is also in progress with continuous improvement. On the other hand, although the ideas of detecting cosmic neutrino background have been discussed since 1960s, there has not been a serious concerted effort to achieve this goal. One of the reasons is that it is extremely difficult to detect such low energy neutrinos from the Big Bang. While there has been tremendous accumulation of information on Cosmic Microwave Background since its discovery in 1965, there is no direct evidence for Cosmic Neutrino Background. The importance of detecting Cosmic Neutrino Background is that, although detailed studies of Big Bang Nucleosynthesis and Cosmic Microwave Background give information of the early Universe at ~a few minutes old and ~300 k years old, respectively, observation of Cosmic Neutrino Background allows us to study the early Universe at $sim$ 1 sec old. This article reviews progress made in the past 50 years on detection methods of Cosmic Neutrino Background.

  12. Low-energy cosmic rays in the Orion region

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    The recently observed nuclear gamma-ray line emission from the Orion complex implies a high flux of low-energy cosmic rays (LECR) with unusual abundance. This cosmic ray component would dominate the energy density, pressure, and ionising power of cosmic rays, and thus would have a strong impact...

  13. Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 x 10.sup.18./sup. eV

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Juryšek, Jakub; Mandát, Dušan; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2017-01-01

    Roč. 357, č. 6357 (2017), s. 1266-1270 ISSN 0036-8075 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : cosmic rays * Pierre Auger Observatory * ultrahigh energy * large-scale anisotropy Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 37.205, year: 2016

  14. Observational Cosmology with the Planck satellite: extraction of the astrophysical signal from raw data of HFI instrument and study of the impact of cosmic rays

    International Nuclear Information System (INIS)

    Girard, D.

    2010-01-01

    Cosmology is a very old science. It's goal is to describe the Universe at large scales. The standard model of cosmology is an inflation-CDM Big-Bang model. It is based on General Relativity. The cosmic microwave background is one of the three pillars of this model, with the expansion of the Universe and the primordial nucleosynthesis. It is the oldest detectable radiation in the Universe. The study of its temperature and polarisation anisotropies allow us to access direct information about the content and the geometry of the primordial Universe. The Planck satellite, launched on May 14 of 2009, represents the third generation of satellite missions which study the cosmic microwave background. The exceptional sensitivity of its instruments, High Frequency Instrument and Low Frequency Instrument, will allow us to constrain very strongly the cosmological models describing the early Universe, particularly the inflationary period, and to measure the cosmological parameters which describe the evolution of the Universe with an accuracy down to the percent. To reach these ambitious scientific objectives, each systematic instrumental effect has to be severely controlled and corrected by the data analysis. The effect of cosmic rays interacting with the bolometers of HFI, which is one of the most important effects, and which differs significatively from predictions, is corrected during the time ordered data analysis. The detailed understanding of this phenomenon and its modeling are necessary to correct it and to reach an optimal effective sensitivity. They will permit to take this effect into account in the conception of the future instruments detectors. This thesis proposes a first part focused on cosmology, a second part describing the Planck satellite, the HFI instrument and particularly its detectors and a third part dedicated to the HFI instrument data analysis. I concentrate on time ordered data analysis and on the corrections of instrumental systematic effects. Then I

  15. ALICE Cosmic Ray Detector

    CERN Multimedia

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  16. Cosmic logic: a computational model

    International Nuclear Information System (INIS)

    Vanchurin, Vitaly

    2016-01-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps

  17. Cosmic void clumps

    Science.gov (United States)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  18. Dust in cosmic plasma environments

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1979-01-01

    Cosmic dust is invariably immersed in a plasma and a radiative environment. Consequently, it is charged to some electrostatic potential which depends on the properties of the environment as well as the nature of the dust. This charging affects the physical and dynamical properties of the dust. In this paper the basic aspects of this dust-plasma interaction in several cosmic environments - including planetary magnetospheres, the heliosphere and the interstellar medium - are discussed. The physical and dynamical consequences of the interaction, as well as the pertinent observational evidence, are reviewed. Finally, the importance of the surface charge during the condensation process in plasma environments is stressed. (Auth.)

  19. Aerosols Produced by Cosmic Rays

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    an experiment in order to investigate the underlying microphysical processes. The results of this experiment will help to understand whether ionization from cosmic rays, and by implication the related processes in the universe, has a direct influence on Earth’s atmosphere and climate. Since any physical...... mechanism linking cosmic rays to clouds and climate is currently speculative, there have been various suggestions of the role atmospheric ions may play; these involve any one of a number of processes from the nucleation of aerosols up to the collection processes of cloud droplets. We have chosen to start......Satellite observations have shown that the Earth’s cloud cover is strongly correlated with the galactic cosmic ray flux. While this correlation is indicative of a possible physical connection, there is currently no confirmation that a physical mechanism exists. We are therefore setting up...

  20. Cosmic Ray Energetics and Mass

    CERN Multimedia

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  1. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  2. Cosmology with the cosmic web

    Science.gov (United States)

    Forero-Romero, J. E.

    2017-07-01

    This talk summarizes different algorithms that can be used to trace the cosmic web both in simulations and observations. We present different applications in galaxy formation and cosmology. To finalize, we show how the Dark Energy Spectroscopic Instrument (DESI) could be a good place to apply these techniques.

  3. Diffuse γ-ray emission observed by the Fermi large area telescope: massive stars, cosmic rays and the census of the interstellar medium in the galaxy

    International Nuclear Information System (INIS)

    Tibaldo, L.

    2011-01-01

    Galactic diffuse γ-ray emission is produced by interactions of cosmic rays (CRs) with interstellar gas and low-energy radiation fields. This is the brightest component of the high-energy γ-ray sky, surveyed since 2008 with unprecedented sensitivity and angular resolution by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. Galactic diffuse emission constitutes not only a bright and structured background which needs to be modeled in order to study individual sources and fainter diffuse components, but it can be used also as a probe of the interstellar environment of the Milky Way. We present in-depth studies of LAT γ-ray observations of selected regions in the local and outer Galaxy. LAT data are compared with multiwavelength tracers of the interstellar medium (ISM), including radio/mm-wave lines of gas and infrared emission/extinction from dust. The impact of the HI optical depth, often overlooked in the past, is carefully examined and recognized currently as the dominant source of uncertainty in the interpretation of observations. On one hand, we discuss the constraints provided by the γ-ray data on the census of the interstellar gas. We determine the X C O = N(H 2 )/W C O ratio for several clouds, finding no significant gradients in the Galactic disc over a range of ∼ 3.5 kpc in Galactocentric radius, and variations of a factor ≤ 2 in nearby local clouds. We also find evidence for an ubiquitous dark phase of interstellar gas which does not shine at radio/mm wavelengths and which provides a mass ∼ 50% of that traced by CO. For the first time we determine its γ-ray spectrum which is found to be well correlated with that of HI, thus further confirming that the emission originates from interstellar gas. On the other hand, we use the emissivity per hydrogen atom to infer the distribution of CRs in distant locations not accessible by direct measurements. While the local HI emissivity is consistent with the CR spectra measured near

  4. Existence of dark matter with observed properties of cosmic microwave background radiation substantiates three conservation laws of classical physics and all principles of quantum mechanics as creates the value of Planck’s constant

    Science.gov (United States)

    Boriev, I. A.

    2018-03-01

    Astronomical data indicate a presence of dark matter (DM) in the space, what is necessary for explanation of observed dynamics of the galaxies within Newtonian mechanics. DM, at its very low density (∼10-26kg/m3), constitutes main part of the matter in the Universe, 10 times the mass of all visible cosmic bodies. No doubt, namely properties of DM, which fills space, must determine its physical properties and fundamental physical laws. Taking into account observed properties of cosmic microwave background radiation (CMBR), whose energy is ∼90% of all cosmic radiation, and understanding that this radiation is produced by DM motion, conservation laws of classical physics and principles of quantum mechanics receive their materialistic substantiation. Thus, CMBR high homogeneity and isotropy (∼10-4), and hence the same properties of DM (and space) justify momentum and angular momentum conservation laws, respectively, according to E. Noether's theorems. CMBR has black body spectrum at ∼2.7K with maximum wavelength ∼1.9·10-3m, what allows calculate the value of mechanical action produced by DM thermal motion (∼7·10-34 J·s). This value corresponds well to the Planck’s constant, which is the mechanical action too, what gives materialistic basis for all principles of quantum mechanics. Obtained results directly confirm the reality of DM existence, and show that CMBR is an observed display of DM thermal motion. Understanding that namely from DM occur known creation of electron-positron pairs as contrarily rotating material vortexes (according to their spins) let substantiate positron nature of ball lightning what first explains all its observed specific properties.

  5. SoC-Based Output Voltage Control for BESS with a Lithium-Ion Battery in a Stand-Alone DC Microgrid

    Directory of Open Access Journals (Sweden)

    Seung-Yeong Yu

    2016-11-01

    Full Text Available This paper proposes a new DC output voltage control for a battery energy storage system (BESS with a lithium-ion battery based on the state of charge (SoC. The proposed control scheme was verified through computer simulations for a typical stand-alone DC microgrid, which consists of a BESS, photovoltaic (PV panel, engine generator (EG, and DC load. A scaled hardware prototype for a stand-alone DC microgrid was set up in the lab, in which the proposed control scheme was loaded in a DSP controller. The experimental results were compared with the simulation results for performance verification. The proposed control scheme provides relatively lower variation of the DC grid voltage than the conventional droop control.

  6. Cosmic rays and the interstellar medium

    International Nuclear Information System (INIS)

    Wolfendale, A.W.

    1986-01-01

    It is inevitable that there is a close connection between cosmic rays and the ISM insofar as the propagation of cosmic rays is conditioned by the magnetic field in the ISM and the cosmic rays interact with the gas (and photon fluxes) in this medium. This paper deals with both topics. Propagation effects manifest themselves as an anisotropy in arrival directions and a review is given of anisotropy measurements and their interpretation. The status of studies of cosmic ray interactions is examined whit particular reference to the information about the ISM itself which comes from observations of the flux of secondary γ-rays produced by cosmic ray interactions with gas, the situation regarding molecular as in the Inner Galaxy being of particular concern

  7. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  8. INTEGRAL observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth

    DEFF Research Database (Denmark)

    Churazov, E.; Sunyaev, R.; Revnivtsev, M.

    2007-01-01

    by the Earth atmosphere and the Earth auroral emission. Results. The spectrum of the cosmic X-ray background in the energy band 5-100 keV is obtained. The shape of the spectrum is consistent with that obtained previously by the HEAO-1 observatory, while the normalization is similar to 10% higher....... This difference in normalization can ( at least partly) be traced to the different assumptions on the absolute flux from the Crab Nebulae. The increase relative to the earlier adopted value of the absolute flux of the CXB near the energy of maximum luminosity (20-50 keV) has direct implications for the energy...

  9. Cosmic clocks

    International Nuclear Information System (INIS)

    Norman, E.B.

    Two techniques based on astronomical observations have been developed which enable the age of the universe to be estimated, and an interdisciplinary field known as nuclear cosmochronology has allowed the ages of the earth and solar system to be determined

  10. Safety Evaluation Report related to the restart of Davis-Besse Nuclear Power Station, Unit 1, following the event of June 9, 1985 (Docket No. 50-346)

    International Nuclear Information System (INIS)

    1986-06-01

    On June 9, 1985, the Davis-Besse Nuclear Power Station, operated by the Toledo Edison Company, experienced a partial loss of main feedwater while the plant was at 90% power. The ensuing reactor trip was followed by spurious isolation of the steam geneators which initiated a chain of events involving a number of equipment malfunctions and several operator errors ultimately interrupting all feedwater for a short period of time. By the time operators were able to restore feedwater, both steam generators had dried out. A letter from the Director of the Office of Nuclear Reactor Regulation, pursuant to 10 CFR 50.54(f) of the Commission's regulations, confirmed that the Davis-Besse facility would not be restarted without NRC approval. The letter also requested that Toledo Edison submit its program for resolving numerous concerns identified by the staff. In response, the license submitted the Davis-Besse Course of Action report. The staff has reviewed that document and other supporting material submitted by the licensee; the staff's evaluation of that information is presented in this report

  11. Testing Cosmic Inflation

    Science.gov (United States)

    Chuss, David

    2010-01-01

    The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.

  12. L3 + Cosmics Experiment

    CERN Multimedia

    2002-01-01

    %RE4 %title\\\\ \\\\The L3+C experiment takes advantage of the unique properties of the L3 muon spectrometer to get an accurate measurement of cosmic ray muons 30 m underground. A new muon trigger, readout and DAQ system have been installed, as well as a scintillator array covering the upper surfaces of the L3 magnet for timing purposes. The acceptance amounts to 200 $m^2 sr$. The data are collected independently in parallel with L3 running. In spring 2000 a scintillator array will be installed on the roof of the SX hall in order to estimate the primary energy of air showers associated with events observed in L3+C.\\\\ \\\\The cosmic ray muon momentum spectrum, the zenith angular dependence and the charge ratio are measured with high accuracy between 20 and 2000 GeV/c. The results will provide new information about the primary composition, the shower development in the atmosphere, and the inclusive pion and kaon (production-) cross sections (specifically the "$\\pi$/K ratio") at high energies. These data will also hel...

  13. The Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Jones Aled

    1998-01-01

    Full Text Available We present a brief review of current theory and observations of the cosmic microwave background (CMB. New predictions for cosmological defect theories and an overview of the inflationary theory are discussed. Recent results from various observations of the anisotropies of the microwave background are described and a summary of the proposed experiments is presented. A new analysis technique based on Bayesian statistics that can be used to reconstruct the underlying sky fluctuations is summarised. Current CMB data is used to set some preliminary constraints on the values of fundamental cosmological parameters $Omega$ and $H_circ$ using the maximum likelihood technique. In addition, secondary anisotropies due to the Sunyaev-Zel'dovich effect are described.

  14. Anisotropy of the cosmic background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The characteristics of the cosmic microwave background radiation (CBR) are reviewed, focusing on intrinsic anisotropies caused by primordial matter fluctuations. The basic elements of the CBR are outlined and the contributions to anisotropy at different angular scales are discussed. Possible fluctuation spectra that can generate the observed large-scale structure of the universe through gravitational instability and nonlinear evolution are examined and compared with observational searches for cosmic microwave anisotropies. 21 refs

  15. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  16. Cosmic Perspectives

    Science.gov (United States)

    Biswas, S. K.; Mallik, D. C. V.; Vishveshwara, C. V.

    2008-07-01

    1. Astronomy in ancient and medieval China Joseph Needham; 2. Indian astronomy: an historical perspective B. V. Subbarayappa; 3. Making of astronomy in ancient India Debiprasad Chattopadhyaya; 4. The impact of astronomy on the development of western science Jean-Claude Pecker; 5. Man and the Universe Hubert Reeves; 6. Understanding the Universe - challenges and directions in modern observational astronomy Harlan Smith, Jr: 7. Frontiers in cosmology Fred Hoyle; 8. Did the Universe originate in a big bang? Jayant Narlikar; 9. The dark matter problem Bernard Carr; 10. Geometry and the Universe C. V. Vishveshwara; 11. The origin and evolution of life Cyril Ponnamperuma; 12. The anthropic principle: self selection as an adjunct to natural selection Brandon Carter; 13. Astrology and science: an examination of the evidence Ivan Kelly, Roger Culver and Peter Loptson; 14. Astronomy and science fiction Allen Janis.

  17. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  18. Elemental composition of cosmic ray

    International Nuclear Information System (INIS)

    Yanagida, Shohei

    1987-01-01

    The report first summarizes some data that have been obtained so far from observation of isotopes and elements in cosmic rays in the low energy region. Then, objectives of studies planned to be carried out with Astromag are outlined and the number of incident particles expected to be measured by baloon observation is estimated. Heavy elements with atomic numbers of greater than 30 are considered to be formed through neutron absorption reactions by the s- or r-process. Observations show that products of the r-process is abundant in cosmic ray sources. The escape length depends on energy. In relation to this, it has been reported that the ratios Ar-Fe and Ca-Fe increase above 200 GeV-n while such a tendency is not observed for K, Sc, Ti or V. Thus, no satisfactory models are available at present which can fully explain the changes in the escape length. The ratio 3 He- 4 He in the range of 5 - 10 GeV-n is inconsistent with the general theory that interprets the escape length of heavy elements. Some models, including the supermetallicity model and Wolf Rayet theory, have been proposed to explain unusual ratios of isotopes in cosmic rays, but more measurements are required to verify them. It is expected that Astromag can serve to make observations that can clarify these points. (Nogami, K.)

  19. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  20. Review of the Theoretical and Experimental Status of Dark Matter Identification with Cosmic-Ray Antideuterons

    Science.gov (United States)

    Aramaki, T.; Boggs, S.; Bufalino, S.; Dal, L.; von Doetinchem, P.; Donato, F.; Fornengo, N.; Fuke, H.; Grefe, M.; Hailey, C.; hide

    2016-01-01

    Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth's geomagnetic field, and the atmosphere. Finally, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Therefore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.

  1. Low cloud properties influenced by cosmic rays

    DEFF Research Database (Denmark)

    Marsh, Nigel; Svensmark, Henrik

    2000-01-01

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (less than or equal to3 km......), which points to a microphysical mechanism involving aerosol formation that is enhanced by ionization due to cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth....

  2. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    International Nuclear Information System (INIS)

    Caldwell, R.R.; Gates, E.

    1993-05-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and μ, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and μ is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict μ, and therefore limit the viability of the cosmic string large-scale structure scenario

  3. Diffuse Cosmic Infrared Background Radiation

    Science.gov (United States)

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  4. Deepening Cosmic Education

    Science.gov (United States)

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  5. Primary cosmic ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2001-05-01

    We discuss the primary cosmic ray flux from the point of view of particle interactions and production of atmospheric neutrinos. The overall normalization of the cosmic ray flux and its time variations and site dependence are major ingredients of the atmospheric neutrino predictions and the basis for the derivation of the neutrino oscillation parameters.

