WorldWideScience

Sample records for beryllium hopkinson bar

  1. Implementation of viscoelastic Hopkinson bars

    Directory of Open Access Journals (Sweden)

    Govender R.

    2012-08-01

    Full Text Available Knowledge of the properties of soft, viscoelastic materials at high strain rates are important in furthering our understanding of their role during blast or impact events. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. Implementing polymeric Hopkinson bars requires characterization of the viscoelastic properties of the material used. In this paper, 30 mm diameter Polymethyl Methacrylate bars are used as Hopkinson pressure bars. This testing technique is applied to polymeric foam called Divinycell H80 and H200. Although there is a large body of of literature containing compressive data, this rarely deals with strain rates above 250s−1 which becomes increasingly important when looking at the design of composite structures where energy absorption during impact events is high on the list of priorities. Testing of polymeric foams at high strain rates allows for the development of better constitutive models.

  2. A modified split Hopkinson pressure bar for toughness tests

    Science.gov (United States)

    Granier, N.; Grunenwald, T.

    2006-08-01

    In order to characterize material toughness or to study crack arrest under dynamic loading conditions, a new testing device has been developed at CEA/Valduc. A new Split Hopkinson Pressure Bar (SHPB) has been modified: it is now composed of a single incident bar and a double transmitter bar. With this facility, a notched specimen can be loaded under three points bending conditions. Qualification tests with titanium and steel notched samples are presented. Data treatment software has been adapted to estimate the sample deflection as a function of time and treat the energy balance. These results are compared with classical Charpy experiments. Effect of various contact areas between specimen and bars are studied to point out their influence on obtained measurements. The advantage of a “knife” contact compared to a plane one is then clearly demonstrated. All results obtained with this new testing device are in good agreement and show a reduced scattering.

  3. Experiments and simulation of split Hopkinson Bar tests on sand

    International Nuclear Information System (INIS)

    Church, P D; Gould, P J; Wood, A D; Tyas, A

    2014-01-01

    Static triaxial cell data and Split Hopkinson Bar data has been generated for well controlled dry and wet sand under confined and unconfined conditions. This has demonstrated that the dry sand is rate independent in its behaviour, whereas the wet sand exhibits a strain rate dependency in its behaviour. Simulations have been performed with the Lagrangian hydrocode DYNA using a Porter-Gould equation of state (EOS) and Johnson-Holmquist type constitutive model. Comparison with the raw strain gauge data is qualitatively reasonable, although some of the details of the trace are not reproduced. Sensitivity studies have also been performed, which has demonstrated some deficiencies in the constitutive model, relating to wave-speed and definition of moduli in a granular material. This has given some insights into how the constitutive model should be improved and which future experimental tests will be required.

  4. Split-Hopkinson pressure bar tests on pure tantalum

    International Nuclear Information System (INIS)

    Dick, Richard D.; Armstrong, Ronald W.; Williams, John D.

    1998-01-01

    Pure tantalum (Ta) was loaded in compression by a split-Hopkinson pressure bar (SHPB) to strain rates from 450 to 6350 s -1 . The results are compared with SHPB data for commercial Ta and with predictions from the constitutive model for Ta developed by Zerilli and Armstrong (Z-A). The main conclusions are: (1) the flow stress versus log strain rate agree with the Z-A constitutive model and other reported data, (2) uniform strain exponents computed on a true stress-strain basis for pure Ta are somewhat greater than those determined from SHPB data for commercial Ta, and (3) in both cases the uniform strain exponents versus log strain rate are in good agreement with predictions from the Z-A constitutive model for strain rates above 1500 s -1 without a clear indication of dislocation generation

  5. Dynamic Increase Factors for High Performance Concrete in Compression using Split Hopkinson Pressure Bar

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Ngo, Tuan; Mendis, Priyan

    2007-01-01

    This paper provides dynamic increase factors (DIF) in compression for two different High Performance Concretes (HPC), 100 MPa and 160 MPa, respectively. In the experimental investigation 2 different Split Hopkinson Pressure Bars are used in order to test over a wide range of strain rates, 100 sec1...... to 700 sec-1. The results are compared with the CEB Model Code and the Spilt Hopkinson Pressure Bar technique is briefly de-scribed....

  6. Dynamic rock tests using split Hopkinson (Kolsky bar system – A review

    Directory of Open Access Journals (Sweden)

    Kaiwen Xia

    2015-02-01

    Full Text Available Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsky bar systems, which include both split Hopkinson pressure bar (SHPB and split Hopkinson tension bar (SHTB systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of techniques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques. Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT, laser gap gauge (LGG, digital image correlation (DIC, Moiré method, caustics method, photoelastic coating method, dynamic infrared thermography are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests, dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity, and dynamic techniques for studying the influences of temperature and pore water.

  7. Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars

    Energy Technology Data Exchange (ETDEWEB)

    Lea, Lewis J., E-mail: ll379@cam.ac.uk; Jardine, Andrew P. [SMF Fracture and Shock Physics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-02-15

    Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion, and faster achievement of force equilibrium. Currently, these advantages are gained at the expense of all information about the striker impacted specimen face, preventing the experimental determination of force equilibrium, and requiring approximations to be made on the sample deformation history. In this paper, we discuss an experimental method and complementary data analysis for using photon Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system. We discuss extracting velocity and force measurements, and the precision of measurements. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains in fully dense metals, and improvement for all strains in slow and non-equilibrating materials.

  8. A study of shock mitigating materials in a split Hopkinson bar configuration

    International Nuclear Information System (INIS)

    Bateman, V.I.; Bell, R.G. III; Brown, F.A.; Hansen, N.R.

    1996-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125-fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical system. As part of the investigation of packaging techniques, a two part study of shock mitigating materials is being conducted. This paper reports the first part of the shock mitigating materials study. A study to compare three thicknesses (0.125, 0.250, and 0.500 in.) of seventeen, unconfined materials for their shock mitigating characteristics has been completed with a split Hopkinson bar configuration. The nominal input as measured by strain gages on the incident Hopkinson bar is 50 fps at sign 100 micros for these tests. It is hypothesized that a shock mitigating material has four purposes: to lengthen the shock pulse, to attenuate the shock pulse, to mitigate high frequency content in the shock pulse, and to absorb energy. Both time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare the materials' achievement of these purposes

  9. Sensor calibration of polymeric Hopkinson bars for dynamic testing of soft materials

    Science.gov (United States)

    Martarelli, Milena; Mancini, Edoardo; Lonzi, Barbara; Sasso, Marco

    2018-02-01

    Split Hopkinson pressure bar (SHPB) testing is one of the most common techniques for the estimation of the constitutive behaviour of metallic materials. In this paper, the characterisation of soft rubber-like materials has been addressed by means of polymeric bars thanks to their reduced mechanical impedance. Due to their visco-elastic nature, polymeric bars are more sensitive to temperature changes than metallic bars, and due to their low conductance, the strain gauges used to measure the propagating wave in an SHPB may be exposed to significant heating. Consequently, a calibration procedure has been proposed to estimate quantitatively the temperature influence on strain gauge output. Furthermore, the calibration is used to determine the elastic modulus of the polymeric bars, which is an important parameter for the synchronisation of the propagation waves measured in the input and output bar strain gate stations, and for the correct determination of stress and strain evolution within the specimen. An example of the application has been reported in order to demonstrate the effectiveness of the technique. Different tests at different strain rates have been carried out on samples made of nytrile butadyene rubber (NBR) from the same injection moulding batch. Thanks to the correct synchronisation of the measured propagation waves measured by the strain gauges and applying the calibrated coefficients, the mechanical behaviour of the NBR material is obtained in terms of strain-rate-strain and stress-strain engineering curves.

  10. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 2

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1997-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil and rock penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reached the electronics contained in the various mechanical systems. Here, a study to compare two thickness values, 0.125 and 0.250 in. of five materials, GE RTV 630, HS II Silicone, Polysulfide Rubber, Sylgard 184, and Teflon for their shock mitigating characteristics with a split Hopkinson bar configuration has been completed. The five materials have been tested in both unconfined and confined conditions at ambient temperature and with two applied loads of 750 με peak (25 fps peak) with a 100 micros duration, measured at 10% amplitude, and 1500 με peak (50 fps peak) with a 100 micros duration, measured at 10% amplitude. The five materials have been tested at ambient, cold (-65 F), and hot (+165 F) for the unconfined condition with the 750 με peak (25 fps peak) applied load. Time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare how these materials lengthen the shock pulse, attenuate the shock pulse, reflect high

  11. Experimental and Numerical Evaluation of Rock Dynamic Test with Split-Hopkinson Pressure Bar

    Directory of Open Access Journals (Sweden)

    Kang Peng

    2017-01-01

    Full Text Available Feasibility of rock dynamic properties by split-Hopkinson pressure bar (SHPB was experimentally and numerically evaluated with ANSYS/LS-DYNA. The effects of different diameters, different loading rates, and different propagation distances on wave dispersion of input bars in SHPB with rectangle and half-sine wave loadings were analyzed. The results show that the dispersion effect on the diameter of input bar, loading rate, and propagation distance under half-sine waveform loading is ignorable compared with the rectangle wave loading. Moreover, the degrees of stress uniformity under rectangle and half-sine input wave loadings are compared in SHPB tests, and the time required for stress uniformity is calculated under different above-mentioned loadings. It is confirmed that the stress uniformity can be realized more easily using the half-sine pulse loading compared to the rectangle pulse loading, and this has significant advantages in the dynamic test of rock-like materials. Finally, the Holmquist-Johnson-Concrete constitutive model is introduced to simulate the failure mechanism and failure and fragmentation characteristics of rock under different strain rates. And the numerical results agree with that obtained from the experiment, which confirms the effectiveness of the model and the method.

  12. A Modified Split Hopkinson Pressure Bar Approach for Mimicking Dynamic Oscillatory Stress Fluctuations During Earthquake Rupture

    Science.gov (United States)

    Braunagel, M. J.; Griffith, W. A.

    2017-12-01

    Past experimental work has demonstrated that rock failure at high strain rates occurs by fragmentation rather than discrete fracture and is accompanied by a dramatic increase in rock strength. However, these observations are difficult to reconcile with the assertion that pulverized rocks in fault zones are the product of impulsive stresses during the passage of earthquake ruptures, as the distance from the principal slip zones of some pulverized rock is too great to exceed fragmentation transition. One potential explanation to this paradox that has been suggested is that repeated loading over the course of multiple earthquake ruptures may gradually reduce the pulverization threshold, in terms of both strain rate and strength. We propose that oscillatory loading during a single earthquake rupture may further lower these pulverization thresholds, and that traditional dynamic experimental approaches, such as the Split Hopkinson Pressure Bar (SHPB) wherein load is applied as a single, smooth, sinusoidal compressive wave, may not reflect natural loading conditions. To investigate the effects of oscillatory compressive loading expected during earthquake rupture propagation, we develop a controlled cyclic loading model on a SHPB apparatus utilizing two striker bars connected by an elastic spring. Unlike traditional SHPB experiments that utilize a gas gun to fire a projectile bar and generate a single compressive wave on impact with the incident bar, our modified striker bar assembly oscillates while moving down the gun barrel and generates two separate compressive pulses separated by a lag time. By modeling the modified assembly as a mass-spring-mass assembly accelerating due to the force of the released gas, we can predict the compression time of the spring upon impact and therefore the time delay between the generation of the first and second compressive waves. This allows us to predictably control load cycles with durations of only a few hundred microseconds. Initial

  13. Split-Hopkinson Pressure Bar: an experimental technique for high strain rate tests

    International Nuclear Information System (INIS)

    Sharma, S.; Chavan, V.M.; Agrawal, R.G.; Patel, R.J.; Kapoor, R.; Chakravartty, J.K.

    2011-06-01

    Mechanical properties of materials are, in general, strain rate dependent, i.e. they respond differently at quasi-static and higher strain rate condition. The Split-Hopkinson Pressure Bar (SHPB), also referred to as Kolsky bar is a commonly used setup for high strain rate testing. SHPB is suitable for high strain rate test in strain rate range of 10 2 to 10 4 s -1 . These high strain rate data are required for safety and structural integrity assessment of structures subjected to dynamic loading. As high strain rate data are not easily available in open literature need was felt for setting up such high strain rate testing machine. SHPB at BARC was designed and set-up inhouse jointly by Refuelling Technology Division and Mechanical Metallurgy Division, at Hall no. 3, BARC. A number of conceptual designs for SHPB were thought of and the optimized design was worked out. The challenges of precision tolerance, straightness in bars and design and proper functioning of pneumatic gun were met. This setup has been used extensively to study the high strain rate material behavior. This report introduces the SHPB in general and the setup at BARC in particular. The history of development of SHPB, the basic formulations of one dimensional wave propagation, the relations between the wave velocity, particle velocity and elastic strain in a one dimensional bar, and the equations used to obtain the final stress vs. strain curves are described. The calibration of the present setup, the pre-test calculations and the posttest analysis of data are described. Finally some of the experimental results on different materials such as Cu, SS305, SA516 and Zr, at room temperature and elevated temperatures are presented. (author)

  14. Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale

    Science.gov (United States)

    Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak

    2016-09-01

    Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.

  15. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 1

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1998-06-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125 fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical systems. As part of the investigation of packaging techniques, a two phase study of shock mitigating materials is being conducted. The purpose of the first phase reported here is to examine the performance of a joint that consists of shock mitigating material sandwiched in between steel and to compare the performance of the shock mitigating materials. A split Hopkinson bar experimental configuration simulates this joint and has been used to study the shock mitigating characteristics of seventeen, unconfined materials. The nominal input for these tests is an incident compressive wave with 50 fps peak (1,500 micro var-epsilon peak) amplitude and a 100 micros duration (measured at 10% amplitude)

  16. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    Science.gov (United States)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain

  17. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  18. Tensile Split Hopkinson Bar Technique: Numerical Analysis of the Problem of Wave Disturbance and Specimen Geometry Selection

    Directory of Open Access Journals (Sweden)

    Panowicz Robert

    2016-09-01

    Full Text Available A method of tensile testing of materials in dynamic conditions based on a slightly modified compressive split Hopkinson bar system using a shoulder is described in this paper. The main goal was to solve, with the use of numerical modelling, the problem of wave disturbance resulting from application of a shoulder, as well as the problem of selecting a specimen geometry that enables to study the phenomenon of high strain-rate failure in tension. It is shown that, in order to prevent any interference of disturbance with the required strain signals at a given recording moment, the positions of the strain gages on the bars have to be correctly chosen for a given experimental setup. Besides, it is demonstrated that - on the basis of simplified numerical analysis - an appropriate gage length and diameter of a material specimen for failure testing in tension can be estimated.

  19. Strain localization during tensile Hopkinson bar testing of commercially pure titanium and Ti6Al4V titanium alloy

    Directory of Open Access Journals (Sweden)

    Moćko Wojciech

    2015-01-01

    Full Text Available The goal of the analysis was to determine the strain localization for various specimen shapes (type A and type B according to PN-EN ISO 26203-1 standard and different loading conditions, i.e. quasi- static and dynamic. Commercially pure titanium (Grade 2 and titanium alloy Ti6Al4V (Grade 5 were selected for the tests. Tensile loadings were applied out using servo-hydraulic testing machine and tensile Hopkinson bar with pre-tension. The results were recorded using ARAMIS system cameras and fast camera Phantom V1210, respectively at quasi-static and dynamic loading conditions. Further, specimens outline was determined on the basis of video data using TEMA MOTION software. The strain distribution on the specimen surface was estimated using digital image correlation method. The larger radius present in the specimen of type B in comparison to specimen of type A, results in slight increase of the elongation for commercially pure titanium at both quasi-static and dynamic loading conditions. However this effect disappears for Ti6Al4V alloy. The increase of the elongation corresponds to the stronger necking effect. Material softening due to increase of temperature induced by plastic work was observed at dynamic loading conditions. Moreover lower elongation at fracture point was found at high strain rates for both materials.

  20. The defect structures and mechanical properties of Cu and Cu–Al alloys processed by split Hopkinson pressure bar

    International Nuclear Information System (INIS)

    Tao, Jingmei; Yang, Kai; Xiong, Haiwu; Wu, Xiaoxiang; Zhu, Xinkun; Wen, Cuie

    2013-01-01

    Pure Cu, Cu-5 at%Al, Cu-10 at%Al and Cu-15 at%Al with different stacking fault energy (SFE) of 78, 37, 7 and 5 mJ/m 2 , respectively, were processed through split Hopkinson pressure bar (SHPB) with the strain rate of 10 3 /sec. The influence of high strain rate on the evolution of microstructures and mechanical properties of Cu and Cu–Al alloys was investigated. X-ray diffraction measurements indicate that, the microstructures of Cu and Cu–Al alloys have been refined to the nano scale after deformed by SHPB, and with decreasing SFE, the average grain size decreases gradually from 72 to 40 nm, while the dislocation density increases from 0.55×10 14 to 4.4×10 14 m −2 and the twin density increases from 0.04% to 1.07%. The formation of deformation twins is an additional factor that contributes to the microhardness and strength of Cu and Cu–Al alloys except the solid solution strengthening effect. Cu-15 at%Al has the biggest strain hardening rate at larger strains due to its lowest SFE which results in the highest twin density. The results confirm that lower SFE improves both strength and strain hardening rate of materials

  1. Development of a Hopkinson Bar Apparatus for Testing Soft Materials: Application to a Closed-Cell Aluminum Foam

    Directory of Open Access Journals (Sweden)

    Marco Peroni

    2016-01-01

    Full Text Available An increasing interest in lightweight metallic foams for automotive, aerospace, and other applications has been observed in recent years. This is mainly due to the weight reduction that can be achieved using foams and for their mechanical energy absorption and acoustic damping capabilities. An accurate knowledge of the mechanical behavior of these materials, especially under dynamic loadings, is thus necessary. Unfortunately, metal foams and in general “soft” materials exhibit a series of peculiarities that make difficult the adoption of standard testing techniques for their high strain-rate characterization. This paper presents an innovative apparatus, where high strain-rate tests of metal foams or other soft materials can be performed by exploiting the operating principle of the Hopkinson bar methods. Using the pre-stress method to generate directly a long compression pulse (compared with traditional SHPB, a displacement of about 20 mm can be applied to the specimen with a single propagating wave, suitable for evaluating the whole stress-strain curve of medium-sized cell foams (pores of about 1–2 mm. The potential of this testing rig is shown in the characterization of a closed-cell aluminum foam, where all the above features are amply demonstrated.

  2. Characterization of adiabatic shear bands in the zirconium alloy impacted by split Hopkinson pressure bar at a strain rate of 6000 s−1

    International Nuclear Information System (INIS)

    Zou, D.L.; Luan, B.F.; Liu, Q.; Chai, L.J.; Chen, J.W.

    2012-01-01

    The adiabatic shear bands formed in the zirconium alloy impacted by split Hopkinson pressure bar at a strain rate of about 6000 s −1 were characterized systemically by means of a high resolution field emission scanning electron microscope equipped with electron backscatter diffraction probe. The results show that the transformed bands were distinguished on the cross-section view of the impacted specimens, and the ultrafine and equiaxed grains formed in the transformed bands were confirmed. The gradient variation of the grains across the transformed bands from the boundary to the center of the bands was observed, and the grains at the center of the transformed bands were finer than other zones. Based on the characterization of the deformed microstructure adjacent to the transformed bands, the formation mechanism of the ultrafine and equiaxed grains in the transformed bands was revealed, and the rotational dynamic recrystallization mechanism should be responsible for the formation of the ultrafine and equiaxed grains in the transformed bands. According to the collection of the cumulative misorientation at different strain levels, the formation and evolution process of the ultrafine and equiaxed grains in the transformed bands were speculated. The microhardness measurements show that high microhardness value in the transformed bands was obtained because of the grain refining, and the large standard deviation of the microhardness at the center of the transformed bands was confirmed due to the gradient microstructural distribution in the bands.

  3. Beryllium

    Science.gov (United States)

    Foley, Nora K.; Jaskula, Brian W.; Piatak, Nadine M.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Beryllium is a mineral commodity that is used in a variety of industries to make products that are essential for the smooth functioning of a modern society. Two minerals, bertrandite (which is supplied domestically) and beryl (which is currently supplied solely by imports), are necessary to ensure a stable supply of high-purity beryllium metal, alloys, and metal-matrix composites and beryllium oxide ceramics. Although bertrandite is the source mineral for more than 90 percent of the beryllium produced globally, industrial beryl is critical for the production of the very high purity beryllium metal needed for some strategic applications. The current sole domestic source of beryllium is bertrandite ore from the Spor Mountain deposit in Utah; beryl is imported mainly from Brazil, China, Madagascar, Mozambique, and Portugal. High-purity beryllium metal is classified as a strategic and critical material by the Strategic Materials Protection Board of the U.S. Department of Defense because it is used in products that are vital to national security. Beryllium is maintained in the U.S. stockpile of strategic materials in the form of hot-pressed beryllium metal powder.Because of its unique chemical properties, beryllium is indispensable for many important industrial products used in the aerospace, computer, defense, medical, nuclear, and telecommunications industries. For example, high-performance alloys of beryllium are used in many specialized, high-technology electronics applications, as they are energy efficient and can be used to fabricate miniaturized components. Beryllium-copper alloys are used as contacts and connectors, switches, relays, and shielding for everything from cell phones to thermostats, and beryllium-nickel alloys excel in producing wear-resistant and shape-retaining high-temperature springs. Beryllium metal composites, which combine the fabrication ability of aluminum with the thermal conductivity and highly elastic modulus of beryllium, are ideal for

  4. Beryllium

    International Nuclear Information System (INIS)

    1988-01-01

    In this data sheet the occurrence, ore processing, chemical and physical properties and the uses of beryllium and its alloys is presented. The hazards involved in the use of beryllium and its compounds in the laboratory are discussed with particular reference to its toxicity, carcinogenicity, handling, storage, disposal, fire prevention and the principal health hazards. Further reading is suggested. (UK)

  5. Beryllium

    International Nuclear Information System (INIS)

    Hansen, N.B.

    1980-01-01

    A method for determination of beryllium in minerals and rocks is described. The method comprises microanalysis and trace analysis. Because of the toxidity of beryllium the method is designed for determination of a hitherto unknown small amount, 1-10 nanogram Be. With the optimal amount for determination, 3 ng Be, the relative error of the method is 10%. The description includes an inventory of chemicals and apparatus, also an example of application of the method on the mineral epididymite. In brief, the sample is melted with sodium carbonate and sodium tetra borate; when required the sample in advance is fumed with hydrogen fluoride and sulphuric acid to evaporate silica. The residuum is dissolved in water and hydrogen chloride, upon which the solution is made to volume. In the Ring oven interfering compounds are masked with EDTA. Beryllium is settled with chrome azurol and ammonia. Beryllium is identified and evaluated in comparison with previously produced standards. (author)

  6. Beryllium

    International Nuclear Information System (INIS)

    Hansen, N.B.

    1979-01-01

    A method for determination of beryllium in minerals and rocks is described. The method comprises microanalysis and trace analysis. Because of the toxidity of beryllium the method is designed for determination of a hitherto unknown small amount, 1-10 nanogram Be. With the optimal amount for determination, 3 ng Be, the relative error of the method is 10%. The description includes an inventory of chemicals and apparatus, also an example of application of the method on the mineral epididymite. In brief, the sample is melted with sodium carbonate and sodium tetra borate; when required the sample in advance is fumed with hydrogen fluoride and sulphuric acid to evaporate silica. The residuum is dissolved in water and hydrogen chloride, upon which the solution is made to volume. In the Ring oven interfering compounds are masked with EDTA. Beryllium is settled with chrome azurol and ammonia. Beryllium is identified and evaluated in comparison with previously produced standards. (author)

  7. Characterization of shocked beryllium

    Directory of Open Access Journals (Sweden)

    Papin P.A.

    2012-08-01

    Full Text Available While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity models, the Preston-Tonks-Wallace (PTW and Mechanical Threshold Stress (MTS models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional “arrested” drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  8. High heat flux testing of ITER ICH&CD antenna beryllium faraday screen bars mock-ups

    International Nuclear Information System (INIS)

    Courtois, X.; Meunier, L.; Kuznetsov, V.; Beaumont, B.; Lamalle, P.; Conchon, D.; Languille, P.

    2016-01-01

    Highlights: • ITER ICH&CD antenna beryllium faraday screen bars mock-ups were manufactured. • The mock-ups are submitted to high heat loads to test their heat exhaust capabilities. • The mock-ups withstand without damage the design limit load. • Lifetime is gradually reduced when the heat load is augmented beyond the design limit. • Thermal and mechanical behavior are reproducible, and coherent with the calculation. - Abstract: The Faraday Screen (FS) is the plasma facing component of ITER ion cyclotron heating antennas shielding. The requirement for the high heat exhaust, and the limitation of the temperatures to minimize strain and thus offer sufficient resistance to fatigue, imply the need for high conductivity materials and a high cooling flow rate. The FS bars are constructed by a hipping process involving beryllium tiles, a pure copper layer, a copper chrome zirconium alloy for the cooling channel and a stainless steel backing strip. Two FS bars small scale mock-ups were manufactured and tested under high heat flux. They endured 15,000 heating cycles without degradation under nominal heat flux, and revealed growing flaws when the heat flux was progressively augmented beyond. In this case, the ultrasonic test confirms a strong delamination of the Be tiles.

  9. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch

    Science.gov (United States)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  10. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch.

    Science.gov (United States)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  11. Beryllium production using beryllium fluoride

    International Nuclear Information System (INIS)

    Hubler, Carlos Henrique

    1993-01-01

    This work presents the beryllium production by thermal decomposition of the ammonium beryllium fluoride, followed by magnesium reduction, obtained in the small pilot plant of the Brazilian National Nuclear Energy Commission - Nuclear Engineering Institute

  12. Dynamic tensile resistance of concrete-split Hopkinson bar test

    NARCIS (Netherlands)

    Weerheijm, J.; Sharma, A.; Ozbolt, J.

    2013-01-01

    The behavior of concrete structures is strongly influenced by the loading rate. Compared to quasi-static loading, on meso and macro-scale concrete loaded by impact loading acts in a different way. First, there is a strain-rate influence on strength, stiffness, ductility, and, second, there are

  13. Dynamic tensile resistance of concrete - Split hopkinson bar test

    NARCIS (Netherlands)

    Ožbolt, J.; Weerheijm, J.; Sharma, A.

    2013-01-01

    The behavior of concrete structures is strongly influenced by the loading rate. Compared to quasi-static loading, on meso and macro-scale concrete loaded by impact loading acts in a different way. First, there is a strain-rate influence on strength, stiffness, ductility, and, second, there are

  14. Beryllium allergy

    International Nuclear Information System (INIS)

    Schoenherr, S.; Pevny, I.

    1989-12-01

    Beryllium is not only a high potent allergen, but also a fotoallergen and can provoke contact allergic reactions, fotoallergic reactions, granulomatous skin reactions, pulmonary granulomatous diseases and sometimes even systemic diseases. The authors present 9 own cases of a patch test positive beryllium allergy, 7 patients with relevant allergy and 5 patients with an allergic contact stomatitis. (author)

  15. Beryllium poisonings

    International Nuclear Information System (INIS)

    Alibert, S.

    1959-03-01

    This note reports a bibliographical study of beryllium toxicity. Thus, this bibliographical review addresses and outlines aspects and issues like aetiology, cases of acute poisoning (cutaneous manifestations, pulmonary manifestations), chronic poisoning (cutaneous, pulmonary and bone manifestations), excretion and localisation, and prognosis

  16. Method for welding beryllium

    Science.gov (United States)

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  17. Method for welding beryllium

    International Nuclear Information System (INIS)

    Dixon, R.D.; Smith, F.M.; O'Leary, R.F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs

  18. Chronic Beryllium Disease

    Science.gov (United States)

    ... who are exposed to beryllium will not experience health effects. Studies have shown that on average, 1 – 6 percent of exposed workers develop beryllium sensitization, although the rates can be ...

  19. Laser fabrication of beryllium components

    International Nuclear Information System (INIS)

    Hanafee, J.E.; Ramos, T.J.

    1995-08-01

    Working with the beryllium industry on commercial applications and using prototype parts, the authors have found that the use of lasers provides a high-speed, low-cost method of cutting beryllium metal, beryllium alloys, and beryllium-beryllium oxide composites. In addition, they have developed laser welding processes for commercial structural grades of beryllium that do not need a filler metal; i.e., autogenous welds were made in commercial structural grades of beryllium by using lasers

  20. Beryllium chemistry and processing

    CERN Document Server

    Walsh, Kenneth A

    2009-01-01

    This book introduces beryllium; its history, its chemical, mechanical, and physical properties including nuclear properties. The 29 chapters include the mineralogy of beryllium and the preferred global sources of ore bodies. The identification and specifics of the industrial metallurgical processes used to form oxide from the ore and then metal from the oxide are thoroughly described. The special features of beryllium chemistry are introduced, including analytical chemical practices. Beryllium compounds of industrial interest are identified and discussed. Alloying, casting, powder processing, forming, metal removal, joining and other manufacturing processes are covered. The effect of composition and process on the mechanical and physical properties of beryllium alloys assists the reader in material selection. The physical metallurgy chapter brings conformity between chemical and physical metallurgical processing of beryllium, metal, alloys, and compounds. The environmental degradation of beryllium and its all...

  1. Beryllium. Evaluation of beryllium hydroxide industrial processes. Pt. 3

    International Nuclear Information System (INIS)

    Lires, O.A.; Delfino, C.A.; Botbol, J.

    1991-01-01

    This work continues the 'Beryllium' series. It is a historical review of different industrial processes of beryllium hydroxide obtention from beryllium ores. Flowsheats and operative parameters of five plants are provided. These plants (Degussa, Brush Beryllium Co., Beryllium Corp., Murex Ltd., SAPPI) were selected as representative samples of diverse commercial processes in different countries. (Author) [es

  2. (Beryllium). Internal Report No. 137, Jan. 15, 1958; Le beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, P; Rigaud, A

    1959-07-01

    After a brief summary of the physical and chemical properties of beryllium, the various chemical treatments which can be applied to beryllium minerals either directly or after a physical enrichment are discussed. These various treatments give either the hydroxide or beryllium salts, from which either beryllium oxide or metallic beryllium can easily be obtained. The purification, analysis and uses of beryllium are also briefly discussed. (author)

  3. Extractive metallurgy of the beryllium

    International Nuclear Information System (INIS)

    Alonso, Neusa; Capocchi, Jose Deodoro Trani

    1995-01-01

    A bibliographic review is performed on the beryllium extractive metallurgy. The work describes the main type of ores and processes applied to the metallic beryllium production, beryllium oxide production using fluoride, sulfide and direct chlorination. The thermodynamic consideration are made on beryllium reduction processes, discussing the viability of the beryllium oxide and hallide reduction processes. Under the technological viewpoint, the Cu-Be alloys main production processes are discussed, and the main toxicity problems related with beryllium are mentioned

  4. METHOD OF BRAZING BERYLLIUM

    Science.gov (United States)

    Hanks, G.S.; Keil, R.W.

    1963-05-21

    A process is described for brazing beryllium metal parts by coating the beryllium with silver (65- 75 wt%)-aluminum alloy using a lithium fluoride (50 wt%)-lithium chloride flux, and heating the coated joint to a temperature of about 700 un. Concent 85% C for about 10 minutes. (AEC)

  5. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Roberts, C.B.

    1975-01-01

    A process is described for preparing beryllium hydride by the direct reaction of beryllium borohydride and aluminum hydride trimethylamine adduct. Volatile by-products and unreacted reactants are readily removed from the product mass by sublimation and/or evaporation. (U.S.)

  6. Corrosion of beryllium

    International Nuclear Information System (INIS)

    Mueller, J.J.; Adolphson, D.R.

