WorldWideScience

Sample records for beryllium moderated reactors

  1. An investigation of the effect of the upper beryllium reflector on the moderator temperature coefficient of reactivity of miniature neutron source reactors

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [Univ. of Technical Education, Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-11-15

    In this paper, an investigation on the dependence of the effective multiplication factor, k{sub eff}, on moderator temperature for various thicknesses of the upper beryllium reflector in reactor conditions with different fuel burnups for the Miniature Neutron Source Reactor is carried out. Based on the linear dependence of k{sub eff} on moderator temperature, an approach to calculate the moderator temperature coefficient of reactivity, α{sub T}, at different temperatures and its average value, anti α{sub T}, in a range of temperatures directly through the moderator temperature is developed. Calculations are performed to evaluate the effect of change in the upper reflector thickness on the moderator temperature coefficient of reactivity for the fresh core and reactor conditions with different fuel burnups. Calculated results indicate that anti α{sub T} increases with the increased beryllium thickness, but decreases with the increasing fuel burnup. Analysis of calculated results provides an additional insight into the relation of the upper reflector thickness, the neutron energy spectrum in the reactor core, and the moderator temperature coefficient of reactivity.

  2. Problems and future plan on material development of beryllium in materials testing reactors

    International Nuclear Information System (INIS)

    Beryllium has been utilized as a moderator and/or reflector in a number of material testing reactors. The attractive nuclear properties of beryllium are its low atomic number, low atomic weight, low parasitic capture cross section for thermal neutrons, readiness to part with one of its own neutrons, and good neutron elastic scattering characteristics. However, it is difficult to reprocess irradiated beryllium because of high induced radioactivity. Disposal has also been difficult because of toxicity issues and special nuclear material controls. In this paper, problems and future plans of beryllium technology are introduced for nuclear reactors. (author)

  3. REACTOR MODERATOR STRUCTURE

    Science.gov (United States)

    Greenstreet, B.L.

    1963-12-31

    A system for maintaining the alignment of moderator block structures in reactors is presented. Integral restraining grids are placed between each layer of blocks in the moderator structure, at the top of the uppermost layer, and at the bottom of the lowermost layer. Slots are provided in the top and bottom surfaces of the moderator blocks so as to provide a keying action with the grids. The grids are maintained in alignment by vertical guiding members disposed about their peripheries. (AEC)

  4. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  5. Impact of beryllium reflector ageing on Safari–1 reactor core parameters / L.E. Moloko

    OpenAIRE

    Moloko, Lesego Ernest

    2011-01-01

    The build–up of 6Li and 3He, that is, the strong thermal neutron absorbers or the so called "neutron poisons", in the beryllium reflector changes the physical characteristics of the reactor, such as reactivity, neutron spectra, neutron flux level, power distribution, etc.; furthermore,gaseous isotopes such as 3H and 4He induce swelling and embrittlement of the reflector. The SAFARI–1 research reactor, operated by Necsa at Pelindaba in South Africa, uses a beryllium reflector on...

  6. Beryllium and lithium resource requirements for solid blanket designs for fusion reactors

    International Nuclear Information System (INIS)

    The lithium and beryllium requirements are analyzed for an economy of 106 MW(e) CTR3 capacity using solid blanket fusion reactors. The total lithium inventory in fusion reactors is only approximately 0.2 percent of projected U. S. resources. The lithium inventory in the fusion reactors is almost entirely 6Li, which must be extracted from natural lithium. Approximately 5 percent of natural lithium can be extracted as 6Li. Thus the total feed of natural lithium required is approximately 20 times that actually used in fusion reactors, or approximately 4 percent of U. S. resources. Almost all of this feed is returned to the U. S. resource base after 6Li is extracted, however. The beryllium requirements are on the order of 10 percent of projected U. S. resources. Further, the present cost of lithium and the cost of beryllium extraction could both be increased tenfold with only minor effects on CTR capital cost. Such an increase should substantially multiply the economically recoverable resources of lithium and beryllium. It is concluded that there are no lithium or beryllium resource limitations preventing large-scale implementation of solid blanket fusion reactors. (U.S.)

  7. Chronology of the beryllium replacement shutdown at the High Flux Isotope Reactor (HFIR), 1983

    International Nuclear Information System (INIS)

    In addition to the permanent beryllium reflector, several other components were replaced. The outer shroud and lower tracks were replaced. The new control rod access plugs and the upper tracks were installed. Replacement of collimator tubes for HB-1 and -2 are tentatively slated for the next permanent beryllium changeout. Inspection of the reactor vessel, the vessel-to-nozzle welds, core support structure, and vessel internal cladding showed them to be in acceptable condition. The highest, accumulative radiation doses received by Reactor Operations personnel during the shutdown, in mrem, were 665, 606, and 560; the highest for P and E personnel were 520, 505, and 475

  8. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  9. Heavy water moderated reactors advances and challenges

    International Nuclear Information System (INIS)

    Nuclear energy is now considered a key contributor to world electricity production, with total installed capacity nearly equal to that of hydraulic power. Nevertheless, many important challenges lie ahead. Paramount among these is gaining public acceptance: this paper makes the basic assumption that public acceptance will improve if, and only if, nuclear power plants are operated safely and economically over an extended period of time. The first task, therefore, is to ensure that these prerequisites to public acceptance are met. Other issues relate to the many aspects of economics associated with nuclear power, include capital cost, operation cost, plant performance and the risk to the owner's investment. Financing is a further challenge to the expansion of nuclear power. While the ability to finance a project is strongly dependent on meeting public acceptance and economic challenges, substantial localisation of design and manufacture is often essential to acceptance by the purchaser. The neutron efficient heavy water moderated CANDU with its unique tube reactor is considered to be particularly well qualified to respond to these market challenges. Enhanced safety can be achieved through simplification of safety systems, design of the moderator and shield water systems to mitigate severe accident events, and the increased use of passive systems. Economics are improved through reduction in both capital and operating costs, achieved through the application of state-of-the-art technologies and economy of scale. Modular features of the design enhance the potential for local manufacture. Advanced fuel cycles offer reduction in both capital costs and fuelling costs. These cycles, including slightly enriched uranium and low grade fuels from reprocessing plants can serve to increase reactor output, reduce fuelling cost and reduce waste production, while extending resource utilisation. 1 ref., 1 tab

  10. Benchmark Evaluation of Fuel Effect and Material Worth Measurements for a Beryllium-Reflected Space Reactor Mockup

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Center for Space Nuclear Research; Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The critical configuration of the small, compact critical assembly (SCCA) experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) in 1962-1965 have been evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The initial intent of these experiments was to support the design of the Medium Power Reactor Experiment (MPRE) program, whose purpose was to study “power plants for the production of electrical power in space vehicles.” The third configuration in this series of experiments was a beryllium-reflected assembly of stainless-steel-clad, highly enriched uranium (HEU)-O2 fuel mockup of a potassium-cooled space power reactor. Reactivity measurements cadmium ratio spectral measurements and fission rate measurements were measured through the core and top reflector. Fuel effect worth measurements and neutron moderating and absorbing material worths were also measured in the assembly fuel region. The cadmium ratios, fission rate, and worth measurements were evaluated for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The fuel tube effect and neutron moderating and absorbing material worth measurements are the focus of this paper. Additionally, a measurement of the worth of potassium filling the core region was performed but has not yet been evaluated Pellets of 93.15 wt.% enriched uranium dioxide (UO2) were stacked in 30.48 cm tall stainless steel fuel tubes (0.3 cm tall end caps). Each fuel tube had 26 pellets with a total mass of 295.8 g UO2 per tube. 253 tubes were arranged in 1.506-cm triangular lattice. An additional 7-tube cluster critical configuration was also measured but not used for any physics measurements. The core was surrounded on all side by a beryllium reflector. The fuel effect worths were measured by removing fuel tubes at various radius. An accident scenario

  11. Film formation on the surface of magnesium-beryllium PMB-2 alloy in a diphenyl mixture under reactor irradiation

    International Nuclear Information System (INIS)

    A film growth on the surfaces of PMB-2 magnesium-beryllium alloy specimens in a diphenyl mixture under reactor irradiation was studies. It is shown that film thickness increases linearly with absorbed dose up to 3500 Mrad. The possibility of film washing off the specimen surfaces by boiling in the diphenyl mixture is investigated

  12. Beryllium data base for in-pile mockup test on blanket of fusion reactor, (1)

    International Nuclear Information System (INIS)

    Beryllium has been used in the fusion blanket designs with ceramic breeder as a neutron multiplier to increase the net tritium breeding ratio (TBR). The properties of beryllium, that is physical properties, chemical properties, thermal properties, mechanical properties, nuclear properties, radiation effects, etc. are necessary for the fusion blanket design. However, the properties of beryllium have not been arranged for the fusion blanket design. Therefore, it is indispensable to check and examine the material data of beryllium reported previously. This paper is the first one of the series of papers on beryllium data base, which summarizes the reported material data of beryllium. (author)

  13. Investigation of reactivity variations of the Isfahan MNSR reactor due to variations in the thickness of the core top beryllium layer using WIMSD and MCNP codes

    Directory of Open Access Journals (Sweden)

    A Shirani

    2010-12-01

    Full Text Available In this work, the Isfahan Miniature Neutron Source Reactor (MNSR is first simulated using the WIMSD code, and its fuel burn-up after 7 years of operation ( when the reactor was revived by adding a 1.5 mm thick beryllium shim plate to the top of its core and also after 14 years of operation (total operation time of the reactor is calculated. The reactor is then simulated using the MCNP code, and its reactivity variation due to adding a 1.5 mm thick beryllium shim plate to the top of the reactor core, after 7 years of operation, is calculated. The results show good agreement with the available data collected at the revival time. Exess reactivity of the reactor at present time (after 14 years of operation and after 7 years of the the reactor revival time is also determined both experimentally and by calculation, which show good agreement, and indicate that at the present time there is no need to add any further beryllium shim plate to the top of the reactor core. Furthermore, by adding more beryllium layers with various thicknesses to the top of the reactor core, in the input program of the MCNP program, reactivity value of these layers is calculated. From these results, one can predict the necessary beryllium thickness needed to reach a desired reactivity in the MNSR reactor.

  14. Heavy-water-moderated pressure-tube reactor safety

    International Nuclear Information System (INIS)

    Several countries have heavy-water-moderated, pressure-tube reactors either in commercial operation or in late prototype stages. The supporting safety research and development includes such areas as the thermohydraulics of circuit depressurization, heat transfer from the fuel, heat rejection to the moderator from dry fuel, fuel and sheath behaviour, and fuel channel integrity. We review the work done in Canada, Great Britain, Italy and Japan, and describe some of the experimental tests underlaying the methods of accident analysis. The reactors have safety systems which, in the event of an accident, are able to shut down the reactor, keep the fuel cooled, and contain any released radioactivity. We summarize the characteristics of these safety systems (shutdown, emergency core cooling, and containment) in the various reactors, and discuss other reactor characteristics which either prevent accidents or reduce their potential demand on the safety systems. (author)

  15. Replacement of the Core Beryllium Reflector in the SAFARI-1 Research Reactor

    International Nuclear Information System (INIS)

    The SAFARI-1 Research Reactor is a 20 MW high flux MTR and has been continuously operational for more than 46 years. In this period, the core beryllium reflector had never been replaced. An ageing management action to replace the reflector received priority due to the risks involved with failure or deformation of elements. This paper elaborates on the actions taken to replace the old and manage the new reflector. To this extent a reflector replacement procedure, backed up by core neutronic calculations and a test plan, was developed for the safe replacement of the reflector. A reflector management programme will ensure that records of reflector elements are kept and used to optimally manage usage of every element. Due to the historic nature of reflector utilisation in the SAFARI-1 core, deformation of the elements was unavoidable. These deformations will be monitored in the management programme for the new reflector. Deformation measurement of the old reflector is planned and could yield interesting comparisons with analytical results. The action plan for final disposal of the old reflector, although still in development, is also mentioned in this paper. (author)

  16. Mineral resource of the month: beryllium

    Science.gov (United States)

    Shedd, Kim B.

    2006-01-01

    Beryllium metal is lighter than aluminum and stiffer than steel. These and other properties, including its strength, dimensional stability, thermal properties and reflectivity, make it useful for aerospace and defense applications, such as satellite and space-vehicle structural components. Beryllium’s nuclear properties, combined with its low density, make it useful as a neutron reflector and moderator in nuclear reactors. Because it is transparent to most X rays, beryllium is used as X-ray windows in medical, industrial and analytical equipment.

  17. Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991

    International Nuclear Information System (INIS)

    This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET

  18. Reprocessing technology development for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H.; Sakamoto, N. [Oarai Research Establishment, Ibaraki-ken (Japan); Tatenuma, K. [KAKEN Co., Ibaraki-ken (Japan)] [and others

    1995-09-01

    At present, beryllium is under consideration as a main candidate material for neutron multiplier and plasma facing material in a fusion reactor. Therefore, it is necessary to develop the beryllium reprocessing technology for effective resource use. And, we have proposed reprocessing technology development on irradiated beryllium used in a fusion reactor. The preliminary reprocessing tests were performed using un-irradiated and irradiated beryllium. At first, we performed beryllium separation tests using un-irradiated beryllium specimens. Un-irradiated beryllium with beryllium oxide which is a main impurity and some other impurities were heat-treated under chlorine gas flow diluted with Ar gas. As the results high purity beryllium chloride was obtained in high yield. And it appeared that beryllium oxide and some other impurities were removed as the unreactive matter, and the other chloride impurities were separated by the difference of sublimation temperature on beryllium chloride. Next, we performed some kinds of beryllium purification tests from beryllium chloride. And, metallic beryllium could be recovered from beryllium chloride by the reduction with dry process. In addition, as the results of separation and purification tests using irradiated beryllium specimens, it appeared that separation efficiency of Co-60 from beryllium was above 96%. It is considered that about 4% Co-60 was carried from irradiated beryllium specimen in the form of cobalt chloride. And removal efficiency of tritium from irradiated beryllium was above 95%.

  19. Tritium migration in the materials proposed for fusion reactors: Li{sub 2}TiO{sub 3} and beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Kulsartov, T.V., E-mail: kulsartov@nnc.kz [Institute of Atomic Energy NNC RK, 071100, Krasnoarmeiskay St., 10, Kurchatov (Kazakhstan); Gordienko, Yu.N.; Tazhibayeva, I.L. [Institute of Atomic Energy NNC RK, 071100, Krasnoarmeiskay St., 10, Kurchatov (Kazakhstan); Kenzhin, E.A. [Shakarim Semey State University, 071412, Glinka St., 20b, Semey (Kazakhstan); Barsukov, N.I.; Sadvakasova, A.O. [Institute of Atomic Energy NNC RK, 071100, Krasnoarmeiskay St., 10, Kurchatov (Kazakhstan); Kulsartova, A.V. [Nuclear Technology Safety Center, 050020, L. Chaikina 4, Almaty (Kazakhstan); Zaurbekova, Zh.A. [Institute of Atomic Energy NNC RK, 071100, Krasnoarmeiskay St., 10, Kurchatov (Kazakhstan)

    2013-11-15

    The results of tritium and helium gas release from lithium ceramics samples Li{sub 2}TiO{sub 3} irradiated at the WWR-K reactor (Almaty, Kazakhstan) and from beryllium samples irradiated at the BN-350 reactor (Aktau, Kazakhstan) and the IVG.1M reactor (Kurchatov, Kazakhstan) are presented. Experimentally obtained thermal desorption (TDS) spectra have shown that the dependence of tritium release from lithium ceramics has a complicated behavior and to a large extent depends on lithium ceramics type. Nevertheless, it was found that the total amount of tritium released from all types of lithium ceramics has the same order of magnitude, equal to about 10{sup 11} Bq/kg. It was found that in the temperature range from 523 K to 1373 K the process of tritium release from lithium ceramics involves volume diffusion and thermoactivated tritium release from the accumulation centers generated under irradiation. TDS of beryllium samples enables us to obtain characteristics of tritium and helium release during linear heating, to determine integrated quantities of generated helium and tritium, and to determine parameters of release processes.

  20. First experience with the new solid methane moderator at the IBR-2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Beliakov, A.A.; Shabalin, E.P. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tretyakov, I.T. [Research and Development Institute of Power Engineering, Moscow (Russian Federation)

    2001-03-01

    In the 1999 Fall the solid methane moderator (CM) has been installed and tested at full power at the IBR-2 pulsed reactor. Its main features are a beryllium reflector and a light water premoderator. Radiation load on the methane was three times as much as that of IPNS facility, namely, 0.1 W/g. Effects of temperature, operation time, concentration of a hydrogen scavenger, and annealing procedure on both neutron and service performances were studied. Maximum operation time of a newly loaded portion of methane was 4 days. In this time around 30% of methane is transformed into hydrogen, ethane, and high molecular hydrocarbons, and yet no deterioration in cold neutron intensity was detected. Among new knowledges, the most important are two facts observed: two-fold decrease in hydrogen formation rate when methane is poisoned with 2.5% to 5% of ethylene, and low formation rate of solid, inremovable products of radiolysis - (1.5/3)10{sup -7} g/J, which means that after 10 years of operation the methane chamber will be filled with only 100 g of residue. Gain of factor 20 in cold neutron flux was obtained as compared to the routine grooved light water moderator. Presently, it is the highest among the intense pulsed neutron sources. (author)

  1. Study on core design for reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  2. Graphite-moderated and heavy water-moderated spectral shift controlled reactors; Reactores de moderador solido controlados por desplazamiento espectral

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F.

    1984-07-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs.

  3. Graphite-moderated and heavy water-moderated spectral shift controlled reactors

    International Nuclear Information System (INIS)

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs

  4. Preliminary irradiation test for new material selection on lifetime extension of beryllium reflector

    International Nuclear Information System (INIS)

    Beryllium has been utilized as a moderator and/or reflector in Japan Materials Testing Reactor (JMTR), because of nuclear properties of beryllium, low neutron capture and high neutron scattering cross sections. At present, the amount of irradiated beryllium frames in JMTR is about 2 tons in the JMTR canal. In this study, preliminary irradiation test was performed from 162nd to 165th operation cycles of JMTR as irradiation and PIE technique development for lifetime expansion of beryllium frames. The design study of irradiation capsule, development of dismount device of irradiation capsule and the high accuracy size measurement device were carried out. The PIEs such as tensile tests, metallurgical observation, and size change measurement were also carried out with two kinds of irradiated beryllium metals (S-200F and S-65C). (author)

  5. Calculation of the moderator temperature coefficient of reactivity for miniature neutron source reactors

    International Nuclear Information System (INIS)

    This paper presents results of the evaluated group constants for fuel and other important materials of the Miniature Neutron Source Reactor (Mnr) and the moderator temperature coefficient of reactivity through global reactor calculation. In this study the group constants were calculated with the WIMSD code and the global reactor calculation is accomplished by the CITATION code. This work also presents a method for evaluation of the moderator temperature coefficient of reactivity at different temperatures and it's average value in a range of temperature directly through the values of moderator temperature for MNSRs. This method provides simple analytical representation convenient for reactor kinetics calculation and reactor safety assessment. (author)

  6. Beryllium 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Roskill report on beryllium gives information on the occurrence and reserves, production technology, geographic distribution, consumption and end-uses, stocks, prices and beryllium and health. There is an appendix on international trade statistics. (author).

  7. Status and perspective of development of cold moderators at the IBR-2 reactor

    Science.gov (United States)

    Kulikov, S.; Shabalin, E.

    2012-03-01

    The modernized IBR-2M reactor will start its operation with three water grooved moderators in 2011. Afterwards, they will be exchanged by a new complex of moderators. The complex consists of three so-called kombi-moderators, each of them containing a pre-moderator, a cold moderator, grooved ambient water moderators and post-moderators. They are mounted onto three moveable trolleys that serve to deliver and install moderators near the reactor core. The project is divided in three stages. In 2012 the first stage of development of complex of moderators will be finished. The water grooved moderator will be replaced with the new kombi-moderator for beams #7, 8, 10, 11. Main parameters of moderators for this direction will be studied then. The next stages will be done for beams #2-3 and for beams #1, 9, 4-6, consequently. Cold moderator chambers at the modernized IBR-2 reactor are filled with thousands of beads (~3.5 - 4 mm in diameter) of moderating material. The cold helium gas flow delivers beads from the charging device to the moderator during the fulfillment process and cools down them during the reactor cycle. The mixture of aromatic hydrocarbons (mesithylen and m-xylen) has been chosen as moderating material. The explanation of the choice of material for novel cold neutron moderators, configuration of moderator complex for the modernized IBR-2 reactor and the main results of optimization of moderator complex for the third stage of moderator development are discussed in the article.

  8. Status of beryllium materials for fusion application

    International Nuclear Information System (INIS)

    The possible use of beryllium as a material for fusion reactors is discussed. Based on the results of recent Russian elaborations, which were not covered previously in the scientific literature, an attempt of complex analysis of the techniques of using beryllium is made. The specific requirements on beryllium as a protective material for first wall and divertor are considered. Also the possibility of creating a fusion grade of beryllium is discussed and an optimum strategy is suggested. (orig.)

  9. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  10. Calculations on heavy-water moderated and cooled natural uranium fuelled power reactors

    International Nuclear Information System (INIS)

    One of the codes that the Instituto Nacional de Investigaciones Nucleares (Mexico) has for the nuclear reactors design calculations is the LEOPARD code. This work studies the reliability of this code in reactors design calculations which component materials are the same of the heavy water moderated and cooled, natural uranium fuelled power reactors. (author)

  11. On the possibility of using uranium-beryllium oxide fuel in a VVER reactor

    Science.gov (United States)

    Kovalishin, A. A.; Prosyolkov, V. N.; Sidorenko, V. D.; Stogov, Yu. V.

    2014-12-01

    The possibility of using UO2-BeO fuel in a VVER reactor is considered with allowance for the thermophysical properties of this fuel. Neutron characteristics of VVER fuel assemblies with UO2-BeO fuel pellets are estimated.

  12. Specific features of reactor or cyclotron {alpha}-particles irradiated beryllium microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A.M. [A.A.Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Gromov, B.F.; Karabanov, V.N. [and others

    1998-01-01

    Studies were carried out into microstructure changes accompanying helium swelling of Be reactor neutron irradiated at 450degC or {alpha}-particles implanted in cyclotron to reach the same volume accumulation of He (6-8 ncm{sup 3} He/cm{sup 3} Be). The microstructures of reactor irradiated and implanted samples were compared after vacuum anneal at 600-800degC up to 50h. The irradiated samples revealed the etchability along the grain boundaries in zones formed by adequately large equilibrium helium pores. The width of the zones increased with the annealing time and after 50h reached 30{mu}. Depleted areas 2-3{mu} dia were observed in some regions of near grain boundary zones. The roles of grain boundaries and manufacturing pores as vacancies` sources and helium sinks are considered. (author)

  13. Proton irradiation effects on beryllium - A macroscopic assessment

    Science.gov (United States)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  14. Beryllium - A Unique Material in Nuclear Applications

    International Nuclear Information System (INIS)

    Beryllium, due to its unique combination of structural, chemical, atomic number, and neutron absorption cross section characteristics, has been used successfully as a neutron reflector for three generations of nuclear test reactors at the Idaho National Engineering and Environmental Laboratory (INEEL). The Advanced Test Reactor (ATR), the largest test reactor in the world, has utilized five successive beryllium neutron reflectors and is scheduled for continued operation with a sixth beryllium reflector. A high radiation environment in a test reactor produces radiation damage and other changes in beryllium. These changes necessitate safety analysis of the beryllium, methods to predict performance, and appropriate surveillances. Other nuclear applications also utilize beryllium. Beryllium, given its unique atomic, physical, and chemical characteristics, is widely used as a ''window'' for x-rays and gamma rays. Beryllium, intimately mixed with high-energy alpha radiation emitters has been successfully used to produce neutron sources. This paper addresses operational experience and methodologies associated with the use of beryllium in nuclear test reactors and in ''windows'' for x-rays and gamma rays. Other nuclear applications utilizing beryllium are also discussed

  15. Effect of high temperature corrosion tests in be-liquid Li-V4Ti4Cr alloy system on mechanical properties of beryllium

    International Nuclear Information System (INIS)

    Full text of publication follows: Self-cooled lithium blanket is one of the promising concepts of breeding blanket for future fusion reactor. Beryllium proposed to be used in this design of blanket as a neutron multiplier and moderator for providing the required tritium breeding efficiency. Corrosion behavior of beryllium in liquid Li is important and at the same time not clearly understood aspect of beryllium application in fusion. Recent experimental results on beryllium corrosion behavior of two modem RF beryllium grades (DIP, TE-56) after testing in Be- liquid lithium - V4Ti4Cr alloy static system for 200-500 hours at temperatures from 600 to 800 deg. C are presented. The influences of test conditions (temperature, duration, lithium purity), beryllium characteristics (microstructure, grain size and chemical composition) and penetration of lithium into beryllium on compressive properties of beryllium are discussed. Compressive properties can be considered as an integral characteristic of grain boundaries weakening that is caused by penetration of lithium into beryllium during corrosion tests. The data obtained show that the stability of modem beryllium grades in lithium is much higher than that for the 'old' grades. (authors)

  16. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Wang, Zhanhong; Zhong, Jinming [Northwest Rare Metal Material Research Institute, CNMC, Ningxia Orient Group Co. Ltd.,No.119 Yejin Road, Shizuishan City, Ningxia,753000 (China)

    2013-11-15

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W–TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5–5 × 10{sup 18} D/cm{sup 2}; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress.

  17. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  18. Experimental and analytical study on thermal hydraulics in reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Araya, Fumimasa; Ohnuki, Akira; Yoshida, Hiroyuki; Kureta, Masatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    Study and development of reduced-moderation spectrum water reactor proceeds as a option of the future type reactor in Japan Atomic Energy Research Institute (JAERI). The reduced-moderation spectrum in which a neutron has higher energy than the conventional water reactors is achieved by decreasing moderator-to-fuel ratio in the lattice core of the reactor. Conversion ratio in the reduced-moderation water reactor can be more than 1.0. High burnup and long term cycle operation of the reactor are expected. A type of heavy water cooled PWR and three types of BWR are discussed as follows; For the PWR, (1) critical heat flux experiments in hexagonal tight lattice core, (2) evaluation of cooling limit at a nominal power operation, and (3) analysis of rewetting cooling behavior at loss of coolant accident following with large scale pipe rupture. For the BWR, analyses of cooling limit at a nominal power operation of, (1) no blanket BWR, (2) long term cycle operation BWR, and (3) high conversion ratio BWR. The experiments and the analyses proved that the basic thermal hydraulic characteristics of these reduced-moderation water reactors satisfy the essential points of the safety requirements. (Suetake, M.)

  19. Calculation of reactivity of control rods in graphite moderated reactors

    International Nuclear Information System (INIS)

    A study about the method of calculation for the reactivity of control rods in graphite-moderated critical assemblies, is presented. The result of theoretical calculation, developed by super celles and Nordheim-Scalettar methods are compared with experimental results for the critical Assembly of General Atomic. The two methods are then applicable to reactivity calculation of the control rods of graphite moderated critical assemblies

  20. Broad spectrum moderators and advanced reflector filters using 208Pb

    DEFF Research Database (Denmark)

    Schönfeldt, Troels; Batkov, K.; Klinkby, Esben Bryndt;

    2015-01-01

    thermalizing property of 208Pb to design a broad spectrum moderator, i.e. a moderator which emits thermal and cold neutrons from the same position. Using 208Pb as a reflector filter material is shown to be slightly less efficient than a conventional beryllium reflector filter. However, when surrounding......Cold and thermal neutrons used in neutrons scattering experiments are produced in nuclear reactors and spallation sources. The neutrons are cooled to thermal or cold temperatures in thermal and cold moderators, respectively. The present study shows that it is possible to exploit the poor...... the reflector filter by a cold moderator it is possible to regain the neutrons with wavelengths below the Bragg edge, which are suppressed in the beryllium reflector filter. In both the beryllium and lead case surrounding the reflector filter with a cold moderator increases the cold brightness significantly...

  1. Summary of the 4th workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsuka, Toru; Ishikawa, Nobuyuki; Iwamura, Takamichi (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    The research on Reduced-Moderation Water Reactors (RMWRs) has been performed in JAERI for the development of future innovative reactors. The workshop on the RMWRs has been held every year since fiscal 1997 aimed at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors. The 4th workshop was held on March 2, 2001 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The workshop began with three lectures on recent research activities in JAERI entitled 'Recent Situation of Research on Reduced-Moderation Water Reactor', 'Analysis on Electricity Generation Costs of Reduced Moderation Water Reactors' and 'Reprocessing Technology for Spent Mixed-Oxides Fuel from LWR'. Then five lectures followed: 'Micro Reactor Physics of MOX Fueled LWR' which shows the recent results of reactor physics, Fast Reactor Cooled by Supercritical Light Water' which is another type of reduced-moderation reactor, 'Phase 1 of Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC), 'Integral Type Small PWR with Stand-alone Safety' which is intended to suit for the future consumers' needs, and Utilization of Plutonium in Reduced-Moderation Water Reactors' which dictates benefits of plutonium utilization with RMWRs. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as presentation handouts, program and participant list as appendixes. The 8 of the presented papers are indexed individually. (J.P.N.)

  2. Beryllium Toxicity

    Science.gov (United States)

    ... Favorites Del.icio.us Digg Facebook Google Bookmarks Yahoo MyWeb Beryllium Toxicity Patient Education Care Instruction Sheet ... Favorites Del.icio.us Digg Facebook Google Bookmarks Yahoo MyWeb Page last reviewed: May 23, 2008 Page ...

  3. Gas Cooled, Natural Uranium, D20 Moderated Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, R.C.; Beasley, E.G.; DeBoer, T.K.; Evans, T.C.; Molino, D.F.; Rothwell, W.S.; Slivka, W.R.

    1956-08-01

    The attractiveness of a helium cooled, heavy water moderated, natural uranium central station power plant has been investigated. A fuel element has been devised which allows the D20 to be kept at a low pressure while the exit gas temperature is high. A preliminary cost analysis indicates that, using currently available materials, competitive nuclear power in foreign countries is possible.

  4. SEPARATING LIQUID MODERATOR FROM A SLURRY TYPE REACTOR

    Science.gov (United States)

    Vernon, H.C.

    1961-07-01

    A system for evaporating moderator such as D/sub 2/O from an irradiated slurry or sloution characterized by two successive evaproators is described. In the first of these the most troublesome radioactivity dissipates before the slurry becomes too thick to be pumped out; in the second the slurry, now easier to handle, can be safely reduced to a sludge.

  5. Summary of the 3rd workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Nakatsuka, Tohru; Iwamura, Takamichi [eds.

    2000-06-01

    The research activities of a Reduced-Moderation Water Reactor (RMWR) are being performed for a development of the next generation water-cooled reactor. A workshop on the RMWR was held on March 3rd 2000 aiming to exchange information between JAERI and other organizations such as universities, laboratories, utilities and vendors. This report summarizes the contents of lectures and discussions on the workshop. The 1st workshop was held on March 1998 focusing on the review of the research activities and future research plan. The succeeding 2nd workshop was held on March 1999 focusing on the topics of the plutonium utilization in water-cooled reactors. The 3rd workshop was held on March 3rd 2000, which was attended by 77 participants. The workshop began with a lecture titled 'Recent Situation Related to Reduced-Moderation Water Reactor (RMWR)', followed by 'Program on MOX Fuel Utilization in Light Water Reactors' which is the mainstream scenario of plutonium utilization by utilities, and 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC). Also, following lectures were given as the recent research activities in JAERI: 'Progress in Design Study on Reduced-Moderation Water Reactors', 'Long-Term Scenarios of Power Reactors and Fuel Cycle Development and the Role of Reduced Moderation Water Reactors', 'Experimental and Analytical Study on Thermal Hydraulics' and Reactor Physics Experiment Plan using TCA'. At the end of the workshop, a general discussion was performed about the research and development of the RMWR. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture and general discussion, as well as presentation viewgraphs, program and participant list as appendixes. The 7 of the presented papers are indexed individually. (J.P.N.)

  6. Beryllium for fusion application - recent results

    Science.gov (United States)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-12-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.

  7. REACTOR HAVING NaK-UO$sub 2$ SLURRY HELICALLY POSITIONED IN A GRAPHITE MODERATOR

    Science.gov (United States)

    Rodin, M.B.; Carter, J.C.

    1962-05-15

    A reactor utilizing 20% enriched uranium consists of a central graphite island in cylindrical form, with a spiral coil of tubing fitting against the central island. An external graphite moderator is placed around the central island and coil. A slurry of uranium dioxide dispersed in alkali metal passes through the coil to transfer heat externally to the reactor. There are also conventional controls for regulating the nuclear reaction. (AEC)

  8. Uses of Plutonium Fuel in Pressure-Tube-Type, Heavy-Water-Moderated Thermal Reactors

    International Nuclear Information System (INIS)

    In 1962, a feasibility study was begun in the JAERI on the uses of various nuclear fuels for pressure-tube-type, heavy-water-moderated thermal reactors. This study began with analysis of the use of uranium in heavy-water-moderated thermal reactors such as the CANDU-PHW, CANDU-BLW, SGHW, EL-4, and Ref. 15, D and E lattices, which is designed in the JAERI, from the standpoint of the core design. Then, the ways of using plutonium fuel in the same types were investigated using WATCHTOWER, FLARE and VENUS codes, including: (1) direct substitution of the plutonium from light-water reactors or Magnox reactors, (2) recycle use of the plutonium from heavy-water-moderated reactors, (3) plutonium self-sustaining cycle, and (4) plutonium phoenix fuel. The following conclusions are reported: (1) In the direct substitution of plutonium, somewhat depleted plutonium is more suitable for core design than the plutonium from Magnox reactors or light-water reactors, because the increase in the initial reactivity due to large plutonium absorption cross-section must be prevented. (2) In the plutonium self-sustaining cycle, the fuel burn-up of about 15 000 ∼20000 MWd/t would be expected from natural uranium, and the positive void reactivity which always occurs in the uraniumloaded SGHW or CANDU-BLW lattices is greatly reduced, the latter property giving some margin to bum-out heat flux. (3) It may be concluded from the fuel cycle analysis that the plutonium self-sustaining cycle is equivalent to using slightly enriched uranium (about 1.0 at.%). It may be concluded that the use of plutonium in heavy-water-moderated reactors is technologically feasible and economically advantageous. (author)

  9. CFD simulations of moderator flow inside Calandria of the Passive Moderator Cooling System of an advanced reactor

    International Nuclear Information System (INIS)

    Highlights: • CFD simulations in the Calandria of an advanced reactor under natural circulation. • Under natural convection, majority of the flow recirculates within the Calandria. • Maximum temperature is located at the top and center of the fuel channel matrix. • During SBO, temperature inside Calandria is stratified. - Abstract: Passive systems are being examined for the future Advanced Nuclear Reactor designs. One of such concepts is the Passive Moderator Cooling System (PMCS), which is designed to remove heat from the moderator in the Calandria vessel passively in case of an extended Station Black Out condition. The heated heavy-water moderator (due to heat transferred from the Main Heat Transport System (MHTS) and thermalization of neutrons and gamma from radioactive decay of fuel) rises upward due to buoyancy, gets cooled down in a heat exchanger and returns back to Calandria, completing a natural circulation loop. The natural circulation should provide sufficient cooling to prevent the increase of moderator temperature and pressure beyond safe limits. In an earlier study, a full-scale 1D transient simulation was performed for the reactor including the MHTS and the PMCS, in the event of a station blackout scenario (Kumar et al., 2013). The results indicate that the systems remain within the safe limits for 7 days. However, the flow inside a geometry like Calandria is quite complex due to its large size and inner complexities of dense fuel channel matrix, which was simplified as a 1D pipe flow in the aforesaid analysis. In the current work, CFD simulations are performed to study the temperature distributions and flow distribution of moderator inside the Calandria vessel using a three-dimensional CFD code, OpenFoam 2.2.0. First, a set of steady state simulation was carried out for a band of inlet mass flow rates, which gives the minimum mass flow rate required for removing the maximum heat load, by virtue of prediction of hot spots inside the Calandria

  10. CFD simulations of moderator flow inside Calandria of the Passive Moderator Cooling System of an advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Eshita [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019 India (India); Nayak, Arun K. [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Vijayan, Pallippattu K., E-mail: vijayanp@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2015-10-15

    Highlights: • CFD simulations in the Calandria of an advanced reactor under natural circulation. • Under natural convection, majority of the flow recirculates within the Calandria. • Maximum temperature is located at the top and center of the fuel channel matrix. • During SBO, temperature inside Calandria is stratified. - Abstract: Passive systems are being examined for the future Advanced Nuclear Reactor designs. One of such concepts is the Passive Moderator Cooling System (PMCS), which is designed to remove heat from the moderator in the Calandria vessel passively in case of an extended Station Black Out condition. The heated heavy-water moderator (due to heat transferred from the Main Heat Transport System (MHTS) and thermalization of neutrons and gamma from radioactive decay of fuel) rises upward due to buoyancy, gets cooled down in a heat exchanger and returns back to Calandria, completing a natural circulation loop. The natural circulation should provide sufficient cooling to prevent the increase of moderator temperature and pressure beyond safe limits. In an earlier study, a full-scale 1D transient simulation was performed for the reactor including the MHTS and the PMCS, in the event of a station blackout scenario (Kumar et al., 2013). The results indicate that the systems remain within the safe limits for 7 days. However, the flow inside a geometry like Calandria is quite complex due to its large size and inner complexities of dense fuel channel matrix, which was simplified as a 1D pipe flow in the aforesaid analysis. In the current work, CFD simulations are performed to study the temperature distributions and flow distribution of moderator inside the Calandria vessel using a three-dimensional CFD code, OpenFoam 2.2.0. First, a set of steady state simulation was carried out for a band of inlet mass flow rates, which gives the minimum mass flow rate required for removing the maximum heat load, by virtue of prediction of hot spots inside the Calandria

  11. Present status of graphite-moderated power reactor decommissioning in foreign countries

    International Nuclear Information System (INIS)

    From 1960's on, graphite-moderated power reactors, being either of CO2 gas cooled or light water cooled type, had opened the nuclear electricity generation worldwide. Such pioneering reactors as UK Magnoxes, French GCRs, Russian AMBs had been operated for more than 20 years up to 40 years. Some of these pioneering power reactors have already been brought into permanent shutdowns, followed by decommissioning activities or preparation of decommissioning projects. On the occasion of the recent start of the decommissioning work at the Tokai Power Station, an overview on progress status in shutdown graphite-moderated power plants in several countries is given. In this report are described strategic aspects and some specific dismantling and waste management methods to be notified in individual decommissioning projects, as in the following. A few UK Magnox power stations have been in preparation for 'Safestore Construction', which will be reserved for more than 100 years after shutdown. The UKAEA's WAGR has been long undertaken as one of the big EC's reactor decommissioning projects, with extensive R and D work carried out for immediate dismantling of the graphite-moderated reactor. The recent successful progresses have revealed safe and commercial-scale dismantling procedures and technologies, which may facilitate an early dismantling shutdown nuclear facilities. The French GCR plants have been in plant-by-plant preparation for safestore for 30-40 years. The Spanish Vandellos-1 and Italian Latina plants are also under decommissioning operations similarly as in UK and France. All experimental and prototype high temperature reactor plants in Germany and USA had already been under decommissioning processes, with various safestore conditions depending on the specific project circumstances. The German AVR is being prepared for step-by-step dismantling the reactor structure. The Beloyarsk NPP based on ex-Soviet Union graphite reactor concept is still in preparatory phase in

  12. Organic liquids as reactor coolants and moderators. Report of a panel

    International Nuclear Information System (INIS)

    Organic liquids have been used as reactor coolants and moderators in experimental and demonstration plants for over a decade and are now being considered for larger power reactor applications. The use of these compounds has been prompted by their very low corrosivity, their low vapour pressure, their only slight tendency to activation by irradiation and their relatively low cost. A number of countries have embarked upon organic reactor development programmes, and organic-cooled and/or - moderated reactors are attracting increasing attention in many countries, not only for power production but for the dual purpose of power production combined with saline water conversion. As part of its programme on nuclear power development the International Atomic Energy Agency convened a Panel on the Use of Organic Liquids as Reactor Coolants and Moderators at its Headquarters in Vienna on 9 - 13 May, 1966. The Panel was attended by 15 participants and observers from seven countries and one international organization. his publication includes status reports of the programmes of Canada, France, Hungary, India, Spain, the United States of America and EURATOM, and topical summaries, based on the individual technical papers, of the technical sessions. These five sessions dealt with: organic compounds and measurement of their physical properties; stability of organic compounds; heat transfer and fouling; reclamation and purification; and analysis and analytical techniques. Abstracts of the individual technical papers are also included

  13. Beryllium usage in fusion blankets and beryllium data needs

    International Nuclear Information System (INIS)

    Increasing numbers of designers are choosing beryllium for fusion reactor blankets because it, among all nonfissile materials, produces the highest number (2.5 neutron in an infinite media) of neutrons per 14-MeV incident neutron. In amounts of about 20 cm of equivalent solid density, it can be used to produce fissile material, to breed all the tritium consumed in ITER from outboard blankets only, and in designs to produce Co-60. The problem is that predictions of neutron multiplication in beryllium are off by some 10 to 20% and appear to be on the high side, which means that better multiplication measurements and numerical methods are needed. The n,2n reactions result in two helium atoms, which cause radiation damage in the form of hardening at low temperatures (300/degree/C). The usual way beryllium parts are made is by hot pressing the powder. A lower cost method is to cold press and then sinter. There is no radiation damage data on this form of beryllium. The issues of corrosion, safety relative to the release of the tritium built-up inside beryllium, and recycle of used beryllium are also discussed. 10 figs

  14. Control of Reactivity by the Use of Absorption Elements in Soluble Form in Power- Reactor Moderators

    International Nuclear Information System (INIS)

    The paper indicates the advantages of a uniform distribution of the absorption element in the core of a power reactor and briefly describes possible uses of soluble compounds of nuclear poisons for reactivity compensation purposes. The various qualities required of an element which is to serve as a soluble poison in the moderator call for a detailed examination of its physical and chemical properties. In the end only a very limited choice is left between boric acid, cadmium sulphate, lithium sulphate and gadolinium sulphate. The evolution of the concentration of nuclear poisons in a reactor moderator is quantitatively studied in order to find out the relative effectiveness of consumption by neutron reaction and chemical purification. The power of the reactor will affect the choice of poisoning procedure. A comparison is made with poisoning by the xenon effect. The paper describes tbe use of a purification circuit with ion-exchange resins to obtain a suitable anti-reactivity evolution programme for the nuclear poison in solution in the heavy water in a power reactor. The effect of the nuclear poison in solution in the heavy water on the velocity of its radiolysis are examined. The economic aspects of reactivity control by homogeneous poisoning of the moderator are discussed. (author)

  15. Broad spectrum moderators and advanced reflector filters using 208Pb

    DEFF Research Database (Denmark)

    Schönfeldt, Troels; Batkov, K.; Klinkby, Esben Bryndt;

    2015-01-01

    Cold and thermal neutrons used in neutrons scattering experiments are produced in nuclear reactors and spallation sources. The neutrons are cooled to thermal or cold temperatures in thermal and cold moderators, respectively. The present study shows that it is possible to exploit the poor...... thermalizing property of 208Pb to design a broad spectrum moderator, i.e. a moderator which emits thermal and cold neutrons from the same position. Using 208Pb as a reflector filter material is shown to be slightly less efficient than a conventional beryllium reflector filter. However, when surrounding the...... reflector filter by a cold moderator it is possible to regain the neutrons with wavelengths below the Bragg edge, which are suppressed in the beryllium reflector filter. In both the beryllium and lead case surrounding the reflector filter with a cold moderator increases the cold brightness significantly...

  16. Reactivity worths of two perpendicular control mechanisms in a large graphite-moderated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lan, J.S.; Toffer, H.; Carter, L.L.; Omberg, R.P.

    1989-01-01

    In a nuclear reactor, one of the more difficult tasks is evaluating control system worth where such systems are orthogonal to the fuel charges. Only complex, multidimensional analysis tools such as Monte Carlo techniques can provide answers for such complex reactor geometries. This paper discusses the successful application of the Monte Carlo neutron-proton (MCNP) code to control system worth evaluations for the N Reactor. The graphite-moderated, light-water-cooled Hanford site N reactor, operated by Westinghouse Hanford Company for the US Department of Energy, has a very complex geometric arrangement of horizontal pressure tubes, control rods, and ball backup safety system channels. The availability of the Hanford site version of the MCNP code enabled the set-up of numerical experiments for the N reactor lattice. Explicit representation of the entire N reactor core by Monte Carlo methods requires even larger and faster computers than are currently in use. This paper presents newly developed meter-cube model or hypercell model for MCNP analyses. The degree of representation that this model renders for the whole reactor core and the extent of the capability that this model could simulate under a variety of operational conditions are the subject of the discussion here. The reactivity worths of the two perpendicular control systems (control rods and safety ball channels) are specifically considered, neither of which has been explicitly calculated before with one code.

  17. The Design of Control-Rod Drives for Large Graphite-Moderated Reactors

    International Nuclear Information System (INIS)

    Because graphite-moderated tube-type power or desalinisation reactors are more economical in the larger ratings, control-rod drives may require strokes in the 20 to 60 ft range. Speed-of-insertion requirements may vary by a factor of 300 to 1 between the low-speed normal control requirements and the high-speed emergency shutdown requirements. Internal rod cooling is often required in addition to the prevention of reactor atmosphere leakage where the control rod penetrates the .reactor envelope. These requirements in addition to those of rod deceleration, shielding, space limitations, stored or emergency energy sources, maintenance provisions and overall drive-system cost increase the design problems associated with control rods for this type of reactor. Several unique control and/or shutdown rod drives have been designed for horizontal and vertical operation in large graphite-moderated power and study reactors. These designs include (1) air-operated shutdown rods with high insertion speeds, (2) hydraulic motor-driven, chain-type shutdown control rods with short storage sections and a compact drive; and (3) hydraulic cylinder-operated, force-multiplication shutdown control rods. Each of these drives compromises the requirements listed above to some extent; however, operable drives have been designed and tested. (author)

  18. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  19. Recommended design correlations for S-65 beryllium

    International Nuclear Information System (INIS)

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined form the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing(HIP). The performance of plasma-sprayed beryllium is discussed but not quantified

  20. Computer code for the analyses of reactivity initiated accident of heavy water moderated and cooled research reactor 'EUREKA-2D'

    International Nuclear Information System (INIS)

    Codes, such as EUREKA and EUREKA-2 have been developed to analyze the reactivity initiated accident for light water reactor. These codes could not be applied directly for the analyses of heavy water moderated and cooled research reactor which are different from light water reactor not only on operation condition but also on reactor kinetic constants. EUREKA-2D which is modified EUREKA-2 is a code for the analyses of reactivity initiated accident of heavy water research reactors. Following items are modified: 1) reactor kinetic constants. 2) thermodynamic properties of coolant. 3) heat transfer equations. The feature of EUREKA-2D and an example of analysis are described in this report. (author)

  1. Standard Guide for In-Service Annealing of Light-Water Moderated Nuclear Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers the general procedures to be considered for conducting an in-service thermal anneal of a light-water moderated nuclear reactor vessel and demonstrating the effectiveness of the procedure. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. The improvement in mechanical properties generally is assessed using Charpy V-notch impact test results, or alternatively, fracture toughness test results or inferred toughness property changes from tensile, hardness, indentation, or other miniature specimen testing (1). 1.2 This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods. Certain inherent limiting factors must be considered in developing an annealing procedure. These factors include system-design limitations; physical constrain...