  6. Cosmic rays on earth

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  7. OBSERVATIONAL UPPER BOUND ON THE COSMIC ABUNDANCES OF NEGATIVE-MASS COMPACT OBJECTS AND ELLIS WORMHOLES FROM THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryuichi; Asada, Hideki [Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561 (Japan)

    2013-05-01

    The latest result in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) has set the first cosmological constraints on negative-mass compact objects and Ellis wormholes. There are no multiple images lensed by the above two exotic objects for {approx}50, 000 distant quasars in the SQLS data. Therefore, an upper bound is put on the cosmic abundances of these lenses. The number density of negative-mass compact objects is n < 10{sup -8}(10{sup -4}) h {sup 3} Mpc{sup -3} at the mass scale |M| > 10{sup 15}(10{sup 12}) M{sub Sun }, which corresponds to the cosmological density parameter |{Omega}| < 10{sup -4} at the galaxy and cluster mass range |M| = 10{sup 12-15} M{sub Sun }. The number density of the Ellis wormhole is n < 10{sup -4} h {sup 3} Mpc{sup -3} for a range of the throat radius a = 10-10{sup 4} pc, which is much smaller than the Einstein ring radius.

  8. GALACTIC-SCALE ABSORPTION OUTFLOW IN THE LOW-LUMINOSITY QUASAR IRAS F04250-5718: HUBBLE SPACE TELESCOPE/COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS

    International Nuclear Information System (INIS)

    Edmonds, Doug; Borguet, Benoit; Arav, Nahum; Dunn, Jay P.; Penton, Steve; Kriss, Gerard A.; Korista, Kirk; Bautista, Manuel; Costantini, Elisa; Kaastra, Jelle; Steenbrugge, Katrien; Ignacio Gonzalez-Serrano, J.; Benn, Chris; Aoki, Kentaro; Behar, Ehud; Micheal Crenshaw, D.; Everett, John; Gabel, Jack; Moe, Maxwell; Scott, Jennifer

    2011-01-01

    We present absorption line analysis of the outflow in the quasar IRAS F04250-5718. Far-ultraviolet data from the Cosmic Origins Spectrograph on board the Hubble Space Telescope reveal intrinsic narrow absorption lines from high ionization ions (e.g., C IV, N V, and O VI) as well as low ionization ions (e.g., C II and Si III). We identify three kinematic components with central velocities ranging from ∼-50 to ∼-230 km s -1 . Velocity-dependent, non-black saturation is evident from the line profiles of the high ionization ions. From the non-detection of absorption from a metastable level of C II, we are able to determine that the electron number density in the main component of the outflow is ∼ -3 . Photoionization analysis yields an ionization parameter log U H ∼ -1.6 ± 0.2, which accounts for changes in the metallicity of the outflow and the shape of the incident spectrum. We also consider solutions with two ionization parameters. If the ionization structure of the outflow is due to photoionization by the active galactic nucleus, we determine that the distance to this component from the central source is ∼>3 kpc. Due to the large distance determined for the main kinematic component, we discuss the possibility that this outflow is part of a galactic wind.

  9. Our Cosmic Insignificance

    Science.gov (United States)

    Kahane, Guy

    2014-01-01

    The universe that surrounds us is vast, and we are so very small. When we reflect on the vastness of the universe, our humdrum cosmic location, and the inevitable future demise of humanity, our lives can seem utterly insignificant. Many philosophers assume that such worries about our significance reflect a banal metaethical confusion. They dismiss the very idea of cosmic significance. This, I argue, is a mistake. Worries about cosmic insignificance do not express metaethical worries about objectivity or nihilism, and we can make good sense of the idea of cosmic significance and its absence. It is also possible to explain why the vastness of the universe can make us feel insignificant. This impression does turn out to be mistaken, but not for the reasons typically assumed. In fact, we might be of immense cosmic significance—though we cannot, at this point, tell whether this is the case. PMID:25729095

  10. Comparing cosmic web classifiers using information theory

    International Nuclear Information System (INIS)

    Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin; Jasche, Jens

    2016-01-01

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Our study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.

  11. Comparing cosmic web classifiers using information theory

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, Florent [Institute of Cosmology and Gravitation (ICG), University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Lavaux, Guilhem; Wandelt, Benjamin [Institut d' Astrophysique de Paris (IAP), UMR 7095, CNRS – UPMC Université Paris 6, Sorbonne Universités, 98bis boulevard Arago, F-75014 Paris (France); Jasche, Jens, E-mail: florent.leclercq@polytechnique.org, E-mail: lavaux@iap.fr, E-mail: j.jasche@tum.de, E-mail: wandelt@iap.fr [Excellence Cluster Universe, Technische Universität München, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2016-08-01

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Our study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.

  12. Relativistic transport theory for cosmic-rays

    International Nuclear Information System (INIS)

    Webb, G.M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented

  13. Cosmic ray antimatter and baryon symmetric cosmology

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  14. Technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1981-07-01

    This report documents the technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1. The tests were to verify that faults on the non-Class 1E circuits would not propagate to the Class 1E circuits and degrade them below acceptable levels. The tests conducted demonstrated that the safety features actuation system did not degrade below acceptable levels nor was the system's ability to perform its protective functions affected

  15. Evolution of the Cosmic Web

    Science.gov (United States)

    Einasto, J.

    2017-07-01

    In the evolution of the cosmic web dark energy plays an important role. To understand the role of dark energy we investigate the evolution of superclusters in four cosmological models: standard model SCDM, conventional model LCDM, open model OCDM, and a hyper-dark-energy model HCDM. Numerical simulations of the evolution are performed in a box of size 1024 Mpc/h. Model superclusters are compared with superclusters found for Sloan Digital Sky Survey (SDSS). Superclusters are searched using density fields. LCDM superclusters have properties, very close to properties of observed SDSS superclusters. Standard model SCDM has about 2 times more superclusters than other models, but SCDM superclusters are smaller and have lower luminosities. Superclusters as principal structural elements of the cosmic web are present at all cosmological epochs.

  16. The Cosmic Microwave Background Anisotropy

    Science.gov (United States)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  17. Light scattering by cosmic particles

    NARCIS (Netherlands)

    Hovenier, J.W.; Min, M.

    2008-01-01

    We define cosmic particles as particles outside the Earth. Two types of cosmic particles can be distinguished, namely liquid and solid particles. The solid particles are often called grains or cosmic dust particles. Cosmic particles occur in a great variety of astronomical objects and environments.

  18. 11. European cosmic ray symposium

    International Nuclear Information System (INIS)

    1989-03-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific programme was organized under three main headings: Cosmic rays in the heliosphere, Cosmic rays in the interstellar and extragalactic space, Properties of high-energy interactions as studied by cosmic rays. Seven invited talks were indexed seprately for the INIS database. (R.P.)

  19. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Science.gov (United States)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  20. Impact of inter-seasonal solar variability on the association of lower troposphere and cold point tropopause in the tropics: Observations using RO data from COSMIC

    Science.gov (United States)

    Kumar, V.; Dhaka, S. K.; Ho, Shu-Peng; Singh, Narendra; Singh, Vir; Reddy, K. K.; Chun, H.-Y.

    2017-12-01

    Association of lower tropospheric variations with the cold point tropopause (CPT) is examined on inter-seasonal basis over the tropical region (30°N-30°S) during 2007-2010 using COSMIC/FORMOST-3 Radio Occultation (RO) data. Temperature analyses for this association are shown over different regions of the globe having contrast topography namely over Western Pacific sector, Indian sector, and African sector. Correlation coefficient (r), taken as a measurement of association, show specific longitudinal differences between the lower troposphere (from 1 km to 5 km height) and the CPT. The northern and southern hemispheres show contrast coupling of temperature variation between lower tropospheric region and the CPT. Land and ocean effects are found to contribute in a different way to the correlation coefficient. Analyses show symmetrical structure of 'r' on both sides of the equator over the African region, as data include mostly land region on both side of equator. Data represent positive correlation (r 0.5) over 15°-20° latitudes on either side of the equator over the African region, suggesting strong hold of the inter-seasonal variation of solar diabatic heating influence over the tropic of Cancer and tropic of Capricorn. On the other hand, there is a contrast behaviour over the Indian region, 'r' is nearly negative ( - 1.0) each year in the southern hemisphere (SH) and positive ( 0.4) in the northern hemisphere (NH) with a maxima near tropic of Cancer. Western Pacific region is found to display a linear increase in 'r' from negative ( - 1.0) in SH to positive ( 0.8) in NH. In general, 'r' (positive) maximizes over the land region around 15°-20° latitudes, suggesting a control of in phase inter-seasonal solar heating on the coupling of boundary layer/lower troposphere and CPT region, whereas it turns negative over water body. Analyses suggest that variabilities in CPT over different regions of globe show significant inter-seasonal association with the lower

  1. Cosmic gamma bursts

    International Nuclear Information System (INIS)

    Ehstulin, I.V.

    1980-01-01

    A brief consideration is being given to the history of cosmic gamma burst discovery and modern knowledge of their properties. The time dependence of gamma bursts is described and their possible sources are discussed

  2. Cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1979-01-01

    The 20-ft horn-reflector antenna at Bell Laboratories is discussed in detail with emphasis on the 7.35 cm radiometer. The circumstances leading to the detection of the cosmic microwave background radiation are explored

  3. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  4. A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system

    International Nuclear Information System (INIS)

    Howlader, Abdul Motin; Izumi, Yuya; Uehara, Akie; Urasaki, Naomitsu; Senjyu, Tomonobu; Yona, Atsushi; Saber, Ahmed Yousuf

    2012-01-01

    Wind energy is a fluctuating resource which can diverge quickly and causes the frequency deviation. To overcome this problem, the current paper deals with a frequency control scheme for a small power system by a coordinated control strategy of a wind turbine generator (WTG) and a battery energy storage system (BESS). The small power system composes of a wind turbine, a battery storage and a diesel generator. A minimal order observer is utilized as a disturbance observer to estimate the load of the power system. The load deviations are considered in a frequency domain. The low frequency component is reduced by the pitch angle control system of the WTG, while the high frequency component is reduced by the charge/discharge of the BESS, respectively. The output power command of the BESS is determined according to the state of charge, the high frequency component of the frequency deviation and the load variation. The proposed method is compared with the conventional method in different cases. By using the proposed method, the capacity of the battery is decreased by the charge/discharge of the BESS in long term. To enhance the control performance, the generalized predictive control (GPC) method is introduced to the pitch angle control system of the WTG. Effectiveness of the proposed method is verified by the numerical simulations. -- Highlights: ► A coordinated control method for a WTG and a BESS in the small power system. ► To achieve this objective, a minimal order observer is utilized. ► The output power command of the WTG is based on the wind speed and the estimated frequency deviations. ► The output power the WTG is controlled by the GPC based robust pitch angle control system. ► The output power command of the BESS is determined by the state of charge and the estimated frequency deviations.

  5. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  6. Global (50°S–50°N) distribution of water vapor observed by COSMIC GPS RO: Comparison with GPS radiosonde, NCEP, ERA-Interim, and JRA-25 reanalysis data sets

    CSIR Research Space (South Africa)

    Kishore, P

    2011-08-01

    Full Text Available In this study, global (50°S–50°N) distribution of water vapor is investigated using COSMIC GPS RO measurements. Detailed comparisons have been made between COSMIC and high resolution GPS radiosonde measurements across 13 tropical stations and model...

  7. Cosmic microwave background theory

    Science.gov (United States)

    Bond, J. Richard

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321

  8. The Hubble Web: The Dark Matter Problem and Cosmic Strings

    Science.gov (United States)

    Alexander, Stephon

    2009-07-01

    I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.

  9. The Hubble Web: The Dark Matter Problem and Cosmic Strings

    International Nuclear Information System (INIS)

    Alexander, Stephon

    2009-01-01

    I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.

  10. Cl36 and the age of the cosmic rays

    International Nuclear Information System (INIS)

    Casse, M.; Goret, P.; Regnier, S.

    1975-01-01

    The radioactive isotope 36 Cl (tau=γx3.10 5 y) is used as a time reference for the propagation of cosmic rays. New measurements of the production cross section of 36 Cl in Ti and Fe at 24GeV will be presented. A critical analysis of the cross sections leads to an estimate of the ratio 36 Cl/Cl=0.030+0.007 in the arriving cosmic rays. The comparison between the expected abundance of Cl in the arriving cosmic rays and the observations tend to support the decay of 36 Cl. The inferred cosmic ray confinement time is about 10 6 y [fr

  11. Modulation of cosmic rays with particular reference to the Hermanus neutron monitor

    International Nuclear Information System (INIS)

    Stoker, P.H.

    1982-01-01

    Investigations at Potchefstroom has directed interest to the interaction between cosmic rays and the interplanetary magnetic field. In this paper the period of increasing modulation of cosmic rays from 1976 is discussed. The geomagnetic field as spectrometer for primary cosmic rays will be discussed and applied to the latitude surveys of 1975 and 1976. Features of the coronal magnetic field, the solar wind with interplanetary magnetic field and the transport of cosmic rays in the interplanetary magnetic field are outlined in order to relate cosmic ray recordings of fixed groundlevel stations to observations made in outerspace by space crafts and satellites and to explain these recordings in terms of cosmic ray modulation processes

  12. Cosmic rays in space

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu

    2005-01-01

    Cosmos is a mysterious space by which many researchers are fascinated for many years. But, going into space means that we will receive extra exposure due to existence of cosmic rays. Cosmic rays are mainly composed of highly energetic protons. It was born in the last stage of stellar life. Understanding of cosmos will certainly bring right understanding of radiation energy, or energy itself. As no one could see the very early stage of cosmic rays, there is only a speculation. But it is better to speculate something based on certain side evidences, than to give up the whole. Such attitude shall be welcomed in the space researches. Anyway, cosmic rays were born in the last explosion of a star, which is called as Super Nova. After cosmic rays are emitted from the Super Nova, it will reach to the human surroundings. To indicate its intensity, special unit of ''dose rate'' is used. When a man climbs a mountain, cosmic ray intensity surely increases. It doubles as he goes up every 1500m elevation. It was ascertained by our own measurements. Then what happens when the goes up more? At aviation altitude, where airplanes fly, the dose rate will be increased up to 100times the high mountain cases. And what is expected when he goes up further more, up to space orbit altitude? In this case, the dose rate increases up to 10times the airplane cases. Geomagnetism affects the dose rate very much. As primary cosmic ray particles are charged particles, they cannot do well with existence of the magnetic field. In effect, cosmic rays can penetrate into the polar atmosphere along geomagnetic lines of forces which stand almost vertical, but penetration of low energy cosmic rays will be banned when they intend to penetrate crossing the geomagnetic lines of forces in equatorial region. Therefore, exposure due to cosmic rays will become large in polar region, while it remains small in equatorial region. In effect, airplanes which fly over the equator. Only, we have to know that the cosmos

  13. A formalism for cosmic ray propagation studies

    International Nuclear Information System (INIS)

    Golden, R.L.; Badhwar, G.D.; Stephens, S.A.

    1975-01-01

    The continuity equation for cosmic ray propagation is used to derive a set of linear equations interrelating the fluxes of multiply charged nuclei as observed at any particular part of the galaxy. The derivation leads to model indepent definitions for cosmic ray storage time, mean density of target nuclei and effective mass traversed. The set of equations form a common framework for comparisons of theories and observations. As an illustration, it is shown that there exists a large class of propagation models which give the same result as the exponential path length model. (orig./BJ) [de

  14. Refractory metal nuggets in different types of cosmic spherules.

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Plane, J.M.C.; Berg, T.; Feng, W.; Balgar, S.

    a fremdling-like object in a cosmic spherule which has a nugget encased in Fe–Ni and sulfide phases, similar to those typically observed in CAIs of CV or CO chondrites. The atmospheric entry for this rare cosmic spherule appears to have taken place...

  15. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    Science.gov (United States)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  16. Cosmic microwave background distortions at high frequencies

    International Nuclear Information System (INIS)

    Peter, W.; Peratt, A.L.

    1988-01-01

    The authors analyze the deviation of the cosmic background radiation spectrum from the 2.76+-0.02 0 Κ blackbody curve. If the cosmic background radiation is due to absorption and re-emission of synchrotron radiation from galactic-width current filaments, higher-order synchrotron modes are less thermalized than lower-order modes, causing a distortion of the blackbody curve at higher frequencies. New observations of the microwave background spectrum at short wavelengths should provide an indication of the number of synchrotron modes thermalized in this process. The deviation of the spectrum from that of a perfect blackbody can thus be correlated with astronomical observations such as filament temperatures and electron energies. The results are discussed and compared with the theoretical predictions of other models which assume the presence of intergalactic superconducting cosmic strings

  17. Return of the quantum cosmic censor

    International Nuclear Information System (INIS)

    Hod, Shahar

    2008-01-01

    The influential theorems of Hawking and Penrose demonstrate that spacetime singularities are ubiquitous features of general relativity, Einstein's theory of gravity. The utility of classical general relativity in describing gravitational phenomena is maintained by the cosmic censorship principle. This conjecture, whose validity is still one of the most important open questions in general relativity, asserts that the undesirable spacetime singularities are always hidden inside of black holes. In this Letter we reanalyze extreme situations which have been considered as counterexamples to the cosmic censorship hypothesis. In particular, we consider the absorption of fermion particles by a spinning black hole. Ignoring quantum effects may lead one to conclude that an incident fermion wave may over spin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when quantum effects are properly taken into account, the integrity of the black-hole event horizon is irrefutable. This observation suggests that the cosmic censorship principle is intrinsically a quantum phenomena

  18. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2010-01-01

    Full text: The 31 st International Cosmic Ray Conference (31.ICRC) was held in Lodz on 7-15 July 2009. The Conference was organized by the University of Lodz (Department of High Energy Astrophysics and Department of Astrophysics) and IPJ (Department of Cosmic Ray Physics). ICRCs are held every two years and are the largest forums to present and discuss the current status of Cosmic Ray studies. The Conference we co-organized gathered about 750 scientists (including about 50 from Poland). This was a remarkable event. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the field of high energy Cosmic Rays. Cosmic Rays are energetic panicles from outside the Solar System. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles. - experimental search for sources of Cosmic Rays, - studies of the astrophysical conditions at the acceleration sites, - properties of particle interactions at very high energies. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce panicle physics detectors and elementary particle detection techniques to young people, in Lodz and Poznan we organize workshops on particle physics for high school students. This is part of the European activity: EPPOG Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of panicles in the atmosphere, called Extensive Air Showers (EAS). Registering EASs and their properties is the main means of studying experimentally high energy Cosmic Rays: · The satellite experiment JEM-EUSO will observe EASs from the International Space Station. The main target is to find Cosmic Ray Sources for the highest energy Cosmic Rays. JEM-EUSO will collect a large number of events since it will observe a large area of the atmosphere. We are participating in the preparation of this mission. · The KASCADE-Grande addresses

  19. Nearest Cosmic Mirage

    Science.gov (United States)