    1987-01-01

    The corrosion behavior of beryllium in aqueous and elevated-temperature oxidizing environments has been extensively studied for early-intended use of beryllium in nuclear reactors and in jet and rocket propulsion systems. Since that time, beryllium has been used as a structural material in les corrosive environments. Its primary applications include gyro systems, mirror and reentry vehicle structures, and aircraft brakes. Only a small amount of information has been published that is directly related to the evaluation of beryllium for service in the less severe or normal atmospheric environments associated with these applications. Despite the lack of published data on the corrosion of beryllium in atmospheric environments, much can be deduced about its corrosion behavior from studies of aqueous corrosion and the experiences of fabricators and users in applying, handling, processing, storing, and shipping beryllium components. The methods of corrosion protection implemented to resist water and high-temperature gaseous environments provide useful information on methods that can be applied to protect beryllium for service in future long-term structural applications

  7. Beryllium poisonings; Les intoxications par le beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Alibert, S.

    1959-03-15

    This note reports a bibliographical study of beryllium toxicity. Thus, this bibliographical review addresses and outlines aspects and issues like aetiology, cases of acute poisoning (cutaneous manifestations, pulmonary manifestations), chronic poisoning (cutaneous, pulmonary and bone manifestations), excretion and localisation, and prognosis.

  8. Study beryllium microplastic deformation

    International Nuclear Information System (INIS)

    Papirov, I.I.; Ivantsov, V.I.; Nikolaenko, A.A.; Shokurov, V.S.; Tuzov, Yu.V.

    2015-01-01

    Microplastic flow characteristics systematically studied for different varieties beryllium. In isostatically pressed beryllium it decreased with increasing particle size of the powder, increasing temperature and increasing the pressing metal purity. High initial values of the limit microelasticity and microflow in some cases are due a high level of internal stresses of thermal origin and over time it can relax slowly. During long-term storage of beryllium materials with high initial resistance values microplastic deformation microflow limit and microflow stress markedly reduced, due mainly to the relaxation of thermal microstrain

  9. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Lowrance, B.R.

    1975-01-01

    A process is described for the preparation of beryllium hydride which comprises pyrolyzing, while in solution in a solvent inert under the reaction conditions, with respect to reactants and products and at a temperature in the range of about 100 0 to about 200 0 C, sufficient to result in the formation of beryllium hydride, a di-t-alkyl beryllium etherate wherein each tertiary alkyl radical contains from 4 to 20 carbon atoms. The pyrolysis is carried out under an atmosphere inert under the reaction conditions, with respect to reactants and products. (U.S.)

  10. Impact testing of polymer-filled auxetics using Split Hopkinson Pressure Bar

    Czech Academy of Sciences Publication Activity Database

    Fíla, T.; Zlámal, P.; Jiroušek, O.; Falta, J.; Koudelka_ml., P.; Kytýř, D.; Doktor, T.; Valach, Jaroslav

    2017-01-01

    Roč. 19, č. 10 (2017), č. článku 1700076. ISSN 1438-1656 R&D Projects: GA MŠk(CZ) LO1219 Keywords : bridge decks * filled polymers * filling * honeycomb structures * impact testing * mechanical testing * Poisson ratio * polyurethanes Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 2.319, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/adem.201700076/abstract

  11. Impact deformation behavior of duplex and superaustenitic stainless steels welds by split Hopkinson pressure bar

    Science.gov (United States)

    Wang, Shing-Hoa; Huang, Chih-Sheng; Lee, Woei-Shyan; Chen, Tao-Hsing; Wu, Chia-Chang; Lien, Charles; Tsai, Hung-Yin

    2009-12-01

    A considerable volume of γ phase increases in the fusion zone (weld metal) for two duplex stainless steels after a high-strain-rate impact. The strain-induced γ phase formation in the fusion zone results in local hardness variation depending on the strain rate. The α phase content in the fusion zone decreases as the impact strain rate increases for SAF 2205 DSS and SAF 2507 DSS. The results of the two-phase content measured by Ferritoscope correspond to that assessed by image analyses. In contrast, superaustenite stainless steel is unaffected by such an impact owing to its fully stable austenization. Impacted welds at a high strain rate of 5 × 103 s-1 reveal feather-like surface creases along the solidified curved columnar grain boundaries. The apparent surface creases are formed due to the presence of diffuse Lüders bands, which are caused by heavy plastic deformation in coarse-grain materials.

  12. Beryllium and copper-beryllium alloys; Beryllium und Kupfer-Beryllium-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Nikolaus [Materion Brush GmbH, Stuttgart (Germany). Operation and Quality/EH and S

    2017-02-15

    The light metal beryllium is a comparatively rare element, which today is primarily derived from bertrandite. It is mainly used as pure metal or in the form of copper-beryllium alloys, e.g., in automotive industry, aerospace, and electrical components. The wide range of applications is mainly attributed to the extremely high rigidity/density ratio. An overview of the history of the metal, its production, and recycling as well as the properties of CuBe alloys are given.

  13. The immunotoxicity of beryllium

    International Nuclear Information System (INIS)

    Reeves, A.L.

    1983-01-01

    In the disease berylliosis, granulomatous hypersensitivity is the specific immune response to tissue contact with a poorly soluble particle of beryllium compound, mediated through the accumulation and proliferation of reticuloendothelial cells. A review is given of the work accomplished since the 1950's and particularly since the 1970's to elucidate the nature and consequences of this response to beryllium and its compounds. (U.K.)

  14. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Bergeron, C.R.; Baker, R.W.

    1975-01-01

    Beryllium hydride of high bulk density, suitable for use as a component of high-energy fuels, is prepared by the pyrolysis, in solution in an inert solvent, of a ditertiary-alkyl beryllium. An agitator introduces mechanical energy into the reaction system, during the pyrolysis, at the rate of 0.002 to 0.30 horsepower per gallon of reaction mixture. (U.S.)

  15. Beryllium-copper reactivity in an ITER joining environment

    International Nuclear Information System (INIS)

    Odegard, B.C.; Cadden, C.H.; Yang, N.Y.C.

    1998-01-01

    Beryllium-copper reactivity was studied using test parameters being considered for use in the ITER reactor. In this application, beryllium-copper tiles are produced using a low-temperature copper-copper diffusion bonding technique. Beryllium is joined to copper by first plating the beryllium with copper followed by diffusion bonding the electrodeposited (ED) copper to a wrought copper alloy (CuNiBe) at 450 C, 1-3 h using a hot isostatic press (HIP). In this bonded assembly, beryllium is the armor material and the CuNiBe alloy is the heat sink material. Interface temperatures in service are not expected to exceed 350 C. For this study, an ED copper-beryllium interface was subjected to diffusion bonding temperatures and times to study the reaction products. Beryllium-copper assemblies were subjected to 350, 450 and 550 C for times up to 200 h. Both BeCu and Be 2 Cu intermetallic phases were detected using scanning electron microscopy and quantitative microprobe analysis. Growth rates were determined experimentally for each phase and activation energies for formation were calculated. The activation energies were 66 mol and 62 kJ mol -1 for the BeCu and Be 2 Cu, respectively. Tensile bars were produced from assemblies consisting of coated beryllium (both sides) sandwiched between two blocks of Hycon-3. Tensile tests were conducted to evaluate the influence of these intermetallics on the bond strength. Failure occurred at the beryllium-copper interface at fracture strengths greater than 300 MPa for the room-temperature tests. (orig.)

  16. Numerical simulations of wave propagation in long bars with application to Kolsky bar testing

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    Material testing using the Kolsky bar, or split Hopkinson bar, technique has proven instrumental to conduct measurements of material behavior at strain rates in the order of 103 s-1. Test design and data reduction, however, remain empirical endeavors based on the experimentalist's experience. Issues such as wave propagation across discontinuities, the effect of the deformation of the bar surfaces in contact with the specimen, the effect of geometric features in tensile specimens (dog-bone shape), wave dispersion in the bars and other particulars are generally treated using simplified models. The work presented here was conducted in Q3 and Q4 of FY14. The objective was to demonstrate the feasibility of numerical simulations of Kolsky bar tests, which was done successfully.

  17. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  18. Thermal effects on beryllium mirrors

    International Nuclear Information System (INIS)

    Weinswig, S.

    1989-01-01

    Beryllium is probably the most frequently used material for spaceborne system scan mirrors. Beryllium's properties include lightweightedness, high Young's modulus, high stiffness value, high resonance value. As an optical surface, beryllium is usually nickel plated in order to produce a higher quality surface. This process leads to the beryllium mirror acting like a bimetallic device. The mirror's deformation due to the bimetallic property can possibly degrade the performance of the associated optical system. As large space borne systems are designed and as temperature considerations become more crucial in the instruments, the concern about temporal deformation of the scan mirrors becomes a prime consideration. Therefore, two sets of tests have been conducted in order to ascertain the thermal effects on nickel plated beryllium mirrors. These tests are categorized. The purpose of this paper is to present the values of the bimetallic effect on typical nickel plated beryllium mirrors

  19. Beryllium. Its minerals. Pt. 1

    International Nuclear Information System (INIS)

    Lires, O.A.; Delfino, C.A.; Botbol, J.

    1990-01-01

    With this work a series of reports begins, under the generic name 'Beryllium', related to several aspects of beryllium technology. The target is to update, with critical sense, current bibliographic material in order to be used in further applications. Some of the most important beryllium ores, the Argentine emplacement of their deposits and world occurrence are described. Argentine and world production, resources and reserves are indicated here as well. (Author) [es

  20. Beryllium Metal Supply Options

    Science.gov (United States)

    1989-01-01

    Carcinogen Assessment Group (U.S. Environmental Protec- tion Agency, 1987). The National Institute of Occupational Safety and Health is currently examining...Epidemiology of beryllium intox- ication. Arch. Ind. Hyg. Occup . Med. 4:123-151. U. S. Environmental Protection Agency 1987. Health Assessment Document...1957 to 1961. He rejoined the Bureau of Mines in 1961 as the aluminum and bauxite commcdity specialist. In 1973 he became chief of the Division of

  1. Beryllium and zirconium

    International Nuclear Information System (INIS)

    Salesse, Marc

    1959-01-01

    Pure beryllium and zirconium, both isolated at about the same date but more than a century ago remained practically unused for eighty years. Fifteen years ago they were released from this state of inactivity by atomic energy, which made them into current metal a with an annual production which runs into tens of tons for the one and thousands for the other. The reasons for this promotion promise well for the future of the two metals, which moreover will probably find additional uses in other branches of industry. The attraction of beryllium and zirconium for atomic energy is easily explained. The curve of figure 1 gives the price per gram of uranium-235 as a function of enrichment: this price increases by about a factor of 3 on passing from natural uranium (0, 7 percent 235 U) to almost pure uranium-235. Because of their tow capture cross-section beryllium and zirconium make it possible, or at least easier, to use natural uranium and they thus enjoy an advantage the extent of which must be calculated for each reactor or fuel element project, but which is generally considerable. It will be seen later that this advantage should be based on figures which are even more favourable that would appear from the simple ratio 3 of the price of pure uranium- 235 contained in natural uranium. Reprint of a paper published in 'Industries Atomiques' - n. 1-2, 1959

  2. Beryllium. Beryllium oxide, obtention and properties. Pt.4

    International Nuclear Information System (INIS)

    Lires, O.A.; Delfino, C.A.; Botbol, J.

    1991-01-01

    As a continuation of the 'Beryllium' series this work reviews several methods of high purity beryllia production. Diverse methods of obtention and purification from different beryllium compounds are described. Some chemical, mechanical and electrical properties related with beryllia obtention methods are summarized. (Author) [es

  3. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1994-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum-4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  4. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  5. Measurements of beryllium sputtering yields at JET

    Science.gov (United States)

    Jet-Efda Contributors Stamp, M. F.; Krieger, K.; Brezinsek, S.

    2011-08-01

    The lifetime of the beryllium first wall in ITER will depend on erosion and redeposition processes. The physical sputtering yields for beryllium (both deuterium on beryllium (Be) and Be on Be) are of crucial importance since they drive the erosion process. Literature values of experimental sputtering yields show an order of magnitude variation so predictive modelling of ITER wall lifetimes has large uncertainty. We have reviewed the old beryllium yield experiments on JET and used current beryllium atomic data to produce revised beryllium sputtering yields. These experimental measurements have been compared with a simple physical sputtering model based on TRIM.SP beryllium yield data. Fair agreement is seen for beryllium yields from a clean beryllium limiter. However the yield on a beryllium divertor tile (with C/Be co-deposits) shows poor agreement at low electron temperatures indicating that the effect of the higher sputtering threshold for beryllium carbide is important.

  6. Technical Basis for PNNL Beryllium Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  7. Method for fabricating beryllium structures

    Science.gov (United States)

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1977-01-01

    Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.

  8. Doped beryllium lanthanate crystals

    International Nuclear Information System (INIS)

    1974-01-01

    Monocrystals of doped beryllium lanthanate, Be 2 Lasub(2-2x)Zsub(2x)O 5 --where Z may be any rare earth, but preferably neodymium, and x may have values between 0.001 and 0.2, but preferably between 0.007 and 0.015-- are recommended as laser hosts. They are softer and may be grown at a lower temperature than Y 3 A1 5 O 12 :Nd (YAG:Nd). Their chemical composition and preparation are described. An example of an optically pumped laser apparatus with this type of monocrystal as laser host is presented

  9. Copper-beryllium alloys for technical applications

    International Nuclear Information System (INIS)

    Heller, W.

    1976-01-01

    Data of physical properties are compiled for the most commonly used copper-beryllium alloys (CuBe 2, CuBe 1.7, CuCoBe, and CuCoAgBe), with emphasis on their temperature dependence and their variation with particular annealing and hardening treatments. The purpose is to provide a reference source and to indicate the versatility of these materials with respect to other copper alloys and to pure copper. The special features of CuBe alloys include high mechanical strength with reasonably high electrical conductivity, as well as good wear and corrosion resistance. For example, CuBe 2 has a yield strength of up to 1200 N/mm 2 , about three times that of pure copper, whilst the electrical conductivity of CuCoBe can be as high as 28 MS/m, nearly half that of pure copper. Typical applications are springs and electrical contacts. The importance of a proper heat treatment is discussed in some detail, notably the metallurgy and effects of low-temperature annealing (precipitation-hardening). A chapter on manufacturing processes covers machining, brazing, welding, and cleaning. This is followed by some remarks on safety precautions against beryllium poisoning. CuBe alloys are commercially available in the form of wires, strips, rods, and bars. Typical dimensions, specifications, a brief cost estimate, and addresses of suppliers are listed. (Author)

  10. Thermal fatigue of beryllium

    International Nuclear Information System (INIS)

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-01-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m 2 to 5 MW/m 2 and under pulsed heat fluxes (10-20 MW/m 2 ) for which the time averaged heat flux is 5 MW/m 2 . These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures ≤ 600 degrees C produced no visible fatigue cracks. In the second series of tests, with T max ≤ 750 degrees C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with Φ = 25 MW/m 2 and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed

  11. Corrosion of beryllium oxide

    International Nuclear Information System (INIS)

    Elston, J.; Caillat, R.

    1958-01-01

    Data are reported on the volatilization rate of beryllium oxide in moist air depending on temperature and water vapour concentration. They are concerned with powder samples or sintered shapes of various densities. For sintered samples, the volatilization rate is very low under the following conditions: - temperature: 1300 deg. C, - water vapour concentration in moist air: 25 g/m 3 , - flow rate: 12 I/hour corresponding to a speed of 40 m/hour on the surface of the sample. For calcinated powders (1300 deg. C), grain growth has been observed under a stream of moist air at 1100 deg. C. For instance, grain size changes from 0,5 to at least 2 microns after 500 hours of exposure at this temperature. Furthermore, results data are reported on corrosion of sintered beryllium oxide in pressurized water. At 250 deg. C, under a pressure of 40 kg/cm 2 water is very slightly corrosive; however, internal strains are revealed. Finally, some features on the corrosion in liquid sodium are exposed. (author) [fr

  12. The INEL beryllium multiplication experiment

    International Nuclear Information System (INIS)

    Smith, J.R.; King, J.J.

    1991-03-01

    The experiment to measure the multiplication of 14-MeV neutrons in bulk beryllium has been completed. The experiment consists of determining the ratio of 56 Mn activities induced in a large manganese bath by a central 14-MeV neutron source, with and without a beryllium sample surrounding the source. In the manganese bath method a neutron source is placed at the center of a totally-absorbing aqueous solution of MnSo 4 . The capture of neutrons by Mn produces a 56 Mn activity proportional to the emission rate of the source. As applied to the measurement of the multiplication of 14- MeV neutrons in bulk beryllium, the neutron source is a tritium target placed at the end of the drift tube of a small deuteron accelerator. Surrounding the source is a sample chamber. When the sample chamber is empty, the neutrons go directly to the surrounding MnSO 4 solution, and produce a 56 Mn activity proportional to the neutron emission rate. When the chamber contains a beryllium sample, the neutrons first enter the beryllium and multiply through the (n,2n) process. Neutrons escaping from the beryllium enter the bath and produce a 56 Mn activity proportional to the neutron emission rate multiplied by the effective value of the multiplication in bulk beryllium. The ratio of the activities with and without the sample present is proportional to the multiplication value. Detailed calculations of the multiplication and all the systematic effects were made with the Monte Carlo program MCNP, utilizing both the Young and Stewart and the ENDF/B-VI evaluations for beryllium. Both data sets produce multiplication values that are in excellent agreement with the measurements for both raw and corrected values of the multiplication. We conclude that there is not real discrepancy between experimental and calculated values for the multiplication of neutrons in bulk beryllium. 12 figs., 11 tabs., 18 refs

  13. Offshoots from beryllium development programme

    International Nuclear Information System (INIS)

    Sharma, B.P.; Sinha, P.K.

    1995-01-01

    The paper briefly presents extraction and processing of beryllium metal as practiced in the beryllium facilities at Turbhe, New Bombay. These facilities have been set up to meet the indigenous requirements of the metal in space and nuclear science programmes. As offshoot of this beryllium development programme has been the development of a number of pyro and powder metallurgical equipment. Indigenous development of these pieces of equipment has been a professionally rewarding experience. Efforts are now on to promote these equipment for industrial use. (author). 6 refs., 6 figs., 2 tabs

  14. Investigation of fracture in pressurized gas metal arc welded beryllium

    International Nuclear Information System (INIS)

    Heiple, C.R.; Merlini, R.J.; Adams, R.O.

    1976-01-01

    Premature failures during proof testing of pressurized-gas-metal-arc (PGMA) welded beryllium assemblies were investigated. The failures were almost entirely within the beryllium (a forming grade, similar to HP-10 or S-240), close to and parallel to the weld interface. The aluminum-silicon weld filler metal deposit was not centered in the weld groove in the failed assemblies, and failure occurred on the side of the weld opposite the bias in the weld deposit. Tensile tests of welded samples demonstrated that the failures were unrelated to residual machining damage from cutting the weld groove, and indicated small lack-of-fusion areas near the weld start to be the most likely origin of the failures. Acoustic emission was monitored during tensile tests of the welds. The majority of acoustic emission was probably from crack propagation through the weld filler metal. Tensile bars cut from the region of the weld start behaved differently; they failed at lower loads and exhibited an acoustic emission behavior believed to be from cracking in the weld metal-beryllium interface. Improvement in the quality of these and similar beryllium welds can therefore most likely be made by centering the weld deposit and reducing the size of the weld start defect. 21 fig

  15. Research of beryllium safety issues

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Dolan, T.J.; Hankins, M.R.; Pawelko, R.J.

    1993-01-01

    Beryllium has been identified as a leading contender for the plasma-facing material in ITER. Its use has some obvious advantages, but there are also a number of safety concerns associated with it. The Idaho National Engineering Laboratory (INEL) has undertaken a number of studies to help resolve some of these issues. One issue is the response of beryllium to neutron irradiation. We have tested samples irradiated in the Advanced Test Reactor (ATR) and are currently preparing to make measurements of the change in mechanical properties of beryllium samples irradiated at elevated temperatures in the Fast Flux Test Facility (FFTF) and the Experimental Breeder Reactor II (EBR-II) at the INEL. Mechanical tests will be conducted at the irradiation temperatures of 375-550 C. Other experiments address permeation and retention of implanted tritium in plasma-sprayed beryllium. In one test the porosity of the material allowed 0.12% of implanted ions and 0.17% of atoms from background gas pressure to pass through the foil with essentially no delay. For comparison, similar tests on fully dense hot-rolled, vacuum melted or sintered powder foils of high purity beryllium showed only 0.001% of implanting ions to pass through the foil, and then only after a delay of several hours. None of the molecular gas appeared to permeate these latter targets. An implication is that plasma-sprayed beryllium may substantially enhance recycling of tritium to the plasma provided it is affixed to a relatively impermeable substrate. (orig.)

  16. Fracture toughness of irradiated beryllium

    International Nuclear Information System (INIS)

    Beeston, J.M.

    1978-01-01

    The fracture toughness of nuclear grade hot-pressed beryllium upon irradiation to fluences of 3.5 to 5.0 x 10 21 n/cm 2 , E greater than 1 MeV, was determined. Procedures and data relating to a round-robin test contributing to a standard ASTM method for unirradiated beryllium are discussed in connection with the testing of irradiated specimens. A porous grade of beryllium was also irradiated and tested, thereby enabling some discrimination between the models for describing the fracture toughness behavior of porous beryllium. The fracture toughness of unirradiated 2 percent BeO nuclear grade beryllium was 12.0 MPa m/sup 1 / 2 /, which was reduced 60 percent upon irradiation at 339 K and testing at 295 K. The fracture toughness of a porous grade of beryllium was 13.1 MPa m/sup 1 / 2 /, which was reduced 68 percent upon irradiation and testing at the same conditions. Reasons for the reduction in fracture toughness upon irradiation are discussed

  17. Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1991-12-01

    This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET

  18. Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.

    1991-12-01

    This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET.

  19. Beryllium R and D for blanket application

    Energy Technology Data Exchange (ETDEWEB)

    Dalle Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Longhurst, G.R. [Idaho National Engineering Lab., Idaho Falls (United States); Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-10-01

    The paper describes the main problems and the R and D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point. (orig.) 29 refs.

  20. Beryllium R and D for blanket application

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Scaffidi-Argentina, F.; Kawamura, H.

    1998-01-01

    The paper describes the main problems and the R and D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point. (orig.)

  1. Beryllium R&D for blanket application

    Science.gov (United States)

    Donne, M. Dalle; Longhurst, G. R.; Kawamura, H.; Scaffidi-Argentina, F.

    1998-10-01

    The paper describes the main problems and the R&D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point.

  2. The unusual properties of beryllium surfaces

    International Nuclear Information System (INIS)

    Stumpf, R.; Hannon, J.B.

    1994-01-01

    Be is a ''marginal metal.'' The stable phase, hcp-Be, has a low Fermi-level density of states and very anisotropic structural and elastic properties, similar to a semiconductor's. At the Be(0001) surface, surface states drastically increase the Fermi-level density of states. The different nature of bonding in bulk-Be and at the Be(0001) surface explains the large outward relaxation. The presence of surface states causes large surface core-level shifts by inducing a higher electrostatic potential in the surface layers and by improving the screening at the surface. The authors experimental and theoretical investigations of atomic vibrations at the Be(0001) surface demonstrate clearly that Be screening of atomic motion by the surface states makes the surface phonon dispersion fundamentally different from that of the bulk. Properties of Be(0001) are so different from those of the bulk that the surface can be considered a new ''phase'' of beryllium with unique electronic and structural characteristics. For comparison they also study Be(11 bar 20), a very open surface without important surface states. Be(11 bar 20) is the only clean s-p metal surface known to reconstruct (1 x 3 missing row reconstruction)

  3. Safe waste management practices in beryllium facilities

    International Nuclear Information System (INIS)

    Bhat, P.N.; Soundararajan, S.; Sharma, D.N.

    2012-01-01

    Beryllium, an element with the atomic symbol Be, atomic number 4, has very high stiffness to weight ratio and low density. It has good electrical conductive properties with low coefficient of thermal expansion. These properties make the metal beryllium very useful in varied technological endeavours, However, beryllium is recognised as one of the most toxic metals. Revelation of toxic effects of beryllium resulted in institution of stringent health and safety practices in beryllium handling facilities. The waste generated in such facilities may contain traces of beryllium. Any such waste should be treated as toxic waste and suitable safe waste management practices should be adopted. By instituting appropriate waste management practice and through a meticulously incorporated safety measures and continuous surveillance exercised in such facilities, total safety can be ensured. This paper broadly discusses health hazards posed by beryllium and safe methods of management of beryllium bearing wastes. (author)

  4. The nature of beryllium disease

    International Nuclear Information System (INIS)

    Williams, W.J.

    1977-01-01

    The increasing use of beryllium in modern industry poses a continuing health hazard with a real risk of producing incapacitating disease and even death. Beryllium and its salts are very toxic, even in small doses and may produce lesions in any organ. The majority of cases follow inhalation and may cause either acute or chronic lung disease. Acute pulmonary disease is a form of chemical pneumonitis while the chronic disease is characterised by the production of granulomas and fibrosis. The skin may be affected with the finding of dermatitis, acute or chronic ulceration. Other organs commonly involved include the liver and kidneys. The pathology of beryllium disease is not specific and diagnosis depends on satisfying the following criteria - history of exposure, consistent clinical, radiographic and pathological finding, presence of beryllium in tissue/fluid and evidence of hypersensitivity. Recent development of 'in vitro' tests of hypersensitivity may prove of value in both diagnosis and prevention of disease. Beryllium disease responds to steroid therapy but the only sure treatment is avoidance of exposure. (author)

  5. Hydrogen transport behavior of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Hankins, M.R.; Longhurst, G.R.; Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho, Inc., Idaho Falls, ID (United States)); Macaulay-Newcombe, R.G. (Dept. of Engineering Physics, Univ. Hamilton, ON (Canada))

    1992-12-01

    Beryllium is being evaluated for use as a plasma-facing material in the International Thermonuclear Experimental Reactor (ITER). One concern in the evaluation is the retention and permeation of tritium implanted into the plasma-facing surface. We performed laboratory-scale studies to investigate mechanisms that influence hydrogen transport and retention in beryllium foil specimens of rolled powder metallurgy product and rolled ingot cast beryllium. Specimen characterization was accomplished using scanning electron microscopy. Auger electron spectroscopy, and Rutherford backscattering spectrometry (RBS) techniques. Hydrogen transport was investigated using ion-beam permeation experiments and nuclear reaction analysis (NRA). Results indicate that trapping plays a significant role in permeation, re-emission, and retention, and that surface processes at both upstream and downstream surfaces are also important. (orig.).

  6. High-strength beryllium block

    International Nuclear Information System (INIS)

    Pinto, N.P.; Keith, G.H.

    1977-01-01

    Beryllium billets hot isopressed using fine powder of high purity have exceptionally attractive properties; average tensile ultimate, 0.2% offset yield strength and elongation are 590 MPa, 430 MPa and 4.0% respectively. Properties are attributed to the fine grain size (about 4.0 μm average diameter) and the relatively low levels of BeO present as fine, well-dispersed particles. Dynamic properties, e.g., fracture toughness, are similar to those of standard grade, high-purity beryllium. The modulus of beryllium is retained to very high stress levels, and the microyield stress or precision elastic limit is higher than for other grades, including instrument grades. Limited data for billets made from normal-purity fine powders show similar room temperature properties. (author)

  7. Cause of pitting in beryllium

    International Nuclear Information System (INIS)

    Kershaw, R.P.

    1982-01-01

    Light microscopy, bare-film radiography, secondary ion mass spectroscopy, electron microprobe and physical testing were used to examine beryllium specimens exhibiting a stratified, pitted, pattern after chemical milling. The objective was to find the cause of this pattern. Specimens were found to have voids in excess of density specification allowances. These voids are attributed, at least in part, to the sublimation of beryllium fluoride during the vacuum hot pressing operation. The origin of the pattern is attributed to these voids and etching out of fines and associated impurities. Hot isostatic pressing with a subsequent heat treatment close residual porosity and dispersed impurities enough to correct the problem

  8. Bioenvironmental Engineering Guide to Beryllium

    Science.gov (United States)

    2017-07-26

    Dermal contact with beryllium can result in dermatitis resembling first- or second-degree burns and skin granulomas [7]. Beryllium dust, fume...minute short-term exposure limit (STEL) of 2.0 µg/m3 [§1910.1024(c)(2) & §1926.1124(c)(2)], and added provisions to prevent skin contact [§1910.1024(b...document you want more information, contact the Environmental, Safety, and Occupational Health (ESOH) Service Center at DSN 798-3764, 1-888-232-ESOH (3764

  9. Defense programs beryllium good practice guide

    International Nuclear Information System (INIS)

    Herr, M.

    1997-07-01

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D ampersand D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is

  10. Inhalation hazards from machining beryllium metal

    International Nuclear Information System (INIS)

    Hoover, M.D.; Finch, G.L.; Mewhinney, J.A.; Eidson, A.F.

    1987-01-01

    Beryllium metal has special nuclear and structural properties that make it useful for applications in fission and fusion reactor designs. Unfortunately, concerns for its toxicity have made designers wary of using beryllium metal. The work being reported here was undertaken to characterize the aerosols produced by two very common operations performed during preparation or modification of components for use in reactor systems: sawing and milling of beryllium metal. The study also covered beryllium metal alloys to allow comparison. Information from this study is to enable better assessments of the risk of using beryllium metal in reactor designs

  11. Optimization of beryllium for fusion blanket applications

    International Nuclear Information System (INIS)

    Billone, M.C.

    1993-01-01

    The primary function of beryllium in a fusion reactor blanket is neutron multiplication to enhance tritium breeding. However, because heat, tritium and helium will be generated in and/or transported through beryllium and because the beryllium is in contact with other blanket materials, the thermal, mechanical, tritium/helium and compatibility properties of beryllium are important in blanket design. In particular, tritium retention during normal operation and release during overheating events are safety concerns. Accommodating beryllium thermal expansion and helium-induced swelling are important issues in ensuring adequate lifetime of the structural components adjacent to the beryllium. Likewise, chemical/metallurgical interactions between beryllium and structural components need to be considered in lifetime analysis. Under accident conditions the chemical interaction between beryllium and coolant and breeding materials may also become important. The performance of beryllium in fusion blanket applications depends on fabrication variables and operational parameters. First the properties database is reviewed to determine the state of knowledge of beryllium performance as a function of these variables. Several design calculations are then performed to indicate ranges of fabrication and operation variables that lead to optimum beryllium performance. Finally, areas for database expansion and improvement are highlighted based on the properties survey and the design sensitivity studies

  12. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)

  13. Numerical Simulations of the Kolsky Compression Bar Test

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The Kolsky compression bar, or split Hopkinson pressure bar (SHPB), is an ex- perimental apparatus used to obtain the stress-strain response of material specimens at strain rates in the order of 10 2 to 10 4 1/s. Its operation and associated data re- duction are based on principles of one-dimensional wave propagation in rods. Second order effects such as indentation of the bars by the specimen and wave dispersion in the bars, however, can significantly affect aspects of the measured material response. Finite element models of the experimental apparatus were used here to demonstrate these two effects. A procedure proposed by Safa and Gary (2010) to account for bar indentation was also evaluated and shown to improve the estimation of the strain in the bars significantly. The use of pulse shapers was also shown to alleviate the effects of wave dispersion. Combining the two can lead to more reliable results in Kolsky compression bar testing.

  14. Galvanic corrosion of beryllium welds

    International Nuclear Information System (INIS)

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-01-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl - solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed

  15. Worker Environment Beryllium Characterization Study

    International Nuclear Information System (INIS)

    2009-01-01

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, 'Minnema Report.'

  16. Worker Environment Beryllium Characterization Study

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environment, Safety, Health & Quality

    2009-12-28

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, “Minnema Report.”

  17. OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Brisson, M

    2009-04-01

    Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining chapters. The goal of this book is to provide a comprehensive resource to aid personnel in a wide variety of disciplines in selecting sampling and analysis methods that will facilitate informed decision-making in workplace and environmental settings.