  2. Model Development and Simulation of Nitrification in SHARON Reactor in Moderate Temperature by Simulink

    Directory of Open Access Journals (Sweden)

    Dr. Adnan Abbas Al-Samawi

    2015-11-01

    Full Text Available In order to reduce the nitrogen compounds in WWTP effluent according to legislations, nitrogen of reject water is removed in separate unit by applying innovative cost effective process named SHARON (Single reactor High activity Ammonium Removal Over Nitrite process which is feasible to apply in moderate weather and more cost effective process due to elimination the heat exchanger required to keep the reject water of high temperature. In addition to the save in oxygen requirement to oxide ammonium by preventing nitrite oxidation and the saving in external COD addition for denitrification. Also, there is no need for large reactor volume because HRT equal to SRT. Significant mathematical model of nitrification process in SHARON reactor was developed based on substances and organisms mass balance as well as organisms kinetics. A relatively favorable consistency was obtained between the experimental and the predicted results of model. A high correlation of (R2=0.946 between model predictions and experimental data sets.

  3. Status of material development for lifetime expansion of beryllium reflector

    International Nuclear Information System (INIS)

    Beryllium has been used as the reflector element material in the reactor, specifically S-200F structural grade beryllium manufactured by Materion Brush Beryllium and Composites (former, Brush Wellman Inc.). As a part of the reactor upgrade, the Japan Atomic Energy Agency (JAEA) also has carried out the cooperation experiments to extend the operating lifetime of the beryllium reflector elements. It will first be necessary to determine which of the material's physical, mechanical and chemical properties will be the most influential on that choice. The irradiation testing plans to evaluate the various beryllium grades are also briefly considered and prepared. In this paper, material selection, irradiation test plan and PEI development for lifetime expansion of beryllium are described for material testing reactors. (author)

  4. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    International Nuclear Information System (INIS)

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated

  5. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-06-15

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.

  6. Beryllium processing technology review for applications in plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  7. Blanket concept of water-cooled lithium lead with beryllium for the SlimCS fusion DEMO reactor

    International Nuclear Information System (INIS)

    As an advanced option for SlimCS blanket, conceptual design study of water-cooled lithium lead (WCLL) blanket was performed. In SlimCS, the net tritium breeding ratio (TBR) supplied from WCLL blanket was not enough because the thickness of blanket in SlimCS was limited to about 0.5 m so as to allocate the conducting shell position near the plasma for high beta access and vertical stability of plasma. Therefore, the beryllium (Be) pebble bed was adopted as additional multiplier to reach a required TBR (≥ 1.05). Considering the operating temperature of blanket materials, a double pipe structure was adopted. The nuclear and thermal analysis were carried out by a nuclear-thermal-coupled code, ANIHEAT and DOHEAT so that blanket materials were appropriately arranged to satisfy the acceptable operation temperatures. The temperatures of materials were kept in appropriate range for the neutron wall load Pn = 5 MW/m2. It was found that the local TBR of WCLL with Be blanket was comparable with that of solid breeder blanket. (author)

  8. Educational laboratory based on a multifunctional analyzer of a reactor of a nuclear power plant with a water-moderated water-cooled reactor

    International Nuclear Information System (INIS)

    Authors presents an educational laboratory Safety and Control of a Nuclear Power Facility established by the Department of Automation for students and specialists of the nuclear power industry in the field of control, protection, and safe exploitation of reactor facilities at operating, constructing, and designing nuclear power plants with water-moderated water-cooled reactors

  9. Carbon-14 in neutron-irradiated graphite for graphite-moderated reactors. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuo, Hideto [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan)

    2002-12-01

    The graphite moderated gas cooled reactor operated by the Japan Atomic Power Company was stopped its commercial operation on March 1998, and the decommissioning process has been started. Graphite material is often used as the moderator and the reflector materials in the core of the gas cooled reactor. During the operation, a long life nuclide of {sup 14}C is generated in the graphite by several transmutation reactions. Separation of {sup 14}C isotope and the development of the separation method have been recognized to be critical issues for the decommissioning of the reactor core. To understand the current methodologies for the carbon isotope separation, literature on the subject was surveyed. Also, those on the physical and chemical behavior of {sup 14}C were surveyed. This is because the larger part of the nuclides in the graphite is produced from {sup 14}N by (n,p) reaction, and the location of them in the material tends to be different from those of the other carbon atoms. This report summarizes the result of survey on the open literature about the behavior of {sup 14}C and the separation methods, including the list of the literature on these subjects. (author)

  10. Overview of strength, crack propagation and fracture of nuclear reactor moderator graphite

    Energy Technology Data Exchange (ETDEWEB)

    Moskovic, R., E-mail: robert.moskovic@magnoxsites.com [Magnox Limited, Oldbury Technical Centre, Oldbury Naite, South Gloucestershire BS35 1RQ (United Kingdom); Heard, P.J. [Interface Analysis Centre, University of Bristol, Bristol BS2 8BS (United Kingdom); Flewitt, P.E.J. [Magnox Limited, Oldbury Technical Centre, Oldbury Naite, South Gloucestershire BS35 1RQ (United Kingdom); Interface Analysis Centre, University of Bristol, Bristol BS2 8BS (United Kingdom); H.H. Wills Laboratory, Department of Physics, University of Bristol, Bristol BS8 1TL (United Kingdom); Wootton, M.R. [Magnox Limited, Oldbury Technical Centre, Oldbury Naite, South Gloucestershire BS35 1RQ (United Kingdom)

    2013-10-15

    Highlights: • Fracture behaviour. • Cracking initiation and growth. • Different loadings configurations. • Fracture mechanisms. -- Abstract: Nuclear reactor moderator graphite is an aggregate of needle coke filler particles within a matrix of fine coke flour particles mixed with pitch binder. Following extrusion in green condition, impregnation with liquid pitch binder and graphitisation, a polygranular aggregate with orthotropic properties is produced. Its mechanical properties under several different loading conditions and associated cracking behaviour were examined to establish crack initiation and propagation behaviour. Both virgin and radiolytically oxidised material were examined using optical and electron optical microscopy, focused ion beam microscope and digital image correlation. The appearance of force vs. displacement curves varied with type of loading. Mostly linear elastic traces occurred in uniaxial tensile and flexural tests. Large departures from linear elastic behaviour were observed in standard uniaxial and diametral compression testing. Digital image correlation has shown that the initiation of cracking involves formation of a process zone which grows to a critical size of approximately 3–5 mm before a macro-crack is initiated. Cracks straddle a torturous path which zigzags between the filler particles through the matrix consistent with crack propagation along the filler matrix interface. This paper provides an overview of strength, crack propagation and fracture of nuclear reactor moderator graphite. It reviews the physical processes and mathematical approaches that have been adopted to describe the behaviour of brittle materials and then considers if they apply to reactor core graphites.

  11. Lead containing mainly isotope 208Pb. New neutron moderator, coolant and reflector for innovative nuclear reactors

    International Nuclear Information System (INIS)

    As a rule materials of small atomic weight (light and heavy water, graphite and so on) are used as neutron moderators and reflectors. A new very heavy atomic weight moderator is proposed - radiogenic lead consisting mainly of isotope 208Pb. It is characterized by extremely low neutron radioactive capture cross-section (0.23 mbarn for thermal neutrons, i.e. less than that for graphite and deuterium) and highest albedo of thermal neutrons. It is evaluated that use of the radiogenic lead enables a slowing of the chain reaction of prompt neutrons in a fast reactor. This can increase safety of the fast reactor as well reduce requirements pertaining to the technology of its fuel fabrication. Radiogenic lead with high 208Pb content as a liquid metal coolant of fast reactors helps to achieve a favorable (negative) coolant temperature reactivity coefficient. It is noteworthy that radiogenic lead with a large 208Pb content may be extracted from thorium (as well thorium-uranium) ores without isotope separation. This has been confirmed experimentally by an investigation performed at San Paula University, Brazil. (author)

  12. Status of research and development on reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    To improve uranium utilization, a design study of the Reduced-Moderation Water Reactor (RMWR) has been carried out intensively since 1998 at the Japan Atomic Energy Research Institute (JAERI). In this reactor, the nuclear fission reaction is designed to be realized mainly by high energy neutrons. To achieve this, the volume of water used to cool the fuel rods is decreased by reducing the gap width between the fuel rods. Conversion ratio greater than 1.0 is expected whether the core i-s cooled by boiling water or pressurized water and whether the core size is small or large. Status of the RMWR design is reviewed and planning of R and D for future deployment of this reactor after 20-20 is presented. To improve economics of this reactor, development of fuel cans for high burnup and low-cost reprocessing technology of mixed oxide spect fuels are highly needed. R and D has been conducted under the cooperation with utilities, industry, research organization and academia. (T. Tanaka)

  13. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW{sub th} and an electricity generation mode of 100 kW{sub th}, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  14. Safety handling of beryllium for fusion technology R and D

    International Nuclear Information System (INIS)

    Feasibility of beryllium use as a blanket neutron multiplier, first wall and plasma facing material has been studied for the D-T burning experiment reactors such as ITER. Various experimental work of beryllium and its compounds will be performed under the conditions of high temperature and high energy particle exposure simulating fusion reactor conditions. Beryllium is known as a hazardous substance and its handling has been carefully controlled by various health and safe guidances and/or regulations in many countries. Japanese regulations for hazardous substance provide various guidelines on beryllium for the protection of industrial workers and environment. This report was prepared for the safe handling of beryllium in a laboratory scale experiments for fusion technology R and D such as blanket development. Major items in this report are; (1) Brief review of guidances and regulations in USA, UK and Japan. (2) Safe handling and administration manuals at beryllium facilities in INEL, LANL and JET. (3) Conceptual design study of beryllium handling facility for small to mid-scale blanket R and D. (4) Data on beryllium toxicity, example of clinical diagnosis of beryllium disease, and environmental occurence of beryllium. (5) Personnel protection tools of Japanese Industrial Standard for hazardous substance. (author) 61 refs

  15. Study on Doppler coefficient for metallic fuel fast reactor added hydrogeneous moderator

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Naohiro; Iwasaki, Tomohiko; Tsujimoto, Kazuhumi [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Osugi, Toshitaka; Okajima, Shigeaki; Andoh, Masaki; Nemoto, Tatsuo; Mukaiyama, Takehiko

    1998-01-01

    A series of mock-up experiments for moderator added metallic fast reactor core was carried out at FCA to obtain the experimental verification for improvement of reactivity coefficients. Softened neutron spectrum increases Doppler effect by a factor of 2, and flatter adjoint neutron spectrum decreases Na void effect by a factor of 0.6 when hydrogen to heavy metal atomic number ratio is increased from 0.02 to 0.13. The experimental results are analyzed with SLALOM and CITATION-FBR, which is the standard design code system for a fast reactor at JAERI, and SRAC95 and CITATION-FBR. The present code system gives generally good agreement with the experimental results, especially by the use of the latter, the dependence of the Doppler effect to the hydrogen to fuel element atomic number density ratio is disappeared. Therefore, it looks possible to use the present code system for the conceptual design of a fast reactor system with hydrogeneous materials. (author)

  16. Conceptual design of a passive moderator cooling system for a pressure tube type natural circulation boiling water cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Pal, Eshita, E-mail: eshi.pal@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Nayak, Arun K.; Vijayan, Pallipattu K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-09-15

    Highlights: • Passive moderator cooling system is designed to cool moderator passively during SBO. • PMCS is a system of two natural circulation loops, coupled via a heat exchanger. • RELAP5 analyses show that PMCS maintains moderator within safe limits for 7 days. - Abstract: The recent Fukushima accident has raised strong concern and apprehensions about the safety of reactors in case of a prolonged Station Black Out (SBO) continuing for several days. In view of this, a detailed study was performed simulating this condition in Advanced Heavy Water Reactor. In this study, a novel concept of moderator cooling by passive means has been introduced in the reactor design. The Passive Moderator Cooling System (PMCS) consists of a shell and tube heat exchanger designed to remove 2 MW heat from the moderator inside Calandria. The heat exchanger is located at a suitable elevation from the Calandria of the reactor, such that the hot moderator rises due to buoyancy into the heat exchanger and upon cooling from shell side water returns to Calandria forming a natural circulation loop. The shell side of the heat exchanger is also a natural circulation loop connected to an overhead large water reservoir, namely the GDWP. The objective of the PMCS is to remove the heat from the moderator in case of an SBO and maintaining its temperature below the permissible safe limit (100 °C) for at least 7 days. The paper first describes the concept of the PMCS. The concept has been assessed considering a prolonged SBO for at least 7 days, through an integrated analysis performed using the code RELAP5/MOD3.2 considering all the major components of the reactor. The analysis shows that the PMCS is able to maintain the moderator temperature below boiling conditions for 7 days.

  17. Beryllium facilities in India

    International Nuclear Information System (INIS)

    Due to its unique combination of physical, mechanical, thermal and nuclear properties, beryllium is indispensable for many applications in the fields of nuclear and space sciences. Beryllia and copper beryllium alloys have also found extensive applications in the electrical and electronic industries. Beryllium facilities at Bhabha Atomic Research Centre (BARC) have been set up to meet indigenous requirements for these materials. Besides developing beryllium technology, the project team has also designed and developed a number of special purpose equipment. (Author)

  18. Thermal-hydraulic analysis of a heavy-water reactor moderator tank using the CUPID Code

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Su Ryong; Jeong, Jae Jun [Pusan National Univ., Busan (Korea, Republic of); Kim, Hyoung Tae; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, a preliminary analysis is performed for the CANDU moderator tank. The calculation results using the basic case input showed a unrealistic, thermal stratification in the upper region, which was caused by the lack of the momentum of the cooling water from the inlet nozzle. To increase the flow momentum from the inlet nozzle, the cross-section area of each inlet nozzle was reduced by half and, then, the calculation showed very realistic results. It is clear that the modeling of the inlet nozzle affects the calculation result significantly. Further studies are needed for a realistic and efficient simulation of the flow in the Calandria tank. When the core cooling system fails to remove the decay heat from the fuel channels during a loss of coolant accident (LOCA), the pressure tube (PT) could strain to contact its surrounding Calandria tube (CT), which leads to sustained CTs dry out, finally resulting in damages to nuclear fuel. This situation can occur when the degree of the subcooling of the moderator inside the Calandria vessel is insufficient. In this regard, to estimate the local subcooling of the moderator inside the Calandria vessel is very important. However, the local temperature is measured at the inlet and outlet of the vessel only. Therefore, we need to accurately predict the local temperature inside the Calandria vessel.In this study, the thermal-hydraulic analysis of the real-scale heavy-water reactor moderator is carried out using the CUPID code. The applicability of the CUPID code to the analysis of the flow in the Calandria vessel has been assessed in the previous studies.

  19. The beryllium production at Ulba metallurgical plant (Ust-Kamenogrsk, Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Tuzov, Y.V. [Ulba Metallurgical Plant (Zavod), Ust-Kamenogorsk, Abay prospect 102 (Kazakhstan)

    1998-01-01

    The Report includes data on beryllium production of Ulba metallurgical plant, located in Ust-Kamenogorsk (Kazakhstan). Beryllium production is showed to have extended technological opportunities in manufacturing semi-products (beryllium ingots, master alloys, metallic beryllium powders, beryllium oxide) and in production of structural beryllium and its parts. Ulba metallurgical plant owns a unique technology of beryllium vacuum distillation, which allows to produce reactor grades of beryllium with a low content of metallic impurities. At present Ulba plant does not depend on raw materials suppliers. The quantity of stored raw materials and semi-products will allow to provide a 25-years work of beryllium production at a full capacity. The plant has a satisfactory experience in solving ecological problems, which could be useful in ITER program. (author)

  20. Recommended design correlations for S-65 beryllium

    International Nuclear Information System (INIS)

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The irradiation-independent properties described within are: thermal conductivity, specific heat capacity, thermal expansion, and elastic constants. Irradiation-dependent properties include: yield strength, ultimate tensile strength, plastic tangent modulus, uniform and total tensile elongation, thermal and irradiation-induced creep strength, He-induced swelling and tritium retention/release. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium -- the material chosen for ITER PFC application -- as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined from the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing (HIP). The performance of plasma-sprayed beryllium is discussed but not quantified

  1. Recommended design correlations for S-65 beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States)

    1995-09-01

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The irradiation-independent properties described within are: thermal conductivity, specific heat capacity, thermal expansion, and elastic constants. Irradiation-dependent properties include: yield strength, ultimate tensile strength, plastic tangent modulus, uniform and total tensile elongation, thermal and irradiation-induced creep strength, He-induced swelling and tritium retention/release. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium -- the material chosen for ITER PFC application -- as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined from the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing (HIP). The performance of plasma-sprayed beryllium is discussed but not quantified.

  2. Stability of a Steam Cooled Fast Power Reactor, its Transients Due to Moderate Perturbations and Accidents

    International Nuclear Information System (INIS)

    The dynamic behaviour of a steam cooled fast power reactor is investigated with respect to stability, transients due to moderate perturbations at the operating point, and accidents. The studies were performed for a direct cycle, integral plant design for different system pressures, component arrangements and component designs. The stability domain of such a plant is found to be mainly determined by pressure, fuel temperature and coolant density coefficients of reactivity. Other design parameters are of minor influence on stability. The plant is load-following and displays acceptable performance if the reactivity coefficients are not too close to their limiting values. If they are, effective controllers can be designed which ensure good plant operation. The consequences of accidents may be limited by proper design and adequate counteraction

  3. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  4. Mechanisms of hydrogen retention in metallic beryllium and beryllium oxide and properties of ion-induced beryllium nitride; Rueckhaltemechanismen fuer Wasserstoff in metallischem Beryllium und Berylliumoxid sowie Eigenschaften von ioneninduziertem Berylliumnitrid

    Energy Technology Data Exchange (ETDEWEB)

    Oberkofler, Martin

    2011-09-22

    In the framework of this thesis laboratory experiments on atomically clean beryllium surfaces were performed. They aim at a basic understanding of the mechanisms occurring upon interaction of a fusion plasma with a beryllium first wall. The retention and the temperature dependent release of implanted deuterium ions are investigated. An atomistic description is developed through simulations and through the comparison with calculations based on density functional theory. The results of these investigations are compared to the behaviour of hydrogen upon implantation into thermally grown beryllium oxide layers. Furthermore, beryllium nitride is produced by implantation of nitrogen into metallic beryllium and its properties are investigated. The results are interpreted with regard to the use of beryllium in a fusion reactor. (orig.)

  5. Natural uranium fueled light water moderated breeding hybrid power reactors: a feasibility study

    International Nuclear Information System (INIS)

    The first part of the study consists of a thorough investigation of the properties of subcritical thermal lattices for hybrid reactor applications. Light water is found to be the best moderator for (fuel-self-sufficient) FSS hybrid reactors for power generation. Several lattice geometries and compositions of particular promise for LWHRs are identified. Using one of these lattices, fueled with natural uranium, the performance of several concepts of LWHR blankets is investigated, and optimal blanket designs are identified. The effect of blanket coverage efficiency and the feasibility of separating the functions of tritium breeding and of power generation to different blankets are investigated. Optimal iron-water shields for LWHRs are also determined. The performance of generic types of LWHRs is evaluated. The evolution of the blanket properties with burnup is evaluated and fuel management schemes are briefly examined. The feasibility of using the lithium system of the blanket to control the blanket power amplitude and shape is also investigated. A parametric study of the energy balance of LWHR power plants is carried out, and performance parameters expected from LWHRs are estimated. Discussions are given of special features of LWHRs and their fuel cycle

  6. The application of research reactor Maria for analysis of thorium use in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S.; Andrzejewski, K.; Myslek-Laurikainen, B.; Pytel, B.; Szczurek, J. [Dep. Thorium Project, Institute of Atomic Energy POLATOM, 05-400 Otwock-Swierk (Poland); Polkowska-Motrenko, H. [Institute of Nuclear Chemistry and Technology, ul.Dorodna 16 03-195 Warszawa (Poland)

    2010-07-01

    The MARIA reactor, pool-type light-water cooled and beryllium moderated nuclear research reactor was used to evaluate the {sup 233}U breeding during the experimental irradiation of the thorium samples. The level of impurities concentrations was determined using ICP-MS method. The associated development of computer programs for analysis of application of thorium in EPR reactor consist of PC version of CORD-2/GNOMER system are presented. (authors)

  7. Beryllium chemistry and processing

    CERN Document Server

    Walsh, Kenneth A

    2009-01-01

    This book introduces beryllium; its history, its chemical, mechanical, and physical properties including nuclear properties. The 29 chapters include the mineralogy of beryllium and the preferred global sources of ore bodies. The identification and specifics of the industrial metallurgical processes used to form oxide from the ore and then metal from the oxide are thoroughly described. The special features of beryllium chemistry are introduced, including analytical chemical practices. Beryllium compounds of industrial interest are identified and discussed. Alloying, casting, powder processing, forming, metal removal, joining and other manufacturing processes are covered. The effect of composition and process on the mechanical and physical properties of beryllium alloys assists the reader in material selection. The physical metallurgy chapter brings conformity between chemical and physical metallurgical processing of beryllium, metal, alloys, and compounds. The environmental degradation of beryllium and its all...

  8. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [SCK CEN (Belgium); Kalcheva, S. [SCK CEN (Belgium); Sikik, E. [SCK CEN (Belgium); Koonen, E. [SCK CEN (Belgium)

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.

  9. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  10. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E. [and others

    1995-09-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H{sub 2} gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m{sup 2}.

  11. A flashing driven moderator cooling system for CANDU reactors: Experimental and computational results

    International Nuclear Information System (INIS)

    A flashing-driven passive moderator cooling system is being developed at AECL for CANDU reactors. Preliminary simulations and experiments showed that the concept was feasible at normal operating power. However, flow instabilities were observed at low powers under conditions of variable and constant calandria inlet temperatures. This finding contradicted code predictions that suggested the loop should be stable at all powers if the calandria inlet temperature was constant. This paper discusses a series of separate-effects tests that were used to identify the sources of low-power instabilities in the experiments, and it explores methods to avoid them. It concludes that low-power instabilities can be avoided, thereby eliminating the discrepancy between the experimental and code results. Two factors were found to be important for loop stability: (1) oscillations in the calandria outlet temperature, and (2) flashing superheat requirements, and the presence of nucleation sites. By addressing these factors, we could make the loop operate in a stable manner over the whole power range and we could obtain good agreement between the experimental and code results. (author)

  12. Postirradiation examination of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Postirradiation examinations of COBRA-1A beryllium pebbles irradiated in the EBR-II fast reactor at neutron fluences which generated 2700--3700 appm helium have been performed. Measurements included density change, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The major change in microstructure is development of unusually shaped helium bubbles forming as highly non-equiaxed thin platelet-like cavities on the basal plane. Measurement of the swelling due to cavity formation was in good agreement with density change measurements.

  13. Beryllium Desorption from Sediments

    Science.gov (United States)

    Boschi, V.; Willenbring, J. K.

    2015-12-01

    Beryllium isotopes have provided a useful tool in the field of geochronology and geomorphology over the last 25 years. The amount of cosmogenic meteoric 10Be and native 9Be absorbed to soils often scales with the residence time and chemical weathering of sediments in a landscape, respectively. Thus, the concentrations in river sediment may be used to quantify the denudation of specific watersheds. When deposited in ocean sediment, these concentrations are thought to record the history of denudation on Earth over the last ~10 Ma. The use of both isotopes often relies on the premise of beryllium retention to sediment surfaces in order to preserve a landscape's erosion and weathering signature. Changes in setting, en route from the soil to fluvial system to the ocean, can cause beryllium desorption and may preclude some applications of the 10Be/9Be system. Four mechanisms were tested to determine the desorption potential of beryllium including a reduction in pH, an increase in ionic strength and complexation with soluble organic and inorganic species. These processes have the potential to mobilize beryllium into solution. For example, by both reducing the pH and increasing the ionic strength, competition for adsorption sites increases, potentially liberating beryllium from the sediment surface. In addition, organic and inorganic ligands can complex beryllium causing it to become mobilized. To determine which of these alterations influence beryllium desorption and to quantify the effect, we prepared separate solutions of beryllium bound to minerals and organic compounds and measured beryllium concentrations in solution before and after adjusting the pH, ionic strength, and changing inorganic and organic ligand concentrations. We conclude from our observations that overall, beryllium sorbed to organic compounds was more resistant to desorption relative to mineral-associated beryllium. Among the methods tested, a reduction in pH resulted in the greatest amount of

  14. CFD Application and OpenFOAM on the 2-D Model for the Moderator System of Heavy-Water Reactors

    International Nuclear Information System (INIS)

    The flow in the complex pipeline system in a calandria tank of CANDU reactor is transported through the distribution of heat sources, which also exerts the pressure drop to the coolant flow. So the phenomena should be considered as multi-physics both in the viewpoints of heat transfer and fluid dynamics. In this study, we have modeled the calandria tank system as two-dimensional simplified one preliminarily that is yet far from the real objects, but to see the essential physics and to test the possibility of the present CFD(computational fluid dynamics) methods for the thermo-hydraulic problem in the moderator system of heavy-water reactors

  15. Study on void fraction distribution in the moderator cell of Cold Neutron Source systems in China Advanced Research Reactor

    Science.gov (United States)

    Li, Liangxing; Li, Huixiong; Hu, Jinfeng; Bi, Qincheng; Chen, Tingkuan

    2007-04-01

    A physical model is developed for analyzing and evaluating the void fraction profiles in the moderator cell of the Cold Neutron Source (CNS) of the China Advanced Research Reactor (CARR), which is now constructing in the China Institute of Atomic Energy (CIAE). The results derived from the model are compared with the related experimental data and its propriety is verified. The model is then used to explore the influence of various factors, including the diameter of boiling vapor bubbles, liquid density, liquid viscosity and the total heating power acted on the moderator cell, on the void fraction profiles in the cell. The results calculated with the present model indicate that the void fraction in the moderator cell increases linearly with heating power, and increases with the liquid viscosity, but decreases as the size of bubbles increases, and increases linearly with heating power. For the case where hydrogen is being used as a moderator, calculation results show that the void fraction in the moderator cell may be less than 30%, which is the maximum void fraction permitted from the nuclear physics point of view. The model and the calculation results will help to obtain insight of the mechanism that controls the void fraction distribution in the moderator cell, and provide theoretical supports for the moderator cell design.

  16. Mechanical performance of irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Dalle-Donne, M.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    For the Helium Cooled Pebble Bed (HCPB) Blanket, which is one of the two reference concepts studied within the European Fusion Technology Programme, the neutron multiplier consists of a mixed bed of about 2 and 0.1-0.2 mm diameter beryllium pebbles. Beryllium has no structural function in the blanket, however microstructural and mechanical properties are important, as they might influence the material behavior under neutron irradiation. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating it. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from these irradiation experiments, emphasizing the effects of irradiation of essential material properties and trying to elucidate the processes controlling the property changes. The microstructure, the porosity distribution, the impurity content, the behavior under compression loads and the compatibility of the beryllium pebbles with lithium orthosilicate (Li{sub 4}SiO{sub 4}) during the in-pile irradiation are presented and critically discussed. Qualitative information on ductility and creep obtained by hardness-type measurements are also supplied. (author)

  17. Experiments on studying beryllium - steam interaction, determination of oxidated beryllium emissivity factor

    International Nuclear Information System (INIS)

    The report presents results of beryllium emissivity factor measurements within 700-1300 K temperature range. The tests were conducted at Institute of Atomic Energy of the National Nuclear Center of the Republic of Kazakhstan to receive experimental data for verification of calculation programs describing an accident involving water coolant discharge into ITER reactor vacuum cavity. (author)

  18. New facility for post irradiation examination of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo; Kawamura, Hiroshi [Oarai Research Establishment, Ibaraki-Ken (Japan)

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  19. Beryllium Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  20. Cryostat system for investigation on new neutron moderator materials at reactor TRIGA PUSPATI

    Energy Technology Data Exchange (ETDEWEB)

    Dris, Zakaria bin, E-mail: zakariadris@gmail.com [College of Graduate Studies, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Centre for Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Mohamed, Abdul Aziz bin; Hamid, Nasri A. [Centre for Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Azman, Azraf; Ahmad, Megat Harun Al Rashid Megat; Jamro, Rafhayudi; Yazid, Hafizal [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    A simple continuous flow (SCF) cryostat was designed to investigate the neutron moderation of alumina in high temperature co-ceramic (HTCC) and polymeric materials such as Teflon under TRIGA neutron environment using a reflected neutron beam from a monochromator. Cooling of the cryostat will be carried out using liquid nitrogen. The cryostat will be built with an aluminum holder for moderator within stainless steel cylinder pipe. A copper thermocouple will be used as the temperature sensor to monitor the moderator temperature inside the cryostat holder. Initial measurements of neutron spectrum after neutron passing through the moderating materials have been carried out using a neutron spectrometer.

  1. Cryostat system for investigation on new neutron moderator materials at reactor TRIGA PUSPATI

    Science.gov (United States)

    Dris, Zakaria bin; Mohamed, Abdul Aziz bin; Hamid, Nasri A.; Azman, Azraf; Ahmad, Megat Harun Al Rashid Megat; Jamro, Rafhayudi; Yazid, Hafizal

    2016-01-01

    A simple continuous flow (SCF) cryostat was designed to investigate the neutron moderation of alumina in high temperature co-ceramic (HTCC) and polymeric materials such as Teflon under TRIGA neutron environment using a reflected neutron beam from a monochromator. Cooling of the cryostat will be carried out using liquid nitrogen. The cryostat will be built with an aluminum holder for moderator within stainless steel cylinder pipe. A copper thermocouple will be used as the temperature sensor to monitor the moderator temperature inside the cryostat holder. Initial measurements of neutron spectrum after neutron passing through the moderating materials have been carried out using a neutron spectrometer.

  2. Proceedings of the 8th specialist meeting on recycling of irradiated Beryllium

    International Nuclear Information System (INIS)

    This report summarizes the documents presented in the 8th Specialist Meeting on Recycling of Irradiated Beryllium, which was held on October 28, 2013, in Bariloche, Río Negro, Argentina, hosted by INVAP and CNEA (Comision Nacional de Energia Atomica). The objective of the meeting is to exchange the information of current status and future plan for beryllium study in the Research/Testing reactors, and to make a discussion of “How to cooperate”. There were 20 participants from USA, Japan, Korea, Austria and Argentina. In this meeting, information exchange of current status and future plan for beryllium study was carried out for the Research/Testing reactor fields, and evaluation results of beryllium materials were discussed based on new irradiated beryllium data such as swelling, deformation, gas release and so on. The subject of the used beryllium recycling was also discussed for the enforcement of demonstration recycling tests. (author)

  3. Beryllium development programme in India

    International Nuclear Information System (INIS)

    India has fairly large deposits of beryl. The requirement of beryllium and copper-beryllium alloys in space and electronic industries has provided the incentive for the setting up of an indigenous base for the development of beryllium process metallurgy. The paper presents the developmental work carried out, in the Metallurgy Division of the Bhabha Atomic Research Centre, on the preparation of beryllium metal and its alloys starting from Indian beryl. A laboratory facility incorporating essential precautionary measures has been set up for the safe handling of beryllium and its compounds. Based on the laboratory investigations a flow-sheet suitable to Indian conditions has been developed. The flow-sheet involves preparation of anhydrous beryllium fluoride from beryl through the silico-fluoride route, magnesiothermic reduction of beryllium fluoride for the production of beryllium metal or its master alloy with copper or aluminium, and fabrication of beryllium metal. (author)

  4. Advances of study on thermal-hydraulic performance in tight-lattice rod bundles for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    R and D project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Reduced-Moderation Water Reactor (RMWR) is started at Japan Atomic Energy Research Institute in collaboration with power company, reactor vendors, universities since 2002. The RMWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured LWR technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important R and D items for the RMWR because of the tight-lattice configuration. In this paper, we will show the R and D plan and describe some advances on experimental and analytical studies. The experimental study is performed mainly using large-scale (37-rod bundle) test facility and the analytical one aims to develop a predictable technology for geometry effects such as gap between rods, grid spacer configuration etc. using advanced 3-D two-phase flow simulation methods. Steady-state and transient critical power experiments are conducted with the test facility (Gap width between rods: 1.0 mm) and the experimental data reveal the feasibility of RMWR. (authors)

  5. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor

    International Nuclear Information System (INIS)

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  6. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, Benjamin A.; Parks, Geoffrey T. [University of Cambridge, Cambridge (United Kingdom); Franceschini, Fausto [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  7. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    SCK-CEN's programme on fusion reactor materials includes studies (1) to investigate fracture mechanics of neutron-irradiated beryllium; (2) to describe the helium behaviour in irradiated beryllium at atomic scale; (3) to define the kinetics of beryllium reacting with air or steam; (3) to perform a feasibility study for the testing of integrated blanket modules under neutron irradiation. Progress and achievements in 1997 are reported

  8. Neutron Moderation in the Oklo Natural Reactor and the Time Variation of alpha

    CERN Document Server

    Lamoreaux, S K

    2003-01-01

    In the analysis of the Oklo (gabon) natural reactor to test for a possible time variation of the fine structure constant alpha, a Maxwell-Boltzmann low energy neutron spectrum was assumed. We present here an analysis where a more realistic spectrum is employed and show that the most recent isotopic analysis of samples implies a non-zero change in alpha, over the last two billion years since the reactor was operating, of \\Delta\\alpha/\\alpha\\geq 2.2\\times 10^{-7} (6\\sigma confidence). Issues regarding the interpretation of the shifts of the low energy neutron resonances are discussed.

  9. Neutron moderation in the Oklo natural reactor and the time variation of α

    Science.gov (United States)

    Lamoreaux, S. K.; Torgerson, J. R.

    2004-06-01

    In previous analyses of the Oklo (Gabon) natural reactor to test for a possible time variation of the fine-structure constant α, a Maxwell-Boltzmann low energy neutron spectrum was assumed. We present here an analysis where a more realistic spectrum is employed and show that the most recent isotopic analysis of samples implies a decrease in α, over the last 2×109 years since the reactor was operating, of (αpast-αnow)/α⩾4.5×10-8 (6σ confidence). Issues regarding the interpretation of the shifts of the low energy neutron absorption resonances are discussed.

  10. Tests of Neutron Spectrum Calculations with the Help of Foil Measurements in a D2O and in an H2O-Moderated Reactor and in Reactor Shields of Concrete an Iron

    International Nuclear Information System (INIS)

    Foil measurements covering the fast, epithermal and thermal neutron energy regions have been made in the centre of the Swedish D2O-moderated reactor R1, in the pool reactor R2-0, and in different positions in reactor shields of iron, magnetite concrete and ordinary concrete. Neutron spectra have also been calculated for most of these positions, often with the help of a numerical integration of the Boltzmann equation. The measurements and the calculated spectra are presented

  11. Low-temperature low-dose neutron irradiation effects on Brush Wellman S65-C and Kawechi Berylco P0 beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    The mechanical property results for two high quality beryllium materials subjected to low temperature, low dose neutron irradiation in water moderated reactors are presented. Materials chosen were the S65-C ITER candidate material produced by Brush Wellman, and Kawecki Berylco Industries P0 beryllium. Both materials were processed by vacuum hot pressing. Mini sheet tensile and thermal diffusivity specimens were irradiated in the temperature range of {approximately}100--275 C from a fast (E > 0.1 MeV) neutron dose of 0.05 to 1.0 {times} 10{sup 25} n/m{sup 2} in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory and the High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory. As expected from earlier work on beryllium, both materials underwent significant embrittlement with corresponding reduction in ductility and increased strength. Both thermal diffusivity and volumetric expansion were measured and found to be negligible in this temperature and fluence range. Of significance from this work is that while both materials rapidly embrittle at these ITER relevant irradiation conditions, some ductility (>1--2%) remains, which contrasts with a body of earlier work including recent work on the Brush-Wellman S65-C material irradiated to slightly higher neutron fluence.

  12. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Michael L.M., E-mail: mitchel.marques@yahoo.com.br [Bio& Hydrometallurgy Laboratory, Department of Metallurgical and Materials Engineering, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000 (Brazil); Leão, Versiane A., E-mail: versiane@demet.em.ufop.br [Bio& Hydrometallurgy Laboratory, Department of Metallurgical and Materials Engineering, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000 (Brazil); Gomes, Otavio [Centre for Mineral Technology – CETEM, Av Pedro Calmon, 900, 21941-908 Rio de Janeiro (Brazil); Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan [Mineral Processing and Recycling, University of Liege, SartTilman, 4000 Liege (Belgium)

    2015-07-15

    Highlights: • Copper bioleaching from PCB (20 mm) by moderate thermophiles was demonstrated. • Larger PCB sheets enable a cost reduction due to the elimination of fine grinding. • Crushing generated cracks in PCB increasing the copper extraction. • A pre-treatment step was necessary to remove the lacquer coating. • High copper extractions (85%) were possible with pulp density of up to 25.0 g/L. - Abstract: The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (−208 μm + 147 μm), ferrous iron concentration (1.25–10.0 g/L) and pH (1.5–2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0 g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20 mm-long) working with increased solids concentration (up to 25.0 g/L). Because there was as the faster leaching kinetics at 50 °C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8 days and microscopic observations by SEM–EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20 mm-size sheets.

  13. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor

    International Nuclear Information System (INIS)

    Highlights: • Copper bioleaching from PCB (20 mm) by moderate thermophiles was demonstrated. • Larger PCB sheets enable a cost reduction due to the elimination of fine grinding. • Crushing generated cracks in PCB increasing the copper extraction. • A pre-treatment step was necessary to remove the lacquer coating. • High copper extractions (85%) were possible with pulp density of up to 25.0 g/L. - Abstract: The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (−208 μm + 147 μm), ferrous iron concentration (1.25–10.0 g/L) and pH (1.5–2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0 g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20 mm-long) working with increased solids concentration (up to 25.0 g/L). Because there was as the faster leaching kinetics at 50 °C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8 days and microscopic observations by SEM–EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20 mm-size sheets

  14. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  15. Behavior of beryllium pebbles under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dalle-Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik; Baldwin, D.L.; Gelles, D.S.; Greenwood, L.R.; Kawamura, H.; Oliver, B.M.

    1998-01-01

    Beryllium pebbles are being considered in fusion reactor blanket designs as neutron multiplier. An example is the European `Helium Cooled Pebble Bed Blanket.` Several forms of beryllium pebbles are commercially available but little is known about these forms in response to fast neutron irradiation. Commercially available beryllium pebbles have been irradiated to approximately 1.3 x 10{sup 22} n/cm{sup 2} (E>1 MeV) at 390degC. Pebbles 1-mm in diameter manufactured by Brush Wellman, USA and by Nippon Gaishi Company, Japan, and 3-mm pebbles manufactured by Brush Wellman were included. All were irradiated in the below-core area of the Experimental Breeder Reactor-II in Idaho Falls, USA, in molybdenum alloy capsules containing helium. Post-irradiation results are presented on density change measurements, tritium release by assay, stepped-temperature anneal, and thermal ramp desorption tests, and helium release by assay and stepped-temperature anneal measurements, for Be pebbles from two manufacturing methods, and with two specimen diameters. The experimental results on density change and tritium and helium release are compared with the predictions of the code ANFIBE. (author)

  16. Preliminary report on the promise of accelerator-driven natural-uranium-fueled light-water-moderated breeding power reactors

    International Nuclear Information System (INIS)

    A new concept for a power breeder reactor that consists of an accelerator-driven subcritical thermal fission system is proposed. In this system an accelerator provides a high-energy proton beam which interacts with a heavy-element target to produce, via spallation reactions, an intense source of neutrons. This source then drives a natural-uranium-fueled, light-water-moderated and -cooled subcritical blanket which both breeds new fuel and generates heat that can be converted to electrical power. The report given presents a general layout of the resulting Accelerator Driven Light Water Reactor (ADLWR), evaluates its performance, discusses its fuel cycle characteristics, and identifies the potential contributions to the nuclear energy economy this type of power reactor might make. A light-water thermal fission system is found to provide an attractive feature when designed to be source-driven. The equilibrium fissile fuel content that gives the highest energy multiplication is approximately equal to the content of 235U in natural uranium. Consequently, natural-uranium-fueled ADLWRs that are designed to have the highest energy generation per source neutron are also fuel-self-sufficient; that is, their fissile fuel content remains constant with burnup. This feature allows the development of a nuclear energy system that is based on the most highly developed fission technology available (the light water reactor technology) and yet has a simple and safe fuel cycle. ADLWRs will breed on natural uranium, have no doubling time limitation, and be free from the need for uranium enrichment or for the separation of plutonium. It appears that ADLWRs could also be efficiently operated with thorium fuel cycles and with denatured fuel cycles

  17. Moderators for the design of a cold neutron source for the RA 3 reactor

    International Nuclear Information System (INIS)

    The cold neutron production of hydrogenous materials was studied, taking into account their radiation resistance, for the conceptual design of a cold neutron source for the RA-3 reactor.Low spontaneous release of chemical energy was found in mesitylene.Libraries for hidrogen in mesitylene were generated using the NJOY nuclear processing system and the resulting cross sections were compared with experimental data.Good agreement between measurements and calculations was found in those cases where data are available.New calculations using the RA-3 geometry and these validated libraries will be performed

  18. Moderator Circulation Simulation for 35% Reactor Inlet Header Break in the Wolsong Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae; Park, Joo Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    The objective of this study is present the results of moderator circulation simulations by the CFD code MODTURC{sub C}LAS V2.9-IST for the refurbished Wolsong unit 1. The present simulations were performed for a loss of Class IV power during a Large Break Loss Of Coolant Accident (35% inlet header break) without ECC injection and steam generator crash cool-down (LOCA/LOECC/LOCC). The analysis was performed to facilitate the assessment of fuel channel integrity following pressure tube (PT) and calandria tube (CT) contact by estimating the subcooling available for the inlet header break scenario

  19. Investigations of neutron spectra and dose distributions - with calculations and measurements - eleptical phantom for light-water moderated reactor spectrum

    International Nuclear Information System (INIS)

    Calculations and measurements for the dose distribution in a water-filled elliptical phantom when irradiated with neutrons of different unshielded light water moderated reactors are presented. The calculations were performed by a Monte Carlo code, for the measurements activation, TL and solid state nuclear track detectors were used. It was observed that the neutron spectra do not vary significantly inside the phantom and that not only the total absorbed dose but the kerma value at a depth of 2 cm can be higher than that on the front, in our cases by a factor of about 1.2. The measurements and calculations resulted in a kerma attenuation from the front to the back of the phantom of a factor of about 5. (author)

  20. Detailed description of an SSAC at the facility level for light water moderated (off-load refueled) power reactor facilities

    International Nuclear Information System (INIS)

    This report is intended to provide the technical details of an effective State Systems of Accounting for and Control of Nuclear Material (SSAC) which Member States may use, if they wish, to establish and maintain their SSACs. It is expected that systems designed along the lines described would be effective in meeting the objectives of both national and international systems for nuclear material accounting and control. This document accordingly provides a detailed description of a system for the accounting for and control of nuclear material in an off-load refueled light water moderated power reactor facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  1. Beryllium pressure vessels for creep tests in magnetic fusion energy

    International Nuclear Information System (INIS)

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available

  2. Comparison Of The Worth Of Critical And Exponential Measurements For Heavy-Water-Moderated Reactors

    International Nuclear Information System (INIS)

    Critical and exponential experiments in general produce overlapping information on reactor lattices. Over the past ten years the Savannah River Laboratory has been operating a heavy-water critical, the PDP, and an exponential, the SE, in parallel. This paper summarizes SRL experience to give results and recommendations as to the applicability of the two kinds of facilities in different experiments. Six types of experiments are considered below: (1) Buckling measurements in uniform isotropic lattices Here Savannah River has made extensive comparisons between single-region criticals, exponentials, substitution criticals, and PCTR type measurements. The only difficulties in the exponentials seem to lie in the radial-buckling determinations. If these can be made successfully, the exponentials can offer good competition to the criticals. Material requirements are greatest for the single-region criticals, roughly comparable for the substitution criticals and exponentials, and least for the PCTR measurements. (2) Anisotropic and void effects SRL experiments with the criticals and with critical-exponential comparisons are reviewed briefly here and at greater length in a companion paper. (3) Evaluation of control systems Adequately analysed exponential experiments appear to give good results for total-worth measurements. However, for adequate study of overall flux shaping, flux tilts, etc. a full-sized critical such as the PDP is required. (4) Temperature coefficients Exponential experiments provide an excellent method for determining the temperature coefficient of buckling for uniform lattice heating. A special facility, the PSE, at Savannah River permits such measurements up to temperatures of 215°C. For non-uniform lattice heating criticals are generally preferred. (5) Mixed lattices Actual reactors rarely use the simple uniform lattices to which the exponentials basically apply. Critical experiments with mixed loadings are used at SRL both in measuring direct effects

  3. Technologies for tritium control in fission reactors moderated with heavy water

    International Nuclear Information System (INIS)

    This study was done within a program one of whose objectives was to analyze the possible strategies and technologies, to be applied to HWR at Argentine nuclear power plants, for tritium control. The high contribution of tritium to the total dose has given rise to the need by the operators and/or designers to carry out developments and improvements to try to optimize tritium control technologies. Within a tritium control program, only that one which includes the heavy water detritiation will allow to reduce the tritium concentrations at optimum levels for safety and cost-effective power plant operation. The technology chosen to be applied should depend not only on the technical feasibility but also on the analysis of economic and juncture factors such as, among others, the quantity of heavy water to be treated. It is the authors' belief that AECL tendency concerning heavy water treatment in its future reactors would be to employ the CECE technology complemented with immobilization on titanium beds, with the 'on-line' detritiation in each nuclear power plant. This would not be of immediate application since our analysis suggests that AECL would assume that the process is under development and needs to be tested. (author). 21 refs

  4. Aerosols generated during beryllium machining.

    Science.gov (United States)

    Martyny, J W; Hoover, M D; Mroz, M M; Ellis, K; Maier, L A; Sheff, K L; Newman, L S

    2000-01-01

    Some beryllium processes, especially machining, are associated with an increased risk of beryllium sensitization and disease. Little is known about exposure characteristics contributing to risk, such as particle size. This study examined the characteristics of beryllium machining exposures under actual working conditions. Stationary samples, using eight-stage Lovelace Multijet Cascade Impactors, were taken at the process point of operation and at the closest point that the worker would routinely approach. Paired samples were collected at the operator's breathing zone by using a Marple Personal Cascade Impactor and a 35-mm closed-faced cassette. More than 50% of the beryllium machining particles in the breathing zone were less than 10 microns in aerodynamic diameter. This small particle size may result in beryllium deposition into the deepest portion of the lung and may explain elevated rates of sensitization among beryllium machinists.