    2003-07-01

    Discovery of quadruply lensed quasar with Einstein ring Summary Using the ESO 3.6-m telescope at La Silla (Chile), an international team of astronomers [1] has discovered a complex cosmic mirage in the southern constellation Crater (The Cup). This "gravitational lens" system consists of (at least) four images of the same quasar as well as a ring-shaped image of the galaxy in which the quasar resides - known as an "Einstein ring". The more nearby lensing galaxy that causes this intriguing optical illusion is also well visible. The team obtained spectra of these objects with the new EMMI camera mounted on the ESO 3.5-m New Technology Telescope (NTT), also at the La Silla observatory. They find that the lensed quasar [2] is located at a distance of 6,300 million light-years (its "redshift" is z = 0.66 [3]) while the lensing elliptical galaxy is rougly halfway between the quasar and us, at a distance of 3,500 million light-years (z = 0.3). The system has been designated RXS J1131-1231 - it is the closest gravitationally lensed quasar discovered so far . PR Photo 20a/03 : Image of the gravitational lens system RXS J1131-1231 (ESO 3.6m Telescope). PR Photo 20b/03 : Spectra of two lensed images of the source quasar and the lensing galaxy. Cosmic mirages The physical principle behind a "gravitational lens" (also known as a "cosmic mirage") has been known since 1916 as a consequence of Albert Einstein's Theory of General Relativity . The gravitational field of a massive object curves the local geometry of the Universe, so light rays passing close to the object are bent (like a "straight line" on the surface of the Earth is necessarily curved because of the curvature of the Earth's surface). This effect was first observed by astronomers in 1919 during a total solar eclipse. Accurate positional measurements of stars seen in the dark sky near the eclipsed Sun indicated an apparent displacement in the direction opposite to the Sun, about as much as predicted by Einstein

  20. Progress in high-energy cosmic ray physics

    Science.gov (United States)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  1. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2004-01-01

    Full text: Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems such as: - the nature of the physical and astrophysical processes responsible for the high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or a search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energies available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejections); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main theme of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run an Extensive Air Shower array where EAS are registered. We concentrate our experimental research on the explanation of particle detection delayed by hundreds of microseconds with respect to the main EAS signals. In the underground (I5 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases) in muon counting rates. The interpretation of these events for ''cosmic weather'' and for Cosmic Ray transport models in the interplanetary plasma are on going in collaboration with

  2. A Shifting Shield Provides Protection Against Cosmic Rays

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    at Earth.In a new study, a team of scientists led by Nicola Tomassetti (University of Perugia, Italy) has modeled this solar modulation to better understand the process by which the Suns changing activity influences the cosmic ray flux that reaches us at Earth.Modeling a LagTomassetti and collaborators model uses two solar-activity observables as inputs: the number of sunspots and the tilt angle of the heliospheric current sheet. By modeling basic transport processes in the heliosphere, the authors then track the impact that the changing solar properties have on incoming galactic cosmic rays. In particular, the team explores the time lag between when solar activity changes and when we see the responding change in the cosmic-ray flux.Cosmic-ray flux observations are best fit by the authors model when an 8-month lag is included (red bold line). A comparison model with no lag (black dashed line) is included. [Tomassetti et al. 2017]By comparing their model outputs to the large collection of time-dependent observations of cosmic-ray fluxes, Tomassetti and collaborators show that the best fit to data occurs with an 8-month lag between changing solar activity and local cosmic-ray flux modulation.This is an important outcome for studying the processes that affect the cosmic-ray flux that reaches Earth. But theres an additional intriguing consequence of this result: knowledge of the current solar activity could allow us to predict the modulation that will occur for cosmic rays near Earth an entire 8 months from now! If this model is correct, it brings us one step closer to being able to plan safer space missions for the future.CitationNicola Tomassetti et al 2017 ApJL 849 L32. doi:10.3847/2041-8213/aa9373

  3. Cosmic strings and galaxy formation

    International Nuclear Information System (INIS)

    Bertschinger, E.

    1989-01-01

    Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings

  4. Cosmic Sum Rules

    DEFF Research Database (Denmark)

    T. Frandsen, Mads; Masina, Isabella; Sannino, Francesco

    2011-01-01

    We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models.......We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models....

  5. Educational Cosmic Ray Arrays

    International Nuclear Information System (INIS)

    Soluk, R. A.

    2006-01-01

    In the last decade a great deal of interest has arisen in using sparse arrays of cosmic ray detectors located at schools as a means of doing both outreach and physics research. This approach has the unique advantage of involving grade school students in an actual ongoing experiment, rather then a simple teaching exercise, while at the same time providing researchers with the basic infrastructure for installation of cosmic ray detectors. A survey is made of projects in North America and Europe and in particular the ALTA experiment at the University of Alberta which was the first experiment operating under this paradigm

  6. A disintegrating cosmic string

    International Nuclear Information System (INIS)

    Griffiths, J B; Docherty, P

    2002-01-01

    We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave. (letter to the editor)

  7. Cosmic ray investigations

    International Nuclear Information System (INIS)

    Zatsepin, Georgii T; Roganova, Tat'yana M

    2009-01-01

    The history of cosmic ray research at the Lebedev Institute beginning with the first work and continuing up to now is reviewed. The milestones and main avenues of research are outlined. Pioneering studies on the nuclear cascade process in extensive air showers, investigations of the Vavilov-Cherenkov radiation, and some work on the origin of cosmic rays are discussed. Recent data on ultrahigh-energy particle detection at the Pierre Auger Observatory and the High Resolution Fly's Eye (HiRes) experiments are presented. (conferences and symposia)

  8. Heterotic cosmic strings

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Krause, Axel

    2006-01-01

    We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion

  9. Cosmic Humanity: Utopia, Realities, Prospects

    OpenAIRE

    Sergey Krichevsky

    2017-01-01

    The philosophical foundations of the theory and practice of the creation of cosmic humanity as a process of the evolution of human civilization, the emergence into space, with the prospect of resettlement outside the Earth are considered. There is a connection between myths, fantasies, ideas, concepts and projects aimed at the exploration of outer space, the creation of cosmic humanity. A new and voluminous definition of cosmic humanity in the evolutionary paradigm is given. Cosmic humanity i...

  10. Observational study with XMM-Newton of the physics of the formation of cosmic structure: from galaxies to merging of nearby galaxy clusters

    International Nuclear Information System (INIS)

    Belsole, Elena

    2002-01-01

    In this work, three types of structure are analysed for the first time using data from the XMM-Newton satellite. Firstly, I present a study of the compact galaxy group HCG 16. Galaxy groups can be thought of as the building blocks of larger structures, and it is thus fundamental to understand their properties as isolated systems. HCG 16 is composed entirely of spiral galaxies and its nature as a true compact group in three dimensions has been much debated. The XMM Newton observation of this object has allowed us to definitively detect diffuse gas trapped in the potential well of this group, reaching out to a distance of 135 h_5_0"-"1 kpc. This gas has a temperature of 0.5 keV and a non-zero metallicity. The measured bolometric luminosity is 9.6 x 10"4"0 erg s"-"1, but this may be only a small fraction of the real luminosity because of detection limits due to the high background. Despite its extreme nature, HCG 16 obeys the observed relation between luminosity and X-ray temperature. The properties of the diffuse gas confirm that the group is truly gravitationally bound, even though it may not yet have had enough time to relax. These results reopen the debate concerning the nature of spiral-dominated galaxy groups and their cosmological role as a potentially large reservoir of baryons in the Universe. The second part of this thesis is devoted to a discussion of the X-ray emission from the centre of the galaxy cluster Virgo, and the central galaxy of the cluster, M87. The detailed study of this object is possible because of its closeness to us. The new XMM-Newton observations have allowed a precise study of the central region of which the spectra of the core and knot A of the jet were obtained for the first time in X-ray. These two sources show non-thermal emission very likely due to synchrotron radiation. The power released by the central engine produces a structure at larger scales which is observable in X-ray to radio wavelengths. In this work I have studied the

  11. Cosmic Ray Acceleration in Supernova Remnants

    International Nuclear Information System (INIS)

    O'C Drury, Luke

    2005-01-01

    This paper describes some recent developments in our understanding of cosmic ray acceleration in supernova remnant shocks. It is pointed out that while good agreement now exists as to steady nonlinear modifications to the shock structure, there is also growing evidence that the mesoscopic scales may not in fact be steady and that significant instabilities associated with magnetic field amplification may be a feature of strong collisionless plasma shocks. There is strong observational evidence for such magnetic field amplification, and it appears to solve a number of long-standing issues concerned with acceleration of cosmic rays in supernova remnants

  12. Cosmic ray modulation and merged interaction regions

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Goldstein, M.L.; Mcdonald, F.B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s

  13. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show...... that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out...... to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI...

  14. Weak cosmic censorship: as strong as ever.

    Science.gov (United States)

    Hod, Shahar

    2008-03-28

    Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments.

  15. Low cloud properties influenced by cosmic rays

    Science.gov (United States)

    Marsh; Svensmark

    2000-12-04

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (climate on Earth.

  16. Believability of signals from cosmic ray sources

    International Nuclear Information System (INIS)

    Goodman, M.

    1990-11-01

    This paper discusses some of the criteria by which an observer judges whether to believe a signal or limit that has been reported for a cosmic ray source. The importance of specifying the test before looking at the data is emphasized. 5 refs

  17. Long-term and transient time variation of cosmic ray fluxes detected in Argentina by CARPET cosmic ray detector

    Science.gov (United States)

    De Mendonça, R. R. S.; Raulin, J.-P.; Bertoni, F. C. P.; Echer, E.; Makhmutov, V. S.; Fernandez, G.

    2011-07-01

    We present results obtained at El Leoncito (CASLEO, San Juan, Argentina) with the CARPET charged particles detector installed in April 2006. The observed modulation of the cosmic ray flux is discussed as a function of its time variability and it is related to longer solar activity variations and to shorter variations during solar and geomagnetic transient activity. Short period (few minutes, few hours) cosmic ray modulation events are observed during rain time (precipitation) and significant variations of the atmospheric electric field. Complementary observations of the atmospheric electric field indicate that its time variations play an important role in the detected cosmic ray event.

  18. New results from cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Tonwar, S. C.

    1980-07-01

    Behavior of elementary particles at very high energies and new phenomena observed are discussed in the light of results obtained by cosmic ray studies. Methods of determining hadron-nucleus inelastic cross-sections are described. Proton energy spectra are studied at 2000-50,000 GeV and the hadron-proton total cross section is deduced. Measurement of the cross-section by measurement of the intensity of transition radiation is described. The instrumental effects and the corrections effected are mentioned. The results obtained by different groups of investigators are compared. Observations on the scaling violation at high energies are reported. New particles or phenomena observed include: (i) the long flying component (ii) centauro events, (iii) delayed particles (iv) high energy cascades in underground experiments and (v) charm hadron production in hadron collisions. New experiments being planned for further research are mentioned.

  19. Hydrology and Cosmic radiation

    DEFF Research Database (Denmark)

    Andreasen, Mie

    and calibration. Yet, soil moisture measurements are traditionally provided on either point or kilometer scale from electromagnetic based sensors and satellite retrievals, respectively. Above the ground surface, the cosmic-ray neutron intensity (eV range) is inversely correlated to all hydrogen present...

  20. On the cosmical constant

    International Nuclear Information System (INIS)

    Chandra, R.

    1977-01-01

    On the grounds of the two correspondence limits, the Newtonian limit and the special theory limit of Einstein field equations, a modification of the cosmical constant has been proposed which gives realistic results in the case of a homogeneous universe. Also, according to this modification an explanation for the negative pressure in the steady-state model of the universe has been given. (author)

  1. Cosmic rays and climate

    CERN Multimedia

    2009-01-01

    Inside the new chamber the CLOUD team will be able to recreate the conditions of any part of the atmosphere, from the polar stratosphere to the low level tropics (top). The new chamber safely in position in the East hall. Once carefully cleaned the chamber will be turned sideways onto its legs ready for the beam of 'cosmic rays' (bottom).

  2. Note on cosmic censorship

    International Nuclear Information System (INIS)

    Jang, P.S.

    1979-01-01

    For initial data sets which represent charged black holes we prove some inequalities which relate the total energy, the total charge, and the size of the black hole. One of them is a necessary condition for the validity of cosmic censorship

  3. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2007-01-01

    placed on the roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1m 2 detectors and GPS. The network is connected off-line using internet infrastructure and precise time registration. This allows us to correlate detection of the same EAS in a few schools. Students of high schools in Lodz are involved in construction of the array. We participate in creation of EuroCosmics, the European network of school-based Cosmic Ray experiments. In the underground (15 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases related to Solar activity) in muon counting rates. The international collaborations are very important: the Department is a member of KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS, extended to EAS radio emission detection as part of LOPES Collaboration. We collaborate in EAS data interpretation, detection techniques and basic Cosmic Ray studies with College de France, Institute for Nuclear Research of the Russian Academy of Sciences, JINR Dubna and Cosmophysical Institute in Yakutsk (Russia). In the area of high energy particle physics Department participates in ZEUS experiment at DESY (Hamburg, Germany), and in WASA(at)COSY Collaboration in Juelich, Germany. (author)

  4. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2008-01-01

    connected off-line using internet infrastructure and precise time registration. Students of high schools in Lodz are involved in construction of the array. We participate in work of EuroCosmics, the European network of school-based Cosmic Ray experiments. In the underground (15 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases related to Solar activity) in muon counting rates. The international collaborations are very important: the Department is a member of KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS, extended to EAS radio emission detection as part of LOPES Collaboration. We collaborate in EAS data interpretation, detection techniques and basic Cosmic Ray studies with University Paris-VII, Institute for Nuclear Research of the Russian Academy of Sciences and JINR, Dubna. In the area of high energy particle physics Department participates in ZEUS experiment at DESY (Hamburg, Germany), and in WASA(at)COSY Collaboration in Juelich, Germany. (author)

  5. Tracing the cosmic web

    Science.gov (United States)

    Libeskind, Noam I.; van de Weygaert, Rien; Cautun, Marius; Falck, Bridget; Tempel, Elmo; Abel, Tom; Alpaslan, Mehmet; Aragón-Calvo, Miguel A.; Forero-Romero, Jaime E.; Gonzalez, Roberto; Gottlöber, Stefan; Hahn, Oliver; Hellwing, Wojciech A.; Hoffman, Yehuda; Jones, Bernard J. T.; Kitaura, Francisco; Knebe, Alexander; Manti, Serena; Neyrinck, Mark; Nuza, Sebastián E.; Padilla, Nelson; Platen, Erwin; Ramachandra, Nesar; Robotham, Aaron; Saar, Enn; Shandarin, Sergei; Steinmetz, Matthias; Stoica, Radu S.; Sousbie, Thierry; Yepes, Gustavo

    2018-01-01

    The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast low-density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web - depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper, we bring 12 of these methods together and apply them to the same data set in order to understand how they compare. In general, these cosmic-web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore, one would not a priori expect agreement between different techniques; however, many of these methods do converge on the identification of specific features. In this paper, we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find a substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. Mhalo ∼ 1013.5 h-1 M⊙) as being in filaments. Lastly, so that any future cosmic-web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.

  6. Beam Measurements of a CLOUD (Cosmics Leaving OUtdoor Droplets) Chamber

    CERN Document Server

    Kirkby, Jasper

    2001-01-01

    A striking correlation has recently been observed between global cloud cover and the flux of incident cosmic rays. The effect of natural variations in the cosmic ray flux is large, causing estimated changes in the Earth's energy radiation balance that are comparable to those attributed to greenhouse gases from the burning of fossil fuels since the Industrial Revolution. However a direct link between cosmic rays and cloud formation has not been unambiguously established. We therefore propose to experimentally measure cloud (water droplet) formation under controlled conditions in a test beam at CERN with a CLOUD chamber, duplicating the conditions prevailing in the troposphere. These data, which have never been previously obtained, will allow a detailed understanding of the possible effects of cosmic rays on clouds and confirm, or otherwise, a direct link between cosmic rays, global cloud cover and the Earth's climate. The measurements will, in turn, allow more reliable calculations to be made of the residual e...

  7. The role of cosmic rays in the Earth's atmospheric processes

    Indian Academy of Sciences (India)

    Cosmic rays; global electric circuit; ion-aerosol; cloud variation; weather and ... layers have also significant effect on the Earth's atmosphere heat balance .... Numerical modelling and satellite observations suggested that a 1% change in the.

  8. Lorentz-violating electrodynamics and the cosmic microwave background.

    Science.gov (United States)

    Kostelecký, V Alan; Mewes, Matthew

    2007-07-06

    Possible Lorentz-violating effects in the cosmic microwave background are studied. We provide a systematic classification of renormalizable and nonrenormalizable operators for Lorentz violation in electrodynamics and use polarimetric observations to search for the associated violations.