  18. Mechanisms of hydrogen retention in metallic beryllium and beryllium oxide and properties of ion-induced beryllium nitride

    International Nuclear Information System (INIS)

    Oberkofler, Martin

    2011-01-01

    In the framework of this thesis laboratory experiments on atomically clean beryllium surfaces were performed. They aim at a basic understanding of the mechanisms occurring upon interaction of a fusion plasma with a beryllium first wall. The retention and the temperature dependent release of implanted deuterium ions are investigated. An atomistic description is developed through simulations and through the comparison with calculations based on density functional theory. The results of these investigations are compared to the behaviour of hydrogen upon implantation into thermally grown beryllium oxide layers. Furthermore, beryllium nitride is produced by implantation of nitrogen into metallic beryllium and its properties are investigated. The results are interpreted with regard to the use of beryllium in a fusion reactor. (orig.)

  19. Formation of Gaps at the Specimen-Bar Interfaces in Numerical Simulations of Compression Hopkinson Bar Tests on Soft, Nearly Incompressible Materials

    Science.gov (United States)

    2010-09-01

    MISSISSIPPI MECHANICAL ENGINEERING A RAJENDRAN 201 CARRIER HALL UNIVERSITY MS 38677 2 UNIVERSITY OF CALIFORNIA SAN DIEGO ...extrapolation of the data given in Aihaiti and Hemley (10); the authors attribute this data to Dana Dattlebaum at Los Alamos National Laboratory...region bordering the centerline, about 6–8 specimen lengths back from the S-IB interface. From 164.2 to164.6 s (figures 19 and 20), the pressure

  20. Defense programs beryllium good practice guide

    Energy Technology Data Exchange (ETDEWEB)

    Herr, M.

    1997-07-01

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is likely to

  1. Belgian research on fusion beryllium waste

    International Nuclear Information System (INIS)

    Druyts, F.; Mallants, D.; Sillen, X.; Iseghem, P. Van

    2004-01-01

    Future fusion power plants will generate important quantities of neutron irradiated beryllium. Although recycling is the preferred management option for this waste, this may not be technically feasible for all of the beryllium, because of its radiological characteristics. Therefore, at SCK·CEN, we initiated a research programme aimed at studying aspects of the disposal of fusion beryllium, including waste characterisation, waste acceptance criteria, conditioning methods, and performance assessment. One of the main issues to be resolved is the development of fusion-specific waste acceptance criteria for surface or deep geological disposal, in particular with regard to the tritium content. In case disposal is the only solution, critical nuclides can be immobilised by conditioning the waste. As a first approach to immobilising beryllium waste, we investigated the vitrification of beryllium. Corrosion tests were performed on both metallic and vitrified beryllium to provide source data for performance assessment. Finally, a first step in performance assessment was undertaken. (author)

  2. Beryllium minerals - demand strong for miniaturisation

    International Nuclear Information System (INIS)

    Griffiths, J.

    1985-01-01

    Beryllium is an essential constituent of over 40 minerals of which two are exploited commercially. Beryl is largely produced in the USSR and China and bertrandite in the U.S.A. Phenacite, from Canada, is also under investigation. The largest extraction plant for the recovery of beryllium in the western world is in Utah, U.S.A. and the company also produces beryllium oxide used in the manufacture of ceramics widely used in the electronics industry and for refractory articles. Beryllium-copper alloys in strip, rod and tube form are produced in the U.S.A., Germany and the U.K. Beryllium ceramics are important because of their high thermal conductivity, electrical insulation, strength and rigidity. The alloys, used as electric connectors, microswitch contacts are important for their high suitability for miniaturisation. The future growth potential for the beryllium industry is in the automotive industries in Europe and Japan. (U.K.)

  3. Method for hot pressing beryllium oxide articles

    Science.gov (United States)

    Ballard, Ambrose H.; Godfrey, Jr., Thomas G.; Mowery, Erb H.

    1988-01-01

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  4. Mechanical properties of irradiated beryllium

    International Nuclear Information System (INIS)

    Beeston, J.M.; Longhurst, G.R.; Wallace, R.S.

    1992-01-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 x 10 25 n/m 2 (E > MeV) at an irradiation temperature of 75deg C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium. (orig.)

  5. Mechanical properties of irradiated beryllium

    Science.gov (United States)

    Beeston, J. M.; Longhurst, G. R.; Wallace, R. S.; Abeln, S. P.

    1992-10-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 × 10 25 n/m 2 ( E > 1 MeV) at an irradiation temperature of 75°C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium.

  6. MEASUREMENTS OF THE PROPERTIES OF BERYLLIUM FOIL

    International Nuclear Information System (INIS)

    ZHAO, Y.; WANG, H.

    2000-01-01

    The electrical conductivity of beryllium at radio frequency (800 MHz) and liquid nitrogen temperature were investigated and measured. This summary addresses a collection of beryllium properties in the literature, an analysis of the anomalous skin effect, the test model, the experimental setup and improvements, MAFIA simulations, the measurement results and data analyses. The final results show that the conductivity of beryllium is not as good as indicated by the handbook, yet very close to copper at liquid nitrogen temperature

  7. New audio applications of beryllium metal

    International Nuclear Information System (INIS)

    Sato, M.

    1977-01-01

    The major applications of beryllium metal in the field of audio appliances are for the vibrating cones for the two types of speakers 'TWITTER' for high range sound and 'SQUAWKER' for mid range sound, and also for beryllium cantilever tube assembled in stereo cartridge. These new applications are based on the characteristic property of beryllium having high ratio of modulus of elasticity to specific gravity. The production of these audio parts is described, and the audio response is shown. (author)

  8. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  9. Tritium behavior in ITER beryllium

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-10-01

    The beryllium neutron multiplier in the ITER breeding blanket will generate tritium through transmutations. That tritium constitutes a safety hazard. Experiments evaluating tritium storage and release mechanisms have shown that most of the tritium comes out in a burst during thermal ramping. A small fraction of retained tritium is released by thermally activated processes. Analysis of recent experimental data shows that most of the tritium resides in helium bubbles. That tritium is released when the bubbles undergo swelling sufficient to develop porosity that connects with the surface. That appears to occur when swelling reaches about 10--15%. Other tritium appears to be stored chemically at oxide inclusions, probably as Be(OT) 2 . That component is released by thermal activation. There is considerable variation in published values for tritium diffusion through the beryllium and solubility in it. Data from experiments using highly irradiated beryllium from the Idaho National Engineering Laboratory showed diffusivity generally in line with the most commonly accepted values for fully dense material. Lower density material, planned for use in the ITER blanket may have very short diffusion times because of the open structure. The beryllium multiplier of the ITER breeding blanket was analyzed for tritium release characteristics using temperature and helium production figures at the midplane generated in support of the ITER Summer Workshop, 1990 in Garching. Ordinary operation, either in Physics or Technology phases, should not result in the release of tritium trapped in the helium bubbles. Temperature excursions above 600 degree C result in large-scale release of that tritium. 29 refs., 10 figs., 3 tabs

  10. Intoxication experiments with beryllium sulphate

    International Nuclear Information System (INIS)

    Bucurescu, I.; Stan, T.

    1990-01-01

    The changes in the particular number of animals in two groups of 40 rats each subjected to intoxication experiments with beryllium sulphate was investigated. The two investigations had very different characteristics. In the case of chronic intoxication there was a marked lethality over given time intervals. In the case of subacute intoxication the number of animals decreased with time. It was found empirically that this change can be described by an exponential relationship which lends itself to statistical interpretation. (author)

  11. Thermodynamic properties of beryllium hydroxide

    International Nuclear Information System (INIS)

    Baur, A.; Lecocq, A.

    1964-01-01

    The study of the hydro-thermal decomposition of beryllium hydroxide has made it possible to determine the free energy of formation and the entropy. The results obtained are in good agreement with the theoretical values calculated from the solubility product of this substance. They give furthermore the possibility of acquiring a better understanding of the BeO-H 2 O-Be (OH) 2 system between 20 and 1500 C. (authors) [fr

  12. Thermal Properties of Beryllium Metal

    International Nuclear Information System (INIS)

    Cho, Tae Won; Baek, Je Kyun; Jeong, Gwan Yoon; Kim, Ji Hyeon; Sohn, Dong Seong

    2013-01-01

    It is known that the presence of as-fabricated porosity largely affect thermal conductivity of beryllium. Therefore, in this paper we will suggest a new thermal conductivity equation which consider volume fraction and discuss how this can be applied to irradiation induced degradation of thermal conductivity later. This study was performed to develop a new correlation of thermal conductivity of Beryllium. Although there are many factors like BeO contents, impurity level, grain size, and porosity, we assumed porosity will be the dominant factor for thermal conductivity. Therefore, a new correlation which consider volume fraction by applying Maxwell-Eucken equation is developed and this is consistent to some degrees. However, increasing impurity level and decreasing grain size will decrease thermal conductivity. Therefore, we need to consider their effects although we assume BeO contents, impurity, and grain size do not make noticeable effects in the future. Furthermore, thermal conductivity degradation by neutron irradiation should be considered afterward. There are two main factors for the thermal conductivity degradation: the one is defects formed by neutron collisions and the other is helium generated by transmutation of Be. It is known that they make a considerable degradation of conductivity. Beryllium is known there are considerable volume increases by helium accumulation. Therefore, we anticipate our suggested model can be applicable if it has been developed furthermore considering irradiation induced swelling

  13. (Beryllium). Internal Report No. 137, Jan. 15, 1958

    International Nuclear Information System (INIS)

    Mouret, P.; Rigaud, A.

    1959-01-01

    After a brief summary of the physical and chemical properties of beryllium, the various chemical treatments which can be applied to beryllium minerals either directly or after a physical enrichment are discussed. These various treatments give either the hydroxide or beryllium salts, from which either beryllium oxide or metallic beryllium can easily be obtained. The purification, analysis and uses of beryllium are also briefly discussed. (author)

  14. Beryllium dust generation resulting from plasma bombardment

    International Nuclear Information System (INIS)

    Doerner, R.; Mays, C.

    1997-01-01

    The beryllium dust resulting from erosion of beryllium samples subjected to plasma bombardment has been measured in PISCES-B. Loose surface dust was found to be uniformly distributed throughout the device and accounts for 3% of the eroded material. A size distribution measurement of the loose surface dust shows an increasing number of particles with decreasing diameter. Beryllium coatings on surfaces with a line of sight view of the target interaction region account for an additional 33% of the eroded beryllium material. Flaking of these surface layers is observed and is thought to play a significant role in dust generation inside the vacuum vessel. (orig.)

  15. Microplasticity in hot-pressed beryllium

    International Nuclear Information System (INIS)

    Plane, D.C.; Bonfield, W.

    1977-01-01

    Closed hysteresis loops measured in the microstrain region of hot pressed, commercially pure, polycrystalline beryllium are correlated with a dislocation - impurity atom, energy dissipating mechanism. (author)

  16. Beryllium thin films for resistor applications

    Science.gov (United States)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  17. Beryllium and growth. II. The effect of beryllium on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, M B

    1952-01-01

    Experiments were undertaken to determine whether beryllium could replace magnesium in a growing organism. This was stimulated by the several known growth effects of beryllium in animals and by the fact that beryllium apparently competes with magnesium for animal alkaline phosphatases. The following findings are noted: (1) beryllium can reduce the magnesium requirement of plants by some 60% within a certain range of magnesium deficiency. (2) The residual obligatory magnesium requirements is probably accounted for by chlorophyll since beryllium appears to have no primary effect on chlorophyll or chlorophyll production. (3) The pH of the nutrient solution is critical: at acid pH's, beryllium is highly toxic, and growth increase due to beryllium only appears at initial pH's above 11.2, although this initial pH rapidly falls to neutrality during the experimental period. 22 references, 4 figures, 1 table.

  18. Beryllium in aircraft brakes - a summary

    International Nuclear Information System (INIS)

    Zenczak, S.

    1977-01-01

    Beryllium has been in use in aircraft brakes for ten years. During the original design phases of the several aircraft programs using beryllium a number of problems requiring solution confronted the designers. In actual service the solution to these problems performed much better than had been anticipated. A summary is presented. (author)

  19. ICT diagnostic method of beryllium welding quality

    International Nuclear Information System (INIS)

    Sun Lingxia; Wei Kentang; Ye Yunchang

    2002-01-01

    To avoid the interference of high density material for the quality assay of beryllium welding line, a slice by slice scanning method was proposed based upon the research results of the Industrial Computerized Tomography (ICT) diagnostics for weld penetration, weld width, off-centered deviation and weld defects of beryllium-ring welding seam with high density material inside

  20. Investigation of beryllium/steam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chekhonadskikh, A.M.; Vurim, A.D.; Vasilyev, Yu.S.; Pivovarov, O.S. [Inst. of Atomic Energy National Nuclear Center of the Republic of Kazakstan Semipalatinsk (Kazakhstan); Shestakov, V.P.; Tazhibayeva, I.L.

    1998-01-01

    In this report program on investigations of beryllium emissivity and transient processes on overheated beryllium surface attacked by water steam to be carried out in IAE NNC RK within Task S81 TT 2096-07-16 FR. The experimental facility design is elaborated in this Report. (author)

  1. Modeling of hydrogen interactions with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-01-01

    In this paper, improved mathematical models are developed for hydrogen interactions with beryllium. This includes the saturation effect observed for high-flux implantation of ions from plasmas and retention of tritium produced from neutronic transmutations in beryllium. Use of the models developed is justified by showing how they can replicated experimental data using the TMAP4 tritium transport code. (author)

  2. Managing health effects of beryllium exposure

    National Research Council Canada - National Science Library

    Committee on Beryllium Alloy Exposures; Committee on Toxicology; National Research Council; Division on Earth and Life Studies; National Research Council

    2008-01-01

    ... to its occurrence in exposed people. Despite reduced workplace exposure, chronic beryllium disease continues to occur. In addition, beryllium has been classified as a likely human carcinogen by several agencies, such as the International Agency for Research on Cancer, the National Toxicology Program, and the U.S. Environmental Protection Agency. Thos...

  3. Structure investigations of some beryllium materials

    Energy Technology Data Exchange (ETDEWEB)

    Faeldt, I; Lagerberg, G

    1960-05-15

    Metallographic structure, microhardness and texture have been studied on various types of beryllium metal including hot pressed powder, a rolled strip and an extruded tube It was found that beryllium exhibits its highest hardness in directions perpendicular to the basal plane. Good ideas of the prevailing textures were obtained with an ordinary X-ray diffractometer.

  4. Some aspects of beryllium disposal in Kazakhstan

    International Nuclear Information System (INIS)

    Shestakov, V.; Chikhray, Y.; Shakhvorostov, Yr.

    2004-01-01

    Historically in Kazakhstan all disposals of used beryllium and beryllium wasted materials were stored and recycled at JSC ''Ulba Metallurgical Plant''. Since Ulba Metallurgical Plant (beside beryllium and tantalum production) is one of the world largest complex producers of fuel for nuclear power plants as well it has possibilities, technologies and experience in processing toxic and radioactive wastes related with those productions. At present time only one operating Kazakhstan research reactors (EWG1M in Kurchatov) contains beryllium made core. The results of current examination of that core allow using it without replacement long time yet (at least for next five-ten years). Nevertheless the problem how to utilize such irradiated beryllium becomes actual issue for Kazakhstan even today. Since Kazakhstan is the member of ITER/DEMO Reactors Projects and is permanently considered as possible provider of huge amount of beryllium for those reactors so that is the reason for starting studies of possibilities of large scale processing/recycling of such disposed irradiated beryllium. It is clear that the Ulba Metallurgical Plant is considered as the best site for it in Kazakhstan. The draft plan how to organize experimental studies of irradiated beryllium disposals in Kazakhstan involving National Nuclear Center, National University (Almaty), JSC ''Ulba Metallurgical Plant'' (Ust-Kamenogorsk) would be presented in this paper as well as proposals to arrange international collaboration in that field through ISTC (International Science Technology Center, Moscow). (author)

  5. Structure investigations of some beryllium materials

    International Nuclear Information System (INIS)

    Faeldt, I.; Lagerberg, G.

    1960-05-01

    Metallographic structure, microhardness and texture have been studied on various types of beryllium metal including hot pressed powder, a rolled strip and an extruded tube It was found that beryllium exhibits its highest hardness in directions perpendicular to the basal plane. Good ideas of the prevailing textures were obtained with an ordinary X-ray diffractometer

  6. The status of beryllium technology for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Longhurst, G.R. E-mail: gx1@inel.gov; Shestakov, V.; Kawamura, H

    2000-12-01

    Beryllium was used for a number of years in the Joint European Torus (JET), and it is planned to be used extensively on the lower heat-flux surfaces of the reduced technical objective/reduced cost international thermonuclear experimental reactor (RTO/RC ITER). It has been included in various forms in a number of tritium breeding blanket designs. There are technical advantages but also a number of safety issues associated with the use of beryllium. Research in a variety of technical areas in recent years has revealed interesting issues concerning the use of beryllium in fusion. Progress in this research has been presented at a series of International Workshops on Beryllium Technology for Fusion. The most recent workshop was held in Karlsruhe, Germany on 15-17 September 1999. In this paper, a summary of findings presented there and their implications for the use of beryllium in the development of fusion reactors are presented.

  7. The status of beryllium technology for fusion

    International Nuclear Information System (INIS)

    Scaffidi-Argentina, F.; Longhurst, G.R.; Shestakov, V.; Kawamura, H.

    2000-01-01

    Beryllium was used for a number of years in the Joint European Torus (JET), and it is planned to be used extensively on the lower heat-flux surfaces of the reduced technical objective/reduced cost international thermonuclear experimental reactor (RTO/RC ITER). It has been included in various forms in a number of tritium breeding blanket designs. There are technical advantages but also a number of safety issues associated with the use of beryllium. Research in a variety of technical areas in recent years has revealed interesting issues concerning the use of beryllium in fusion. Progress in this research has been presented at a series of International Workshops on Beryllium Technology for Fusion. The most recent workshop was held in Karlsruhe, Germany on 15-17 September 1999. In this paper, a summary of findings presented there and their implications for the use of beryllium in the development of fusion reactors are presented

  8. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    Energy Technology Data Exchange (ETDEWEB)

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  9. Beryllium Measurement In Commercially Available Wet Wipes

    International Nuclear Information System (INIS)

    Youmans-Mcdonald, L.

    2011-01-01

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant(trademark) Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  10. Assessment of LANL beryllium waste management documentation

    International Nuclear Information System (INIS)

    Danna, J.G.; Jennrich, E.A.; Lund, D.M.; Davis, K.D.; Hoevemeyer, S.S.

    1991-04-01

    The objective of this report is to determine present status of the preparation and implementation of the various high priority documents required to properly manage the beryllium waste generated at the Laboratory. The documents being assessed are: Waste Acceptance Criteria, Waste Characterization Plan, Waste Certification Plan, Waste Acceptance Procedures, Waste Characterization Procedures, Waste Certification Procedures, Waste Training Procedures and Waste Recordkeeping Procedures. Beryllium is regulated (as a dust) under 40 CFR 261.33 as ''Discarded commercial chemical products, off specification species, container residues and spill residues thereof.'' Beryllium is also identified in the 3rd thirds ruling of June 1, 1990 as being restricted from land disposal (as a dust). The beryllium waste generated at the Laboratory is handled separately because beryllium has been identified as a highly toxic carcinogenic material

  11. Beryllium for fusion application - recent results

    International Nuclear Information System (INIS)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-01-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described

  12. Beryllium for fusion application - recent results

    Science.gov (United States)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-12-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.

  13. Beryllium coating on Inconel tiles

    International Nuclear Information System (INIS)

    Bailescu, V.; Burcea, G.; Lungu, C.P.; Mustata, I.; Lungu, A.M.; Rubel, M.; Coad, J.P.; Matthews, G.; Pedrick, L.; Handley, R.

    2007-01-01

    Full text of publication follows: The Joint European Torus (JET) is a large experimental nuclear fusion device. Its aim is to confine and study the behaviour of plasma in conditions and dimensions approaching those required for a fusion reactor. The plasma is created in the toroidal shaped vacuum vessel of the machine in which it is confined by magnetic fields. In preparation for ITER a new ITER-like Wall (ILW) will be installed on Joint European Torus (JET), a wall not having any carbon facing the plasma [1]. In places Inconel tiles are to be installed, these tiles shall be coated with Beryllium. MEdC represented by the National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest and in direct cooperation with Nuclear Fuel Plant Pitesti started to coat Inconel tiles with 8 μm of Beryllium in accordance with the requirements of technical specification and fit for installation in the JET machine. This contribution provides an overview of the principles of manufacturing processes using thermal evaporation method in vacuum and the properties of the prepared coatings. The optimization of the manufacturing process (layer thickness, structure and purity) has been carried out on Inconel substrates (polished and sand blasted) The results of the optimization process and analysis (SEM, TEM, XRD, Auger, RBS, AFM) of the coatings will be presented. Reference [1] Takeshi Hirai, H. Maier, M. Rubel, Ph. Mertens, R. Neu, O. Neubauer, E. Gauthier, J. Likonen, C. Lungu, G. Maddaluno, G. F. Matthews, R. Mitteau, G. Piazza, V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, R and D on full tungsten divertor and beryllium wall for JET TIER-like Wall Project, 24. Symposium on Fusion Technology - 11-15 September 2006 -Warsaw, Poland. (authors)

  14. Postirradiation examination of beryllium pebbles

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1998-01-01

    Postirradiation examinations of COBRA-1A beryllium pebbles irradiated in the EBR-II fast reactor at neutron fluences which generated 2700--3700 appm helium have been performed. Measurements included density change, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The major change in microstructure is development of unusually shaped helium bubbles forming as highly non-equiaxed thin platelet-like cavities on the basal plane. Measurement of the swelling due to cavity formation was in good agreement with density change measurements

  15. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  16. Production of beryllium oxide of nuclear purity from beryl

    Energy Technology Data Exchange (ETDEWEB)

    Copat, A; Sood, S P

    1984-01-01

    Production of beryllium oxide from beryl by the fluoride process was optimized in this study. Optimum results were obtained using a mixture of sodium hexafluorsilicate and sodium hexafluorferrate as flux and calcinating at 740/sup 0/C for 2 hours. The beryllium concentrate produced was further purified by crystallization as beryllium sulfate to obtain nuclear grade beryllium oxide

  17. Production of beryllium oxide of nuclear purity from beryl

    International Nuclear Information System (INIS)

    Copat, A.; Sood, S.P.

    1983-01-01

    Production of beryllium oxide from beryl by the fluoride process was optimized in this study. Optimum results were obtained using a mixture of sodium hexafluorsilicate and sodium hexafluorferrate as flux and calcinating at 740 0 C for 2 hours. The beryllium concentrate produced was further purified by crystallization as beryllium sulfate to obtain nuclear grade beryllium oxide (Author) [pt

  18. Mechanical properties of irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Beeston, J.M.; Longhurst, G.R.; Wallace, R.S. (EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.); Abeln, S.P. (EG and G Rocky Flats, Inc., Golden, CO (United States))

    1992-10-01

    Beryllium is planned for use as a neutron multiplier in the tritium breeding blanket of the International Thermonuclear Experimental Reactor (ITER). After fabricating samples of beryllium at densities varying from 80 to 100% of the theoretical density, we conducted a series of experiments to measure the effect of neutron irradiation on mechanical properties, especially strength and ductility. Samples were irradiated in the Advanced Test Reactor (ATR) to a neutron fluence of 2.6 x 10[sup 25] n/m[sup 2] (E > MeV) at an irradiation temperature of 75deg C. These samples were subsequently compression-tested at room temperature, and the results were compared with similar tests on unirradiated specimens. We found that the irradiation increased the strength by approximately four times and reduced the ductility to approximately one fourth. Failure was generally ductile, but the 80% dense irradiated samples failed in brittle fracture with significant generation of fine particles and release of small quantities of tritium. (orig.).

  19. Fluorimetric method for determination of Beryllium

    International Nuclear Information System (INIS)

    Sparacino, N.; Sabbioneda, S.

    1996-10-01

    The old fluorimetric method for the determination of Beryllium, based essentially on the fluorescence of the Beryllium-Morine complex in a strongly alkaline solution, is still competitive and stands the comparison with more modern methods or at least three reasons: in the presence of solid or gaseous samples (powders), the times necessary to finalize an analytic determination are comparable since the stage of the process which lasts the longest is the mineralization of the solid particles containing Beryllium, the cost of a good fluorimeter is by far Inferior to the cost, e. g., of an Emission Spectrophotometer provided with ICP torch and magnets for exploiting the Zeeman effect and of an Atomic absorption Spectrophotometer provided with Graphite furnace; it is possible to determine, fluorimetrically, rather small Beryllium levels (about 30 ng of Beryllium/sample), this potentiality is more than sufficient to guarantee the respect of all the work safety and hygiene rules now in force. The study which is the subject of this publication is designed to the analysis procedure which allows one to reach good results in the determination of Beryllium, chiefly through the control and measurement of the interference effect due to the presence of some metals which might accompany the environmental samples of workshops and laboratories where Beryllium is handled, either at the pure state or in its alloys. The results obtained satisfactorily point out the merits and limits of this analytic procedure

  20. Research of flaw assessment methods for beryllium reflector elements

    International Nuclear Information System (INIS)

    Shibata, Akira; Ito, Masayasu; Takemoto, Noriyuki; Tanimoto, Masataka; Tsuchiya, Kunihiko; Nakatsuka, Masafumi; Ohara, Hiroshi; Kodama, Mitsuhiro

    2012-02-01

    Reflector elements made from metal beryllium is widely used as neutron reflectors to increase neutron flux in test reactors. When beryllium reflector elements are irradiated by neutron, bending of reflector elements caused by swelling occurs, and beryllium reflector elements must be replaced in several years. In this report, literature search and investigation for non-destructive inspection of Beryllium and experiments for Preliminary inspection to establish post irradiation examination method for research of characteristics of metal beryllium under neutron irradiation were reported. (author)

  1. Preliminary proposal for a beryllium technology program for fusion applications

    International Nuclear Information System (INIS)

    1985-02-01

    The program was designed to provide the answers to the critical issues of beryllium technology needed in fusion blanket designs. The four tasks are as follows: (1) Beryllium property measurements needed for fusion data base. (2) Beryllium stress relaxation and creep measurements for lifetime modelling calculations. (3) Simplified recycle technique development for irradiated beryllium. (4) Beryllium neutron multiplier measurements using manganese bath absolute calibration techniques

  2. Recommended design correlations for S-65 beryllium

    International Nuclear Information System (INIS)

    Billone, M.C.

    1995-01-01

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The irradiation-independent properties described within are: thermal conductivity, specific heat capacity, thermal expansion, and elastic constants. Irradiation-dependent properties include: yield strength, ultimate tensile strength, plastic tangent modulus, uniform and total tensile elongation, thermal and irradiation-induced creep strength, He-induced swelling and tritium retention/release. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium -- the material chosen for ITER PFC application -- as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined from the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing (HIP). The performance of plasma-sprayed beryllium is discussed but not quantified

  3. Beryllium and growth. III. The effect of beryllium on plant phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, M B

    1952-01-01

    The purpose of the investigations was to correlate the apparent ability of beryllium to substitute for magnesium in plant growth with a specific biochemical effect of the metal. Through association with earlier work on beryllium inhibition of animal alkaline phosphatase, a study was made of the effect of beryllium and other metals upon the activity of a phosphatase derived from tomato leaves. Although only indirect evidence is available that this enzyme system was magnesium-activated, beryllium was found to inhibit reversibly the splitting of GP and ATP. Other metals were also found to be inhibitory but the ATP-ase inhibition - and especially the ratio of P split from GP to P split from ATP - was higher for beryllium than for any other metal studied. The significance of this finding in relation to energy metabolism, growth, and beryllium toxicity is discussed. 12 references, 5 figures, 2 tables.

  4. Spectrographic measurement of beryllium in the atmosphere; Dosage spectrographique du beryllium dans l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, J; Cittanova, J [Commissariat a l' Energie Atomique, Service d' Analyses et Recherches Chimiques Appliquees, Saclay (France). Centre d' Etudes Nucleaires; Crehange, G; Frequelin, S [Commissariat a l' Energie Atomique, Dir. des Applications Militaires, Service Chimie, Saclay (France). Centre d' Etudes Nucleaires; Baudin, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-07-01

    We describe here a method for the spectrographic determination of beryllium on filters which is valid for amounts varying between 0,01 and 30 {mu}g of beryllium and which is independent of the nature of the beryllium compound involved. This is a flux method (graphite-lithium carbonate mixture), the excitation being by a direct current arc. (author) [French] Nous decrivons ici, une methode de dosage spectrographique de beryllium sur filtre, valable pour des teneurs comprises entre 0,01 et 30 {mu}g de beryllium et independante de la nature du compose de beryllium a doser. C'est une methode de 'flux' (melange graphite-carbonate de lithium) l'excitation etant un arc a courant continu. (auteur)

  5. Metallurgical viewpoints on the brittleness of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1960-02-15

    At present the development and use of beryllium metal for structural applications is severely hampered by its brittleness. Reasons for this lack of ductility are reviewed in discussing the deformation behaviour of beryllium in relation to other hexagonal metals. The ease of fracturing in beryllium is assumed to be a consequence of a limited number of deformation modes in combination with high deformation resistance. Models for the nucleation of fracture are suggested. The relation of ductility to elastic constants as well as to grain size, texture and alloying additions is discussed.

  6. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    International Nuclear Information System (INIS)

    Glen R. Longhurst

    2007-01-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  7. Metallurgical viewpoints on the brittleness of beryllium

    International Nuclear Information System (INIS)

    Lagerberg, G.

    1960-02-01

    At present the development and use of beryllium metal for structural applications is severely hampered by its brittleness. Reasons for this lack of ductility are reviewed in discussing the deformation behaviour of beryllium in relation to other hexagonal metals. The ease of fracturing in beryllium is assumed to be a consequence of a limited number of deformation modes in combination with high deformation resistance. Models for the nucleation of fracture are suggested. The relation of ductility to elastic constants as well as to grain size, texture and alloying additions is discussed

  8. Beryllium health effects in the era of the beryllium lymphocyte proliferation test.

    Science.gov (United States)

    Maier, L A

    2001-05-01

    The beryllium lymphocyte proliferation test (BeLPT) has revolutionized our approach to the diagnosis, screening, and surveillance of beryllium health effects. Based on the development of a beryllium-specific cell-mediated immune response, the BeLPT has allowed us to define early health effects of beryllium, including beryllium sensitization (BeS), and chronic beryllium disease (CBD) at a subclinical stage. The use of this test as a screening tool has improved our understanding of these health effects. From a number of studies it is apparent that BeS precedes CBD and develops after as little as 9 weeks of beryllium exposure. CBD occurs within 3 months and up to 30 years after initial beryllium exposure. Exposure-response variables have been associated with BeS/CBD, including work as a machinist, chemical or metallurgical operator, laboratory technician, work in ceramics or beryllium metal production, and years of beryllium exposure. Recent studies have found BeS and CBD in workplaces in which the majority of exposures were below the 2 microg/m3 OSHA time-weighted average (TWA). Ideally, the BeLPT would be used in surveillance aimed at defining other risk-related processes, determining exposure variables which predict BeS and CBD, and defining the exposure level below which beryllium health effects do not occur. Unfortunately, the BeLPT can result in false negative tests and still requires an invasive procedure, a bronchoscopy, for the definitive diagnosis of CBD. Thus, research is needed to establish new tests to be used alone or in conjunction with the BeLPT to improve our ability to detect early beryllium health effects.

  9. Bar dimensions and bar shapes in estuaries

    Science.gov (United States)

    Leuven, Jasper; Kleinhans, Maarten; Weisscher, Steven; van der Vegt, Maarten

    2016-04-01

    Estuaries cause fascinating patterns of dynamic channels and shoals. Intertidal sandbars are valuable habitats, whilst channels provide access to harbors. We still lack a full explanation and classification scheme for the shapes and dimensions of bar patterns in natural estuaries, in contrast with bars in rivers. Analytical physics-based models suggest that bar length in estuaries increases with flow velocity, tidal excursion length or estuary width, depending on which model. However, these hypotheses were never validated for lack of data and experiments. We present a large dataset and determine the controls on bar shape and dimensions in estuaries, spanning bar lengths from centimeters (experiments) to 10s of kilometers length. First, we visually identified and classified 190 bars, measured their dimensions (width, length, height) and local braiding index. Data on estuarine geometry and tidal characteristics were obtained from governmental databases and literature on case studies. We found that many complex bars can be seen as simple elongated bars partly cut by mutually evasive ebb- and flood-dominated channels. Data analysis shows that bar dimensions scale with estuary dimensions, in particular estuary width. Breaking up the complex bars in simple bars greatly reduced scatter. Analytical bar theory overpredicts bar dimensions by an order of magnitude in case of small estuarine systems. Likewise, braiding index depends on local width-to-depth ratio, as was previously found for river systems. Our results suggest that estuary dimensions determine the order of magnitude of bar dimensions, while tidal characteristics modify this. We will continue to model bars numerically and experimentally. Our dataset on tidal bars enables future studies on the sedimentary architecture of geologically complex tidal deposits and enables studying effects of man-induced perturbations such as dredging and dumping on bar and channel patterns and habitats.