  5. Beryllium. Its minerals. Pt. 1

    International Nuclear Information System (INIS)

    With this work a series of reports begins, under the generic name 'Beryllium', related to several aspects of beryllium technology. The target is to update, with critical sense, current bibliographic material in order to be used in further applications. Some of the most important beryllium ores, the Argentine emplacement of their deposits and world occurrence are described. Argentine and world production, resources and reserves are indicated here as well. (Author)

  6. Safety aspects of long term operation of water moderated reactors. Recommendations on the scope and content of programmes for safe long term operation. Final report of the extrabudgetary programme on safety aspects long term operation of water moderated reactors

    International Nuclear Information System (INIS)

    During the last two decades, the number of IAEA Member States giving high priority to continuing the operation of nuclear power plants beyond the time frame originally anticipated is increasing. This is related to the age of nuclear power plants connected to the grid worldwide. The IAEA started to develop guidance on the safety aspects of ageing management in the 1990s. Recognizing the development in a number of its Member States, the IAEA initiated this Extrabudgetary Programme on Safety Aspects of Long Term Operation of Water Moderated Reactors in 2003. The objective of the Programme was to establish recommendations on the scope and content of activities to ensure safe long term operation of water moderated reactors. The term long term operation is used to accommodate various approaches in Member States and is defined as operation beyond an initial time frame set forth in design, standards, licence, and/or regulations, that is justified by safety assessment, considering life limiting processes and features for systems, structures and components. The scope of the Programme included general long term operation framework, mechanical components and materials, electrical components and instrumentation and control, and structural components and structures. The scope of the Programme was limited to physical structures of the NPPs. Four working groups addressed the above indicated technical areas. The Programme steering committee provided coordination and guidance and served as a forum for the exchange of information. The Programme implementation relied on voluntary in kind and financial contributions from the Czech Republic, Hungary, Slovakia, Sweden, the United Kingdom and the USA as well as in kind contributions from Bulgaria, Finland, the Netherlands, the Russian Federation, Spain, the Ukraine, and the European Commission. This report summarizes the main results, conclusions and recommendations of this Programme and provides in the Appendices I-IV detailed

  7. Joining of Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-02-01

    A handbook dealing with the many aspects of beryllium that would be important for the users of this metal is currently being prepared. With an introduction on the applications, advantages and limitations in the use of this metal the following topics will be discussed in this handbook: physical, thermal, and nuclear properties; extraction from the ores; purification and casting of ingots; production and types of beryllium powders; consolidation methods, grades, and properties; mechanical properties with emphasis on the various factors affecting these properties; forming and mechanical working; welding, brazing, bonding, and fastening; machining; powder deposition; corrosion; health aspects; and examples of production of components. This report consists of ''Section X--Joining'' from the handbook. The prefix X is maintained here for the figures, tables and references. In this section the different methods used for joining beryllium and the advantages, disadvantages and limitations of each are presented. The methods discussed are fusion welding, brazing, solid state bonding (diffusion bonding and deformation bonding), soldering, and mechanical fastening. Since beryllium has a high affinity for oxygen and nitrogen with the formation of oxides and nitrides, considerable care must be taken on heating the metal, to protect it from the ambient atmosphere. In addition, mating surfaces must be cleaned and joints must be designed to minimize residual stresses as well as locations for stress concentration (notch effects). In joining any two metals the danger exists of having galvanic corrosion if the part is subjected to moisture or to any type of corroding environment. This becomes a problem if the less noble (anodic) metal has a significantly smaller area than the more noble (cathodic) metal since the ions (positive charges) from the anodic (corroding) metal must correspond to the number of electrons (negative charges) involved at the cathode. Beryllium

  8. Neutronic designs and analyses of a new core-moderator assembly and neutron beam ports for the Penn State Breazeale Reactor

    International Nuclear Information System (INIS)

    A new core-moderator assembly and five new neutron beam ports are modeled and designed for the Penn State Breazeale Reactor (PSBR). The PSBR is an open pool, light water cooled, and moderated 1-MW research reactor with seven neutron beam ports. The existing core-moderator assembly design does not allow simultaneous utilization of all the available beam ports; only two beam ports, namely no.4 and no.7, are currently in use for research and education in the facility. Moreover, the prompt gamma-rays produced at the back side of the heavy water moderator tank shine into neutron beam tube no.4. Subsequently that is hampering the quality of the experimental data at the existing beam port facilities. The proposed design eliminates all the limitations of the existing design and provides multiple high-intensity and clean neutron beams to a new and expanded beam hall utilizing various instruments and techniques. The new design features a crescent-shaped moderator tank, which couples the reactor core to four thermal ports and one cold neutron beam port with three curved guide tubes for various cold neutron beam techniques. The modeling of the new PSBR design was achieved with highly detailed neutronics simulations using several stochastic simulation tools developed for the PSBR. The simulation results revealed the optimal design parameters and neutronics performance of the new beam ports, such that the thermal neutron beam intensity was significantly increased and the total prompt gamma dose was drastically decreased in the new beam port facilities. (author)

  9. Beryllium. Beryllium oxide, obtention and properties. Pt.4

    International Nuclear Information System (INIS)

    As a continuation of the 'Beryllium' series this work reviews several methods of high purity beryllia production. Diverse methods of obtention and purification from different beryllium compounds are described. Some chemical, mechanical and electrical properties related with beryllia obtention methods are summarized. (Author)

  10. Preliminary Thermohydraulic Analysis of a New Moderated Reactor Utilizing an LEU-Fuel for Space Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The Korea Advanced NUclear Thermal Engine Rocket utilizing an LEU fuel (KANUTER-LEU) is a non-proliferative and comparably efficient NTR engine with relatively low thrust levels of 40 - 50 kN for in-space transportation. The small modular engine can expand mission versatility, when flexibly used in a clustered engine arrangement, so that it can perform various scale missions from low-thrust robotic science missions to high-thrust manned missions. In addition, the clustered engine system can enhance engine redundancy and ensuing crew safety as well as the thrust. The propulsion system is an energy conversion system to transform the thermal energy of the reactor into the kinetic energy of the propellant to produce the powers for thrust, propellant feeding and electricity. It is mainly made up of a propellant Feeding System (PFS) comprising a Turbo-Pump Assembly (TPA), a Regenerative Nozzle Assembly (RNA), etc. For this core design study, an expander cycle is assumed to be the propulsion system. The EGS converts the thermal energy of the EHTGR in the idle operation (only 350 kW{sub th} power) to electric power during the electric power mode. This paper presents a preliminary thermohydraulic design analysis to explore the design space for the new reactor and to estimate the referential engine performance. The new non-proliferative NTR engine concept, KANUTER-LEU, is under designing to surmount the nuclear proliferation obstacles on allR and Dactivities and eventual commercialization for future generations. To efficiently implement a heavy LEU fuel for the NTR engine, its reactor design innovatively possesses the key characteristics of the high U density fuel with high heating and H{sub 2} corrosion resistances, the thermal neutron spectrum core and also minimizing non-fission neutron loss, and the compact reactor design with protectively cooling capability. To investigate feasible design space for the moderated EHTGR-LEU and resultant engine performance, the

  11. Technical Basis for PNNL Beryllium Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  12. Effect of moderator density distribution of annular flow on fuel assembly neutronic characteristics in boiling water reactor cores

    International Nuclear Information System (INIS)

    The effect of the moderator density distribution of annular flow on the fuel assembly neutronic characteristics in a boiling water nuclear reactor was investigated using the SRAC95 code system. For the investigation, a model of annular flow for fuel assembly calculation was utilized. The results of the assembly calculation with the model (Method 1) and those of the fuel assembly calculation with the uniform void fraction distribution (Method 2) were compared. It was found that Method 2 underestimates the infinite multiplication factor in the fuel assembly including the gadolinia rod (type 1 assembly). This phenomenon is explained by the fact that the capture rate in the thermal energy region in gadolinia fuel is estimated to be smaller when the liquid film of annular flow at the fuel rod surface is considered. A burnup calculation was performed under the condition of a void fraction of 65% and a volumetric fraction of the liquid film in liquid phase of 1. It is found that Method 2 underestimates the infinite multiplication factor in comparison to Method 1 in the early stage of burnup, and that Method 2 becomes to overestimate the factor after a certain degree of burnup. This is because Method 2 overestimates the depletion rate of the gadolinia. (author)

  13. Characteristics of microstructure and tritium release properties of different kinds of beryllium pebbles for application in tritium breeding modules

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, P.; Vladimirov, P.; Moeslang, A. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); Rolli, R. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials - Materials Biomechanics (IAM-WBM); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, Barcelona (Spain)

    2013-07-01

    Beryllium pebbles with diameters of 1 mm are considered to be perspective material for the use as neutron multiplier in tritium breeding modules of fusion reactors. Up to now, the main concept of helium-cooled breeding blanket in ITER project foresees the use of 1 mm beryllium pebbles fabricated by company NGK, Japan. It is notable that beryllium pebbles of other types are commercially available at the market. Presented work is dedicated to a study of characteristics of microstructure, packaging density and parameters of tritium release of beryllium pebbles produced by Bochvar Institute, Russian Federation, and Company Materion, USA. (orig.).

  14. Study on Reduced-Moderation Water Reactor (RMWR) core design. Joint research report (FY1998-1999)

    International Nuclear Information System (INIS)

    The Reduce-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor aiming at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. Japan Atomic Energy Research Institute (JAERI) started a joint research program for conceptual design of RMWR core in collaboration with the Japan Atomic Power Company (JAPC) since 1998. The research area includes the RMWR core conceptual designs, development of analysis methods for rector physics and thermal-hydraulics to design the RMWR cores with higher accuracy and preparation of MOX critical experiment to confirm the feasibility from the reactor physics point of view. The present report describes the results of joint research program 'RMWR core design Phase 1' performed by JAERI and JAPC in FY 1998 and 1999. The results obtained from the joint research program are as follows: Conceptual design study on the RMWR core has been performed. A core concept with a conversion ratio more than about 1 is basically feasible to multiple recycling of plutonium. Investigating core characteristics at the equilibrium, some promising core concepts to satisfy above aims have been established. As for BWR-type concepts with negative void reactivity coefficients, three types of design have been obtained as follows; 1) one feasible to attain high conversion ratio about 1.1, 2) one feasible to attain operation cycle of about 2 years and burn-up of about 60 GWd/t with conversion ratio more than 1 or 3) one in simple design based on the ABWR assembly and without blanket attaining conversion ratio more than 1. And as for PWR-type concepts with negative void reactivity coefficients, two types of design have been obtained as follows; 1) one feasible to attain high conversion ratio about 1.05 by using heavy water as a coolant and 2) one feasible to attain conversion ratio about l by using light water. In the study of nuclear calculation method, a reactor analysis code applicable to the

  15. Study on Reduced-Moderation Water Reactor (RMWR) core design. Joint research report (FY1998-1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Reduce-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor aiming at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. Japan Atomic Energy Research Institute (JAERI) started a joint research program for conceptual design of RMWR core in collaboration with the Japan Atomic Power Company (JAPC) since 1998. The research area includes the RMWR core conceptual designs, development of analysis methods for rector physics and thermal-hydraulics to design the RMWR cores with higher accuracy and preparation of MOX critical experiment to confirm the feasibility from the reactor physics point of view. The present report describes the results of joint research program 'RMWR core design Phase 1' performed by JAERI and JAPC in FY 1998 and 1999. The results obtained from the joint research program are as follows: Conceptual design study on the RMWR core has been performed. A core concept with a conversion ratio more than about 1 is basically feasible to multiple recycling of plutonium. Investigating core characteristics at the equilibrium, some promising core concepts to satisfy above aims have been established. As for BWR-type concepts with negative void reactivity coefficients, three types of design have been obtained as follows; (1) one feasible to attain high conversion ratio about 1.1, (2) one feasible to attain operation cycle of about 2 years and burn-up of about 60 GWd/t with conversion ratio more than 1 or (3) one in simple design based on the ABWR assembly and without blanket attaining conversion ratio more than 1. And as for PWR-type concepts with negative void reactivity coefficients, two types of design have been obtained as follows; (1) one feasible to attain high conversion ratio about 1.05 by using heavy water as a coolant and (2) one feasible to attain conversion ratio about l by using light water. In the study of nuclear calculation method, a reactor analysis code

  16. Neutron irradiation behavior of ITER candidate beryllium grades

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.

    1998-01-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  17. Ultra high temperature particle bed reactor design

    Science.gov (United States)

    Lazareth, Otto; Ludewig, Hans; Perkins, K.; Powell, J.

    1990-01-01

    A direct nuclear propulsion engine which could be used for a mission to Mars is designed. The main features of this reactor design are high values for I(sub sp) and very efficient cooling. This particle bed reactor consists of 37 cylindrical fuel elements embedded in a cylinder of beryllium which acts as a moderator and reflector. The fuel consists of a packed bed of spherical fissionable fuel particles. Gaseous H2 passes over the fuel bed, removes the heat, and is exhausted out of the rocket. The design was found to be neutronically critical and to have tolerable heating rates. Therefore, this particle bed reactor design is suitable as a propulsion unit for this mission.

  18. Thermal fatigue of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Deksnis, E.; Ciric, D.; Falter, H. [JET Joint undertaking, Abingdon (United Kingdom)] [and others

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  19. Numerical analysis on the calandria tubes in the moderator of a heavy water reactor using OpenFOAM and other codes

    International Nuclear Information System (INIS)

    CANDU, a prototype of heavy water reactor is modeled for the moderator system with porous media buoyancy-effect heat-transfer turbulence model. OpenFOAM, a set of C++ classes and libraries developed under the object-oriented concept, is selected as the tool of numerical analysis. The result from this computational code is compared with experiments and other commercial code data through ANSYS-CFX and COMSOL Multi-physics. The three-dimensional code concerning buoyancy force, turbulence, and heat transfer is tested and shown to be successful for the analysis of thermo-hydraulic system of heavy water reactors. (authors)

  20. Numerical Analysis on the Calandria Tubes in the Moderator of a Heavy Water Reactor Using OpenFOAM and Other Codes

    Science.gov (United States)

    Chang, Se-Myong; Kim, Hyoung Tae

    2014-06-01

    CANDU, a prototype of heavy water reactor is modeled for the moderator system with porous media buoyancy-effect heat-transfer turbulence model. OpenFOAM, a set of C++ classes and libraries developed under the object-oriented concept, is selected as the tool of numerical analysis. The result from this computational code is compared with experiments and other commercial code data through ANSYS-CFX and COMSOL Multi-physics. The three-dimensional code concerning buoyancy force, turbulence, and heat transfer is tested and shown to be successful for the analysis of thermo-hydraulic system of heavy water reactors.

  1. Beryllium metal I. experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity.

    Science.gov (United States)

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  2. Development of a noise-based method for the determination of the moderator temperature coefficient of reactivity (MTC) in pressurized water reactors (PWRs)

    International Nuclear Information System (INIS)

    The Moderator Temperature Coefficient of reactivity (MTC) is an important safety parameter of Pressurized Water Reactors (PWRs). In most countries, the so-called at-power MTC has to be measured a few months before the reactor outage, in order to determine if the MTC will not become too negative. Usually, the at-power MTC is determined by inducing a change in the moderator temperature, which has to be compensated for by other means, such as a change in the boron concentration. An MTC measurement using the boron dilution method is analysed in this thesis. It is demonstrated that the uncertainty of such a measurement technique is so large, that the measured MTC could become more negative than what the Technical Specifications allow. Furthermore, this technique incurs a disturbance of the plant operation. For this reason, another technique relying on noise analysis was proposed a few years ago. In this technique, the MTC is inferred from the neutron noise measured inside the core and the moderator temperature noise measured at the core-exit, in the same or in a neighbouring fuel assembly. This technique does not require any perturbation of the reactor operation, but was nevertheless proven to underestimate the MTC by a factor of 2 to 5. In this thesis, it is shown, both theoretically and experimentally, that the reason of the MTC underestimation by noise analysis is the radially loosely coupled character of the moderator temperature noise throughout the core. A new MTC noise estimator, accounting for this radially non-homogeneous moderator temperature noise is proposed and demonstrated to give the correct MTC value. This new MTC noise estimator relies on the neutron noise measured in a single point of the reactor and the radially averaged moderator temperature noise measured inside the core. In the case of the Ringhals-2 PWR in Sweden, Gamma-Thermometers (GTs) offer such a possibility since in dynamic mode they measure the moderator temperature noise, whereas in static

  3. TEM study of impurity segregations in beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M., E-mail: michael.klimenkov@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  4. TEM study of impurity segregations in beryllium pebbles

    Science.gov (United States)

    Klimenkov, M.; Chakin, V.; Moeslang, A.; Rolli, R.

    2014-12-01

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  5. Control of the mechanical properties of the shell materials of water-moderated reactors to ensure their operational safety

    International Nuclear Information System (INIS)

    Methods ensuring control of the mechanical properties of the materials of the reactor vessels are considered to elaborate the grounds of the reactor operational safety and ensure it. Information about radiation- and hydrogen resistance of the materials is given as applied to the nonclad reactor vessels. A method of using small-size impact samples for determination of the critical temperature of embrittlement is substantiated for the reactor vessels in-service. A procedure is proposed for determination of the radiation endurance of the vessels subjected to annealing aimed at enhancing the operational safety of the reactors

  6. Safe long term operation of water moderated reactors: The need to index, integrate and implement existing international databases

    International Nuclear Information System (INIS)

    In response to an increasing number of nuclear installations pursuing extended operations beyond their initial design life, the IAEA recently initiated an Extrabudgetary Programme on Safety Aspects of Long Term Operation of Water-Moderated Reactors (SALTO EBP) to assist Member States to reconcile related processes, establish a general framework and provide a forum to develop international consensus on long term operation (LTO). The IAEA Programme and the paper address periodic safety reviews (PSR) and different approaches to ensuring adequate safety margins, regulatory approaches for LTO, balancing power uprates versus maintaining safety margins, and the need to address the monitoring, mitigation, replacement and ageing management programmes of active and passive systems, structures and components. The SALTO EBP addresses concepts such as life cycle management, obsolescence management, preconditions for LTO, ageing management, life extension and licence renewal under the rubric of 'long term operation'. Mandated to look for cross-cutting LTO similarities, the SALTO EBP is divided into four Working Groups with a focus on indexing, integrating and implementing the great wealth of existing international databases to ultimately create a 'living' guidance document, regularly updated with new lessons learned from all Member States to ensure that major safety issues are addressed. One such database, now being revised and expanded to a relational database format, is the Generic Ageing Lessons Learned (GALL) Report that catalogues plant structures and components; lists the materials, environments, ageing effects and mechanisms; and documents Nuclear Regulatory Commission evaluation of existing plant programmes that can mitigate or manage these ageing effects. With continuing long term support, this Programme can create an International GALL (IGALL) database that Member States can use to evaluate the safety of nuclear plant LTO. Due to the variability of Member States laws

  7. Analysis of postulated loss of coolant accidents on Brazilian Multipurpose Reactor using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Humberto Vitor; Costa, Antonella Lombardi; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Reis, Patricia Amelia de Lima, E-mail: hvs@cdtn.br, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br, E-mail: patricialire@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil); Aronne, Ivan Dionysio, E-mail: aroneid@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2012-07-01

    The Brazilian Multipurpose Reactor (RMB) is currently being projected and several analyses are being carried out. It will be a 30 MW open pool multipurpose research reactor with a compact core using Materials Testing Reactor (MTR) type fuel assembly with planar plates. RMB will be cooled by light water and moderated by beryllium and heavy water. This work presents the calculations of steady state operation of RMB using the RELAP5 model and also three cases of loss of coolant accident (LOCA), in the reactor and service polls cooling system (RSPCS) inlet and two cases in the primary coolant system (PCS), inlet and outlet. In both cases the coolant pool level decreased until 7 m, keeping the core covered by water, but in different times. Natural circulation mode was established in the reactor pool and consequently the decay heat was removed keeping the integrity of the fuel elements. Keywords: Research reactor, LOCA, RELAP5. (author)

  8. Material selection for extended life of the beryllium reflectors in the JMTR

    International Nuclear Information System (INIS)

    The Japan Materials Test Reactor (JMTR) has been one of the most significant high-energy test reactors in the world since achieving its first criticality in 1968. Beryllium has been used as the reflector element material in the reactor, specifically S-200F structural grade beryllium manufactured by Brush Wellman Inc. The JMTR is currently in the process of being refurbished, and the upgraded reactor will return to service in 2011. As a part of the reactor upgrade, the Japan Atomic Energy Agency (JAEA) also has plans to extend the operating lifetime of the beryllium reflector elements. In order to do that, it will first be necessary to determine which of the material's physical and mechanical properties will be the most influential on that choice. Selecting a different grade of beryllium material for the reflector elements to extend operational lifetime under neutron irradiation is discussed in detail. A new plan for irradiation testing to evaluate the various beryllium grades under consideration is also briefly described. (author)

  9. Safety of Ghana Research Reactor (GHARR-1)

    International Nuclear Information System (INIS)

    The Ghana Research Reactor, GHARR-1 is a low power research rector with maximum thermal power lever of 30kW. The reactor is inherently safe and uses highly enriched uranium (HEU) as fuel, light water as moderator and beryllium as a reflector. The construction, commissioning and operation of this reactor have been subjected to the system of authorization and inspection developed by the Regulatory Authority, the Radiation Protection Board (RPB) with the assistance of the International Atomic Energy Agency. The reactor has been regulated by the preparation of an Interim Safety Analysis Report (SAR) based upon International Atomic Energy Agency standards. An International Safety Assessment peer review and safe inspections have confirmed a high level of operational safety of the reactor since it started operation in 1994. Since its operation there has been no significant reported incident/accidents. Several studies have validated the inherent safety of the reactor. The reactor has been used for neutron activation analysis of various samples, research and teaching. About 1000 samples are analysed annually. The final Safety Analysis Report (SAR) was submitted (after five years of extensive research on the operational reactor) to the Regulatory Authority for review in June 2000. (author)

  10. Effect of flooding of annulus space between CT and PT with light water coolant and heavy water moderator on AHWR reactor physics parameters

    International Nuclear Information System (INIS)

    In AHWR lattice, the pressure tube (PT) contains light water coolant which carries away heat generated in the fuel pins. The pressure tube (PT) and calandria tube (CT) are separated by air (density=0.0014 g/cc) of wall thickness 1.79 cm. Air between pressure tube and calandria tube acts as insulator and minimize the heat transfer from coolant to moderator which is outside the calandria tube. In case of flooding or under any unforeseeable circumstances, the air gap between the coolant tube and calandria tube may be filled with the light water coolant or heavy water moderator. This paper gives the details of effect of filling the annulus space between CT and PT with light water or heavy water moderator on reactor physics parameters. (author)

  11. Enhancing the moderator effectiveness as a heat sink during loss-of-coolant accidents in CANDU-PHW reactors using glass-peened surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T.; Tiede, R.W.; Sanderson, D.B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Fong, R.W.L.; Coleman, C.E

    1998-08-01

    The horizontal fuel channel concept is a distinguishing feature of the CANDU-PHW reactor. Each fuel channel consists of a Zr-2.5Nb pressure tube and a Zircaloy-2 calandria tube, separated by a gas filled annulus. The calandria tube is surrounded by heavy-water moderator that also provides a backup heat sink for the reactor core. This heat sink (about 10 mm away from the hot pressure tube) ensures adequate cooling of fuel in the unlikely event of a loss-of-coolant accident (LOCA). One of the ways of enhancing the use of the moderator as a heat sink is to improve the heat-transfer characteristics between the calandria tube and the moderator. This enhancement can be achieved through surface modifications to the calandria tube which have been shown to increase the tube's critical heat flux (CHF) value. An increase in CHIF could be used to reduce moderator subcooling requirements for CANDU fuel channels or increase the margin to dryout. A series of experiments was conducted to assess the benefits provided by glass-peening the outside surface of calandria tubes for postulated LOCA conditions. In particular, the ability to increase the tube's CHF, and thereby reduce moderator subcooling requirements was assessed. Results from the experiments confirm that glass-peening the outer surface of a tube increases its CHF value in pool boiling. This increase in CHF could be used to reduce moderator subcooling requirements for CANDU fuel channels by at least 5 degrees C. (author)

  12. In service inspection of the reactor pressure vessel coolant and moderator nozzles at Atucha 1. 1998/1999 outages

    International Nuclear Information System (INIS)

    During the August 1998 and the August 1999 Atucha 1 outages, two areas were inspected on the Reactor Pressure Vessel: the nozzle inner radii and the nozzle shell welds on all 3 moderator nozzles and all 4 main coolant nozzles. The inspections themselves were carried out by Mitsui Babcock Energy Limited from Scotland. The coordination, maintenance assistant and mounting of the manipulator devices over the nozzles were carried out by NASA personnel. Although it was not the first time the nozzle shell welds were inspected, due to the technologies advances in the ultrasonic field and in the inspection manipulators (magnetic ones), it was possible to inspect more volume than in previous inspections. In the other hand, it was the first time NASA was able to inspect the inner radii. In this last case the mayor problems to inspect them were the nozzles geometry and the small space available to install manipulators. The result of the inspections were: 1) There were no reportable indications at any of the inner radii inspected; 2) The inspection of nozzle to shell welds in main-coolant nozzles R3 and R4 detected flaws (one in each nozzle) which were reported as exceeding the dimensions specified as the acceptance level under Table IWB 3512-1, Section XI of the ASME code. Subsequent analysis requested by NASA and performed by Mitsui Babcock, demonstrated that the flaws were over dimensioned and could be explained as due to 'point' flaws. The analysis was based on theoretical mathematic model and experimental trials. Therefore their dimension were under the acceptance level of the ASME XI code. Although the Mitsui Babcock analysis, and at the same time it was in progress, it was assumed that the flaws were as they were originally presented (exceeding the acceptance level). NASA asked SIEMENS/KWU, the designer of the plant, to perform the fracture assessment according to ASME XI App. A. The assessment shows that the expected crack growth is negligibly small and the safety

  13. Analysis of mixed oxide fuel behavior under reduced moderation boiling water reactor conditions with FRAPCON-EP

    International Nuclear Information System (INIS)

    FRAPCON-EP models have been extended to better represent mixed oxide steady state fuel behavior under the Reduced moderation Boiling Water Reactor (RBWR) conditions. RBWR fuel is designed to operate with higher peak burnup, linear heat rate, and fast neutron fluence compared to typical LWRs. Therefore, assessment of fuel behavior is a critical task for its core performance. The fuel pellet radial power profile is calculated based on plutonium radial variation and edge peaking due to resonance absorption of neutrons. It is found that the edge power peak is much smaller than in typical LWRs due to the harder neutron spectrum. The oxygen potential directly affects fuel thermal conductivity and fission gas diffusivity. Plutonium migration towards the high temperature may potentially lead to power peaks at the central radial locations. The selected fuel thermal conductivity model for mixed oxides accounts for the oxygen-to-metal ratio variation, burnup effects due to fission product precipitates, radiation damage and porosity. In addition, Zircaloy-2 cladding corrosion/hydrogen pickup models in FRAPCON-3 have been updated to reflect accelerated corrosion/hydriding, due mainly to secondary particle precipitate dissolution. Based on experimental data, acceleration is assumed to occur above 10+26 n/m2 of fast neutron fluence (>1 MeV). Analysis of RBWR fuel was made together with neutron dose calculation using the reference power history. The neutron transport analysis shows that RBWR fuel fast fluence-to-volumetric heat generation ratio is approximately 80 % more than in typical LWRs. Initially, an analysis was performed with traditional Zircaloy-2 and reference mixed oxide fuel pellet with 95 % theoretical density. It was found that accelerated corrosion/hydriding may result at peak burnups as low as 30 MWd/kg. Furthermore, excessive fuel swelling may result in significant cladding strain and axial irradiation growth, which may lead to creep induced fracture as well as

  14. Development of radiation resistant grades of beryllium for nuclear and fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    1995-09-01

    R&D results on beryllium with high radiation resistance obtained recently are described in this report. The data are presented on nine different grades of isotropic beryllium manufactured by VNIINM and distinguished by both initial powder characteristics and properties of billets, made of these powders. The average grain size of the investigated beryllium grades varied from 8 to 26 {mu}m, the content of beryllium oxide was 0.9 - 3.9 wt.%, the dispersity of beryllium oxide - 0.04 - 0.5 {mu}m, tensile strength -- 250 - 650 MPa. All materials were irradiated in SM - 2 reactor over the temperature range 550 - 780{degrees}C. The results of the investigation showed, that HIP beryllium grades are less susceptible to swelling at higher temperatures in comparison with hot pressed and extruded grades. Beryllium samples, having the smallest grain size, demonstrated minimal swelling, which was less than 0.8 % at 750{degrees}C and Fs = 3.7 {center_dot}10{sup 21} cm{sup -2} (E>0.1 MeV). The mechanical properties, creep and microstructure parameters, measured before and after irradiation, are presented.

  15. Beryllium Related Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gaylord, R F

    2008-12-23

    In recent months, LLNL has identified, commenced, and implemented a series of interim controls, compensatory measures, and initiatives to ensure worker safety, and improve safety processes with regards to potential worker exposure to beryllium. Many of these actions have been undertaken in response to the NNSA Independent Review (COR-TS-5/15/2008-8550) received by LLNL in November of 2008. Others are the result of recent discoveries, events or incidents, and lessons learned, or were scheduled corrective actions from earlier commitments. Many of these actions are very recent in nature, or are still in progress, and vary in the formality of implementation. Actions are being reviewed for effectiveness as they progress. The documentation of implementation, and review of effectiveness, when appropriate, of these actions will be addressed as part of the formal Corrective Action Plan addressing the Independent Review. The mitigating actions taken fall into the following categories: (1) Responses to specific events/concerns; (2) Development of interim controls; (3) Review of ongoing activities; and (4) Performance improvement measures.

  16. The Status of Beryllium Research for Fusion in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Glen R. Longhurst

    2003-12-01

    Use of beryllium in fusion reactors has been considered for neutron multiplication in breeding blankets and as an oxygen getter for plasma-facing surfaces. Previous beryllium research for fusion in the United States included issues of interest to fission (swelling and changes in mechanical and thermal properties) as well as interactions with plasmas and hydrogen isotopes and methods of fabrication. When the United States formally withdrew its participation in the International Thermonuclear Experimental Reactor (ITER) program, much of this effort was terminated. The focus in the U.S. has been mainly on toxic effects of beryllium and on industrial hygiene and health-related issues. Work continued at the INEEL and elsewhere on beryllium-containing molten salts. This activity is part of the JUPITER II Agreement. Plasma spray of ITER first wall samples at Los Alamos National Laboratory has been performed under the European Fusion Development Agreement. Effects of irradiation on beryllium structure are being studied at Oak Ridge National Laboratory. Numerical and phenomenological models are being developed and applied to better understand important processes and to assist with design. Presently, studies are underway at the University of California Los Angeles to investigate thermo-mechanical characteristics of beryllium pebble beds, similar to research being carried out at Forschungszentrum Karlsruhe and elsewhere. Additional work, not funded by the fusion program, has dealt with issues of disposal, and recycling.

  17. Processing Irradiated Beryllium For Disposal

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

    2005-11-01

    The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

  18. Accumulation of tritium in beryllium material under neutron irradiation

    International Nuclear Information System (INIS)

    In the present work the programming code is created on the basis of which the accumulation kinetics of tritium and isotope of He4 in the Be9 sample is analyzed depending on the time. The program is written in C++ programming language and for the calculations Monte Carlo method was applied. This program scoped on the calculation of concentration of helium and tritium in beryllium samples depending on the spectrum of the neutron flux in different experimental reactors such as JMTR, JOYO and IPEN/MB. The processes of accumulation of helium and tritium for each neutron energy spectrum of these reactors were analyzed. (author)

  19. Development of Interatomic Potentials for Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Bjorkas, C.; Juslin, N.; Nordlund, K. [Accelerator Laboratory, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Erhart, P. [Lawrence Livermore National Laboratory, Livermore, AK (United States); Henriksson, K. [Royal Institute of Technology, Stockholm (Sweden)

    2007-07-01

    Full text of publication follows: To be able to benefit from fusion as a clean and safe power source, we need a comprehensive understanding of the dynamic region of a fusion reactor. Knowing the interplay between the fuel plasma and the reactor components, such as the first wall and the divertor, one can minimize the resulting degradation. The atom-level mechanisms behind the reactions, (e.g. erosion and redeposition) are, however, not accessible to experiments. Hence, computational methods, including molecular dynamics (MD) simulations, are needed. The interactions in a system of particles are within MD described by an interatomic potential. The study of reactor processes requires models for the mixed interaction between the first wall and divertor materials beryllium, carbon and tungsten, as well as for the interaction of these with hydrogen. The absence of proper models for the Be system motivated us to develop potentials for pure Be, Be-C, Be-W and Be-H. We present a Tersoff-like bond order potential for pure Be and the same formalism applied to Be-C and Be-H. The performance of the potentials is discussed and an outlook for the remaining potential is also given. (authors)

  20. Magnetic method of full-scale sample-free control of the mechanical properties of ferromagnetic steel casing of water-moderated reactors

    International Nuclear Information System (INIS)

    A possibility of nondestructive control of the basic metal and welded joints of the clad casing of water-moderated reactors is shown. A method of full-scale sample-free control is developed on the base of combined method of kinetic hardness and magnetic method. The results of studying the magnetic and mechanical properties of casing steels in different states following irradiation and heat treatment are presented. It is shown that magnetic properties (and coercivity in the first place) are sensitive to change in the material structure

  1. Neutron irradiation of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Ermi, R.M. [Pacific Northwest National Lab., Richland, WA (United States); Tsai, H. [Argonne National Lab., IL (United States)

    1998-03-01

    Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

  2. Hanford Site Beryllium Program: Past, Present, and Future - 12428

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) has a long history of beryllium use because of the element's broad application to many nuclear operations and processes. At the Hanford Site beryllium alloy was used to fabricate parts for reactors, including fuel rods for the N-Reactor during plutonium production. Because of continued confirmed cases of chronic beryllium disease (CBD), and data suggesting CBD occurs at exposures to low-level concentrations, the DOE decided to issue a rule to further protect federal and contractor workers from hazards associated with exposure to beryllium. When the beryllium rule was issued in 1999, each of the Hanford Site contractors developed a Chronic Beryllium Disease Prevention Program (CBDPP) and initial site wide beryllium inventories. A new site-wide CBDPP, applicable to all Hanford contractors, was issued in May, 2009. In the spring of 2010 the DOE Headquarters Office of Health, Safety, and Security (HSS) conducted an independent inspection to evaluate the status of implementation of the Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP). The report identified four Findings and 12 cross-cutting Opportunities for Improvement (OFIs). A corrective action plan (CAP) was developed to address the Findings and crosscutting OFIs. The DOE directed affected site contractors to identify dedicated resources to participate in development of the CAP, along with involving stakeholders. The CAP included general and contractor-specific recommendations. Following initiation of actions to implement the approved CAP, it became apparent that additional definition of product deliverables was necessary to assure that expectations were adequately addressed and CAP actions could be closed. Consequently, a supplement to the original CAP was prepared and transmitted to DOE-HQ for approval. Development of the supplemental CAP was an eight month effort. From the onset a core group of CAP development members were identified to develop a mechanism for

  3. Research Reactors Types and Utilization

    International Nuclear Information System (INIS)

    A nuclear reactor, in gross terms, is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate. The nuclei of fuel heavy atoms (mostly 235U or 239Pu), when struck by a slow neutron, may split into two or more smaller nuclei as fission products,releasing energy and neutrons in a process called nuclear fission. These newly-born fast neutrons then undergo several successive collisions with relatively low atomic mass material, the moderator, to become thermalized or slow. Normal water, heavy water, graphite and beryllium are typical moderators. These neutrons then trigger further fissions, and so on. When this nuclear chain reaction is controlled, the energy released can be used to heat water, produce steam and drive a turbine that generates electricity. The fission process, and hence the energy release, are controlled by the insertion (or extraction) of control rods through the reactor. These rods are strongly neutron absorbents, and thus only enough neutrons to sustain the chain reaction are left in the core. The energy released, mostly in the form of heat, should be continuously removed, to protect the core from damage. The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for power in some military ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. Research reactors are used for radioisotope production and for beam experiments with free neutrons. Historically, the first use of nuclear reactors was the production of weapons grade plutonium for nuclear weapons. Currently all commercial nuclear reactors are based on nuclear fission. Fusion power is an experimental technology based on nuclear fusion instead of fission.

  4. Contribution to the development of a neutronic computation scheme of water moderated nuclear reactors provided with plate fuels

    International Nuclear Information System (INIS)

    This thesis comprises two parts. First, the present computation diagram used for CAS type reactors is completed by studying fuel plate reactors. It is dealt with the effects of an homogenization of the Zr rodlets in the plates, and the plates inside the fuel cluster on the 238U resonance capture; a research of the effective fuel temperature and the development of the AZUR IV calculation of the core for fuel-plate reactors; with using APOLLO, DOT, NEPTUNE, and the KERA procedure. The comparison between experimental and computed temperature coefficients leads to fit the 235U fission cross section in view of correcting the computer error on the temperature coefficient (sub estimation of 2-3 pcm/0C)

  5. Melting of contaminated steel scrap from the dismantling of the CO2 systems of gas cooled, graphite moderated nuclear reactors

    International Nuclear Information System (INIS)

    G2 and G3 are the natural Uranium cooled reactors Graphite/Gas. The two reactors were designed for both plutonium and electricity production (45 MWe). The dismantling of the reactors at stage 2 has produced more than 4 000 tonnes of contaminated scrap. Because of their large mass and low residual contamination level, the French Atomic Energy Commission (CEA) considered various possibilities for the processing of these metallic products in order to reduce the volume of waste going to be stored. After different studies and tests of several processes and the evaluation of their results, the choice to melt the dismantled pipeworks was taken. It was decided to build the Nuclear Steel Melting Facility known as INFANTE, in cooperation with a steelmaker (AHL). The realization time schedule for the INFANTE lasted 20 months. It included studies, construction and the licensing procedure. (authors). 2 tabs., 3 figs

  6. Characterization and Application of the Thermal Neutron Radiography Beam in the Egyptian Second Experimental and Training Research Reactor (ETRR-2)

    OpenAIRE

    M. A. Abou Mandour; R. M. Megahid; Hassan, M.H.; T. M. Abd El Salam

    2007-01-01

    The Experimental, Training, Research Reactor (ETRR-2) is an open-pool multipurpose reactor (MPR) with a core power of 22 MWth cooled and moderated by light water and reflected with beryllium. It has four neutron beams and a thermal column as the main experimental devices. The neutron radiography facility unit utilizes one of the radial beam tubes. The track-etch technique using nitrocellulose films and converter screen is applied. In this work, the radial neutron beam for the thermal neutron ...

  7. Defense programs beryllium good practice guide

    International Nuclear Information System (INIS)

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D ampersand D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is

  8. In-pile thermocycling testing and post-test analysis of beryllium divertor mockups

    Energy Technology Data Exchange (ETDEWEB)

    Giniatulin, R.; Mazul, I. [Efremov Inst., St. Petersburg (Russian Federation); Melder, R.; Pokrovsky, A.; Sandakov, V.; Shiuchkin, A.

    1998-01-01

    The main damaging factors which impact the ITER divertor components are neutron irradiation, cyclic surface heat loads and hydrogen environment. One of the important questions in divertor mockups development is the reliability of beryllium/copper joints and the beryllium resistance under neutron irradiation and thermal cycling. This work presents the experiment, where neutron irradiation and thermocyclic heat loads were applied simultaneously for two beryllium/copper divertor mockups in a nuclear reactor channel to simulate divertor operational conditions. Two mockups with different beryllium grades were mounted facing each other with the tantalum heater placed between them. This device was installed in the active zone of the nuclear reactor SM-2 (Dimitrovgrad, Russia) and the tantalum block was heated by neutron irradiation up to a high temperature. The main part of the heat flux from the tantalum surface was transported to the beryllium surface through hydrogen, as a result the heat flux loaded two mockups simultaneously. The mockups were cooled by reactor water. The device was lowered to the active zone so as to obtain the heating regime and to provide cooling lifted. This experiment was performed under the following conditions: tantalum heater temperature - 1950degC; hydrogen environment -1000 Pa; surface heat flux density -3.2 MW/m{sup 2}; number of thermal cycles (lowering and lifting) -101; load time in each cycle - 200-5000 s; dwell time (no heat flux, no neutrons) - 300-2000 s; cooling water parameters: v - 1 m/s, Tin - 50degC, Pin - 5 MPa; neutron fluence -2.5 x 10{sup 20} cm{sup -2} ({approx}8 years of ITER divertor operation from the start up). The metallographic analysis was performed after experiment to investigate the beryllium and beryllium/copper joint structures, the results are presented in the paper. (author)

  9. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor; Diseno de una recarga mixta con ensambles MOX de mayor relacion de moderacion para un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios H, J. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2004-07-01

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  10. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    Science.gov (United States)

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  11. Reactivity test between beryllium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Kato, M. [NGK Insulators, Ltd., Aichi-ken (Japan)

    1995-09-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700{degrees}C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper).

  12. Worker Environment Beryllium Characterization Study

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environment, Safety, Health & Quality

    2009-12-28

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, “Minnema Report.”

  13. Worker Environment Beryllium Characterization Study

    International Nuclear Information System (INIS)

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, 'Minnema Report.'

  14. A comparison between beryllium and graphite as materials for JET limiters and wall surfaces

    International Nuclear Information System (INIS)

    JET has always been operated with graphite limiters. Carbonisation has been performed from time to time resulting in a temporary reduction of Zeff. However, the latest results at high power (up to 30 MW) indicate that in most cases the impurity content in the plasma is too large to reach near reactor conditions. To reduce the impurity content to a level acceptable in a reactor, it is proposed to use beryllium as a material for the limiters and wall surfaces in JET. This proposal was first made four years ago on the basis of a report comparing the relative merits of beryllium and carbon. This report is now updated in the present paper, which contains three parts, covering the effects of impurities on the plasma performance, the physical and chemical properties of graphite and beryllium and a simple model for the impurity production at the plasma edge. (author)

  15. Optimizing pin layout in transmutation rate of long-life FP with deuteride moderator for fast reactors

    International Nuclear Information System (INIS)

    Some types of Long-life FP (LLFP) assemblies are arranged with deuteride moderator pins at the 1st layer of radial blanket position in a demonstration class MOX-fuel core (thermal power is 1600MWth, core equivalent diameter is 2.2m, and core height is 1m), and annual transmutation rates have been evaluated. The calculation has been conducted by using three-dimensional continuations energy Monte Carlo code MVP and JENDL-3.3 library along with MVP-BURN as a burn-up calculation routine. In this study, neutron moderation and absorption effect has been taken into consideration by optimizing the layout of pins, which contains LLFP with zirconium deuteride or zirconium hydride moderators. The support factor, that is the ratio of the amount of generated LLFP to the transmuted LLFP, have been also evaluated for the same core. As a result, the optimized transmutation rate of 53% in 6 years has been achieved for the assembly when outer 90 pins are contain only zirconium deteride and inner 31 pins contain the mixture of LLFP and zirconium hydride with the volume ratio of LLFP to Zirconium moderator of 0.3, while the support factor of the core has been 2.5. (author)

  16. SNS second target station moderator performance update

    International Nuclear Information System (INIS)

    In its first years of operations of its first target station, the Spallation Neutron Source (SNS) is working towards a facility upgrade by a megawatt-class second target station operated at 20 Hz repetition rate, which is intended to complement the existing ORNL neutron sources, the first SNS target station and the HFIR reactor, with high-intensity cold neutron beams.The first round of optimization calculations converged on larger-volume cylindrical para-hydrogen moderators placed in wing configuration on top and bottom of a flat mercury target, premoderated by layers of ambient water and surrounded by beryllium reflector. The metric of these optimization calculations was time-averaged and energy-integrated neutron brightness below 5 meV with the requirement to be able to serve 20 ports with neutrons. A summary of these calculations will be given including lessons learned from the variety of simulated configurations and detailed neutron performance characteristics like spectral intensities, emission time distributions, local variations of moderator brightness at the viewed areas, and sensitivity of the optimization metric to optimized parameters for the most promising configuration.

  17. Reaction Cross Section Calculations in Neutron Induced Reactions and GEANT4 Simulation of Hadronic Interactions for the Reactor Moderator Material BeO

    Directory of Open Access Journals (Sweden)

    Veli ÇAPALI

    2016-05-01

    Full Text Available BeO is one of the most common moderator material for neutron moderation; due to its high density, neutron capture cross section and physical-chemical properties that provides usage at elevated temperatures. As it’s known, for various applications in the field of reactor design and neutron capture, reaction cross–section data are required. The cross–sections of (n,α, (n,2n, (n,t, (n,EL and (n,TOT reactions for 9Be and 16O nuclei have been calculated by using TALYS 1.6 Two Component Exciton model and EMPIRE 3.2 Exciton model in this study. Hadronic interactions of low energetic neutrons and generated isotopes–particles have been investigated for a situation in which BeO was used as a neutron moderator by using GEANT4, which is a powerful simulation software. In addition, energy deposition along BeO material has been obtained. Results from performed calculations were compared with the experimental nuclear reaction data exist in EXFOR.

  18. OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Brisson, M

    2009-04-01

    Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining chapters. The goal of this book is to provide a comprehensive resource to aid personnel in a wide variety of disciplines in selecting sampling and analysis methods that will facilitate informed decision-making in workplace and environmental settings.

  19. Modeling and design of a new core-moderator assembly and neutron beam ports for the Penn State Breazeale Nuclear Reactor (PSBR)

    Science.gov (United States)

    Ucar, Dundar

    This study is for modeling and designing a new reactor core-moderator assembly and new neutron beam ports that aimed to expand utilization of a new beam hall of the Penn State Breazeale Reactor (PSBR). The PSBR is a part of the Radiation Science and Engineering Facility (RSEC) and is a TRIGA MARK III type research reactor with a movable core placed in a large pool and is capable to produce 1MW output. This reactor is a pool-type reactor with pulsing capability up to 2000 MW for 10-20 msec. There are seven beam ports currently installed to the reactor. The PSBR's existing core design limits the experimental capability of the facility, as only two of the seven available neutron beam ports are usable. The finalized design features an optimized result in light of the data obtained from neutronic and thermal-hydraulics analyses as well as geometrical constraints. A new core-moderator assembly was introduced to overcome the limitations of the existing PSBR design, specifically maximizing number of available neutron beam ports and mitigating the hydrogen gamma contamination of the neutron beam channeled in the beam ports. A crescent-shaped moderator is favored in the new PSBR design since it enables simultaneous use of five new neutron beam ports in the facility. Furthermore, the crescent shape sanctions a coupling of the core and moderator, which reduces the hydrogen gamma contamination significantly in the new beam ports. A coupled MURE and MCNP5 code optimization analysis was performed to calculate the optimum design parameters for the new PSBR. Thermal-hydraulics analysis of the new design was achieved using ANSYS Fluent CFD code. In the current form, the PSBR is cooled by natural convection of the pool water. The driving force for the natural circulation of the fluid is the heat generation within the fuel rods. The convective heat data was generated at the reactor's different operating powers by using TRIGSIMS, the fuel management code of the PSBR core. In the CFD

  20. Design and safety considerations for the 10 MW(t) multipurpose TRIGA reactor in Thailand

    International Nuclear Information System (INIS)

    General Atomics (GA) is constructing the Ongkharak Nuclear Research Center (ONRC) near Bangkok, Thailand for the Office of Atomic Energy for Peace. The ONRC complex includes the following: A multipurpose 10 MW(t) research reactor; An Isotope Production Facility; Centralized Radioactive Waste Processing and Storage Facilities. The Center is being built 60-km northeast of Bangkok, with a 10 MW(t) TRIGA type research reactor as the centerpiece. Facilities are included for neutron transmutation doping of silicon, neutron capture therapy neutron beam research and for production of a variety of radioisotopes. The facility will also be utilized for applied research and technology development as well as training in reactor operations, conduct of experiments and in reactor physics. The multipurpose, pool-type reactor will be fueled with high-density (45 wt%), low-enriched (19.7 wt%) uranium-erbium-zirconium-hydride (UErZrH) fuel rods, cooled and moderated by light water, and reflected by beryllium and heavy water. The general arrangement of the reactor and auxiliary pool structure allows irradiated targets to be transferred entirely under water from their irradiation locations to the hot cell, then pneumatically transferred to the adjacent Isotope Production Facility for processing. The core configuration includes 4 x 4 array standard TRIGA fuel clusters, modified clusters to serve as fast-neutron irradiation facilities, control rods and an in-core Ir-192 production facility. The active core is reflected on two sides by beryllium and on the other two sides by D2O. Additional irradiation facilities are also located in the beryllium reflector blocks and the D2O reflector blanket. The fuel provides the fundamental safety feature of the ONRC reactor, and as a result of all the well established accident-mitigating characteristics of the UErZrH fuel itself (large prompt negative temperature coefficient of reactivity, fission product retention and chemical stability), a

  1. Defense programs beryllium good practice guide

    Energy Technology Data Exchange (ETDEWEB)

    Herr, M.

    1997-07-01

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is likely to

  2. Mutagenicity, carcinogenicity and teratogenicity of beryllium.

    Science.gov (United States)

    Léonard, A; Lauwerys, R

    1987-07-01

    The carcinogenicity of a number of beryllium compounds has been confirmed in experiments on laboratory animals and this metal has to be treated as a possible carcinogenic threat to man. These carcinogenic properties are associated with mutagenic activity as shown by the results of short-term tests performed in vitro with beryllium chloride and beryllium sulfate. These soluble beryllium compounds can produce some infidelity of in vitro synthesis, forward gene mutations in microorganisms and in mammalian cells. They are also able to induce cell transformation. In addition to the positive results obtained in several short-term assays beryllium compounds have been found to bind to nucleoproteins, to inhibit certain enzymes needed for DNA synthesis, to bind nucleic acids to cell membranes and to inhibit microtubule polymerization. The teratogenicity of beryllium salts is relatively unknown and needs additional investigation.