  9. [Cosmic Microwave Background (CMB) Anisotropies

    Science.gov (United States)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  10. Polarization of Cosmic Microwave Background

    International Nuclear Information System (INIS)

    Buzzelli, A; Cabella, P; De Gasperis, G; Vittorio, N

    2016-01-01

    In this work we present an extension of the ROMA map-making code for data analysis of Cosmic Microwave Background polarization, with particular attention given to the inflationary polarization B-modes. The new algorithm takes into account a possible cross- correlated noise component among the different detectors of a CMB experiment. We tested the code on the observational data of the BOOMERanG (2003) experiment and we show that we are provided with a better estimate of the power spectra, in particular the error bars of the BB spectrum are smaller up to 20% for low multipoles. We point out the general validity of the new method. A possible future application is the LSPE balloon experiment, devoted to the observation of polarization at large angular scales. (paper)

  11. Transition from galactic to extra-galactic cosmic rays

    International Nuclear Information System (INIS)

    Aloisio, Roberto

    2006-01-01

    In this paper we review the main features of the observed Cosmic Rays spectrum in the energy range 10 17 eV to 10 20 eV. We present a theoretical model that explains the main observed features of the spectrum, namely the second Knee and Dip, and implies a transition from Galactic to Extra-Galactic cosmic rays at energy E ≅ 10 18 eV, with a proton dominated Extra-Galactic spectrum

  12. Cosmic time dilation: The clock paradox revisited

    International Nuclear Information System (INIS)

    Tomaschitz, Roman

    2004-01-01

    The relativistic time dilation is reviewed in a cosmological context. We show that a clock or twin paradox does not arise if cosmic time is properly taken into account. The receding galaxy background provides a unique frame of reference, and the proper times of geodesic as well as accelerated observers can be linked to the universal cosmic time parameter. This suggests to compare the proper time differentials of the respective observers by determining their state of motion in the galaxy grid. In this way, each observer can figure out whether his proper time is dilated or contracted relative to any other. In particular one can come to unambiguous conclusions on the aging of uniformly moving observers, without reference to asymmetries in measurement procedures or accelerations they may have undergone

  13. Chandra Discovers Cosmic Cannonball

    Science.gov (United States)

    2007-11-01

    One of the fastest moving stars ever seen has been discovered with NASA's Chandra X-ray Observatory. This cosmic cannonball is challenging theories to explain its blistering speed. Astronomers used Chandra to observe a neutron star, known as RX J0822-4300, over a period of about five years. During that span, three Chandra observations clearly show the neutron star moving away from the center of the Puppis A supernova remnant. This remnant is the stellar debris field created during the same explosion in which the neutron star was created about 3700 years ago. Chandra X-ray Image of RX J0822-4300 in Puppis A Chandra X-ray Image of RX J0822-4300 in Puppis A By combining how far it has moved across the sky with its distance from Earth, astronomers determined the neutron star is moving at over 3 million miles per hour. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far. "This star is moving at 3 million miles an hour, but it's so far away that the apparent motion we see in five years is less than the height of the numerals in the date on a penny, seen from the length of a football field," said Frank Winkler of Middlebury College in Vermont. "It's remarkable, and a real testament to the power of Chandra, that such a tiny motion can be measured." Labeled Image of RX J0822-4300 in Puppis A Labeled Image of RX J0822-4300 in Puppis A "Just after it was born, this neutron star got a one-way ticket out of the Galaxy," said co-author Robert Petre of NASA's Goddard Space Flight Center in Greenbelt, Md. "Astronomers have seen other stars being flung out of the Milky Way, but few as fast as this." So-called hypervelocity stars have been previously discovered shooting out of the Milky Way with speeds around one million miles per hour. One key difference between RX J0822-4300 and these other reported galactic escapees is the source of their speed. The hypervelocity stars are

  14. Observation and analysis of cosmic electromagnetic cascades detected in lead photoemulsion chamber of the Brazil-Japan cooperation, exposed in Monte Chacaltaya, Bolivia (altitude 5200m, air pressure 550 gr.cm-2)

    International Nuclear Information System (INIS)

    Bastos, C.A.

    1971-04-01

    The cosmic gamma radiations in the photoemulsion chamber for Brazil-Japan Cooperation are studied. These radiations reproduces the electromagnetic component of extensive air showers at the begining of its development through the atmosphere. The gamma radiations, which is 0 Π meson decay products emitted in nuclear interaction, are detected by electromagnetic cascades which are developed when they reach the photoemulsion chamber. Cosmic gamma radiations is a set of parallel electromagnetic cascades proceeding from nuclear interactions. The information about high energy nuclear interactions making possible to study the structure of extensive air showers at the beginning of its development and multiple meson production are obtained. (M.C.K.) [pt

  15. Hazards of cosmic radiation

    International Nuclear Information System (INIS)

    Bonnet-Bidaud, J.M.; Dzitko, H.

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: i) the magnetic field generated by the solar wind, ii) the earth magnetic field (magnetosphere), and iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  16. Note on cosmic censorship

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1985-01-01

    A number of recent theorems by Krolak and Newman purport to prove cosmic censorship by showing that ''strong curvature'' singularities must be hidden behind horizons. It is proved that Newman's ''null, strong curvature'' condition, which is imposed on certain classes of null geodesics to restrict curvature growth in the space-time, does not hold in many physically realistic space-times: it is not satisfied by any null geodesic in the relevant class in any open Friedmann cosmological model, nor does it hold for any null geodesic in the relevant class in maximal Schwarzschild space. More generally, it is argued that the singularity predicted by the Penrose singularity theorem is unlikely to be of the type eliminated by Newman. Thus the Newman theorems are probably without physical significance. The Krolak theorems, although based on a physically significant definition of strong curvature singularity, are mathematically invalid, and this approach cannot be used to obtain a cosmic censorship theorem. (author)

  17. Cosmic Rays in Thunderstorms

    Science.gov (United States)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  18. Cosmic ray modulation

    Science.gov (United States)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  19. The Status of Cosmic Topology after Planck Data

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Luminet

    2016-01-01

    Full Text Available In the last decade, the study of the overall shape of the universe, called Cosmic Topology, has become testable by astronomical observations, especially the data from the Cosmic Microwave Background (hereafter CMB obtained by WMAP and Planck telescopes. Cosmic Topology involves both global topological features and more local geometrical properties such as curvature. It deals with questions such as whether space is finite or infinite, simply-connected or multi-connected, and smaller or greater than its observable counterpart. A striking feature of some relativistic, multi-connected small universe models is to create multiples images of faraway cosmic sources. While the last CMB (Planck data fit well the simplest model of a zero-curvature, infinite space model, they remain consistent with more complex shapes such as the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. We review the theoretical and observational status of the field.

  20. Evaluation of super intense geomagnetic storms and related structures of the interplanetary medium through the observation of cosmic rays of high energy surface; Analise de tempestades geomagneticas super intensas e de estruturas do meio interplanetario relacionadas, atraves da observacao de raios cosmicos de superficie de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Savian, Jairo Francisco; Schuch, Nelson J., E-mail: savian@lacesm.ufsm.br, E-mail: njschuch@lacesm.ufsm.br [Centro Regional Sul de Pesquisas Espaciais - CRSPE/INPE-MCT, Santa Maria, RS (Brazil); Silva, Marlos Rockenbach da; Lago, Alisson dal; Gonzalez, Walter Demetrio, E-mail: marlos@dge.inpe.br, E-mail: dallago@dge.inpe.br, E-mail: gonzalez@dge.inpe.br [Instituto Nacional de Pesquisas Espaciais - INPE-MCT, Sao Jose dos Campos, SP (Brazil); Munakata, Kazuoki [Physics Department, Shinshu University, Matsumoto (Japan)

    2005-04-15

    It is believed that the physical mechanism responsible for the transference of energy from the solar wind to the Earth magnetosphere is the reconnection between the interplanetary magnetic field and the terrestrial magnetic field (Tsurutani and Gonzalez, 1997). The necessary criterion for a intense geomagnetic storms to occur, Dst < -100nT, is the existence of a dawn-dusk interplanetary electric field larger than 5 mV/m, for a period larger than 3 hours. Cosmic rays have been studied as a natural phenomenon that can tell much about both Earth's environment in space and distant astrophysical processes (Jokipii, 2000). A solar disturbance propagating away from the Sun affects the pre-existing population of galactic cosmic rays in a number of ways. The most famous one is known as the 'Forbush decrease', which is a suppression of ground cosmic-ray counts observed during geomagnetic disturbances. The objective of this work is to study the response of the Southern Space Observatory ground Muon Telescope observations, installed in Sao Martinho da Serra, RS, Brazil, to 3 super intense geomagnetic storms, combining observation provided by L1 satellites and ground detectors. (author)

  1. Caustic Skeleton & Cosmic Web

    Science.gov (United States)

    Feldbrugge, Job; van de Weygaert, Rien; Hidding, Johan; Feldbrugge, Joost

    2018-05-01

    We present a general formalism for identifying the caustic structure of a dynamically evolving mass distribution, in an arbitrary dimensional space. The identification of caustics in fluids with Hamiltonian dynamics, viewed in Lagrangian space, corresponds to the classification of singularities in Lagrangian catastrophe theory. On the basis of this formalism we develop a theoretical framework for the dynamics of the formation of the cosmic web, and specifically those aspects that characterize its unique nature: its complex topological connectivity and multiscale spinal structure of sheetlike membranes, elongated filaments and compact cluster nodes. Given the collisionless nature of the gravitationally dominant dark matter component in the universe, the presented formalism entails an accurate description of the spatial organization of matter resulting from the gravitationally driven formation of cosmic structure. The present work represents a significant extension of the work by Arnol'd et al. [1], who classified the caustics that develop in one- and two-dimensional systems that evolve according to the Zel'dovich approximation. His seminal work established the defining role of emerging singularities in the formation of nonlinear structures in the universe. At the transition from the linear to nonlinear structure evolution, the first complex features emerge at locations where different fluid elements cross to establish multistream regions. Involving a complex folding of the 6-D sheetlike phase-space distribution, it manifests itself in the appearance of infinite density caustic features. The classification and characterization of these mass element foldings can be encapsulated in caustic conditions on the eigenvalue and eigenvector fields of the deformation tensor field. In this study we introduce an alternative and transparent proof for Lagrangian catastrophe theory. This facilitates the derivation of the caustic conditions for general Lagrangian fluids, with

  2. Cosmic strings and galaxy formation: Current status

    International Nuclear Information System (INIS)

    Stebbins, A.

    1987-04-01

    Successes and remaining problems with cosmic string theories of galaxy formation are outlined. Successes of the theory include predictions for the correct amplitude of initial inhomogeneities leading to galaxy formation, the distribution of observed inhomogeneities, the observed correlation function of clusters, and the density profiles of dark matter halos. Potentially serious problems which have been raised are the biased galaxy production (why do galaxies occur in clusters?), the core radius problem (density profiles of galactic halos do not match predictions), the maximal rotation velocity problem (why is there a sharp cutoff in observed rotational velocity of galaxies?), the small galaxy problem (why are all the galaxies relatively small structures?), the angular momentum problem (where do baryons acquire their angular momentum in order to form spirals), and the large-scale structure problem (why do most galaxies appear to lie on surfaces surrounding voids?). Possible approaches to each of these problems are suggested and the future of cosmic string theory is discussed. 25 refs

  3. Muon Production in Relativistic Cosmic-Ray Interactions

    OpenAIRE

    Klein, Spencer

    2009-01-01

    Cosmic-rays with energies up to $3\\times10^{20}$ eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is $\\sqrt{s_{nn}} = 700$ TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy ($>$ 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon de...

  4. Quasars as Sources of Ultrahigh-Energy Cosmic Rays

    International Nuclear Information System (INIS)

    Glushkov, A.V.

    2005-01-01

    The results are presented that were obtained by analyzing arrival directions for cosmic rays that the Yakutsk array for studying extensive air showers recorded between 1974 and 2002 in the energy region E 0 ≥5x10 17 eV for zenith angles in the region θ ≤60 deg. . It is shown that quasars for which the redshift lies in the region z≤2.5 can be sources of these cosmic rays. Ordered structures are observed in the disposition of quasars and in the cosmic-ray arrival directions. These structures can be associated in one way or another with the large-scale structure of the Universe

  5. Signatures of cosmic-ray interactions on the solar surface

    Science.gov (United States)

    Seckel, D.; Stanev, Todor; Gaisser, T. K.

    1991-01-01

    The fluxes of neutrinos, gamma rays, antiprotons, neutrons, and antineutrons that result from collisions of high-energy Galactic cosmic rays with the solar atmosphere are estimated. The results are sensitive to assumptions about cosmic-ray transport in the magnetic fields of the inner solar system. The high-energy photon flux should be observable by the Gamma Ray Observatory. The neutrino flux should produce less than one event per year in the next generation of neutrino telescopes. The antiproton flux is unobservable against the Galactic background. The neutron and antineutron fluxes are detectable only if neutrons produced in terrestrial cosmic-ray events may be discriminated against.

  6. On cosmic censorship: do compact Cauchy horizons imply symmetry?

    International Nuclear Information System (INIS)

    Isenberg, J.; Moncrief, V.

    1983-01-01

    The basic idea of Cosmic Censorship is that, in a physically reasonable spacetime, an observer should not encounter any naked singularities. The authors discuss some new results which provide strong support for one of the statements of Cosmic Censorship: Strong Cosmic Censorship says that the maximal spacetime development of a set of Cauchy data on a spacelike initial surface (evolved via the vacuum Einstein equations, the Einstein-Maxwell equations, or some other 'reasonable' set) will not be extendible across a Cauchy horizon. (Auth.)

  7. Cosmic-ray antimatter - A primary origin hypothesis

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1983-01-01

    The present investigation is concerned with the possibility that the observed cosmic-ray protons are of primary extragalactic origin, taking into account the significance of the current antiproton data. Attention is given to questions regarding primary antiprotons, antihelium fluxes, and the propagation of extragalactic cosmic rays. It is concluded that the primary origin hypothesis should be considered as a serious alternative explanation for the cosmic-ray antiproton fluxes. Such extragalactic primary origin can be considered in the context of a baryon symmetric domain cosmology. The fluxes and propagation characteristics suggested are found to be in rough agreement with the present antiproton data.

  8. Heliospheric Impact on Cosmic Rays Modulation

    Science.gov (United States)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  9. Cosmic ray riddle solved?

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: Physicists from Japan and the United States have discovered a possible answer to the puzzle of the origin of high energy cosmic rays that bombard Earth from all directions in space. Using data from the Japanese/US X-ray astronomical satellite ASCA, physicists have found strong evidence for the production of cosmic particles in the shock wave of a supernova remnant, the expanding fireball produced by the explosion of a star. Primary cosmic rays, mostly electrons and protons, travel near the speed of light. Each second, approximately 4 such particles cross one square centimetre of space just outside the Earth's atmosphere. Subsequently, collisions of these primary particles with atoms in the upper atmosphere produce slower secondary particles. Ever since the discovery of cosmic rays early this century, scientists have debated the origin of these particles and how they can be accelerated to such high speeds. Supernova remnants have long been thought to provide the high energy component, but the evidence has been lacking until now. The international team of investigators used the satellite to determine that cosmic rays are generated profusely in the remains of the supernova of 1006 AD - which appeared to medieval viewers to be as bright as the Moon - and that they are accelerated to high velocities by an iterative process first suggested by Enrico Fermi in 1949. Using solid-state X-ray cameras, the ASCA satellite records simultaneous images and spectra of X-rays from celestial sources, allowing astronomers to distinguish different types of X-ray emission. The tell-tale clue to the discovery was the detection of two diametrically opposite regions in the rapidly expanding supernova remnant, the debris from the stellar explosion. The two regions glow intensely from the synchrotron radiation produced when fast-moving electrons are bent by a magnetic field. The remainder of the supernova remnant, in contrast, emits ordinary ''thermal'' X

  10. Could the cosmic acceleration be transient?

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Antonio C.C.; Lima, J.A.S. [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2011-07-01

    Full text: The possibility of a transient cosmic acceleration appears in several theoretical scenarios and is theoretically interesting because it solves some difficulties inherent to eternally accelerating universes (like {Lambda}CDM). On the observational side, some authors, using a dynamical Ansatz for the dark energy equation of state, have suggested that the cosmic acceleration have already peaked and that we are currently witnessing its slowing down. Here, a possible slowing down of the cosmic expansion is investigated through a cosmographic approach. By expanding the luminous distance to fourth order and fitting the SNe Ia data from the most recent compilations (Union, Constitution and Union 2), the marginal likelihood distribution for the deceleration parameter today indicates that there is a considerable probability for q{sub 0} > 0. Also in contrast to the prediction of the {Lambda}CDM model, the cosmographic q(z) reconstruction suggests that the cosmic acceleration could already have peaked and be presently slowing down, what would imply that the recent accelerated expansion of the Universe is a transient phenomenon. It is also shown that to describe a transient acceleration the luminous distance needs to be expanded at least to fourth order. The present cosmographic results depend neither on the validity of general relativity nor on the matter-energy contents of the Universe. (author)

  11. Cosmic Shear With ACS Pure Parallels

    Science.gov (United States)

    Rhodes, Jason

    2002-07-01

    Small distortions in the shapes of background galaxies by foreground mass provide a powerful method of directly measuring the amount and distribution of dark matter. Several groups have recently detected this weak lensing by large-scale structure, also called cosmic shear. The high resolution and sensitivity of HST/ACS provide a unique opportunity to measure cosmic shear accurately on small scales. Using 260 parallel orbits in Sloan textiti {F775W} we will measure for the first time: beginlistosetlength sep0cm setlengthemsep0cm setlengthopsep0cm em the cosmic shear variance on scales Omega_m^0.5, with signal-to-noise {s/n} 20, and the mass density Omega_m with s/n=4. They will be done at small angular scales where non-linear effects dominate the power spectrum, providing a test of the gravitational instability paradigm for structure formation. Measurements on these scales are not possible from the ground, because of the systematic effects induced by PSF smearing from seeing. Having many independent lines of sight reduces the uncertainty due to cosmic variance, making parallel observations ideal.

  12. Cosmic strings and galaxy formation

    Science.gov (United States)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  13. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J

    2005-01-01

    four 1 m 2 detectors and GPS. The network is connected on-line using internet infrastructure and precise time registration. This allows us to correlate detection of the same EAS in a few schools. High schools students are involved. In the underground (15 meters) laboratory we register muon (5 GeV energy thresholds) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases related to Solar activity) in muon counting rates. International collaborations are very important: the Department was a KASCADE member and now is a member of KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS. We collaborate in EAS data interpretation, detection techniques and basic Cosmic Ray studies with College de France, Institute for Nuclear Research of the Russian Academy of Sciences, JINR Dubna and Cosmophysical Institute in Yakutsk (Russia). In the area of high energy particle physics the Department is a member of the CELSIUS/WASA Collaboration (Uppsala, Sweden), and participates in the ZEUS experiment at DESY (Hamburg, Germany). (author)

  14. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2006-01-01

    2 detectors and GPS. The network is connected off-line using internet infrastructure and precise time registration. This allows us to correlate detection of the same EAS in a few schools. Students of high schools in Lodz are involved in construction of the array. In an underground (15 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases related to Solar activity) in muon counting rates. International collaborations are important: the Department is a member of KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS, extended to EAS radio emission detection as part of LOPES Collaboration. We collaborate in EAS data interpretation, detection techniques and basic Cosmic Ray studies with College de France, Institute for Nuclear Research of the Russian Academy of Sciences, JINR Dubna, and the Cosmophysical Institute in Yakutsk (Russia). In the area of high energy particle physics the Department participates in the ZEUS experiment at DESY (Hamburg, Germany), was a member of the CELSIUS/WASA Collaboration (Uppsala, Sweden), now moved to Juelich, Germany as WASA at COSY Collaboration. (author)

  15. Cosmic Strings and Their Induced Non-Gaussianities in the Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Christophe Ringeval

    2010-01-01

    small fraction of the CMB angular power spectrum, cosmic strings could actually be the main source of its non-Gaussianities. In this paper, after having reviewed the basic cosmological properties of a string network, we present the signatures Nambu-Goto cosmic strings would induce in various observables ranging from the one-point function of the temperature anisotropies to the bispectrum and trispectrum. It is shown that string imprints are significantly different than those expected from the primordial type of non-Gaussianity and could therefore be easily distinguished.