  10. Combined aging of beryllium bronze

    International Nuclear Information System (INIS)

    Duraev, P.P.; Kaplun, Yu.A.; Pastukhova, Zh.P.; Rakhshtadt, A.G.

    1986-01-01

    This article evaluates the possibility of increasing the resistance of beryllium bronze to small plastic deformations as a result of the application of stepped aging under stress. Low-temperature aging under conditions of bending under a stress of about 100 MPa was applied to alloy BrBNT1, 9Mg at 150, 180, and 210 0 C, high-temperature aging at 300 and 340 0 C under stress and without stress. As a result of applying stepped aging under stress, the elastic limit of the alloy BrBNT1, 9Mg was raised to 900 MPa. Stepped aging under stress has a substantial effect on the relaxation stability of the alloy. The procedure suggested in the article for aging may be used efficiently for treating elastic elements made of other brands of bronze as well

  11. The adhesive bonding of beryllium structural components

    International Nuclear Information System (INIS)

    Fullerton-Batten, R.C.

    1977-01-01

    Where service conditions permit, adhesive bonding is a highly recommendable, reliable means of joining beryllium structural parts. Several important programs have successfully used adhesive bonding for joining structural and non-structural beryllium components. Adhesive bonding minimizes stress concentrations associated with other joining techniques and considerably improves fatigue resistance. In addition, no degradation of base metal properties occur. In many instances, structural joints can be fabricated more cheaply by adhesive bonding or in combination with adhesive bonding than by any other method used alone. An evaluation program on structural adhesive bonding of beryllium sheet components is described. A suitable surface pretreatment for beryllium adherends prior to bonding is given. Tensile shear strength and fatigue properties of FM 1000 and FM 123-5 adhesive bonded joints are reviewed and compared with data obtained from riveted joints of similar geometry. (author)

  12. Chronic Beryllium Disease Prevention Program Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S

    2012-03-29

    This document describes how Lawrence Livermore National Laboratory (LLNL) meets the requirements and management practices of federal regulation 10 CFR 850, 'Chronic Beryllium Disease Prevention Program (CBDPP).' This revision of the LLNL CBDPP incorporates clarification and editorial changes based on lessons learned from employee discussions, observations and reviews of Department of Energy (DOE) Complex and commercial industry beryllium (Be) safety programs. The information is used to strengthen beryllium safety practices at LLNL, particularly in the areas of: (1) Management of small parts and components; and (2) Communication of program status to employees. Future changes to LLNL beryllium activities and on-going operating experience will be incorporated into the program as described in Section S, 'Performance Feedback.'

  13. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  14. Experiments on tritium behavior in beryllium, (2)

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo; Kawamura, Hiroshi; Nakata, Hirokatsu; Sugai, Hiroyuki; Tanase, Masakazu.

    1990-02-01

    Beryllium has been used as the neutron reflector of material testing reactor and as the neutron multiplier for the fusion reactor lately. To study the tritium behavior in beryllium, we conducted the experiments, i.e., tritium release by recoil or diffusion by using the hot-pressed beryllium which had been produced both tritium and helium by neutron irradiation. From our experiments, we found that (1) amount of tritium production per one cycle irradiation (lasting 22 days) of JMTR is 10 mCi/g, (2) amount of tritium per surface area of hot-pressed beryllium released by recoil is 4 μCi/cm 2 , (3) diffusion coefficient of tritium in a temperature range of 800 ∼1180degC can be expressed with the following equation; D = 8.7 x 10 4 exp(-2.9x10 5 /R/T) cm 2 /s. (author)

  15. Beryllium concentration in pharyngeal tonsils in children

    Directory of Open Access Journals (Sweden)

    Ewa Nogaj

    2014-06-01

    Full Text Available Power plant dust is believed to be the main source of the increased presence of the element beryllium in the environment which has been detected in the atmospheric air, surface waters, groundwater, soil, food, and cigarette smoke. In humans, beryllium absorption occurs mainly via the respiratory system. The pharyngeal tonsils are located on the roof of the nasopharynx and are in direct contact with dust particles in inhaled air. As a result, the concentration levels of beryllium in the pharyngeal tonsils are likely to be a good indicator of concentration levels in the air. The presented study had two primary aims: to investigate the beryllium concentration in pharyngeal tonsils in children living in southern Poland, and the appropriate reference range for this element in children’s pharyngeal tonsils. Pharyngeal tonsils were extracted from a total of 379 children (age 2–17 years, mean 6.2 ± 2.7 years living in southern Poland. Tonsil samples were mineralized in a closed cycle in a pressure mineralizer PDS 6, using 65% spectrally pure nitric acid. Beryllium concentration was determined using the ICP-AES method with a Perkin Elmer Optima 5300DVTM. The software Statistica v. 9 was used for the statistical analysis. It was found that girls had a significantly greater beryllium concentration in their pharyngeal tonsils than boys. Beryllium concentration varies greatly, mostly according to the place of residence. Based on the study results, the reference value for beryllium in pharyngeal tonsils of children is recommended to be determined at 0.02–0.04 µg/g.

  16. Effect of transient heating loads on beryllium

    International Nuclear Information System (INIS)

    Kupriyanov, Igor B.; Porezanov, Nicolay P.; Nikolaev, Georgyi N.; Kurbatova, Liudmila A.; Podkovyrov, Vyacheslav L.; Muzichenko, Anatoliy D.; Zhitlukhin, Anatoliy M.; Khimchenko, Leonid N.; Gervash, Alexander A.

    2014-01-01

    Highlights: • We study the effect of transient plasma loads on beryllium erosion and surface microstructure. • Beryllium targets were irradiated by plasma streams with energy of 0.5–1 MJ/m 2 at ∼250 °C. • Under plasma loads 0.5–1 MJ/m 2 cracking of beryllium surface is rather slight. • Under 0.5 MJ/m 2 the mass loss of Be is no more than 0.2 g/m 2 shot and decreasing with shots number. • Under 1 MJ/m 2 maximum mass loss of beryllium was 3.7 g/m 2 shot and decreasing with shots number. - Abstract: Beryllium will be used as a plasma facing material for ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of ITER first wall. The results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility are presented. The Be/CuCrZr mock-ups were exposed to upto 100 shots by deuterium plasma streams with pulse duration of 0.5 ms at ∼250 °C and average heat loads of 0.5 and 1 MJ/m 2 . Experiments were performed at 250 °C. The evolution of surface microstructure and cracks morphology as well as beryllium mass loss are investigated under erosion process

  17. Beryllium R and D for fusion applications

    International Nuclear Information System (INIS)

    Scaffidi-Argentina, F.; Longhurst, G.R.; Shestakov, V.; Kawamura, H.

    2000-01-01

    Beryllium is one of the primary candidates as both plasma-facing material (PFM) and neutron multiplier in the next-step fusion reactors. Both sintered-product blocks and pebbles are considered in fusion reactor designs. Beryllium evaporated on carbon tiles has also been used in Joint European Torus (JET) and may be considered for other designs. Future efforts are directed toward the pebble form of beryllium. Research and evaluations of data are underway to determine the most attractive material processing approaches in terms of fabrication cost and quality; technical issues associated with heat transfer; thermal, mechanical and irradiation stability; safety and tritium release. Beryllium plasma-facing components will require periodic repair or replacement, therefore disposal or recycling of activated and tritiated beryllium will also be a concern. Beryllium as a component of the molten salt, Flibe is also being considered in novel approaches to the plasma-structure interface. This paper deals with the main issues related to the use of Be in a fusion reactor as both neutron multiplier and first wall material. These issues include potential reactions with steam during accidents and the health and environmental aspects of its use, reprocessing and reuse, or disposal

  18. Beryllium R and D for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F. E-mail: francesco.scaffidi@iket.fzk.de; Longhurst, G.R.; Shestakov, V.; Kawamura, H

    2000-11-01

    Beryllium is one of the primary candidates as both plasma-facing material (PFM) and neutron multiplier in the next-step fusion reactors. Both sintered-product blocks and pebbles are considered in fusion reactor designs. Beryllium evaporated on carbon tiles has also been used in Joint European Torus (JET) and may be considered for other designs. Future efforts are directed toward the pebble form of beryllium. Research and evaluations of data are underway to determine the most attractive material processing approaches in terms of fabrication cost and quality; technical issues associated with heat transfer; thermal, mechanical and irradiation stability; safety and tritium release. Beryllium plasma-facing components will require periodic repair or replacement, therefore disposal or recycling of activated and tritiated beryllium will also be a concern. Beryllium as a component of the molten salt, Flibe is also being considered in novel approaches to the plasma-structure interface. This paper deals with the main issues related to the use of Be in a fusion reactor as both neutron multiplier and first wall material. These issues include potential reactions with steam during accidents and the health and environmental aspects of its use, reprocessing and reuse, or disposal.

  19. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  20. Beryllium electrodeposition on aluminium cathode from chloride melts

    International Nuclear Information System (INIS)

    Nichkov, I.F.; Novikov, E.A.; Serebryakov, G.A.; Kanashin, Yu.P.; Sardyko, G.N.

    1980-01-01

    Cathodic processes during beryllium deposition on liquid and solid aluminium cathodes are investigated. Mixture of sodium, potassium and beryllium chloride melts served as an lectrolyte. Beryllium ion discharge at the expense of alloy formation takes place at more positive potentials than on an indifferent cathode at low current densities ( in the case of liquid aluminium cathode). Metallographic analysis and measurements of microhardness have shown, that the cathodic product includes two phases: beryllium solid solution in aluminium and metallic beryllium. It is concluded, that aluminium-beryllium alloys with high cathodic yield by current can be obtained by the electrolytic method

  1. Sanitary-hygienic and ecological aspects of beryllium production

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Sidorov, V.L.; Slobodin, D.B.; Tuzov, Y.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)

    1998-01-01

    The Report describes An organization of sanitary-hygienic and ecological control of beryllium production at Ulba metallurgical plant. It involves: (1) the consideration of main methods for protection of beryllium production personnel from unhealthy effect of beryllium, (2) main kinds of filters, used in gas purification systems at different process areas, (3) data on beryllium monitoring in water, soil, on equipment. This Report also outlines problems connected with designing devices for a rapid analysis of beryllium in air as well as problems of beryllium production on ecological situation in the town. (author)

  2. Beryllium satellite thrust cone design, manufacture and test

    International Nuclear Information System (INIS)

    Schneiter, H.; Chandler, D.

    1977-01-01

    Pre-formed beryllium sheet material has been used in the design, manufacturing and test of a satellite thrust cone structure. Adhesive bonding was used for attachment of aluminium flanges and conical segment lap strips. Difficulties in beryllium structure design such as incompatibilities with aluminium and handling problems are discussed. Testing to optimize beryllium-beryllium and beryllium-aluminium adhesive bonds is described. The completed thrust cone assembly has been subjected to static load testing and the results are presented. A summary of the relative merits of the use of beryllium in satellite structures is given with recommendations for future users. (author)

  3. Beryllium-rich intermediate phases in beryllium alloys

    International Nuclear Information System (INIS)

    Raynor, G.V.

    1977-01-01

    The results of a survey of the factors affecting the formation of phases of stoichiometry MBe 5 , M 2 Be 17 , MBe 12 and MBe 13 are presented. Using published information it is shown that the structures adopted at the higher Be:M ratios involve different characteristics from those adopted at lower Be:M ratios. In the ThMn 12 and NaZn 13 structures adopted in the former case dsub(M-Be) > (rsub(M) + rsub(Be)), (where the atomic radii refer to coordination number 12) and the dsub(Be-Be) distances are contracted. In the CaCu 5 structure adopted at composition MBe 5 , dsub(M-Be) < (rsub(M) + rsub(Be)) and interactions between unlike atoms are significant. The structural characteristics, occurrence, and the stabilities of these phases, and of the others mentioned above, are discussed in terms of atomic radius ratios, the position of the M component in the periodic table, and the value of the univalent ionic radius of the M component, taken as a measure of the extension in space of the hard incompressible ionic core. Though the compound-forming characteristics of beryllium are largely dictated by its small atomic diameter, other factors such as the nature of the bonding which can be exerted by the partner atoms are also significant. In particular, the proportions of the volumes of the atoms which are occupied by the hard incompressible ionic cores assume importance. (author)

  4. Thermomechanical testing of beryllium for the JET/ISX-B beryllium limiter experiment

    International Nuclear Information System (INIS)

    Watson, R.D.; Smith, M.F.; Whitley, J.B.; McDonald, J.M.

    1984-01-01

    Materials testing of S-65-B beryllium has been conducted in support of the beryllium limiter experiment on the ISX-B tokamak. The S-65-B grade of hot-pressed beryllium was chosen over S-200-E because of its superior strength and ductility at elevated temperatures. The testing has included measurement of tensile and yield strength, ductility, Young's Modulus, thermal conductivity, and specific heat from 50 0 C to 700 0 C. Thermal fatigue testing of a 2.5 cm beryllium cube was conducted using an electron beam to apply a heat flux of 2.5 kw/cm 2 for 0.3 second pulses for 1500 cycles. Results from the tests are compared to elastic-plastic finite element stress calculations. The testing indicates that the ISX-B beryllium limiter should survive the tokamak environment without serious structural failure, although some surface cracking is expected to occur. (author)

  5. Time-of-use rates vs. Hopkinson tariffs redux: an analysis of the choice of rate structures in a regulated electricity distribution company

    International Nuclear Information System (INIS)

    Seeto, Dewey; Woo, C.K.; Horowitz, Ira

    1997-01-01

    Recent proposals to restructure the electricity industry in North America may effect the disintegration of a vertically integrated company into several smaller entities, including distribution companies (DISCOs) We explore whether time-of-use (TOU) pricing or a Hopkinson tariff would be more suitable for a regulated DISCO. Focusing on the economic efficiency of these alternative rate structures, we argue that a Hopkinson tariff with demand subscription is superior to TOU rates, as it can better handle the limited load diversity of local transmission and distribution (TD) demands made on the contemporary DISCO, while finessing the problem of endogenous marginal costs of local TD capacity. (Author)

  6. Beryllium. Health hazards and their control. Pt. 2

    International Nuclear Information System (INIS)

    Lires, O.A.; Delfino, C.A.; Botbol, J.

    1991-01-01

    In this work (continuation of 'Beryllium' series) health hazards, toxic effects, limits of permissible atmospheric contamination and safe exposure to beryllium are described. Guidelines to the design, control operations and hygienic precautions of the working facilities are given. (Author) [es

  7. 75 FR 80734 - Chronic Beryllium Disease Prevention Program

    Science.gov (United States)

    2010-12-23

    ... are used in nuclear weapons as nuclear reactor moderators or reflectors and as nuclear reactor fuel...), grinding, and machine tooling of parts. Inhalation of beryllium particles may cause chronic beryllium...

  8. Mechanical performance of irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Dalle-Donne, M.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    For the Helium Cooled Pebble Bed (HCPB) Blanket, which is one of the two reference concepts studied within the European Fusion Technology Programme, the neutron multiplier consists of a mixed bed of about 2 and 0.1-0.2 mm diameter beryllium pebbles. Beryllium has no structural function in the blanket, however microstructural and mechanical properties are important, as they might influence the material behavior under neutron irradiation. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating it. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from these irradiation experiments, emphasizing the effects of irradiation of essential material properties and trying to elucidate the processes controlling the property changes. The microstructure, the porosity distribution, the impurity content, the behavior under compression loads and the compatibility of the beryllium pebbles with lithium orthosilicate (Li{sub 4}SiO{sub 4}) during the in-pile irradiation are presented and critically discussed. Qualitative information on ductility and creep obtained by hardness-type measurements are also supplied. (author)

  9. Experiments on tritium behavior in beryllium, (1)

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Ishizuka, Etsuo; Matsumoto, Mikio; Inada, Seiji; Sezaki, Katsuji; Saito, Minoru; Kato, Mineo.

    1989-06-01

    In JMTR, it was observed that the tritium concentration of the primary coolant increases with the reactor operation at 50 MW. As one of the tritium generation sources, we paid attention to a neutron reflector made of beryllium because the tritium generation rate in the beryllium is bigger than other components in the reactor core. On the other hand, the irradiation test of blanket materials (i.e. tritium breeding materials and neutron multipling materials) are planned for development of the fusion reactor in JMTR and the beryllium will be also irradiated as a neutron multiplier with tritium breeding materials. Therefore, as the irradiated specimens, we used a hot-pressed beryllium disk fabricated by the same method as the neutron reflector or the neutron multiplier and conducted the irradiation tests in JMTR. The purpose of these tests are to clarify the tritium behavior in the hot-pressed beryllium. In this paper, from a viewpoint of the fabrication of capsules for neutron irradiation, the specifications of the irradiated specimens and capsules are summarized. Additionally, the results on the puncture test of the container of the irradiation specimens are described. (author)

  10. Effect of machining damage on tensile properties of beryllium

    International Nuclear Information System (INIS)

    Hanafee, J.E.

    1976-01-01

    It is well established that damage introduced at the surface of beryllium during machining operations can lower its mechanical properties. Tensile tests were conducted to illustrate this on beryllium presently being used for parts in the W79 program and similar to the new powder-processed beryllium specified for production (tentative specification MEL 76-001319). The objective of this study is to quantitatively illuminate the importance of controlling machining damage in this particular grade of powder-processed beryllium

  11. Occupational and non-occupational allergic contact dermatitis from beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Vilaplana, J; Romaguera, C; Grimalt, F [Allergy Department, Dermatological Service Hospital Clinico, Barcelona (Spain)

    1992-01-01

    There are various references to sensitization to beryllium in the literature. Since introducing a patch testing series for patients with suspected sensitization to metals, we have found 3 cases of sensitization to beryllium. Of these 3 cases, we regard the first 2 as having relevant sensitization. Beryllium chloride (1% pet.) was positive in 3 patients and negative in 150 controls. (au).

  12. Occupational and non-occupational allergic contact dermatitis from beryllium

    International Nuclear Information System (INIS)

    Vilaplana, J.; Romaguera, C.; Grimalt, F.

    1992-01-01

    There are various references to sensitization to beryllium in the literature. Since introducing a patch testing series for patients with suspected sensitization to metals, we have found 3 cases of sensitization to beryllium. Of these 3 cases, we regard the first 2 as having relevant sensitization. Beryllium chloride (1% pet.) was positive in 3 patients and negative in 150 controls. (au)

  13. Photoluminescence enhancement from GaN by beryllium doping

    Science.gov (United States)

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.

    2016-10-01

    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  14. Beryllium phonon spectrum from cold neutron measurements

    International Nuclear Information System (INIS)

    Bulat, I.A.

    1979-01-01

    The inelastic coherent scattering of neutrons with the initial energy E 0 =4.65 MeV on the spectrometer according to the time of flight is studied in polycrystalline beryllium. The measurements are made for the scattering angles THETA=15, 30, 45, 60, 75 and 90 deg at 293 K. The phonon spectrum of beryllium, i-e. g(w) is reestablished from the experimental data. The data obtained are compared with the data of model calculations. It is pointed out that the phonon spectrum of beryllium has a bit excessive state density in the energy range from 10 to 30 MeV. It is caused by the insufficient statistical accuracy of the experiment at low energy transfer

  15. Spectrographic determination of impurities in beryllium oxide

    International Nuclear Information System (INIS)

    Paula Reino, L.C. de; Lordello, A.R.; Pereira, A.S.A.

    1986-03-01

    A method for the spectrographic determination of Al, B, Cd, Co, Cu, Cr, Fe, Mg, NaNi, Si and Zn in nuclear grade beryllium oxide has been developed. The determination of Co, Al, Na and Zn is besed upon a carrier distillation technique. Better results were obtained with 2% Ga 2 O 3 as carrier in beryllium oxide. For the elements B, Cd, Cu, Fe, Cr, Mg, Ni and Si the sample is loaded in a Scribner-Mullin shallow cup electrode, covered with graphite powder and excited in DC arc. The relative standard deviation values for different elements are in the range of 10 to 20%. The method fulfills requirements of precision and sensitivity for specification analysis of nuclear grade beryllium oxide.(Author) [pt

  16. Refinement of the wedge bar technique for compression tests at intermediate strain rates

    Directory of Open Access Journals (Sweden)

    Stander M.

    2012-08-01

    Full Text Available A refined development of the wedge-bar technique [1] for compression tests at intermediate strain rates is presented. The concept uses a wedge mechanism to compress small cylindrical specimens at strain rates in the order of 10s−1 to strains of up to 0.3. Co-linear elastic impact principles are used to accelerate the actuation mechanism from rest to test speed in under 300μs while maintaining near uniform strain rates for up to 30 ms, i.e. the transient phase of the test is less than 1% of the total test duration. In particular, a new load frame, load cell and sliding anvil designs are presented and shown to significantly reduce the noise generated during testing. Typical dynamic test results for a selection of metals and polymers are reported and compared with quasistatic and split Hopkinson pressure bar results.

  17. Preliminary results for explosion bonding of beryllium to copper

    International Nuclear Information System (INIS)

    Butler, D.J.; Dombrowski, D.E.

    1995-01-01

    This program was undertaken to determine if explosive bonding is a viable technique for joining beryllium to copper substrates. The effort was a cursory attempt at trying to solve some of the problems associated with explosive bonding beryllium and should not be considered a comprehensive research effort. There are two issues that this program addressed. Can beryllium be explosive bonded to copper substrates and can the bonding take place without shattering the beryllium? Thirteen different explosive bonding iterations were completed using various thicknesses of beryllium that were manufactured with three different techniques

  18. Barred Owl [ds8

    Data.gov (United States)

    California Natural Resource Agency — These data define the current range of Barred and hybrid Barred/Spotted Owls in California. The current range includes the coastal mountains of northern California...

  19. Observations of barred spirals

    International Nuclear Information System (INIS)

    Elmegreen, D.M.

    1990-01-01

    Observations of barred spiral galaxies are discussed which show that the presence of a bar increases the likelihood for grand design spiral structure only in early Hubble types. This result is contrary to the more common notion that grand design spiral structure generally accompanies bars in galaxies. Enhanced deprojected color images are shown which reveal that a secondary set of spiral arms commonly occurs in barred galaxies and also occasionally in ovally distorted galaxies. 6 refs

  20. Status of beryllium development for fusion applications

    International Nuclear Information System (INIS)

    Billone, M.C.; Donne, M.D.; Macaulay-Newcombe, R.G.

    1994-05-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing component of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation

  1. Method of beryllium implantation in germanium substrate

    International Nuclear Information System (INIS)

    Kagawa, S.; Baba, Y.; Kaneda, T.; Shirai, T.

    1983-01-01

    A semiconductor device is disclosed, as well as a method for manufacturing it in which ions of beryllium are implanted into a germanium substrate to form a layer containing p-type impurity material. There after the substrate is heated at a temperature in the range of 400 0 C. to 700 0 C. to diffuse the beryllium ions into the substrate so that the concentration of beryllium at the surface of the impurity layer is in the order of 10 17 cm- 3 or more. In one embodiment, a p-type channel stopper is formed locally in a p-type germanium substrate and an n-type active layer is formed in a region surrounded by, and isolated from, the channel stopper region. In another embodiment, a relatively shallow p-type active layer is formed at one part of an n-type germanium substrate and p-type guard ring regions are formed surrounding, and partly overlapping said p-type active layer. In a further embodiment, a p-type island region is formed at one part of an n-type germanium substrate, and an n-type region is formed within said p-type region. In these embodiments, the p-type channel stopper region, p-type guard ring regions and the p-type island region are all formed by implanting ions of beryllium into the germanium substrate

  2. ESR investigations of gamma irradiated beryllium ceramics

    International Nuclear Information System (INIS)

    Ryabikin, Yu.A.; Polyakov, A.I.; Petukhov, Yu.V.; Bitenbaev, M.I.; Zashkvara, O.V.

    2000-01-01

    In this report the result of ESR- investigation of kinetics of radiation paramagnetic defects accumulated in beryllium ceramics under gamma irradiation are presented. The data on quantum yield and destruction rate constants of these defects under ionizing irradiation are obtained. (orig.)

  3. ESR investigations of gamma irradiated beryllium ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ryabikin, Yu A; Polyakov, A I; Petukhov, Yu V; Bitenbaev, M I; Zashkvara, O V [Physical-Technical Inst., Almaty (Kazakhstan)

    2000-04-01

    In this report the result of ESR- investigation of kinetics of radiation paramagnetic defects accumulated in beryllium ceramics under gamma irradiation are presented. The data on quantum yield and destruction rate constants of these defects under ionizing irradiation are obtained. (orig.)

  4. Beryllium, a material of great promise

    International Nuclear Information System (INIS)

    Le Fauconnier, J.P.; Nomine, A.M.

    1992-01-01

    Beryllium is one of the lightest metals. It also owns an outstanding combination of physical, mechanical and nuclear properties which gives it a favorable position, compared to more usual materials, in various fields of applications. Constant technological advancements in the elaboration and working up have induced a significant improvement of its ductility and a reduction of the production costs. (Author). 12 refs., 7 figs

  5. Thermophysical properties of solid and liquid beryllium

    International Nuclear Information System (INIS)

    Boivineau, M.; Arles, L.; Vermeulen, J.M.; Thevenin, Th.

    1993-01-01

    A submillisecond resistive heating technique under high pressure (0.12 GPa) has been used to measure selected thermophysical properties of both solid and liquid beryllium. Data have been obtained between room temperature and 2900 K. Results on enthalpy, volume expansion, electrical resistivity, and sound velocity measurements are presented

  6. Critical parameters controlling irradiation swelling in beryllium

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1995-01-01

    Radiation effects in beryllium can hardly be explained within a framework of the conventional theory based on the bias concept due to elastic interaction difference (EID) between vacancies and self-interstitial atoms (SIAs) since beryllium belongs to hexagonal close-packed metals where diffusion has been shown to be anisotropic. Diffusional anisotropy difference (DAD) between point defects changes the cavity bias for their absorption and leads to dependence of the dislocation bias on the distribution of dislocations over crystallographic directions. On the other hand, the elastic interaction between point defects and cavities gives rise to the size and gas pressure dependencies of the cavity bias, resulting in new critical quantities for bubble-void transition effects at low temperature irradiation. In the present paper, we develop the concept of the critical parameters controlling irradiation swelling with account of both DAD and EID, and take care of thermal effects as well since they are of major importance for beryllium which has an anomalously low self-diffusion activation energy. Experimental data on beryllium swelling are analyzed on the basis of the present theory. (orig.)

  7. Potential exposures and risks from beryllium-containing products.

    Science.gov (United States)

    Willis, Henry H; Florig, H Keith

    2002-10-01

    Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern.

  8. Electron microscope observation of single - crystalline beryllium thin foils; Observation de lames minces monocristallines de beryllium en microscopie electronique

    Energy Technology Data Exchange (ETDEWEB)

    Antolin, J; Poirier, J P; Dupouy, J M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3<1 1 2-bar 0>. (authors) [French] On a observe en microscopie electronique par transmission des lames minces tirees d'eprouvettes monocristallines de beryllium deformees a l'ambiante. On a etudie separement les differents modes de deformation a partir de leur stade elementaire en observant les configurations de dislocations caracteristiques. Le glissement basal est caracterise a son debut par la presence de nombreux dipoles et de boucles prismatiques allongees. Des ecrouissages plus forts conduisent a la formation d'echeveaux et de gerbes qui finissent par donner une structure cellulaire. Le glissement prismatique debute par le glissement des dislocations hors du plan de base dans les plans prismatiques. On trouve egalement une structure cellulaire pour de forts ecrouissages. Dans les joints de macle, on a observe des dislocations sessiles formees par la reaction entre dislocations de macle et dislocations de glissement. Enfin l'etude d

  9. Status of beryllium development for fusion applications

    International Nuclear Information System (INIS)

    Billone, M.C.; Macaulay-Newcombe, R.G.

    1995-01-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma-facing component of first-wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold-isostatic-pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well as its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.In this current work, the range of anticipated fusion operating conditions is reviewed. The thermal, mechanical, chemical compatibility, tritium retention/release, and helium retention/swelling databases are then reviewed for fabrication methods and fusion operating conditions of interest. Properties correlations and uncertainty ranges are also discussed. In the case of the more complex phenomena of tritium retention/release and helium-induced swelling, fundamental mechanisms and models are reviewed in more detail. Areas in which additional data are needed are highlighted, along with some trends which suggest ways of optimizing the performance of beryllium for fusion applications. (orig.)

  10. On Modified Bar recursion

    DEFF Research Database (Denmark)

    Oliva, Paulo Borges

    2002-01-01

    Modified bar recursion is a variant of Spector's bar recursion which can be used to give a realizability interpretation of the classical axiom of dependent choice. This realizability allows for the extraction of witnesses from proofs of forall-exists-formulas in classical analysis. In this talk I...... shall report on results regarding the relationship between modified and Spector's bar recursion. I shall also show that a seemingly weak form of modified bar recursion is as strong as "full" modified bar recursion in higher types....

  11. Safety handling of beryllium for fusion technology R and D

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Okamoto, Makoto; Terai, Takayuki; Odawara, Osamu; Ashibe, Kusuo; Ohara, Atsushi.

    1992-07-01

    Feasibility of beryllium use as a blanket neutron multiplier, first wall and plasma facing material has been studied for the D-T burning experiment reactors such as ITER. Various experimental work of beryllium and its compounds will be performed under the conditions of high temperature and high energy particle exposure simulating fusion reactor conditions. Beryllium is known as a hazardous substance and its handling has been carefully controlled by various health and safe guidances and/or regulations in many countries. Japanese regulations for hazardous substance provide various guidelines on beryllium for the protection of industrial workers and environment. This report was prepared for the safe handling of beryllium in a laboratory scale experiments for fusion technology R and D such as blanket development. Major items in this report are; (1) Brief review of guidances and regulations in USA, UK and Japan. (2) Safe handling and administration manuals at beryllium facilities in INEL, LANL and JET. (3) Conceptual design study of beryllium handling facility for small to mid-scale blanket R and D. (4) Data on beryllium toxicity, example of clinical diagnosis of beryllium disease, and environmental occurence of beryllium. (5) Personnel protection tools of Japanese Industrial Standard for hazardous substance. (author) 61 refs

  12. Control of beryllium powder at a DOE facility

    International Nuclear Information System (INIS)

    Langner, G.C.; Creek, K.L.; Castro, R.G.

    1997-01-01

    Beryllium is contained in a number of domestic and national defense items. Although many items might contain beryllium in some manner, few people need worry about the adverse effects caused by exposure to beryllium because it is the inhalable form of beryllium that is most toxic. Chronic beryllium disease (CBD), a granulomas and fibrotic lung disease with long latency, can be developed after inhalation exposures to beryllium. It is a progressive, debilitating lung disease. Its occurrence in those exposed to beryllium has been difficult to predict because some people seem to react to low concentration exposures whereas others do not react to high concentration exposures. Onset of the disease frequently occurs between 15 to 20 years after exposure begins. Some people develop the disease after many years of low concentration exposures but others do not develop CBD even though beryllium is shown to be present in lungs and urine. Conclusions based on these experiences are that their is some immunological dependence of developing CBD in about 3--4% of the exposed population, but the exact mechanism involved has not yet been identified. Acute beryllium disease can occur after a single exposure to a concentration of greater than 0.100 mg/m3 (inhalation exposure); it is characterized by the development of chemical pneumoconiosis, a respiratory disease. The acute effect of skin contact is a dermatitis characterized by itching and reddened, elevated, or fluid-accumulated lesions which appear particularly on the exposed surfaces of the body, especially the face, neck, arms, and hands. Small particles of beryllium that enter breaks in the skin can lead to the development of granulomas and/or open sores that do not heal until the beryllium has been removed. Our interest is only airborne beryllium, which is found in areas that machine or produce beryllium

  13. Toxicokinetics of beryllium following inhalation of beryllium oxide by Beagle dogs. III

    International Nuclear Information System (INIS)

    Finch, G.L.; Haley, P.J.; Hoover, M.D.; Mewhinney, J.A.; Bice, D.E.; Eidson, A.F.