  3. Optimization of U–Th fuel in heavy water moderated thermal breeder reactors using multivariate regression analysis and genetic algorithms

    International Nuclear Information System (INIS)

    Highlights: • A new method useful for the parametric analysis and optimization of reactor core designs. • This uses the strengths of genetic algorithms (GA), and regression splines. • The method is applied to the core fuel pin cell of a PHWR design. • Tools like java, R, and codes like Serpent, Matlab are used in this research. - Abstract: An analysis and optimization of a set of neutronics parameters of a thorium-fueled pressurized heavy water reactor core fuel has been performed. The analysis covers a detailed pin-cell analysis of a seed-blanket configuration, where the seed is composed of natural uranium, and the blanket is composed of thorium. Genetic algorithms (GA) is used to optimize the input parameters to meet a specific set of objectives related to: infinite multiplication factor, initial breeding ratio, and specific nuclide’s effective microscopic cross-section. The core input parameters are the pitch-to-diameter ratio, and blanket material composition. Recursive partitioning of decision trees (rpart) multivariate regression model is used to perform a predictive analysis of the samples generated from the GA module. Reactor designs are usually complex and a simulation needs a significantly large amount time to execute, hence implementation of GA or any other global optimization techniques is not feasible, therefore we present a new method of using rpart in conjunction with GA. Due to using rpart, we do not necessarily need to run the neutronics simulation for all the inputs generated from the GA module rather, run the simulations for a predefined set of inputs, build a regression fit to the input and the output parameters, and then use this fit to predict the output parameters for the inputs generated by GA. The rpart model is implemented as a library using R programming language. The results suggest that the initial breeding ratio tends to increase due to a harder neutron spectrum, however a softer neutron spectrum is desired to limit the

  4. The ISIS operation: Robotics repair work on the CHINON A3 natural uranium, carbon dioxide cooled, graphite moderated reactor

    International Nuclear Information System (INIS)

    After describing the upper internal support structures of the CHINON A3 reactor, the problems resulting from their degradation due to corrosion and to the difficulties of the ISIS operation are presented here. The repair method is as follows: all tools and repair parts reach the working area by the feeding-pipes drilled through the 7 m thick concrete vessel surrounding the reactor core; the robots handle into the reactor, the tool heads and the repair parts which are automatically positioned and welded around the corroded structure, thus restoring the support of measurement devices. The parts are either linked together or to the existing structure by means of 2 studs of 12 mm in diameter. The different phases to sort out a problem are: in-core topography, reconforming of the full-scale mock-up with the repair area, learning on this mock-up and in-core repair. The technical specificities of the robots used are the following: they have an 11 meter long, 0.22 meter across telescopic mast with jointed arms reaching a radius of 2.7 m. Then the useful load is 70 daN and the repeatability 0.1 mm. Different tool heads can be handled by the robot: telemeter and laser reconstruction: it allows to locate the in core points and to materialize them on the mock-up by a laser crossed-beams locating technique; scouring: it cleans the corroded parts of the structures before welding; welding: it allows the parts handling and the carried studs welding; screwing; tensile test: carried out when the stud welds are defective. A high level computerized control system is organized around a central unit which calculates the displacements of robots and synchronises the actions of different tools by communicating with several local units. A 100,000 hour designing, a 200,000 hour building and assembling and a 450,000 hour operating on working area were necessary to repair 15 out of the 102 corroded structures by fitting and welding 205 repair parts. 10 figs

  5. Inhibited solid propellant composition containing beryllium hydride

    Science.gov (United States)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  6. Investigations of the ternary system beryllium-carbon-tungsten and analyses of beryllium on carbon surfaces; Untersuchung des ternaeren Systems Beryllium-Kohlenstoff-Wolfram und Betrachtungen von Beryllium auf Kohlenstoffoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, Florian

    2009-05-25

    Beryllium, carbon and tungsten are planned to be used as first wall materials in the future fusion reactor ITER. The aim of this work is a characterization of mixed material formation induced by thermal load. To this end, model systems (layers) were prepared and investigated, which give insight into the basic physical and chemical concepts. Before investigating ternary systems, the first step was to analyze the binary systems Be/C and Be/W (bottom-up approach), where the differences between the substrates PG (pyrolytic graphite) and HOPG (highly oriented pyrolytic graphite) were of special interest. Particularly X-ray photoelectron spectroscopy (XPS), low energy ion scattering (ISS) and Rutherford backscattering spectroscopy (RBS) were used as analysis methods. Beryllium evaporated on carbon shows an island growth mode, whereas a closed layer can be assumed for layer thicknesses above 0.7 nm. Annealing of the Be/C system induces Be{sub 2}C island formation for T{>=}770 K. At high temperatures (T{>=}1170 K), beryllium carbide dissociates, resulting in (metallic) beryllium desorption. For HOPG, carbide formation starts at higher temperatures compared to PG. Activation energies for the diffusion processes were determined by analyzing the decreasing beryllium amount versus annealing time. Surface morphologies were characterized using angle-resolved XPS (ARXPS) and atomic force microscopy (AFM). Experiments were performed to study processes in the Be/W system in the temperature range from 570 to 1270 K. Be{sub 2}W formation starts at 670 K, a complete loss of Be{sub 2}W is observed at 1170 K due to dissociation (and subsequent beryllium desorption). Regarding ternary systems, particularly Be/C/W and C/Be/W were investigated, attaching importance to layer thickness (reservoir) variations. At room temperature, Be{sub 2}C, W{sub 2}C, WC and Be{sub 2}W formation at the respective interfaces was observed. Further Be{sub 2}C is forming with increasing annealing temperatures

  7. Reflector-moderated critical assemblies

    International Nuclear Information System (INIS)

    Experiments with reflector-moderated critical assemblies were part of the Rover Program at the Los Alamos Scientific Laboratory (LASL). These assemblies were characterized by thick D2O or beryllium reflectors surrounding large cavities that contained highly enriched uranium at low average densities. Because interest in this type of system has been revived by LASL Plasma Cavity Assembly studies, more detailed descriptions of the early assemblies than had been available in the unclassified literature are provided. (U.S.)

  8. Dosage of boron traces in graphite, uranium and beryllium oxide

    International Nuclear Information System (INIS)

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.)

  9. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Dan [ORNL

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  10. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    CERN Document Server

    Alba, R; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, G; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Santonocito, D; Schillaci, M

    2012-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  11. Sodium-cooled fast reactor (SFR) fuel assembly design with graphite-moderating rods to reduce the sodium void reactivity coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Hyuck; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr; Park, Hae Min; Jeong, Yong Hoon, E-mail: jeongyh@kaist.ac.kr

    2014-12-15

    Highlights: • The graphite rod-inserted SFR fuel assembly is proposed to achieve low sodium void reactivity. • The neutronics/thermal-hydraulics analyses are performed for the proposed SFR cores. • The sodium void reactivity is improved about 960–1030 pcm compared to reference design. - Abstract: The concept of a graphite-moderating rod-inserted sodium-cooled fast reactor (SFR) fuel assembly is proposed in this study to achieve a low sodium void reactivity coefficient. Using this concept, two types of SFR cores are analyzed; the proposed SFR type 1 core has new SFR fuel assemblies at the inner/mid core regions while the proposed SFR type 2 core has a B{sub 4}C absorber sandwich in the middle of the active core region as well as new SFR fuel assemblies at the inner/mid core regions. For the proposed SFR core designs, neutronics and thermal-hydraulic analyses are performed using the DIF3D, REBUS3, and the MATRA-LMR codes. In the neutronics analysis, the sodium void reactivity coefficient is obtained in various void situations. The two types of proposed core designs reduce the sodium void reactivity coefficient by about 960–1030 pcm compared to the reference design. However, the TRU enrichment for the proposed SFR core designs is increased. In the thermal hydraulic analysis, the temperature distributions are calculated for the two types of proposed core designs and the mass flow rate is optimized to satisfy the design constraints for the highest power generating assembly. The results of this study indicate that the proposed SFR assembly design concept, which adopts graphite-moderating rods which are inserted into the fuel assembly, can feasibly minimize the sodium void reactivity coefficient. Single TRU enrichment and an identical fuel slug diameter throughout the SFR core are also achieved because the radial power peak can be flattened by varying the number of moderating rods in each core region.

  12. Assessment of segregation kinetics in water-moderated reactors pressure vessel steels under long-term operation

    Science.gov (United States)

    Kuleshova, E. A.; Gurovich, B. A.; Lavrukhina, Z. V.; Saltykov, M. A.; Fedotova, S. V.; Khodan, A. N.

    2016-08-01

    In reactor pressure vessel (RPV) bcc-lattice steels temper embrittlement is developed under the influence of both operating temperature of ∼300 °C and neutron irradiation. Segregation processes in the grain boundaries (GB) begin to play a special role in the assessment of the safe operation of the RPV in case of its lifetime extension up to 60 years or more. The most reliable information on the RPV material condition can be obtained by investigating the surveillance specimens (SS) that are exposed to operational factors simultaneously with the RPV itself. In this paper the GB composition in the specimens with different thermal exposure time at the RPV operating temperature as well as irradiated by fast neutrons (E ≥ 0.5 MeV) to different fluences (20-71)·1022 m-2 was studied by means of Auger electron spectroscopy (AES) including both impurity and main alloying elements content. The data obtained allowed to trace the trend of the operating temperature and radiation-stimulated diffusion influence on the overall segregants level in GB. The revealed differences in the concentration levels of GB segregants in different steels, are due to the different chemical composition of the steels and also due to different grain boundary segregation levels in initial (unexposed) state. The data were used to estimate the RPV steels working capacity for 60 years. The estimation was carried out using both the well-known Langmuir-McLean model and the one specially developed for RPV steels, which takes into account the structure and phase composition of VVER-1000 RPV steels, as well as the long-term influence of operational factors.

  13. Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K; West, William Howard

    2002-07-01

    In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The High Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.

  14. Investigation of beryllium/steam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chekhonadskikh, A.M.; Vurim, A.D.; Vasilyev, Yu.S.; Pivovarov, O.S. [Inst. of Atomic Energy National Nuclear Center of the Republic of Kazakstan Semipalatinsk (Kazakhstan); Shestakov, V.P.; Tazhibayeva, I.L.

    1998-01-01

    In this report program on investigations of beryllium emissivity and transient processes on overheated beryllium surface attacked by water steam to be carried out in IAE NNC RK within Task S81 TT 2096-07-16 FR. The experimental facility design is elaborated in this Report. (author)

  15. Modeling of hydrogen interactions with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-01-01

    In this paper, improved mathematical models are developed for hydrogen interactions with beryllium. This includes the saturation effect observed for high-flux implantation of ions from plasmas and retention of tritium produced from neutronic transmutations in beryllium. Use of the models developed is justified by showing how they can replicated experimental data using the TMAP4 tritium transport code. (author)

  16. Assessment of LANL beryllium waste management documentation

    International Nuclear Information System (INIS)

    The objective of this report is to determine present status of the preparation and implementation of the various high priority documents required to properly manage the beryllium waste generated at the Laboratory. The documents being assessed are: Waste Acceptance Criteria, Waste Characterization Plan, Waste Certification Plan, Waste Acceptance Procedures, Waste Characterization Procedures, Waste Certification Procedures, Waste Training Procedures and Waste Recordkeeping Procedures. Beryllium is regulated (as a dust) under 40 CFR 261.33 as ''Discarded commercial chemical products, off specification species, container residues and spill residues thereof.'' Beryllium is also identified in the 3rd thirds ruling of June 1, 1990 as being restricted from land disposal (as a dust). The beryllium waste generated at the Laboratory is handled separately because beryllium has been identified as a highly toxic carcinogenic material

  17. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    Energy Technology Data Exchange (ETDEWEB)

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  18. Solid state bonding of beryllium-copper for an ITER first wall application

    International Nuclear Information System (INIS)

    Several different joint assemblies were evaluated in support of a manufacturing technology for diffusion bonding a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Because beryllium reacts with all but a few elements to form intermetallic compounds, this study considered several different surface treatments as a means of both inhibiting these reactions and promoting a good diffusion bond between the two substrates. All diffusion bonded assemblies used aluminum or an aluminum-beryllium composite (AlBeMet-150) as the interfacial material in contact with beryllium. In most cases, explosive bonding was utilized as a technique for joining the copper alloy heat sink to an aluminum or AlBeMet-150 substrate, which was subsequently diffusion bonded to an aluminum coated beryllium tile. In this approach, a 250 μm thick titanium foil was used as a diffusion barrier between the copper and aluminum to prevent the formation of Cu-Al intermetallic phases. In all cases, a hot isostatic pressing (HIP) furnace was used in conjunction with canned assemblies in order to minimize oxidation and apply sufficient pressure on the assembly for excellent metal-to-metal contact and subsequent bonding. Several different processing schedules were evaluated during the course of this study; bonded assemblies were produced that failed outside the bond area indicating a 100% joint efficiency. (author)

  19. Solid state bonding of beryllium-copper for an ITER first wall application

    Energy Technology Data Exchange (ETDEWEB)

    Odegard, B.C. Jr.; Cadden, C.H. [Sandia National Labs., Livermore, CA (United States)

    1998-01-01

    Several different joint assemblies were evaluated in support of a manufacturing technology for diffusion bonding a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Because beryllium reacts with all but a few elements to form intermetallic compounds, this study considered several different surface treatments as a means of both inhibiting these reactions and promoting a good diffusion bond between the two substrates. All diffusion bonded assemblies used aluminum or an aluminum-beryllium composite (AlBeMet-150) as the interfacial material in contact with beryllium. In most cases, explosive bonding was utilized as a technique for joining the copper alloy heat sink to an aluminum or AlBeMet-150 substrate, which was subsequently diffusion bonded to an aluminum coated beryllium tile. In this approach, a 250 {mu}m thick titanium foil was used as a diffusion barrier between the copper and aluminum to prevent the formation of Cu-Al intermetallic phases. In all cases, a hot isostatic pressing (HIP) furnace was used in conjunction with canned assemblies in order to minimize oxidation and apply sufficient pressure on the assembly for excellent metal-to-metal contact and subsequent bonding. Several different processing schedules were evaluated during the course of this study; bonded assemblies were produced that failed outside the bond area indicating a 100% joint efficiency. (author)

  20. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  1. Electrical system regulations of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Jose Roberto de; Madi Filho, Tufic, E-mail: jrmello@ipen.br, E-mail: tmfilho@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The IEA-R1 reactor of the Nuclear and Energy Research Institute (IPEN-CNEN/SP), is a research reactor open pool type, designed and built by the U.S. firm Babcock and Wilcox, having, as coolant and moderator, deionized light water and beryllium and graphite, as reflectors. Until about 1988, the reactor safety systems received power from only one source of energy. As an example, it may be cited the control desk that was powered only by the vital electrical system 220V, which, in case the electricity fails, is powered by the generator group: no-break 220V. In the years 1989 and 1990, a reform of the electrical system upgrading to increase the reactor power and, also, to meet the technical standards of the ABNT (Associacao Brasileira de Normas Tecnicas) was carried out. This work has the objective of showing the relationship between the electric power system and the IEA-R1 reactor security. Also, it demonstrates that, should some electrical power interruption occur, during the reactor operation, this occurrence would not start an accident event. (author)

  2. Fluorimetric method for determination of Beryllium

    International Nuclear Information System (INIS)

    The old fluorimetric method for the determination of Beryllium, based essentially on the fluorescence of the Beryllium-Morine complex in a strongly alkaline solution, is still competitive and stands the comparison with more modern methods or at least three reasons: in the presence of solid or gaseous samples (powders), the times necessary to finalize an analytic determination are comparable since the stage of the process which lasts the longest is the mineralization of the solid particles containing Beryllium, the cost of a good fluorimeter is by far Inferior to the cost, e. g., of an Emission Spectrophotometer provided with ICP torch and magnets for exploiting the Zeeman effect and of an Atomic absorption Spectrophotometer provided with Graphite furnace; it is possible to determine, fluorimetrically, rather small Beryllium levels (about 30 ng of Beryllium/sample), this potentiality is more than sufficient to guarantee the respect of all the work safety and hygiene rules now in force. The study which is the subject of this publication is designed to the analysis procedure which allows one to reach good results in the determination of Beryllium, chiefly through the control and measurement of the interference effect due to the presence of some metals which might accompany the environmental samples of workshops and laboratories where Beryllium is handled, either at the pure state or in its alloys. The results obtained satisfactorily point out the merits and limits of this analytic procedure

  3. Preliminary proposal for a beryllium technology program for fusion applications

    International Nuclear Information System (INIS)

    The program was designed to provide the answers to the critical issues of beryllium technology needed in fusion blanket designs. The four tasks are as follows: (1) Beryllium property measurements needed for fusion data base. (2) Beryllium stress relaxation and creep measurements for lifetime modelling calculations. (3) Simplified recycle technique development for irradiated beryllium. (4) Beryllium neutron multiplier measurements using manganese bath absolute calibration techniques

  4. Space craft thermal thermionic reactors with flat power distribution

    International Nuclear Information System (INIS)

    The nuclear reactors are potential candidates for energy generation in space missions over longer periods where high power output is required. Among different nuclear energy conversion options, the statical ones, such as thermo-electric or thermionic reactors, are preferable in order to avoid the kinetic disturbances of the space craft and furthermore in order to reduce the failure probabilities to a minimum, caused by lubricants and seals. In the present study, the main parameters of different types of thermal thermionic reactors are discussed which are fueled with U-233 or U-235 and moderated with ZrH1.7 or Beryllium. The investigated thermionic reactors will be layed out to have a constant heat production density on the emitter surface over the space variable, so as to achieve a maximum engineering efficiency with respect to the electrical conversion, nuclear fuel utilization, material damage, thermal and radiation gradients. The power flattening procedure is performed by varying the moderator to fuel ratio, both in axial and radial directions

  5. Characteristics of microstructure and tritium release properties of different kinds of beryllium pebbles for application in tritium breeding modules

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, P., E-mail: petr.kurinskiy@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Vladimirov, P.; Moeslang, A. [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Rolli, R. [Karlsruhe Institute of Technology, Institute for Applied Materials – Materials and Biomechanics (IAM-WBM), P.O. Box 3640, Karlsruhe 76021 (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2014-10-15

    Highlights: • Tritium release properties and characteristics of microstructure of beryllium pebbles having different sizes of grains were studied. • Fine-grained beryllium pebbles showed the best ability to release tritium compared to pebbles from another charges. • Be pebbles with the grain sizes exceeding 100 μm contain a great number of small pores and inclusions presumably referring to the history of material fabrication. • The sizes of grains are one of a key characteristic of microstructure which influences the parameters of tritium release. - Abstract: Beryllium pebbles with diameters of 1 mm are considered to be perspective material for the use as neutron multiplier in tritium breeding modules of fusion reactors. Up to now, the design of helium-cooled breeding blanket in ITER project foresees the use of 1 mm beryllium pebbles fabricated by NGK Insulators Ltd., Japan. It is notable that beryllium pebbles from Russian Federation and USA are also available and the possibility of their large-scale fabrication is under study. Presented work is dedicated to a study of characteristics of microstructure and parameters of tritium release of beryllium pebbles produced by Bochvar Institute, Russian Federation, and Materion Corporation, USA.

  6. The 10 MW multipurpose TRIGA reactor at Ongkharak Nuclear Research Center, Thailand

    International Nuclear Information System (INIS)

    General Atomics (GA), has been selected to lead a team of firms from the United States, Japan, Australia and Thailand to design, build and commission the Ongkharak Nuclear Research Center near Bangkok, Thailand, for the Office of Atomic Energy for Peace. The facilities to be provided comprise of: A Reactor Island, consisting of a 10 MW TRIGA reactor that takes full advantage of the inherent safety characteristics of uranium-zirconium hydride (UZrH) fuel; An Isotope Production Facility for the production of radioisotopes and radiopharmaceuticals using the TRIGA reactor; A Waste Processing and Storage Facility for the processing and storage of radioactive waste from the facility as well as other locations in Thailand. The centerpiece of the Center will be the TRIGA reactor, fueled with low-enriched UZrH fuel, cooled and moderated by light water, and reflected by beryllium and heavy water. The UZrH fueled reactor will have a rated steady state thermal power output of 10 MW, and will be capable of performing the following: Radioisotope production for medical, industrial and agricultural uses; Neutron transmutation doping of silicon; Beam experiments such as Neutron Scattering, Neutron Radiography (NR), and Prompt Gamma Neutron Activation Analysis (PGNAA); Medical therapy of patients using Boron Neutron Capture Therapy (BNCT); Applied research and technology development in the nuclear field; Training in principles of reactor operation, reactor physics, reactor experiments, etc. (author)

  7. IEA-R1 research reactor: operational life extension and considerations regarding future decommissioning

    International Nuclear Information System (INIS)

    The IEA-R1 reactor is a pool type research reactor moderated and cooled by light water and uses graphite and beryllium reflectors. The reactor is located at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), in the city of Sao Paulo, Brazil. It is the oldest research reactor in the southern hemisphere and one of the oldest of this kind in the world. The first criticality of the reactor was obtained on September 16, 1957. Given the fact that Brazil does not have yet a definitive radioactive waste repository and a national policy establishing rules for the spent fuel storage, the institutions which operate the research reactors for more than 50 years in the country have searched internal solutions for continued operation. This paper describes the spent fuel assemblies and radioactive waste management process for the IEA-R1 reactor and the refurbishment and modernization program adopted to extend its lifetime. Some considerations about the future decommissioning of the reactor are also discussed which, in my opinion, might help the operating organization to make decisions about financial, legal and technical aspects of the decommissioning procedures in a time frame of 10-15 years(author)

  8. Chronic Beryllium Disease Prevention Program Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S

    2012-03-29

    This document describes how Lawrence Livermore National Laboratory (LLNL) meets the requirements and management practices of federal regulation 10 CFR 850, 'Chronic Beryllium Disease Prevention Program (CBDPP).' This revision of the LLNL CBDPP incorporates clarification and editorial changes based on lessons learned from employee discussions, observations and reviews of Department of Energy (DOE) Complex and commercial industry beryllium (Be) safety programs. The information is used to strengthen beryllium safety practices at LLNL, particularly in the areas of: (1) Management of small parts and components; and (2) Communication of program status to employees. Future changes to LLNL beryllium activities and on-going operating experience will be incorporated into the program as described in Section S, 'Performance Feedback.'

  9. Lithium-Beryllium-Boron : Origin and Evolution

    OpenAIRE

    Vangioni-Flam, Elisabeth; Casse, Michel; Audouze, Jean

    1999-01-01

    The origin and evolution of Lithium-Beryllium-Boron is a crossing point between different astrophysical fields : optical and gamma spectroscopy, non thermal nucleosynthesis, Big Bang and stellar nucleosynthesis and finally galactic evolution. We describe the production and the evolution of Lithium-Beryllium-Boron from Big Bang up to now through the interaction of the Standard Galactic Cosmic Rays with the interstellar medium, supernova neutrino spallation and a low energy component related to...

  10. Oxide segregation and melting behavior of transient heat load exposed beryllium

    Science.gov (United States)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-10-01

    In the experimental fusion reactor ITER, beryllium will be applied as first wall armor material. However, the ITER-like wall project at JET already experienced that the relatively low melting temperature of beryllium can easily be exceeded during plasma operation. Therefore, a detailed study was carried out on S-65 beryllium under various transient, ITER-relevant heat loads that were simulated in the electron beam facility JUDITH 1. Hereby, the absorbed power densities were in the range of 0.15-1.0 GW m-2 in combination with pulse durations of 1-10 ms and pulse numbers of 1-1000. In metallographic cross sections, the emergence of a transition region in a depth of ~70-120 µm was revealed. This transition region was characterized by a strong segregation of oxygen at the grain boundaries, determined with energy dispersive x-ray spectroscopy element mappings. The oxide segregation strongly depended on the maximum temperature reached at the end of the transient heat pulse in combination with the pulse duration. A threshold for this process was found at 936 °C for a pulse duration of 10 ms. Further transient heat pulses applied to specimens that had already formed this transition region resulted in the overheating and melting of the material. The latter occurred between the surface and the transition region and was associated with a strong decrease of the thermal conductivity due to the weakly bound grains across the transition region. Additionally, the transition region caused a partial separation of the melt layer from the bulk material, which could ultimately result in a full detachment of the solidified beryllium layers from the bulk armor. Furthermore, solidified beryllium filaments evolved in several locations of the loaded area and are related to the thermally induced crack formation. However, these filaments are not expected to account for an increase of the beryllium net erosion.

  11. Sanitary-hygienic and ecological aspects of beryllium production

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Sidorov, V.L.; Slobodin, D.B.; Tuzov, Y.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)

    1998-01-01

    The Report describes An organization of sanitary-hygienic and ecological control of beryllium production at Ulba metallurgical plant. It involves: (1) the consideration of main methods for protection of beryllium production personnel from unhealthy effect of beryllium, (2) main kinds of filters, used in gas purification systems at different process areas, (3) data on beryllium monitoring in water, soil, on equipment. This Report also outlines problems connected with designing devices for a rapid analysis of beryllium in air as well as problems of beryllium production on ecological situation in the town. (author)

  12. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  13. Tritium release from neutron irradiated beryllium: Kinetics, long-time annealing and effect or crack formation

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe, (Germany)

    1995-09-01

    Since beryllium is considered as one of the best neutron multiplier materials in the blanket of the next generation fusion reactors, several studies have been started to evaluate its behaviour under irradiation during both operating and accidental conditions. Based on safety considerations, tritium produced in beryllium during neutron irradiation represents one important issue, therefore it is necessary to investigate tritium transport processes by using a comprehensive mathematical model and comparing its predictions with well characterized experimental tests. Because of the difficulties in extrapolating the short-time tritium release tests to a longer time scale, also long-time annealing experiments with beryllium samples from the SIBELIUS irradiation. have been carried out at the Forschungszentrum Karlsruhe. Samples were annealed up to 12 months at temperatures up to 650{degrees}C. The inventory after annealing was determined by heating the samples up to 1050{degrees}C with a He+0.1 vo1% H{sub 2} purge gas. Furthermore, in order to investigate the likely effects of cracks formation eventually causing a faster tritium release from beryllium, the behaviour of samples irradiated at low temperature (40-50{degrees}C) but up to very high fast neutron fluences (0.8-3.9{center_dot}10{sup 22} cm{sup -2}, E{sub n}{ge}1 MeV) in the BR2 reactor has been investigated. Tritium was released by heating the beryllium samples up to 1050{degrees}C and purging them with He+0.1 vo1% H{sub 2}. Tritium release from high-irradiated beryllium samples showed a much faster kinetics than from the low-irradiated ones, probably because of crack formation caused by thermal stresses in the brittle material and/or by helium bubbles migration. The obtained experimental data have been compared with predictions of the code ANFIBE with the goal to better understand the physical mechanisms governing tritium behaviour in beryllium and to assess the prediction capabilities of the code.

  14. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    Science.gov (United States)

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. PMID:27524041

  15. Current status of nuclear research reactor management and utilization program in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Aramrattana, M. [Deputy Secretary General, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand); Busamongkol, Y.

    1999-08-01

    The TRR1/M1 is the first research reactor and has been in operational for more than 20 years. During the three decades of research reactor operation in Thailand the utilization of research reactor have been broadened in different fields such as agriculture, medicine and industry. Limitation on utilization of the existing reactor in various fields has led to establishing of a new nuclear research center, Ongkharak Nuclear Research Center (ONRC). The ONRC comprises three major facilities, namely Reactor Island, Isotope Production Facility and Waste Processing and Storage Facility. The reactor itself is a 10 MW TRIGA-type fuels, moderated and cooled by light water with beryllium and heavy water as the reflectors. It is a multi-purpose reactor consisting of different facilities inside and around the core for radioisotope production, medical and industrial uses; and for beam experiments such as High Resolution Powder Diffractometry (HRPD), Neutron Radiography (NR), Prompt Gamma Neutron Activation Analysis (PGNAA), and Boron Neutron Capture Therapy (BNCT). The center is expected to be operational by year 2001. (author)

  16. Use of a Paraffin Based Grout to Stabilize Buried Beryllium and Other Wastes

    International Nuclear Information System (INIS)

    The long term durability of WAXFIXi, a paraffin based grout, was evaluated for in situ grouting of activated beryllium wastes in the Subsurface Disposal Area (SDA), a radioactive landfill at the Radioactive Waste Management Complex, part of the Idaho National Laboratory (INL). The evaluation considered radiological and biological mechanisms that could degrade the grout using data from an extensive literature search and previous tests of in situ grouting at the INL. Conservative radioactive doses for WAXFIX were calculated from the ''hottest'' (i.e., highest-activity) Advanced Test Reactor beryllium block in the SDA.. These results indicate that WAXFIX would not experience extensive radiation damage for many hundreds of years. Calculation of radiation induced hydrogen generation in WAXFIX indicated that grout physical performance should not be reduced beyond the effects of radiation dose on the molecular structure. Degradation of a paraffin-based grout by microorganisms in the SDA is possible and perhaps likely, but the rate of degradation will be at a slower rate than found in the literature reviewed. The calculations showed the outer 0.46 m (18 in.) layer of each monolith, which represents the minimum expected distance to the beryllium block, was calculated to require 1,000 to 3,600 years to be consumed. The existing data and estimations of biodegradation and radiolysis rates for WAXFIX/paraffin do not indicate any immediate problems with the use of WAXFIX for grouting beryllium or other wastes in the SDA

  17. Beryllium-steam interaction experiments and self-sustained reaction studies (integral validation testing)

    International Nuclear Information System (INIS)

    In accordance with the Task Agreement G 81 TT 02 FR, Be-steam interaction experiments were performed in order to obtain experimental data for validation of calculation codes analyzing accident situation involving water coolant ingress into the vacuum chamber of International Thermonuclear Experimental Reactor (ITER). The report describes the experimental facility, specimens used for oxidized beryllium emissivity factor determination and the ITER first wall mock-up used in the experiments on its interaction with steam. Experimental results on Be-emissivity factor after beryllium oxidation versus temperature are given. Four experimental runs of the ITER first wall mock-up interaction with steam were carried out for initial conditions when internal (beryllium) mock-up layer was heated to temperatures of 680, 880 and 1273 K and steam temperature was of 413-423 K. The plots of temperature evolution for beryllium, bronze and stainless steel layers versus time were obtained. Temperature records with 5 s interval are presented. Hydrogen gain in these four experimental runs was measured. The data may be used for computer code validation. No self-sustained Be-steam chemical reaction at temperatures used in the experiments was observed

  18. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  19. Beryllium. Health hazards and their control. Pt. 2

    International Nuclear Information System (INIS)

    In this work (continuation of 'Beryllium' series) health hazards, toxic effects, limits of permissible atmospheric contamination and safe exposure to beryllium are described. Guidelines to the design, control operations and hygienic precautions of the working facilities are given. (Author)

  20. Occupational and non-occupational allergic contact dermatitis from beryllium.

    Science.gov (United States)

    Vilaplana, J; Romaguera, C; Grimalt, F

    1992-05-01

    There are various references to sensitization to beryllium in the literature. Since introducing a patch testing series for patients with suspected sensitization to metals, we have found 3 cases of sensitization to beryllium. Of these 3 cases, we regard the first 2 as having relevant sensitization. Beryllium chloride (1% pet.) was positive in 3 patients and negative in 150 controls.

  1. 75 FR 80734 - Chronic Beryllium Disease Prevention Program

    Science.gov (United States)

    2010-12-23

    ... Beryllium Disease Prevention Program (CBDPP) (63 FR 66940). After considering the comments received, DOE... CFR Part 850 RIN 1992-AA39 Chronic Beryllium Disease Prevention Program AGENCY: Office of Health... beryllium disease prevention program. The Department solicits comment and information on the...

  2. Moderator Chemistry Program

    International Nuclear Information System (INIS)

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation

  3. Moderator Chemistry Program

    Energy Technology Data Exchange (ETDEWEB)

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  4. Moderator Chemistry Program

    Energy Technology Data Exchange (ETDEWEB)

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department`s moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  5. Moon base reactor system

    Science.gov (United States)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  6. Evaluation of Cadmium Ratio and Foil Activation Measurements for a Beryllium-Reflected Assembly of U(93.15)O2 Fuel Rods (1.506-cm Triangular Pitch)

    International Nuclear Information System (INIS)

    A series of small, compact critical assembly (SCCA) experiments were completed from 1962 to 1965 at Oak Ridge National Laboratory's Critical Experiments Facility (ORCEF) in support of the Medium-Power Reactor Experiments (MPRE) program. Initial experiments, performed in November and December of 1962, consisted of a core of un-moderated stainless-steel tubes, each containing 26 UOIdaho National Laboratory (INL), Idaho Falls, ID (United States) fuel pellets, surrounded by a graphite reflector. Measurements were performed to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. The graphite reflectors were then changed to beryllium reflectors. For the beryllium reflected assemblies, the fuel was in 1.506-cm-triangular and 7-tube clusters leading to two critical configurations. Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements, performed on the 1.506-cm-array critical configuration, have been evaluated and are described in this paper

  7. Spectrographic determination of impurities in beryllium oxide

    International Nuclear Information System (INIS)

    A method for the spectrographic determination of Al, B, Cd, Co, Cu, Cr, Fe, Mg, NaNi, Si and Zn in nuclear grade beryllium oxide has been developed. The determination of Co, Al, Na and Zn is besed upon a carrier distillation technique. Better results were obtained with 2% Ga2O3 as carrier in beryllium oxide. For the elements B, Cd, Cu, Fe, Cr, Mg, Ni and Si the sample is loaded in a Scribner-Mullin shallow cup electrode, covered with graphite powder and excited in DC arc. The relative standard deviation values for different elements are in the range of 10 to 20%. The method fulfills requirements of precision and sensitivity for specification analysis of nuclear grade beryllium oxide.(Author)

  8. [Effects of beryllium chloride on cultured cells].

    Science.gov (United States)

    Sakaguchi, T; Sakaguchi, S; Nakamura, I; Kagami, M

    1984-05-01

    The effects of beryllium on cultured cells were investigated. Three cell-lines (HeLa-S3, Vero, HEL-R66) were used in these experiments and they were cultured in Eagle's MEM plus 5 or 10% FBS (Fetal Bovine Serum) containing beryllium in various concentrations. HeLa cells or Vero cells were able to grow in the medium with 10 micrograms Be/ml (1.1 mM). On the other hand, the growth of HEL cells were strongly inhibited, even when cultured in the medium with 1 microgram Be/ml (1.1 X 10(-1) mM) and the number of living cells showed markedly low level as compared to that of the control samples cultured in the medium without beryllium. The cytotoxic effects of beryllium on these cells, which were cultured for three days in the medium with beryllium, were observed. None of cytotoxic effects were found on HeLa cells cultured with 0.5 micrograms/ml (5.5 X 10(-2) mM) and on Vero cells cultured with 0.05 micrograms Be/ml (5.5 X 10(-3) mM), while HEL cells received cytotoxic effects even when cultured in the medium containing 0.05 micrograms Be/ml (5.5 X 10(-3) mM), and these effects on the cells appeared strong when cultured in the medium without FBS. It was revealed from these experiments that HEL cells are very sensitive in terms of toxic effects of beryllium. Therefore, there cells can be used for the toxicological study on low level concentrations of the metal.

  9. Helium analyses of 1-mm beryllium microspheres from COBRA-1A2

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, B.M. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Multiple helium analyses on four beryllium microspheres irradiated in the Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W), are reported. The purpose of the analyses was to determine the total helium content of the beryllium, and to determine the helium release characteristics of the beryllium as a function of time and temperature. For the helium release measurements, sequential helium analyses were conducted on two of the samples over a temperature range from 500 C to 1100 C in 100 C increments. Total helium measurements were conducted separately using the normal analysis method of vaporizing the material in a single analysis run. Observed helium release in the two beryllium samples was nonlinear with time at each temperature interval, with each step being characterized by a rather rapid initial release rate, followed by a gradual slowing of the rate over time. Sample Be-C03-1 released virtually all of its helium after approximately 30 minutes at 1000 C, reaching a final value of 2722 appm. Sample Be-D03-1, on the other hand, released only about 62% of its helium after about 1 hour at 1100 c, reaching a final value of 1519 appm. Combining these results with subsequent vaporization runs on the two samples, yielded total helium concentrations of 2724 and 2459 appm. Corresponding helium concentrations measured in the two other C03 and D03 samples, by vaporization alone, were 2941 and 2574 appm. Both sets of concentrations are in reasonable agreement with predicted values of 2723 and 2662 appm. Helium-3 levels measured during the latter two vaporization runs were 2.80 appm for Be-C03-2, and 2.62 appm for Be-D03-2. Calculated {sup 3}He values are slightly lower at 2.55 and 2.50 appm, respectively, suggesting somewhat higher tritium levels in the beryllium than predicted.

  10. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  11. Preliminary results for explosion bonding of beryllium to copper

    Energy Technology Data Exchange (ETDEWEB)

    Butler, D.J. [Northwest Technical Industries, Inc., Sequim, WA (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)

    1995-09-01

    This program was undertaken to determine if explosive bonding is a viable technique for joining beryllium to copper substrates. The effort was a cursory attempt at trying to solve some of the problems associated with explosive bonding beryllium and should not be considered a comprehensive research effort. There are two issues that this program addressed. Can beryllium be explosive bonded to copper substrates and can the bonding take place without shattering the beryllium? Thirteen different explosive bonding iterations were completed using various thicknesses of beryllium that were manufactured with three different techniques.

  12. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  13. Status of beryllium development for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States); Donne, M.D. [Kernforschungszentrum Karlsruhe GmbH (Germany). Institut fuer Neutronphysik and Reaktortechnik; Macaulay-Newcombe, R.G. [McMaster Univ., Ontario, CA (United States). Dept. of Engineering Physics

    1994-05-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing component of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.

  14. Potential exposures and risks from beryllium-containing products.

    Science.gov (United States)

    Willis, Henry H; Florig, H Keith

    2002-10-01

    Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern. PMID:12442995

  15. Status of beryllium development for fusion applications

    International Nuclear Information System (INIS)

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma-facing component of first-wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold-isostatic-pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well as its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.In this current work, the range of anticipated fusion operating conditions is reviewed. The thermal, mechanical, chemical compatibility, tritium retention/release, and helium retention/swelling databases are then reviewed for fabrication methods and fusion operating conditions of interest. Properties correlations and uncertainty ranges are also discussed. In the case of the more complex phenomena of tritium retention/release and helium-induced swelling, fundamental mechanisms and models are reviewed in more detail. Areas in which additional data are needed are highlighted, along with some trends which suggest ways of optimizing the performance of beryllium for fusion applications. (orig.)

  16. Photoluminescence enhancement from GaN by beryllium doping

    Science.gov (United States)

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.

    2016-10-01

    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  17. Melting of contaminated steel scrap from the dismantling of the CO{sub 2} systems of gas cooled, graphite moderated nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Feaugas, J.; Jeanjacques, M.; Peulve, J.

    1994-12-31

    G2 and G3 are the natural Uranium cooled reactors Graphite/Gas. The two reactors were designed for both plutonium and electricity production (45 MWe). The dismantling of the reactors at stage 2 has produced more than 4 000 tonnes of contaminated scrap. Because of their large mass and low residual contamination level, the French Atomic Energy Commission (CEA) considered various possibilities for the processing of these metallic products in order to reduce the volume of waste going to be stored. After different studies and tests of several processes and the evaluation of their results, the choice to melt the dismantled pipeworks was taken. It was decided to build the Nuclear Steel Melting Facility known as INFANTE, in cooperation with a steelmaker (AHL). The realization time schedule for the INFANTE lasted 20 months. It included studies, construction and the licensing procedure. (authors). 2 tabs., 3 figs.

  18. NUCLEAR REACTOR

    Science.gov (United States)

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  19. Diffusion Bonding Beryllium to Reduced Activation Ferritic Martensitic Steel: Development of Processes and Techniques

    Science.gov (United States)

    Hunt, Ryan Matthew

    Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic

  20. Low enriched uranium UAlX-Al targets for the production of Molybdenum-99 in the IEA-R1 and RMB reactors

    International Nuclear Information System (INIS)

    The IEA-R1 reactor of IPEN/CNEN-SP in Brazil is a pool type research reactor cooled and moderated by demineralized water and having Beryllium and Graphite as reflectors. In 1997 the reactor received the operating licensing for 5 MW. A new research reactor is being planned in Brazil to replace the IEA-R1 reactor. This new reactor, the Brazilian Multipurpose Reactor (RMB), planned for 30 MW, is now in the conception design phase. Low enriched uranium (LEU) (235U) UAlx dispersed in Al targets are being considered for production of Molybdenum-99 (99Mo) by fission. Neutronic and thermal-hydraulics calculations were performed, respectively, to compare the production of 99Mo for these targets in IEA-R1 reactor and RMB and to determine the temperatures achieved in the UAlx-Al targets during irradiation. For the neutronic calculations were utilized the computer codes HAMMER-TECHNION, CITATION and SCALE and for the thermal-hydraulics calculations was utilized the computer code MTRCR-IEAR1. (author)

  1. Graphite moderated (252)Cf source.

    Science.gov (United States)

    Sajo-Bohus, Laszlo; Barros, Haydn; Greaves, Eduardo D; Vega-Carrillo, Hector Rene

    2015-06-01

    The Thorium molten-salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid-fuel reactor. The neutron source to run this subcritical reactor is a (252)Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the (252)Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. PMID:25770393

  2. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  3. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  4. Control of beryllium powder at a DOE facility

    International Nuclear Information System (INIS)

    Beryllium is contained in a number of domestic and national defense items. Although many items might contain beryllium in some manner, few people need worry about the adverse effects caused by exposure to beryllium because it is the inhalable form of beryllium that is most toxic. Chronic beryllium disease (CBD), a granulomas and fibrotic lung disease with long latency, can be developed after inhalation exposures to beryllium. It is a progressive, debilitating lung disease. Its occurrence in those exposed to beryllium has been difficult to predict because some people seem to react to low concentration exposures whereas others do not react to high concentration exposures. Onset of the disease frequently occurs between 15 to 20 years after exposure begins. Some people develop the disease after many years of low concentration exposures but others do not develop CBD even though beryllium is shown to be present in lungs and urine. Conclusions based on these experiences are that their is some immunological dependence of developing CBD in about 3--4% of the exposed population, but the exact mechanism involved has not yet been identified. Acute beryllium disease can occur after a single exposure to a concentration of greater than 0.100 mg/m3 (inhalation exposure); it is characterized by the development of chemical pneumoconiosis, a respiratory disease. The acute effect of skin contact is a dermatitis characterized by itching and reddened, elevated, or fluid-accumulated lesions which appear particularly on the exposed surfaces of the body, especially the face, neck, arms, and hands. Small particles of beryllium that enter breaks in the skin can lead to the development of granulomas and/or open sores that do not heal until the beryllium has been removed. Our interest is only airborne beryllium, which is found in areas that machine or produce beryllium

  5. Preliminary analysis of Th-U conversion performance in a ZrH-moderated molten salt reactor%氢化锆慢化熔盐堆钍铀转换性能初步分析

    Institute of Scientific and Technical Information of China (English)

    吴攀; 蔡翔舟; 余呈刚; 陈金根; 徐刚

    2016-01-01

    中子能谱对钍基燃料在熔盐堆中的利用效率及温度反馈系数等安全问题有较大影响,所以对熔盐堆新型慢化剂的研究具有重要意义。本工作基于 SCALE6计算程序,对不同几何栅元结构的氢化锆栅元组件在熔盐堆的物理性能进行了研究,分别计算了中子能谱、钍铀转换比、233U 浓度、总温度反馈系数以及燃耗等中子物理参量。结果表明,减小六边形栅元对边距或者增加熔盐占栅元体积比可以增加钍铀转换比和改善温度反应性系数;当加入的氢化锆慢化剂体积份额为0.1时就可以将熔盐堆233U初始浓度降低到2.5×10−2以内;氢化锆慢化熔盐堆在超热谱条件下,其233U初装载量和超铀核素产量较小,同时堆芯较为紧凑。%Background: The neutron spectrum plays an important role in thorium-based fuel utilization efficiency and temperature feedback coefficient concerning reactor operation safety, so it is very important to study the new moderator material used in molten salt reactor (MSR).Purpose: This study aims to analyze thethorium-uranium conversion performance of a ZrH-moderated molten salt reactor and analyze the feasibility of ZrH as moderator in molten salt reactor.Methods: SCALE program is used to calculate neutron spectrum, thorium uranium conversion ratio,233U concentration, total temperature feedback coefficient and burnup calculation with different lattice parameters.Results: The thorium uranium conversion ratio and total temperature feedback coefficient can be improved significantly by reducing lattice size or increasing salt volume ratio; the initial233U concentration for start reactor can be easily controlled under 2.5×10−2 when the volume share of added ZrH is 0.1.Conclusion:Compared to the graphite-moderated MSR, ZrH-moderated MSR reduces initial233U inventory and transuraniums (TRUs) production, and makes its core more compact.

  6. Current status on fast reactor program in Kazakhstan

    International Nuclear Information System (INIS)

    Kazakhstan Atomic Scientific and Industrial Complex consists of uranium mining, fuel production, and power industry. On the territory of the former Semipalatinsk Nuclear Test Site, there are three research reactors (EWG-1M, thermal light water heterogeneous vessel reactor with light water moderator and coolant, beryllium reflector, maximum thermal power, 35 MW, 4 hours period of continuous operation at maximum power; IGR, impulse homogeneous uranium-graphite thermal reactor with graphite reflector, maximum heat release is 5.2 GJ (1 GJ in a pulse), maximum thermal neutron flux is 0.7*1017 cm-2s-1; RA, about 0.5 MW thermal high temperature heterogeneous reactor with air coolant, zirconium hydride moderator, and beryllium reflector), and one non-reactor test facility (EAGLE, reactor fuel element melting testing). One research reactor and sub-critical assembly near Almaty (VVR-K, 10 MW light water reactor) is used primarily for nuclear safety investigations. Following a Presidential decree, Kazakhstan will establish the following technology centres: Centre of Information Technologies, based at the Nuclear Physics Institute in Altau; Centre of Biotechnologies, based at the former military centre in Stepnogorsk; and the Centre of Nuclear Technologies, based at the National Nuclear Centre in Kurchatov City. The experimental reactor TOKOMAK will be constructed at Kurchatov City in support of the International Thermonuclear Experimental Reactor (ITER) project. Works have already started. The General Plan for the BN-350 decommissioning was developed within the framework of a Kazakh - US project. At the end of March 2003, the Plan was presented for final review to a IAEA group of experts. Due to a new US DOE initiative, of the Feasibility Study Report on the possibility to use 120 t metal-concrete casks for BN-350 spent fuel transportation and long-term storage was performed at the end of 2002. These casks shall be designed and manufactured in Russia. The content (NaK) of the

  7. Characterization of plasma sprayed beryllium ITER first wall mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.

    1998-01-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  8. Plasma cleaning of beryllium coated mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Newman, M.; Widdowson, A.; Ivanova, D.; Likonen, J.; Petersson, P.; Pintsuk, G.; Rubel, M.; Meyer, E.; Contributors, JET

    2016-02-01

    Cleaning systems of metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Currently, plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). This work presents the results of plasma cleaning of rhodium and molybdenum mirrors exposed in JET-ILW and contaminated with typical tokamak elements (including beryllium and tungsten). Using radio frequency (13.56 MHz) argon or helium plasma, the removal of mixed layers was demonstrated and mirror reflectivity improved towards initial values. The cleaning was evaluated by performing reflectivity measurements, scanning electron microscopy, x-ray photoelectron spectroscopy and ion beam analysis.