  16. Cosmic Education: Formation of a Planetary and Cosmic Personality

    Directory of Open Access Journals (Sweden)

    Bazaluk Oleg

    2012-04-01

    Full Text Available The major stages of development of cosmic pedagogy have been researched. Based on the achievements of the modern neurosciences as well as of psychology, cosmology, and philosophy, the authors provide their reasoning for the cosmic education and its outlooks for the educational systems of the world. Through the studies of how important human mind is for the Earth and the cosmos and by researching the evolution of human mind within the structure of the Universe, the authors create a more advanced scientific and philosophic basis for the cosmic education where the subject is a comprehensive process of formation and directed progress of both an individual mind and a conglomerate of minds called the "psychospace". The cosmic education researches the permanent progress of the intelligent matter of the Earth. The purpose of the cosmic education has been determined as formation of a planetary and cosmic personality. According to the authors, a planetary and cosmic personality is a harmony of mind, soul, and body, and such harmony is directed to use the internal creative potential of mind to the benefit of the intelligent matter of the entire Earth and the cosmos. The properties of such a planetary and cosmic personality are being improved continuously; they are a sample (the ideal of the cosmic pedagogy and the image of a human being of the future. Through the usage of the entire potential and art of upbringing and educating, the cosmic pedagogy is called to embody the major properties of the image of a human being of the future in the new generations of minds and to form a planetary and cosmic personality capable of self-actualization to the benefit of the permanent progress of the intelligent matter.

  17. RELICS of the Cosmic Dawn

    Science.gov (United States)

    Bradac, Marusa; Coe, Dan; Strait, Victoria; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Oesch, Pascal; Lam, Danel; Carrasco Nunez, Daniela Patricia; Paterno-Mahler, Rachel; Frye, Brenda

    2018-05-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose to complete deep Spitzer imaging of the fields behind the 10 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 440 Spitzer hours). 6 clusters out of 10 are still lacking deep data. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 60 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.

  18. RELICS of the Cosmic Dawn

    Science.gov (United States)

    Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trentu, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Patricia Carasco Nunez, Daniela; Paterno-Mahler, Rachel; Strait, Victoria

    2017-10-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind the most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 550 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 20 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal is a unique opportunity to establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed, this result will require a paradigm shift in our understanding of the earliest star formation.

  19. Large angle cosmic microwave background fluctuations from cosmic strings with a cosmological constant

    International Nuclear Information System (INIS)

    Landriau, M.; Shellard, E.P.S.

    2004-01-01

    In this paper, we present results for large-angle cosmic microwave background anisotropies generated from high resolution simulations of cosmic string networks in a range of flat Friedmann-Robertson-Walker universes with a cosmological constant. Using an ensemble of all-sky maps, we compare with the Cosmic Background Explorer data to infer a normalization (or upper bound) on the string linear energy density μ. For a flat matter-dominated model (Ω M =1) we find Gμ/c 2 ≅0.7x10 -6 , which is lower than previous constraints probably because of the more accurate inclusion of string small-scale structure. For a cosmological constant within an observationally acceptable range, we find a relatively weak dependence with Gμ/c 2 less than 10% higher

  20. THE CHEMISTRY OF INTERSTELLAR OH{sup +}, H{sub 2}O{sup +}, AND H{sub 3}O{sup +}: INFERRING THE COSMIC-RAY IONIZATION RATES FROM OBSERVATIONS OF MOLECULAR IONS

    Energy Technology Data Exchange (ETDEWEB)

    Hollenbach, David [SETI Institute, Mountain View, CA 94043-5203 (United States); Kaufman, M. J. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192-0106 (United States); Neufeld, D. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Wolfire, M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Goicoechea, J. R. [Departamento de Astrofisica, Centro de Astrobiologia (CSIC-INTA), 28850 Madrid (Spain)

    2012-08-01

    We model the production of OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} in interstellar clouds, using a steady-state photodissociation region code that treats the freezeout of gas species, grain surface chemistry, and desorption of ices from grains. The code includes polycyclic aromatic hydrocarbons (PAHs), which have important effects on the chemistry. All three ions generally have two peaks in abundance as a function of depth into the cloud, one at A{sub V} {approx}< 1 and one at A{sub V} {approx} 3-8, the exact values depending on the ratio of incident ultraviolet flux to gas density. For relatively low values of the incident far-ultraviolet flux on the cloud ({chi} {approx}< 1000; {chi} = 1 = local interstellar value), the columns of OH{sup +} and H{sub 2}O{sup +} scale roughly as the cosmic-ray primary ionization rate {zeta}{sub crp} divided by the hydrogen nucleus density n. The H{sub 3}O{sup +} column is dominated by the second peak, and we show that if PAHs are present, N(H{sub 3}O{sup +}) {approx}4 Multiplication-Sign 10{sup 13} cm{sup -2} independent of {zeta}{sub crp} or n. If there are no PAHs or very small grains at the second peak, N(H{sub 3}O{sup +}) can attain such columns only if low-ionization potential metals are heavily depleted. We also model diffuse and translucent clouds in the interstellar medium, and show how observations of N(OH{sup +})/N(H) and N(OH{sup +})/N(H{sub 2}O{sup +}) can be used to estimate {zeta}{sub crp}/n, {chi}/n and A{sub V} in them. We compare our models to Herschel observations of these two ions, and estimate {zeta}{sub crp} {approx}4-6 Multiplication-Sign 10{sup -16}(n/100 cm{sup -3}) s{sup -1} and {chi}/n = 0.03 cm{sup 3} for diffuse foreground clouds toward W49N.

  1. Pulsar Wind Nebulae and Cosmic Rays: A Bedtime Story

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, A.

    2014-11-15

    The role pulsar wind nebulae play in producing our locally observed cosmic ray spectrum remains murky, yet intriguing. Pulsar wind nebulae are born and evolve in conjunction with SNRs, which are favored sites of Galactic cosmic ray acceleration. As a result they frequently complicate interpretation of the gamma-ray emission seen from SNRs. However, pulsar wind nebulae may also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current thinking on pulsar wind nebulae and their connection to cosmic ray production from an observational perspective. It also considers how both future technologies and new ways of analyzing existing data can help us to better address the relevant theoretical questions. A number of key points will be illustrated with recent results from the VHE (E > 100 GeV) gamma-ray observatory VERITAS.

  2. Prospects for the direct detection of the cosmic neutrino background

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2009-01-01

    The existence of a cosmic neutrino background - the analogue of the cosmic microwave background - is a fundamental prediction of standard big bang cosmology. Up to now, the observational evidence for its existence is rather indirect and rests entirely on cosmological observations of, e.g., the light elemental abundances, the anisotropies in the cosmic microwave background, and the large scale distribution of matter. Here, we review more direct, weak interaction based detection techniques for the cosmic neutrino background in the present epoch and in our local neighbourhood. We show that, with current technology, all proposals are still off by some orders of magnitude in sensitivity to lead to a guaranteed detection of the relic neutrinos. The most promising laboratory search, based on neutrino capture on beta decaying nuclei, may be done in future experiments designed to measure the neutrino mass through decay kinematics.

  3. Prospects for the direct detection of the cosmic neutrino background

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2009-01-01

    The existence of a cosmic neutrino background - the analogue of the cosmic microwave background - is a fundamental prediction of standard big bang cosmology. Up to now, the observational evidence for its existence is rather indirect and rests entirely on cosmological observations of, e.g., the light elemental abundances, the anisotropies in the cosmic microwave background, and the large scale distribution of matter. Here, we review more direct, weak interaction based detection techniques for the cosmic neutrino background in the present epoch and in our local neighbourhood. We show that, with current technology, all proposals are still off by some orders of magnitude in sensitivity to lead to a guaranteed detection of the relic neutrinos. The most promising laboratory search, based on neutrino capture on beta decaying nuclei, may be done in future experiments designed to measure the neutrino mass through decay kinematics. (orig.)

  4. Patterns of the cosmic microwave background from evolving string networks

    International Nuclear Information System (INIS)

    Bouchet, F.R.; Bennett, D.P.; Stebbins, A.

    1988-01-01

    A network of cosmic strings generated in the early Universe may still exist today. As the strings move across the sky, they produce, by gravitational lensing, a characteristic pattern of anisotropies in the temperature of the cosmic microwave background. The observed absence of such anisotropies places constraints on theories in which galaxy formation is seeded by strings, but it is anticipated that the next generation of experiments will detect them. (author)

  5. Cosmic ray antimatter: Is it primary or secondary?

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1981-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic ray antiprotons, including the low energy measurement of Buffington, were examined. It is concluded that the cosmic ray antiproton data may be strong evidence for antimatter galaxies and baryon symmetric cosmology. The present antiproton data are consistent with a primary extragalactic component having antiproton/proton approximately equal to .0032 + or - 0.7.

  6. Studies in cosmic rays

    International Nuclear Information System (INIS)

    Bemalkhedkar, M.M.

    1974-03-01

    The investigation of the diurnal variation in the cosmic ray intensity on individual days has revealed a new class of diurnal variation showing a maximum around 09 hour direction in the interplanetary space. It is shown to occur during the recovery phase of Forbush decreases as well as during quiet periods. The rigidity spectrum of the anomalous diurnal variation has an exponent around zero, the same as that for the average diurnal variation exhibiting maximum around 18 hours in the interplanetary space. It is shown that the Forbush decreases associated with the diurnal variation exhibiting morning maximum, are 27 day recurrent in nature and are preceded by east limb solar flares on most of the occasions. A qualitative model of the transient modulation by solar corotating corpuscular streams of enhanced solar wind velocity, emanating from the active regions on the solar disc, is proposed to explain the anomalous diurnal anisotropy in the recovery phase of 27 day recurrent Forbush decreases. From this model, the cosmic ray diffusion coefficients, parallel and perpendicular to the interplanetary magnetic field inside the corotating stream, are derived and compared with the average values. To investigate the possibility of determining the energy spectra of cosmic ray intensity variations from a single station, a continuous record of neutron multiplicity spectrum has been obtained for the period October, 1967 - October, 1971, using the Gulmarg neutron monitor. The average multiplicity spectrum in the Gulmarg neutron monitor shows a mean multiplicity approximately equal to 1.4 for 12 Boron-tri-fluoride counters and is an increasing function of the number of counters used. The mean multiplicity measured in various other neutron monitors, when normalized to the cutoff rigidity of Gulmurg (11.91 GV), shows a systematic increase with the altitude of the station. (author)

  7. Ultrahigh-energy particles from cosmic strings

    International Nuclear Information System (INIS)

    Bhattacharjee, P.

    1991-02-01

    The idea of production of ultrahigh-energy particles in the present universe due to annihilation or collapse of topological defects is discussed. Topological defects, formed in symmetry-breaking phase transitions in the early universe, can survive till today owing to their topological stability. However, under certain circumstances, topological defects may be physically destroyed. When topological defects are destroyed, the energy contained in the defects can be released in the form of massive gauge- and Higgs bosons of the underlying spontaneously broken gauge theory. Subsequent decay of these massive particles can give rise to energetic particles ranging up to an energy on the order of the mass of the original particles released from the defects. This may give us a ''natural'' mechanism of production of extremely energetic cosmic ray particles in the universe today, without the need for any acceleration mechanism. To illustrate this idea, I describe in detail the calculation of the expected ultrahigh-energy proton spectrum due to a specific process which involves collapse or multiple self-intersections of a class of closed cosmic string loops formed in a phase transition at a grand unification energy scale. I discuss the possibility that some of the highest-energy cosmic ray particles are of this origin. By comparing with the observational results on the ultrahigh-energy cosmic rays, we derive an upper limit to the average fraction of the total energy in all ''primary'' cosmic string loops that may be released in the form of particles due to collapse or multiple self-intersections of these loops. No nuclei such as α's or Fe's are in the spectrum. 43 refs., 3 figs

  8. Cosmic Ray Signatures of Decaying Dark Matter

    International Nuclear Information System (INIS)

    Ibarra, Alejandro

    2011-01-01

    Astrophysical and cosmological observations do not require the dark matter particles to be absolutely stable. If they are indeed unstable, their decay into Standard Model particles might occur at a sufficiently large rate to allow the indirect detection of dark matter through an anomalous contribution to the high energy cosmic ray fluxes. We analyze the implications of the excess in the total electron plus positron flux and the positron fraction reported by the Fermi and PAMELA collaborations, respectively, for the scenario of decaying dark matter. We also discuss the constraints on this scenario from measurements of other cosmic ray species and the predictions for the diffuse gamma ray flux and the neutrino flux. In particular, we expect a sizable dipole-like anisotropy which may be observed in the near future by the Fermi-LAT.

  9. Cosmic baldness and stability

    Energy Technology Data Exchange (ETDEWEB)

    Panchapakesan, N.; Lohiya, D.

    1985-04-01

    The stability of the de Sitter metric and the relevance of the initial state of a domain which approaches a de Sitter universe asymptotically are investigated analytically, adapting the one-dimensional wave equation with effective potential derived by Khanal and Panchapakesan (1981), for the perturbations of the de Sitter-Schwarzschild metric, to the de Sitter case. It is demonstrated that initial nonspherical perturbations do not increase exponentially with time but rather decay, the frozen modes exponentially and the backscattered perturbations of finite angular momentum l as t to the -(2l - l). It is concluded that the cosmic horizon is stable and has no hair. 14 references.

  10. Cosmic strings and inflation

    International Nuclear Information System (INIS)

    Vishniac, E.T.

    1987-01-01

    We examine the compatibility of inflation with the cosmic string theory for galaxy formation. There is a general conflict between having sufficient string tension to effect galaxy formation, and reheating after inflation to a high enough temperature that strings may form in a thermal phase transition. To escape this conflict, we propose a class of models where the inflation is coupled to the string-producing field. The strings are formed late in inflation as the inflaton rolls towards its zero-temperature value. A large subset of these models have a novel large-scale distribution of galaxies that is fractal, displays biasing without dynamics or feedback mechanisms, and contains voids. (orig.)

  11. The cosmic microwave background

    International Nuclear Information System (INIS)

    Silk, J.

    1991-01-01

    Recent limits on spectral distortions and angular anisotropies in the cosmic microwave background are reviewed. The various backgrounds are described, and the theoretical implications are assessed. Constraints on inflationary cosmology dominated by cold dark matter (CDM) and on open cosmological models dominated by baryonic dark matter (BDM), with, respectively, primordial random phase scale-invariant curvature fluctuations or non-gaussian isocurvature fluctuations are described. More exotic theories are addressed, and I conclude with the 'bottom line': what theories expect experimentalists to be measuring within the next two to three years without having to abandon their most cherished theorists. (orig.)

  12. Spectrum of cosmic fireballs

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, G [Consiglio Nazionale delle Ricerche, Bologna (Italy). Lab. TESRE; Horstman, H M [Bologna Univ. (Italy). Ist. di Astronomia

    1981-03-01

    A progress report on cosmic fireballs is presented. The main new results are: (a) the phenomenon should be almost universal, and most explosive ..gamma..-ray sources should show the characteristic fireball spectrum; (b) even if the radiation density is insufficient, pair production in electron-proton or electron-electron scattering might start the fireball; (c) some computed fireball spectra are shown. They all have in common a 1/E low-energy behaviour, a 100 keV flattening, and a approx.0.5 MeV cut-off.

  13. Comments on cosmic censorship

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1979-01-01

    The cosmic censorship hypothesis and the closely related positive energy conjecture are the most important unsolved problems in classical general relativity. Roughly speaking the hypothesis is that nonsingular asymptotically flat initial data on a spacelike surface give rise to a solution in which any singularities that occur are not visible from infinity. Thus the solution near infinity would be unaffected by the breakdown of predictability associated with the singularities. A more precise formulation is given. The evidence for the censorship is mainly negative and this is discussed. The relationship of the hypothesis to quantum gravity and the quantum evaporation of black holes is also mentioned. (UK)

  14. Discovery of cosmic fractals

    CERN Document Server

    Baryshev, Yuri

    2002-01-01

    This is the first book to present the fascinating new results on the largest fractal structures in the universe. It guides the reader, in a simple way, to the frontiers of astronomy, explaining how fractals appear in cosmic physics, from our solar system to the megafractals in deep space. It also offers a personal view of the history of the idea of self-similarity and of cosmological principles, from Plato's ideal architecture of the heavens to Mandelbrot's fractals in the modern physical cosmos. In addition, this invaluable book presents the great fractal debate in astronomy (after Luciano Pi

  15. Garden of cosmic speculation

    CERN Document Server

    Jencks, Charles

    2005-01-01

    This book tells the story of one of the most important gardens in Europe, created by the architectural critic and designer Charles Jencks and his late wife, the landscape architect and author Maggie Keswick. The Garden of Cosmic Speculation is a landscape that celebrates the new sciences of complexity and chaos theory and consists of a series of metaphors exploring the origins, the destiny and the substance of the Universe. The book is illustrated with year-round photography, bringing the garden's many dimensions vividly to life.

  16. Cosmic-ray anisotropy studies with IceCube

    Science.gov (United States)

    McNally, Frank

    2014-03-01

    The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.

  17. Gamma ray astronomy and the origin of galactic cosmic rays

    International Nuclear Information System (INIS)

    Gabici, Stefano

    2011-01-01

    Diffusive shock acceleration operating at expanding supernova remnant shells is by far the most popular model for the origin of galactic cosmic rays. Despite the general consensus received by the model, an unambiguous and conclusive proof of the supernova remnant hypothesis is still missing. In this context, the recent developments in gamma ray astronomy provide us with precious insights into the problem of the origin of galactic cosmic rays, since production of gamma rays is expected both during the acceleration of cosmic rays at supernova remnant shocks and during their subsequent propagation in the interstellar medium. In particular, the recent detection of a number of supernova remnants at TeV energies nicely fits with the model, but it still does not constitute a conclusive proof of it, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma ray emission. The main goal of my research is to search for an unambiguous and conclusive observational test for proving (or disproving) the idea that supernova remnants are the sources of galactic cosmic rays with energies up to (at least) the cosmic ray knee. Our present comprehension of the mechanisms of particle acceleration at shocks and of the propagation of cosmic rays in turbulent magnetic fields encourages beliefs that such a conclusive test might come from future observations of supernova remnants and of the Galaxy in the almost unexplored domain of multi-TeV gamma rays. (author)

  18. Electron capture isotopes as cosmic ray 'hydrometers'

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Comstock, G.; Perron, C.; Yiou, F.