    1988-01-01

    Young adult Beagle dogs inhaled radiolabeled beryllium oxide aerosols ( 7 BeO) prepared at either 500 deg. or 1000 deg. C to achieve one of two initial lung burdens (ILBs) of BeO. After exposure, animals were monitored by whole body counting for 7 Be, and excreta, clinical, and radiographic data were collected. One group of dogs was assigned for serial sacrifice for quantitation of beryllium clearance from lung, translocation to other organs, and histopathologic analysis of lung and lymph nodes. A second group of dogs was subjected to periodic bronchopulmonary lavage for analysis of lymphocyte responsiveness to beryllium. These latter dogs were subsequently re-exposed to the high ILB level of BeO prepared t 500 deg. C. ILBs following the second exposure were higher than that after the first exposure (74 vs. 42 μg BeO/kg, respectively). Except for one dog that exhibited enhanced beryllium retention after the second exposure, patterns of whole body clearance were similar to those observed after the initial exposures to the 500 deg. C-BeO. Analysis of lymphocyte responsiveness to beryllium in the second group of dogs is continuing. (author)

  14. Toxicokinetics of beryllium following inhalation of beryllium oxide by Beagle dogs. III

    Energy Technology Data Exchange (ETDEWEB)

    Finch, G L; Haley, P J; Hoover, M D; Mewhinney, J A; Bice, D E; Eidson, A F

    1988-12-01

    Young adult Beagle dogs inhaled radiolabeled beryllium oxide aerosols ({sup 7}BeO) prepared at either 500 deg. or 1000 deg. C to achieve one of two initial lung burdens (ILBs) of BeO. After exposure, animals were monitored by whole body counting for {sup 7}Be, and excreta, clinical, and radiographic data were collected. One group of dogs was assigned for serial sacrifice for quantitation of beryllium clearance from lung, translocation to other organs, and histopathologic analysis of lung and lymph nodes. A second group of dogs was subjected to periodic bronchopulmonary lavage for analysis of lymphocyte responsiveness to beryllium. These latter dogs were subsequently re-exposed to the high ILB level of BeO prepared t 500 deg. C. ILBs following the second exposure were higher than that after the first exposure (74 vs. 42 {mu}g BeO/kg, respectively). Except for one dog that exhibited enhanced beryllium retention after the second exposure, patterns of whole body clearance were similar to those observed after the initial exposures to the 500 deg. C-BeO. Analysis of lymphocyte responsiveness to beryllium in the second group of dogs is continuing. (author)

  15. Status of material development for lifetime expansion of beryllium reflector

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, C [Materion Brush Beryllium and Composites, California (United States); Tsuchiya, Kunihiko; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Hatano, Y [Univ. of Toyama, Toyama (Japan); Chakrov, P [INP-KNNC, Almaty (Kazakhstan); Kodama, M [Nippon Nuclear Fuel Development Co., Ltd., Oarai, Ibaraki (Japan)

    2012-03-15

    Beryllium has been used as the reflector element material in the reactor, specifically S-200F structural grade beryllium manufactured by Materion Brush Beryllium and Composites (former, Brush Wellman Inc.). As a part of the reactor upgrade, the Japan Atomic Energy Agency (JAEA) also has carried out the cooperation experiments to extend the operating lifetime of the beryllium reflector elements. It will first be necessary to determine which of the material's physical, mechanical and chemical properties will be the most influential on that choice. The irradiation testing plans to evaluate the various beryllium grades are also briefly considered and prepared. In this paper, material selection, irradiation test plan and PEI development for lifetime expansion of beryllium are described for material testing reactors. (author)

  16. Characterization of plasma sprayed beryllium ITER first wall mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.

    1998-01-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  17. Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups

    International Nuclear Information System (INIS)

    Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

    1997-10-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface

  18. Mechanisms of hydrogen retention in metallic beryllium and beryllium oxide and properties of ion-induced beryllium nitride; Rueckhaltemechanismen fuer Wasserstoff in metallischem Beryllium und Berylliumoxid sowie Eigenschaften von ioneninduziertem Berylliumnitrid

    Energy Technology Data Exchange (ETDEWEB)

    Oberkofler, Martin

    2011-09-22

    In the framework of this thesis laboratory experiments on atomically clean beryllium surfaces were performed. They aim at a basic understanding of the mechanisms occurring upon interaction of a fusion plasma with a beryllium first wall. The retention and the temperature dependent release of implanted deuterium ions are investigated. An atomistic description is developed through simulations and through the comparison with calculations based on density functional theory. The results of these investigations are compared to the behaviour of hydrogen upon implantation into thermally grown beryllium oxide layers. Furthermore, beryllium nitride is produced by implantation of nitrogen into metallic beryllium and its properties are investigated. The results are interpreted with regard to the use of beryllium in a fusion reactor. (orig.)

  19. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  20. Measuring device for bending of beryllium reflector

    International Nuclear Information System (INIS)

    Nishida, Seiri; Sakamoto, Naoki.

    1994-01-01

    The device of the present invention can measure bending of a beryllium reflector formed in a reactor core of a nuclear reactor by a relatively easy operation. Namely, a sensor portion comprises a long-support that can be inserted to a fuel element-insertion hole disposed in the reactor and a plurality of distance sensors disposed in a longitudinal direction of the support. A supersonic wave sensor which is advantageous in the heat resistance, the size and the accuracy and can conduct measurement in water relatively easily is used as the distance sensors. However, other sensors, instead of the sensor described above, may also be used. The plurality of distance sensors detect the bending amount of the beryllium reflector in the longitudinal direction by such an easy operation of inserting such a sensor portion to the fuel element-insertion hole upon exchange of fuel elements. (I.S.)

  1. Interaction of hydrogen and its isotopes with irradiated beryllium

    International Nuclear Information System (INIS)

    Tazhibaeva, I.L.; Shestakov, V.P.; Klepikov, A.Kh.; Pomanenko, O.G.; Chikhraj, E.V.; Kenzhin, E.A.; Zverev, V.V.; Kolbanenkov, A.N.

    2000-01-01

    In the article the results of experiments on hydrogen and its isotopes accumulation and gas-release from irradiated beryllium are presented. The irradiation was conducted at different media and temperatures in the RA and IVG.1M reactors. The measurements were carried out by thermal desorption method. Hydrogen release from beryllium samples saturated at different conditions were calculated. Dependence of hydrogen confinement character in beryllium from grain orientation in the sample, temperature and irradiation rate was revealed

  2. Premelting hcp to bcc Transition in Beryllium

    Science.gov (United States)

    Lu, Y.; Sun, T.; Zhang, Ping; Zhang, P.; Zhang, D.-B.; Wentzcovitch, R. M.

    2017-04-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to x-ray equipment. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp → bcc transition occurs near the melting curve at 0 materials.

  3. Analysis of surface contaminants on beryllium windows

    International Nuclear Information System (INIS)

    Gmur, N.F.

    1986-12-01

    It is known that various crystalline and liquid compounds form on the downstream surfaces of beryllium windows exposed to air. It is also known that the integrity of such windows may be compromised resulting in leaks through the window. The purpose of this report is to document the occurrences described as they pertain to the NSLS and to analyze, where possible, the various substances formed

  4. Preparation and properties of beryllium diphosphide

    International Nuclear Information System (INIS)

    Brice, J.F.; Gerardin, R.; Zanne, M.; Gleitzer, C.; Aubry, J.

    1975-01-01

    The compound BeP 2 can be obtained by direct action of phosphor on beryllium metal at 800-1000 0 C, and by removal of arsenic with phosphor in the diarsenide BeAs 2 . BeP 2 is a non hygroscopic brown-red powder. The X rays diffraction provide evidence for a quadratic cell with a = 7.08 A and c = 15.06 A. The atomic stacking is diamond type

  5. Bar and Theta Hyperoperations

    Directory of Open Access Journals (Sweden)

    Thomas Vougiouklis

    2011-12-01

    Full Text Available In questionnaires the replacement of the scale of Likert by a bar was suggested in 2008 by Vougiouklis & Vougiouklis. The use of the bar was rapidly accepted in social sciences. The bar is closely related with fuzzy theory and has several advantages during both the filling-in questionnaires and mainly in the research processing. In this paper we relate hyperstructure theory with questionnaires and we study the obtained hyperstructures which are used as an organising device of the problem.

  6. Permeation behavior of deuterium implanted into beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi; Hayashi, Takumi; O' hira, Shigeru; Nishi, Masataka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    Study on Implantation Driven Permeation (IDP) behavior of deuterium through pure beryllium was investigated as a part of the research to predict the tritium permeation through the first wall components ITER (International Thermonuclear Experimental Reactor). The permeation experiments were carried out with two beryllium specimens, one was an unannealed specimen and the other was that annealed at 1173 K. The permeation flux was measured as a function of specimen temperature and incident ion flux. Surface analysis of specimen was also carried out after the permeation experiment. Permeation was observed only with the annealed specimen and no significant permeation was observed with unannealed specimen under the present experimental condition (maximum temperature: 685 K, detection limit: 1x10{sup 13} D atoms/m{sup 2}s). It could be attributed that the intrinsic lattice defects, which act as diffusion preventing site, decreased with the specimen annealing. Based on the result of steady and transient permeation behavior and surface analysis, it was estimated that the deuterium permeation implanted into annealed beryllium was controlled by surface recombination due to the oxide layer on the surface of the permeated side. (author)

  7. Behavior of beryllium pebbles under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dalle-Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik; Baldwin, D.L.; Gelles, D.S.; Greenwood, L.R.; Kawamura, H.; Oliver, B.M.

    1998-01-01

    Beryllium pebbles are being considered in fusion reactor blanket designs as neutron multiplier. An example is the European `Helium Cooled Pebble Bed Blanket.` Several forms of beryllium pebbles are commercially available but little is known about these forms in response to fast neutron irradiation. Commercially available beryllium pebbles have been irradiated to approximately 1.3 x 10{sup 22} n/cm{sup 2} (E>1 MeV) at 390degC. Pebbles 1-mm in diameter manufactured by Brush Wellman, USA and by Nippon Gaishi Company, Japan, and 3-mm pebbles manufactured by Brush Wellman were included. All were irradiated in the below-core area of the Experimental Breeder Reactor-II in Idaho Falls, USA, in molybdenum alloy capsules containing helium. Post-irradiation results are presented on density change measurements, tritium release by assay, stepped-temperature anneal, and thermal ramp desorption tests, and helium release by assay and stepped-temperature anneal measurements, for Be pebbles from two manufacturing methods, and with two specimen diameters. The experimental results on density change and tritium and helium release are compared with the predictions of the code ANFIBE. (author)

  8. Dynamic behaviour of S200F beryllium

    International Nuclear Information System (INIS)

    Montoya, Dominique

    1991-01-01

    Compression tests have been made on a large scale of strain, strain rate (up to 2000 s -1 ) and temperature (between 20 C and 300 C). From these experiences, we have calculated a constitutive model for beryllium S200F, which can be used by computer codes. Its formulation is not far from Steinberg, Cochran and Guinan's. But in our case, the influences of temperature and strain rate appear clearly within the expression. To validate our equation, we have used it in a computer code. Its extrapolation for higher strain rates is in good agreement with experiments such as Taylor impact tests or plate impact tests (strain rates greater than 10 4 s -1 ). With micrography, we could settle a link between the main strain mode within the material, and the variation of one parameter of the model. Beside the constitutive model, we have shown that shock loaded beryllium behaves in two different ways. If the strain rate is lower than 5.10 6 s -1 , then it is proportional to the squared shock pressure. Beyond, it is a linear function of shock pressure to the power of four. By a spall study on beryllium, we have confirmed that it is excessively fragile. Its fracture is sudden, at a strength near 1 GPa. (author) [fr

  9. Quantitative method of determining beryllium or a compound thereof in a sample

    Science.gov (United States)

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2010-08-24

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  10. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    Science.gov (United States)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  11. The Rocky Flats Environmental Technology Site beryllium characterization project

    International Nuclear Information System (INIS)

    Morrell, D.M.; Miller, J.R.; Allen, D.F.

    1999-01-01

    A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found

  12. Formation of cellular structure in beryllium at plastic working

    International Nuclear Information System (INIS)

    Papirov, I.I.; Nikolaenko, A.A.; Shokurov, V.S.; Pikalov, A.I.

    2013-01-01

    Conditions of cellular structure formation are investigated at various kinds of deformation and heat treatment of beryllium ingots. It is shown that the cellular structure plays the important role in formation of complex of physical mechanical properties of beryllium. Influence of impurity, various conditions of deformation (temperature, squeezing degree) and heat treatments on substructure, texture and mechanical properties of metal is investigated. Optimum conditions of rolling and heat treatments of beryllium are defined. The way of sign-variable cyclic deformation of beryllium ingots is offered for reception quasi-isotropic fine-grained metal. Physical-mechanical properties of ultra fine-grained metal are studied

  13. Corrosion of beryllium oxide; Corrosion de l'oxyde de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Elston, J; Caillat, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Data are reported on the volatilization rate of beryllium oxide in moist air depending on temperature and water vapour concentration. They are concerned with powder samples or sintered shapes of various densities. For sintered samples, the volatilization rate is very low under the following conditions: - temperature: 1300 deg. C, - water vapour concentration in moist air: 25 g/m{sup 3}, - flow rate: 12 I/hour corresponding to a speed of 40 m/hour on the surface of the sample. For calcinated powders (1300 deg. C), grain growth has been observed under a stream of moist air at 1100 deg. C. For instance, grain size changes from 0,5 to at least 2 microns after 500 hours of exposure at this temperature. Furthermore, results data are reported on corrosion of sintered beryllium oxide in pressurized water. At 250 deg. C, under a pressure of 40 kg/cm{sup 2} water is very slightly corrosive; however, internal strains are revealed. Finally, some features on the corrosion in liquid sodium are exposed. (author)Fren. [French] La volatilisation de l'oxyde de beryllium dans l'air humide est etudiee en fonction de la temperature pour differentes teneurs de vapeur d'eau. Les essais decrits portent sur de l'oxyde de beryllium en poudre ou sur des echantillons d'oxyde de beryllium fritte de differentes densites. Avec un debit d'air de 12 I/h contenant 25 g de vapeur par m{sup 3} correspondant a une vitesse de 40 m/h sur la surface de l'echantillon, la volatilisation des frittes a 1300 deg. C reste tres faible. Sur de la poudre d'oxyde de beryllium calcinee initialement a 1300 deg. C, on observe un grossissement de la taille des grains sous l'influence de l'air humide a 1100 deg. C. Par exemple, elle passe de 0,5 a au moins 2 microns apres 500 heures d'exposition a cette temperature. On donne d'autre part les resultats d'une etude de la corrosion de frittes d'oxyde de beryllium par l'eau, en autoclave. A 250 deg. C, sous une pression de 40 kg/cm{sup 2}, l'action de l'eau reste tres

  14. Hanging off a bar

    NARCIS (Netherlands)

    Mueller, F.; Walmink, W.; Toprak, C.; Bongers, Bert; Graether, E.; Hoven, van den E.A.W.H.

    2012-01-01

    Exertion Games involve physical effort and as a result can facilitate physical health benefits. We present Hanging off a Bar, an action hero-inspired Exertion Game in which players hang off an exercise bar over a virtual river for as long as possible. Initial observations from three events with

  15. Raising the bar (6)

    NARCIS (Netherlands)

    Elhorst, Paul; Abreu, Maria; Amaral, Pedro; Bhattacharjee, Arnab; Corrado, Luisa; Doran, Justin; Fingleton, Bernard; Fuerst, Franz; Garretsen, Harry; Igliori, Danilo; Le Gallo, Julie; McCann, Philip; Monastiriotis, Vassilis; Quatraro, Francesco; Yu, Jihai

    2017-01-01

    Raising the bar (6). Spatial Economic Analysis. This editorial summarizes and comments on the papers published in issue 12(4) so as to raise the bar in applied spatial economic research and highlight new trends. The first paper addresses the question of whether 'jobs follow people' or 'people follow

  16. Bar-tailed

    NARCIS (Netherlands)

    Duijns, S.; Hidayati, N.A.; Piersma, T.

    2013-01-01

    Capsule Across the European wintering range Bar-tailed Godwits Limosa lapponica lapponica selected polychaete worms and especially Ragworms Hediste diversicolor, with differences between areas due to variations in prey availability.Aims To determine the diet of Bar-tailed Godwits across their

  17. Four bars inn; Four bars inn

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, T. [National Defense Academy, Kanagawa (Japan)

    1999-05-15

    The name Four Bars Inn puns on four drinking bars and four bars on a musical score. It is a public house sited on the busy St. Mary Street, Cardiff, England. During my stay in that town, I often attended the regular jam session that opened at the bar at nine o`clock every Monday evening. A jam session is an event in which any amateur player, and a professional artist occasionally, is allowed to come on the stage freely and to play jazz, the participation fee as low as 300-yen. It is an occasion that provides a friendly meeting of man and woman, young and old, everyone carrying a pint of ale. Senior people happily talking to young ones aged like their grandchildren certainly presents a heart-warming scene, which we scarcely encounter in Japan. The affection that the British entertain toward their domestic furnishings relayed down through many a generation may lead to their respect for senior citizens. I heartily look forward detecting like scenes some day at drinking spots in Japan where the consumption-happy days are over. (NEDO)

  18. Deuterium/hydrogen isotope exchange on beryllium and beryllium nitride; Deuterium/Wasserstoff-Isotopenaustausch an Beryllium und Berylliumnitrid

    Energy Technology Data Exchange (ETDEWEB)

    Dollase, Petra; Eichler, Michael; Koeppen, Martin; Dittmar, Timo; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    In the fusion experiments JET and ITER, the first wall is made up of beryllium. The use of nitrogen is discussed for radiative cooling in the divertor. This can react with the surface of the first wall to form beryllium nitride (Be{sub 3}N{sub 2}). The hydrogen isotopes deuterium and tritium, which react in the fusion reaction to helium and a neutron, are used as fuel. Since the magnetic confinement of the plasma is not perfect, deuterium and tritium ions are also found on the beryllium wall and can accumulate there. This should be avoided due to the radioactivity of tritium. Therefore the isotope exchange with deuterium is investigated to regenerate the first wall. We investigate the isotopic exchange of deuterium and protium in order to have not to work with radioactive tritium. The ion bombardment is simulated with an ion source. With voltages up to a maximum of 5 kV, deuterium and protic hydrogen ions are implanted in polycrystalline Be and Be{sub 3}N{sub 2}. The samples are then analyzed in situ using X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). Subsequently, samples prepared under the same conditions are characterized ex-situ by means of nuclear reaction analysis (NRA). [German] In den Fusionsexperimenten JET und ITER besteht die erste Wand im Hauptraum aus Beryllium (Be). Zur Strahlungskuehlung im Divertor wird der Einsatz von Stickstoff diskutiert. Dieser kann mit der Oberflaeche der ersten Wand zu Berylliumnitrid (Be{sub 3}N{sub 2}) reagieren. Als Brennstoff werden die Wasserstoffisotope Deuterium und Tritium eingesetzt, die in der Fusionsreaktion zu Helium und einem Neutron reagieren. Da der magnetische Einschluss des Plasmas nicht perfekt ist, treffen auch Deuterium- und Tritiumionen auf die Berylliumwand auf und koennen sich dort anreichern. Das soll aufgrund der Radioaktivitaet von Tritium unbedingt vermieden werden. Daher wird zur Regenerierung der ersten Wand der Isotopenaustausch mit Deuterium untersucht. Wir

  19. Sintering of beryllium oxide; Frittage de l'oxyde de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, R; Pointud, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [French] Cette etude a eu pour origine la recherche d'un procede permettant de fabriquer industriellement des briques d'oxyde de beryllium nucleaireraent pures, de densite aussi elevee que possible et de forme standardisee. Le frittage sous charge fut la technique retenue pour la fabrication des briques. En raison de la grande toxicite de l'oxyde de beryllium, les caracteristiques generales du frittage, pour l'etude preliminaire, ont ete determine en utilisant de l'alumine. Les resultats obtenus pourront servir d'indication generale pour des etudes ulterieurs avec frittage sous charge. (M.B.)

  20. Beryllium-stimulated neopterin as a diagnostic adjunct in chronic beryllium disease.

    Science.gov (United States)

    Maier, Lisa A; Kittle, Lori A; Mroz, Margaret M; Newman, Lee S

    2003-06-01

    The diagnosis of chronic beryllium disease (CBD) relies on the beryllium lymphocyte proliferation test (BeLPT) to demonstrate a Be specific immune response. This test has improved early diagnosis, but cannot discriminate beryllium sensitization (BeS) from CBD. We previously found high neopterin levels in CBD patients' serum and questioned whether Be-stimulated neopterin production by peripheral blood cells in vitro might be useful in the diagnosis of CBD. CBD, BeS, Be exposed workers without disease (Be-exp) normal controls and sarcoidosis subjects were enrolled. Peripheral blood mononuclear cells (PBMN) were cultured in the presence and absence of beryllium sulfate. Neopterin levels were determined from cell supernatants by enzyme linked immunosorbent assay (ELISA). Clinical evaluation of CBD subjects included chest radiography, pulmonary function testing, exercise testing, and the BeLPT. CBD patients produced higher levels of neopterin in both unstimulated and Be-stimulated conditions compared to all other subjects (P workplace screening. Copyright 2003 Wiley-Liss, Inc.

  1. Implanted deuterium retention and release in carbon-coated beryllium

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Oates, M.A.

    1997-01-01

    Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 angstrom. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 angstrom revealed that exposure to a temperature of 400 degrees C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400 degrees C and an incident deuterium flux of approximately 6 X 10 19 D/m 2 sec), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples. 4 refs., 8 figs., 1 tab

  2. Implanted Deuterium Retention and Release in Carbon-Coated Beryllium

    Science.gov (United States)

    Anderl, R. A.; Longhurst, G. R.; Pawelko, R. J.; Oates, M. A.

    1997-06-01

    Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 Å. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 Å revealed that exposure to a temperature of 400°C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400°C and an incident deuterium flux of approximately 6 × 1019 D/m2-s), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples.

  3. 10 CFR 850.20 - Baseline beryllium inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy... Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of the... inventory, the responsible employer must: (1) Review current and historical records; (2) Interview workers...

  4. Atlas of hot isostatic beryllium powder pressing diagrams

    International Nuclear Information System (INIS)

    Stoev, P.I.; Papirov, I.I.; Tikhinskij, G.F.; Vasil'ev, A.A.

    1995-01-01

    Diagrams of hot isotopic pressing (HIP) of beryllium powder with different grain size in a wide range of pressing parameters are built by mathematical modeling methods. The HIP diagrams presented are divided into 3 groups: parametric dependencies D=f(P,T); technological HIP diagrams; compacting mechanisms. The created data bank permits to optimise beryllium powder HIP with changing parameters. 4 refs., 23 figs

  5. Reactivity effects due to beryllium poisoning of BR2

    International Nuclear Information System (INIS)

    Kalcheva, S.; Ponsard, B.; Koonen, E.

    2004-01-01

    This paper illustrates the impact of the poisoning of the beryllium reflector on reactivity variations of the Belgian MTR BR2 in SCK.CEN. Detailed calculations by MCNP-4C of reactivity effects caused by strong neutron absorbers 3 He and 6 Li during reactor operation history are presented. The importance of beryllium poisoning for the accuracy of reactivity predictions is discussed. (authors)

  6. Progress report of preliminary studies of beryllium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, H.C.

    1947-09-01

    This document was prepared in connection with a symposium of beryllium poisoning held at the Saranac Laboratories and describes progress made and a research program aimed at characterizing the toxicity of beryllium. Seven individual papers in this document are separately indexed and cataloged for the database.

  7. Joining of beryllium by braze welding technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.

    1998-01-01

    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  8. Laser welding of a beryllium/tantalum collimator

    International Nuclear Information System (INIS)

    Lingenfelter, A.C.; Anglin, C.D.

    1985-01-01

    This report describes the methods utilized in the fabrication of a collimator from 0.001 inch thick beryllium and tantalum foil. The laser welding process proved to be an acceptable method for joining the beryllium in a standing edge joint configuration

  9. Exotic open-flavor $bc\\bar{q}\\bar{q}$, $bc\\bar{s}\\bar{s}$ and $qc\\bar{q}\\bar{b}$, $sc\\bar{s}\\bar{b}$ tetraquark states

    OpenAIRE

    Chen, Wei; Steele, T. G.; Zhu, Shi-Lin

    2013-01-01

    We study the exotic $bc\\bar{q}\\bar{q}$, $bc\\bar{s}\\bar{s}$ and $qc\\bar{q}\\bar{b}$, $sc\\bar{s}\\bar{b}$ systems by constructing the corresponding tetraquark currents with $J^P=0^+$ and $1^+$. After investigating the two-point correlation functions and the spectral densities, we perform QCD sum rule analysis and extract the masses of these open-flavor tetraquark states. Our results indicate that the masses of both the scalar and axial vector tetraquark states are about $7.1-7.2$ GeV for the $bc\\...

  10. Protection of air in premises and environment against beryllium aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bitkolov, N.Z.; Vishnevsky, E.P.; Krupkin, A.V. [Research Inst. of Industrial and Marine Medicine, St. Petersburg (Russian Federation)

    1998-01-01

    First and foremost, the danger of beryllium aerosols concerns a possibility of their inhalation. The situation is aggravated with high biological activity of the beryllium in a human lung. The small allowable beryllium aerosols` concentration in air poses a rather complex and expensive problem of the pollution prevention and clearing up of air. The delivery and transportation of beryllium aerosols from sites of their formation are defined by the circuit of ventilation, that forms aerodynamics of air flows in premises, and aerodynamic links between premises. The causes of aerosols release in air of premises from hoods, isolated and hermetically sealed vessels can be vibrations, as well as pulses of temperature and pressure. Furthermore, it is possible the redispersion of aerosols from dirty surfaces. The effective protection of air against beryllium aerosols at industrial plants is provided by a complex of hygienic measures: from individual means of breath protection up to collective means of the prevention of air pollution. (J.P.N.)

  11. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  12. Preparation and characterization of beryllium doped organic plasma polymer coatings

    International Nuclear Information System (INIS)

    Brusasco, R.; Letts, S.; Miller, P.; Saculla, M.; Cook, R.

    1995-01-01

    We report the formation of beryllium doped plasma polymerized coatings derived from a helical resonator deposition apparatus, using diethylberyllium as the organometaric source. These coatings had an appearance not unlike plain plasma polymer and were relatively stable to ambient exposure. The coatings were characterized by Inductively Coupled Plasma Mass Spectrometry and X-Ray Photoelectron Spectroscopy. Coating rates approaching 0.7 μm hr -1 were obtained with a beryllium-to-carbon ratio of 1:1.3. There is also a significant oxygen presence in the coating as well which is attributed to oxidation upon exposure of the coating to air. The XPS data show only one peak for beryllium with the preponderance of the XPS data suggesting that the beryllium exists as BeO. Diethylberyllium was found to be inadequate as a source for beryllium doped plasma polymer, due to thermal decomposition and low vapor recovery rates

  13. Reaction-diffusion modeling of hydrogen in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, Mirko; Matveev, Dmitry; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    Beryllium will be used as first-wall material for the future fusion reactor ITER as well as in the breeding blanket of DEMO. In both cases it is important to understand the mechanisms of hydrogen retention in beryllium. In earlier experiments with beryllium low-energy binding states of hydrogen were observed by thermal desorption spectroscopy (TDS) which are not yet well understood. Two candidates for these states are considered: beryllium-hydride phases within the bulk and surface effects. The retention of deuterium in beryllium is studied by a reaction rate approach using a coupled reaction diffusion system (CRDS)-model relying on ab initio data from density functional theory calculations (DFT). In this contribution we try to assess the influence of surface recombination.

  14. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    Science.gov (United States)

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  15. Moessbauer study of iron diffusion in beryllium

    International Nuclear Information System (INIS)

    Sepiol, B.; Ruebenbauer, K.; Miczko, B.; Birchall, T.

    1991-01-01

    The broadening of the 14.41 keV Moessbauer line of 57 Fe dure to diffusion of iron atoms in polycrystalline beryllium has been investigated in the temperature range 1123 to 1423 K. The observed broadenings obey the Arrhenius law with activation energy 1.66(10) eV, i.e., lower than that obtained from the corresponding polycrystalline tracer data. The variations of the resonant fraction, second order Doppler shift and quadrupole splitting versus temperature are reported. An average diffusion coefficient has been calculated from the obtained broadenings and compared with the tracer results. (orig.)

  16. Investigations of the ternary system beryllium-carbon-tungsten and analyses of beryllium on carbon surfaces

    International Nuclear Information System (INIS)

    Kost, Florian

    2009-01-01

    Beryllium, carbon and tungsten are planned to be used as first wall materials in the future fusion reactor ITER. The aim of this work is a characterization of mixed material formation induced by thermal load. To this end, model systems (layers) were prepared and investigated, which give insight into the basic physical and chemical concepts. Before investigating ternary systems, the first step was to analyze the binary systems Be/C and Be/W (bottom-up approach), where the differences between the substrates PG (pyrolytic graphite) and HOPG (highly oriented pyrolytic graphite) were of special interest. Particularly X-ray photoelectron spectroscopy (XPS), low energy ion scattering (ISS) and Rutherford backscattering spectroscopy (RBS) were used as analysis methods. Beryllium evaporated on carbon shows an island growth mode, whereas a closed layer can be assumed for layer thicknesses above 0.7 nm. Annealing of the Be/C system induces Be 2 C island formation for T≥770 K. At high temperatures (T≥1170 K), beryllium carbide dissociates, resulting in (metallic) beryllium desorption. For HOPG, carbide formation starts at higher temperatures compared to PG. Activation energies for the diffusion processes were determined by analyzing the decreasing beryllium amount versus annealing time. Surface morphologies were characterized using angle-resolved XPS (ARXPS) and atomic force microscopy (AFM). Experiments were performed to study processes in the Be/W system in the temperature range from 570 to 1270 K. Be 2 W formation starts at 670 K, a complete loss of Be 2 W is observed at 1170 K due to dissociation (and subsequent beryllium desorption). Regarding ternary systems, particularly Be/C/W and C/Be/W were investigated, attaching importance to layer thickness (reservoir) variations. At room temperature, Be 2 C, W 2 C, WC and Be 2 W formation at the respective interfaces was observed. Further Be 2 C is forming with increasing annealing temperatures. Depending on the layer

  17. Assessment of the feasibility and advantages of beryllium recycling

    International Nuclear Information System (INIS)

    Druyts, F.; Braet, J.; Ooms, L.