  9. Products and Services of Research Reactor ETRR-2

    International Nuclear Information System (INIS)

    The Egyptian Atomic Energy Authority (EAEA) owns a new material testing research reactor (MTR) called ETRR-2. This reactor was commissioned in 1997 and is a swimming pool type using plate type Fuel elements with 20% enrichment. It is cooled and moderated by light water and uses beryllium as a reflector. Its maximum thermal power is 22 MW, with maximum thermal neutron flux of 2.7×l014 cm-2s-1 and can be operated up to one cycle, around 18 days, for the high fluence necessary for applying long irradiations for peaceful utilization and a wide range of applications. The reactor is a multipurpose utilization, containing different facilities for applying neutron activation analysis (NAA), radioisotope production (e.g., Ir-131, Co-60, P-32, Mo-99, etc.), neutron transmutation doping (NTD) of silicon ingots of 12.5 cm diameter and 30 cm in length, neutron radiography education for university students, research for scientists, and training for new operators. (author)

  10. Assessment of irradiation effects on beryllium reflector and heavy water tank of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Yoji; Kakehuda, Kazuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M, a swimming pool type research reactor with beryllium and heavy water reflectors, has been operated since 1990. Since the beryllium reflectors are close to fuel and receive high fast neutron fluence in a relatively short time, they may be subject to change their dimensions by swelling due mostly to entrapped helium gaseous. This may bend the reflectors to the outside and narrow gaps between the reflectors and the fuel elements. The gaps have been measured with an ultrasonic thickness gage in an annual inspection. The results in 1996 show that the maximum of expansion in the diametral directions was 0.6 mm against 1.6 mm of a managed value for replacement of the reflector. A heavy water tank of the JRR-3M is made of aluminum alloy A5052. Surveillance tests of the alloy have been conducted to evaluate irradiation effects of the heavy water tank. Five sets of specimens of the alloy have been irradiated in the beryllium reflectors where fast neutron flux is higher than that in the heavy water tank. In 1994, one set of specimens had been unloaded and carried out the post-irradiation tests. The results show that the heavy water tank preserved satisfactory mechanical properties. (author)

  11. Use of a Paraffin Based Grout to Stabilize Buried Beryllium and Other Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Gretchen Matthern; Duane Hanson; Neal Yancey; Darrell Knudson

    2005-12-01

    The long term durability of WAXFIXi, a paraffin based grout, was evaluated for in situ grouting of activated beryllium wastes in the Subsurface Disposal Area (SDA), a radioactive landfill at the Radioactive Waste Management Complex, part of the Idaho National Laboratory (INL). The evaluation considered radiological and biological mechanisms that could degrade the grout using data from an extensive literature search and previous tests of in situ grouting at the INL. Conservative radioactive doses for WAXFIX were calculated from the "hottest" (i.e., highest-activity) Advanced Test Reactor beryllium block in the SDA.. These results indicate that WAXFIX would not experience extensive radiation damage for many hundreds of years. Calculation of radiation induced hydrogen generation in WAXFIX indicated that grout physical performance should not be reduced beyond the effects of radiation dose on the molecular structure. Degradation of a paraffin-based grout by microorganisms in the SDA is possible and perhaps likely, but the rate of degradation will be at a slower rate than found in the literature reviewed. The calculations showed the outer 0.46 m (18 in.) layer of each monolith, which represents the minimum expected distance to the beryllium block, was calculated to require 1,000 to 3,600 years to be consumed. The existing data and estimations of biodegradation and radiolysis rates

  12. Comprehensive Measurement of Neutron Yield Produced by 62 MeV Protons on Beryllium Target

    International Nuclear Information System (INIS)

    A low-power prototype of neutron amplifier, based on a 70 MeV, high current proton cyclotron being installed at LNL for the SPES RIB facility, was recently proposed within INFN-E project. This prototype uses a thick Beryllium converter to produce a fast neutron spectrum feeding a sub-critical reactor core. To complete the design of such facility the new measurement of neutron yield from a thick Beryllium target was performed at LNS. This measurement used liquid scintillator detectors to identify produced neutrons by Pulse Shape Discrimination and Time of Flight technique to measure neutron energy in the range 0.5-62 MeV. To extend the covered neutron energy range 3He detector was used to measure neutrons below 0.5 MeV. The obtained yields were normalized to the charge deposited by the proton beam on the metallic Beryllium target. These techniques allowed to achieve a wide angular coverage from 0 to 150 degrees and to explore almost complete neutron energy interval. (authors)

  13. Stepped-anneal helium release in 1-mm beryllium pebbles from COBRA-1A2

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, B.M. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Stepped-anneal helium release measurements on two sets of fifteen beryllium pebbles irradiated in the Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-w), are reported. The purpose of the measurements was to determine the helium release characteristics of the beryllium using larger sample sizes and longer anneal times relative to earlier measurements. Sequential helium analyses were conducted over a narrower temperature range from approximately 800 C to 1100 C in 100 C increments, but with longer anneal time periods. To allow for overnight and unattended operation, a temperature controller and associated circuitry were added to the experimental setup. Observed helium release was nonlinear with time at each temperature interval, with each step being generally characterized by an initial release rate followed by a slowing of the rate over time. Sample Be-C03 showed a leveling off in the helium release after approximately 3 hours at a temperature of 890 C. Sample Be-D03, on the other hand, showed a leveling off only after {approximately}12 to 24 hours at a temperature of 1100 C. This trend is consistent with that observed in earlier measurements on single microspheres from the same two beryllium lots. None of the lower temperature steps showed any leveling off of the helium release. Relative to the total helium concentrations measured earlier, the total helium releases observed here represent approximately 80% and 92% of the estimated total helium in the C03 and D03 samples, respectively.

  14. Neutron counter based on beryllium activation

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  15. Neutron counter based on beryllium activation

    Science.gov (United States)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  16. Dynamic behaviour of S200F beryllium

    International Nuclear Information System (INIS)

    Compression tests have been made on a large scale of strain, strain rate (up to 2000 s-1) and temperature (between 20 C and 300 C). From these experiences, we have calculated a constitutive model for beryllium S200F, which can be used by computer codes. Its formulation is not far from Steinberg, Cochran and Guinan's. But in our case, the influences of temperature and strain rate appear clearly within the expression. To validate our equation, we have used it in a computer code. Its extrapolation for higher strain rates is in good agreement with experiments such as Taylor impact tests or plate impact tests (strain rates greater than 104 s-1). With micrography, we could settle a link between the main strain mode within the material, and the variation of one parameter of the model. Beside the constitutive model, we have shown that shock loaded beryllium behaves in two different ways. If the strain rate is lower than 5.106 s-1, then it is proportional to the squared shock pressure. Beyond, it is a linear function of shock pressure to the power of four. By a spall study on beryllium, we have confirmed that it is excessively fragile. Its fracture is sudden, at a strength near 1 GPa. (author)

  17. Interaction of nitrogen ions with beryllium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dobes, Katharina [Institute of Applied Physics, TU Wien, Association EURATOM ÖAW, Vienna (Austria); Köppen, Martin [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Oberkofler, Martin [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching (Germany); Lungu, Cristian P.; Porosnicu, Corneliu [National Institute for Laser, Plasma, and Radiation Physics, Bucharest (Romania); Höschen, Till; Meisl, Gerd [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching (Germany); Linsmeier, Christian [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Aumayr, Friedrich, E-mail: aumayr@iap.tuwien.ac.at [Institute of Applied Physics, TU Wien, Association EURATOM ÖAW, Vienna (Austria)

    2014-12-01

    The interaction of energetic nitrogen projectiles with a beryllium surface is studied using a highly sensitive quartz crystal microbalance technique. The overall mass change rate of the beryllium sample under N{sub 2}{sup +} ion impact at an ion energy of 5000 eV (i.e. 2500 eV per N) is investigated in situ and in real-time. A strong dependency of the observed mass change rate on the nitrogen fluence (at constant flux) is found and can be attributed to the formation of a nitrogen-containing mixed material layer within the ion penetration depth. The presented data elucidate the dynamics of the interaction process and the surface saturation with increasing nitrogen fluence in a unique way. Basically, distinct interaction regimes can be discriminated, which can be linked to the evolution of the surface composition upon nitrogen impact. Steady state surface conditions are obtained at a total cumulative nitrogen fluence of ∼80 × 10{sup 16} N atoms per cm{sup 2}. In dynamic equilibrium, the interaction is marked by continuous surface erosion. In this case, the observed total sputtering yield becomes independent from the applied nitrogen fluence and is of the order of 0.4 beryllium atoms per impinging nitrogen atom.

  18. Beryllium-10 in Australasian tektites - Evidence for a sedimentary precursor

    Science.gov (United States)

    Pal, D. K.; Moniot, R. K.; Kruse, T. H.; Herzog, G. F.; Tuniz, C.

    1982-01-01

    Each of seven Australasian tektites contains about 100 micron atoms of beryllium-10 (half-life, 1.53 million years) per gram. Cosmic-ray bombardment of the australites cannot have produced the measured amounts of beryllium-10 either at the earth's surface or in space. The beryllium-10 contents of these australites are consistent with a sedimentary precursor that adsorbed from precipitation beryllium-10 produced in the atmosphere. The sediments must have spent several thousand years at the earth's surface within a few million years of the tektite-producing event.

  19. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R.D.; Youchison, D.L. [Sandia National Labs., Livermore, CA (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States); Guiniatouline, R.N. [Efremov Institute, (Russia); Kupriynov, I.B. [Russian Institute of Inorganic Materials (Russia)

    1996-02-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ``spike`` of 750{degree}C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m{sup 2}. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP`d spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe{sub 12}. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis.

  20. Beryllium toxicity testing in the suspension culture of mouse fibroblasts.

    Science.gov (United States)

    Rössner, P; Bencko, V

    1980-01-01

    Suspension culture of mouse fibroblast cell line L-A 115 was used to test beryllium toxicity in the presence of magnesium ions. Beryllium added to the MEM cultivation medium was bound in a complex with sulphosalicylic acid BeSSA complex, because the use of beryllium chloride turned out to yield ineffective beryllium phosphate that formed macroscopically detectable insoluble opacities. The BeSSA complex was used in the concentration range: 10(-3)--10(-9)M, magnesium was used in 3 concentrations: 10(-1)M, 5 x 10(-2)M and 10(-2)M. Growth curve analysis revealed pronounced beryllium toxicity at the concentration of 10(-3)M, magnesium-produced toxic changes were observed only at the concentration of 10(-1)M. No competition between the beryllium and magnesium ions was recorded. It is assumed that the possible beryllium-magnesium competition was significantly modified by the use of BeSSA complex-bound beryllium.

  1. Ionization energies of beryllium in strong magnetic fields

    Institute of Scientific and Technical Information of China (English)

    GUANXiao-xu; ZHANGYue-xia

    2004-01-01

    We have develop an effective frozen core approximation to calculate energy levels and ionization enegies of the beryllium atom in magnetic field strengths up to 2.35 × 105T. Systematic improvement over the Hartree-Fock results for the beryllium low-lying states has been accomplished.

  2. Joining of beryllium by braze welding technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.

    1998-01-01

    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  3. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  4. Nuclear data generation for cryogenic moderators and high temperature moderators

    International Nuclear Information System (INIS)

    The commonly used processing codes for nuclear data only allow the generation of cross section data for a limited number of materials and physical conditions.At present, one of the most used computer codes for the generation of neutron cross sections is N J O Y, which is based on a phonon expansion of the scattering function starting from the frequency spectrum.Therefore, the information related to the system's density of states is crucial to produce the required data of interest. In this work the formalism of the Synthetic Model for Molecular Solids (S M M S) was implemented, which is in turn based on the Synthetic Frequency Spectrum (S F S) concept.The synthetic spectrum is central in the present work, and it is built from simple, relevant parameters of the moderator, thus conforming an alternative tool when no information on the actual frequency spectrum of the moderator material is available.S F S 's for several material of interest where produced in this work, for both cryogenic and high temperature moderators.We studied some materials of special interest, like solid methane, ice, methyl clathrate and two which are of special interest in the nuclear industry: graphite and beryllium.The libraries generated in the present work for the materials considered, in spite of their synthetic origin, are able to produce results that are even in better agreement with available information

  5. Protection of air in premises and environment against beryllium aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bitkolov, N.Z.; Vishnevsky, E.P.; Krupkin, A.V. [Research Inst. of Industrial and Marine Medicine, St. Petersburg (Russian Federation)

    1998-01-01

    First and foremost, the danger of beryllium aerosols concerns a possibility of their inhalation. The situation is aggravated with high biological activity of the beryllium in a human lung. The small allowable beryllium aerosols` concentration in air poses a rather complex and expensive problem of the pollution prevention and clearing up of air. The delivery and transportation of beryllium aerosols from sites of their formation are defined by the circuit of ventilation, that forms aerodynamics of air flows in premises, and aerodynamic links between premises. The causes of aerosols release in air of premises from hoods, isolated and hermetically sealed vessels can be vibrations, as well as pulses of temperature and pressure. Furthermore, it is possible the redispersion of aerosols from dirty surfaces. The effective protection of air against beryllium aerosols at industrial plants is provided by a complex of hygienic measures: from individual means of breath protection up to collective means of the prevention of air pollution. (J.P.N.)

  6. Preparation and characterization of beryllium doped organic plasma polymer coatings

    International Nuclear Information System (INIS)

    We report the formation of beryllium doped plasma polymerized coatings derived from a helical resonator deposition apparatus, using diethylberyllium as the organometaric source. These coatings had an appearance not unlike plain plasma polymer and were relatively stable to ambient exposure. The coatings were characterized by Inductively Coupled Plasma Mass Spectrometry and X-Ray Photoelectron Spectroscopy. Coating rates approaching 0.7 μm hr-1 were obtained with a beryllium-to-carbon ratio of 1:1.3. There is also a significant oxygen presence in the coating as well which is attributed to oxidation upon exposure of the coating to air. The XPS data show only one peak for beryllium with the preponderance of the XPS data suggesting that the beryllium exists as BeO. Diethylberyllium was found to be inadequate as a source for beryllium doped plasma polymer, due to thermal decomposition and low vapor recovery rates

  7. Spectrofluorimetric Determination of Beryllium by Mean Centering of Ratio Spectra.

    Science.gov (United States)

    Chamsaz, Mahmoud; Samghani, Kobra; Arbab-Zavar, Mohammad Hossein; Heidari, Tahereh

    2016-07-01

    Trace amounts of beryllium has been determined by spectrofluorimetric method that used morin as fluorimetric reagent. Beryllium gives a highly fluorescent complex with morin. The excitation wavelength of morin and Be-morin complex were 410 and 430. The fluorescence spectra of morin and Be-morin complex were overlaped in excitation wavelength of 430 nm. A method based on mean centering of ratio spectra has been performed to remove the interference caused by morin as it overlaps with the Be-morin spectra. The linear range of beryllium concentration is in 0.2-200 ppb range. The parameters of detection limit and RSD were 0.18 ppb and 4.6 % respectively. This method was used for determination of beryllium in copper-beryllium alloy as a real sample. In determination of Be(II), the interference by Cu(II) was very serious, which was eliminated by adding triethanolamine. PMID:27265354

  8. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    Science.gov (United States)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  9. Fault detection of sensors in nuclear reactors using self-organizing maps

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Paulo Roberto; Tiago, Graziela Marchi [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Sao Paulo, SP (Brazil); Bueno, Elaine Inacio [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Guarulhos, SP (Brazil); Pereira, Iraci Martinez, E-mail: martinez@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work a Fault Detection System was developed based on the self-organizing maps methodology. This method was applied to the IEA-R1 research reactor at IPEN using a database generated by a theoretical model of the reactor. The IEA-R1 research reactor is a pool type reactor of 5 MW, cooled and moderated by light water, and uses graphite and beryllium as reflector. The theoretical model was developed using the Matlab Guide toolbox. The equations are based in the IEA-R1 mass and energy inventory balance and physical as well as operational aspects are taken into consideration. In order to test the model ability for fault detection, faults were artificially produced. As the value of the maximum calibration error for special thermocouples is +- 0.5 deg C, it had been inserted faults in the sensor signals with the purpose to produce the database considered in this work. The results show a high percentage of correct classification, encouraging the use of the technique for this type of industrial application. (author)

  10. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  11. Thermal hydraulic analysis of two-phase closed thermosyphon cooling system for new cold neutron source moderator of Breazeale research reactor at Penn State

    Science.gov (United States)

    Habte, Melaku

    A cold neutron source cooling system is required for the Penn State's next generation cold neutron source facility that can accommodate a variable heat load up to about ˜10W with operating temperature of about 28K. An existing cold neutron source cooling system operating at the University of Texas Cold Neutron Source (TCNS) facility failed to accommodate heat loads upwards of 4W with the moderator temperature reaching a maximum of 44K, which is the critical temperature for the operating fluid neon. The cooling system that was used in the TCNS cooling system was a two-phase closed thermosyphon with a reservoir (TPCTR). The reservoir containing neon gas is kept at room temperature. In this study a detailed thermal analysis of the fundamental operating principles of a TPCTR were carried out. A detailed parametric study of the various geometric and thermo-physical factors that affect the limits of the operational capacity of the TPCTR investigated. A CFD analysis is carried out in order to further refine the heat transfer analysis and understand the flow structure inside the thermosyphon and the two-phase nucleate boiling in the evaporator section of the thermosyphon. In order to help the new design, a variety of ways of increasing the operating range and heat removal capacity of the TPCTR cooling system were analyzed so that it can accommodate the anticipated heat load of 10W or more. It is found, for example, that doubling the pressure of the system will increase the capacity index zeta by 50% for a system with an initial fill ratio FR of 1. A decrease in cryorefrigeration performance angle increases the capacity index. For example taking the current condition of the TCNS system and reducing the angle from the current value of ˜700 by half (˜350) will increase the cooling power 300%. Finally based on detailed analytic and CFD analysis the best operating condition were proposed.

  12. Fluorimetric method for determination of Beryllium; Determinazione fluorimetrica del berillio

    Energy Technology Data Exchange (ETDEWEB)

    Sparacino, N.; Sabbioneda, S. [ENEA, Centro Ricerche Saluggia, Vercelli (Italy). Dip. Energia

    1996-10-01

    The old fluorimetric method for the determination of Beryllium, based essentially on the fluorescence of the Beryllium-Morine complex in a strongly alkaline solution, is still competitive and stands the comparison with more modern methods or at least three reasons: in the presence of solid or gaseous samples (powders), the times necessary to finalize an analytic determination are comparable since the stage of the process which lasts the longest is the mineralization of the solid particles containing Beryllium, the cost of a good fluorimeter is by far Inferior to the cost, e. g., of an Emission Spectrophotometer provided with ICP torch and magnets for exploiting the Zeeman effect and of an Atomic absorption Spectrophotometer provided with Graphite furnace; it is possible to determine, fluorimetrically, rather small Beryllium levels (about 30 ng of Beryllium/sample), this potentiality is more than sufficient to guarantee the respect of all the work safety and hygiene rules now in force. The study which is the subject of this publication is designed to the analysis procedure which allows one to reach good results in the determination of Beryllium, chiefly through the control and measurement of the interference effect due to the presence of some metals which might accompany the environmental samples of workshops and laboratories where Beryllium is handled, either at the pure state or in its alloys. The results obtained satisfactorily point out the merits and limits of this analytic procedure.

  13. 3. Interindustry conference on reactor materials science

    International Nuclear Information System (INIS)

    This document contains abstracts on papers presented at the Third Interindustry Conference on Reactor Materials Science (Dimitrovgrad, 27-30 October 1992). The subject scope of the papers is a follows: fuel and fuel elements of power reactors; structural materials of fast breeder reactors and thermonuclear reactors; structural materials of WWER and RBMK type reactors; absorbers and moderators

  14. Inhibitory effects of beryllium chloride on rat liver microsomal enzymes.

    Science.gov (United States)

    Teixeira, C F; Yasaka, W J; Silva, L F; Oshiro, T T; Oga, S

    1990-04-30

    A single i.v. dose (0.1 mmol Be2+/kg) of beryllium chloride prolonged the duration of pentobarbital-induced sleep and zoxazolamine-induced paralysis, in rats. The effects are correlated with changes of the pharmacokinetic parameters and with the in vitro inhibition of both aliphatic and aromatic hydroxylation of pentobarbital and zoxazolamine. In vitro N-demethylation of meperidine and aminopyrine was partially inhibited while O-demethylation of quinidine was unaffected by liver microsomes of rats pretreated with beryllium salt. The findings give clues that beryllium chloride inhibits some forms of cytochrome P-450, especially those responsible for hydroxylation of substrates, like pentobarbital and zoxazolamine.

  15. Analysis of surface contaminants on beryllium and aluminum windows

    International Nuclear Information System (INIS)

    An effort has been made to document the types of contamination which form on beryllium windows surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined. (orig.)

  16. Beryllium Health and Safety Committee Data Reporting Task Force

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, D H

    2007-02-21

    On December 8, 1999, the Department of Energy (DOE) published Title 10 CFR 850 (hereafter referred to as the Rule) to establish a chronic beryllium disease prevention program (CBDPP) to: {sm_bullet} reduce the number of workers currently exposed to beryllium in the course of their work at DOE facilities managed by DOE or its contractors, {sm_bullet} minimize the levels of, and potential for, expos exposure to beryllium, and {sm_bullet} establish medical surveillance requirements to ensure early detection of the disease.

  17. Development of Beryllium Vacuum Chamber Technology for the LHC

    CERN Document Server

    Veness, R; Dorn, C

    2011-01-01

    Beryllium is the material of choice for the beam vacuum chambers around collision points in particle colliders due to a combination of transparency to particles, high specific stiffness and compatibility with ultra-high vacuum. New requirements for these chambers in the LHC experiments have driven the development of new methods for the manufacture of beryllium chambers. This paper reviews the requirements for experimental vacuum chambers. It describes the new beryllium technology adopted for the LHC and experience gained in the manufacture and installation.

  18. Cosmis Lithium-Beryllium-Boron Story

    Science.gov (United States)

    Vangioni-Flam, E.; Cassé, M.

    Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except Lithium-7) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that galactic cosmic rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified, primordial and stellar (Lithium-7) and supernova neutrino spallation (Lithium-7 and Boron-11). In contrast, Beryllium-9, Boron-10 and Lithium-6 are pure spallative products. This last isotope presents a special interest since the Lithium-7/Lithium-6 ratio has been measured in a few halo stars offering a new constraint on the early galactic evolution. However, in the nineties, new observations prompted astrophysicists to reassess the question. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meters KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, unexpected on the basis of GCR scenario, predicting a quadratic relationship. As a consequence, the origin and the evolution of the LiBeB nuclei has been revisited. This linearity implies the acceleration of C and O nuclei freshly synthesized and their fragmentation on the the interstellar Hydrogen and Helium. Wolf-Rayet stars and supernovae via the shock waves induced, are the best candidates to the acceleration of their own material enriched into C and O; so LiBeB is produced independently of the Interstellar Medium chemical composition. Moreover, neutrinos emitted by the newly born neutron stars interacting with the C layer of the supernova could produce specifically Lithium-7 and Boron-11. This process is supported by the

  19. Extraction of beryllium from refractory beryllium oxide with dilute ammonium bifluoride and determination by fluorescence: a multiparameter performance evaluation.

    Science.gov (United States)

    Goldcamp, Michael J; Goldcamp, Diane M; Ashley, Kevin; Fernback, Joseph E; Agrawal, Anoop; Millson, Mark; Marlow, David; Harrison, Kenneth

    2009-12-01

    Beryllium exposure can cause a number of deleterious health effects, including beryllium sensitization and the potentially fatal chronic beryllium disease. Efficient methods for monitoring beryllium contamination in workplaces are valuable to help prevent dangerous exposures to this element. In this work, performance data on the extraction of beryllium from various size fractions of high-fired beryllium oxide (BeO) particles (from bifluoride (ABF) solution were obtained under various conditions. Beryllium concentrations were determined by fluorescence using a hydroxybenzoquinoline fluorophore. The effects of ABF concentration and volume, extraction temperature, sample tube types, and presence of filter or wipe media were examined. Three percent ABF extracts beryllium nearly twice as quickly as 1% ABF; extraction solution volume has minimal influence. Elevated temperatures increase the rate of extraction dramatically compared with room temperature extraction. Sample tubes with constricted tips yield poor extraction rates owing to the inability of the extraction medium to access the undissolved particles. The relative rates of extraction of Be from BeO of varying particle sizes were examined. Beryllium from BeO particles in fractions ranging from less than 32 microm up to 212 microm were subjected to various extraction schemes. The smallest BeO particles are extracted more quickly than the largest particles, although at 90 degrees C even the largest BeO particles reach nearly quantitative extraction within 4 hr in 3% ABF. Extraction from mixed cellulosic-ester filters, cellulosic surface-sampling filters, wetted cellulosic dust wipes, and cotton gloves yielded 90% or greater recoveries. Scanning electron microscopy of BeO particles, including partially dissolved particles, shows that dissolution in dilute ABF occurs not just on the exterior surface but also via accessing particles' interiors due to porosity of the BeO material. Comparison of dissolution kinetics data

  20. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo, E-mail: ahiru@ipen.b, E-mail: wricci@ipen.b, E-mail: carvalho@ipen.b, E-mail: jrretta@ipen.b, E-mail: amneto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  1. Investigation of the ion beryllium surface interaction

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I.; Birukov, A.Yu.; Gureev, V.M. [RRC Kurchatov Institute, Moscow (Russian Federation)] [and others

    1995-09-01

    The self -sputtering yield of the Be was measured. The energy dependence of the Be self-sputtering yield agrees well with that calculated by W. Eckstein et. al. Below 770 K the self-sputtering yield is temperature independent; at T{sub irr}.> 870 K it increases sharply. Hot-pressed samples at 370 K were implanted with monoenergetic 5 keV hydrogen ions and with a stationary plasma (flux power {approximately} 5 MW/m{sup 2}). The investigation of hydrogen behavior in beryllium shows that at low doses hydrogen is solved, but at doses {ge} 5x10{sup 22} m{sup -2} the bubbles and channels are formed. It results in hydrogen profile shift to the surface and decrease of its concentration. The sputtering results in further concentration decrease at doses > 10{sup 25}m{sup -2}.

  2. Stellar abundances of beryllium and CUBES

    CERN Document Server

    Smiljanic, R

    2014-01-01

    Stellar abundances of beryllium are useful in different areas of astrophysics, including studies of the Galactic chemical evolution, of stellar evolution, and of the formation of globular clusters. Determining Be abundances in stars is, however, a challenging endeavor. The two Be II resonance lines useful for abundance analyses are in the near UV, a region strongly affected by atmospheric extinction. CUBES is a new spectrograph planned for the VLT that will be more sensitive than current instruments in the near UV spectral region. It will allow the observation of fainter stars, expanding the number of targets where Be abundances can be determined. Here, a brief review of stellar abundances of Be is presented together with a discussion of science cases for CUBES. In particular, preliminary simulations of CUBES spectra are presented, highlighting its possible impact in investigations of Be abundances of extremely metal-poor stars and of stars in globular clusters.

  3. Geochemistry of beryllium in Bulgarian coals

    Energy Technology Data Exchange (ETDEWEB)

    Eskenazy, Greta M. [Geology Department, University of Sofia ' St. Kl. Ohridski' , Tzar Osvoboditel 15, Sofia 1504 (Bulgaria)

    2006-04-03

    The beryllium content of about 3000 samples (coal, coaly shales, partings, coal lithotypes, and isolated coalified woods) from 16 Bulgarian coal deposits was determined by atomic emission spectrography. Mean Be concentrations in coal show great variability: from 0.9 to 35 ppm for the deposits studied. There was no clear-cut relationship between Be content and rank. The following mean and confidence interval Be values were measured: lignites, 2.6+/-0.8 ppm; sub-bituminous coals, 8.2+/-3.3 ppm; bituminous coals, 3.0+/-1.2 ppm; and anthracites, 19+/-9.0 ppm. The Be contents in coal and coaly shales for all deposits correlated positively suggesting a common source of the element. Many samples of the coal lithotypes vitrain and xylain proved to be richer in Be than the hosting whole coal samples as compared on ash basis. Up to tenfold increase in Be levels was routinely recorded in fusain. The ash of all isolated coalified woods was found to contain 1.1 to 50 times higher Be content relative to its global median value for coal inclusions. Indirect evidence shows that Be occurs in both organic and inorganic forms. Beryllium is predominantly organically bound in deposits with enhanced Be content, whereas the inorganic form prevails in deposits whose Be concentration approximates Clarke values. The enrichment in Be exceeding the coal Clarke value 2.4 to 14.5 times in some of the Bulgarian deposits is attributed to subsynchronous at the time of coal deposition hydrothermal and volcanic activity. (author)

  4. Further optimization of coupled liquid-hydrogen moderator for intense pulsed neutron source

    International Nuclear Information System (INIS)

    Optimization studies for increasing cold neutron intensity from a coupled liquid-hydrogen moderator with a premoderator were performed. Optimal thickness of hydrogen moderator was found to be 5 cm. A beryllium (Be) reflector-filter placed in front of the moderator chamber gave almost no intensity enhancement in a cold neutron region. Narrow beam extraction was effective for some instruments which view a small area of the moderator surface. Beam intensity decreased a little by extracting neutron beams from both sides of the moderator in comparison with a single beam extraction. (author) 4 figs., 4 refs

  5. Development of Biomarkers for Chronic Beryllium Disease in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Terry

    2013-01-25

    Beryllium is a strategic metal, indispensable for national defense programs in aerospace, telecommunications, electronics, and weaponry. Exposure to beryllium is an extensively documented occupational hazard that causes irreversible, debilitating granulomatous lung disease in as much as 3 - 5% of exposed workers. Mechanistic research on beryllium exposure-disease relationships has been severely limited by a general lack of a sufficient CBD animal model. We have now developed and tested an animal model which can be used for dissecting dose-response relationships and pathogenic mechanisms and for testing new diagnostic and treatment paradigms. We have created 3 strains of transgenic mice in which the human antigen-presenting moiety, HLA-DP, was inserted into the mouse genome. Each mouse strain contains HLA-DPB1 alleles that confer different magnitude of risk for chronic beryllium disease (CBD): HLA-DPB1*0401 (odds ratio = 0.2), HLA-DPB1*0201 (odds ratio = 15), HLA-DPB1*1701 (odds ratio = 240). Our preliminary work has demonstrated that the *1701 allele, as predicted by human studies, results in the greatest degree of sensitization in a mouse ear swelling test. We have also completed dose-response experiments examining beryllium-induced lung granulomas and identified susceptible and resistant inbred strains of mice (without the human transgenes) as well as quantitative trait loci that may contain gene(s) that modify the immune response to beryllium. In this grant application, we propose to use the transgenic and normal inbred strains of mice to identify biomarkers for the progression of beryllium sensitization and CBD. To achieve this goal, we propose to compare the sensitivity and accuracy of the lymphocyte proliferation test (blood and bronchoalveolar lavage fluid) with the ELISPOT test in the three HLA-DP transgenic mice strains throughout a 6 month treatment with beryllium particles. Because of the availability of high-throughput proteomics, we will also identify

  6. Beryllium nitride thin film grown by reactive laser ablation

    OpenAIRE

    G. Soto; Diaz, J.A.; Machorro, R.; Reyes-Serrato, A.; de la Cruz, W.

    2001-01-01

    Beryllium nitride thin films were grown on silicon substrates by laser ablating a beryllium foil in molecular nitrogen ambient. The composition and chemical state were determined with Auger (AES), X-Ray photoelectron (XPS) and energy loss (EELS) spectroscopies. A low absorption coefficient in the visible region, and an optical bandgap of 3.8 eV, determined by reflectance ellipsometry, were obtained for films grown at nitrogen pressures higher than 25 mTorr. The results show that the reaction ...

  7. Determination of beryllium by using X-ray fluorescence spectrometry.

    Science.gov (United States)

    Zawisza, Beata

    2008-03-01

    X-ray fluorescence spectrometry method is subject to certain difficulties and inconveniences for the elements having the atomic number 9 or less. These difficulties become progressively more severe as the atomic number decreases, and are quite serious for beryllium, which is practically indeterminable directly by XRF. Therefore, an indirect determination of beryllium that is based on the evaluation of cobalt in the precipitate is taken into consideration. In the thesis below, there is a description of a new, simple, and precise method by selective precipitation using hexamminecobalt(III) chloride and ammonium carbonate-EDTA solution as a complexing agent for the determining of a trace amount of beryllium using X-ray fluorescence spectrometry. The optimum conditions for [Co(NH(3))(6)][Be(2)(OH)(3)(CO(3))(2)(H(2)O)(2)].(3)H(2)O complex formation were studied. The complex was collected on the membrane filter, and the Co Kalpha line was measured by XRF. The method presents the advantages of the sample preparation and the elimination of the matrix effects due to the thin film obtained. The detection limit of the proposed method is 0.2 mg of beryllium. The method was successfully applied to beryllium determination in copper/ beryllium/cobalt alloys.

  8. Impurities effect on the swelling of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Donne, M.D.; Scaffidi-Argentina, F. [Institut fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany)

    1995-09-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found.

  9. Experimental study of ELM-like heat loading on beryllium under ITER operational conditions

    Science.gov (United States)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-02-01

    The experimental fusion reactor ITER, currently under construction in Cadarache, France, is transferring the nuclear fusion research to the power plant scale. ITER’s first wall (FW), armoured by beryllium, is subjected to high steady state and transient power loads. Transient events like edge localized modes not only deposit power densities of up to 1.0 GW m-2 for 0.2-0.5 ms in the divertor of the machine, but also affect the FW to a considerable extent. Therefore, a detailed study was performed, in which transient power loads with absorbed power densities of up to 1.0 GW m-2 were applied by the electron beam facility JUDITH 1 on beryllium specimens at base temperatures of up to 300 °C. The induced damage was evaluated by means of scanning electron microscopy and laser profilometry. As a result, the observed damage was highly dependent on the base temperatures and absorbed power densities. In addition, five different classes of damage, ranging from ‘no damage’ to ‘crack network plus melting’, were defined and used to locate the damage, cracking, and melting thresholds within the tested parameter space.

  10. Interaction of implanted deuterium and helium with beryllium: radiation enhanced oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1979-01-01

    The interaction of implanted deuterium and helium with beryllium is of significant interest in the application of first wall coatings and other components of fusion reactors. Electropolished polycrystalline beryllium was first implanted with an Xe backscatter marker at 1.98 MeV followed by either implantation with 5 keV diatomic deuterium or helium. A 2.0 MeV He beam was used to analyze for impurity buildup; namely oxygen. The oxide layer thickness was found to increase linearly with increasing implant fluence. A 2.5 MeV H/sup +/ beam was used to depth profile the D and He by ion backscattering. In addition the retention of the implant was measured as a function of the implant fluence. The mean depth of the implant was found to agree with theoretical range calculations. Scanning electron microscopy was used to observe blister formation. No blisters were observed for implanted D but for implanted He blisters occurred at approx. 1.75 x 10/sup 17/ He cm/sup -2/. The blister diameter increased with increasing implant fluence from about 0.8 ..mu..m at 10/sup 18/ He cm/sup -2/ to 5.5 ..mu..m at 3 x 10/sup 18/ He cm/sup -2/.

  11. High-temperature annealing of proton irradiated beryllium - A dilatometry-based study

    Science.gov (United States)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit; Savkliyildiz, Ilyas

    2016-08-01

    Ssbnd 200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 1020 cm-2 peak fluence and irradiation temperatures in the range of 100-200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  12. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  13. Graphite moderated {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a {sup 252}Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the {sup 252}Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  14. Advanced-power-reactor design concepts and performance characteristics

    Science.gov (United States)

    Davison, H. W.; Kirchgessner, T. A.; Springborn, R. H.; Yacobucci, H. G.

    1974-01-01

    Five reactor cooling concepts which allow continued reactor operation following a single rupture of the coolant system are presented for application with the APR. These concepts incorporate convective cooling, double containment, or heat pipes to ensure operation after a coolant line rupture. Based on an evaluation of several control system concepts, a molybdenum clad, beryllium oxide sliding reflector located outside the pressure vessel is recommended.

  15. Beryllium abundances in stars hosting giant planets

    CERN Document Server

    Santos, N C; Israelian, G; Mayor, M; Rebolo, R; García-Gíl, A; Pérez de Taoro, M R; Randich, S

    2002-01-01

    We have derived beryllium abundances in a wide sample of stars hosting planets, with spectral types in the range F7V-K0V, aimed at studying in detail the effects of the presence of planets on the structure and evolution of the associated stars. Predictions from current models are compared with the derived abundances and suggestions are provided to explain the observed inconsistencies. We show that while still not clear, the results suggest that theoretical models may have to be revised for stars with Teff<5500K. On the other hand, a comparison between planet host and non-planet host stars shows no clear difference between both populations. Although preliminary, this result favors a ``primordial'' origin for the metallicity ``excess'' observed for the planetary host stars. Under this assumption, i.e. that there would be no differences between stars with and without giant planets, the light element depletion pattern of our sample of stars may also be used to further investigate and constraint Li and Be deple...

  16. Electronic band structure of beryllium oxide

    CERN Document Server

    Sashin, V A; Kheifets, A S; Ford, M J

    2003-01-01

    The energy-momentum resolved valence band structure of beryllium oxide has been measured by electron momentum spectroscopy (EMS). Band dispersions, bandwidths and intervalence bandgap, electron momentum density (EMD) and density of occupied states have been extracted from the EMS data. The experimental results are compared with band structure calculations performed within the full potential linear muffin-tin orbital approximation. Our experimental bandwidths of 2.1 +- 0.2 and 4.8 +- 0.3 eV for the oxygen s and p bands, respectively, are in accord with theoretical predictions, as is the s-band EMD after background subtraction. Contrary to the calculations, however, the measured p-band EMD shows large intensity at the GAMMA point. The measured full valence bandwidth of 19.4 +- 0.3 eV is at least 1.4 eV larger than the theory. The experiment also finds a significantly higher value for the p-to-s-band EMD ratio in a broad momentum range compared to the theory.

  17. Interaction of beryllium and hydrogen isotopes

    International Nuclear Information System (INIS)

    It has been considered that in the plasma nuclear fusion experimental devices of magnetic field confinement type, in order to reduce the energy loss due to bremsstrahlung, the use of the plasma-facing materials (PFM) of low atomic number like carbon is indispensable at present. Attention is paid to beryllium which is one of the PFMs, and its effectiveness was rocognized by the practical use in JET. When Be is considered as a PFM, it is necessary to accumulate many data on the diffusion, dissolution, permeation and surface recoupling of hydrogen isotopes, which regulate the recycling and inventory of deuterium and tritium fuel, and the relation of these factors with the physical and chemical states of Be. In this research, as the first phase of understanding the characteristics of Be as a PFM, the change of the surface condition by heating Be was investigated by X-ray photoelectron spectroscopy, and the chemical form of the Be-related substances emitted from the surface by argon or deuterium ion sputtering and their thermal behavior were measured by secondary ion mass spectrometry. The sample, the measurement and the results are reported. The diversified secondary ions of Be, Be cluster, Be oxide, hydroxide, hydride and deuteride were observed by the measurement, and their features are shown. (K.I.)

  18. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  19. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  20. Validation of cleaning method for various parts fabricated at a Beryllium facility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cynthia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic beryllium disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.

  1. Erosion of beryllium under ITER – Relevant transient plasma loads

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B., E-mail: igkupr@gmail.com [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Nikolaev, G.N.; Kurbatova, L.A.; Porezanov, N.P. [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D.; Zhitlukhin, A.M. [TRINITI, Troitsk, Moscow reg. (Russian Federation); Gervash, A.A. [Efremov Research Institute, S-Peterburg (Russian Federation); Safronov, V.M. [Project Center of ITER, Moscow (Russian Federation)

    2015-08-15

    Highlights: • We study the erosion, mass loss/gain and surface structure evolution of Be/CuCrZr mock-ups, armored with beryllium of TGP-56FW grade after irradiation by deuterium plasma heat load of 0.5 MJ/m{sup 2} at 250 °C and 500 °C. • Beryllium mass loss/erosion under plasma heat load at 250 °C is rather small (no more than 0.2 g/m{sup 2} shot and 0.11 μm/shot, correspondingly, after 40 shots) and tends to decrease with increasing number of shots. • Beryllium mass loss/erosion under plasma heat load at 500 °C is much higher (∼2.3 g/m{sup 2} shot and 1.2 μm/shot, correspondingly, after 10 shot) and tends to decrease with increasing the number of shots (∼0.26 g/m{sup 2} pulse and 0.14 μm/shot, correspondingly, after 100 shot). • Beryllium erosion value derived from the measurements of profile of irradiated surface is much higher than erosion value derived from mass loss data. - Abstract: Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2–0.5 MJ/m{sup 2} at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  2. A Report on the Validation of Beryllium Strength Models

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Derek Elswick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-05

    This report discusses work on validating beryllium strength models with flyer plate and Taylor rod experimental data. Strength models are calibrated with Hopkinson bar and quasi-static data. The Hopkinson bar data for beryllium provides strain rates up to about 4000 per second. A limitation of the Hopkinson bar data for beryllium is that it only provides information on strain up to about 0.15. The lack of high strain data at high strain rates makes it difficult to distinguish between various strength model settings. The PTW model has been calibrated many different times over the last 12 years. The lack of high strain data for high strain rates has resulted in these calibrated PTW models for beryllium exhibiting significantly different behavior when extrapolated to high strain. For beryllium, the α parameter of PTW has recently been calibrated to high precision shear modulus data. In the past the α value for beryllium was set based on expert judgment. The new α value for beryllium was used in a calibration of the beryllium PTW model by Sky Sjue. The calibration by Sjue used EOS table information to model the temperature dependence of the heat capacity. Also, the calibration by Sjue used EOS table information to model the density changes of the beryllium sample during the Hopkinson bar and quasi-static experiments. In this paper, the calibrated PTW model by Sjue is compared against experimental data and other strength models. The other strength models being considered are a PTW model calibrated by Shuh- Rong Chen and a Steinberg-Guinan type model by John Pedicini. The three strength models are used in a comparison against flyer plate and Taylor rod data. The results show that the Chen PTW model provides better agreement to this data. The Chen PTW model settings have been previously adjusted to provide a better fit to flyer plate data, whereas the Sjue PTW model has not been changed based on flyer plate data. However, the Sjue model provides a reasonable fit to

  3. The results of medical surveillance of beryllium production personnel

    International Nuclear Information System (INIS)

    The report presents results of surveillance of 1836 workers of beryllium production of Ulba Metallurgical Plant JSC with the acute and chronic forms of occupation diseases for 52 years of its operation. The dependence of acute and chronic occupation lesions on the protection degree is shown. It has been found out that, the risk of getting an occupation disease increases sharply at the moments of experimental works and at the time of reconstruction and some other extreme conditions in the production, that is supported by fixed lesions of eye mucous coat, skin and lung lesions. In this case, the readiness of people for their work in deleterious conditions and their personal responsibility for following the regulations of safety occupational standards plays a definite role. Therefore, the issues of protection are of paramount importance in prophylaxis both of acute and chronic exposure to beryllium. An influence of duration of service and occupation on chronic beryllium diseases is shown. A parallel between the lung beryllium disease and skin lesions by insoluble beryllium compounds is drawn for the first time. (author)

  4. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    International Nuclear Information System (INIS)

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers

  5. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  6. Experimental studies and modeling of processes of hydrogen isotopes interaction with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibaeva, I.L.; Chikhray, Y.V.; Romanenko, O.G.; Klepikov, A.Kh.; Shestakov, V.P.; Kulsartov, T.V. [Science Research Inst. of Experimental and Theoretical Physics of Kazakh State Univ., Almaty (Kazakhstan); Kenzhin, E.A.

    1998-01-01

    The objective of this work was to clarify the surface beryllium oxide influence on hydrogen-beryllium interaction characteristics. Analysis of experimental data and modeling of processes of hydrogen isotopes accumulation, diffusion and release from neutron irradiated beryllium was used to achieve this purpose as well as the investigations of the changes of beryllium surface element composition being treated by H{sup +} and Ar{sup +} plasma glowing discharge. (author)

  7. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    This report on the control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is functioning effectively

  8. Estimation of beryllium ground state energy by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  9. Photochemical Behavior of Beryllium Complexes with Subporphyrazines and Subphthalocyanines.

    Science.gov (United States)

    Montero-Campillo, M Merced; Lamsabhi, Al Mokhtar; Mó, Otilia; Yáñez, Manuel

    2016-07-14

    Structures of beryllium subphthalocyanines and beryllium subporphyrazines complexes with different substituents are explored for the first time. Their photochemical properties are studied using time-dependent density functional theory calculations and compared to boron-related compounds for which their photochemical activity is already known. These beryllium compounds were found to be thermodynamically stable in a vacuum and present features similar to those of boron-containing analogues, although the nature of bonding between the cation and the macrocycle presents subtle differences. Most important contributions to the main peak in the Q-band region arise from HOMO to LUMO transitions in the case of subphthalocyanines and alkyl subporphyrazine complexes, whereas a mixture of that contribution and a HOMO-2 to LUMO contribution are present in the case of thioalkyl subporphyrazines. The absorption in the visible region could make these candidates suitable for photochemical devices if combined with appropriate donor groups. PMID:26812068

  10. Measurement of the ultracold neutron loss coefficient in beryllium powder

    International Nuclear Information System (INIS)

    The ultracold neutron (UCN) reflection from beryllium powder at different slab thicknesses and different packing densities is measured. The reduced UCN loss coefficient η=(1.75±0.35)x10-4 for thermally untreated beryllium is extracted from experimental data. The formerly obtained experimental results on UCN reflection from beryllium after high temperature annealing are reconsidered. The loss coefficient η at room temperature in this case is obtained to be (6.4±2.5)x10-5, which is an order of magnitude higher than the theoretical one. The extraction of the loss coefficient from the experimental data is based on the modified diffusion theory where albedo reflection depends on packing density

  11. Field-emission spectroscopy of beryllium atoms adsorbed on tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Czyzewski, J.J.; Grzesiak, W.; Krajniak, J. (Politechnika Wroclawska (Poland))

    1981-01-01

    Field emission energy distributions (FEED) have been measured for the beryllium-tungsten (023) adsorption system over the 78-450 K temperature range. A temperature dependence of the normalized half-width, ..delta../d, of FEED peaks changed significantly due to beryllium adsorption; and the curve, ..delta../d vs p, for the Be/W adsorption system was identical in character to the calculated curve based on the free electron model in contrast to the curve for the clean tungsten surface. In the last part of this paper Gadzuk's theory of the resonance-tunneling effect is applied to the beryllium atom on tungsten. Experimental and theoretical curves of the enhancement factor as a function of energy have been discussed.

  12. Force-field parameters for beryllium complexes in amorphous layers.

    Science.gov (United States)

    Emelyanova, Svetlana; Chashchikhin, Vladimir; Bagaturyants, Alexander

    2016-09-01

    Unknown force-field parameters for metal organic beryllium complexes used in emitting and electron transporting layers of OLED structures are determined. These parameters can be used for the predictive atomistic simulations of the structure and properties of amorphous organic layers containing beryllium complexes. The parameters are found for the AMBER force field using a relaxed scan procedure and quantum-mechanical DFT calculations of potential energy curves for specific internal (angular) coordinates in a series of three Be complexes (Bebq2; Be(4-mpp)2; Bepp2). The obtained parameters are verified in calculations of some molecular and crystal structures available from either quantum-mechanical DFT calculations or experimental data. Graphical Abstract Beryllium complexes in amorphous layersᅟ. PMID:27550375

  13. Monte Carlo uncertainty analyses for integral beryllium experiments

    CERN Document Server

    Fischer, U; Tsige-Tamirat, H

    2000-01-01

    The novel Monte Carlo technique for calculating point detector sensitivities has been applied to two representative beryllium transmission experiments with the objective to investigate the sensitivity of important responses such as the neutron multiplication and to assess the related uncertainties due to the underlying cross-section data uncertainties. As an important result, it has been revealed that the neutron multiplication power of beryllium can be predicted with good accuracy using state-of-the-art nuclear data evaluations. Severe discrepancies do exist for the spectral neutron flux distribution that would transmit into significant uncertainties of the calculated neutron spectra and of the nuclear blanket performance in blanket design calculations. With regard to this, it is suggested to re-analyse the secondary energy and angle distribution data of beryllium by means of Monte Carlo based sensitivity and uncertainty calculations. Related code development work is underway.