    1975-01-01

    Following our earlier work, a computer program has been developed to investigate in detail the survival of pure electron capture isotopes in cosmic rays as a function of their propagation conditions. It is found that this survival is very insensitive to certain parameters such as the type of path length distribution, but very sensitive to the density of the medium in which they are formed. Observation of these isotopes may thus provide clues as to this density. (orig.) [de

  19. Probabilistic Cross-Identification of Cosmic Events

    OpenAIRE

    Budavari, Tamas

    2011-01-01

    We discuss a novel approach to identifying cosmic events in separate and independent observations. In our focus are the true events, such as supernova explosions, that happen once, hence, whose measurements are not repeatable. Their classification and analysis have to make the best use of all the available data. Bayesian hypothesis testing is used to associate streams of events in space and time. Probabilities are assigned to the matches by studying their rates of occurrence. A case study of ...

  20. Black holes and cosmic censorship

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1979-01-01

    It is widely accepted that the complete gravitational collapse of a body always yields a black hole, and that naked singularities are never produced (the cosmic censorship hypothesis). The local (or strong) cosmic censorship hypothesis states that singularities which are even locally naked (e.g., to an observer inside a black hole) are never produced. This dissertation studies the validity of these two conjectures. The Kerr-Newman metrics describes the black holes only when M 2 greater than or equal to Q 2 + P 2 , where M is the mass of the black hole, a = J/M its specific angular momentum, Q its electric charge, and P its magnetic charge. In the first part of this dissertation, the possibility of converting an extreme Kerr-Newman black hole (M 2 = a 2 + Q 2 + P 2 ) into a naked singularity by the accretion of test particles is considered. The motion of test particles is studied with a large angular momentum to energy ratio, and also test particles with a large charge to energy ratio. The final state is always found to be a black hole if the angular momentum, electric charge, and magnetic charge of the black hole are all much greater than the corresponding angular momentum, electric charge, and magnetic charge of the test particle. In Part II of this dissertation possible black hole interior solutions are studied. The Cauchy horizons and locally naked timelike singularities of the charged (and/or rotating) solutions are contrasted with the spacelike all-encompassing singularity of the Schwarzschild solution. It is determined which portions of the analytic extension of the Reissner-Nordstroem solution are relevant to realistic gravitational collapse

  1. Phenomenology of cosmic phase transitions

    International Nuclear Information System (INIS)

    Kaempfer, B.; Lukacs, B.; Paal, G.

    1989-11-01

    The evolution of the cosmic matter from Planck temperature to the atomic combination temperature is considered from a phenomenological point of view. Particular emphasis is devoted to the sequence of cosmic phase transitions. The inflationary era at the temperature of the order of the grand unification energy scale and the quantum chromodynamic confinement transition are dealt with in detail. (author) 131 refs.; 26 figs

  2. Does a cosmic censor exist

    International Nuclear Information System (INIS)

    Israel, W.

    1984-01-01

    A distinction is drawn between the event horizon conjecture (EHC), the conjecture that an event horizon forms in a gravitational collapse, and cosmic censorship, the idea that every singularity which develops in the course of collapse must be enclosed within a horizon. It is argued that a body of circumstantial evidence seems to favor EHC, but cosmic censorship seems contraindicated

  3. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir

    2013-06-01

    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  4. George's cosmic treasure hunt

    CERN Document Server

    Hawking, Lucy; Parsons, Gary

    2009-01-01

    George and Annie explore the galaxy in this cosmic adventure from Stephen Hawking and Lucy Hawking, complete with essays from Professor Hawking about the latest in space travel. George is heartbroken when he learns that his friend Annie and her father are moving to the US. Eric has a new job working for the space program, looking for signs of life in the Universe. Eric leaves George with a gift—a book called The User’s Guide to the Universe. But Annie and Eric haven’t been gone for very long when Annie believes that she is being contacted by aliens, who have a terrible warning for her. George joins her in the US to help her with her quest—and before he knows it, he, Annie, Cosmos, and Annie’s annoying cousin Emmett have been swept up in a cosmic treasure hunt, spanning the whole galaxy and beyond. Lucy Hawking's own experiences in zero-gravity flight and interviews with astronauts at Cape Kennedy and the Johnson Space Center lend the book a sense of realism and excitement that is sure to fire up ima...

  5. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    Energy Technology Data Exchange (ETDEWEB)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: reetanjalim@uj.ac.za, E-mail: srazzaque@uj.ac.za [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa)

    2015-08-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strength of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.

  6. Collisions of cosmic F- and D-strings

    International Nuclear Information System (INIS)

    Jones, N.

    2004-01-01

    Recent theoretical advances and upcoming experimental measurements make the testing of generic predictions of string theory models of cosmology feasible. Brane anti-brane models of inflation within superstring theory are promising as string theory descriptions of the physics of the early universe. While varied in their construction, these models can have the generic and observable consequence that cosmic strings will be abundant in the early universe. This leads to possible detectable effects in the cosmic microwave background, gravitational wave physics and gravitational lensing. Detailed calculations of cosmic string interactions within string theory are presented, in order to distinguish these cosmic strings from those in more conventional theories; these interaction probabilities can be very different from conventional 4-dimension strings, providing the possibility of experimental tests of string theory. (authors)

  7. Scientific results from the cosmic background explorer (COBE)

    International Nuclear Information System (INIS)

    Bennett, C.L.; Boggess, N.W.; Cheng, E.S.; Hauser, M.G.; Kelsall, T.; Mather, J.C.; Moseley, S.H. Jr.; Shafer, R.A.; Silverberg, R.F.; Murdock, T.L.; Smoot, G.F.; Weiss, R.; Wright, E.L.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservation upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. 104 refs., 1 tab

  8. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  9. Background to Dark Matter Searches from Galactic Cosmic Rays

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Just as searches for BSM physics at the LHC necessitate a careful audit of SM backgrounds, the search for signals of dark matter in cosmic rays must contend with production of secondaries like e+ and pbar through cosmic ray propagation in the Galaxy. The theoretical framework for calculating this has however not been directly calibrated at the high energies being explored by AMS-02 and there may be surprises in store. In particular a nearby source where cosmic rays are being accelerated stochastically can naturally generate a e+ fraction rising with energy as is observed. The test of this is the expected correlated rise in other secondary/primary ratios e.g. B/C and pbar/p. Such a nearby cosmic accelerator should also be detectable through the concomitant flux of neutrinos and its discovery would be (nearly!) as exciting as that of dark matter.

  10. THE LOCAL GROUP IN THE COSMIC WEB

    International Nuclear Information System (INIS)

    Forero-Romero, J. E.; González, R.

    2015-01-01

    We explore the characteristics of the cosmic web around Local-Group (LG)-like pairs using a cosmological simulation in the ΛCDM cosmology. We use the Hessian of the gravitational potential to classify regions on scales of ∼2 Mpc as a peak, sheet, filament, or void. The sample of LG counterparts is represented by two samples of halo pairs. The first is a general sample composed of pairs with similar masses and isolation criteria as observed for the LG. The second is a subset with additional observed kinematic constraints such as relative pair velocity and separation. We find that the pairs in the LG sample with all constraints are: (1) preferentially located in filaments and sheets, (2) located in a narrow range of local overdensity 0 < δ < 2, web ellipticity 0.1 < e < 1.0, and prolateness –0.4 < p < 0.4, (3) strongly aligned with the cosmic web. The alignments are such that the pair orbital angular momentum tends to be perpendicular to the smallest tidal eigenvector, e-hat 3 , which lies along the filament direction or the sheet plane. A stronger alignment is present for the vector linking the two halos with the vector e-hat 3 . Additionally, we fail to find a strong correlation between the spin of each halo in the pair with the cosmic web. All of these trends are expected to a great extent from the selection of LG total mass in the general sample. Applied to the observed LG, there is a potential conflict between the alignments of the different satellite planes and the numerical evidence for satellite accretion along filaments; the direction defined by e-hat 3 . This highlights the relevance of achieving a precise characterization for the location of the LG in the cosmic web in the cosmological context provided by ΛCDM

  11. Origin of transient cosmic ray intensity variations

    International Nuclear Information System (INIS)

    Duggal, S.P.; Pomerantz, M.A.

    1977-01-01

    A new approach to determining the solar progenitor of transient cosmic ray intensity variations has revealed that in a statistical sense, solar flares, heretofore regarded as the predominant source of the modulation, actually do not precede the reduction in flux observed at earth. Superposed epoch analysis of the cosmic ray data with respect to the time of occurrence of all 379 solar flares of importance (Imp) < or =2 observed during solar cycle 20 (1964-1974 inclusive) shows that the onset of a decrease in the composite nucleonic intensity at polar stations occurs prior to the zero day (i.e., time of the flare) well before the arrival in the vicinity of earth of the associated solar plasma. The statistical significance of this result is confirmed by comparing the pooled variance determined from Chree analysis of an equal number of random epochs with that of the curve representing the flare epochs. Subdivision of the latter into three groups according to the heliographic longitude of the flares shows that whereas eastern flares might be associated with cosmic ray decreases, central (30degree to -30degree) and western flares cannot be thus related. A similar analysis of all flares of Imp< or =2 that occurred in a selected set of 24 extraordinary flare-rich active centers during 1964--1974 confirms these results and shows that the observed cosmic ray intensity decrease is, in fact, associated with the central meridian passage ( +- 1 day) of the active regions. Thus earlier conclusions concerning relationships between the heliolongitude of flares and their apparent effectiveness in producing Forbush decreases require reevaluation. The specific feature associated with solar active centers that is actually the principal source of transient modulations remanins to be identified

  12. The History of Cosmic Ray Studies after Hess

    Energy Technology Data Exchange (ETDEWEB)

    Grupen, Claus, E-mail: grupen@physik.uni-siegen.de

    2013-06-15

    The discovery of cosmic rays by Victor Hess was confirmed with balloon flights at higher altitudes by Kolhörster. Soon the interest turned into questions about the nature of cosmic rays: gamma rays or particles? Subsequent investigations have established cosmic rays as the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. Many new results came now from studies with cloud chambers and nuclear emulsions. Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. Rochester and Butler found V's, which turned out to be short-lived neutral kaons decaying into a pair of charged pions. Λ's, Σ's and Ξ's were found in cosmic rays using nuclear emulsions. After that period, accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A and other accelerators in the sky. With the observation of neutrino oscillations one began to look beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of earth-bound accelerators.

  13. Simulating the formation of cosmic structure.

    Science.gov (United States)

    Frenk, C S

    2002-06-15

    A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge.

  14. Cosmic Visions Dark Energy: Small Projects Portfolio

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Kyle; Frieman, Josh; Heitmann, Katrin; Jain, Bhuvnesh; Kahn, Steve; Mandelbaum, Rachel; Perlmutter, Saul; Slosar, Anže

    2018-02-20

    Understanding cosmic acceleration is one of the key science drivers for astrophysics and high-energy physics in the coming decade (2014 P5 Report). With the Large Synoptic Survey Telescope (LSST) and the Dark Energy Spectroscopic Instrument (DESI) and other new facilities beginning operations soon, we are entering an exciting phase during which we expect an order of magnitude improvement in constraints on dark energy and the physics of the accelerating Universe. This is a key moment for a matching Small Projects portfolio that can (1) greatly enhance the science reach of these flagship projects, (2) have immediate scientific impact, and (3) lay the groundwork for the next stages of the Cosmic Frontier Dark Energy program. In this White Paper, we outline a balanced portfolio that can accomplish these goals through a combination of observational, experimental, and theory and simulation efforts.

  15. Detection prospects of the cosmic neutrino background

    Science.gov (United States)

    Li, Yu-Feng

    2015-04-01

    The existence of the cosmic neutrino background (CνB) is a fundamental prediction of the standard Big Bang cosmology. Although current cosmological probes provide indirect observational evidence, the direct detection of the CνB in a laboratory experiment is a great challenge to the present experimental techniques. We discuss the future prospects for the direct detection of the CνB, with the emphasis on the method of captures on beta-decaying nuclei and the PTOLEMY project. Other possibilities using the electron-capture (EC) decaying nuclei, the annihilation of extremely high-energy cosmic neutrinos (EHECνs) at the Z-resonance, and the atomic de-excitation method are also discussed in this review (talk given at the International Conference on Massive Neutrinos, Singapore, 9-13 February 2015).

  16. Transplanckian censorship and global cosmic strings

    International Nuclear Information System (INIS)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-01-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections between various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants fM p /f, the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t∼e Δa/M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  17. Transplanckian censorship and global cosmic strings

    Science.gov (United States)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-04-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  18. Return of the quantum cosmic censor

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [Ruppin Academic Center, Emeq Hefer 40250 (Israel); Hadassah Institute, Jerusalem 91010 (Israel)], E-mail: shaharhod@gmail.com

    2008-10-16

    The influential theorems of Hawking and Penrose demonstrate that spacetime singularities are ubiquitous features of general relativity, Einstein's theory of gravity. The utility of classical general relativity in describing gravitational phenomena is maintained by the cosmic censorship principle. This conjecture, whose validity is still one of the most important open questions in general relativity, asserts that the undesirable spacetime singularities are always hidden inside of black holes. In this Letter we reanalyze extreme situations which have been considered as counterexamples to the cosmic censorship hypothesis. In particular, we consider the absorption of fermion particles by a spinning black hole. Ignoring quantum effects may lead one to conclude that an incident fermion wave may over spin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when quantum effects are properly taken into account, the integrity of the black-hole event horizon is irrefutable. This observation suggests that the cosmic censorship principle is intrinsically a quantum phenomena.

  19. Transplanckian censorship and global cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Matthew J. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne,Melbourne, 3010 (Australia); Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts,Amherst, MA 01003 (United States)

    2017-04-21

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections between various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants fM{sub p}/f, the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t∼e{sup Δa/M{sub p}}. For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  20. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  1. Cosmic ray synergies

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    In laboratories, cosmic rays have been the subject of scientific research for many years. A more recent development is their appearance in schools, as educational tools. A recent workshop at CERN, organised by ASPERA in collaboration with EPPOG and EPPCN, had the goal of bringing together ideas and initiatives with a view to setting up a future common project.   Presentation at the workshop on 15 October. In research, as in education, you can sometimes get things done more rapidly and easily by joining forces. For roughly the past decade, physicists have been taking their particle detectors to secondary schools. “The challenge now is to bring all of these existing projects together in a network,” says Arnaud Marsollier, in charge of communication for the ASPERA network and organiser of the workshop. The workshop held on Friday, 15 October was attended by representatives of major European educational projects and members of the European Particle Physics Communication Network...

  2. Highest energy cosmic rays

    International Nuclear Information System (INIS)

    Nikolskij, S.

    1984-01-01

    Primary particles of cosmic radiation with highest energies cannot in view of their low intensity be recorded directly but for this purpose the phenomenon is used that these particles interact with nuclei in the atmosphere and give rise to what are known as extensive air showers. It was found that 40% of primary particles with an energy of 10 15 to 10 16 eV consist of protons, 12 to 15% of helium nuclei, 15% of iron nuclei, the rest of nuclei of other elements. Radiation intensity with an energy of 10 18 to 10 19 eV depends on the direction of incoming particles. Maximum intensity is in the direction of the centre of the nearest clustre of galaxies, minimal in the direction of the central area of our galaxy. (Ha)

  3. Overproduction of cosmic superstrings

    International Nuclear Information System (INIS)

    Barnaby, Neil; Berndsen, Aaron; Cline, James M.; Stoica, Horace

    2005-01-01

    We show that the naive application of the Kibble mechanism seriously underestimates the initial density of cosmic superstrings that can be formed during the annihilation of D-branes in the early universe, as in models of brane-antibrane inflation. We study the formation of defects in effective field theories of the string theory tachyon both analytically, by solving the equation of motion of the tachyon field near the core of the defect, and numerically, by evolving the tachyon field on a lattice. We find that defects generically form with correlation lengths of order M s -1 rather than H -1 . Hence, defects localized in extra dimensions may be formed at the end of inflation. This implies that brane-antibrane inflation models where inflation is driven by branes which wrap the compact manifold may have problems with overclosure by cosmological relics, such as domain walls and monopoles

  4. Our cosmic habitat

    CERN Document Server

    Rees, Martin

    2001-01-01

    Our universe seems strangely 'biophilic,' or hospitable to life. Is this providence or coincidence? According to Martin Rees, the answer depends on the answer to another question, the one posed by Einstein's famous remark: 'What interests me most is whether God could have made the world differently.' This highly engaging book centres on the fascinating consequences of the answer being 'yes'. Rees explores the notion that our universe is just part of a vast 'multiverse,' or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be local by laws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge.

  5. Cosmic Ray Antimatter

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Over the last decade, space-born experiments have delivered new measurements of high energy cosmic-ray (CR) antiprotons and positrons, opening new frontiers in energy reach and precision. While being a promising discovery tool for new physics or exotic astrophysical phenomena, an irreducible background of antimatter comes from CR collisions with interstellar matter in the Galaxy. Understanding this irreducible source or constraining it from first principles is an interesting challenge: a game of hide-and-seek where the objective is to identify the laws of basic particle physics among the forest of astrophysical uncertainties. I describe an attempt to obtain such understanding, combining information from a zoo of CR species including massive nuclei and relativistic radioisotopes. I show that: (i) CR antiprotons most likely come from CR-gas collisions; (ii) positron data is consistent with, and suggestive of the same astrophysical production mechanism responsible for antiprotons and dominated by proton-proton c...

  6. Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors

    OpenAIRE

    Aasi, J.; Abadie, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O.

    2014-01-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints o...

  7. Cosmic Magnetic Fields

    Science.gov (United States)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  8. Primary cosmic radiation

    International Nuclear Information System (INIS)

    Anderson, H.R.

    1972-01-01

    The term cosmic radiation means the charged particle flux that reaches the earth from outside its magnetosphere with energies above the solar wind energy of a few keV. There are two sources of flux. Sporadically the sun produces such particles, generally within the energy range 1--200 MeV, and these solar cosmic rays arrive at the earth for a period ranging from hours to days. There may be a small, rather constant flux from the sun also, but the bulk of the steady flux originates outside the earth's orbit. Although some have conjectured that part of this latter flux may be accelerated in the outer portions of the solar system where the outward flowing interplanetary medium meets the interstellar medium, it is generally thought that most or all of it arises in unique systems such as supernovae, and is distributed throughout the galaxy. These galactic particles range in energy from a few MeV to at least 10 13 MeV and consist primarily of protons with significant numbers of heavier nuclei, positrons and electrons. They are supposed to fill our galaxy, or at least the disc, more or less uniformly. However, the flux with energies below a few GeV that reaches earth's orbit is modulated by the interplanetary medium so that the number at earth varies inversely with solar activity and is always somewhat below the interstellar flux. A discussion is presented of primary galactic radiation at earth, its modulation by solar activity, and its interaction with the geomagnetic field. (U.S.)