    2006-01-01

    This paper proposes a generic route for the recycling of beryllium from fusion reactors, based on critical issues associated with beryllium pebbles after their service life in the HCPB breeding blanket. These critical issues are the high tritium inventory, the presence of long-lived radionuclides (among which transuranics due to traces of uranium in the base metal), and the chemical toxicity of beryllium. On the basis of the chemical and radiochemical characteristics of the neutron irradiated beryllium pebbles, we describe a possible recycling route. The first step is the detritiation of the material. This can be achieved by heating the pebbles to 800 o C under an argon flow. The argon gas avoids oxidation of the beryllium, and at the proposed temperature the tritium inventory is readily released from the pebbles. In a second step, the released tritium can be oxidised on a copper oxide bed to produce tritiated water, which is consistent with the current international strategy to convert all kinds of tritiated waste into tritiated water, which can subsequently be treated in a water detritiation plant. Removal of radionuclides from the beryllium pebbles may be achieved by several types of chloride processes. The first step is to pass chlorine gas (in an argon flow) over the pebbles, thus yielding volatile BeCl 2 . This beryllium chloride can then be purified by fractional distillation. As a small fraction of the beryllium chloride contains the long-lived 10 Be isotope, 10BeCl 2 has to be separated from 9BeCl 2 , which could be achieved by centrifugal techniques. The product can then be reduced to obtain high-purity metallic beryllium. Two candidate reduction methods were identified: fused salt electrolysis and thermal decomposition. Both these methods require laboratory parametric studies to maximise the yield and achieve a high purity metal, before either process can be upgraded to a larger scale. The eventual product of the chloride reduction process must be a high

  18. Microstructure Analysis on Beryllium Reflector Blocks of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Jang, Jin Sung; Jeong, Yong Hwan; Han, Chang Hee; Jung, Yang Il; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Yong Seok; Oh, Kyu Hwan [Seoul National University, Seoul (Korea, Republic of)

    2012-05-15

    A pure beryllium has a very low mass absorption coefficient: it has been used as the reflector element material in research reactors. The lifetime of beryllium reflector elements usually determined by the swelling: the swelling leads to dimensional change in the reflector frame, which results in bending or cracking of the parts. The mechanical interference in between parts should be avoided; the anisotropy of beryllium also needs to be considered. A beryllium has hexagonal close-pack (HCP) crystal structure, which is inherently anisotropic. It has virtually no ductility in one direction. There are two main aspects in the manufacturing of beryllium which will affect its isotropy, and those are the powder morphology and the consolidation process. Powder metallurgy permits the material to be produced in isotropic and fine-grained form, which overcomes the crystal structure problem by distributing loads in low ductility oriented grains to high ductility oriented grains. There are three representative consolidating methods to make beryllium reflector blocks. Traditionally, most powder-derived grades of beryllium have been consolidated by vacuum hot-pressing (VHP). A column of loose beryllium powder is compacted under vacuum by the pressure of the opposed upper and lower punches, bringing the billet to final density. The VHP process is directional in nature: it contributes to the anisotropy of the material properties. Another consolidating method for beryllium powder is hot isostatic pressing (HIPing), which will enhance its isotropy. During HIPing, The argon gas exerts pressure uniformly in all directions on the can containing the beryllium powder. The HIP process is effective to improve the isotropy of the resulting material as well as refinement of grain sizes. The last consolidating method is hot extrusion (HE). A roughly close packed beryllium is subjected to severe plastic defomation, the grains are refined and the tensile strength is enhanced. Since the material

  19. Status of beryllium study for fusion in RF

    International Nuclear Information System (INIS)

    Khomutov, A.M.; Kupriyanov, I.B.; Markushkin, Yu.E.; Gervash, A.; Kolbasov, B.N.

    2004-01-01

    The main directions of research activities in the field of beryllium application science and technology carried out in Russia during 2001-2003 have been reviewed. The main results of these investigations have been highlighted. First wall and port-limier. The investigation on the actively cooled components with beryllium cladding is under progress objecting on the clarification of their ultimate thermo cycling capabilities. The study of behavior of bulk beryllium and the boundary region of the contact with the cooling structure under the intensive thermo cycling loading and neutron irradiation have been the object of consideration in particular. The works on the optimization and modification of industrial fabrication processes for commercial scaled production of beryllium tile were also under way. The influence of neutron irradiation. The new experimental data on the nuclear properties of several Russian beryllium grades has been obtained. The samples have been subjected to the high neutron dozes. The influence of low temperature (70-200degree C) neutron irradiation on the thermal conductivity has been examined in particular. The interrelations of the helium inventory and temperature of neutron irradiation with tritium release out of irradiated beryllium samples have been analyzed. The beryllium associated safety questions. The experiments on the modeling of normal working conditions and conditions imitating the plasma disruption events in ITER performance scenario have been continued. The new experimental information on the coefficient of pulverization of beryllium and the accumulation of deuterium in beryllium under the action of proton beam has been collected. The dependence of the reaction rate constant for the beryllium oxidation by the water vapor for different conditions has been analyzed. The compact, porous and powder beryllium samples have been tested at the wide range of temperature, pressure and duration of reaction with water vapor. The calculating

  20. Beryllium reflectors for research reactors. Review and preliminary finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Pablo S; Cocco, Roxana G., E-mail: rcocco@invap.com.ar [INVAP S.E., Rio Negro (Argentina)

    2012-03-15

    Beryllium is used in numerous research reactors to moderate neutron energy and to reflect neutrons back into the core, thus intensifying the thermal neutron flux. However, beryllium is degraded by radiation damage, as a result of both displacement and transmutation. Displacement damage leads to point defect clustering, irradiation hardening and embrittlement. Transmutation produces helium, which results in high levels of gas and swelling, even at low temperatures. A brief state-of-the-art review on the use of reflector assemblies reveals that each user has adopted a different method for overcoming problems related to swelling: strengthening, cracking and distortion. In the present work a preliminary study about the geometry influence on the reflector assembly behavior was performed by a Finite Element Analysis (FEA). A simplified study was made varying its geometry in height, thickness and width. The results showed that the most influencing parameter in avoiding distortion due to swelling is firstly the reflector's assembly height, H; secondly its thickness, L, and lastly its angle/width, {theta}. These results contribute to the understanding of distortion behavior and the stresses generated in a simple geometry Be bar subjected to radiation, which can be a useful tool for mechanical design of more complex components. (author)

  1. Development of all-beryllium riveted structures

    International Nuclear Information System (INIS)

    Floyd, D.R.; Leslie, W.W.; Miley, D.V.; Nokes, R.W.

    1976-01-01

    Results are presented of a development program aimed at making a full-scale, all-beryllium frustrum by riveted assembly methods. Included are descriptions of the sheet-metal fabrication practices and assembly plans. Results of extensive mechanical testing of both ingot- and powder-source beryllium products that are presented include tensile, notch-tensile, bearing, and shear tests. Although the full-size structure has not been built, examples are given of several conical and cylindrical structures that were made. The largest of these is a 20-in. diameter, 15-in. long cylinder that was roll-formed from one 0.050-in. thick ingot sheet and assembled with 60 countersunk rivets. Tensile testing of riveted flat coupons is also reported as is bulge testing of riveted cylindrical shells. A cost comparison of riveted deep-drawn and powder-source cylinders is made. Results show that when strength and dimensional tolerance requirements are not severe, a riveted assembly approach is warranted. 33 figures, 8 tables

  2. Charge-density study of crystalline beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R F [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1977-01-01

    The X-ray structure factors for crystalline beryllium measured by Brown (Phil. Mag. (1972), 26, 1377) have been analyzed with multipole deformation functions for charge-density information. Single exponential radial functions were used for the valence charge density. A valence monopole plus the three harmonics, P/sup 3//sub 5/(cos theta) sin 3phi, P/sub 6/(cos theta) and P/sup 3//sub 7/(cos theta) sin 3phi, provide a least-squares fit to the data with Rsub(w)=0.0081. The superposition of these density functions describes a bonding charge density between Be atoms along the c axis through the tetrahedral vacancy. The results reported here are in qualitative agreement with a recent pseudo-potential calculation of metallic beryllium. The final residuals in the analysis are largest at high sin theta/lambda values. This suggests that core charge deformation is present and/or anharmonic motion of the nuclei is appreciable.

  3. Physical properties of beryllium oxide - Irradiation effects

    International Nuclear Information System (INIS)

    Elston, J.; Caillat, R.

    1958-01-01

    This work has been carried out in view of determining several physical properties of hot-pressed beryllium oxide under various conditions and the change of these properties after irradiation. Special attention has been paid on to the measurement of the thermal conductivity coefficient and thermal diffusivity coefficient. Several designs for the measurement of the thermal conductivity coefficient have been achieved. They permit its determination between 50 and 300 deg. C, between 400 and 800 deg. C. Some measurements have been made above 1000 deg. C. In order to measure the thermal diffusivity coefficient, we heat a perfectly flat surface of a sample in such a way that the heat flux is modulated (amplitude and frequency being adjustable). The thermal diffusivity coefficient is deduced from the variations of temperature observed on several spots. Tensile strength; compressive strength; expansion coefficient; sound velocity and crystal parameters have been also measured. Some of the measurements have been carried out after neutron irradiation. Some data have been obtained on the change of the properties of beryllium oxide depending on the integrated neutron flux. (author) [fr

  4. Ion beam assisted deposition of metal-coatings on beryllium

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2015-01-01

    Thin films were applied on beryllium substrates on the basis of metals (Cr, Ti, Cu and W) with method of the ion-assisted deposition in vacuum. Me/Be structures were prepared using 20 kV ions irradiation during deposition on beryllium neutral fraction generated from vacuum arc plasma. Rutherford back scattering and computer simulation RUMP code were applied to investigate the composition of the modified beryllium surface. Researches showed that the superficial structure is formed on beryllium by thickness ~ 50-60 nm. The covering composition includes atoms of the deposited metal (0.5-3.3 at. %), atoms of technological impurity carbon (0.8-1.8 at. %) and oxygen (6.3-9.9 at. %), atoms of beryllium from the substrate. Ion assisted deposition of metals on beryllium substrate is accompanied by radiation enhanced diffusion of metals, oxygen atoms in the substrate, out diffusion of beryllium, carbon atoms in the deposited coating and sputtering film-forming ions assists. (authors)

  5. Investigation of the glide modes of single crystals of beryllium; Etude des modes de glissement de monocristaux de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-05-01

    The flow characteristics of single crystals of beryllium specially oriented for slip along a single plane and a single direction have been thoroughly investigated. The elastic limit and the strain hardening in basal glide have been investigated in the temperature range (-195 deg. C, 400 deg. C) in tension as well as in compression. Observation of the slip lines and of the dislocation configurations have also been made in addition to the mechanical tests. The prismatic slip has been studied in greater detail: tensile tests have been performed on specimens carefully oriented at different temperatures, strain rates and with varying orientations of the basal and of the prism planes. Tests have also been made in the micro-strain range; the slip lines and the dislocation arrangements were observed in detail. The very unusual variation of the elastic limit with temperature is not due to impurities but to a cross slip mechanism. A model of dislocation locking is proposed to account for the experimental results. This mechanism assumes that the a-bar dislocations may also dissociate on the prism planes [101-bar 0]. Various possible dissociations are suggested, the most probable of which corresponds to the phase transformation: Hexagonal close packed to body centered cubic. This proposal can be extended to account for the relative ease of glide on the different systems in the hexagonal close packed metals. (author) [French] L' ecoulement de monocristaux de berylliurn deformes en glissement basal et en glissement prismatique a ete etudie sur des echantillons orientes de maniere a favoriser au maximum la deformation suivant une seule direction d'un seul systeme de glissement. L'influence de la temperature sur la limite elastique et la consolidation en glissement basal a ete etudie depuis -195 deg. C jusqu' 400 deg. C sur des echantillons deformes en tension et sur d'autres deformes en compression. Ces essais mecaniques ont ete completes par l'observation des lignes de

  6. Historical perspectives on the uses and health risks of beryllium

    International Nuclear Information System (INIS)

    Preuss, O.P.

    1985-01-01

    Unawareness of the health risks of beryllium resulted in a decade of unmitigated exposure of several thousand workers and numerous cases of beryllium disease in employees and nearby residents. Subsequent adoption of exposure limits and their implementation with effective technical controls reduced the occurrence of new cases, which were mainly due to accidental exposures, to a minimum. The fact that continuously growing production and consumption did not alter this trend demonstrates the effectiveness of the present threshold limit value. It shows that the potential health hazard can be well contained and that beryllium can be produced and fabricated without undue risk to employees or the general public

  7. Analysis of surface contaminants on beryllium and aluminum windows

    International Nuclear Information System (INIS)

    Gmur, N.F.

    1987-06-01

    An effort has been made to document the types of contamination which form on beryllium window surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined

  8. About kinetics of paramagnetic radiation malformations in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabinkin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petukhov, Yu.V.

    1999-01-01

    This paper [1] specifies that γ-radiation of the beryllium-oxide-based ceramics results in development of paramagnetic radiation malformations emerging the ESR spectrum in form of doublet with the splitting rate of oestrasid Δ∼1.6 and g-factor of 2.008. This report presents evaluation outcomes of dependence of paramagnetic radiation malformations concentration in beryllium ceramics on gamma-radiation dose ( 60 Co) within the range of 0-100 Mrad. Total paramagnetic parameters of beryllium ceramics in the range 0-100 Mrad of gamma-radiation dose varied slightly, and were specified by the first type of paramagnetic radiation malformations

  9. Evaluation of the hazard associated with fabricating beryllium copper alloys

    International Nuclear Information System (INIS)

    Senn, T.J.

    1977-01-01

    Beryllium-copper alloys should be considered toxic materials and proper controls must be used when they are machined, heated, or otherwise fabricated. Air samples should be taken for each type of fabrication to determine the worker's exposure and the effectiveness of the controls in use. It has been shown that aerosols containing beryllium are generated during the four methods of fabrication tested, and that these aerosols can be reduced through local exhaust to undetectable levels. Considering the acute, chronic and possibly carcinogenic effects of exposure to beryllium, effective controls should be required because they are feasible both technologically and economically. The health hazards and control measures are reviewed

  10. Preparation of a sinterable beryllium oxide through decomposition of beryllium hydroxide (1963)

    International Nuclear Information System (INIS)

    Bernier, M.

    1963-01-01

    In the course of the present study, we have attempted to precise the factors which among the ones effective in the course of the preparation of the beryllium hydroxide and oxide and during the sintering have an influence on the final result: the density and homogeneity of the sintered body. Of the several varieties of hydroxides precipitated from a sulfate solution the β-hydroxide only is always contaminated with beryllium sulfate and cannot be purified even by thorough washing. We noticed that those varieties of the hydroxide (gel, α, β) have different decomposition rates; this behaviour is used to identify and even to dose the different species in (α, β) mixtures. The various hydroxides transmit to the resulting oxides the shape they had when precipitated. Accordingly the history of the oxide is revealed by its behaviour during its fabrication and sintering. By comparing the results of the sintering operation with the various measurements performed on the oxide powders we are led to the conclusion that an oxide obtained from beryllium hydroxide is sinterable under vacuum if the following conditions are fulfilled: the particle size must lie between 0.1 and 0.2 μ and the BeSO 4 content of the powder must be less than 0.25 per cent wt (expressed as SO 3 /BeO). The best fitting is obtained with the oxide issued from an α-hydroxide precipitated as very small aggregates and with a low sulfur-content. We have observed that this is also the case for the oxide obtained by direct calcination of beryllium sulfate. (author) [fr

  11. Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust

    Science.gov (United States)

    Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.

    2018-05-01

    Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.

  12. Real-time monitoring of airborne beryllium, at OSHA limit levels, by time-resolved laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Radziemski, L.J.; Loree, T.R.; Cremers, D.A.

    1982-01-01

    Real-time detection of beryllium particulate is being investigated by the new technique of laser-induced breakdown spectroscopy. For beryllium detection we monitor the 313.1-nm feature of once ionized beryllium (Be II). Numerous publications describe the technique, our beryllium results, and other applications. Here we summarize the important points and describe our experiments with beryllium

  13. Investigation of the ion beryllium surface interaction

    International Nuclear Information System (INIS)

    Guseva, M.I.; Birukov, A.Yu.; Gureev, V.M.

    1995-01-01

    The self -sputtering yield of the Be was measured. The energy dependence of the Be self-sputtering yield agrees well with that calculated by W. Eckstein et. al. Below 770 K the self-sputtering yield is temperature independent; at T irr .> 870 K it increases sharply. Hot-pressed samples at 370 K were implanted with monoenergetic 5 keV hydrogen ions and with a stationary plasma (flux power ∼ 5 MW/m 2 ). The investigation of hydrogen behavior in beryllium shows that at low doses hydrogen is solved, but at doses ≥ 5x10 22 m -2 the bubbles and channels are formed. It results in hydrogen profile shift to the surface and decrease of its concentration. The sputtering results in further concentration decrease at doses > 10 25 m -2

  14. Polarizabilities of the beryllium clock transition

    International Nuclear Information System (INIS)

    Mitroy, J.

    2010-01-01

    The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s 2 1 S e ground state (37.73a 0 3 ) and the 2s2p 3 P 0 o metastable state (39.04a 0 3 ) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s 2 1 S e -2s2p 3 P 0 o clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.

  15. Primordial beryllium as a big bang calorimeter.

    Science.gov (United States)

    Pospelov, Maxim; Pradler, Josef

    2011-03-25

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of ⁹Be via the chain of nonequilibrium transformations: Energy(h)→T, ³He→⁶He, ⁶Li→⁹Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable ⁹Be abundance. The absence of a plateau structure in the ⁹Be/H abundance down to a O(10⁻¹⁴) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles.

  16. Advances in beryllium powder consolidation simulations

    International Nuclear Information System (INIS)

    Reardon, B.J.

    1998-01-01

    A fuzzy logic based multiobjective genetic algorithm (GA) is introduced and the algorithm is used to optimize micromechanical densification modeling parameters for warm isopressed beryllium powder, HIPed copper powder and CIPed/sintered and HIPed tantalum powder. In addition to optimizing the main model parameters using the experimental data points as objective functions, the GA provides a quantitative measure of the sensitivity of the model to each parameter, estimates the mean particle size of the powder, and determines the smoothing factors for the transition between stage 1 and stage 2 densification. While the GA does not provide a sensitivity analysis in the strictest sense, and is highly stochastic in nature, this method is reliable and reproducible in optimizing parameters given any size data set and determining the impact on the model of slight variations in each parameter

  17. Electron-beam fusion welding of beryllium

    International Nuclear Information System (INIS)

    Campbell, R.P.; Dixon, R.D.; Liby, A.L.

    1978-01-01

    Ingot-sheet beryllium (Be) having three different chemistries and three different thicknesses was fusion-welded by the electron-beam process. Several different preheats were used to obtain 100% penetration and crack-free welds. Cracking susceptability was found to be related to aluminum (Al) content; the higher Al-content material was most susceptable. However, adequate preheat allowed full penetration and crack-free welds to be made in all materials tested. The effect of a post-weld heat treatment on the mechanical properties of these compositions was also determined. The heat treatment produced no significant effect on the ultimate tensile strength. However, the yield strength was decreased and the ductility was increased. These changes are attributed to the formation of AlFeBe 4 and FeBe 11

  18. Preparation of selenium coatings onto beryllium foils

    International Nuclear Information System (INIS)

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-09-01

    A technique for preparing selenium films onto 50.8 microns thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. Profilometry measurements of the coatings indicate deposit thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 microns. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable thin film controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV. 15 references, 3 figures

  19. Living with others inside the self: decolonising transplantation, selfhood and the body politic in Nalo Hopkinson's Brown Girl in the Ring.

    Science.gov (United States)

    McCormack, Donna

    2016-12-01

    This article examines anxieties concerning organ transplantation in Nalo Hopkinson's prize-winning novel Brown Girl in the Ring (1998). The main focus is how this novel re-imagines subjectivity and selfhood as an embodied metaphor for the reconfiguring of broader sociopolitical relations. In other words, this article analyses the relationship between the transplanted body and the body politic, arguing that a post-transplant identity, where there is little separation between donor and recipient, is the foundation for a politics based on responsibility for others. Such a responsibility poses a challenge to the race and class segregation that is integral to the post-apocalyptic world of Hopkinson's novel. Transplantation is not a utopian vision of an egalitarian society coming together in one body; rather, this biotechnological intervention offers a potentially different mode of thinking what it means to work across race, class and embodied division, while always recalling the violence that might facilitate so-called medical progress. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Electron microscope study of irradiated beryllium oxide

    International Nuclear Information System (INIS)

    Bisson, A.A.

    1965-06-01

    The beryllium oxide is studied first by fractography, before and after irradiation, using sintered samples. The fractures are examined under different aspects. The higher density sintered samples, with transgranular fractures are the most interesting for a microscopic study. It is possible to mark the difference between the 'pores' left by the sintering process and the 'bubbles' of gases that can be produced by former thermal treatments. After irradiation, the grain boundaries are very much weakened. By annealing, it is possible to observe the evolution of the gases produced by the reaction (n, 2n) and (n. α) and gathered on the grain boundaries. The irradiated beryllium oxide is afterwards studied by transmission. For that, a simple method has been used: little chips of the crushed material are examined. Clusters of point defects produced by neutrons are thus detected in crystals irradiated at the three following doses: 6 x 10 19 , 9 x 10 19 and 2 x 10 20 n f cm -2 at a temperature below 100 deg. C. For the irradiation at 6 x 10 19 n f cm -2 , the defects are merely visible, but at 2 x l0 20 n f cm -2 the crystals an crowded with clusters and the Kikuchi lines have disappeared from the micro-diffraction diagrams. The evolution of the clusters into dislocation loops is studied by a series of annealings. The activation energy (0,37 eV) calculated from the annealing curves suggests that it must be interstitials that condense into dislocation loops. Samples irradiated at high temperatures (650, 900 and 1100 deg. C) are also studied. In those specimens the size of the loops is not the same as the equilibrium size obtained after out of pile annealing at the same temperature. Those former loops are more specifically studied and their Burgers vector is determined by micro-diffraction. (author) [fr

  1. New facility for post irradiation examination of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo; Kawamura, Hiroshi

    1995-01-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800 degrees C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and 60 Co;7.4 MBq/day

  2. Deuterium permeation and diffusion in high-purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.; Riehm, M.P.; Thompson, D.A.; Smeltzer, W.W.

    1990-01-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. Using multilayer permeation theory the effects of surface oxide were eliminated and the diffusion coefficients of the bulk beryllium determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 =6.7x10 -9 m 2 /s and E D =28.4 kJ/mol. For the high-grade beryllium samples (99%) the parameters are D 0 =8.0x10 -9 m 2 /s and E D =35.1 kJ/mol. (orig.)

  3. Deuterium permeation and diffusion in high purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.

    1990-05-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. A multilayer permeation theory was used in order to eliminate the surface oxide effects and the diffusion coefficients of the bulk beryllium were determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 = 6.7 x 10 -9 [m 2 /s] and E D = 28.4 [KJ/mol]; and for the high-grade beryllium samples (99%) the parameters are D 0 = 8.0 x 10 -9 [m 2 /s] and E D = 35.1 [KJ/mol

  4. Spectrochemical determination of beryllium and lithium in stream sediments

    International Nuclear Information System (INIS)

    Gallimore, D.L.; Hues, A.D.; Palmer, B.A.; Cox, L.E.; Simi, O.R.; Bieniewski, T.M.; Steinhaus, D.W.

    1979-11-01

    A spectrochemical method was developed to analyze 200 or more samples of stream sediments per day for beryllium and lithium. One part of ground stream sediment is mixed with two parts graphite-SiO 2 buffer, packed into a graphite electrode, and excited in a direct-current arc. The resulting emission goes to a 3.4-m, direct-reading, Ebert spectrograph. A desk-top computer system is used to record and process the signals, and to report the beryllium and lithium concentrations. The limits of detection are 0.2 μg/g for beryllium and 0.5 μg/g for lithium. For analyses of prepared reference materials, the relative standard deviations were 16% for determining 0.2 to 100 μg/g of beryllium and 15% for determining 0.5 to 500 μg/g of lithium. A correction is made for vanadium interference

  5. Electropolishing or chemical milling of beryllium to remove machining defects

    International Nuclear Information System (INIS)

    Helms, J.R.

    1975-12-01

    The techniques of electropolishing and chemical milling to remove machine damage from beryllium are compared. Both techniques are found to be effective; chemical milling is recommended because it is easier to use and control

  6. Beryllium brazing considerations in CANDU fuel bundle manufacture

    International Nuclear Information System (INIS)

    Harmsen, J.; Pant, A.; Lewis, B.J.; Thompson, W.T.

    2010-01-01

    'Full text:' Appendages of CANDU fuel bundle elements are currently joined to zircaloy sheaths by vacuum beryllium brazing. Ongoing environmental and workplace concerns about beryllium combined with the continuous efforts by Cameco Fuel Manufacturing in its improvement process, initiated this study to find a substitute for pure beryllium. The presentation will review the necessary functionality of brazing alloy components and short list a series of alloys with the potential to duplicate the performance of pure beryllium. Modifications to current manufacturing processes based on in-plant testing will be discussed in relation to the use of these alloys. The presentation will conclude with a summary of the progress to date and further testing expected to be necessary.

  7. Health effects of beryllium exposure: a literature review

    National Research Council Canada - National Science Library

    Committee on Beryllium Alloy Exposures, Committee on Toxicology, National Research Council

    2007-01-01

    Beryllium is an important metal that is used in a number of industries-including the defense, aerospace, automotive, medical, and electronics industries-because of its exceptional strength, stability...

  8. Phosphorus-containing azo compounds as analytical reagents for beryllium

    International Nuclear Information System (INIS)

    Lisenko, N.F.; Dolzhnikova, E.N.; Petrova, G.S.; Tsvetkov, E.N.; Vsesoyuznyj Nauchno-Issledovatel'skij Inst. Khimicheskikh Reaktivov i Osobo Chistykh Veshchestv, Moscow; AN SSSR, Moscow. Inst. Ehlementoorganicheskikh Soedinenij)

    1979-01-01

    The interaction of beryllium with six new azocompounds based on chromotropic or R-acids and o-aminophenyl-phenylphosphonic acids is studied. A sharp difference in the detection limit for beryllium by the two groups of compounds is found. Azoderivatives based on chromotropic acid are promising agent for beryllium due to sufficiently high selectivity. The introduction of the methyl-group into the o-position of the phosphorus-containing group improves the analytical properties of agents. Techniques are developed for the determination of beryllium in bronze, sewage water and in an artificial mixture using a sodium salt of 1.8-dioxi-2 [2' - (oxi- (o-methylphenyl)-phosphenyl)-phenilazo]-naphtalene-3.6-disulfoacid

  9. Beryllium armour produced by evaporation-condensation technique

    International Nuclear Information System (INIS)

    Anisimov, A.; Frolov, V.; Moszherin, S.; Pepekin, G.; Pirogov, A.; Komarov, V.; Mazul, I.

    1997-01-01

    Beryllium, as armour material for ITER plasma facing components, has a limited erosion lifetime. In order to repair the surface of eroded tiles in-situ, Be-deposition technologies are under consideration. One of them uses the physical vapour deposition of beryllium on copper or beryllium substrate produced by a hot Be-target placed in the vicinity of this substrate. Three different options for using this technology for ITER Be-armour application are considered. The first option is the repair in-situ of eroded Be-tiles. The second option suggests the use of this technology to provide the joining of Be to Cu-substrate. The third option assumes the use of evaporated-condensed beryllium as a bulk tile material bonded to copper substrate by conventional joining (Brazing et al.) techniques. The first results and prospects of these approaches are presented below. (orig.)

  10. Data Needs for Erosion and Tritium Retention in Beryllium Surfaces

    International Nuclear Information System (INIS)

    Braams, B.J.

    2011-07-01

    A Consultants' Meeting was held at IAEA Headquarters 30-31 May 2011 with the aim to provide advice about the scope and aims of a planned IAEA coordinated research project on erosion and tritium retention in beryllium plasma-facing materials and about other activities of the A+M Data Unit in the area of plasma interaction with beryllium surfaces. The present report contains the proceedings, recommendations and conclusions of that Consultants' Meeting. (author)

  11. The beryllium production at Ulba metallurgical plant (Ust-Kamenogrsk, Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Tuzov, Y.V. [Ulba Metallurgical Plant (Zavod), Ust-Kamenogorsk, Abay prospect 102 (Kazakhstan)

    1998-01-01

    The Report includes data on beryllium production of Ulba metallurgical plant, located in Ust-Kamenogorsk (Kazakhstan). Beryllium production is showed to have extended technological opportunities in manufacturing semi-products (beryllium ingots, master alloys, metallic beryllium powders, beryllium oxide) and in production of structural beryllium and its parts. Ulba metallurgical plant owns a unique technology of beryllium vacuum distillation, which allows to produce reactor grades of beryllium with a low content of metallic impurities. At present Ulba plant does not depend on raw materials suppliers. The quantity of stored raw materials and semi-products will allow to provide a 25-years work of beryllium production at a full capacity. The plant has a satisfactory experience in solving ecological problems, which could be useful in ITER program. (author)

  12. Impurities effect on the swelling of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Donne, M.D.; Scaffidi-Argentina, F.

    1995-01-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found

  13. Thermogravimetric analysis of the beryllium/steam reaction

    Energy Technology Data Exchange (ETDEWEB)

    Druyts, Frank E-mail: fdruyts@sckcen.be; Iseghem, Pierre van

    2000-11-01

    In view of the safety assessment of new fusion reactor designs, kinetic data are needed on the beryllium/steam reaction. Therefore, thermogravimetric analysis was used to determine the reactivity of beryllium in steam as a function of temperature, irradiation history and porosity of the samples. To this purpose, reference unirradiated S-200 VHP beryllium samples were compared with specimens irradiated in the BR2 reactor up to fast neutron fluences (E>1 MeV) of respectively 1.6x10{sup 21} n cm{sup -2} (resulting in a helium content of 300 appm He and a theoretical density of 99.9%) and 4x10{sup 22} n cm{sup -2} (21000 appm He, 97.2% theoretical density). Kinetics were parabolic for all tested beryllium types at 600 deg. C. At 700 deg. C, kinetics were parabolic for the unirradiated and irradiated 99.9% dense beryllium, and accelerating/linear for the irradiated 97.2% material. At 800 deg. C, all samples showed accelerating/linear behaviour. There was no influence of porosity on the reaction rate of beryllium in steam within the limited investigated density range, except at 700 deg. C, where the measured reaction rate for the irradiated 97.2% dense samples is an order of magnitude higher than for the irradiated 99.9% dense specimens.

  14. Status of beryllium R and D in Japan

    International Nuclear Information System (INIS)

    Kawamura, H.; Ishida, K.

    2004-01-01

    Recently, several R and D program of beryllium for fusion are being promoted in Japan and community of beryllium study is growing up. In the R and D area of beryllium for solid breeding blanket, major subjects are beryllide application for prototype reactor, lifetime evaluation of neutron multiplier, impurity effect of beryllium and recycling of irradiated beryllium. Especially, the study of beryllide application has significant progress in these two years. The basic properties such as tritium inventory, oxidation behavior, steam interaction for stoichiometric Be 12 Ti fabricated by HIP (Hot Isostatic Pressing) have been studied and some advantages against beryllium were made clear. For manufacturing technology development, phase diagram and ductility improvement have been studied. And, Be 12 Ti pebbles with the improved microstructure were successfully fabricated by Rotating Electrode Process. In order to enhance the R and D activities, the R and D network consisted of industries, universities and laboratories in all Japan have been organized. Many collaboration and information exchange strongly promotes the R and D and some projects for commercial application have been launched form these activities. Also international collaborative project such as IEA and ISTC have been launched or planned. Recent result of R and D in Japan is described on this paper. (author)

  15. Impartial Triangular Chocolate Bar Games

    OpenAIRE

    Miyadera, Ryohei; Nakamura, Shunsuke; Fukui, Masanori

    2017-01-01

    Chocolate bar games are variants of the game of Nim in which the goal is to leave your opponent with the single bitter part of the chocolate bar. The rectangular chocolate bar game is a thinly disguised form of classical multi-heap Nim. In this work, we investigate the mathematical structure of triangular chocolate bar games in which the triangular chocolate bar can be cut in three directions. In the triangular chocolate bar game, a position is a $\\mathcal{P}$-position if and only if $x \\oplu...