  14. Synthesis of Be–Ti–V ternary beryllium intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp; Nakamichi, Masaru

    2015-08-15

    Highlights: • Preliminary synthesis of ternary Be–Ti–V beryllides was investigated. • An area fraction of Be phase increased with increase of V amount in the beryllide because of increasing melting temperature. • The increase of Be phase fraction resulted in increase of weight gain as well as H{sub 2} generation. • The beryllides with lower V contents indicated to better phase stability at high temperature. - Abstract: Beryllium intermetallic compounds (beryllides) such as Be{sub 12}Ti and Be{sub 12}V are the most promising advanced neutron multipliers in demonstration power reactors. Advanced neutron multipliers are being developed by Japan and the EU as part of their Broader Approach activities. It has been previously shown, however, that beryllides are too brittle to fabricate into pebble- or rod-like shapes using conventional methods such as arc melting and hot isostatic pressing. To overcome this issue, we developed a new combined plasma sintering and rotating electrode method for the fabrication of beryllide rods and pebbles. Previously, we prepared a beryllide pebble with a Be–7.7 at.% Ti composition as the stoichiometric value of the Be{sub 12}Ti phase; however, Be{sub 17}Ti{sub 2} and Be phases were present along with the Be{sub 12}Ti phase that formed as the result of a peritectic reaction due to re-melting during granulation using the rotating electrode method. This Be phase was found to be highly reactive with oxygen and water vapor. Accordingly, to investigate the Be phase reduction and applicability for fabrication of electrodes prior to granulation using the rotating electrode method, Be–Ti–V ternary beryllides were synthesized using the plasma sintering method. Surface observation results indicated that increasing plasma sintering time and V addition led to an increase in the intermetallic compound phases compared with plasma-sintered beryllide with a Be–7.7 at.% Ti composition. Additionally, evaluation of the reactivity of

  15. CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Ekechukwu, A

    2009-04-20

    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  16. Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application.

    Science.gov (United States)

    Rousset, Davy; Durand, Thibaut

    2016-01-01

    Modification of an existing sequential extraction procedure for inorganic beryllium species in the particulate matter of emissions and in working areas is described. The speciation protocol was adapted to carry out beryllium extraction in closed-face cassette sampler to take wall deposits into account. This four-step sequential extraction procedure aims to separate beryllium salts, metal, and oxides from airborne particles for individual quantification. Characterization of the beryllium species according to their solubility in air samples may provide information relative to toxicity, which is potentially related to the different beryllium chemical forms. Beryllium salts (BeF(2), BeSO(4)), metallic beryllium (Bemet), and beryllium oxide (BeO) were first individually tested, and then tested in mixtures. Cassettes were spiked with these species and recovery rates were calculated. Quantitative analyses with matched matrix were performed using inductively coupled plasma mass spectrometry (ICP-MS). Method Detection Limits (MDLs) were calculated for the four matrices used in the different extraction steps. In all cases, the MDL was below 4.2 ng/sample. This method is appropriate for assessing occupational exposure to beryllium as the lowest recommended threshold limit values are 0.01 µg.m(-3) in France([) (1) (]) and 0.05 µg.m(-3) in the USA.([ 2 ]) The protocol was then tested on samples from French factories where occupational beryllium exposure was suspected. Beryllium solubility was variable between factories and among the same workplace between different tasks. PMID:26327570

  17. Some features of beryllium corrosion behavior in Be-liquid Li-V-4Ti-4Cr alloy system

    International Nuclear Information System (INIS)

    Recent experimental results on beryllium corrosion behavior in a V-4Ti-4Cr alloy, liquid lithium static system during testing for 200-500 h at temperatures from 600 to 800 deg. C are presented. The influence of test conditions (temperature, duration and lithium purity) and beryllium characteristics (microstructure, grain size and chemical composition) on weight loss of beryllium and penetration of lithium into beryllium are discussed. Results of compressive tests for beryllium specimens before and after corrosion testing are also introduced

  18. Beryllium Wipe Sampling (differing methods - differing exposure potentials)

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Kent

    2005-03-09

    This research compared three wipe sampling techniques currently used to test for beryllium contamination on room and equipment surfaces in Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling without a wetting agent, with water-moistened wipe materials, and by methanol-moistened wipes. Analysis indicated that methanol-moistened wipe sampling removed about twice as much beryllium/oil-film surface contamination as water-moistened wipes, which removed about twice as much residue as dry wipes. Criteria at 10 CFR 850.30 and .31 were established on unspecified wipe sampling method(s). The results of this study reveal a need to identify criteria-setting method and equivalency factors. As facilities change wipe sampling methods among the three compared in this study, these results may be useful for approximate correlations. Accurate decontamination decision-making depends on the selection of appropriate wetting agents for the types of residues and surfaces. Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced removal efficiency such as methanol when surface contamination includes oil mist residue.

  19. Codeposition of deuterium ions with beryllium oxide at elevated temperatures

    CERN Document Server

    Markin, A V; Gorodetsky, A E; Negodaev, M A; Rozhanskii, N V; Scaffidi-Argentina, F; Werle, H; Wu, C H; Zalavutdinov, R K; Zakharov, A P

    2000-01-01

    Deuterium-loaded BeO films were produced by sputtering the beryllium target with 10 keV Ne ions in D sub 2 gas at a pressure of approximately 1 Pa. The sputtered beryllium reacts - on the substrate surface - with the residual oxygen, thus forming a beryllium oxide layer. Biasing the substrate negatively with respect to the target provides the simultaneous bombardment of the growing film surface with D ions formed by Ne-D sub 2 collisions. Substrate potential governs the maximum energy of ions striking the growing film surface while its size governs the flux density. According to X-ray photoelectron spectroscopy (XPS), electron probe microanalysis (EPMA) and reflection high energy electron diffraction (RHEED) data, the beryllium is deposited in the form of polycrystalline hcp-BeO layers with negligible (about 1 at.%) carbon and neon retention. Thermal desorption spectroscopy (TDS) data shows a strong deuterium bonding, with a desorption peak at 950 K, in the films deposited at -50 and -400 V substrate potentia...

  20. Beryllium abundances in stars with planets:Extending the sample

    CERN Document Server

    Gálvez-Ortiz, M C; Hernández, J I González; Israelian, G; Santos, N C; Rebolo, R; Ecuvillon, A

    2011-01-01

    Context: Chemical abundances of light elements as beryllium in planet-host stars allow us to study the planet formation scenarios and/or investigate possible surface pollution processes. Aims: We present here an extension of previous beryllium abundance studies. The complete sample consists of 70 stars hosting planets and 30 stars without known planetary companions. The aim of this paper is to further assess the trends found in previous studies with less number of objects. This will provide more information on the processes of depletion and mixing of light elements in the interior of late type stars, and will provide possible explanations for the abundance differences between stars that host planets and "single" stars. Methods: Using high resolution UVES spectra, we measure beryllium abundances of 26 stars that host planets and 1 "single" star mainly using the \\lambda 3131.065 A Be II line, by fitting synthetic spectra to the observational data. We also compile beryllium abundance measurements of 44 stars hos...

  1. Fluorometric determination of beryllium with 2-(o-hydroxylphenyl)benzoxazole

    Energy Technology Data Exchange (ETDEWEB)

    Gladilovich, D.B.; Stolyarov, K.P.

    1985-09-01

    According to the authors, of great interest for the fluorometric determination of small quantities of beryllium is 2-(o-hydroxyphenyl)benzthiazole (HPBT). In this work, 2-(o-hydroxyphenyl)benzoaxzole (HPBO), which is an analog of HPBT and differs from it in that the sulfur atom in the heterocyclic portion of the molecule is replaced by an oxygen atom, is proposed as a reagent for the fluorometric determination of beryllium. The fluorescent reaction of HPBO with beryllium is studied in this paper, in addition to the selection of the optimum conditions for the determination and the development of a procedure for the analysis of complex objects on this basis. The reaction proceeds in aqueous ethanol medium at pH 7.2-7.5. The limit of detection is 0.6 ng/ml. Methods have been developed for the determination of 10/sup -2/% beryllium in alloys based on copper and 10/sup -3/-10/sup -4/% in standard samples of silicate rocks.

  2. The uses and adverse effects of beryllium on health

    DEFF Research Database (Denmark)

    Cooper, Ross G.; Harrison, Adrian Paul

    2009-01-01

    in the current review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability, and Health. Articles were classified based on acute and chronic exposure and toxicity of beryllium. Results: The proportions of utilized and nonutilized articles were...

  3. The uses and adverse effects of beryllium on health

    Directory of Open Access Journals (Sweden)

    Cooper Ross

    2009-01-01

    Full Text Available Context: This review describes the health effects of beryllium exposure in the workplace and the environment. Aim: To collate information on the consequences of occupational and environmental exposure to beryllium on physiological function and well being. Materials and Methods: The criteria used in the current review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability, and Health. Articles were classified based on acute and chronic exposure and toxicity of beryllium. Results: The proportions of utilized and nonutilized articles were tabulated. Years 2001-10 gave the greatest match (45.9% for methodological parameters, followed by 27.71% for 1991-2000. Years 1971-80 and 1981-90 were not significantly different in the information published and available whereas years 1951-1960 showed a lack of suitable articles. Some articles were published in sources unobtainable through requests at the British Library, and some had no impact factor and were excluded. Conclusion: Beryllium has some useful but undoubtedly harmful effects on health and well-being. Measures need to be taken to prevent hazardous exposure to this element, making its biological monitoring in the workplace essential.

  4. Extraction of lead and beryllium from a firing site soil

    International Nuclear Information System (INIS)

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) program is being implemented at LANL to conduct tests for evaluating the stability of the nation's aging nuclear stockpile. In order to reduce impact on the environment, containment of the non-fissile explosives tests is being phased in. The resulting shot debris can contain a mix of depleted uranium, lead, and beryllium. We are developing a treatment scheme to separate the radioactive and RCRA-hazardous components in order to recover the uranium, re-use some materials in future shots, and minimize waste for disposal. Our experience using a proprietary water soluble polymer to extract lead from contaminated soil to below TCLP levels has been extended to a surrogate soil from an open-air firing site that contains both lead and beryllium. Results for lead removal from this soil by dendrimers and molecular chelators will also be shown. Because of the potentially severe inhalation hazard associated with beryllium, the fate of this metal in our treatment scheme has been investigated, as well as extraction of beryllium using a variety of chemical agents

  5. Thermal cycling tests of actively cooled beryllium copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B. [Forschungszentrum Juelich GmbH (Germany)

    1998-01-01

    Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)

  6. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    Science.gov (United States)

    Bahri, Che Nor Aniza Che Zainul; Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-01

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  7. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    International Nuclear Information System (INIS)

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated

  8. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3He, 6Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  9. Naval reactors physics handbook. Volume 3: The physics of intermediate spectrum reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stehn, J.R. [ed.] [Knolls Atomic Power Lab., Schenectady, NY (United States)

    1958-09-01

    The present volume has been prepared for persons with some knowledge of the physics of nuclear reactors. It is intended to make available the accumulated physics experience of the Knolls Atomic Power Laboratory in its work on intermediate spectrum reactors. Only those portions have been selected which were deemed to be most useful and significant to other physicists concerned with the problems of reactor design. The volume is divided into four parts which are more or less independent of one another. Part 1 (Chaps. 2--9), Investigation of Reactor Characteristics by Critical Assemblies, reflects the importance of the properties of critical assemblies and of the techniques for obtaining experimental information about such assemblies. Part 2 (Chaps. 10--20), Reactivity Effects Associated with Reactor Operation, details the use of both critical assemblies and reactor theory to make and test predictions of the manner in which the reactivity of an intermediate power reactor will vary during operation. Part 3 (Chaps. 21--26), Heat Generation and Nuclear Materials Problems, considers how reactor heat generation is spread out in space and time, and what nuclear effects result from the presence of beryllium or sodium in the reactor. Part 4 (Chaps. 27--38), Reactor Kinetics and Temperature Coefficients, relates to the transient or near-transient behavior of intermediate reactors.

  10. Accuracy of helium accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    A helium (He) accumulation fluence monitor (HAFM) has been developed for fast reactor dosimetry. In order to evaluate the measurement accuracy of neutron fluence by the HAFM method, the HAFMs of enriched boron (B) and beryllium (Be) were irradiated in the Fast Neutron Source Reactor `YAYOI`. The number of He atoms produced in the HAFMs were measured and compared with the calculated values. As a result of this study, it was confirmed that the neutron fluence could be measured within 5 % by the HAFM method, and that met the required accuracy for fast reactor dosimetry. (author)

  11. Fallout beryllium-7 as a soil and sediment tracer in river basins: current status and needs

    Science.gov (United States)

    Taylor, Alex; Blake, Will H.; Smith, Hugh G.; Mabit, Lionel; Keith-Roach, Miranda J.

    2013-04-01

    Beryllium-7 is a cosmogenic radionuclide formed in the upper atmosphere by cosmic ray spallation of nitrogen and oxygen. Its constant natural production and fallout via precipitation coupled with its ability to bind to soil particles have underpinned its application as a sediment tracer. The short half-life of beryllium-7 (53.3 days) lends itself to tracing sediment dynamics over short time periods, thus, enabling assessment of the effect of land use change upon soil redistribution. Although beryllium-7 has been widely applied as a tracer to date, there remain crucial gaps in understanding relating to the assumptions for its use. To further support the application of beryllium-7 as a tracer across a range of environments requires consideration of both the current strengths and shortcomings of the technique to direct research needs. Here we review research surrounding the assumptions underpinning beryllium-7 use as a tracer and identify key knowledge gaps relating to i) the effects of rain shadowing and vegetation interception upon beryllium-7 fallout uniformity at the hillslope-scale; ii) the effect of preferential flow pathways upon beryllium-7 depth distribution in soil and overland flow upon beryllium-7 inventory uniformity and iii) the potential for beryllium-7 desorption in saline and reducing environments. To provide continued support for the use of beryllium-7 as a hillslope and catchment-scale tracer, there is an urgent need to undertake further research to quantify the effect of these factors upon tracer estimates.

  12. The IEA-R1 research reactor: 50 years of operating experience and utilization for research, teaching and radioisotopes production

    International Nuclear Information System (INIS)

    This paper describes almost 50 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. The current and future program of upgrading the reactor is also described. IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors. The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 3.5 MWth with a 64-hour cycle per week. In the early sixties, IPEN produced 131I, 32P, 198Au, 24Na, 35S, 51Cr and labeled compounds for medical use. In the year 1980, production of 99mTc generator kits from the fission 99Mo imported from Canada was started. This production is continuously increasing, with the current rate of about 16,000 Ci of 99mTC per year. The 99mTc generator kits, with activities varying from 250 mCi to 2,000 mCi, are distributed to more than 260 hospitals and clinics in Brazil. Several radiopharmaceutical products based on 131I , 32P, 51Cr and 153Sm are also produced. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce 99Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for

  13. The 30 kW research reactor facility in Ghana: Past, present and future programmes

    International Nuclear Information System (INIS)

    The Ghana Research Reactor-1 (GHARR-1) is a small, simple, reliable and safe reactor design and constructed by China Institute of Atomic Energy (CIAE). GHARR-1 adopts the pool-tank structure and employs highly enriched uranium as fuel, light water as moderator and coolant, metal beryllium as reflectors. The reactor is cooled by natural convention. The rated maximum thermal power of GHARR-1 is 30 kW; the corresponding neutron flux is 1.0x1012 cm-2s-1. The refueling mode of the reactor is to totally change the old core with a new one, the lifetime being more than ten years. Since the commencement of operation of the low-flux miniature neutron source reactor (MNSR) in 1995, a significant number of research and development in the field of neutron activation analysis have taken place. During its 12 years of operation, after the first criticality, the reactor has been used as a neutron source for research, teaching and training to support several graduate and post graduate careers for students from universities in Ghana and the West African sub-region. Owing to the stable flux of the reactor and rapid proliferation in utilization, several analytical techniques have been developed. As a national neutron source reactor facility, Ghana's MNSR also known as GHARR-1 is now successfully utilized in various areas of neutron activation analysis (NAA), teaching, research and training. The GHARR-1 application in neutron activation analysis included: (i) Food analysis; (ii) Heavy metals determination in environmental samples; (iii) Determination of major, minor and trace elements in geological samples; (iv) And mineral prospecting among others. The educational programmes in place at the center are teaching and learning in nuclear engineering, nuclear physics, nuclear and radiochemistry and other related fields. The paper will focus on the past and current status of GHARR-1 with respect to utilization and management and future programmes to enhance its uses in the fields of teaching

  14. Research reactor DHRUVA

    International Nuclear Information System (INIS)

    DHRUVA, a 100 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay, attained first criticality during August, 1985. The reactor is fuelled with natural uranium and is cooled, moderated and reflected by heavy water. Maximum thermal neutron flux obtained in the reactor is 1.8 X 1014 n/cm2/sec. Some of the salient design features of the reactor are discussed in this paper. Some important features of the reactor coolant system, regulation and protection systems and experimental facilities are presented. A short account of the engineered safety features is provided. Some of the problems that were faced during commissioning and the initial phase of power operation are also dealt upon

  15. TRIGA research reactors

    International Nuclear Information System (INIS)

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  16. Dosage of boron traces in graphite, uranium and beryllium oxide; Dosage de traces de bore dans le graphite, l'uranium et l'oxyde de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Coursier, J. [Ecole Nationale Superieure de Physique et Chimie Industrielles, 75 - Paris (France); Hure, J.; Platzer, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.) [French] Le probleme du dosage du bore dans les materiaux servant a la construction de reacteurs nucleaires se pose de la facon suivante: determiner a environ 0,1 ppm pres des quantites de bore de l'ordre de quelques dixiemes de ppm. Nous avons choisit la colorimetrie a la curcumine comme methode de dosage. Pour atteindre les teneurs indiquees, il est necessaire d'effectuer une separation prealable du bore et des materiaux de base, soit par extraction du fluoborate de tetraphenylarsonium dans le cas du dosage de bore dans l'uranium et l'oxyde de beryllium, soit par l'utilisation d'une resine echangeuse de cations dans le cas du graphite. (M.B.)

  17. Beryllium coating produced by evaporation-condensation method and some their properties

    Energy Technology Data Exchange (ETDEWEB)

    Pepekin, G.I.; Anisimov, A.B.; Chernikov, A.S.; Mozherinn, S.I.; Pirogov, A.A. [SRI SIA Lutch., Podolsk (Russian Federation)

    1998-01-01

    The method of vacuum evaporation-condensation for deposition of beryllium coatings on metal substrates, considered in the paper, side by side with a plasma-spray method is attractive fon ITER application. In particular this technique may be useful for repair the surface of eroded tiles which is operated in a strong magnetic field. The possibility of deposition of beryllium coatings with the rate of layer growth 0.1-0.2 mm/h is shown. The compatibility of beryllium coating with copper or stainless steel substrate is provided due to intermediate barrier. The results of examination of microstructure, microhardness, porosity, thermal and physical properties and stability under thermal cycling of beryllium materials are presented. The value of thermal expansion coefficient and thermal conductivity of condensed beryllium are approximately the same as for industrial grade material produced by powder mettalurgy technique. However, the condensed beryllium has higher purity (up to 99.9-99.99 % wt.). (author)

  18. 5. IEA International workshop on beryllium technology for fusion. Book of abstracts

    International Nuclear Information System (INIS)

    The collection includes the abstracts of reports presented to the 5-th IEA international workshop on beryllium technology for fusion. The themes of reports are as follows: status of beryllium technology for fusion in Russia; manufacturing and testing of Be armoured first wall mock-up for ITER; development of the process of diffusion welding of metals stainless steel-copper-beryllium into a single composite; some features of beryllium-laser beam interaction; the effect of irradiation dose on tritium and helium release from neutron irradiated beryllium; thermal properties of neutron irradiated Be12Ti. The results of investigating the mechanical properties variation and swelling of beryllium under high temperature neutron irradiation are presented

  19. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    International Nuclear Information System (INIS)

    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (1022 atoms/cm2) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project

  20. Fusion Reactor Materials semiannual progress report for period ending September 30, 1991

    International Nuclear Information System (INIS)

    This report contains papers on topic in the following areas of thermonuclear reactor materials: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials and beryllium; and ceramics. These paper have been index separately elsewhere. (LSP)

  1. Fusion reactor materials semiannual progress report for period ending September 30, 1992

    International Nuclear Information System (INIS)

    This report contains papers on the following topics on thermonuclear reactor materials: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters,and activation calculations; radiation effects, mechanistic studies, theory and modeling; development of structural alloys; solid breeding materials and beryllium; and ceramics. These reports have been index separately elsewhere

  2. Fusion Reactor Materials semiannual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1992-04-01

    This report contains papers on topic in the following areas of thermonuclear reactor materials: irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials and beryllium; and ceramics. These paper have been index separately elsewhere. (LSP).

  3. Effects of beryllium-compounds on the hen. 2. Comm

    International Nuclear Information System (INIS)

    After oral application of 7Be2+ this cation is relative slowly absorbed from the intestine. The highest proportion of 7Be appeared in the feces. The absorbed 7Be has been found in the feathers, the bones and in the muscles as well as in the mucosa of the stomach and the intestine. Relative low is the accumulation in the liver and the kidneys as well as in the brain and the spinal cord. After i.v. application a high proportion of 7Be has been observed in the eggs. The rest of the applied radio-beryllium has been accumulated 7Be in the metabolically active tissues is removed very slowly. In contrast to this observation radio-beryllium disappeared relatively rapidly from the blood. (orig.)

  4. Quantum-chemical approach to cohesive properties of metallic beryllium

    International Nuclear Information System (INIS)

    Calculations based upon the incremental approach, i.e. an expansion of the correlation energy in terms of one-body, two-body, and higher-order contributions from localized orbital groups, have been performed for metallic beryllium. We apply an embedding scheme which has been successfully applied recently to ground-state properties of magnesium and group 12 elements. This scheme forces localization in metallic-like model systems and allows for a gradual delocalization within the incremental approach. Quantum-chemical methods of the coupled-cluster and multi-reference configuration interaction type are used for evaluating individual increments. Results are given for the cohesive energy and lattice constants of beryllium, and it is shown that further development of the approach is needed for this difficult case

  5. Studies on extraction of beryllium from thiocyanate solutions by quaternary ammonium halides.

    Science.gov (United States)

    El-Yamani, I S; El-Messieh, E N

    A 0.4M tricaprylmethylammonium chloride solution in n-hexane was used for the quantitative extraction of beryllium from hydrochloric acid (pH 3) and 5M potassium thiocyanate. Beryllium was stripped from the organic phase with 1M sodium hydroxide, then determined volumetrically with bismuthyl perchlorate and bromocresol green indicator. Beryllium was extracted in presence of a large number of elements which are usually associated with it in beryl and in fission products of nuclear fuel.

  6. Dose Rates from Plutonium Metal and Beryllium Metal in a 9975 Shipping Container

    International Nuclear Information System (INIS)

    A parametric study was performed of the radiation dose rates that might be produced if plutonium metal and beryllium metal were shipped in the 9975 shipping package. These materials consist of heterogeneous combinations plutonium metal and beryllium. The plutonium metal content varies up to 4.4 kilograms while the beryllium metal varies up to 4 kilograms. This paper presents the results of that study

  7. Low-energy electronic stopping for boron in beryllium

    International Nuclear Information System (INIS)

    The range distribution for 50-keV boron bombarding beryllium was measured by an energetic ion-beam backscattering technique using helium ions. This distribution was compared with the range calculated with computer code EDEP1, with the result k 0.101 ± 0.013 for the electronic-stopping k-value. This value is compared with the results of recent interpolations from measurements of other elements. (author)

  8. Presence of Beryllium (Be) in urban soils: human health risk

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Gonzalez, M. J.; Lobo, M. C.

    2009-07-01

    Berylium (Be) is, together with As, Cd, Hg, Pb and Ti, one of the trace elements more toxic for human being (Vaessen) and Szteke, 2000; Yaman and Avci, 2006), but in spite of the exponential increment of its applications during the last decades, surprisingly there isn't hardly information about its presence and environmental distribution. The aim of this work is to evaluate the presence of Beryllium in urban soils in Alcala de Henares, (Madrid Spain).

  9. Analysis of features of the deformation of auxetic beryllium

    OpenAIRE

    Гунько, Михаил Николаевич; Олейнич-Лысюк, Алла Васильевна; Раранский, Николай Дмитриевич; Тащук, Александр Юрьевич

    2015-01-01

    In the framework of the linear elasticity theory using the experimentally obtained elastic stiffness modules, temperature dependences of the elastic compliance modules and tensor components of Poisson's ratios    of beryllium in a wide range of temperatures and directions in the crystal lattice were calculated, and it was shown that with increasing temperature, the value and signs of Poisson's ratios  change differently in various temperature intervals. In the interval 0-300K,  become negativ...

  10. Beryllium, Lithium and Oxygen Abundances in F-type Stars

    CERN Document Server

    García-López, R J; Pérez de Taoro, M R; Casares, C; Rasilla, J L; Rebolo, R; Allende-Prieto, C

    1997-01-01

    Beryllium and oxygen abundances have been derived in a sample of F-type field stars for which lithium abundances had been measured previously, with the aim of obtaining observational constraints to discriminate between the different mixing mechanisms proposed. Mixing associated with the transport of angular momentum in the stellar interior and internal gravity waves within the framework of rotating evolutionary models, appear to be promising ways to explain the observations.

  11. Detail analysis of fusion neutronics benchmark experiment on beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Chikara, E-mail: konno.chikara@jaea.go.j [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Ochiai, Kentaro; Takakura, Kosuke; Ohnishi, Seiki; Kondo, Keitaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Wada, Masayuki [Japan Computer System, Mito-shi, Ibaraki-ken 310-0805 (Japan); Sato, Satoshi [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2010-12-15

    Our previous analysis of the integral experiments (in situ and TOF experiments) on beryllium with DT neutrons at JAEA/FNS pointed out two problems by using MCNP4C and the latest nuclear data libraries; one was a strange larger neutron peak around 12 MeV appearing in the TOF experiment analysis with JEFF-3.1 and the other was an overestimation on law energy neutrons in the in situ experiment analyses with all the nuclear data libraries. We investigated reasons for these problems in detail. It was found out that the official ACE file MCJEFF3.1 of JEFF-3.1 had an inconsistency with the original JEFF-3.1, which caused the strange larger neutron peak around 12 MeV in the TOF experiment analysis. We also found out that the calculated thermal neutron peak was probably too large in the in situ experiment. On trial we examined influence of the thermal neutron scattering law data of beryllium metal in ENDF/B-VI. The result pointed out that the coherent elastic scattering cross-section data in the thermal neutron scattering law data of beryllium metal were probably too large.

  12. Electron microscope study of thin beryllium lamellae (1963)

    International Nuclear Information System (INIS)

    Thin SR beryllium lamellae are examined by electron microscopy after various treatments, together with other samples made up of Be - Fe at 1 per cent and 0.2 per cent iron. The SR beryllium is examined after annealing at 750 deg C and 900 deg C, strongly cold-worked and quenched at 900 deg C. At 950 deg C the metal is perfectly annealed; at 750 deg C the polygonisation is almost complete, the dislocations are arranged either is dislocation walls in the prismatic planes, or in hexagonal lattices with non-dissociated nodes suggesting a high stacking defect energy. The cold-worked structure has a high dislocation density and already existing crystal walls. In the quenched state, the few dislocations are very straight and are aligned in the crystallographic directions. Iron-precipitation is studied in two alloys during tempering at 660 deg after quenching in salt water. The precipitate appears at the grain boundaries and then spreads through the matrix leaving a depleted zone in the neighbourhood of the joints. These precipitates, in the form of platelets parallel to the base planes of the beryllium lattice have been identified as the inter metallic phase Be11 Fe oriented in relation to the matrix (0 0 0 1)//(0 0 0 1) (1 0 1-bar 0)//(1 1 2-bar 0). (authors)

  13. Elastic, micro- and macroplastic properties of polycrystalline beryllium

    Science.gov (United States)

    Kardashev, B. K.; Kupriyanov, I. B.

    2011-12-01

    The Young's modulus and the internal friction of beryllium polycrystals (size grain from 6 to 60 μm) prepared by the powder metallurgy method have been studied as functions of the amplitude and temperature in the range from 100 to 873 K. The measurements have been performed using the composite piezoelectric vibrator method for longitudinal vibrations at frequencies about 100 kHz. Based on the acoustic measurements, the data have been obtained on the elastic and inelastic (microplastic) properties as functions of vibration stress amplitudes within the limits from 0.2 to 30-60 MPa. The microplastic deformation diagram is shown to become nonlinear at the amplitudes higher than 5 MPa. The beryllium mechanical characteristics (the yield strength σ 0.2, the ultimate strength σ u , and the conventional microscopic yield strength σ y ) obtained with various grain sizes are compared. At room temperature, all the parameters satisfactorily obey the Hall-Petch relationship, although there is no complete similarity. The temperature dependences are quite different, namely: σ 0.2( T) and σ u ( T) decrease monotonically during heating from room temperature to higher temperatures; however, σ y ( T) behaves unusually, and it has a minimum near 400 K. The different levels of stresses and the absence of similarity indicate that the scattering of the ultrasound energy and the formation of a level of the macroscopic flow stresses in beryllium occur on dislocation motion obstacles of different origins.

  14. A diethylhydroxylaminate based mixed lithium/beryllium aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Raphael J.F. [Paris-Lodron Universitaet Salzburg (Austria). Fachbereich fuer Materialwissenschaften und Physik; Jana, Surajit [Asansol Girls College, West-Bengal (India). Dept. of Chemistry; Froehlich, Roland [Muenster Univ. (Germany). Organisch-Chemisches Inst.; Mitzel, Norbert W. [Bielefeld Univ. (Germany). Anorganische Chemie und Strukturchemie

    2015-07-01

    A mixed lithium/beryllium diethylhydroxylaminate compound containing {sup n}butyl beryllium units of total molecular composition {sup n}Be(ONEt{sub 2}){sub 2} [(LiONEt{sub 2}){sup 2} {sup n}BuBeONEt{sub 2}]{sub 2} (1) was isolated from a reaction mixture of {sup n}butyl lithium, N,N-diethylhydroxylamine and BeCl{sub 2} in diethylether/thf. The crystal structure of 1 has been determined by X-ray diffraction. The aggregate is composed of two ladder-type subunits connected in a beryllium-centered distorted tetrahedron of four oxygen atoms. Only the lithium atoms are engaged in coordination with the nitrogen donor atoms. The DFT calculations support the positional occupation determined for Li and Be in the crystal structure. The DFT and the solid-state structure are in excellent agreement, indicating only weak intermolecular interactions in the solid state. Structural details of metal atom coordination are discussed.

  15. Safety culture assessment programme: Statistical analysis of a survey conducted at the IEA-R1 Brazilian research reactor

    International Nuclear Information System (INIS)

    Full text: The present study describes the statistical analysis of a survey conducted among the employees of IEA-R1 research reactor to evaluate the current status of safety culture in this installation. IEA-R1 is a 5 MW pool type reactor, cooled and moderated by light water, and it uses graphite and beryllium as reflectors. First criticality was achieved on September 16, 1957 and the reactor has been operating regularly and safely for almost 46 years. The reactor building is located within the premises of IPEN/CNEN-SP, one of the Brazilian institutes for energy and nuclear research, inside the campus of the University of Sao Paulo. The operation, maintenance and irradiation services of IEA-R1 reactor are currently being administered by the Research Reactor Center. The safety culture assessment and enhancement programme of IEA-R1 was launched by the reactor management in 2002. An opinion survey was conducted in order to evaluate the employee's perception in relation to the safety culture of the organization. A questionnaire consisting, mainly, of statements about safety culture aspects was prepared. A total number of 34 individuals participated in the survey representing the personnel of the Operation and Maintenance Division, Irradiation Service Division as well as the technicians specialized in Radiation Protection. The statistical analysis of the survey was developed into three principal steps. In the first step, descriptive techniques were used to estimate parameters of the statistical distribution of the answers to each question of the questionnaire. In the second step, the aspects of safety culture to be investigated were defined by grouping these questions into issue areas. The safety culture aspects determined were: Priority to Safety, Top Management Involvement and Commitment to Safety, Employees' Attitude Towards Safety, Employees' Responsibilities and Commitment to Safety, Employees' Evaluation of Safety Culture Level, Conflict 'Absence of Safety x

  16. Application of Nondestructive Methods for Qualification of High Density Fuels in the IEA-R1 Reactor

    International Nuclear Information System (INIS)

    The IEA-R1 reactor of IPEN/CNEN-SP in Brazil is a pool type research reactor cooled and moderated by demineralised water and having Beryllium and Graphite as reflectors. Since 1990, IPEN/CNEN-SP has been fabricating and qualifying its own U3O8-Al and U3Si2-Al dispersion fuels. The U3O8-Al dispersion fuel is qualified to a uranium density of 2.3 gU/cm3 and the U3Si2-Al dispersion fuel up to 3.0 gU/cm3. The IEA-R1 reactor core is constituted of the fuels above, with low enrichment in U-235 (19.9% of U-235). Nowadays, IPEN/CNEN-SP is interested in qualifying the above dispersion fuels at higher densities. Fuel miniplates of U3O8-Al and U3Si2-Al fuels, with densities of 3.0 gU/cm3 and 4.8 gU/cm3, respectively, which are the maximal uranium densities qualified worldwide for these dispersion fuels, were fabricated at IPEN/CNEN-SP. The miniplates were put in an irradiation device, with similar external dimensions of IEA-R1 fuel assemblies, which was placed in a peripheral position of the IEA-R1 reactor core. IPEN/CNEN-SP has no hot cells to provide destructive analysis of the irradiated fuel. As a consequence, non destructive methods are being used to evaluate irradiation performance of the fuel miniplates: i) monitoring the fuel miniplate performance during the IEA-R1 operation for the following parameters: reactor power, time of operation, neutron flux at the position of each fuel assembly, burnup, inlet and outlet water, and radiochemistry analysis of reactor water; ii) periodic underwater visual inspection of fuel miniplates and eventual sipping test for the fuel miniplate suspected of leakage. The miniplates are being periodically visually inspected by an underwater radiation-resistant camera inside the IEA-R1 reactor pool, to verify its integrity and its general plate surface conditions. A new special system was designed for the fuel miniplate swelling evaluation. The fuel swelling evaluation is being performed by means of the fuel miniplate thickness measurement

  17. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    Energy Technology Data Exchange (ETDEWEB)

    Hanafee, J.E. (ed.)

    1988-02-19

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers. (DLC)

  18. The impact of beryllium chloride and oxide on sexual function and offspring development in female rats

    International Nuclear Information System (INIS)

    The comparative study of the action of soluble chloride and difficultly soluble beryllium oxide on sexual cycle in female rats and their conception capability, revealing of embryotoxic and teratogenic effect of these compounds and determination of significance of terms of their impact on pregnant female as well as beryllium capability to penetrate through the placenta and accumulate in the offspring organism have been performed. A great potential danger of impact on animal reproductive function of soluble (chloride) beryllium compounds as compared with low soluble ones (oxide). In the genesis of embryotoxic teratonic effect probably along with beryllium impact on progeny through the maternal organism there occurs its direct impact on the offspring

  19. The beryllium quandary: will the lower exposure limits spur new developments in sampling and analysis?

    Energy Technology Data Exchange (ETDEWEB)

    Brisson, Michael

    2013-06-03

    At the time this article was written, new rulemakings were under consideration at OSHA and the U.S. Department of Energy (DOE) that would propose changes to occupational exposure limits for beryllium. Given these developments, it’s a good time to review the tools and methods available to IHs for assessing beryllium air and surface contamination in the workplace—what’s new and different, and what’s tried and true. The article discusses limit values and action levels for beryllium, problematic aspects of beryllium air sampling, sample preparation, sample analysis, and data evaluation.

  20. Vacuum Brazing of Beryllium Copper Components for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tyhurst, C.C.; Cunningham, M.A.

    2002-06-04

    A process for vacuum brazing beryllium copper anode assemblies was required for the Plasma Electrode Pockels Cell System, or PEPC, a component for the National Ignition Facility (NIF). Initial problems with the joint design and wettability of the beryllium copper drove some minor design changes. Brazing was facilitated by plating the joint surface of the beryllium copper rod with silver 0.0006 inch thick. Individual air sampling during processing and swipe tests of the furnace interior after brazing revealed no traceable levels of beryllium.

  1. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    International Nuclear Information System (INIS)

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers

  2. Dissolution of FB-Line Residues Containing Beryllium Metal

    Energy Technology Data Exchange (ETDEWEB)

    RUDISILL, TRACY S.; CROWDER, MARK L.

    2005-09-06

    Scrap materials containing plutonium (Pu) metal were dissolved at the Savannah River Site (SRS) as part of a program to disposition nuclear materials during the deactivation of the FB-Line facility. Some of these items contained both Pu and beryllium (Be) metal as a composite material. The Pu and Be metals were physically separated to minimize the amount of Be associated with the Pu; however, a dissolution flowsheet was required to dissolve small amounts of Be combined with the Pu metal using a dissolving solution containing nitric acid (HNO{sub 3}) and potassium fluoride (KF). Since the dissolution of Pu metal in HNO{sub 3}/fluoride (F{sup -}) solutions was well understood, the primary focus of the flowsheet development was the dissolution of Be metal. Initially, small-scale experiments were used to measure the dissolution rate of Be metal foils using conditions effective for the dissolution of Pu metal. The experiments demonstrated that the dissolution rate was nearly independent of the HNO{sub 3} concentration over the limited range of investigation and only a moderate to weak function of the F{sup -} concentration. The effect of temperature was more pronounced, significantly increasing the dissolution rate between 40 and 105 C. The offgas analysis from three Be metal foil dissolutions demonstrated that the production of hydrogen (H{sub 2}) was sensitive to the HNO{sub 3} concentration, decreasing by a factor of approximately two when the concentration was increased from 4 to 8 M. In subsequent experiments, complete dissolution of Be samples from a Pu/Be composite material was achieved in a 4 M HNO{sub 3} solution containing 0.1-0.2 M KF. Gas samples collected during each experiment showed that the maximum H{sub 2} generation rate occurred at temperatures below 70-80 C. A Pu metal dissolution experiment was performed using a 4 M HNO{sub 3}/0.1 M KF solution at 80 C to demonstrate flowsheet conditions developed for the dissolution of Be metal. As the reaction

  3. Study of the moderating effect of salts on the sodium-water reaction on the cleaning of irradiated fuel assemblies from fast neutron reactors, using fluid sodium heat transfer

    International Nuclear Information System (INIS)

    Within the framework of the development of generation IV reactors one of the research tracks is related to the development of fast neutron reactors using fluid sodium heat transfer. The CEA (French Alternative Energies and Atomic Energy Commission) plans to build a prototype of reactor of this type called 'ASTRID'. To address development requirements for this prototype, research is in progress on the reactor's availability and in particular on the reduction of the washing duration for residual sodium fuel assemblies during their discharge. In fact, because sodium is very reactive with water (presently the only available process), the washing is done, for example, by very gradual addition. A solution currently being studied at the CEA and which is the subject of this thesis report consists of the addition of an aqueous salts solutions to the washing water in order to slow down the kinetic reaction. This doctoral dissertation describes the various salts, which have been evaluated and aims to explain their action mode. (author)

  4. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  5. N Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The last of Hanfordqaodmasdkwaspemas7ajkqlsmdqpakldnzsdflss nine plutonium production reactors to be built was the N Reactor.This reactor was called a dual purpose...

  6. Release of beryllium from mineral ores in artificial lung and skin surface fluids.

    Science.gov (United States)

    Duling, Matthew G; Stefaniak, Aleksandr B; Lawrence, Robert B; Chipera, Steve J; Virji, M Abbas

    2012-06-01

    Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts. PMID:21866318

  7. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan;

    2014-01-01

    for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...

  8. The effect of helium, radiation damage and irradiation temperature on the mechanical properties of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Scientific Research Inst., St. Petersburg (Russian Federation); Pokrovsky, A.S.

    1998-01-01

    In this work different RF beryllium grades were irradiated in the BOR-60 reactor to a dose of {approx}5-10 dpa at irradiation temperatures 350, 420, 500, 800degC. Irradiation at temperatures of 350-400degC is shown to result in Be hardening due to the accumulation of radiation defect complexes. Hardening is accompanied with a sharp drop in plasticity at T{sub test} {<=} 300degC. A strong anisotropy in plasticity has been found at a mechanical testing temperature of 400degC and this parameter may be preferable when the samples are cut crosswise to the pressing direction. High-temperature irradiation (T{sub irr} = 780degC) gives rise to large helium pores over the grain boundaries and smaller pores in the grain body. Fracture is brittle and intercrystallite at T{sub test} {>=} 600degC. Helium embrittlement is accompanied as well with a drop in the Be strength properties. (author)

  9. Oxidation behavior of plasma sintered beryllium-titanium intermetallic compounds as an advanced neutron multiplier

    Science.gov (United States)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2013-07-01

    Beryllium intermetallic compounds (beryllides) such as Be12Ti are very promising candidates for advanced neutron multiplier materials in a demonstration fusion power reactor (DEMO). However, beryllides are too brittle to be fabricated either into pebble-type or rod-type shapes via conventional methods (i.e. arc melting and hot isostatic pressing). We have proposed a plasma sintering technique as a new method for beryllide fabrication, and our studies on the properties of plasma sintered beryllides are ongoing. In the present work, the oxidation properties of plasma sintered beryllides were investigated at 1273 K for 24 h in a dry air atmosphere to evaluate the high temperature properties of this material. Thermal gravimetry measurements indicate that specimens with larger fractions of Be12Ti phase corresponding to samples that have been sintered for longer time periods, exhibit superior oxidation properties. Our evaluation of the oxidation behavior of each phase in our beryllide samples is as follows: Be12Ti and Be17Ti2 both have good oxidation resistance, owing to the formation of dense and protective scales, while the Be and Be2Ti phases are mainly responsible for thermal-gravimetry (TG) weight gains, which is indicative of severe oxidation. We attribute the degradation in oxidation resistance specifically to Be2Ti that transforms into TiO2, and also find this phase to be the cause of deterioration in the mechanical properties of samples, owing to cracks near Be2Ti phase conglomerates.

  10. Chemical interactions of beryllium with lithium-based oxides and stainless steel

    International Nuclear Information System (INIS)

    The chemical compatibility of Be with Li2SiO3, Li4SiO4 and stainless steel (AISI 316) was investigated in the temperature range between 600 and 900degC with maximum annealing times of 1000 h. Beryllium is of interest as a neutron multiplier material in a fusion reactor. First chemical interactions in the Be/Li2SiO3 and Be/Li4SiO4 systems occur at 650degC. The compatibility of Be with Li2SiO3 seems to be sufficient up to 650degC, whereas that with Li4SiO4 is sufficient even up to 700degC. At higher temperatures the silicide reaction products LixSiy become liquid which results in a strong local attack and penetration into the lithium silicates. Be interacts with stainless steel locally already at 600degC. The compatibility behavior in the Be/Li-silicate/stainless steel system under isothermal conditions is therefore determined by the Be/steel interactions. (orig.)

  11. Preliminary characterization of the toxicity of a beryllium-copper alloy

    International Nuclear Information System (INIS)

    Beryllium (Be) is a low-molecular-weight metal with unique strength and nuclear properties. Because of these properties, Be has been used in the production of nuclear weapons and in nuclear reactors. Consequently, thousands of individuals in nuclear weapons facilities may have been exposed to Be. While the need for Be in the nuclear weapons industry has diminished in recent years, industrial applications of Be-containing alloys are increasing. Be-copper (Be-Cu) alloys are used in the electronics industry and are especially useful in spacecraft and aircraft guidance systems. Be-aluminum alloys are lightweight, have structural strength similar to that of pure Be, and are available at lower cost. Potential for human exposure to Be continues with the increasing production and use of Be-containing alloys. The cytotoxicity of metal particles to alveolar macrophages (AMs) provides information regarding their potential to produce a pulmonary inflammatory response when inhaled. The purpose of this study was to begin evaluation of the cytotoxicity of a Be-Cu alloy (2% Be, 98% Cu) to AMs and to attempt to relate cytotoxicity to the specific surface area of the material

  12. Analysis of the KANT experiment on beryllium using TRIPOLI-4 Monte Carlo code

    International Nuclear Information System (INIS)

    Beryllium is an important material in fusion technology for multiplying neutrons in blankets. However, beryllium nuclear data are differently presented in modern nuclear data evaluations. Recent investigations with the TRIPOLI-4 Monte Carlo simulation of the tritium breeding ratio (TBR) demonstrated that beryllium reaction data are the main source of the calculation uncertainties between ENDF/B-VII.0 and JEFF-3.1. To clarify the calculation uncertainties from data libraries on beryllium, in this study TRIPOLI-4 calculations of the Karlsruhe Neutron Transmission (KANT) experiment have been performed by using ENDF/B-VII.0 and new JEFF-3.1.1 data libraries. The KANT Experiment on beryllium has been used to validate neutron transport codes and nuclear data libraries. An elaborated KANT experiment benchmark has been compiled and published in the NEA/SINBAD database and it has been used as reference in the present work. The neutron multiplication in bulk beryllium assemblies was considered with a central D-T neutron source. Neutron leakage spectra through the 5, 10, and 17 cm thick spherical beryllium shells were calculated and five-group partial leakage multiplications were reported and discussed. In general, improved C/E ratios on neutron leakage multiplications have been obtained. Both ENDF/B-VII.0 and JEFF-3.1.1 beryllium data libraries of TRIPOLI-4 are acceptable now for fusion neutronics calculations.

  13. Proceedings of the third IEA international workshop on beryllium technology for fusion

    International Nuclear Information System (INIS)

    This report is the Proceedings of the Third International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on October 22-24, 1997, at the Sangyou Kaikan in Mito City with 68 participants who attended from the Europe, the Russian Federation, the Kazakstan, the United States and Japan. The topics for papers were arranged into 9 sessions; beryllium applications for ITER, production and characterization, chemical compatibility and corrosion, forming and joining, plasma/tritium interactions, beryllium coating, first wall applications, neutron irradiation effects, health and safety. To utilize beryllium in the pebble type blanket, a series of discussions were intensified in multiple view points such as the swelling, He/T release from beryllium pebble irradiated up to high He content, effective thermal conductivity, tritium permeation and coating, and fabrication cost, and so on. As the plasma facing material, life time of beryllium and coated beryllium, dust and particle production, joining, waste treatment, mechanical properties and deformation by swelling were discussed as important issues. Especially, it was recognized throughout the discussions that the comparative study by the different researchers should be carried out to establish the reliability of the data reported in the workshop and in others. To enhance the comparative study, the world wide collaboration for the relative evaluation of the beryllium was proposed by the International Organization Committee and the proposal was approved by all of the participants. The 45 of the presented papers are indexed individually. (J.P.N.)

  14. Proceedings of the third IEA international workshop on beryllium technology for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroshi; Okamoto, Makoto [eds.

    1998-01-01

    This report is the Proceedings of the Third International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on October 22-24, 1997, at the Sangyou Kaikan in Mito City with 68 participants who attended from the Europe, the Russian Federation, the Kazakstan, the United States and Japan. The topics for papers were arranged into 9 sessions; beryllium applications for ITER, production and characterization, chemical compatibility and corrosion, forming and joining, plasma/tritium interactions, beryllium coating, first wall applications, neutron irradiation effects, health and safety. To utilize beryllium in the pebble type blanket, a series of discussions were intensified in multiple view points such as the swelling, He/T release from beryllium pebble irradiated up to high He content, effective thermal conductivity, tritium permeation and coating, and fabrication cost, and so on. As the plasma facing material, life time of beryllium and coated beryllium, dust and particle production, joining, waste treatment, mechanical properties and deformation by swelling were discussed as important issues. Especially, it was recognized throughout the discussions that the comparative study by the different researchers should be carried out to establish the reliability of the data reported in the workshop and in others. To enhance the comparative study, the world wide collaboration for the relative evaluation of the beryllium was proposed by the International Organization Committee and the proposal was approved by all of the participants. The 45 of the presented papers are indexed individually. (J.P.N.)