  9. What is cosmic radiation?

    International Nuclear Information System (INIS)

    2004-01-01

    The earth was indeed receiving ionizing radiations from the heavens. This cosmic radiation consists of particles travelling near the speed of light. It consists of two components, the first of which is permanent and of galactic origin, while the other is more sporadic, depending on the sun's activities. Natural land-based sources expose each of us to an average total dose of 2.4 mSv per year (source UNSCEAR). In addition, the human activities using ionizing radiation contribute to an average annual exposure of 1.4 mSv, originating primarily with medical activities ( radiodiagnostic and radiation therapy). Members of flights crew are subject to exposure. The total dose of cosmic radiation received is is directly proportional with the duration of exposure, and thus with the duration of the flight. Measurement taken on board aircraft during the 1990's showed that flight personnel (on long haul flights) receive an average dose of approximately the same magnitude as the one due to exposure to natural radioactivity in France. The damage caused by ionizing radiation depends on the quantity of energy released by radiation into the cells of each organ or tissue of the human body(exposure dose). For a given quantity of absorbed energy (dose expressed in Gray), the damage will vary according to the nature of the radiation and the affected organ. These effects are of two types: acute effects and deferred effects. Two measurements are essential for radiation protection: the measurements of the dose of radiation absorbed by the body and the assessment of the risk associated with the absorbed dose. Two units were thus created: the gray and the sievert. (N.C.)

  10. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    We present a detailed analysis of the motion of test particle in the gravitational field of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.

  11. Cosmic rays, clouds and climate

    Energy Technology Data Exchange (ETDEWEB)

    Svensmark, Henrik [Danish Space Research Institute, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2007-07-01

    Changes in the intensity of galactic cosmic rays seems alter the Earth's cloudiness. A recent experiment has shown how electrons liberated by cosmic rays assist in making aerosols, the building blocks of cloud condensation nuclei, while anomalous climatic trends in Antarctica confirm the role of clouds in helping to drive climate change. Variations in the cosmic-ray influx due to solar magnetic activity account well for climatic fluctuations on decadal, centennial and millennial timescales. Over longer intervals, the changing galactic environment of the Solar System has had dramatic consequences, including Snowball Earth episodes.

  12. A theory of Cosmic Rays

    CERN Document Server

    Dar, Arnon; Dar, Arnon; Rújula, Alvaro De

    2008-01-01

    We present a theory of non-solar cosmic rays (CRs) based on a single type of CR source at all energies. The total luminosity of the Galaxy, the broken power-law spectra with their observed slopes, the position of the `knee(s)' and `ankle', and the CR composition and its variation with energy are all predicted in terms of very simple and completely `standard' physics. The source of CRs is extremely `economical': it has only one parameter to be fitted to the ensemble of all of the mentioned data. All other inputs are `priors', that is, theoretical or observational items of information independent of the properties of the source of CRs, and chosen to lie in their pre-established ranges. The theory is part of a `unified view of high-energy astrophysics' --based on the `Cannonball' model of the relativistic ejecta of accreting black holes and neutron stars. If correct, this model is only lacking a satisfactory theoretical understanding of the `cannon' that emits the cannonballs in catastrophic processes of accreti...

  13. Cosmic Dark Radiation and Neutrinos

    Directory of Open Access Journals (Sweden)

    Maria Archidiacono

    2013-01-01

    Full Text Available New measurements of the cosmic microwave background (CMB by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant, H0, inferred from the Planck data and local measurements of H0 can to some extent be alleviated by enlarging the minimal ΛCDM model to include additional relativistic degrees of freedom. From a fundamental physics point of view, dark radiation is no less interesting. Indeed, it could well be one of the most accessible windows to physics beyond the standard model, for example, sterile neutrinos. Here, we review the most recent cosmological results including a complete investigation of the dark radiation sector in order to provide an overview of models that are still compatible with new cosmological observations. Furthermore, we update the cosmological constraints on neutrino physics and dark radiation properties focusing on tensions between data sets and degeneracies among parameters that can degrade our information or mimic the existence of extra species.

  14. Final environmental statement: Related to the operation of Davis-Besse Nuclear Power Station, Unit 1 (Docket No. 50-346)

    International Nuclear Information System (INIS)

    1975-10-01

    The proposed action is the issuance of an operating license to the Toledo Edison Company and the Cleveland Electric Illuminating Company for the startup and operation of the Davis-Besse Nuclear Power Station Unit 1 (the station) located near Port Clinton in Ottawa County, Ohio. The total site area is 954 acres of which 160 acres have been removed from production of grain crops and converted to industrial use. Approximately 600 acres of the area is marshland which will be maintained as a wildlife refuge. The disturbance of the lake shore and lake bottom during construction of the station water intake and discharge pipes resulted in temporary turbidity, silting, and destruction of bottom organisms. Since completion of these activities, evidence of improvement in turbidity and transparency measurements, and the reestablishment of the bottom organism has been obtained. The cooling tower blowdown and service water which the station discharges to Lake Erie, via a submerged jet, will be heated no more than 20/degrees/F above the ambient lake water temperature. Although some small fish and plankton in the discharge water plume will be disabled as a result of thermal shock, exposure to chlorine and buffeting, few adult fish will be affected. The thermal plume resulting from the maximum thermal discharge is calculated to have an area of less than one acre within the 3/degrees/F isotherm (above lake ambient). Approximately 101 miles of transmission lines have been constructed, primarily over existing farmland, requiring about 1800 acres of land for the rights-of-way. Land use will essentially be unchanged since only the land required for the base of the towers is removed from production. Herbicides will not be used to maintain the rights-of-way. 14 figs., 34 refs

  15. Exceptional Colloquium: The Rise, Fall, and Rebirth of Cosmic Strings

    CERN Multimedia

    CERN. Geneva; Treille, D; Alvarez-Gaumé, Luís

    2005-01-01

    In the 1980s many people were excited by the concept that cosmic strings, as relics of the Grand Unified Era, could be responsible for the formation of cosmic structure. In the 1990s the cosmic string concept steadily lost ground to the Inflationary model both as a result of the difficulty of calculations and more definitively through observations of the CMB. About the time many expected the new WMAP data to deliver the coup de grace, the concepts of cosmic strings as major physical phenomena (not so important in structure formation) has begun a renaissance. This new interest is motivated by one of the original ideas that topological defects are inevitable in symmetry breaking by the Kibble (1976) mechanism and the introduction of new ideas such as brane-cosmology/inflation and the realization that cosmic strings may be the only acceptable such defect. We find ourselves back in the business of trying to detect or limit and understand cosmic strings once again for the insight and constraints they put on partic...

  16. Ultrahigh-energy cosmic rays: facts, myths and legends

    International Nuclear Information System (INIS)

    Anchordoqui, L.A.

    2011-01-01

    This is a written version of a series of lectures aimed at graduate students in astrophysics and theoretical/experimental particle physics. In the first part, we explain the important progress made in recent years towards understanding the experimental data on cosmic rays with energies > or approx. 10 8 GeV. We begin with a brief survey of the available data, including a description of the energy spectrum, mass composition and arrival directions. At this point we also give a short overview of experimental techniques. After that, we introduce the fundamentals of acceleration and propagation in order to discuss the conjectured nearby cosmic-ray sources, and emphasize some of the prospects for a new (multiparticle) astronomy. Next, we survey the state of the art regarding the ultrahigh-energy cosmic neutrinos that should be produced in association with the observed cosmic rays. In the second part, we summarize the phenomenology of cosmic-ray air showers. We explain the hadronic interaction models used to extrapolate results from collider data to ultrahigh energies, and describe the prospects for insights into forward physics at the Large Hadron Collider. We also explain the main electromagnetic processes that govern the longitudinal shower evolution. Armed with these two principal shower ingredients and motivation from the underlying physics, we describe the different methods proposed to distinguish primary species. In the last part, we outline how ultrahigh-energy cosmic-ray interactions can be used to probe new physics beyond the electroweak scale. (author)

  17. Exceptional Colloquium: The Rise, Fall, and Rebirth of Cosmic Strings

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    In the 1980s many people were excited by the concept that cosmic strings, as relics of the Grand Unified Era, could be responsible for the formation of cosmic structure. In the 1990s the cosmic string concept steadily lost ground to the Inflationary model both as a result of the difficulty of calculations and more definitively through observations of the CMB. About the time many expected the new WMAP data to deliver the coup de grace, the concepts of cosmic strings as major physical phenomena (not so important in structure formation) has begun a renaissance. This new interest is motivated by one of the original ideas that topological defects are inevitable in symmetry breaking by the Kibble (1976) mechanism and the introduction of new ideas such as brane-cosmology/inflation and the realization that cosmic strings may be the only acceptable such defect. We find ourselves back in the business of trying to detect or limit and understand cosmic strings once again for the insight and constraints they put on p...

  18. Cosmic Christ in a Quantum Universe.

    Science.gov (United States)

    Kohli, Mary Ann

    This study examines the figure of the second American Adam--the cosmic Christ archetype--in terms of a possible shift in the focus of Western consciousness. As science moves closer to religion and as Newtonian dualism gives way to a more holistic theory (in which observer, observed, and process of observation are all intricately interlinked), the cosmic Christ emerges as a symbol in contemporary American fiction of a potentially unified awareness which could reconnect post-Christian man to God, to the world, and to the self. Such a rebirth of unity would be contingent upon the death of a consciousness reliant upon the rational, linear, masculine, left-brained thinking associated with the old Newtonian paradigm. The resurrected consciousness would consolidate Eastern and Western religion by acknowledging the God within man through the Western symbology of the Christ prototype. It would also balance the intuitional with the rational, the cyclical with the linear, the feminine with the masculine, and the right brain with the left. In other words, the repressed elements of the collective Western psyche would be allowed to come to awareness and be integrated into the mind at large. This integrating process is implicit in the cosmic Christ imagery. The novels which are considered are all concerned with the role of consciousness in the postmodern world and the part that science and religion play in determining the nature of that role. In such varied works as Thomas Pynchon's Gravity's Rainbow, John Updike's Roger's Version, Saul Bellow's Herzog, Joan Didion's A Book of Common Prayer, and William Vollmann's The Ice-Shirt, a cosmic Christ figure invariably appears. The success of this figure, however, is ambiguous and uncertain. At best, the transition of consciousness that is achieved is individual rather than communal. Nevertheless, as chaos theory has demonstrated, small changes can bring about major effects. Consequently, both the science of today and the rapid growth

  19. Interplanetary cosmic-ray scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Toptygin, I N; Vasiliev, V N [Kalininskij Sel' skokhozyajstvennyj Inst. (USSR)

    1977-05-01

    The equation for the two-particles cosmic-ray distribution function is derived by means of the Boltzmann kinetic equation averaging. This equation is valid for arbitrary ratio of regular and random parts of the magnetic field. For small energy particles the guiding-center approximation is used. On the basis of the derived equation the dependence between power spectra of cosmic-ray intensity and random magnetic field is obtained. If power spectra are degree functions for high energy particles (approximately 10 GeV nucleon/sup -1/), then the spectral exponent ..gamma.. of magnetic field lies between rho and rho-2, where rho is the spectral exponent of cosmic-ray power spectra. The experimental data concerning moderate energy particles are in accordance with ..gamma..=rho, which demonstrates that the magnetic fluctuations are isotropic or cosmic-ray space gradient is small near the Earth orbit.

  20. Statistics and geometry of cosmic voids

    International Nuclear Information System (INIS)

    Gaite, José

    2009-01-01

    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological N-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids

  1. Simulation of cosmic ray interaction at Saturne

    International Nuclear Information System (INIS)

    Michel, R.

    1996-01-01

    Accelerator experiments provide the basis for the development of physical models describing the production of cosmogenic nuclides by cosmic ray particles. Here, experiments are presented by which the irradiation of stony and iron meteoroids in space by galactic cosmic ray protons was successfully simulated; two thick spherical targets made of gabbro and of steel with radii of 25 and 10 cm, respectively, were isotropically irradiated with 1.6 GeV protons at LNS. The artificial meteoroids contained large numbers of individual small targets of up to 27 elements in which the depth-dependent production of radioactive and stable nuclides was analyzed by model calculations based on depth-dependent spectra of primary and secondary particles calculated by the HERMES code system and on experimental and theoretical thin-target cross sections. Due to the results of the two simulation experiments at LNS a consistent modelling of cosmogenic nuclide production rates in stony and iron meteorites was achieved for the first time which allows to interpret the observed abundances of cosmogenic nuclides in stony and iron meteorites with respect to their exposure histories and to describe the history of the cosmic radiation itself. (author)

  2. Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter

    DEFF Research Database (Denmark)

    Masina, Isabella; Sannino, Francesco

    2011-01-01

    The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...... component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton...... flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric....

  3. Evading the pulsar constraints on the cosmic string tension in supergravity inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Miyamoto, Yuhei [Tokyo Univ. (Japan). Dept. of Physics; Tokyo Univ. (JP). Research Center for the Early Universe (RESCEU); Yokoyama, Jun' ichi [Tokyo Univ. (JP). Research Center for the Early Universe (RESCEU); Tokyo Univ., Kashiwa, Chiba (JP). Inst. for the Physics and Mathematics of the Universe (IPMU)

    2012-04-15

    The cosmic string is a useful probe of the early Universe and may give us a clue to physics at high energy scales where any artificial particle accelerators cannot reach. Although one of the most promising tools is the cosmic microwave background, the constraint from gravitational waves is becoming so stringent that one may not hope to detect its signatures in the cosmic microwave background. In this paper, we construct a scenario that contains cosmic strings observable in the cosmic microwave background while evading the constraint imposed by the recent pulsar timing data. We argue that cosmic strings with relatively large tension are allowed by delaying the onset of the scaling regime. We also show that this scenario is naturally realized in the context of chaotic inflation in supergravity, where the phase transition is governed by the Hubble induced mass.

  4. Evading the pulsar constraints on the cosmic string tension in supergravity inflation

    International Nuclear Information System (INIS)

    Kamada, Kohei; Miyamoto, Yuhei; Yokoyama, Jun'ichi

    2012-04-01

    The cosmic string is a useful probe of the early Universe and may give us a clue to physics at high energy scales where any artificial particle accelerators cannot reach. Although one of the most promising tools is the cosmic microwave background, the constraint from gravitational waves is becoming so stringent that one may not hope to detect its signatures in the cosmic microwave background. In this paper, we construct a scenario that contains cosmic strings observable in the cosmic microwave background while evading the constraint imposed by the recent pulsar timing data. We argue that cosmic strings with relatively large tension are allowed by delaying the onset of the scaling regime. We also show that this scenario is naturally realized in the context of chaotic inflation in supergravity, where the phase transition is governed by the Hubble induced mass.

  5. Cosmic string induced CMB maps

    International Nuclear Information System (INIS)

    Landriau, M.; Shellard, E. P. S.

    2011-01-01

    We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.

  6. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  7. Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)

    Science.gov (United States)

    Shapiro, P.

    1983-09-01

    This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.

  8. Interplanetary magnetic field associated changes in cosmic ray intensity and geomagnetic field during 1973-75

    International Nuclear Information System (INIS)

    Singh, R.L.; Shukla, J.P.; Shukla, A.K.; Sharma, S.M.; Agrawal, S.P.

    1979-01-01

    The effects of interplanetary magnetic field (IMF) B and its Bsub(z) component on cosmic ray intensity and geomagnetic field variations have been examined for the period 1973-75. It is observed that: (1) B >= 10γ (magnetic blobs) is pre-requisite in producing cosmic ray intensity and geomagnetic field variations of varying magnitudes, (2) the longer existence of magnetic blobs on successive days produces larger decreases in cosmic ray intensity and geomagnetic field and (3) the southward component (Bsub(z)) of IMF generally gives rise to large Asub(p) changes, though it is not effective in producing cosmic ray intensity decreases. (auth.)

  9. Constraining heavy dark matter with cosmic-ray antiprotons

    Science.gov (United States)

    Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael; Krämer, Michael

    2018-04-01

    Cosmic-ray observations provide a powerful probe of dark matter annihilation in the Galaxy. In this paper we derive constraints on heavy dark matter from the recent precise AMS-02 antiproton data. We consider all possible annihilation channels into pairs of standard model particles. Furthermore, we interpret our results in the context of minimal dark matter, including higgsino, wino and quintuplet dark matter. We compare the cosmic-ray antiproton limits to limits from γ-ray observations of dwarf spheroidal galaxies and to limits from γ-ray and γ-line observations towards the Galactic center. While the latter limits are highly dependent on the dark matter density distribution and only exclude a thermal wino for cuspy profiles, the cosmic-ray limits are more robust, strongly disfavoring the thermal wino dark matter scenario even for a conservative estimate of systematic uncertainties.

  10. Cosmic Ray-Air Shower Measurement from Space

    Science.gov (United States)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  11. Illustrated cosmic monopole

    CERN Document Server

    Seagrave, Wyken

    2015-01-01

    Truly bizarre, utterly unique I've never read a novel quite like this before. The author takes you on an exciting adventure full of unforgettable and vivid imagery. Solidly written with each character's personality shining through. If you find physics fascinating you will not be disappointed by the author's keen intellect and clear understanding of this most challenging (for me anyway) scientific subject. This is not a novel I will forget anytime soon, I would highly recommend it. Andrewly Very imaginative tale Anybody interested in a very imaginative and engrossing sci fi story needs to check this one out. I have been reading sci fi for decades and this story has elements that surprise me which is very unusual considering the number of novels and stories I have over the years. ric freeman Summary of the story The cosmic monopole has been wandering the Universe since it was created in the Big Bang. Its existence is fundamental to the way the Universe works. It is finally trapped by the powerful magnetic f...

  12. Reseña de libro: “16 de junio de 1955, bombardeos y masacre: imágenes, memorias, silencios” de Juan Besse y María Graciela Rodriguez (comp.)