  16. Breaking through the Bar

    Science.gov (United States)

    Gray, Katti

    2011-01-01

    Howard University School of Law had a problem, and school officials knew it. Over a 20-year period, 40 percent of its graduates who took the Maryland bar exam failed it on their first try. During the next 24 months--the time frame required to determine its "eventual pass rate"--almost 90 percent of the students did pass. What they did…

  17. Raising the bar (7)

    NARCIS (Netherlands)

    Elhorst, Paul; Abreu, Maria; Amaral, Pedro; Bhattacharjee, Arnab; Corrado, Luisa; Doran, Justin; Fingleton, Bernard; Fuerst, Franz; Garretsen, Harry; Igliori, Danilo; Gallo, Julie Le; McCann, Philip; Monastiriotis, Vassilis; Quatraro, Francesco; Yu, Jihai

    2018-01-01

    This editorial summarises the papers published in issue 13.1 so as to raise the bar in applied spatial economic research and highlight new trends. The first paper adopts a scale neutral approach to investigate the spatial mechanisms that cause regional innovation and growth. The second paper claims

  18. Raising the Bar (3)

    NARCIS (Netherlands)

    Elhorst, Paul; Abreu, M.; Amaral, P.; Bhattacharjee, A.; Corrado, L.; Fingleton, B.; Fuerst, F.; Garretsen, H.; Igliori, D.; Le Gallo, J.; McCann, P.; Monastiriotis, V.; Pryce, G.; Yu, J.

    This editorial summarizes and comments on the papers published in issue 11(3) so as to raise the bar in applied spatial economic research and highlight new trends. The first paper proposes spatial and a-spatial indicators to describe the networks of airline companies around the world. The second

  19. Exposure and genetics increase risk of beryllium sensitisation and chronic beryllium disease in the nuclear weapons industry.

    Science.gov (United States)

    Van Dyke, Michael V; Martyny, John W; Mroz, Margaret M; Silveira, Lori J; Strand, Matt; Cragle, Donna L; Tankersley, William G; Wells, Susan M; Newman, Lee S; Maier, Lisa A

    2011-11-01

    Beryllium sensitisation (BeS) and chronic beryllium disease (CBD) are caused by exposure to beryllium with susceptibility affected by at least one well-studied genetic host factor, a glutamic acid residue at position 69 (E69) of the HLA-DPβ chain (DPβE69). However, the nature of the relationship between exposure and carriage of the DPβE69 genotype has not been well studied. The goal of this study was to determine the relationship between DPβE69 and exposure in BeS and CBD. Current and former workers (n=181) from a US nuclear weapons production facility, the Y-12 National Security Complex (Oak Ridge, Tennessee, USA), were enrolled in a case-control study including 35 individuals with BeS and 19 with CBD. HLA-DPB1 genotypes were determined by PCR-SSP. Beryllium exposures were assessed through worker interviews and industrial hygiene assessment of work tasks. After removing the confounding effect of potential beryllium exposure at another facility, multivariate models showed a sixfold (OR 6.06, 95% CI 1.96 to 18.7) increased odds for BeS and CBD combined among DPβE69 carriers and a fourfold (OR 3.98, 95% CI 1.43 to 11.0) increased odds for those exposed over an assigned lifetime-weighted average exposure of 0.1 μg/m(3). Those with both risk factors had higher increased odds (OR 24.1, 95% CI 4.77 to 122). DPβE69 carriage and high exposure to beryllium appear to contribute individually to the development of BeS and CBD. Among workers at a beryllium-using facility, the magnitude of risk associated with either elevated beryllium exposure or carriage of DPβE69 alone appears to be similar.

  20. Beryllium data base for in-pile mockup test on blanket of fusion reactor, (1)

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroshi; Ishitsuka, Etsuo (Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment); Sakamoto, Naoki; Kato, Masakazu; Takatsu, Hideyuki.

    1992-11-01

    Beryllium has been used in the fusion blanket designs with ceramic breeder as a neutron multiplier to increase the net tritium breeding ratio (TBR). The properties of beryllium, that is physical properties, chemical properties, thermal properties, mechanical properties, nuclear properties, radiation effects, etc. are necessary for the fusion blanket design. However, the properties of beryllium have not been arranged for the fusion blanket design. Therefore, it is indispensable to check and examine the material data of beryllium reported previously. This paper is the first one of the series of papers on beryllium data base, which summarizes the reported material data of beryllium. (author).

  1. Bar codes for nuclear safeguards

    International Nuclear Information System (INIS)

    Keswani, A.N.; Bieber, A.M. Jr.

    1983-01-01

    Bar codes similar to those used in supermarkets can be used to reduce the effort and cost of collecting nuclear materials accountability data. A wide range of equipment is now commercially available for printing and reading bar-coded information. Several examples of each of the major types of commercially available equipment are given, and considerations are discussed both for planning systems using bar codes and for choosing suitable bar code equipment

  2. Bar codes for nuclear safeguards

    International Nuclear Information System (INIS)

    Keswani, A.N.; Bieber, A.M.

    1983-01-01

    Bar codes similar to those used in supermarkets can be used to reduce the effort and cost of collecting nuclear materials accountability data. A wide range of equipment is now commercially available for printing and reading bar-coded information. Several examples of each of the major types of commercially-available equipment are given, and considerations are discussed both for planning systems using bar codes and for choosing suitable bar code equipment

  3. Proton irradiation effects on beryllium – A macroscopic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Simos, Nikolaos, E-mail: simos@bnl.gov [Nuclear Sciences & Technology Department, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Elbakhshwan, Mohamed [Nuclear Sciences & Technology Department, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Zhong, Zhong [Photon Sciences, NSLS II, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Camino, Fernando [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973 (United States)

    2016-10-15

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  4. Cooling of rectangular bars

    International Nuclear Information System (INIS)

    Frainer, V.J.

    1979-01-01

    A solution of the time-transient Heat Transfer Differential Equation in rectangular coordinates is presented, leading to a model which describes the temperature drop with time in rectangular bars. It is similar to an other model for cilindrical bars which has been previously developed in the Laboratory of Mechanical Metallurgy of UFRGS. Following these models, a generalization has been made, which permits cooling time evaluation for all profiles. These results are compared with experimental laboratory data in the 1200 to 800 0 C range. Some other existing models were also studied which have the purpose of studing the same phenomenon. Their mathematical forms and their evaluated values are analyzed and compared with experimental ones. (Author) [pt

  5. The Possible Heavy Tetraquarks $qQ\\bar q \\bar Q$, $qq\\bar Q \\bar Q$ and $qQ\\bar Q \\bar Q$

    OpenAIRE

    Cui, Ying; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin

    2006-01-01

    Assuming X(3872) is a $qc \\bar q \\bar c$ tetraquark and using its mass as input, we perform a schematic study of the masses of possible heavy tetraquarks using the color-magnetic interaction with the flavor symmetry breaking corrections.

  6. Vapor pressure and thermodynamics of beryllium carbide

    International Nuclear Information System (INIS)

    Rinehart, G.H.; Behrens, R.G.

    1980-01-01

    The vapor pressure of beryllium carbide has been measured over the temperature range 1388 to 1763 K using Knudsen-effusion mass spectrometry. Vaporization occurs incongruently according to the reaction Be 2 C(s) = 2Be(g) + C(s). The equilibrium vapor pressure above the mixture of Be 2 C and C over the experimental temperature range is (R/J K -1 mol -1 )ln(p/Pa) = -(3.610 +- 0.009) x 10 5 (K/T) + (221.43 +- 1.06). The third-law enthalpy change for the above reaction obtained from the present vapor pressures is ΔH 0 (298.15 K) = (740.5 +- 0.1) kJ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (732.0 +- 1.8) kJ mol -1 . The enthalpy of formation for Be 2 C(s) calculated from the present third-law vaporization enthalpy and the enthalpy of formation of Be(g) is ΔH 0 sub(f)(298.15 K) = -(92.5 +- 15.7) kJ mol -1 . (author)

  7. Microstructural study of hydrogen-implanted beryllium

    International Nuclear Information System (INIS)

    Vagin, S.P.; Chakrov, P.V.; Utkelbayev, B.D.

    1998-01-01

    Hot pressed beryllium (TGP-56) was implanted by 650 keV H + ions to a dose of 6.7 x 10 16 cm -2 at a temperature below 50 C. TEM examinations were performed both at as-irradiated specimens and after post-irradiation annealings at 400-600 C for 15 min. After irradiation, a high density of ''black dot'' defects with a size of about 5 nm is observed in the straggling zone, some of which are resolved as small dislocation loops. During post-irradiation annealing, growth of dislocation loops and oriented gas-filled bubbles are observed in the damaged zone. The bubbles are strongly elongated along the left angle 0001 right angle direction, and their sidelong facts lie along {1-100} planes. These facets have a regular ''toothed'' surface with ''tooth'' facets on {1-100} planes. The size of the ''teeth'' increases with annealing temperature, as well as the total volume of bubbles, with their length growing faster than their width. (orig.)

  8. Beryllium application in ITER plasma facing components

    International Nuclear Information System (INIS)

    Raffray, A.R.; Federici, G.; Barabash, V.; Cardella, A.; Jakeman, R.; Ioki, K.; Janeschitz, G.; Parker, R.; Tivey, R.; Pacher, H.D.; Wu, C.H.; Bartels, H.W.

    1997-01-01

    Beryllium is a candidate armour material for the in-vessel components of the International Thermonuclear Experimental Reactor (ITER), namely the primary first wall, the limiter, the baffle and the divertor. However, a number of issues arising from the performance requirements of the ITER plasma facing components (PFCs) must be addressed to better assess the attractiveness of Be as armour for these different components. These issues include heat loading limits arising from temperature and stress constraints under steady state conditions, armour lifetime including the effects of sputtering erosion as well as vaporisation and loss of melt during disruption events, tritium retention and permeation, and chemical hazards, in particular with respect to potential Be/steam reaction. Other issues such as fabrication and the possibility of in-situ repair are not performance-dependent but have an important impact on the overall assessment of Be as PFC armour. This paper describes the present view on Be application for ITER PFCs. The key issues are discussed including an assessment of the current level of understanding based on analysis and experimental data; and on-going activities as part of the ITER EDA R and D program are highlighted. (orig.)

  9. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  10. Beryllium parabolic refractive x-ray lenses

    International Nuclear Information System (INIS)

    Lengeler, B.; Schroer, C.G.; Kuhlmann, M.; Benner, B.; Guenzler, T.F.; Kurapova, O.; Somogyi, A.; Snigirev, A.; Snigireva, I.

    2004-01-01

    Parabolic refractive x-ray lenses are novel optical components for the hard x-ray range from about 5 keV to about 120 keV. They focus in both directions. They are compact, robust, and easy to align and to operate. They can be used like glass lenses are used for visible light, the main difference being that the numerical aperture N.A. is much smaller than 1 (of order 10-4 to 10-3). Their main applications are in micro- and nanofocusing, in imaging by absorption and phase contrast and in fluorescence mode. In combination with tomography they allow for 3-dimensional imaging of opaque media with submicrometer resolution. Finally, they can be used in speckle spectroscopy by means of coherent x-ray scattering. Beryllium as lens material strongly enhances the transmission and the field of view as compared to aluminium. With increased N.A. the lateral resolution is also considerably improved with Be lenses. References to a number of applications are given

  11. Validation of cleaning method for various parts fabricated at a Beryllium facility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cynthia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic beryllium disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.

  12. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    International Nuclear Information System (INIS)

    Reynolds, T.D.; Easterling, S.D.

    2010-01-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  13. Beryllium processing technology review for applications in plasma-facing components

    International Nuclear Information System (INIS)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included

  14. Beryllium processing technology review for applications in plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  15. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.

    1995-01-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H 2 gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m 2

  16. Triply heavy tetraquark states with the $QQ\\bar{Q}\\bar{q}$ configuration

    OpenAIRE

    Chen, Kan; Liu, Xiang; Wu, Jing; Liu, Yan-Rui; Zhu, Shi-Lin

    2016-01-01

    In the framework of the color-magnetic interaction, we systematically investigate the mass splittings of the $QQ\\bar{Q}\\bar{q}$ tetraquark states and estimated their rough masses in this work. These systems include the explicitly exotic states $cc\\bar{b}\\bar{q}$ and $bb\\bar{c}\\bar{q}$ and the hidden exotic states $cc\\bar{c}\\bar{q}$, $cb\\bar{b}\\bar{q}$, $bc\\bar{c}\\bar{q}$, and $bb\\bar{b}\\bar{q}$. If a state around the estimated mass region could be observed, its nature as a genuine tetraquark ...

  17. High heat flux tests on beryllium and beryllium-copper joints

    International Nuclear Information System (INIS)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.

    1997-01-01

    A large test program has been set up to evaluate the performance of beryllium as a plasma facing material for the divertor in thermonuclear fusion devices. Simulation of steady state heat loads of 5 MWm -2 and above on actively cooled divertor modules, and off-normal plasma conditions with energy densities in the range 1-7 MJm -2 , have been investigated. Thermal shock tests were carried out with the ITER reference grade S65-C and several Russian grades of beryllium. At incident energies up to 7 MJm -2 the best erosion behaviour is observed for S65-C and for TGP-56. Steady state heating tests with actively cooled Be/Cu mock-ups were performed at incident powers of up to 5.8 MWm -2 . All samples investigated in these tests did not show any indications of failure. A Be/Cu mock-ups with Incusil braze was loaded in thermal fatigue up to 500 cycles at an incident power of 4.8 MWm -2 . Up to the end of the experiment no temperature increase of the surface and no indication of failure was observed. (orig.)

  18. Spectrographic determination of beryllium in the atmosphere; Dosage spectrographique du beryllium dans l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Soudain, G; Morawek, T [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Since the apparatus for continuous determination of beryllium is not yet perfect, a discontinuous method has been developed. The air to be analysed is filtered, and the dust laden filter is dissolved in a mixture of sulphuric and nitric acid. The pH and the conductivity of the solution obtained were adjusted to standard values, and it was then analysed spectro-graphically by the rotating sector method. Up to 0.01 x 10{sup 6} of Be per cm{sup 3} of solution can be detected. The precision is of the order of 10 per cent. (author) [French] Les appareils de dosage du beryllium en continu n'etant pas encore suffisamment au point, on a elabore une methode discontinue. L'air a analyser est filtre et le filtre charge de poussieres est mis en solution par une attaque sulfo-nitrique. La solution obtenue est normalisee par ajustage de son PH et de sa conductivite puis analysee spectrographiquement par la methode du disque tournant. On peut detecter jusqu'a 0,01.10{sup 6} de Be par cm{sup 3} de solution. La precision est de l'ordre de 10 pour cent. (auteur)

  19. Erosion of beryllium under ITER – Relevant transient plasma loads

    International Nuclear Information System (INIS)

    Kupriyanov, I.B.; Nikolaev, G.N.; Kurbatova, L.A.; Porezanov, N.P.; Podkovyrov, V.L.; Muzichenko, A.D.; Zhitlukhin, A.M.; Gervash, A.A.; Safronov, V.M.

    2015-01-01

    Highlights: • We study the erosion, mass loss/gain and surface structure evolution of Be/CuCrZr mock-ups, armored with beryllium of TGP-56FW grade after irradiation by deuterium plasma heat load of 0.5 MJ/m 2 at 250 °C and 500 °C. • Beryllium mass loss/erosion under plasma heat load at 250 °C is rather small (no more than 0.2 g/m 2 shot and 0.11 μm/shot, correspondingly, after 40 shots) and tends to decrease with increasing number of shots. • Beryllium mass loss/erosion under plasma heat load at 500 °C is much higher (∼2.3 g/m 2 shot and 1.2 μm/shot, correspondingly, after 10 shot) and tends to decrease with increasing the number of shots (∼0.26 g/m 2 pulse and 0.14 μm/shot, correspondingly, after 100 shot). • Beryllium erosion value derived from the measurements of profile of irradiated surface is much higher than erosion value derived from mass loss data. - Abstract: Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2–0.5 MJ/m 2 at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology

  20. Erosion of beryllium under ITER – Relevant transient plasma loads

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B., E-mail: igkupr@gmail.com [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Nikolaev, G.N.; Kurbatova, L.A.; Porezanov, N.P. [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D.; Zhitlukhin, A.M. [TRINITI, Troitsk, Moscow reg. (Russian Federation); Gervash, A.A. [Efremov Research Institute, S-Peterburg (Russian Federation); Safronov, V.M. [Project Center of ITER, Moscow (Russian Federation)

    2015-08-15

    Highlights: • We study the erosion, mass loss/gain and surface structure evolution of Be/CuCrZr mock-ups, armored with beryllium of TGP-56FW grade after irradiation by deuterium plasma heat load of 0.5 MJ/m{sup 2} at 250 °C and 500 °C. • Beryllium mass loss/erosion under plasma heat load at 250 °C is rather small (no more than 0.2 g/m{sup 2} shot and 0.11 μm/shot, correspondingly, after 40 shots) and tends to decrease with increasing number of shots. • Beryllium mass loss/erosion under plasma heat load at 500 °C is much higher (∼2.3 g/m{sup 2} shot and 1.2 μm/shot, correspondingly, after 10 shot) and tends to decrease with increasing the number of shots (∼0.26 g/m{sup 2} pulse and 0.14 μm/shot, correspondingly, after 100 shot). • Beryllium erosion value derived from the measurements of profile of irradiated surface is much higher than erosion value derived from mass loss data. - Abstract: Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2–0.5 MJ/m{sup 2} at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  1. Preparation of copper-beryllium alloys from Indian beryl

    International Nuclear Information System (INIS)

    Paul, C.M.; Sharma, B.P.; Subba Rao, K.S.; Rajadhyaksha, M.G.; Sundaram, C.V.

    1975-01-01

    The report presents the results of laboratory scale investigations on the preparation of copper-beryllium and aluminium-beryllium master alloys starting from Indian beryl and adopting the fluoride process. The flow-sheet involves : (1) conversion of the Be-values in beryl into water soluble sodium beryllium fluoride (2) preparation of beryllium hydroxide by alkali treatment of aqueous Na 2 BeF 4 (3) conversion of Be(OH) 2 to (NH 4 ) 2 BeF 4 by treatment with NH 4 HF 2 (4) thermal decomposition of (NH 4 ) 2 BeF 4 to BeF 2 and (5) magnesium reduction of BeF 2 (with the addition of copper/aluminium) to obtain beryllium alloys. The method has been successfully employed for the preparation of Cu-Be master alloys containing about 8% Be and free of Mg on a 200 gm scale. An overall Be-recovery of about 80% has been achieved. Al-8% Be master alloys have also been prepared by this method. Toxicity and health hazards associated with Be are discussed and the steps taken to ensure safe handling of Be are described. (author)

  2. Compatibility of stainless steels and lithiated ceramics with beryllium

    Science.gov (United States)

    Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    The introduction of beryllium as a neutron multiplier in ceramic blankets of thermonuclear fusion reactors may give rise to the following compatibility problems: (i) oxidation of Be by ceramics (lithium aluminate and silicates) or by water vapour; (ii) interaction between beryllium and austenitic and martensitic steels. The studies were done in contact tests under vacuum and in tests under wet sweeping helium. The contact tests under vacuum have revealed that the interaction of beryllium with ceramics seems to be low up to 700°C, the interaction of beryllium with steels is significant and is characterized by the formation of a diffusion layer and of a brittle Be-Fe-Ni compound. With type 316 L austenitic steel, this interaction appears quite large at 600°C whereas it is noticeable only at 700°C with martensitic steels. The experiments carried out with sweeping wet helium at 600°C have evidenced a slight oxidation of beryllium due to water vapour which can be enhanced in the front of uncompletely dehydrated ceramics.

  3. Preparation of copper-beryllium alloys from Indian beryl

    International Nuclear Information System (INIS)

    Paul, C.M.; Sharma, B.P.; Subba Rao, K.S.; Rajadhyaksha, M.G.; Sundaram, C.V.

    1975-01-01

    The paper presents the results of laboratory-scale investigations on the preparation of copper-beryllium and aluminium beryllium master alloys starting from Indian beryl and adopting the fluoride process. The flowsheet involves: (1) conversion of the Be-values in beryl into water soluble sodium beryllium fluoride, (2) preparation of beryllium hydroxide by alkali treatment of aqueous Na 2 BeF 4 (3) conversion of Be(OH) 2 to (NH 4 ) 2 BeF 4 by treatment with NH 4 HF 2 (4) thermal decomposition of (NH 4 ) 2 BeF 4 to BeF 2 and (5) magnesium reduction of BeF 2 (without/with) the addition of copper/aluminium to obtain beryllium metal/alloys. The method has been successfully employed for the preparation of Cu-Be master alloys containing about 8% Be and free of Mg on a 200 gm scale. A1-80% Be master alloys have also been prepared by this method. Toxicity and health hazards associated with Be are discussed and the steps taken to ensure safe handling of Be are described. (author)

  4. Erosion of beryllium under ITER - Relevant transient plasma loads

    Science.gov (United States)

    Kupriyanov, I. B.; Nikolaev, G. N.; Kurbatova, L. A.; Porezanov, N. P.; Podkovyrov, V. L.; Muzichenko, A. D.; Zhitlukhin, A. M.; Gervash, A. A.; Safronov, V. M.

    2015-08-01

    Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2-0.5 MJ/m2 at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  5. Structure/property relationships in multipass GMA welding of beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  6. The results of medical surveillance of beryllium production personnel

    International Nuclear Information System (INIS)

    Koviazin, A.; Urikh, A.; Kovianzina, L.

    2004-01-01

    The report presents results of surveillance of 1836 workers of beryllium production of Ulba Metallurgical Plant JSC with the acute and chronic forms of occupation diseases for 52 years of its operation. The dependence of acute and chronic occupation lesions on the protection degree is shown. It has been found out that, the risk of getting an occupation disease increases sharply at the moments of experimental works and at the time of reconstruction and some other extreme conditions in the production, that is supported by fixed lesions of eye mucous coat, skin and lung lesions. In this case, the readiness of people for their work in deleterious conditions and their personal responsibility for following the regulations of safety occupational standards plays a definite role. Therefore, the issues of protection are of paramount importance in prophylaxis both of acute and chronic exposure to beryllium. An influence of duration of service and occupation on chronic beryllium diseases is shown. A parallel between the lung beryllium disease and skin lesions by insoluble beryllium compounds is drawn for the first time. (author)

  7. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  8. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    International Nuclear Information System (INIS)

    Ulrickson, M.A.; Manly, W.D.; Dombrowski, D.E.

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers

  9. Dynamics of a stellar bar

    International Nuclear Information System (INIS)

    Miller, R.H.; Smith, B.F.

    1979-01-01

    The dynamical properties of a prolate bar have been studied by means of a three-dimensional computer model. The bar pattern rotates in the sense of the total angular momentum. The mean particle motion is a rapid streaming in the direction of pattern rotation as seen from a frame that rotates with the bar. Rotation rates that would be inferred from observation are significantly (2--3 times) faster than the pattern rotation speed. Velocity dispersions are anisotropic with the largest component along the bar. Particles oscillate in the bar potential significantly faster than pattern rotation: typical oscillation frequencies are around ω/sub z/=ω/sub y/=6Ω and ω/sub x/=3Ω where z is the direction of angular momentum, x lies along the bar, and Ω is the pattern angular velocity. About 25% of the star orbits are near 2:2:1 resonance with the slow motion along the bar. Particle motion is highly ordered in the bar:the ratio t=T/sub mean//vertical-barWvertical-bar is 0.21--0.24. Observable properties are described; where comparisons can be made, observable properties are in agreement with observations of brightness contours, velocity fields, and velocity dispersions. The bar has nearly exponential density profiles

  10. Experimental studies and modeling of processes of hydrogen isotopes interaction with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibaeva, I.L.; Chikhray, Y.V.; Romanenko, O.G.; Klepikov, A.Kh.; Shestakov, V.P.; Kulsartov, T.V. [Science Research Inst. of Experimental and Theoretical Physics of Kazakh State Univ., Almaty (Kazakhstan); Kenzhin, E.A.

    1998-01-01

    The objective of this work was to clarify the surface beryllium oxide influence on hydrogen-beryllium interaction characteristics. Analysis of experimental data and modeling of processes of hydrogen isotopes accumulation, diffusion and release from neutron irradiated beryllium was used to achieve this purpose as well as the investigations of the changes of beryllium surface element composition being treated by H{sup +} and Ar{sup +} plasma glowing discharge. (author)

  11. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    Johnson, J.S.

    1978-01-01

    This detailed report on Lawrence Livermore Laboratory's control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is funcioning effectively

  12. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    Johnson, J.S.

    1980-01-01

    This report on the control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is functioning effectively

  13. The Effect Of Beryllium Interaction With Fast Neutrons On the Reactivity Of ETRR-2 Research Reactor

    International Nuclear Information System (INIS)

    Aziz, M.; El Messiry, A.M.

    2000-01-01

    The effect of beryllium interactions with fast neutrons is studied for Etrr 2 research reactors. Isotope build up inside beryllium blocks is calculated under different irradiation times. a new model for the Etrr 2 research reactor is designed using MCNP code to calculate the reactivity and flux change of the reactor due to beryllium poison

  14. The uses and adverse effects of beryllium on health

    DEFF Research Database (Denmark)

    Cooper, Ross G.; Harrison, Adrian Paul

    2009-01-01

    published in sources unobtainable through requests at the British Library, and some had no impact factor and were excluded. Conclusion: Beryllium has some useful but undoubtedly harmful effects on health and well-being. Measures needed to be taken to prevent hazardous exposure to this element, making its......Context: This review describes the health effects of beryllium exposure in the workplace and the environment. Aim: To collate information on the consequences of occupational and environmental exposure to beryllium on physiological function and well being. Materials and Methods: The criteria used...... tabulated. Years 2001-10 gave the greatest match (45.9%) for methodological parameters, followed by 27.71% for 1991-2000. Years 1971-80 and 1981-90 were not significantly different in the information published and available whereas years 1951-1960 showed a lack of suitable articles. Some articles were...

  15. On modeling of beryllium molten depths in simulated plasma disruptions

    International Nuclear Information System (INIS)

    Tsotridis, G.; Rother, H.

    1996-01-01

    Plasma-facing components in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions. The influence of high heat fluxes on the depth of heat-affected zones of pure beryllium metal and beryllium containing very low levels of surface active impurities is studied by using a two-dimensional transient computer model that solves the equations of motion and energy. Results are presented for a range of energy densities and disruption times. Under certain conditions, impurities, through their effect on surface tension, create convective flows and hence influence the flow intensities and the resulting depths of the beryllium molten layers during plasma disruptions. The calculated depths of the molten layers are also compared with other mathematical models that are based on the assumption that heat is transported through the material by conduction only. 32 refs., 6 figs., 1 tab

  16. On kinetics of paramagnetic radiation defects accumulation in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petykhov, Yu.V.

    1999-01-01

    Results of paramagnetic radiation defects concentration dependence study in beryllium ceramics from gamma-irradiation dose ( 60 Co) within interval 0-100 Mrem are cited. Obtained dose dependence has form of accumulation curve with saturation typical of for majority of solids (crystals, different polymers, organic substances and others) , in which under irradiation occur not only formation of paramagnetic radiation defects, but its destruction due to recombination and interaction with radiation fields. Analysis of accumulation curve by the method of distant asymptotics allows to determine that observed in gamma-irradiated beryllium ceramics double line of electron spin resonance is forming of two types of paramagnetic radiation defects. It was defined, that sum paramagnetic characteristics of beryllium ceramics within 1-100 Mrad gamma- irradiation dose field change insignificantly and define from first type of paramagnetic radiation defects

  17. Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant

    Science.gov (United States)

    Guerrero, Carlo L.; Perlado, Jose M.

    2016-03-01

    In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.

  18. Extraction of beryllium sulfate by a long chain amine

    International Nuclear Information System (INIS)

    Etaix, E.S.

    1968-01-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [fr

  19. Corrosion of beryllium exposed to celotex and water

    International Nuclear Information System (INIS)

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-01-01

    Celotex is a commercial rigid cellulose fiberboard product primarily used in the building construction industry. Currently celotex is being used as a packing material in AL-R8 containers. Ion chromatography of celotex packing material at Lawrence Livermore National Laboratory (LLNL) has indicated that this material contains aggressive anions, including chloride, which may accelerate corrosion. It is well known that beryllium is susceptible to pitting corrosion when exposed to chloride containing environments. Levy noted pitting in beryllium at the open circuit potential when exposed to 0.1 M NaCl solution. This investigation attempts to evaluate the potential risk of accelerated beryllium corrosion from celotex and water which may occur naturally when celotex dust comes into contact with moisture from the atmosphere

  20. Ukola Club. Bar americano

    Directory of Open Access Journals (Sweden)

    Azpiazu, J. R.

    1961-03-01

    Full Text Available En la calle de Serrano, aprovechando un semisótano dedicado a otro negocio anteriormente, se ha instalado un bar americano, de cuyo interior ofrecemos algunos pormenores. Se han cuidado, especialmente, las condiciones acústicas, resueltas por medio de un techo de escayola perforada, con vitrofib en su parte superior, y paredes de madera, que contribuyen a darle un ambiente cálido y acogedor. El soporte de hierro laminado existente en el centro del local, cuya supresión hubiera sido costosa, se ha revestido con lajas de mármol que le convierten en un elemento decorativo.

  1. Neutron irradiation behavior of ITER candidate beryllium grades

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.

    1998-01-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  2. Preparation of a sinterable beryllium oxide through decomposition of beryllium hydroxide (1963); Preparation d'un oxyde de beryllium frittable par decomposition de l'hydiloxyde (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    In the course of the present study, we have attempted to precise the factors which among the ones effective in the course of the preparation of the beryllium hydroxide and oxide and during the sintering have an influence on the final result: the density and homogeneity of the sintered body. Of the several varieties of hydroxides precipitated from a sulfate solution the {beta}-hydroxide only is always contaminated with beryllium sulfate and cannot be purified even by thorough washing. We noticed that those varieties of the hydroxide (gel, {alpha}, {beta}) have different decomposition rates; this behaviour is used to identify and even to dose the different species in ({alpha}, {beta}) mixtures. The various hydroxides transmit to the resulting oxides the shape they had when precipitated. Accordingly the history of the oxide is revealed by its behaviour during its fabrication and sintering. By comparing the results of the sintering operation with the various measurements performed on the oxide powders we are led to the conclusion that an oxide obtained from beryllium hydroxide is sinterable under vacuum if the following conditions are fulfilled: the particle size must lie between 0.1 and 0.2 {mu} and the BeSO{sub 4} content of the powder must be less than 0.25 per cent wt (expressed as SO{sub 3}/BeO). The best fitting is obtained with the oxide issued from an {alpha}-hydroxide precipitated as very small aggregates and with a low sulfur-content. We have observed that this is also the case for the oxide obtained by direct calcination of beryllium sulfate. (author) [French] Au cours de cette etude, nous avons cherche a preciser les facteurs qui, intervenant tout au long de la preparation de l'hydroxyde, puis de l'oxyde de beryllium et enfin du frittage, peuvent avoir une influence sur le resultat final: la densite et l'homogeneite du fritte. Parmi tous les hydroxydes precipites d'une solution de sulfate, seul l'hydroxyde {beta} est toujours fortement pollue par le sulfate

  3. Modeling tritium processes in plasma-facing beryllium

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Dolan, T.J.; Mulock, M.J.

    1995-01-01

    In this paper we present techniques and recommended parameters for modeling tritium implantation, trapping and release, and permeation, in beryllium-clad structures adjacent to the plasma. Among the features that should be considered are the effects of surface films, the mobility of beryllium through those films, damage caused by ion implantation, especially in regions where pitting may be expected, and bubble formation. Tritium transport parameters recommended are based on fits with experimental data and available theory. Estimates of inventories in ITER using these parameters are also given. 31 refs., 2 figs., 1 tab

  4. Characterization of beryllium foil produced by hot rolling

    International Nuclear Information System (INIS)

    Wittenauer, J.; Nieh, T.G.; Waychunas, G.

    1992-01-01

    Beryllium foil is important for a number of aerospace applications including honeycomb structures and metal-matrix composites. In this study, a method of producing beryllium foil directly from powder or flake is demonstrated. A variety of foils were produced in the thickness range 90-300 μm, free from defects such as pinholes and excessive surface roughness, and exhibiting sufficient formability for honeycomb manufacture. Foil produced directly from powder or flake exhibits crystallographic texture, microstructure, and formability equivalent to foil produced from more massive precursors. (Author)

  5. CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Ekechukwu, A

    2009-04-20

    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  6. Factors influencing the creep strength of hot pressed beryllium

    International Nuclear Information System (INIS)

    Webster, D.; Crooks, D.D.