  15. Tritium release from highly neutron irradiated constrained and unconstrained beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu; Rolli, R.; Vladimirov, P.; Moeslang, A.

    2015-06-15

    Highlights: • For the irradiated constrained beryllium pebbles, the tritium release occurs easier than for the unconstrained ones. • Tritium retention in the irradiated constrained and unconstrained beryllium pebbles decreases with increasing irradiation temperature. • Formation of sub-grains in the constrained beryllium pebbles facilitate the open porosity network formation. - Abstract: Beryllium is the reference neutron multiplier material in the Helium Cooled Pebble Bed (HCPB) breeding blanket of fusion power plants. Significant tritium inventory accumulated in beryllium as a result of neutron-induced transmutations could become a safety issue for the operation of such blankets as well as for the nuclear waste utilization. To provide a related materials database, a neutron irradiation campaign of beryllium pebbles with diameters of 0.5 and 1 mm at 686–1006 K, the HIDOBE-01 experiment, has been performed in the HFR in Petten, the Netherlands, producing up to 3020 appm helium and 298 appm tritium. Thermal desorption tests of irradiated unconstrained and constrained beryllium pebbles were performed in a purge gas flow using a quadrupole mass-spectrometer (QMS) and an ionization chamber. Compared to unconstrained pebbles, constrained beryllium pebbles have an enhanced tritium release at all temperatures investigated. Small elongated sub-grains formed under irradiation in the constrained pebbles promote formation of numerous channels for facilitated tritium release.

  16. Reduction evaporation of BeO to provide a beryllium metal sample for accelerator radiometric dating

    International Nuclear Information System (INIS)

    A technique is described for preparing beryllium metal samples from beryllium oxide for use in accelerator ion sources. These samples are used to measure minute 10Be/9Be ratios for radiometric dating at the University of Washington tandem Van de Graaff accelerator. (orig.)

  17. Protection of beryllium metal against microbial influenced corrosion using silane self-assembled monolayers

    Science.gov (United States)

    Vaidya, Rajendra U.; Deshpande, Alina; Hersman, Larry; Brozik, Susan M.; Butt, Darryl

    1999-08-01

    The effectiveness of a self-assembled silane monolayer as protection for beryllium against microbiologically influenced corrosion (MIC) was demonstrated. Four-point bend tests on coated and uncoated beryllium samples were conducted after microbiological exposures, and the effectiveness of these coatings as MIC protection was reported through mechanical property evaluations. Application of the silane monolayer to the beryllium surfaces was found to prevent degradation of the failure strength and displacement-to-failure of beryllium in bending. In contrast, the uncoated beryllium samples exhibited a severe reduction in these mechanical properties in the presence of the marine Pseudomonas bacteria. The potentiodynamic measurements showed that both the uncoated and coated samples pitted at the open-circuit potential. However, the size and distribution of the corrosion pits formed on the surface of the beryllium samples were significantly different for the various cases (coated vs uncoated samples exposed to control vs inoculated medium). This study demonstrates the following: (1) the deleterious effects of MIC on the mechanical properties of beryllium and (2) the potential for developing fast, easy, and cost-effective MIC protection for beryllium metal using silane self-assemblies.

  18. 10 CFR 71.23 - General license: Plutonium-beryllium special form material.

    Science.gov (United States)

    2010-01-01

    ... requirements of 49 CFR 173.417(a). (b) The general license applies only to a licensee who has a quality... 10 Energy 2 2010-01-01 2010-01-01 false General license: Plutonium-beryllium special form material... RADIOACTIVE MATERIAL General Licenses § 71.23 General license: Plutonium-beryllium special form material....

  19. Neutron field produced by 25 MeV deuteron on thick beryllium for radiobiological study; energy spectrum.

    Science.gov (United States)

    Takada, Masashi; Mihara, Erika; Sasaki, Michiya; Nakamura, Takashi; Honma, Toshihiko; Kono, Koji; Fujitaka, Kazunobu

    2004-01-01

    Biological data is necessary for estimation of protection from neutrons, but there is a lack of data on biological effects of neutrons for radiation protection. Radiological study on fast neutrons has been done at the National Institute of Radiological Sciences. An intense neutron source has been produced by 25 MeV deuterons on a thick beryllium target. The neutron energy spectrum, which is essential for neutron energy deposition calculation, was measured from thermal to maximum energy range by using an organic liquid scintillator and multi-sphere moderated 3He proportional counters. The spectrum of the gamma rays accompanying the neutron beam was measured simultaneously with the neutron spectrum using the organic liquid scintillator. The transmission by the shield of the spurious neutrons originating from the target was measured to be less than 1% by using the organic liquid scintillator placed behind the collimator. The measured neutron energy spectrum is useful in dose calculations for radiobiology studies.

  20. Deformation behaviour of fine grained high purity beryllium - influence of fabrication parameters, temperature and copper additions

    International Nuclear Information System (INIS)

    The deformation behaviour of high-purity beryllium was tested on hot isostatically pressed samples of different initial grain size and compared with material manufactured commercially from pure beryllium and with beryllium-copper alloys containing 0.44, 1.1 and 2.1 at.% copper. Initial grain size of these high purity material was 0C. Grain structure of the samples was subsequently analysed by light, rastor and transmission electron microscopy. The influence of copper additions on deformation of high-purity beryllium was analysed. A further aim of this study was to investigate, by suitable methods, the mode of action of relevant impurities and to throw light on their influence on grain formation. This should enable reliable information to be provided for the manufacture of high-purity beryllium which, in turn, will lead to an improvement in ductility. (orig./IHOE)

  1. Comparing neutronics codes performance in analyzing a fresh-fuelled research reactor core

    International Nuclear Information System (INIS)

    Highlights: • Calculation of neutron fluence rate with different neutronic codes is examined. • MCNP, TRIPOLI and CITATION were used for neutron fluence rate calculations. • The recently converted core of the Portuguese Research Reactor (RPI) was used. • Fresh fuel of low enrichment in U-235 was assumed. • Thermal, epithermal and fast neutron fluence rates were computed. - Abstract: In this paper the relative performance of different simulation approaches is examined, focusing on the neutron fluence rate distribution in a nuclear reactor core. The main scope of the work is to benchmark and validate the neutronics code systems utilized in the Greek Research Reactor (GRR-1) for a high-density Low Enriched Uranium (LEU) core of compact size. For this purpose the recently converted core of the Portuguese Research Reactor (RPI), fueled with fresh, low enrichment in U-235 fuel, was simulated with the stochastic code TRIPOLI and the deterministic code system XSDRN/CITATION. RPI was selected on the basis that it is a similar to GRR-1 pool-type reactor, using same fuel and control rods type, as well as same types of coolant, moderator and reflector. The neutron fluence rate in RPI was computed using each numerical approach with changed approximations. In this frame the stochastic code TRIPOLI was tested using two different nuclear data libraries, i.e., ENDF/B-VI versus JEFF3.1, and two different ways of source definition, i.e., “point sources”, placed in the center of each fuel cell, versus a “distributed source”, where each fuel volume was considered as a neutron source. The deterministic code system XSDRN/CITATION was tested with respect to the definition of the transverse leakages associated to each one-dimensional, user-defined core zone, as analyzed by the XSDRN code in order to provide the zone equivalent cross sections. Thermal, epithermal and fast neutron fluence rates were computed and local values found in a 15 cm segment immediately below the

  2. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie

    2002-08-13

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the

  3. Detection of beryllium treatment of natural sapphires by NRA

    Science.gov (United States)

    Gutiérrez, P. C.; Ynsa, M.-D.; Climent-Font, A.; Calligaro, T.

    2010-06-01

    Since the 1990's, artificial treatment of natural sapphires (Al 2O 3 crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of μg/g of beryllium in Al 2O 3 crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-μm diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction 9Be(α, nγ) 12C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt γ-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt γ-ray produced during irradiation by the aluminium of the sapphire matrix through the 27Al(α, pγ) 30Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required μg/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 μC, beryllium concentrations from 5 to 16 μg/g have been measured in the samples, with a detection limit of 1 μg/g.

  4. Detection of beryllium treatment of natural sapphires by NRA

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, P.C., E-mail: carolina.gutierrez@uam.e [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Ynsa, M.-D.; Climent-Font, A. [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Dpto. Fisica Aplicada C-12, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Calligaro, T. [Centre de Recherche et de Restauration des musees de France C2RMF, CNRS-UMR171, 14 quai Francois Mitterrand, 75001 Paris (France)

    2010-06-15

    Since the 1990's, artificial treatment of natural sapphires (Al{sub 2}O{sub 3} crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of {mu}g/g of beryllium in Al{sub 2}O{sub 3} crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-{mu}m diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction {sup 9}Be({alpha}, n{gamma}){sup 12}C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt {gamma}-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt {gamma}-ray produced during irradiation by the aluminium of the sapphire matrix through the {sup 27}Al({alpha}, p{gamma}){sup 30}Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required {mu}g/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 {mu}C, beryllium concentrations from 5 to 16 {mu}g/g have been measured in the samples, with a detection limit of 1 {mu}g/g.

  5. Model study in chemisorption: atomic hydrogen on beryllium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, C.W. Jr.

    1976-08-01

    The interaction between atomic hydrogen and the (0001) surface of Be metal has been studied by ab initio electronic structure theory. Self-consistent-field (SCF) calculations have been performed using minimum, optimized minimum, double zeta and mixed basis sets for clusters as large as 22 Be atoms. The binding energy and equilibrium geometry (the distance to the surface) were determined for 4 sites. Both spatially restricted (the wavefunction was constrained to transform as one of the irreducible representations of the molecular point group) and unrestricted SCF calculations were performed. Using only the optimized minimum basis set, clusters containing as many as 22 beryllium atoms have been investigated. From a variety of considerations, this cluster is seen to be nearly converged within the model used, providing the most reliable results for chemisorption. The site dependence of the frequency is shown to be a geometrical effect depending on the number and angle of the bonds. The diffusion of atomic hydrogen through a perfect beryllium crystal is predicted to be energetically unfavorable. The cohesive energy, the ionization energy and the singlet-triplet separation were computed for the clusters without hydrogen. These quantities can be seen as a measure of the total amount of edge effects. The chemisorptive properties are not related to the total amount of edge effects, but rather the edge effects felt by the adsorbate bonding berylliums. This lack of correlation with the total edge effects illustrates the local nature of the bonding, further strengthening the cluster model for chemisorption. A detailed discussion of the bonding and electronic structure is included. The remaining edge effects for the Be/sub 22/ cluster are discussed.

  6. Use of notched beams to establish fracture criteria for beryllium

    International Nuclear Information System (INIS)

    The fracture of an improved form of pure beryllium was studied under triaxial tensile stresses. This state of stress was produced by testing notched beams, which were thick enough to be in a state of plane strain at the center. A plane strain, elastic-incremental plasticity finite element program was then used to determine the stress and strain distributions at fracture. A four-point bend fixture was used to load the specimens. It was carefully designed and manufactured to eliminate virtually all of the shear stresses at the reduced section of the notched beams. The unixial properties were obtained

  7. Beryllium ignition target design for indirect drive NIF experiments

    Science.gov (United States)

    Simakov, A. N.; Wilson, D. C.; Yi, S. A.; Kline, J. L.; Salmonson, J. D.; Clark, D. S.; Milovich, J. L.; Marinak, M. M.

    2016-03-01

    Beryllium (Be) ablator offers multiple advantages over carbon based ablators for indirectly driven NIF ICF ignition targets. These are higher mass ablation rate, ablation pressure and ablation velocity, lower capsule albedo, and higher thermal conductivity at cryogenic temperatures. Such advantages can be used to improve the target robustness and performance. While previous NIF Be target designs exist, they were obtained a long time ago and do not incorporate the latest improved physical understanding and models based upon NIF experiments. Herein, we propose a new NIF Be ignition target design at 1.45 MJ, 430 TW that takes all this knowledge into account.

  8. Technique of beryllium determination using an (α,n) reaction

    International Nuclear Information System (INIS)

    The possibility of detecting small amounts of 9Be using the (α, n) reaction has been investigated. It is shown that at a 210Po α-particle source intensity of 3x108 s-1 for limit of the detectable amount of beryllium is equal to 0.1 μg in the case of recording neutron-gamma (>= 3.6 MeV) coincidences. Other light elements (B, F, Al, Mg, Si etc.) do not produce a noticeable background under such conditions

  9. Double K-shell photoionization of atomic beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Yip, F. L. [Departamento de Quimica, Modulo 13, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Martin, F. [Departamento de Quimica, Modulo 13, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Instituto Madrilen(tilde sign)o de Estudios Avanzados en Nanociencia, Cantoblanco, E-28049 Madrid (Spain); McCurdy, C. W. [Department of Chemistry, University of California, Davis, California 95616 (United States); Lawrence Berkeley National Laboratory, Chemical Sciences, and Ultrafast X-ray Science Laboratory, Berkeley, California 94720 (United States); Rescigno, T. N. [Lawrence Berkeley National Laboratory, Chemical Sciences, and Ultrafast X-ray Science Laboratory, Berkeley, California 94720 (United States)

    2011-11-15

    Double photoionization of the core 1s electrons in atomic beryllium is theoretically studied using a hybrid approach that combines orbital and grid-based representations of the Hamiltonian. The {sup 1} S ground state and {sup 1} P final state contain a double occupancy of the 2s valence shell in all configurations used to represent the correlated wave function. Triply differential cross sections are evaluated, with particular attention focused on a comparison of the effects of scattering the ejected electrons through the spherically symmetric valence shell with similar cross sections for helium, representing a purely two-electron target with an analogous initial-state configuration.

  10. Tritium analyses of COBRA-1A2 beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, D.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Selected tritium measurements have been completed for the COBRA-1A2 experiment C03 and D03 beryllium pebbles. The completed results, shown in Tables 1, 2, and 3, include the tritium assay results for the 1-mm and 3-mm C03 pebbles, and the 1-mm D03 pebbles, stepped anneal test results for both types of 1-mm pebbles, and the residual analyses for the stepped-anneal specimens. All results have been reported with date-of-count and are not corrected for decay. Stepped-anneal tritium release response is provided in addenda.

  11. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    OpenAIRE

    Hammer H.-W.; Phillips D.R.

    2010-01-01

    We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1) strength of the 1/2+ to 1/2− transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accurac...

  12. Microstructure and mechanical properties of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.

    1998-01-01

    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  13. Determination of α and f parameters at the 14-MW TRIGA reactor at Pitesti, Romania

    Science.gov (United States)

    Bărbos, D.; Păunoiu, C.; Roth, C.

    2010-10-01

    For experimental α determination the two-monitor method has been applied to determine α parameter in the irradiation channels at TRIGA 14 MW reactor (SCN Pitesti). The modified two-monitor method by using Cd ratio measurements eliminates the introducing of systematic errors due to the inaccuracy of absolute nuclear data. This characterization of the epithermal neutron spectrum is used in the k0-method of NAA, implemented at the SCN Pitesti. Neutron spectrum parameters were determined in the inner irradiation channel XC-1 and for outer irradiation channels: Beryllium J-6, Beryllium J-7, and Beryllium K-11. For α and f parameter verification a standard reference material denominated ECRM379-1 was analyzed using k0 standardization.

  14. The mechanism for production of beryllium fluoride from the product of ammonium fluoride processing of beryllium- containing raw material

    Science.gov (United States)

    Kraydenko, R. I.; Dyachenko, A. N.; Malyutin, L. N.; Petlin, I. V.

    2016-06-01

    The technique of fluorite-phenacite-bertrandite ores from Russian Ermakovskoe deposit processing by ammonium bifluoride is described. To determine the temperature mode and the thermal dissociation mechanism of ammonium tetrafluoroberyllate (the product of ammonium-fluoride leaching of the ore) the TG/DTA have been carried out. By IR spectroscopy and XRD the semi-products of ammonium tetrafluoroberyllate thermal dissociation have been identified. The hygroscopic low-temperature beryllium fluoride forms higher than 380°C. The less hydroscopic form of BeF2 have been produced at 600°C.

  15. Remarkable Hydrogen Storage on Beryllium Oxide Clusters: First Principles Calculations

    CERN Document Server

    Shinde, Ravindra

    2016-01-01

    Since the current transportation sector is the largest consumer of oil, and subsequently responsible for major air pollutants, it is inevitable to use alternative renewable sources of energies for vehicular applications. The hydrogen energy seems to be a promising candidate. To explore the possibility of achieving a solid-state high-capacity storage of hydrogen for onboard applications, we have performed first principles density functional theoretical calculations of hydrogen storage properties of beryllium oxide clusters (BeO)$_{n}$ (n=2 -- 8). We observed that polar BeO bond is responsible for H$_{2}$ adsorption. The problem of cohesion of beryllium atoms does not arise, as they are an integral part of BeO clusters. The (BeO)$_{n}$ (n=2 -- 8) adsorbs 8--12 H$_{2}$ molecules with an adsorption energy in the desirable range of reversible hydrogen storage. The gravimetric density of H$_{2}$ adsorbed on BeO clusters meets the ultimate 7.5 wt% limit, recommended for onboard practical applications. In conclusion,...

  16. Microstructural Characterization of Beryllium Treated Al-Si Alloys

    Directory of Open Access Journals (Sweden)

    M. F. Ibrahim

    2015-01-01

    Full Text Available The present study was carried out on B356 and B357 alloys using the thermal analysis technique. Metallographic samples prepared from these castings were examined using optical microscopy and FESEM. Results revealed that beryllium causes partial modification of the eutectic Si, similar to that reported for magnesium additions. Addition of 0.8 wt.% Mg reduces the eutectic temperature by ~10°C. During solidification of alloys containing high levels of Fe and Mg, but no Sr, formation of a Be-Fe phase was detected at 611°C, close to that of α-Al. The Be-Fe phase precipitates in script-like form at or close to the β-Al5SiFe platelets. A new reaction, composed of fine particles of Si and π-Fe phase, was observed to occur near the end of solidification in high Mg-, high Fe-, and Be-containing alloys. The amount of this reaction decreased with the addition of Sr. Occasionally, Be-containing phase particles were observed as part of the reaction. Addition of Be has a noticeable effect on decreasing the β-Al5FeSi platelet length; this effect may be enhanced by addition of Sr. Beryllium addition also results in precipitation of the β-Al5FeSi phase in nodular form, which lowers its harmful effects on the alloy mechanical properties.

  17. United Kingdom Beryllium Registry: mortality and autopsy study.

    Science.gov (United States)

    Williams, W J

    1996-01-01

    This report is based on 30 deaths from chronic beryllium disease (CBD) in the United Kingdom with details of 19 autopsies. The majority were fluorescent lamp workers and machinists who died from respiratory failure. There were no cases of lung cancer. The survival times ranged from less than 1 to 29 years and was longest in machinists. All of the workers showed interstitial pulmonary fibrosis with varying degrees of cystic change. The majority showed hyalinized, and a few active sarcoid-type, granulomas. Extrathoracic granulomas, as in a U.K. sarcoid autopsy series, were rare. A notable difference was the absence of myocardial involvement in CBD compared to an incidence of 20% in the sarcoid autopsies. The detection of beryllium in the criteria for diagnosis is emphasized and the cases classified as definite include 12 of 19 positive analysis, 6 of 19, negative or unavailable analysis. The remaining case was classified as dubious because, despite a positive analysis, granulomas were absent. The main differential diagnosis is sarcoidosis. Images Figure 1. Figure 2. Figure 3. PMID:8933040

  18. A non-chemical spectroscopic determination of atmospheric beryllium

    International Nuclear Information System (INIS)

    Beryllium in the atmosphere is determined by emission spectroscopy using a non-chemical method of analysis. Long term effects of beryllium poisoning result in respiratory and skin disease, and this is partly reflected by the low threshold limits (0.002 mg/m3). In comparison the threshhold values for lead and cadmium are 0.2 and 0.16 mg/m3 respectively. Air samples are collected at 2 litres/ minute using cellulose filters, and sampling time is dependent on the individual process being monitored, but can be as short as five minutes, eg. dental laboratories. The filters are initially divided in two parts, and one portion is carefully pelletised using a steel press. The pellet is placed in an electrode cup and 'wetted' using isopropanol and ethylene glycol. Wetting is necessary because the pellets tended to explode out of the arcing zone. Calibration graphs were produced using an internal cobalt standard, and the 234.8 nm, 313.0 nm emission lines were used. No spectral and inter-element effects were observed, and the minimum detection limit was one nanogram. Under normal working conditions a 25% precision was obtained. (author)

  19. Calculations for electron-impact excitation and ionization of beryllium

    CERN Document Server

    Zatsarinny, Oleg; Fursa, Dmitry V; Bray, Igor

    2016-01-01

    The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set o...

  20. Steam chemical reactivity of plasma-sprayed beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Pawelko, R.J.; Smolik, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Castro, R.G. [Los Alamos National Lab., NM (United States)

    1998-07-01

    Plasma-spraying with the potential for in-situ repair makes beryllium a primary candidate for plasma facing and structural components in experimental magnetic fusion machines. Deposits with good thermal conductivity and resistance to thermal cycling have been produced with low pressure plasma-spraying (LPPS). A concern during a potential accident with steam ingress is the amount of hydrogen produced by the reactions of steam with hot components. In this study the authors measure the reaction rates of various deposits produced by LPPS with steam from 350 C to above 1,000 C. They correlate these reaction rates with measurements of density, open porosity and BET surface areas. They find the reactivity to be largely dependent upon effective surface area. Promising results were obtained below 600 C from a 94% theoretical dense (TD) deposit with a BET specific surface area of 0.085 m{sup 2}/g. Although reaction rates were higher than those for dense consolidated beryllium they were substantially lower, i.e., about two orders of magnitude, than those obtained from previously tested lower density plasma-sprayed deposits.

  1. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  2. Process calculations for a moderator detritiation plant

    International Nuclear Information System (INIS)

    The Savannah River Plant is currently analyzing processes for the removal of tritium from the heavy water used as a moderator in SRP's nuclear reactors. An accompanying paper describes the background and need for this process. A computer-aided design program was used to simulate the distillation section of the detritiation process flowsheet. Simplified calculation techniques were performed to optimize the process parameters. Results obtained are being used to evaluate proposals from various vendors

  3. Advanced Test Reactor National Scientific User Facility Progress

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  4. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  5. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring; FINAL

    International Nuclear Information System (INIS)

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features

  6. The development and advantages of beryllium capsules for the National Ignition Facility

    International Nuclear Information System (INIS)

    Capsules with beryllium ablators have long been considered as alternatives to plastic for the National Ignition Facility laser; now the superior performance of beryllium is becoming well substantiated. Beryllium capsules have the advantages of relative insensitivity to instability growth, low opacity, high tensile strength, and high thermal conductivity. 3-D calculation with the HYDRA code NTIS Document No. DE-96004569 (M. M. Marinak et.al. in UCRL-LR-105821-95-3) confirm 2-D LASNEX U. B. Zimmerman and W. L. Kruer, Comments Plasmas Phys. Controlled Thermonucl. Fusion, 2, 51(2975) results that particular beryllium capsule designs are several times less sensitive than the CH point design to instability growth from DT ice roughness. These capsule designs contain more ablator mass and leave some beryllium unablated at ignition. By adjusting the level of copper dopant, the unablated mass can increase or decrease, with a corresponding decrease or increase in sensitivity to perturbations. A plastic capsule with the same ablator mass as the beryllium and leaving the same unablated mass also shows this reduced perturbation sensitivity. Beryllium's low opacity permits the creation of 250 eV capsule designs. Its high tensile strength allows it to contain DT fuel at room temperature. Its high thermal conductivity simplifies cryogenic fielding

  7. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  8. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  9. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  10. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  11. The MNSR reactor

    International Nuclear Information System (INIS)

    This tank-in-pool reactor is based on the same design concept as the Canadian Slowpoke. The core is a right circular cylinder, 24 cm diameter by 25 cm long, containing 411 fuel pin positions. The pins are HEU-Aluminium alloy, 0.5 cm in diameter. Critical mass is about 900 g. The reactor has a single cadmium control rod. The back-up shutdown system is the insertion of a cadmium capsule in a core position. Excess reactivity is limited to 3.5mk. In both the MNSR and Slowpoke, the insertion of the maximum excess reactivity results in a power transient limited by the coolant/moderator temperature to safe values, independent of any operator action. This reactor is used primarily in training and neutron activation analysis. Up to 64 elements have been analyzed in a great variety of different disciplines. (author)

  12. REACTOR-FLASH BOILER-FLYWHEEL POWER PLANT

    Science.gov (United States)

    Loeb, E.

    1961-01-17

    A power generator in the form of a flywheel with four reactors positioned about its rim is described. The reactors are so positioned that steam, produced in the reactor, exists tangentially to the flywheel, giving it a rotation. The reactors are incompletely moderated without water. The water enters the flywheel at its axis, under sufficient pressure to force it through the reactors, where it is converted to steam. The fuel consists of parallel twisted ribbons assembled to approximate a cylinder.

  13. The structure and the Raman vibrational spectrum of the beryllium aquacation.

    Science.gov (United States)

    Rozmanov, Dmitry A; Sizova, Olga V; Skripkin, Mikhail Yu; Burkov, Kim A

    2005-11-01

    The experimental Raman vibrational spectrum of the 5.94 m water solution of the beryllium(II) chloride has been acquired. Theoretical frequencies, infrared and Raman intensities of the vibrational spectrum of the beryllium cation tetrahydrate have been calculated by means of quantum chemical approach. The peaks of the experimental spectrum have been assigned on the basis of the results of the quantum-chemical calculations. It has been shown that the hydrating surrounding of the aquacation increases effectively the frequency of the beryllium-oxygen stretching vibration by 16% in comparison with the free complex.

  14. Conditions for preparation of ultrapure beryllium by electrolytic refining in molten alkali-metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Hagen

    1982-02-01

    Electrolytic refining is regarded as the most suitable process for the production of beryllium with impurity contents below 1 at.-ppM. Several parameters are important for electrolytic refining of beryllium in a BeCl/sub 2/-containing LiCl-KCl melt: current density, BeCl/sub 2/ content, electrolyte temperature, composition of the unpurified beryllium and impurity-ion concentrations in the melt, as well as apparatus characteristics such as rotation speed of the cathode and condition of the crucible material. These factors were studied and optimized such that extensive removal of the maximum number of accompanying and alloying elements was achieved.

  15. Study of beryllium redeposition under bombardment by high intensity -low energy- hydrogen ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gureev, V.M.; Guseva, M.I.; Danelyan, L.S. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)] [and others

    1998-01-01

    The results of studying the erosion of beryllium under an effect of intense ion fluxes with the energy of 250 eV, at the fluences {approx}10{sup 2}1 cm{sup -2}, at the MAGRAS-stand are given. The operating conditions under which a practically-complete redeposition of the sputtered beryllium upon the target surface were experimentally-realized. A change in the microstructure of a beryllium target under sputtering and redeposition is analyzed. Some technological applications are considered. (author)

  16. Failure prediction of thin beryllium sheets used in spacecraft structures

    Science.gov (United States)

    Roschke, Paul N.; Mascorro, Edward; Papados, Photios; Serna, Oscar R.

    1991-01-01

    The primary objective of this study is to develop a method for prediction of failure of thin beryllium sheets that undergo complex states of stress. Major components of the research include experimental evaluation of strength parameters for cross-rolled beryllium sheet, application of the Tsai-Wu failure criterion to plate bending problems, development of a high order failure criterion, application of the new criterion to a variety of structures, and incorporation of both failure criteria into a finite element code. A Tsai-Wu failure model for SR-200 sheet material is developed from available tensile data, experiments carried out by NASA on two circular plates, and compression and off-axis experiments performed in this study. The failure surface obtained from the resulting criterion forms an ellipsoid. By supplementing experimental data used in the the two-dimensional criterion and modifying previously suggested failure criteria, a multi-dimensional failure surface is proposed for thin beryllium structures. The new criterion for orthotropic material is represented by a failure surface in six-dimensional stress space. In order to determine coefficients of the governing equation, a number of uniaxial, biaxial, and triaxial experiments are required. Details of these experiments and a complementary ultrasonic investigation are described in detail. Finally, validity of the criterion and newly determined mechanical properties is established through experiments on structures composed of SR200 sheet material. These experiments include a plate-plug arrangement under a complex state of stress and a series of plates with an out-of-plane central point load. Both criteria have been incorporated into a general purpose finite element analysis code. Numerical simulation incrementally applied loads to a structural component that is being designed and checks each nodal point in the model for exceedance of a failure criterion. If stresses at all locations do not exceed the failure

  17. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices

  18. The world’s first pelletized cold neutron moderator at a neutron scattering facility

    Energy Technology Data Exchange (ETDEWEB)

    Ananiev, V.; Belyakov, A.; Bulavin, M.; Kulagin, E.; Kulikov, S.; Mukhin, K.; Petukhova, T.; Sirotin, A.; Shabalin, D.; Shabalin, E.; Shirokov, V.; Verhoglyadov, A., E-mail: verhoglyadov_al@mail.ru

    2014-02-01

    In July 10, 2012 cold neutrons were generated for the first time with the unique pelletized cold neutron moderator CM-202 at the IBR-2M reactor. This new moderator system uses small spherical beads of a solid mixture of aromatic hydrocarbons (benzene derivatives) as the moderating material. Aromatic hydrocarbons are known as the most radiation-resistant hydrogenous substances and have properties to moderate slow neutrons effectively. Since the new moderator was put into routine operation in September 2013, the IBR-2 research reactor of the Frank Laboratory of Neutron Physics has consolidated its position among the world’s leading pulsed neutron sources for investigation of matter with neutron scattering methods.

  19. The Isis cold moderators

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  20. Modes of Occurrence and Geological Origin of Beryllium in Coals from the Pu'an Coalfield, Guizhou, Southwest China

    Institute of Scientific and Technical Information of China (English)

    YANG Jianye

    2007-01-01

    The concentration, modes of occurrence and geological origin of beryllium in five workable coal beds from the Pu'an Coalfield of Guizbou were studied using the inductively coupled-plasma mass spectrometry (ICP-MS), floating and sinking experiments (FSE) and sequential chemical extraction procedures (SCEP). The results show that the average concentration of beryllium in coals from the Pu'an Coalfield is 1.54 μg/g, much lower than that in most Chinese and worldwide coals.Beryllium in the Pu'an coals was not significantly enriched. However, it should be noted that the No. 8 coal bed from the study area has a high concentration of beryllium, 6.89 μg/g, three times higher than the background value of beryllium in coal. Beryllium in coal mainly occurs as organic association and has predominantly originated from coal-forming plants when its concentration is relatively low. The concentration of beryllium occurring as organic association is close to that distributed in inorganic matter when beryllium concentration of coal is similar to its background value, and in addition to coal-forming plants, beryllium is mainly derived from detrital materials of terrigenous origin. When beryllium is anomalously enriched in coal, it mainly occurs as organic association and is derived from volcanic tonsteins leached for a long geological time and then adsorbed by organic matter in peat mire.

  1. Thermal desorption analysis of beryllium tile pieces from JET

    International Nuclear Information System (INIS)

    Pieces of beryllium tile exposed to a D-D plasma in JET have been studied by thermal desorption spectroscopy. These tiles have a thick layer of redeposited Be-C-O with considerable hydrogen and deuterium present. The samples were heated at a constant rate of 2 C/min. from 100 C to 900 C. Desorption peaks occurred in the range of 140-480 C. There was no significant desorption at temperatures above 600 C. The amount of deuterium detected varied from a low of 8 x 1021/m2 to a high of 2.1 x 1023/m2. In one case, the amount of deuterium in a tile piece was seven times greater than the amount in a neighboring tile piece. Some of the tile pieces in the plasma-exposed region showed surface melting. Despite this, the deuterium yield from one of these pices is >1023/m2. (orig.)

  2. Thermal Induced Processes in Laminar System of Stainless Steel - Beryllium

    International Nuclear Information System (INIS)

    The paper reports on investigation of the laminar system 'stainless steel 12Cr18Ni10Ti - Be' at thermal treatment. There have been determined sequences of phase transformations along with relative amount of iron-containing phases in the samples subjected to thermal beryllization. It has been revealed that thermal beryllization of stainless steel thin foils results in γ→α transformation and formation of the beryllides NiBe and FeBe2. It has also been revealed that direct γ→α- and reverse α→γ-transformations are accompanied by, correspondingly, formation and decomposition of the beryllide NiBe. It is shown that distribution of the formed phases within sample bulk is defined by local concentration of beryllium. Based on obtained experimental data there is proposed a physical model of phase transformations in stainless steel at thermal beryllization.

  3. Nuclear charge radius measurements of radioactive beryllium isotopes

    CERN Multimedia

    2002-01-01

    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  4. Optical properties and structure of beryllium lead silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, I. S., E-mail: i.s.zhidkov@urfu.ru [Ural Federal University, Mira Str. 19, Yekaterinburg, 620002, Russia and Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Str. 18, 620990 Yekaterinburg (Russian Federation); Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A. [Ural Federal University, Mira Str. 19, Yekaterinburg, 620002 (Russian Federation)

    2014-10-21

    Luminescence and optical properties and structural features of (BeO){sub x}(PbO⋅SiO{sub 2}){sub 1−x} glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  5. Optical properties and structure of beryllium lead silicate glasses

    Science.gov (United States)

    Zhidkov, I. S.; Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A.

    2014-10-01

    Luminescence and optical properties and structural features of (BeO)x(PbOṡSiO2)1-x glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  6. Specification for nuclear-grade beryllium oxide powder

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification defines the physical and chemical requirements of nuclear-grade beryllium oxide (BeO) powder to be used in fabricating nuclear components. 1.2 This specification does not include requirements for health and safety. , , It recognizes the material as a Class B poison and suggests that producers and users become thoroughly familiar with and comply to applicable federal, state, and local regulations and handling guidelines. 1.3 Special tests and procedures are given in Annex A1 and Annex A2. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  7. Stress distribution and fracture behavior of beryllium compact tension specimens

    International Nuclear Information System (INIS)

    Compact tension specimens of beryllium (Be) were designed to study fracture behavior and mechanical properties. The local stress distribution near a notch in a compact tension specimen was measured in situ by the combination of an X-ray stress analysis and a custom-designed load device. The fracture morphology was observed by scanning electron microscopy. The result showed that the local stresses near the notch tip are much higher than in other areas, and cracking occurs first in that area. The load-crack opening displacement curve of the Be compact tension specimen was obtained, and used to calculate the fracture toughness as 15.7 MPa√m. The compact tension specimen fracture surfaces were mainly characterized by cleavage fracture over three different areas. Cleavage micro-cracks along the basal slip plane were formed at the crack tip, and their growth was controlled by the primary stress after reaching a critical length

  8. Modelling of radiation impact on ITER Beryllium wall

    International Nuclear Information System (INIS)

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  9. Electron microscope observation of single - crystalline beryllium thin foils

    International Nuclear Information System (INIS)

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3. (authors)

  10. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    Directory of Open Access Journals (Sweden)

    Hammer H.-W.

    2010-04-01

    Full Text Available We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1 strength of the 1/2+ to 1/2− transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also indicate how higher-order corrections that affect both s-wave and p-wave 10 Be-neutron interactions will affect our results.

  11. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  12. State space modeling of reactor core in a pressurized water reactor

    Science.gov (United States)

    Ashaari, A.; Ahmad, T.; Shamsuddin, Mustaffa; M, Wan Munirah W.; Abdullah, M. Adib

    2014-07-01

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  13. First beryllium capsule implosions on the National Ignition Facility

    Science.gov (United States)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F.; Haan, S. W.; Celliers, P. M.; Clark, D. S.; Hammel, B. A.; Kozioziemski, B.; Schneider, M. B.; Marinak, M. M.; Rinderknecht, H. G.; Robey, H. F.; Salmonson, J. D.; Patel, P. K.; Ma, T.; Edwards, M. J.; Stadermann, M.; Baxamusa, S.; Alford, C.; Wang, M.; Nikroo, A.; Rice, N.; Hoover, D.; Youngblood, K. P.; Xu, H.; Huang, H.; Sio, H.

    2016-05-01

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  14. Cost effective aluminum beryllium mirrors for critical optics applications

    Science.gov (United States)

    Say, Carissa; Duich, Jack; Huskamp, Chris; White, Ray

    2013-09-01

    The unique performance of aluminum-beryllium frequently makes it an ideal material for manufacturing precision optical-grade metal mirrors. Traditional methods of manufacture utilize hot-pressed powder block in billet form which is subsequently machined to final dimensions. Complex component geometries such as lightweighted, non-plano mirrors require extensive tool path programming, fixturing, and CNC machining time and result in a high buy-to-fly ratio (the ratio of the mass of raw material purchased to the mass of the finished part). This increases the cost of the mirror structure as a significant percentage of the procurement cost is consumed in the form of machining, tooling, and scrap material that do not add value to the final part. Inrad Optics, Inc. and IBC Advanced Alloys Corp. undertook a joint study to evaluate the suitability of investment-cast Beralcast® 191 and 363 aluminum-beryllium as a precision mirror substrate material. Net shape investment castings of the desired geometry minimizes machining to just cleanup stock, thereby reducing the recurring procurement cost while still maintaining performance. The thermal stability of two mirrors, (one each of Beralcast® 191 and Beralcast® 363), was characterized from -40°F to +150°F. A representative pocketed mirror was developed, including the creation of a relevant geometry and production of a cast component to validate the approach. Information from the demonstration unit was used as a basis for a comparative cost study of the representative mirror produced in Beralcast® and one machined from a billet of AlBeMet® 162 (AlBeMet® is a registered trademark of Materion Corporation). The technical and financial results of these studies will be discussed in detail.

  15. Assessment of beryllium Faraday screens of the JET ICRF antennas

    International Nuclear Information System (INIS)

    The JET ICRF antennas, equipped with beryllium (Be) Faraday screens (FS), can be operated in such a way that the RF specific effects on the plasma boundary, by the impurity influx originating at the screens, are reduced to a negligible level. In dipole phasing, k parallel = 7 m-1, the influx is for all purposes negligible. In monopole phasing (kparallel = 0 m-1) the beryllium influx does not exceed ΦFSBe = 1 x 1019 atoms·MW-1·s-1 and the corresponding δZeff/PRF is -1. The observed dependences of ΦFSBe (in monopole phasing) on plasma density, antenna voltage, antenna phasing, and the angle between FS elements and the magnetic field in the boundary, B-vector(a) = B-vectorθ(a) + B-vectorT(a), confirm that the release mechanism is sputtering by ions accelerated in the RF enhanced Bohm-Debye sheaths forming at the front face of the FS. When the angle between FS and B-vector(a) is approx. 22 deg. C, the fraction of the RF power radiated by the antenna, dissipated at the screen, can reach 40%. At high antenna voltage, arcing across the FS can occur. With dipole phasing the heating efficiency is not degraded, even with the large angle, and all the power coupled by the antenna is absorbed at the resonance position near the plasma centre. The open screen design did not introduce any disadvantages. The experience from JET operation at powers of up to 22 MW shows that, if the necessary conditions are met, i.e. if RF rectification is minimized, antennas are phased as dipoles and material with low sputtering coefficients at energies of 0.5-1 keV is used, then the influx from the FS is, for all practical purposes, eliminated. (author). 19 refs, 6 figs

  16. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  17. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    2016-09-01

    The aim of this largely pedagogical article is toemploy pre-college physics to arrive at an understanding of a system as complex as a nuclear reactor. We focus on three key issues: the fuelpin, the moderator, and lastly the dimensions ofthe nuclear reactor.

  18. REMOVAL OF BERYLLIUM FROM DRINKING WATER BY CHEMICAL COAGULATION AND LIME SOFTENING

    Science.gov (United States)

    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. ar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride and lime softening performed ...

  19. Analysis of beryllium and depleted uranium: An overview of detection methods in aerosols and soils

    International Nuclear Information System (INIS)

    We conducted a survey of commercially available methods for analysis of beryllium and depleted uranium in aerosols and soils to find a reliable, cost-effective, and sufficiently precise method for researchers involved in environmental testing at the Yuma Proving Ground, Yuma, Arizona. Criteria used for evaluation include cost, method of analysis, specificity, sensitivity, reproducibility, applicability, and commercial availability. We found that atomic absorption spectrometry with graphite furnace meets these criteria for testing samples for beryllium. We found that this method can also be used to test samples for depleted uranium. However, atomic absorption with graphite furnace is not as sensitive a measurement method for depleted uranium as it is for beryllium, so we recommend that quality control of depleted uranium analysis be maintained by testing 10 of every 1000 samples by neutron activation analysis. We also evaluated 45 companies and institutions that provide analyses of beryllium and depleted uranium. 5 refs., 1 tab

  20. Analysis of beryllium and depleted uranium: An overview of detection methods in aerosols and soils

    Energy Technology Data Exchange (ETDEWEB)

    Camins, I.; Shinn, J.H.

    1988-06-01

    We conducted a survey of commercially available methods for analysis of beryllium and depleted uranium in aerosols and soils to find a reliable, cost-effective, and sufficiently precise method for researchers involved in environmental testing at the Yuma Proving Ground, Yuma, Arizona. Criteria used for evaluation include cost, method of analysis, specificity, sensitivity, reproducibility, applicability, and commercial availability. We found that atomic absorption spectrometry with graphite furnace meets these criteria for testing samples for beryllium. We found that this method can also be used to test samples for depleted uranium. However, atomic absorption with graphite furnace is not as sensitive a measurement method for depleted uranium as it is for beryllium, so we recommend that quality control of depleted uranium analysis be maintained by testing 10 of every 1000 samples by neutron activation analysis. We also evaluated 45 companies and institutions that provide analyses of beryllium and depleted uranium. 5 refs., 1 tab.

  1. Estimations of neutron yield from beryllium target irradiated by SPring-8 hard synchrotron radiation

    CERN Document Server

    Gryaznykh, D A; Plokhoi, V V

    2000-01-01

    The possibility of creating a neutron source based on ''SPring-8'' synchrotron radiation interaction with beryllium targets is discussed. The possible neutron yield is estimated to be of order 10 sup 1 sup 2 s sup - sup 1 .

  2. Off the Beaten Track-A Hitchhiker's Guide to Beryllium Chemistry.

    Science.gov (United States)

    Naglav, Dominik; Buchner, Magnus R; Bendt, Georg; Kraus, Florian; Schulz, Stephan

    2016-08-26

    This Minireview aims to give an introduction to beryllium chemistry for all less-experienced scientists in this field of research. Up to date information on the toxicity of beryllium and its compounds are reviewed and several basic and necessary guidelines for a safe and proper handling in modern chemical research laboratories are presented. Interesting phenomenological observations are described that are related directly to the uniqueness of this element, which are also put into historical context. Herein we combine the contributions and experiences of many scientist that work passionately in this field. We want to encourage fellow scientists to reconcile the long-standing reservations about beryllium and its compounds and motivate intense research on this spurned element. Who on earth should be able to deal with beryllium and its compounds if not chemists? PMID:27364901

  3. Method and apparatus for increasing fuel efficiency in nuclear reactors

    International Nuclear Information System (INIS)

    This patent describes an improved method of producing a spectral shift in a nuclear reactor to achieve increased nuclear fuel efficiency, the nuclear reactor containing a fluid moderator juxtaposed with fuel elements containing the nuclear fuel, which comprises disposing within the fluid moderator stationary non-poison displacer rods for achieving the spectral shift, the displacer rods exhibiting a continuous reduction in volume during operation of the nuclear reactor whereby the fluid moderator increases in volume as the nuclear fuel is burned in the nuclear reactor

  4. Contractarianism and Moderate Morality

    OpenAIRE

    Baltzly, Vaughn Bryan

    2001-01-01

    In his book The Limits of Morality, Shelly Kagan claims that contractarian approaches to ethics are incompatible with our common, everyday, "moderate" morality. In this thesis I defend a version of contractarianism that I believe leads to both deontological constraints and options; i.e., to a genuinely moderate morality. On my account, the parties to the agreement are conceived of as being motivated not only to promote self-interest, but also to formulate a code of ethics that gives proper ...

  5. Operating experiences of the research reactors

    International Nuclear Information System (INIS)

    Nuclear research reactors are devices of wide importance, being used for different scientific research tasks, for testing and improving reactor systems and components, for the production of radioisotopes, for the purposes of defence, for staff training and for other purposes. There are three research reactors in Yugoslavia: RA, RB and TRIGA. Reactors RA and RB at the 'Boris Kidric' Institute of Nuclear Sciences are of heavy water type power being 6500 and 10 kW, and maximum thermal neutron flux of 1014 and 1011(n/cm2s), respectively. TRIGA reactor at the 'Jozef Stefan' Institute in Ljubljana is of 250 kW power and maximum thermal neutron flux of 1013(n/cm2s). Reactors RA and RB use soviet fuel in the form of uranium dioxide (80% enriched) and metallic uranium (2%). Besides, RB reactor operates with natural uranium too. TRIGA reactor uses american uranium fuel 70% and 20% enriched, uranium being mixed homogeneously with moderator (ZrH). Experiences in handling and controlling the fuel before irradiation in the reactor, in reactor and after it are numerous and valuable, involving either the commercial arrangements with foreign producers, or optimal burn up in reactor or fuel treatment after the reactor irradiation. Twenty years of operating experience of these reactors have great importance especially having in mind the number of trained staff. Maintenance of reactors systems and fluids in continuous operation is valuable experience from the point of view of water reactor utilization. The case of the RA reactor primary cycle cobalt decontamination and other events connected with nuclear and radiation security for all three reactors are also specially emphasized. Owing to our research reactors, numerous theoretical, numerical and experimental methods are developed for nuclear and other analyses and design of research and power reactors,as well as methods for control and protection of radiation. (author)

  6. Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution.

    Science.gov (United States)

    Stefaniak, A B; Guilmette, R A; Day, G A; Hoover, M D; Breysse, P N; Scripsick, R C

    2005-02-01

    A simulant of phagolysosomal fluid is needed for beryllium particle dissolution research because intraphagolysosomal dissolution is believed to be a necessary step in the cellular immune response associated with development of chronic beryllium disease. Thus, we refined and characterized a potassium hydrogen phthalate (KHP) buffered solution with pH 4.55, termed phagolysosomal simulant fluid (PSF), for use in a static dissolution technique. To characterize the simulant, beryllium dissolution in PSF was compared to dissolution in the J774A.1 murine cell line. The effects of ionic composition, buffer strength, and the presence of the antifungal agent alkylbenzyldimethylammonium chloride (ABDC) on beryllium dissolution in PSF were evaluated. Beryllium dissolution in PSF was not different from dissolution in the J774A.1 murine cell line (p = 0.78) or from dissolution in another simulant having the same pH but different ionic composition (p = 0.73). A buffer concentration of 0.01-M KHP did not appear adequate to maintain pH under all conditions. There was no difference between dissolution in PSF with 0.01-M KHP and 0.02-M KHP (p = 0.12). At 0.04-M KHP, beryllium dissolution was increased relative to 0.02-M KHP (p = 0.02). Use of a 0.02-M KHP buffer concentration in the standard formulation for PSF provided stability in pH without alteration of the dissolution rate. The presence of ABDC did not influence beryllium dissolution in PSF (p = 0.35). PSF appears to be a useful and appropriate model of in vitro beryllium dissolution when using a static dissolution technique. In addition, the critical approach used to evaluate and adjust the composition of PSF may serve as a framework for characterizing PSF to study dissolution of other metal and oxide particles.