    OpenAIRE

    Illanes, Marina

    2017-01-01

    El libro de Juan Besse y María Graciela Rodríguez nos presenta una mirada novedosa sobre el bombardeo a la Plaza de Mayo. El hecho fue prácticamente silenciado por los medios de comunicación, la historiografía y los distintos gobiernos que se sucedieron, hasta la década del 2000, particularmente a partir del 2005. Desde allí, encontramos varias investigaciones periodísticas sobre el tema, como los libros de Daniel Cichero y de Gonzalo Chaves, así como el primer informe estatal, realizado por ...

  13. Cosmic ray injection spectrum at the galactic sources

    Science.gov (United States)

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  14. Cosmic ray electrons and protons, and their antiparticles

    International Nuclear Information System (INIS)

    Boezio, Mirko

    2014-01-01

    Cosmic rays are a sample of solar, galactic, and extragalactic matter. Their origin, acceleration mechanisms, and subsequent propagation toward Earth have intrigued scientists since their discovery. These issues can be studied via analysis of the energy spectra and composition of cosmic rays. Protons are the most abundant component of the cosmic radiation, and many experiments have been dedicated to the accurate measurement of their spectra. Complementary information is provided by electrons, which comprise about 1% of the cosmic radiation. Because of their low mass, electrons experience severe energy losses through synchrotron emission in the galactic magnetic field and inverse Compton scattering of radiation fields. Electrons therefore provide information on the local galactic environment that is not accessible from the study of the cosmic ray nuclei. Antiparticles, namely antiprotons and positrons, are produced in the interaction between cosmic ray nuclei and the interstellar matter. They are therefore intimately linked to the propagation mechanisms of the parent nuclei. Novel sources of primary cosmic ray antiparticles of either astrophysical (e.g., positrons from pulsars) or exotic origin (e.g., annihilation of dark matter particles) may exist. The nature of dark matter is one of the most prominent open questions in science today. An observation of positrons from pulsars would open a new observation window on these sources. Several experiments equipped with state-of-the art detector systems have recently presented results on the energy spectra of electrons, protons, and their antiparticles with a significant improvement in statistics and better control of systematics The status of the field will be reviewed, with a focus on these recent scientific results. (author)

  15. Sensitive measurement of fluctuations in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Davies, R D; Watson, R A; Daintree, E J; Hopkins, J; Lasenby, A N; Beckman, J; Sanchez-Almeida, J; Rebolo, R

    1987-04-02

    Extensive high sensitivity observations of the cosmic microwave background have been made on an angular scale of 8/sup 0/ covering a substantial fraction of the northern sky. An observed anisotropy in the sky emission at a level of ..delta..T/T = 3.7 x 10/sup -5/ has been detected (T is temperature). This level should strictly be interpreted as an upper limit to the cosmic microwave background fluctuations. It is possibly the direct imprint of density perturbations in the early Universe.

  16. Physics of the Cosmic Microwave Background and the Planck Mission

    CERN Document Server

    Kurki-Suonio, Hannu

    2012-01-01

    This lecture is a sketch of the physics of the cosmic microwave background. The observed anisotropy can be divided into four main contributions: variations in the temperature and gravitational potential of the primordial plasma, Doppler effect from its motion, and a net red/blueshift the photons accumulate from traveling through evolving gravitational potentials on their way from the primordial plasma to here. These variations are due to primordial perturbations, probably caused by quantum fluctuations in the very early universe. The ongoing Planck satellite mission to observe the cosmic microwave background is also described.

  17. Sensitive measurement of fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Davies, R.D.; Watson, R.A.; Daintree, E.J.; Hopkins, J.; Lasenby, A.N.

    1987-01-01

    Extensive high sensitivity observations of the cosmic microwave background have been made on an angular scale of 8 0 covering a substantial fraction of the northern sky. An observed anisotropy in the sky emission at a level of ΔT/T = 3.7 x 10 -5 has been detected (T is temperature). This level should strictly be interpreted as an upper limit to the cosmic microwave background fluctuations. It is possibly the direct imprint of density perturbations in the early Universe. (author)

  18. Nucleosynthesis in Wolf-Rayet stars and galactic cosmic-ray isotopic composition

    International Nuclear Information System (INIS)

    Prantzos, N.

    1984-01-01

    An explanation of the isotopic composition of galactic cosmic rays could provide some clues to the mystery of their origin. It seems now that the strong stellar winds of Wolf-Rayet stars could account for most of the isotopic anomalies that have been observed in cosmic rays. Some results are presented, obtained by detailed nucleosynthesis computations. 25 references

  19. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    Science.gov (United States)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  20. Ultra high energy cosmic rays above 10 GeV: Hints to new physics ...

    Indian Academy of Sciences (India)

    Ultra high energy cosmic rays; physics beyond standard model. ... The origin of the observed cosmic ray (CR) events above 10ѕј eV — the so-called ex- .... to arise simply from decay of some supermassive particles (of mass> 10ѕЅ eV) ...

  1. Ultra-high energy cosmic rays and prompt TeV gamma rays from ...

    Indian Academy of Sciences (India)

    physics pp. 789-792. Ultra-high energy cosmic rays and prompt. TeV gamma rays from gamma ray bursts ... The origin of the observed ultra-high energy cosmic ray (UHECR) events with ... are proton and electron rest mass, respectively.

  2. On Bianchi-I cosmic strings coupled with Maxwell fields in bimetric ...

    Indian Academy of Sciences (India)

    Axially symmetric Bianchi-I model is studied with source cosmic cloud strings coupled with electromagnetic field in Rosen's bimetric theory of relativity and observed that there is no contribution from cosmic strings and Maxwell fields in this theory.

  3. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NARCIS (Netherlands)

    Aasi, J.; Agathos, M.; Beker, M.G.; Bertolini, A.; Blom, M.R.; Bulten, H.J.; Del Pozzo, W.; Jonker, R.; Li, T.G.F.; Meidam, J.; van den Brand, J.F.J.; van der Putten, S.; LIGO Sci, Collaboration; Virgo, Collaboration

    2014-01-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the

  4. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background

    Science.gov (United States)

    McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.

    2017-12-01

    Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.

  5. Cosmic rays,Climate and the CERN CLOUD Experiment

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    For more than two centuries, scientists have been puzzled by observations of solar-climate variability yet the lack of any established physical mechanism. Some recent observations, although disputed, suggest that clouds may be influenced by cosmic rays, which are modulated by the solar wind. The CLOUD experiment aims to settle the question of whether or not cosmic rays have a climatically-significant effect on clouds by carrying out a series of carefully-controlled measurements in a large cloud chamber exposed to a beam from the CERN PS. This talk will present the scientific motivation for CLOUD and the first results, which have recently been published in Nature (Kirkby et al. (2011). Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429-433).

  6. Spherical zonal components of cosmic ray between Forbush decreases

    International Nuclear Information System (INIS)

    Takahashi, Hachiro; Yahagi, Naohiro; Nagashima, Kazuo.

    1974-01-01

    Two examples are added to the previous report on the zonal harmonic components of cosmic ray in the space between planets by the three dimensional analysis of anisotropy of cosmic ray. Remarkable Forbush decreases occurred in region I during the period from March 20th to April 11th, 1966 and in region II during the period from August 29th to September 11th, 1966. The data used for analysis are the neutron components that have been informed from cosmic ray observation stations in the world. Power type and power exponential type differential rigidity spectra G(P) were used to find isotropic components. The change of the isotropic component a 0 0 was similar to the change of the neutron intensity in Deep River. The southnorth anisotropic phenomenon of cosmic ray intensity was recognized. The anisotropy in the opposite direction to the southnorth anisotropic phenomenon reported by Nagashima et al. was recognized markedly during the period from March 26th to 30th. These tendencies were checked by comparing with the data from the cosmic ray observation stations located near both poles of the earth. McMurdo and Mawson near the south pole, and Thule and Alert near the north pole were selected. The results of analysis were confirmed with these data. Further, the results of the previous report were checked by using the data from the stations near both poles, namely Thule, Resolute Bay, and Mawson. The good coincidence was confirmed on the anisotropic components. (Iwakiri, K.)

  7. Solar modulation of galactic cosmic rays: techniques and applications

    International Nuclear Information System (INIS)

    Perko, J.S.

    1984-01-01

    This thesis covers four topics in the theory of interplanetary cosmic-ray propagation: the first part involves the time-dependent, spherically-symmetric, solar modulation of galactic cosmic rays. A numerical technique was introduced for the solution of this problem. A model for the solar cycle variation in cosmic-ray intensity illustrated this method using enhanced particle scattering regions. The second section contains an attempt to explain recent observations which show that cosmic-ray electrons are returning to higher intensities, characteristic of solar minimum, faster than cosmic-ray protons of about the same energy, the reverse of the previous eleven-year cycle. The third section involves the solar modulation of galactic antiprotons. Using a steady-state, spherically-symmetric, numerical modulation code, a solution that reasonably fits the observed 1980 galactic proton spectrum at 1 AU implied that the modulation used for the data interpretation has been significantly underestimated. The final section contains a spherically-symmetric steady-state calculation of the effects of a strong termination shock in the heliosphere. In the end, high-energy particles cooling down in the upstream solar wind overwhelmed any accelerated low-energy particles

  8. Relative distribution of cosmic rays and magnetic fields

    Science.gov (United States)

    Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.

    2018-02-01

    Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.

  9. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    Directory of Open Access Journals (Sweden)

    Kampert Karl-Heinz

    2013-06-01

    Full Text Available The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  10. The Cosmic Infrared Background Experiment

    Science.gov (United States)

    Bock, James; Battle, J.; Cooray, A.; Hristov, V.; Kawada, M.; Keating, B.; Lee, D.; Matsumoto, T.; Matsuura, S.; Nam, U.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.; Zemcov, M.

    2009-01-01

    We are developing the Cosmic Infrared Background ExpeRiment (CIBER) to search for signatures of first-light galaxy emission in the extragalactic background. The first generation of stars produce characteristic signatures in the near-infrared extragalactic background, including a redshifted Ly-cutoff feature and a characteristic fluctuation power spectrum, that may be detectable with a specialized instrument. CIBER consists of two wide-field cameras to measure the fluctuation power spectrum, and a low-resolution and a narrow-band spectrometer to measure the absolute background. The cameras will search for fluctuations on angular scales from 7 arcseconds to 2 degrees, where the first-light galaxy spatial power spectrum peaks. The cameras have the necessary combination of sensitivity, wide field of view, spatial resolution, and multiple bands to make a definitive measurement. CIBER will determine if the fluctuations reported by Spitzer arise from first-light galaxies. The cameras observe in a single wide field of view, eliminating systematic errors associated with mosaicing. Two bands are chosen to maximize the first-light signal contrast, at 1.6 um near the expected spectral maximum, and at 1.0 um; the combination is a powerful discriminant against fluctuations arising from local sources. We will observe regions of the sky surveyed by Spitzer and Akari. The low-resolution spectrometer will search for the redshifted Lyman cutoff feature in the 0.7 - 1.8 um spectral region. The narrow-band spectrometer will measure the absolute Zodiacal brightness using the scattered 854.2 nm Ca II Fraunhofer line. The spectrometers will test if reports of a diffuse extragalactic background in the 1 - 2 um band continues into the optical, or is caused by an under estimation of the Zodiacal foreground. We report performance of the assembled and tested instrument as we prepare for a first sounding rocket flight in early 2009. CIBER is funded by the NASA/APRA sub-orbital program.

  11. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    Science.gov (United States)

    Neyrinck, Mark C.; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term `cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile `spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  12. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations.

    Science.gov (United States)

    Neyrinck, Mark C; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term 'cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile 'spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  13. Fitting cosmic microwave background data with cosmic strings and inflation.

    Science.gov (United States)

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2008-01-18

    We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).

  14. Robust constraint on cosmic textures from the cosmic microwave background.

    Science.gov (United States)

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2012-06-15

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  15. Superconducting cosmic string evolution of quasars

    International Nuclear Information System (INIS)

    Liu Yulin.

    1988-09-01

    The quasars may have been undergoing two evolutionary processes after they formed. As a result of the string loops shrinking at the first stage, the luminosities of the quasars increased gradually up to their maximum value at the redshift z ∼ 2, after then the second evolutionary stage began and the luminosity reduced. This result can be fitted by luminosity counting of quasars. Observable limit of quasars can be obtained naturally. Many phenomena, such as radiomorphology, density distribution between fuzz structure and broad line region and rotational curve may also originate from the first evolutionary stage of quasars as cosmic string. (author). 10 refs

  16. Cosmic microwave background at its twentieth anniversary

    International Nuclear Information System (INIS)

    Partridge, R.B.

    1986-01-01

    The role of cosmic microwave background radiation in cosmology is examined. The thermal spectrum, the large entropy in the universe, the large-scale isotropy of the radiation, and the small-scale isotropy or homogeneity of the radiation are analyzed in order to describe the properties of the universe. It is observed that the microwave background spectrum is thermal over a wide range, there is a significant detectable dipole anisotropy in the radiation, but no quadrupole anisotropy, and there is a high deree of radiation isotropy on angular scales between 1-5 degrees. 62 references

  17. Learning Physics from the Cosmic Microwave Background

    CERN Document Server

    Ellis, Jonathan Richard

    1999-01-01

    The Cosmic Microwave Background (CMB) provides a precious window on fundamental physics at very high energy scales, possibly including quantum gravity, GUTs and supersymmetry. The CMB has already enabled defect-based rivals to inflation to be discarded, and will be able to falsify many inflationary models. In combination with other cosmological observations, including those of high-redshift supernovae and large-scale structure, the CMB is on the way to providing a detailed budget for the density of the Universe, to be compared with particle-physics calculations for neutrinos and cold dark matter. Thus CMB measurements complement experiments with the LHC and long-baseline neutrino beams.

  18. Cosmic ray access at polar heliographic latitudes

    International Nuclear Information System (INIS)

    Voelk, H.J.

    1976-01-01

    Based on a modified WKB analysis of the interplanetary irregularity spectra, a discussion of the radial dependence of the radial cosmic ray diffusion coefficient at polar heliographic latitudes is presented. At l-AU radial distance the parameters are taken to equal those observed in the ecliptic. In the sense of a present best estimate it is argued that relativistic nuclei should have significantly easier access to 1 AU at the pole than in the ecliptic. The reverse may very well be true for the direct access of very low rigidity particles

  19. Cosmic rays and the search for a Lorentz Invariance Violation

    International Nuclear Information System (INIS)

    Bietenholz, Wolfgang

    2008-11-01

    This is an introductory review about the on-going search for a signal of Lorentz Invariance Violation (LIV) in cosmic rays. We first summarise basic aspects of cosmic rays, focusing on rays of ultra high energy (UHECRs). We discuss the Greisen-Zatsepin-Kuz'min (GZK) energy cutoff for cosmic protons, which is predicted due to photopion production in the Cosmic Microwave Background (CMB). This is a process of modest energy in the proton rest frame. It can be investigated to a high precision in the laboratory, if Lorentz transformations apply even at factors γ ∝ O(10 11 ). For heavier nuclei the energy attenuation is even faster due to photo-disintegration, again if this process is Lorentz invariant. Hence the viability of Lorentz symmetry up to tremendous γ-factors - far beyond accelerator tests - is a central issue. Next we comment on conceptual aspects of Lorentz Invariance and the possibility of its spontaneous breaking. This could lead to slightly particle dependent ''Maximal Attainable Velocities''. We discuss their effect in decays, Cerenkov radiation, the GZK cutoff and neutrino oscillation in cosmic rays. We also review the search for LIV in cosmic γ-rays. For multi TeV γ-rays we possibly encounter another puzzle related to the transparency of the CMB, similar to the GZK cutoff, due to electron/positron creation and subsequent inverse Compton scattering. The photons emitted in a Gamma Ray Burst occur at lower energies, but their very long path provides access to information not far from the Planck scale. We discuss conceivable non-linear photon dispersions based on non-commutative geometry or effective approaches. No LIV has been observed so far. However, even extremely tiny LIV effects could change the predictions for cosmic ray physics drastically. An Appendix is devoted to the recent hypothesis by the Pierre Auger Collaboration, which identifies nearby Active Galactic Nuclei - or objects next to them - as probable UHECR sources. (orig.)

  20. Abnormal increase of cosmic ray on August 7th, 1972

    International Nuclear Information System (INIS)

    Kodama, Masahiro; Murakami, Kazuaki; Wada, Masami

    1974-01-01

    The abnormal increase of cosmic ray on Aug. 7th particularly the dependence of its starting time on local time was studied. Cosmic ray increased twice before and after the greatest Forbush decrease in history on August 4th and 7th, 1972. This study is a trial to estimate the anisotropic flow of solar cosmic ray from the time difference time at different places. Further, the past instance of 23 ground-level events were statistically restudied, and the relationship between the time of generation of solar cosmic ray and the time of transmission to the earth was investigated. A list is given regarding the solar cosmic ray of more than 10 9 eV which occurred since the observation had started. The list shows definite three groups. Attention is paid to the transmission time of F type which is considered to have the most simplest transmission mechanism. The dispersion of the transmission time is large regarding flare-starting time and peak wave intensity time, but is small regarding solar wave-starting time, but the dependence on the longitude is systematic. After all, cosmic ray is accelerated after 10 minutes since solar electric wave has started, and arrives at the earth most early in the case of a flare occurred at the root of garden force line toward the earth. In conclusion, the method of studying the difference of the starting time of abnormal increase according to local time may be an effective means for examining in the characteristics of anisotropic flow of solar cosmic ray. (Iwakiri, K.)

  1. Interpreting the cosmic ray composition

    International Nuclear Information System (INIS)

    O'C Drury, L.; Ellisson, D.C; Meyer, J.-P.

    2000-01-01

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model

  2. Interpreting the cosmic ray composition

    Energy Technology Data Exchange (ETDEWEB)

    O' C Drury, L.; Ellisson, D.C; Meyer, J.-P

    2000-01-31

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model.

  3. High-energy cosmic rays

    CERN Document Server

    Cronin, James Watson

    1996-01-01

    Recently two cosmic rays with energy in excess of 2 1020 eV have been recorded. These are some 108 times more energetic than the protons produced by accelerators on earth. There is no credible understanding of the mechanism of acceleration by known a Because of the short mean free path in the cosmic background radiation they must come from nearby distances on a cosmological scale (< 50 Mpc). Their magnetic rigidity suggests that they should point to their source. Lectures will cover the present available data on the highest energy cosmic rays, their detection, possible acceleration mechanisms, their propagation in the galaxy and in extra galactic space and design of new detectors where simulations of air show ers play an important role.

  4. Cosmic rays and stochastic magnetic reconnection in the heliotail

    Directory of Open Access Journals (Sweden)

    P. Desiati

    2012-06-01