  7. Sensitive detection of beryllium using a fiber optic liquid waveguide cell.

    Science.gov (United States)

    Deng, Gang; Wei, Lily; Collins, Greg E

    2003-05-28

    The metallochromic chelating agent, Chromazurol S, has been utilized in conjunction with a fiber optic liquid waveguide capillary cell to enable the sensitive detection of beryllium in solution (30 ng l(-1) detection limit) and following extraction from a contaminated plexiglas surface (0.5 ng cm(-2) detection limit). The addition of a cationic surfactant, cetylpyridinium chloride, to Chromazurol S at pH 10 in Tris-HCl buffer results in the formation of two bathochromic peaks in the visible spectrum following metal chelation by beryllium. The first absorbance band, at 515 nm, is intermediate in nature, permitting maximal sensitivity for low beryllium concentrations, but diminishing in intensity at concentrations above 100 mug l(-1). The second absorbance band, centered at 610 nm, dominates for beryllium concentrations of 100 mug l(-1) and above. Experimental conditions including pH, buffer type, additive surfactants, masking agents, and dye concentration were investigated in order to optimize detection sensitivity and selectivity. A fiber optic spectrometer is used with both a liquid waveguide capillary cell and 1 cm cuvette cell, to give a sensitive and broad dynamic range for beryllium detection that capitalizes on both beryllium metal chelate absorbance bands formed under these conditions.

  8. Preconcentration and separation of ultra-trace beryllium using quinalizarine-modified magnetic microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ashtari, Parviz, E-mail: pashtari@aeoi.org.ir [State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); NFCS, Nuclear Science and Technology Research Institute, PO Box 11365-8486, Tehran (Iran, Islamic Republic of); Wang Kemin; Yang Xiaohai [State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ahmadi, Seyed Javad [NFCS, Nuclear Science and Technology Research Institute, PO Box 11365-8486, Tehran (Iran, Islamic Republic of)

    2009-07-30

    Magnetically-assisted chemical separation/preconcentration method for the analysis of beryllium from aqueous solutions was developed. According to this method several extractants were coated on certain magnetic microparticles to assist the extraction of beryllium from the aqueous solutions. The influence of different parameters (type and amount of extractant, pH, equilibrium time and ionic strength) was investigated. Also, the interfering effect of various cationic and anionic species on the percent recovery of beryllium was studied. The applied spectrophotometric method showed good linearity and precision at a given wavelength (605.0 nm). Among the extractants used, quinalizarine resulted in almost a full recovery of beryllium at pH 7.4, which was the optimum extraction pH. The equilibrium time of the extraction was 10.0 min. The quantitative re-extraction was carried out by 0.5 M nitric acid. Also, the stability of the extractant-coated magnetic microparticles was 4 cycles (extraction and re-extraction) and the used magnetic microparticles showed good selectivity for beryllium against other cations and anions. Finally, the developed method was applicable for the preconcentration and separation of beryllium from spring water, tap water and certified reference waters. The obtained detection limit was 30 ng L{sup -1}.

  9. Characterization of beryllium deformation using in-situ x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, Eric Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clausen, Bjorn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sisneros, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Park, Jun-Sang [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-08-24

    Beryllium’s unique mechanical properties are extremely important in a number of high performance applications. Consequently, accurate models for the mechanical behavior of beryllium are required. However, current models are not sufficiently microstructure aware to accurately predict the performance of beryllium under a range of processing and loading conditions. Previous experiments conducted using the SMARTS and HIPPO instruments at the Lujan Center(LANL), have studied the relationship between strain rate and texture development, but due to the limitations of neutron diffraction studies, it was not possible to measure the response of the material in real-time. In-situ diffraction experiments conducted at the Advanced Photon Source have allowed the real time measurement of the mechanical response of compressed beryllium. Samples of pre-strained beryllium were reloaded orthogonal to their original load path to show the reorientation of already twinned grains. Additionally, the in-situ experiments allowed the real time tracking of twin evolution in beryllium strained at high rates. The data gathered during these experiments will be used in the development and validation of a new, microstructure aware model of the constitutive behavior of beryllium.

  10. Extraction and optical fluorescence method for the measurement of trace beryllium in soils.

    Science.gov (United States)

    Agrawal, Anoop; Cronin, John P; Agrawal, Akshay; Tonazzi, Juan C L; Adams, Lori; Ashley, Kevin; Brisson, Michael J; Duran, Brandy; Whitney, Gary; Burrell, Anthony K; McCleskey, T Mark; Robbins, James; White, Kenneth T

    2008-03-15

    Beryllium metal and beryllium oxide are important industrial materials used in a variety of applications in the electronics, nuclear energy, and aerospace industries. These materials are highly toxic, they must be disposed of with care, and exposed workers need to be protected. Recently, a new analytical method was developed that uses dilute ammonium bifluoride for extraction of beryllium and a high quantum yield optical fluorescence reagent to determine trace amounts of beryllium in airborne and surface samples. The sample preparation and analysis procedure was published by both ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The main advantages of this method are its sensitivity, simplicity, use of lower toxicity materials, and low capital costs. Use of the technique for analyzing soils has been initiated to help meet a need at several of the U.S. Department of Energy legacy sites. So far this work has mainly concentrated on developing a dissolution protocol for effectively extracting beryllium from a variety of soils and sediments so that these can be analyzed by optical fluorescence. Certified reference materials (CRM) of crushed rock and soils were analyzed for beryllium content using fluorescence, and results agree quantitatively with reference values.

  11. Investigation of the mechanism of interaction of Lithium 6 ions on Beryllium 9

    International Nuclear Information System (INIS)

    The objective of this research on the interaction of Lithium 6 and Beryllium 9 ions is to obtain new indications on the mode of interaction of these heavy ions, and on the configuration of target nuclei and projectile nuclei. In a first part, the author presents and describes the experimental conditions which comprise a Van de Graaff accelerator, a source, a stripper, and a target. He reports the study of α particles emitted by the reaction between the Lithium and Beryllium ions: description of the experimental installation (irradiation chamber and method), presentation and interpretation of experimental results. In the next part, he reports the study of Lithium 7 and Beryllium 10 nuclides emitted by disintegration of Beryllium 11: description of experimental conditions, variations of cross sections, variation of the cross section rate, and interpretation. The author then addresses the study of the intervention of the mode of interaction by 15N compound nucleus in the reactions between lithium and beryllium ions: study of intensities of the different spectrum lines, measurement of the Doppler effect produced of the 479 keV line, interpretation of results. In conclusion, the author analyses the mechanism of interaction between lithium and beryllium ions, and discusses different theories: the Newns and Glendenning theories, and the Leigh theory

  12. Tritium release of Li4SiO4, Li2O and beryllium and chemical compatibility of beryllium with Li4SiO4, Li2O and steel (SIBELIUS irradiation)

    International Nuclear Information System (INIS)

    The objective of the SIBELIUS irradiation, a joint EC-US project performed at CEN Grenoble, was to investigate the oxidation kinetics of beryllium in contact with ceramic and the nature and extent of beryllium in contact with ceramic and the nature and extent of beryllium interaction with (316 L and 1.4914) steel in a neutron environment. In this work post irradiation examinations of SIBELIUS specimens performed at KfK are described. Tritium release of Li4SiO4, Li2O and beryllium was studied by out-of-pile annealing and chemical compatibility of beryllium with Li4SiO4, Li2O and steel by microscopic examinations. Tritium release of the ceramics was found to be consistent with SIBELIUS inpile observations and previous tests. Release of tritium generated in beryllium was found to be very slow, in accordance with previous work. For beryllium which was in contact with ceramic during irradiation, a second type of tritium, caused by injection of 2.7 MeV tritons generated in the ceramic, is observed. Release of injected tritium is faster than that of generated. Evidence for injected tritium in beryllium was also found in the microscopic studies. The observed minor chemical reactions of beryllium with steel and probably also those with breeder materials under neutron irradiation are consistent with the results of laboratory annealing tests. (orig.)

  13. CRITICAL CONFIGURATION FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2012-05-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950’s efforts were made to study “power plants for the production of electrical power in space vehicles”. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of 253 unmoderated stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.” The first two experiments in the series were evaluated in HEU-COMP-FAST-001 (SCCA-FUND-EXP-001) and HEU-COMP-FAST-002 (SCCA-FUND-EXP-002). The first experiment had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank (References 1 and 2). The second experiment in the series, performed in early 1963, had the 253 fuel tubes at a 1.506-cm triangular lattice in a 25.96 cm OD core tank and graphite reflectors on all sides. The third set of experiments in the series, performed in mid-1963, which is studied in this evaluation, used beryllium reflectors. The beryllium reflected system was the preferred reactor configuration for this application because of the small thickness of the reflector. The two core configurations had the 253 fuel tubes

  14. Shield structure for a nuclear reactor

    International Nuclear Information System (INIS)

    An improved nuclear reactor shield structure is described for use where there are significant amounts of fast neutron flux above an energy level of approximately 70 keV. The shield includes structural supports and neutron moderator and absorber systems. A portion at least of the neutron moderator material is magnesium oxide either alone or in combination with other moderator materials such as graphite and iron. (U.K.)

  15. Purification and Chemical Control of Molten Li2BeF 4 for a Fluoride Salt Cooled Reactor

    Science.gov (United States)

    Kelleher, Brian Christopher

    Out of the many proposed generation IV, high-temperature reactors, the molten salt reactor (MSR) is one of the most promising. The first large scale MSR, the molten salt reactor experiment (MSRE), operated from 1965 to 1969 using Li2BeF4, or flibe, as a coolant and solvent for uranium fluoride fuel, at maximum temperatures of 654°C, for over 15000 hours. The MSRE experienced no concept breaking surprises and was considered a success. Newly proposed designs of molten salt reactors use solid fuels, making them less exotic compared to the MSRE. However, any molten salt reactor will require a great deal of research pertaining to the chemical and mechanical mastery of molten salts in order to prepare it for commercialization. To supplement the development of new molten salt reactors, approximately 100 kg of flibe was purified using the standard hydrofluorination process. Roughly half of the purified salt was lithium-7 enriched salt from the secondary loop of the MSRE. Purification rids the salt of impurities and reduces its capacity for corrosion, also known as the redox potential. The redox potential of flibe was measured at various stages of purification for the first time using a dynamic beryllium reference electrode. These redox measurements have been superimposed with metal impurities measurements found by neutron activation analysis. Lastly, reductions of flibe with beryllium metal have been investigated. Over reductions have been performed, which have shown to decrease redox potential while seemingly creating a beryllium-beryllium halide system. Recommendations of the lowest advisable redox potential for corrosion tests are included along with suggestions for future work.

  16. Derivation of beryllium guidelines for use in establishing cleanup levels at the Peek Street and Sacandaga sites, New York

    International Nuclear Information System (INIS)

    Guideline levels are derived for beryllium in soil and on indoor surfaces at the Peek Street and Sacandaga sites in the state of New York. On the basis of highly conservative assumptions, the soil beryllium concentration that corresponds to a 10-4 carcinogenic risk level is estimated to be 13 mg/kg at both sites. Calculations indicate that the proposed US Department of Energy guideline of 2 μg/ft2 for beryllium in dust on indoor surfaces would be sufficiently protective of human health. For occupational protection of workers during cleanup operations, Office of Safety and Health Administration standards for beryllium are referenced and restated

  17. The Swedish Zero Power Reactor R0

    Energy Technology Data Exchange (ETDEWEB)

    Landergaard, Olof; Cavallin, Kaj; Jonsson, Georg

    1961-05-15

    The reactor R0 is a critical facility built for heavy water and natural uranium or fuel of low enrichment,, The first criticality was achieved September 25, 1959. During a first period of more than two years the R0 will be operated as a bare reactor in order to simplify interpretation of results. The reactor tank is 3. 2 m high and 2. 25 m in diameter. The fuel suspension system is quite flexible in order to facilitate fuel exchange and lattice variations. The temperature of the water can be varied between about 10 and 90 C by means of a heater and a cooler placed in the external circulating system. The instrumentation of the reactor has to meet the safety requirements not only during operation but also during rearrangements of the core in the shut-down state. Therefore, the shut-down state is always defined by a certain low 'safe' moderator level in the reactor tank. A number of safety rods are normally kept above the moderator ready for action. For manual or automatic control of the reactor power a specially designed piston pump is needed, by which the moderator level is varied. The pump speed is controlled from the reactor power error by means of a Ward-Leonard system. Moderator level measurement is made by means of a water gauge with an accuracy of {+-} 0. 1 mm.

  18. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  19. Moderate Epistemic Expressivism

    DEFF Research Database (Denmark)

    Ahlström, Kristoffer

    2013-01-01

    The present paper argues that there are at least two equally plausible yet mutually incompatible answers to the question of what is of non-instrumental epistemic value. The hypothesis invoked to explain how this can be so—moderate epistemic expressivism—holds that (a) claims about epistemic value...... most promising attempts to ground claims about epistemic value in something other than commitments to particular conceptions of inquiry. While this does not establish that moderate epistemic expressivism is true, its ability to explain a significant but puzzling axiological datum, as well as withstand...

  20. Coupled moderator neutronics

    International Nuclear Information System (INIS)

    Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source

  1. Interviewing the moderator

    DEFF Research Database (Denmark)

    Traulsen, Janine Morgall; Almarsdóttir, Anna Birna; Björnsdóttir, Ingunn

    2004-01-01

    of a one-on-one interview with the FG moderator by another member of the research team. The authors argue, with reference to a specific study, that interviewing the moderator adds a new and valuable dimension to group interviews used in research. They describe how this method came about and provide...... a concrete example of its use in a recently completed research project. They discuss several advantages of the interview, among them that it provides information about group interaction and participant behavior, and furnishes additional data on what is discussed when the tape recorder is turned off....

  2. Monitoring beryllium during site cleanup and closure using a real-time analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Sappey, A.D.; French, P.D. [ADA Technologies, Inc., Englewood, CO (United States)

    1998-12-31

    Beryllium metal has a number of unique properties that have been exploited for use in commercial and government applications. Airborne beryllium particles can represent a significant human health hazard if deposited in the lungs. These particles can cause immunologically-mediated chronic granulomatous lung disease (chronic beryllium disease). Traditional methods of monitoring airborne beryllium involve collecting samples of air within the work area using a filter. The filter then undergoes chemical analysis to determine the amount of beryllium collected during the sampling period. These methods are time-consuming and results are known only after a potential exposure has occurred. The need for monitoring exposures in real time has prompted government and commercial companies to develop instrumentation that will allow for the real time assessment of short-term exposures so that adequate protection for workers in contaminated environments can be provided. Such an analyzer provides a tool that will allow government and commercial sites to be cleaned up in a more safe and effective manner since exposure assessments can be made instantaneously. This paper describes the development and initial testing of an analyzer for monitoring airborne beryllium using a technique known as Laser-Induced Breakdown Spectroscopy (LIBS). Energy from a focused, pulsed laser is used to vaporize a sample and create an intense plasma. The light emitted from the plasma is analyzed to determine the quantity of beryllium in the sampled air. A commercial prototype analyzer has been fabricated and tested in a program conducted by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Lovelace Respiratory Research Institute, and ADA Technologies, Inc. Design features of the analyzer and preliminary test results are presented.

  3. Sub-micro level monitoring of beryllium ions with a novel beryllium sensor based on 2,6-diphenyl-4-benzo-9-crown-3-pyridine.

    Science.gov (United States)

    Ganjali, Mohammad Reza; Rahimi-Nasrabadi, Mehdi; Maddah, Bozorgmehr; Moghimi, Abolghasem; Faal-Rastegar, Madjid; Borhany, Shahin; Namazian, Mansour

    2004-07-01

    The 2,6-diphenyl-4-benzo-9-crown-3-pyridine (DPCP) was used as an excellent ionophore in construction of a coated graphite poly(vinyl chloride) (PVC)-based membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 60% o-nitrophenyloctyl ether (NPOE), 5% 2,6-diphenyl-4-benzo-9-crown-3-pyridine and 5% sodium tetraphenyl borate (TBP). This sensor shows very good selectivity and sensitivity towards beryllium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The sensor revealed a great enhancement in selectivity coefficients and sensitivity for beryllium, in comparison with the previously reported beryllium electrodes. The electrode exhibits a Nernstian behavior (with slope of 29.6mV per decade) over a very wide concentration range (1.0x10(-7) to 1.0x10(-1)) with a detection limit of 4.0x10(-8)M (360pgml(-1)). It shows relatively fast response time, in whole concentration range (beryllium in mineral ore.

  4. Den moderate revolution

    DEFF Research Database (Denmark)

    Larsen, Bøje

    "normale" industrivirksomheder, men den er absolut set begrænset. Årsagerne til denne kun "moderate revolution" af organisationsformerne diskuteres: Er det fordi klassisk organisation og social nærkontakt er nødvendig i den nye økonomi, eller er det manglende fantasi og tryghedsbehov? Begge muligheder...

  5. The WWR-SM-20 research reactor

    International Nuclear Information System (INIS)

    In this paper the design features and experimental capabilities of the WWR-SM-20 research reactor are described. The reactor uses fuel assemblies consisting of six coaxial fuel tubes with a square cross-section. IRT-3M fuel assemblies can be used with both 90% enriched and 36% enriched uranium. The main characteristics of the IRT-3M fuel assemblies are given, as are the technical and physical parameters of the WWR-SM-20 reactor. The core can hold up to ten ampoule-type channels with a diameter of up to 68 mm. For irradiation purposes, up to 22 26-mm-diameter channels in the fuel assemblies, and up to 48 42-mm-diameter channels in the beryllium blocks of the reflector can be used. In the graphite blanket between the horizontal channels, channels with a diameter of up to 130 mm can be used. The thermal neutron flux density has a maximum value of 1.5 X 1018 m-2 · s-1 in the core and 2.3 X 1018 m-2 · s-1 in the reflector, and the fast neutron flux density (cE > 0.821 MeV) a maximum of 1.9 X 1018 m-2 · s-1. A number of design features have been incorporated in the WWR-SM-20 reactor to make it effectively safe

  6. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  7. Moderator detritiation at the Savannah River Plant

    International Nuclear Information System (INIS)

    A study has been made of the technical and economic aspects of reducing tritium concentration in Savannah River Plant heavy-water moderator by 90%. A single detritiation plant would serve four operating reactors and the desired tritium reduction would be achieved in less than ten years. The process choice has narrowed to three processes. These involve a front-end extraction or preparation of molecular DT in a D2 stream, and a back-end fractional distillation of this stream followed by catalytic conversion to make 98% tritium T2

  8. Investigation of the glide modes of single crystals of beryllium

    International Nuclear Information System (INIS)

    The flow characteristics of single crystals of beryllium specially oriented for slip along a single plane and a single direction have been thoroughly investigated. The elastic limit and the strain hardening in basal glide have been investigated in the temperature range (-195 deg. C, 400 deg. C) in tension as well as in compression. Observation of the slip lines and of the dislocation configurations have also been made in addition to the mechanical tests. The prismatic slip has been studied in greater detail: tensile tests have been performed on specimens carefully oriented at different temperatures, strain rates and with varying orientations of the basal and of the prism planes. Tests have also been made in the micro-strain range; the slip lines and the dislocation arrangements were observed in detail. The very unusual variation of the elastic limit with temperature is not due to impurities but to a cross slip mechanism. A model of dislocation locking is proposed to account for the experimental results. This mechanism assumes that the a-bar dislocations may also dissociate on the prism planes [101-bar 0]. Various possible dissociations are suggested, the most probable of which corresponds to the phase transformation: Hexagonal close packed to body centered cubic. This proposal can be extended to account for the relative ease of glide on the different systems in the hexagonal close packed metals. (author)

  9. Design of the beryllium window for Brookhaven Linac Isotope Producer

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mapes, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raparia, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  10. Erosion of beryllium under high-flux plasma impact

    Energy Technology Data Exchange (ETDEWEB)

    Doerner, R.P., E-mail: rdoerner@ucsd.edu [Center for Energy Research, UCSD, La Jolla, CA 92093-0417 (United States); Björkas, C. [EURATOM-Tekes, Department of Physics, University of Helsinki, P.O.B. 64, 00014 Helsinki (Finland); Institute for Energy Research-Plasma Physics, Forchungszentrun Jülich GmbH, 52425 Jülich (Germany); Nishijima, D. [Center for Energy Research, UCSD, La Jolla, CA 92093-0417 (United States); Schwarz-Selinger, T. [Max-Planck Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2013-07-15

    Be sputtering yields, measured by weight loss, in PISCES-B are a factor of 5–10 less than that predicted by binary collision approximations. Measurements show the BeO surface is removed early in the plasma bombardment. Modeling of molecular ions (D{sub 2}{sup +} and D{sub 3}{sup +}) species and redeposition cannot explain the difference. Surface morphology that evolves during the exposure reduces the sputtering yield by a factor of 2–3. Plasma fuel atoms retained in the surface decrease the sputtering yield compared to calculations of a pure Be surface. These effects may explain the measured erosion rates in the absence of Be impurities within the plasma. By introducing Be impurity ions into the plasma, it is possible to simulate a controllable amount of redeposition. The weight loss from eroding Be targets, with Be seeding, is unchanged until the concentration of Be ions in the plasma greatly exceeds the sputtering yield in the non-beryllium seeded exposure.

  11. Manufacture of sintered bricks of high density from beryllium oxide

    International Nuclear Information System (INIS)

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm2. The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm2 pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author)

  12. Beryllium-induced immune response in C3H mice

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Bice, D.E.; Nikula, K.J. [and others

    1995-12-01

    Studies conducted at ITRI over the past several years have investigated whether Beagle dogs, monkeys, and mice are suitable models for human chronic beryllium-induced lung disease (CBD). Recent studies have focused on the histopathological and immunopathological changes occurring in A/J and C3H/HeJ mice acutely exposed by inhalation to Be metal. Lung lesions in both strains of mice included focal lymphocyte aggregates comprised primarily of B lymphocytes and lesser amounts of T-helper lymphocytes and microgranulomas consisting chiefly of macrophages and T-helper lymphocytes. The distribution of proliferating cells within the microgranulomas was similar to the distribution of T-helper cells. These results strongly suggested that A/J and C3H/HeJ mice responded to inhaled Be metal in a fashion similar to humans in terms of pulmonary lesions and the apparent in situ proliferation of T-helper cells. Results of these studies confirm lymphocyte involvement in the pulmonary response to inhaled Be metal.

  13. Beryllium abundance in turn-off stars of NGC 6752

    CERN Document Server

    Pasquini, L; Randich, S; Galli, D; Gratton, R G; Wolff, B; Pasquini, Luca; Bonifacio, Piercarlo; Randich, Sofia; Galli, Daniele; Gratton, Raffaele G.

    2006-01-01

    Aims: To measure the beryllium abundance in two TO stars of the Globular Cluster NGC 6752, one oxygen rich and sodium poor, the other presumably oxygen poor and sodium rich. Be abundances in these stars are used to put on firmer grounds the hypothesis of Be as cosmochronometer and to investigate the formation of Globular Clusters. Method:We present near UV spectra with resolution R$\\sim 45000$ obtained with the UVES spectrograph on the 8.2m VLT Kueyen telescope, analysed with spectrum synthesis based on plane parallel LTE model atmospheres. Results:Be is detected in the O rich star with log(Be/H)=-12.04 $\\pm$0.15, while Be is not detected in the other star for which we obtain the upper limit log(Be/H)$<$-12.2. A large difference in nitrogen abundance (1.6 dex) is found between the two stars. Conclusions:The Be measurement is compatible with what found in field stars with the same [Fe/H] and [O/H]. The 'Be age' of the cluster is found to be 13.3 Gyrs, in excellent agreement with the results from main sequen...

  14. Project SAPPHIRE uranium-beryllium dose rate analysis

    International Nuclear Information System (INIS)

    During a six-week period in the fall of 1994 a team of 31 US government and Y-12 personnel packaged and removed several thousand kilograms of material containing highly enriched uranium from the (former Soviet Union) Republic of Kazakhstan for interim storage at the Y-12 Plant in Oak Ridge, Tennessee. This classified mission, known as PROJECT SAPPHIRE, had been initiated at the request of the Kazakhstan government in order to rid itself of possible security problems. Planning for the mission included assurance of the health and safety of the team members, as well as compliance with all local, IAEA, and US government regulations regarding the handling, packaging, transportation, and storage of radioactive and fissile material. The mission classification restrictions were relaxed following the return of the team and material to the United States. The material to be removed, in the form of small billets and rods of uranium metal and uranium-beryllium alloy and oxide powder, was sealed by team members on site into two-liter steel cans. Two or three cans each were loaded into more than 400 IAEA certified fissile material shipping container, and each container was packed into a large steel drum for transport by US Air Force cargo planes to the United States

  15. Waterlike structural and excess entropy anomalies in liquid beryllium fluoride.

    Science.gov (United States)

    Agarwal, Manish; Chakravarty, Charusita

    2007-11-22

    The relationship between structural order metrics and the excess entropy is studied using the transferable rigid ion model (TRIM) of beryllium fluoride melt, which is known to display waterlike thermodynamic anomalies. The order map for liquid BeF2, plotted between translational and tetrahedral order metrics, shows a structurally anomalous regime, similar to that seen in water and silica melt, corresponding to a band of state points for which average tetrahedral (q(tet)) and translational (tau) order are strongly correlated. The tetrahedral order parameter distributions further substantiate the analogous structural properties of BeF2, SiO2, and H2O. A region of excess entropy anomaly can be defined within which the pair correlation contribution to the excess entropy (S2) shows an anomalous rise with isothermal compression. Within this region of anomalous entropy behavior, q(tet) and S2 display a strong negative correlation, indicating the connection between the thermodynamic and the structural anomalies. The existence of this region of excess entropy anomaly must play an important role in determining the existence of diffusional and mobility anomalies, given the excess entropy scaling of transport properties observed in many liquids. PMID:17963376

  16. Electric properties of the Beryllium-11 system in Halo EFT

    International Nuclear Information System (INIS)

    We compute E1 transitions and electric radii in the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the leading-order parameters of the EFT from measured data on the 1/2+ and 1/2- levels in 11Be and the B(E1) strength for the transition between them. We then obtain predictions for the B(E1) strength for Coulomb dissociation of the 11Be nucleus to the continuum. We also compute the charge radii of the 1/2+ and 1/2- states. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also discuss how next-to-leading-order (NLO) corrections involving both s-wave and p-wave 10Be-neutron interactions affect our results, and display the NLO predictions for quantities which are free of additional short-distance operators at this order. Information on neutron-10Be scattering in the relevant channels is inferred.

  17. Electron microscope observation of single - crystalline beryllium thin foils; Observation de lames minces monocristallines de beryllium en microscopie electronique

    Energy Technology Data Exchange (ETDEWEB)

    Antolin, J.; Poirier, J.P.; Dupouy, J.M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3<1 1 2-bar 0>. (authors) [French] On a observe en microscopie electronique par transmission des lames minces tirees d'eprouvettes monocristallines de beryllium deformees a l'ambiante. On a etudie separement les differents modes de deformation a partir de leur stade elementaire en observant les configurations de dislocations caracteristiques. Le glissement basal est caracterise a son debut par la presence de nombreux dipoles et de boucles prismatiques allongees. Des ecrouissages plus forts conduisent a la formation d'echeveaux et de gerbes qui finissent par donner une structure cellulaire. Le glissement prismatique debute par le glissement des dislocations hors du plan de base dans les plans prismatiques. On trouve egalement une structure cellulaire pour de forts ecrouissages. Dans les joints de macle, on a observe des dislocations sessiles formees par la reaction entre dislocations de macle et dislocations de glissement. Enfin l

  18. High conductivity Be-Cu alloys for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, E.A. [NGK Metals Corp., Reading, PA (United States); Adachi, Takao; Ishibashi, Yoshiki [NGK Insulators, Ltd., Aichi-ken (Japan)

    1995-09-01

    The optimum material has not yet been identified. This will result in heat from plasma to the first wall and divertor. That is, because of cracks and melting by thermal power and shock. Today, it is considered to be some kinds of copper, alloys, however, for using, it must have high conductivity. And it is also needed another property, for example, high strength and so on. We have developed some new beryllium copper alloys with high conductivity, high strength, and high endurance. Therefore, we are introducing these new alloys as suitable materials for the heat sink in fusion reactors.

  19. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities.

    Science.gov (United States)

    Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas

    2014-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures

  20. Inherent structure features of beryllium and their influence on the performance polycrystalline metal under different conditions

    International Nuclear Information System (INIS)

    The anisotropy of physical properties of beryllium single crystals resulting from covalent bonds in crystal lattice leads to significant residual thermal microstresses (RTM) in the polycrystalline metal. It is demonstrated experimentally that there is a simple linear dependence between the magnitude of RTM and the ultimate tensile strength. The factors controlling RTM are analysed and in the framework of powder metallurgy process the technological methods of producing beryllium with the needed properties are recommended. Primarily it is necessary to control the quantity and extent of dispersity of intergranular oxide inclusions and mean grain size in combination with the high degree of macro- and microhomogenity of the structure. The requirements to beryllium microstructure for different operating conditions including neutron fluxes and transient temperature fields are formulated. In the framework of the concept under development one can explain formerly not fully understandable effects, which are characteristic of polycrystalline beryllium such as unexpected Petch-Stro curve, the role of twinning etc., and predict new ones. In particular, it can be possible to expect the growth of ductility of high strength beryllium grades as neutron irradiated. (author)

  1. Clinical approach to chronic beryllium disease and other nonpneumoconiotic interstitial lung diseases.

    Science.gov (United States)

    Maier, Lisa A

    2002-10-01

    Exposures in the workplace result in a diverse set of diseases ranging from the pneumoconiosis to other interstitial lung diseases to acute lung injury. Physician awareness of the potential disease manifestations associated with specific exposures is important in defining these diseases and in preventing additional disease. Most occupational diseases mimic other forms of lung disease, including pulmonary fibrosis, sarcoidosis, adult respiratory distress syndrome (ARDS), and bronchiolitis. A "sarcoidosis"-like syndrome, usually limited to the lungs, may result from exposure to bioaerosols and a number of metals. Exposure to beryllium in the workplace produces a granulomatous lung disease clinically indistinguishable from sarcoidosis, chronic beryllium disease (CBD). Beryllium's ability to produce a beryllium-specific immune response is used in the beryllium lymphocyte proliferation tests to confirm a diagnosis of CBD and exclude sarcoidosis. Exposure to other metals must also be considered in the differential diagnosis of sarcoidosis. When an individual presents acutely with ARDS or acute lung injury, an acute inhalational exposure must be considered. Exposure to a number of irritant substances at high levels may cause a "chemical pneumonitis" or acute lung injury, depending on the solubility and physicochemical properties of the substance. Some of the most notable agents include nitrogen and sulfur oxides, phosgene, and smoke breakdown products. Ingestion of paraquat may also result in an ARDS syndrome, with pulmonary fibrosis eventually resulting. Bronchiolitis is a rare manifestation of inhalational exposures but must also be considered in the clinical evaluation of inhalational exposure. PMID:12362066

  2. Inherent structure features of beryllium and their influence on the performance polycrystalline metal under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A.M.; Mikhailov, V.S.; Pronin, V.N.; Pakhomov, Ya.D. [State Scientific Center of Russian Federation `A.A. Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM)`, Moscow (Russian Federation)

    1998-01-01

    The anisotropy of physical properties of beryllium single crystals resulting from covalent bonds in crystal lattice leads to significant residual thermal microstresses (RTM) in the polycrystalline metal. It is demonstrated experimentally that there is a simple linear dependence between the magnitude of RTM and the ultimate tensile strength. The factors controlling RTM are analysed and in the framework of powder metallurgy process the technological methods of producing beryllium with the needed properties are recommended. Primarily it is necessary to control the quantity and extent of dispersity of intergranular oxide inclusions and mean grain size in combination with the high degree of macro- and microhomogenity of the structure. The requirements to beryllium microstructure for different operating conditions including neutron fluxes and transient temperature fields are formulated. In the framework of the concept under development one can explain formerly not fully understandable effects, which are characteristic of polycrystalline beryllium such as unexpected Petch-Stro curve, the role of twinning etc., and predict new ones. In particular, it can be possible to expect the growth of ductility of high strength beryllium grades as neutron irradiated. (author)

  3. Parametric studies of carbon erosion mitigation dynamics in beryllium seeded deuterium plasmas

    International Nuclear Information System (INIS)

    The characteristic time of protective beryllium layer formation on a graphite target, τBe/C, has been investigated as a function of surface temperature, Ts, ion energy, Ei, ion flux, Γi, and beryllium ion concentration, cBe, in beryllium seeded deuterium plasma. τBe/C is found to be strongly decreased with increasing Ts in the range of 550-970K. This is thought to be associated with the more efficient formation of beryllium carbide (Be2C). By scanning the parameters, a scaling expression for τBe/C has been derived as τBe/C[s]=1.0x10-7cBe-1.9+/-0.1Ei0.9+/-0.3Γi-0.6+/-0.3exp ((4.8+/-0.5)x103/Ts) where cBe is dimensionless, Ei in eV, Γi in 1022m-2s-1 and Ts in K. Should this scaling extend to an ITER scenario, carbon erosion of the divertor strike point region may be reduced with characteristic time of ∼6ms. This is much shorter than the time between predicted ITER type I ELMs (∼1s), and suggests that protective beryllium layers can be formed in between ELMs, and mitigate carbon erosion.

  4. X-ray drive of beryllium capsule implosions at the National Ignition Facility

    Science.gov (United States)

    Wilson, D. C.; Yi, S. A.; Simakov, A. N.; Kline, J. L.; Kyrala, G. A.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Olson, R. E.; Strozzi, D. J.; Celliers, P. M.; Schneider, M. B.; MacPhee, A. G.; Zylstra, A. B.; Callahan, D. A.; Hurricane, O. A.; Milovich, J. L.; Hinkel, D. E.; Rygg, J. R.; Rinderknecht, H. G.; Sio, H.; Perry, T. S.; Batha, S.

    2016-05-01

    National Ignition Facility experiments with beryllium capsules have followed a path begun with “high-foot” plastic capsule implosions. Three shock timing keyhole targets, one symmetry capsule, a streaked backlit capsule, and a 2D backlit capsule were fielded before the DT layered shot. After backscatter subtraction, laser drive degradation is needed to match observed X-ray drives. VISAR measurements determined drive degradation for the picket, trough, and second pulse. Time dependence of the total Dante flux reflects degradation of the of the third laser pulse. The same drive degradation that matches Dante data for three beryllium shots matches Dante and bangtimes for plastic shots N130501 and N130812. In the picket of both Be and CH hohlraums, calculations over-estimate the x-ray flux > 1.8 keV by ∼100X, while calculating the total flux correctly. In beryllium calculations these X-rays cause an early expansion of the beryllium/fuel interface at ∼3 km/s. VISAR measurements gave only ∼0.3 km/s. The X-ray drive on the Be DT capsule was further degraded by an unplanned decrease of 9% in the total picket flux. This small change caused the fuel adiabat to rise from 1.8 to 2.3. The first NIF beryllium DT implosion achieved 29% of calculated yield, compared to CH capsules with 68% and 21%.

  5. Long-term follow-up of beryllium sensitized workers from a single employer

    Directory of Open Access Journals (Sweden)

    Curtis Anne M

    2010-01-01

    Full Text Available Abstract Background Up to 12% of beryllium-exposed American workers would test positive on beryllium lymphocyte proliferation test (BeLPT screening, but the implications of sensitization remain uncertain. Methods Seventy two current and former employees of a beryllium manufacturer, including 22 with pathologic changes of chronic beryllium disease (CBD, and 50 without, with a confirmed positive test were followed-up for 7.4 +/-3.1 years. Results Beyond predicted effects of aging, flow rates and lung volumes changed little from baseline, while DLCO dropped 17.4% of predicted on average. Despite this group decline, only 8 subjects (11.1% demonstrated physiologic or radiologic abnormalities typical of CBD. Other than baseline status, no clinical or laboratory feature distinguished those who clinically manifested CBD at follow-up from those who did not. Conclusions The clinical outlook remains favorable for beryllium-sensitized individuals over the first 5-12 years. However, declines in DLCO may presage further and more serious clinical manifestations in the future. These conclusions are tempered by the possibility of selection bias and other study limitations.

  6. Manufacturing and thermomechanical testing of actively cooled all beryllium high heat flux test pieces

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, N.N.; Sokolov, Yu.A.; Shatalov, G.E. [and others

    1995-09-01

    One of the problems affiliated to ITER high heat flux elements development is a problem of interface of beryllium protection with heat sink routinely made of copper alloys. To get rid of this problem all beryllium elements could be used as heat receivers in places of enhanced thermal loads. In accordance with this objectives four beryllium test pieces of two types have been manufactured in {open_quotes}Institute of Beryllium{close_quotes} for succeeding thermomechanical testing. Two of them were manufactured in accordance with JET team design; they are round {open_quotes}hypervapotron type{close_quotes} test pieces. Another two ones are rectangular test sections with a twisted tape installed inside of the circular channel. Preliminary stress-strain analysis have been performed for both type of the test pieces. Hypervapotrons have been shipped to JET where they were tested on JET test bed. Thermomechanical testing of pieces of the type of {open_quotes}swirl tape inside of tube{close_quotes} have been performed on Kurchatov Institute test bed. Chosen beryllium grade properties, some details of manufacturing, results of preliminary stress-strain analysis and thermomechanical testing of the test pieces {open_quotes}swirl tape inside of tube{close_quotes} type are given in this report.

  7. Positron beam facility at Kyoto University Research Reactor

    Science.gov (United States)

    Xu, Q.; Sato, K.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

    2014-04-01

    A positron beam facility is presently under construction at the Kyoto University Research Reactor (KUR), which is a light-water moderated tank-type reactor operated at a rated thermal power of 5 MW. A cadmium (Cd) - tungsten (W) source similar to that used in NEPOMUC was chosen in the KUR because Cd is very efficient at producing γ-rays when exposed to thermal neutron flux, and W is a widely used in converter and moderator materials. High-energy positrons are moderated by a W moderator with a mesh structure. Electrical lenses and a solenoid magnetic field are used to extract the moderated positrons and guide them to a platform outside of the reactor, respectively. Since Japan is an earthquake-prone country, a special attention is paid for the design of the in-pile positron source so as not to damage the reactor in the severe earthquake.

  8. Compact Reactor

    International Nuclear Information System (INIS)

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  9. Characterization of constrained beryllium pebble beds after neutron irradiation at HFR at high temperatures up to helium production of 3000 appm

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Plarz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Plarz 1, 76344 Eggenstein-Leopoldshafen (Germany); Moeslang, A.; Vladimirov, P.; Kurinskiy, P. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Plarz 1, 76344 Eggenstein-Leopoldshafen (Germany); Til, S. van; Magielsen, A.J. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/ Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-10-15

    Highlights: • Defragmentation of beryllium pebbles at irradiation temperatures of 873 and 948 K was detected. • Formation of brittle beryllium oxide layers on neutron irradiated beryllium pebbles was detected. • Strong interaction between beryllium pebbles and platinum foil under neutron irradiation was detected. • Strong interaction between beryllium pebbles and austenitic stainless steel under neutron irradiation was detected. -- Abstract: Small constrained beryllium pebble beds as well as unconstrained beryllium pebbles have been irradiated within HIDOBE-01 experiment at HFR, Petten, the Netherlands. Beryllium pebbles with 1 mm diameter produced by Rotating Electrode Method (REM) were investigated after irradiation at 630, 740, 873, and 948 K up to helium production of 3000 appm. Intensive pore and bubble formation occurs in beryllium after 873 K irradiation. In the contact zones of the pebbles enhanced pore formation takes place. Oxidation of beryllium pebble external surfaces is accompanied by partial destruction of oxide layers owing to their high brittleness. Strong interactions between beryllium pebbles and platinum foil, as well as between beryllium and stainless steel at contact zones occur at 873 and 948 K.

  10. Critical experiments on enriched uranium graphite moderated cores

    International Nuclear Information System (INIS)

    A variety of 20 % enriched uranium loaded and graphite-moderated cores consisting of the different lattice cells in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments systematically. In the present report, the experimental results for homogeneously or heterogeneously fuel loaded cores and for simulation core of the experimental reactor for a multi-purpose high temperature reactor are filed so as to be utilized for evaluating the accuracy of core design calculation for the experimental reactor. The filed experimental data are composed of critical masses of uranium, kinetic parameters, reactivity worths of the experimental control rods and power distributions in the cores with those rods. Theoretical analyses are made for the experimental data by adopting a simple ''homogenized cylindrical core model'' using the nuclear data of ENDF/B-III, which treats the neutron behaviour after smearing the lattice cell structure. It is made clear from a comparison between the measurement and the calculation that the group constants and fundamental methods of calculations, based on this theoretical model, are valid for the homogeneously fuel loaded cores, but not for both of the heterogeneously fuel loaded cores and the core for simulation of the experimental reactor. Then, it is pointed out that consideration to semi-homogeneous property of the lattice cells for reactor neutrons is essential for high temperature graphite-moderated reactors using dispersion fuel elements of graphite and uranium. (author)

  11. A role for cell adhesion in beryllium-mediated lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Hong-geller, Elizabeth [Los Alamos National Laboratory

    2008-01-01

    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  12. Time-lapse cinematographic analysis of beryllium--lung fibroblast interactions.

    Science.gov (United States)

    Absher, M; Sylwester, D; Hart, B A

    1983-02-01

    The proliferative response to beryllium chloride of cells in a population of human lung fibroblasts was quantitatively assessed using time-lapse cinematography. A dose of 0.02 microgram Be/ml, known to decrease the growth rate of fibroblasts, affects an estimated 75% of the cells in the population, increasing their interdivision time (IDT) by approximately 5 hr. The differences in mean 1n(IDT) between treated and control cells were essentially constant for comparable culture sizes ranging from 25 to 250 cells. There was no correlation between mother and daughter cell IDTs in control or treated culture at any culture size. IDTs of sister pairs were highly correlated in control cultures at selected culture sizes while sister pair IDTs of treated cultures were not. The data suggest that while beryllium alters the IDT of fibroblasts, an effect not related to culture size, any given cell affected by beryllium does not impart effects of the mineral to its progeny.

  13. Tribological behavior of improved chemically vapor-deposited boron on beryllium

    International Nuclear Information System (INIS)

    Earlier chemical vapor deposition (CVD) experiments with diborane as the boron source gave well-bonded boron films up to 10 μm thick on beryllium, with layered intermetallic compounds below a top layer of boron. The films were nonuniform in thickness and cracked badly when given diffusion heat treatments to produce desired intermetallic compounds. By rotating the beryllium samples during the CVD, films of uniform thickness have now been produced. A variety of compounds of beryllium and boron have been produced on the outer surface of the CVD film by varying the concentration of diborane in the CVD gas. Wear and friction tests performed on various CVD surfaces using sapphire and diamond pins showed remarkable differences in that the CVD boron surface appeared to be substantially more compatible with diamond than with sapphire. The results of these tests are discussed. (Auth.)

  14. Measurement of the ultracold-neutron loss coefficient for beryllium powder

    International Nuclear Information System (INIS)

    Reflections of ultracold neutrons (UCN) from beryllium powder have been measured for various layer thickness and various packing densities. On the basis of the experimental data, the reduced UCN loss coefficient for the UCN reflected from the thermally untreated beryllium, η, is found to be η = (1.75 ± 0.35) x 10-4. The previously obtained data on the reflection of UCN from beryllium powder annealed at high temperature are reconsidered. the value obtained for η at room temperature is (6.4 ± 2.5) x 10-5, which exceeds the theoretical value by an order of magnitude. The analysis of the experimental data was carried out by using a modified diffusion theory in which the albedo reflection depends on the packing density

  15. Diamond-turning HP-21 beryllium to achieve an optical surface

    International Nuclear Information System (INIS)

    Investigation of diamond turning on beryllium was made in anticipation of obtaining an optical finish. Although results of past experiences were poor, it was decided to continue diamond turning on beryllium beyond initial failures. By changing speed and using coolant, partial success was achieved. Tool wear was the major problem. Tests were made to establish and plot wear as a function of cutting speed and time. Slower speeds did cause lower wear rates, but at no time did wear reach an acceptable level. The machine, tools, and procedure used were chosen based on the results of preliminary attempts and on previous experience. It was unnecessary to use an air-bearing spindle because tool failure governed the best finish that could be expected. All tools of diamond composition, whether single crystal or polycrystalline, wore at unacceptable rates. Based on present technology, it must be concluded that beryllium cannot be feasibly diamond turned to achieve an optical finish. (22 fig.)

  16. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  17. The unique bonding characteristics of beryllium and the Group IIA metals

    Science.gov (United States)

    Heaven, Michael C.; Bondybey, Vladimir E.; Merritt, Jeremy M.; Kaledin, Alexey L.

    2011-04-01

    Having closed valence sub-shells, the alkaline earth atoms participate in covalent bonding via orbital hybridization and exchange interactions, with additional contributions from dispersion interactions. Starting from a closed ns2 configuration imparts different characteristics to the chemistry of this group, as compared to metals that have open-shell atomic ground states. Theoretical studies of the bonding of the Group IIA metals have been pursued for many years, and they are known to be challenging for ab initio electronic structure methods. The bonding motifs have been examined, and the differences between beryllium and the remainder of the group explored. Experimental studies that probe the bonding, particularly for beryllium, have lagged behind the theoretical work. In the present Letter we describe our recent spectroscopic and theoretical investigations of simple beryllium compounds, and discuss these results in terms of their relationship to the properties of the heavier Group IIA elements.

  18. Conditions for obtaining extremely pure beryllium by electrolytic refining in alkali chloride fusions

    International Nuclear Information System (INIS)

    Electrorefining is considered a suitable method for producing beryllium with levels of impurity below 1 At.-ppm. Beryllium was electrorefined in a BeCl2-containing LiCl-KCl melt and the key parameters current density, BeCl2 content, electrolyte temperature, composition of crude beryllium, and foreign ion concentration in the melt, together with adjustment of apparatus settings for rotation speed of the cathode, and constitution of crucible material were studied and optimized to achieve a depletion of as many accompanying and alloyed elements as possible. The trace elements were analysed chiefly by means of instrumental neutron activation analysis and atomic absorption spectrometry with electrothermal atomisation, and oxygen and nitrogen determined by vacuum melt extraction or the micro-Kjehldahl method. (orig./IHOE)

  19. The use of a beryllium Hopkinson bar to characterize a piezoresistive accelerometer in shock environments

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1996-03-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. In this paper, the beryllium Hopkinson bar configuration with a laser doppler vibrometer as the reference measurement is described. The in-axis performance of the piezoresistive accelerometer for frequencies of dc-50 kHz and shock magnitudes of up to 70,000 g as determined from measurements with a beryllium Hopkinson bar are presented. Preliminary results of characterizations of the accelerometers subjected to cross-axis shocks in a split beryllium Hopkinson bar configuration are presented.

  20. Tritium and helium retention and release from irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Longhurst, G.R.; Oates, M.A.; Pawelko, R.J. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental effort to anneal irradiated beryllium specimens and characterize them for steam-chemical reactivity experiments. Fully-dense, consolidated powder metallurgy Be cylinders, irradiated in the EBR-II to a fast neutron (>0.1 MeV) fluence of {approx}6 x 10{sup 22} n/cm{sup 2}, were annealed at temperatures from 450degC to 1200degC. The releases of tritium and helium were measured during the heat-up phase and during the high-temperature anneals. These experiments revealed that, at 600degC and below, there was insignificant gas release. Tritium release at 700degC exhibited a delayed increase in the release rate, while the specimen was at 700degC. For anneal temperatures of 800degC and higher, tritium and helium release was concurrent and the release behavior was characterized by gas-burst peaks. Essentially all of the tritium and helium was released at temperatures of 1000degC and higher, whereas about 1/10 of the tritium was released during the anneals at 700degC and 800degC. Measurements were made to determine the bulk density, porosity and specific surface area for each specimen before and after annealing. These measurements indicated that annealing caused the irradiated Be to swell, by as much as 14% at 700degC and 56% at 1200degC. Kr gas adsorption measurements for samples annealed at 1000degC and 1200degC determined specific surface areas between 0.04 m{sup 2}/g and 0.1 m{sup 2}/g for these annealed specimens. The tritium and helium gas release measurements and the specific surface area measurements indicated that annealing of irradiated Be caused a porosity network to evolve and become surface-connected to relieve internal gas pressure. (author)