    1975-01-01

    The parameters controlling the creep strength of hot pressed beryllium block have been determined. Creep strength was improved by a high initial dislocation density, a coarse grain size, and a low impurity content. The impurities most detrimental to creep strength were found to be aluminum, magnesium, and silicon. A uniform distribution of BeO was found to give creep strength which was inferior to a grain boundary distribution. The creep strength of very high purity, hot isostatically pressed beryllium was found to compare favorably with that of other more commonly used high temperature metals

  7. Beryllium for first wall, limiter and divertor - a literature survey

    International Nuclear Information System (INIS)

    Schuster, A.; Smid, I.; Kny, E.

    1994-01-01

    A survey of the topical literature on beryllium as material for plasma interactive components in future fusion devices is given. The radiation damage which can be expected as a result of the neutron irradiation from ignited tokamak plasma is discussed. The response to high heat fluxes and simulation experiments in different test facilities are referred. Another focus will be on the material properties literature data, on joining techniques and on compatibility with other materials. The performance of a beryllium coated first wall at JET is reported. Some relevant literature on other candidate materials for plasma interactive components shall be considered

  8. Method for removal of beryllium contamination from an article

    Science.gov (United States)

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  9. Characterization of Beryllium Windows for Coherent X-ray Optics

    International Nuclear Information System (INIS)

    Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya

    2007-01-01

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications

  10. Measurements of fusion neutron multiplication in spherical beryllium shells

    International Nuclear Information System (INIS)

    Giese, H.; Kappler, F.; Tayama, R.; Moellendorff, U. von; Alevra, A.; Klein, H.

    1996-01-01

    New results of spherical-shell transmission measurements with 14-MeV neutrons on pure beryllium shells up to 17 cm thick are reported. The spectral flux above 3 MeV was measured using a liquid scintillation detector. At 17 cm thickness, also the total neutron multiplication was measured using a Bonner sphere system. The results agree well with calculations using beryllium nuclear data from the EFF-1 or the ENDF/B-Vi library. (author). 23 refs, 4 figs, 1 tab

  11. Bar piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš

    2013-07-01

    Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.

  12. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E S [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  13. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  14. Benchmark CCSD(T) and DFT study of binding energies in Be7 - 12: in search of reliable DFT functional for beryllium clusters

    Science.gov (United States)

    Labanc, Daniel; Šulka, Martin; Pitoňák, Michal; Černušák, Ivan; Urban, Miroslav; Neogrády, Pavel

    2018-05-01

    We present a computational study of the stability of small homonuclear beryllium clusters Be7 - 12 in singlet electronic states. Our predictions are based on highly correlated CCSD(T) coupled cluster calculations. Basis set convergence towards the complete basis set limit as well as the role of the 1s core electron correlation are carefully examined. Our CCSD(T) data for binding energies of Be7 - 12 clusters serve as a benchmark for performance assessment of several density functional theory (DFT) methods frequently used in beryllium cluster chemistry. We observe that, from Be10 clusters on, the deviation from CCSD(T) benchmarks is stable with respect to size, and fluctuating within 0.02 eV error bar for most examined functionals. This opens up the possibility of scaling the DFT binding energies for large Be clusters using CCSD(T) benchmark values for smaller clusters. We also tried to find analogies between the performance of DFT functionals for Be clusters and for the valence-isoelectronic Mg clusters investigated recently in Truhlar's group. We conclude that it is difficult to find DFT functionals that perform reasonably well for both beryllium and magnesium clusters. Out of 12 functionals examined, only the M06-2X functional gives reasonably accurate and balanced binding energies for both Be and Mg clusters.

  15. K-bar-mesic nuclei

    International Nuclear Information System (INIS)

    Dote, Akinobu; Akaishi, Yoshinori; Yamazaki, Toshimitsu

    2005-01-01

    New nuclei 'K-bar-Mesic Nuclei' having the strangeness are described. At first it is shown that the strongly attractive nature of K-bar N interaction is reasoned inductively from consideration of the relation between Kaonic hydrogen atom and Λ (1405) which is an excited state of hyperon Λ. The K-bar N interactions are reviewed and summarized into three categories: 1. Phenomenological approach with density dependent K-bar N interaction (DD), relativistic mean field (RMF) approach, and hybrid of them (RMF+DD). 2. Boson exchange model. 3. Chiral SU(3) theory. The investigation of some light K-bar-nuclei by Akaishi and Yamazaki using phenomenological K-bar N interaction is explained in detail. Studies by antisymmetrized molecular dynamics (AMD) approach are also presented. From these theoretical researches, the following feature of K-bar-mesic nuclei are revealed: 1) Ground state is discrete and bound by 100 MeV or more. 2) Density is very high in side the K-bar-mesic nuclei. 3) Strange structures develop which are not seen in ordinary nuclei. Finally some recent experiments to explore K-bar-mesic nuclei are reviewed. (S. Funahashi)

  16. Barred spiral structure of galaxies

    International Nuclear Information System (INIS)

    Chen, Z.; Weng, s.; Xu, M.

    1982-01-01

    Observational data indicate the grand design of spiral or barred spiral structure in disk galaxies. The problem of spiral structure has been thoroughly investigated by C. C. Lin and his collaborators, but yet the problem of barred spiral structure has not been investigated systematically, although much work has been done, such as in Ref. 3--7. Using the gasdynamic model for galaxies and a method of integral transform presented in Ref. 1, we investigated the barred spiral structure and obtained an analytical solution. It gives the large-scale pattern of barred-spirals, which is in fairly good agreement with observational data

  17. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.A.; Cowgill, D.F.; Snead, L.L.

    1993-01-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1--5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits

  18. The development of beryllium plasma spray technology for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Elliott, K.E.; Hollis, K.J.; Watson, R.D.

    1999-01-01

    Over the past five years, four international parties, which include the European Communities, Japan, the Russian Federation and the United States, have been collaborating on the design and development of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. During the ITER Engineering Design Activity (EDA), beryllium plasma spray technology was investigated by Los Alamos National Laboratory as a method for fabricating and repairing and the beryllium first wall surface of the ITER tokamak. Significant progress has been made in developing beryllium plasma spraying technology for this application. Information will be presented on the research performed to improve the thermal properties of plasma sprayed beryllium coatings and a method that was developed for cleaning and preparing the surface of beryllium prior to depositing plasma sprayed beryllium coatings. Results of high heat flux testing of the beryllium coatings using electron beam simulated ITER conditions will also be presented

  19. Reducing the cost of S-65C grade beryllium for ITER first wall applications

    International Nuclear Information System (INIS)

    Kaczynski, D.; Sato, K.; Savchuk, V.V.; Shestakov, V.P.

    2004-01-01

    Beryllium is the current material of choice for plasma-facing components in ITER. The present design is for 10 mm thick beryllium tiles bonded to an actively cooled copper substrate. Brush Wellman grade S65C beryllium is preferred grade off beryllium for these tiles. S65C has the best resistance to low-cycle thermal fatigue than any other beryllium grad in the world. S65C grade beryllium has been successfully deployed in fusion reactors for more than two decades, most recently in the JET reactor. This paper will detail a supply chain to produce the most cost-effective S65C plasma facing components for ITER. This paper will also propose some future work too demonstrate the best technology for bonding beryllium to copper. (author)

  20. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.W.; Cowgill, D.F.

    1993-01-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1-5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits. (orig.)

  1. Movement of liquid beryllium during melt events in JET with ITER-like wall

    International Nuclear Information System (INIS)

    Sergienko, G; Huber, A; Brezinsek, S; Coenen, J W; Mertens, Ph; Philipps, V; Samm, U; Arnoux, G; Matthews, G F; Nunes, I; Riccardo, V; Sirinelli, A; Devaux, S

    2014-01-01

    The ITER-like wall recently installed in JET comprises solid beryllium limiters and a combination of bulk tungsten and tungsten-coated carbon fibre composite divertor tiles without active cooling. During a beryllium power handling qualification experiment performed in limiter configuration with 5 MW neutral beam injection input power, accidental beryllium melt events, melt layer motion and splashing were observed locally on a few beryllium limiters in the plasma contact areas. The Lorentz force is responsible for the observed melt layer movement. To move liquid beryllium against the gravity force, the current flowing from the plasma perpendicularly to the limiter surface must be higher than 6 kA m −2 . The thermo-emission current at the melting point of beryllium is much lower. The upward motion of the liquid beryllium against gravity can be due to a combination of the Lorentz force from the secondary electron emission and plasma pressure force. (paper)

  2. Status of the beryllium replacement project

    Energy Technology Data Exchange (ETDEWEB)

    Dimayuga, I. [Atomic Energy of Canada, Chalk River, Ontario (Canada); Corcoran, E. [Royal Military College of Canada, Kingston, Ontario (Canada); Daniels, T. [Ontario Power Generation, Pickering, Ontario (Canada); Harmsen, J. [Cameco Fuel Manufacturing Inc., Port Hope, Ontario (Canada); Lu, E. [Bruce Power, Tiverton, Ontario (Canada); Onderwater, T.; Palleck, S. [General Electric- Hitachi, Wilmington, North Carolina (United States); Pant, A. [Cameco Fuel Manufacturing Inc., Port Hope, Ontario (Canada)

    2013-07-01

    Currently, beryllium (Be) is used as the filler metal for brazing appendages on the sheaths of CANDU® fuel elements. Because of its toxicity, occupational exposure limits for Be are being reduced to very low levels, resulting in significant challenges to CANDU® fuel fabricators. The CANDU® Owners Group (COG) initiated a test program to identify a filler material to replace Be and confirm that the brazed joints meet the established technical requirements for CANDU® fuel. Together with eliminating health risks associated with the use of Be, the industry needs to be assured that continuation of fuel supply remains unaffected and that fuel fabrication processes continue to comply with health and safety standards. A literature survey of studies on brazing and joining of Zircaloy identified potential filler materials that can meet or exceed existing design requirements of the brazed joint, including the required mechanical, microstructural, corrosion resistance, and irradiation properties equivalent to those obtained with Be as braze material. Candidate materials were evaluated against several criteria, including manufacturability, melting point, wettability, mechanical properties, corrosion resistance, effect on neutron economy, potential activation products, and interaction with fuel channels and other related disciplines. This exercise resulted in a list of promising candidate materials that were recommended for the first phase of testing. These materials include stainless steel (304 or 316), Al-Si, Ni-P, and Zr-Mn alloys. To allow a CANDU® utility have sufficient confidence in considering implementation of a different braze filler material, a Be Replacement Test Program, involving out-reactor and in-reactor tests, is being undertaken as a collaborative endeavour by the Canadian nuclear industry. The out-reactor tests consist of: a constructability assessment to determine the material’s suitability with current fuel manufacturing methods; evaluation of

  3. Irradiation effects on aluminium and beryllium

    International Nuclear Information System (INIS)

    Bieth, M.

    1992-01-01

    ductility of 1.6%. Besides, due to the effects of embrittlement and swelling induced by irradiation, the HFR beryllium reflector elements had to be replaced after more than 25 years of operation. Operational and practical experiences with these reflector elements are commented, as well as main engineering features of the new reflector elements: upper-end fittings of both filler element and insert in stainless steel, no radially drilled holes and no roll pins

  4. Beryllium research on FFHR molten salt blanket

    International Nuclear Information System (INIS)

    Terai, T.; Tanaka, S.; Sze, D.-K.

    2000-01-01

    Force-free helical reactor, FFHR, is a demo-relevant heliotron-type D-T fusion reactor based on the great amount of R and D results obtained in the LHD project. Since 1993, collaboration works have made great progress in design studies of FFHR with standing on the major advantage of current-less steady operation with no dangerous plasma disruptions. There are two types of reference designs, FFHR-1 and FFHR-2, where molten Flibe (LiF-BeF2) is utilized as tritium breeder and coolant. In this paper, we present the outline of FFHR blanket design and some related R and D topics focusing on Be utilization. Beryllium is used as a neutron multiplier in the design and Be pebbles are placed in the front part of the tritium breeding zone. In a Flibe blanket, HF (TF) generated due to nuclear transmutation will be a problem because of its corrosive property. Though nickel-based alloys are thought to be intact in such a corrosive environment, FFHR blanket design does not adopt the alloys because of their induced radioactivity. The present candidate materials for the structure are low-activated ferritic steel (JLF-1), V-4Cr-4Ti, etc. They are capable to be corroded by HF in the operation condition, and Be is expected to work as a reducing agent in the system as well. Whether Be pebbles placed in a Flibe flow can work well or not is a very important matter. From this point, Be solubility in Flibe, reaction rate of the Redox reaction with TF in the liquid and on the surface of Be pebbles under irradiation, flowing behavior of Flibe through a Be pebble bed, etc. should be investigated. In 1997, in order to establish more practical and new data bases for advanced design works, we started a collaboration work of R and D on blanket engineering, where the Be research above mentioned is included. Preliminary dipping-test of Be sheets and in-situ tritium release experiment from Flibe with Be sheets have got started. (orig.)

  5. Codeposition of deuterium ions with beryllium oxide at elevated temperatures

    CERN Document Server

    Markin, A V; Gorodetsky, A E; Negodaev, M A; Rozhanskii, N V; Scaffidi-Argentina, F; Werle, H; Wu, C H; Zalavutdinov, R K; Zakharov, A P

    2000-01-01

    Deuterium-loaded BeO films were produced by sputtering the beryllium target with 10 keV Ne ions in D sub 2 gas at a pressure of approximately 1 Pa. The sputtered beryllium reacts - on the substrate surface - with the residual oxygen, thus forming a beryllium oxide layer. Biasing the substrate negatively with respect to the target provides the simultaneous bombardment of the growing film surface with D ions formed by Ne-D sub 2 collisions. Substrate potential governs the maximum energy of ions striking the growing film surface while its size governs the flux density. According to X-ray photoelectron spectroscopy (XPS), electron probe microanalysis (EPMA) and reflection high energy electron diffraction (RHEED) data, the beryllium is deposited in the form of polycrystalline hcp-BeO layers with negligible (about 1 at.%) carbon and neon retention. Thermal desorption spectroscopy (TDS) data shows a strong deuterium bonding, with a desorption peak at 950 K, in the films deposited at -50 and -400 V substrate potentia...

  6. Thermal cycling tests of actively cooled beryllium copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B. [Forschungszentrum Juelich GmbH (Germany)

    1998-01-01

    Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)

  7. Influence of impurities in Beryllium on tritium breeding ratio

    International Nuclear Information System (INIS)

    Yamauchi, M.; Ochiai, K.; Verzilov, Y.; Ito, M.; Wada, M.; Nishitani, T.

    2004-01-01

    Several neutronics experiments simulating fusion blankets have been conducted with 14 MeV neutron source to assess the reliability of nuclear analysis codes. However, the analyses have not always presented good agreements so far between calculated and measured tritium production rates. One of the reasons was considered as impurities in beryllium which has negligibly small neutron absorption cross section in low energy range. Chemical compositions of beryllium were analyzed by Inductively Coupled Plasma (ICP) method, and a pulsed neutron decay experiment discovered that the macroscopic neutron absorption cross section for beryllium medium may be about 30% larger than the value calculated by the data specified by manufacturing company. The influence of the impurities on the calculations was studied on the basis of the fusion DEMO-reactor blanket design. As a result of the study, it was made clear that the impurities affect the local tritium production rates when the size of beryllium medium is more than 20-30 mean free paths (30-40 cm) in thickness. In case of some blanket designs that meet the above condition, the effect on tritium breeding ratio may become as large as about 4%. (author)

  8. Influence of impurities in Beryllium on tritium breeding ratio

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, M; Ochiai, K; Verzilov, Y; Ito, M; Wada, M; Nishitani, T [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-03-01

    Several neutronics experiments simulating fusion blankets have been conducted with 14 MeV neutron source to assess the reliability of nuclear analysis codes. However, the analyses have not always presented good agreements so far between calculated and measured tritium production rates. One of the reasons was considered as impurities in beryllium which has negligibly small neutron absorption cross section in low energy range. Chemical compositions of beryllium were analyzed by Inductively Coupled Plasma (ICP) method, and a pulsed neutron decay experiment discovered that the macroscopic neutron absorption cross section for beryllium medium may be about 30% larger than the value calculated by the data specified by manufacturing company. The influence of the impurities on the calculations was studied on the basis of the fusion DEMO-reactor blanket design. As a result of the study, it was made clear that the impurities affect the local tritium production rates when the size of beryllium medium is more than 20-30 mean free paths (30-40 cm) in thickness. In case of some blanket designs that meet the above condition, the effect on tritium breeding ratio may become as large as about 4%. (author)

  9. The experience in production of composite refraction lenses from beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, A. A.; Zabrodin, A. V.; Gorlevskiy, V. V.; Sheverdyaev, M. S.; Lizunov, A. V.; Brylev, D. A.; Anikin, A. S.; Klykov, S. S.; Kozlova, E. V.; Lesina, I. G.; Nebera, A. L.; Morozov, I. A.; Demin, A. V. [Bochvar High-Technology Research Institute of Inorganic Materials (Russian Federation); Buzmakov, A. V.; Dymshicz, Yu. M.; Volkov, V. V.; Zhigalina, O. M.; Konarev, P. V.; Khmelenin, D. N.; Seregin, A. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); and others

    2017-01-15

    The choice of beryllium-based material for the use in X-ray optics has been substantiated based on electron microscopy and X-ray diffraction data. The first results of applying refraction lenses made of this material are reported.

  10. TEM study of impurity segregations in beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M., E-mail: michael.klimenkov@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  11. Quantifying design trade-offs of beryllium targets on NIF

    Science.gov (United States)

    Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Loomis, E. N.; Kyrala, G. A.; Shah, R. C.; Perry, T. S.; Kanzleiter, R. J.; Batha, S. H.; MacLaren, S. A.; Ralph, J. E.; Masse, L. P.; Salmonson, J. D.; Tipton, R. E.; Callahan, D. A.; Hurricane, O. A.

    2017-10-01

    An important determinant of target performance is implosion kinetic energy, which scales with the capsule size. The maximum achievable performance for a given laser is thus related to the largest capsule that can be imploded symmetrically, constrained by drive uniformity. A limiting factor for symmetric radiation drive is the ratio of hohlraum to capsule radii, or case-to-capsule ratio (CCR). For a fixed laser energy, a larger hohlraum allows for driving bigger capsules symmetrically at the cost of reduced peak radiation temperature (Tr). Beryllium ablators may thus allow for unique target design trade-offs due to their higher ablation efficiency at lower Tr. By utilizing larger hohlraum sizes than most modern NIF designs, beryllium capsules thus have the potential to operate in unique regions of the target design parameter space. We present design simulations of beryllium targets with a large CCR = 4.3 3.7 . These are scaled surrogates of large hohlraum low Tr beryllium targets, with the goal of quantifying symmetry tunability as a function of CCR. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52- 06NA25396, and by LLNL under Contract DE-AC52-07NA27344.

  12. Morphing ab initio potential energy curve of beryllium monohydride

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír

    2016-01-01

    Roč. 330, Dec (2016), s. 89-95 ISSN 0022-2852 Institutional support: RVO:61388963 Keywords : beryllium monohydride * potential energy function * reduced potential * homotopic morphing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.618, year: 2016

  13. High dose neutron irradiation damage in beryllium as blanket material

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V.P. E-mail: fae@niiar.ru; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B. E-mail: vniinm.400@g23.relkom.ru

    2001-11-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10{sup 22} and 8.0x10{sup 22} cm{sup -2} (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10{sup 22} cm{sup -2} (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10{sup 22} cm{sup -2} (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket.

  14. High dose neutron irradiation damage in beryllium as blanket material

    International Nuclear Information System (INIS)

    Chakin, V.P.; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B.

    2001-01-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10 22 and 8.0x10 22 cm -2 (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10 22 cm -2 (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10 22 cm -2 (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket

  15. Identification of an abnormal beryllium lymphocyte proliferation test

    International Nuclear Information System (INIS)

    Frome, Edward L.; Newman, Lee S.; Cragle, Donna L.; Colyer, Shirley P.; Wambach, Paul F.

    2003-01-01

    The potential hazards from exposure to beryllium or beryllium compounds in the workplace were first reported in the 1930s. The tritiated thymidine beryllium lymphocyte proliferation test (BeLPT) is an in vitro blood test that is widely used to screen beryllium exposed workers in the nuclear industry for sensitivity to beryllium. The clinical significance of the BeLPT was described and a standard protocol was developed in the late 1980s. Cell proliferation is measured by the incorporation of tritiated thymidine into dividing cells on two culture dates and using three concentrations of beryllium sulfate. Results are expressed as a 'stimulation index' (SI) which is the ratio of the amount of tritiated thymidine (measured by beta counts) in the simulated cells divided by the counts for the unstimulated cells on the same culture day. Several statistical methods for use in the routine analysis of the BeLPT were proposed in the early 1990s. The least absolute values (LAV) method was recommended for routine analysis of the BeLPT. This report further evaluates the LAV method using new data, and proposes a new method for identification of an abnormal or borderline test. This new statistical-biological positive (SBP) method reflects the clinical judgment that: (i) at least two SIs show a 'positive' response to beryllium; and (ii) that the maximum of the six SIs must exceed a cut-point that is determined from a reference data set of normal individuals whose blood has been tested by the same method in the same serum. The new data is from the Y-12 National Security Complex in Oak Ridge (Y-12) and consists of 1080 workers and 33 non-exposed control BeLPTs (all tested in the same serum). Graphical results are presented to explain the statistical method, and the new SBP method is applied to the Y-12 group. The true positive rate and specificity of the new method were estimated to be 86% and 97%, respectively. An electronic notebook that is accessible via the Internet was used in

  16. Hanford Site Beryllium Program: Past, Present, and Future - 12428

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Mark [CH2M Hill Plateau Remediation Company, Richland, Washington 99354 (United States); Garcia, Pete [U.S. Department of Energy - Richland Office, Richland, Washington 99352 (United States); Goeckner, Julie [U.S. Department of Energy - HQ, EMCBC, Cincinnati, Ohio 45202 (United States); Millikin, Emily [Washington Closure Hanford, Richland, Washington 99354 (United States); Stoner, Mike [Mission Support Alliance, Richland, Washington 99354 (United States)

    2012-07-01

    The U.S. Department of Energy (DOE) has a long history of beryllium use because of the element's broad application to many nuclear operations and processes. At the Hanford Site beryllium alloy was used to fabricate parts for reactors, including fuel rods for the N-Reactor during plutonium production. Because of continued confirmed cases of chronic beryllium disease (CBD), and data suggesting CBD occurs at exposures to low-level concentrations, the DOE decided to issue a rule to further protect federal and contractor workers from hazards associated with exposure to beryllium. When the beryllium rule was issued in 1999, each of the Hanford Site contractors developed a Chronic Beryllium Disease Prevention Program (CBDPP) and initial site wide beryllium inventories. A new site-wide CBDPP, applicable to all Hanford contractors, was issued in May, 2009. In the spring of 2010 the DOE Headquarters Office of Health, Safety, and Security (HSS) conducted an independent inspection to evaluate the status of implementation of the Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP). The report identified four Findings and 12 cross-cutting Opportunities for Improvement (OFIs). A corrective action plan (CAP) was developed to address the Findings and crosscutting OFIs. The DOE directed affected site contractors to identify dedicated resources to participate in development of the CAP, along with involving stakeholders. The CAP included general and contractor-specific recommendations. Following initiation of actions to implement the approved CAP, it became apparent that additional definition of product deliverables was necessary to assure that expectations were adequately addressed and CAP actions could be closed. Consequently, a supplement to the original CAP was prepared and transmitted to DOE-HQ for approval. Development of the supplemental CAP was an eight month effort. From the onset a core group of CAP development members were identified to develop a mechanism

  17. European Fusion Programme. ITER task T23: Beryllium characterisation. Progress report. Tensile tests on neutron irradiated and reference beryllium

    International Nuclear Information System (INIS)

    Moons, F.

    1996-02-01

    As part of the European Technology Fusion Programme, the irradiation embrittlement characteristics of the more ductile and isotopic grades of beryllium manufactured by Brush Wellman has been investigated using modern powder production and consolidation techniques . This study was initiated in support of the development and evaluation of beryllium as a neutron multiplier for the solid breeder blanket design concepts proposed for a DEMO fusion power reactor. Four different species of beryllium: S-200 F (vacuum hot pressed, 1.2 wt% BeO), S-200FH (hot isostatic pressed, 0.9 wt% BeO), S-65 (vacuum hot pressed, 0.6 wt% BeO), S-65H (hot isostatic pressed, 0.5 wt% BeO) have been compared. Three batches of the beryllium have been investigated, a neutron batch, a thermal control batch and a reference batch. Neutron irradiation has been performed at temperatures between 175 and 605 degrees Celsius up to a neutron fluence of 2.1 10 25 n.m -2 (E> 1 MeV) or 750 appm He. The results of the tensile tests are summarized

  18. Bar Coliseo, en Sevilla

    Directory of Open Access Journals (Sweden)

    de la Peña Neila, Antonio

    1963-10-01

    Full Text Available This bar is situated inside the «Coliseo» building, which houses a cinema, as well as a number of commercial establishments. In order not to break the unity of the total project, no attempt has been made to alter the exterior aspect of the bar. No attempt was made, either, to make it into an intimate, club type of bar, now so much in fashion. Rather has it been given a diaphanous style, seeking the best possible use of the floor space. The windows of the building are elongated, and there is an intermediate floor level, whose detailed structure is metallic. A cleverly designed staircase, of folded sheet metal connects the ground floor, the intermediate floor level and the restaurant. Materials were carefully chosen in accordance with their function. The colour scheme has a sustained unity throughout the building, and care has been taken to avoid surprising or vivid chromatic patterns. Ceramic enamels by the painter Santiago del Campo provide a feature of decoration on the ground floor, and also serve to cover up the return air ducts. On the top floor, the restaurant is fitted with coloured tile facings, the work of the Seville painters Maria Josefa Sánchez, María Dolores Sánchez and Emilio García Ortiz. The bottom joints of the timber beams, in conjunction with the tile patterns, is reminiscent of the traditional Sevillian habit of placing ceramic units between the timber framework of buildings. The initial problem of the architect was to combine the optimum functional efficiency and aesthetic quality of the project, and the final solution is undoubtedly successful.El establecimiento está situado dentro del edificio «Coliseo», complejo formado por una sala de cine, y con la parte lateral destinada a locales comerciales. Formando un conjunto único no se pensó nunca en transformar los revestimientos y molduras de fachada. Tampoco presidió la idea de conseguir un establecimiento íntimo «tipo Club», tan en boga actualmente, sino un

  19. Investigations of the ternary system beryllium-carbon-tungsten and analyses of beryllium on carbon surfaces; Untersuchung des ternaeren Systems Beryllium-Kohlenstoff-Wolfram und Betrachtungen von Beryllium auf Kohlenstoffoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, Florian

    2009-05-25

    Beryllium, carbon and tungsten are planned to be used as first wall materials in the future fusion reactor ITER. The aim of this work is a characterization of mixed material formation induced by thermal load. To this end, model systems (layers) were prepared and investigated, which give insight into the basic physical and chemical concepts. Before investigating ternary systems, the first step was to analyze the binary systems Be/C and Be/W (bottom-up approach), where the differences between the substrates PG (pyrolytic graphite) and HOPG (highly oriented pyrolytic graphite) were of special interest. Particularly X-ray photoelectron spectroscopy (XPS), low energy ion scattering (ISS) and Rutherford backscattering spectroscopy (RBS) were used as analysis methods. Beryllium evaporated on carbon shows an island growth mode, whereas a closed layer can be assumed for layer thicknesses above 0.7 nm. Annealing of the Be/C system induces Be{sub 2}C island formation for T{>=}770 K. At high temperatures (T{>=}1170 K), beryllium carbide dissociates, resulting in (metallic) beryllium desorption. For HOPG, carbide formation starts at higher temperatures compared to PG. Activation energies for the diffusion processes were determined by analyzing the decreasing beryllium amount versus annealing time. Surface morphologies were characterized using angle-resolved XPS (ARXPS) and atomic force microscopy (AFM). Experiments were performed to study processes in the Be/W system in the temperature range from 570 to 1270 K. Be{sub 2}W formation starts at 670 K, a complete loss of Be{sub 2}W is observed at 1170 K due to dissociation (and subsequent beryllium desorption). Regarding ternary systems, particularly Be/C/W and C/Be/W were investigated, attaching importance to layer thickness (reservoir) variations. At room temperature, Be{sub 2}C, W{sub 2}C, WC and Be{sub 2}W formation at the respective interfaces was observed. Further Be{sub 2}C is forming with increasing annealing temperatures

  20. Development of an effective pinch bar

    CSIR Research Space (South Africa)

    Ottermann, RW

    2003-02-01

    Full Text Available . ....................................10 Figure 3-3: Layout of lightweight pinch bar extruded fibreglass tube. ..................................11 Figure 3-4: XDM lightweight pinch bar with manufactured glass fibre bar. ..........................12 Figure 3-5: XDM lightweight pinch... bar with extruded glass fibre tube. ................................12 Figure 3-6: Stiffness of a 2.8m lightweight pinch bar with an extruded glass fibre tube and a 25mm steel pinch bar...

  1. Low energy bar pp physics

    International Nuclear Information System (INIS)

    Amsler, C.; Crowe, K.

    1989-02-01

    A detailed investigation of proton-antiproton interactions at low energy has become feasible with the commissioning of the LEAR facility in 1983. We shall shortly review the status of bar pp annihilation at rest and the physics motivations for second generation experiments with the Crystal Barrel detector. This type of detector would be adequate for the study of both Kp and bar pp interactions on an extracted beam of the KAON Factory. We shall conclude with a few remarks on the physics opportunities with bar p's at the KAON Factory which, in our opinion, will not be covered by the present LEAR facility. 11 refs., 10 figs., 2 tabs

  2. Possible heavy tetraquarks qQq-barQ-bar, qqQ-barQ-bar and qQQ-barQ-bar

    International Nuclear Information System (INIS)

    Cui Ying; Chen Xiaolin; Deng Weizhen; Zhu Shilin

    2007-01-01

    Assuming X(3872) is a qcq-barc-bar tetraquark and using its mass as input, the authors perform a schematic study of the masses of possible heavy tetraquarks using the color-magnetic interaction with the flavor symmetry breaking corrections. (authors)

  3. Experience of beryllium blocks operation in the SM and MIR nuclear reactors useful for fusion

    International Nuclear Information System (INIS)

    Chakin, V.P.; Melder, R.R.; Belozerov, S.V.

    2004-01-01

    The results are presented concerning the examinations of state of beryllium blocks after the completion of their operation in the SM and MIR reactors. Both cracks and more significant mechanical damages are revealed in the irradiated beryllium blocks. Under neutron irradiation of beryllium radiation degradation of its physical and mechanical properties occurs. It shows itself in embrittlement, decrease of brittle strength level as well in worsening of thermal conductivity that leads to increase of thermal stresses into beryllium block. Under irradiation it takes place damage of beryllium microstructure, in particular, formation of radiation defects occurs in the form of dislocation loops and great amount of helium atoms. Optimization of beryllium radioactive waste storage is related to their preliminary surface and volumetric decontamination. (author)

  4. Beryllium coating produced by evaporation-condensation method and some their properties

    Energy Technology Data Exchange (ETDEWEB)

    Pepekin, G.I.; Anisimov, A.B.; Chernikov, A.S.; Mozherinn, S.I.; Pirogov, A.A. [SRI SIA Lutch., Podolsk (Russian Federation)

    1998-01-01

    The method of vacuum evaporation-condensation for deposition of beryllium coatings on metal substrates, considered in the paper, side by side with a plasma-spray method is attractive fon ITER application. In particular this technique may be useful for repair the surface of eroded tiles which is operated in a strong magnetic field. The possibility of deposition of beryllium coatings with the rate of layer growth 0.1-0.2 mm/h is shown. The compatibility of beryllium coating with copper or stainless steel substrate is provided due to intermediate barrier. The results of examination of microstructure, microhardness, porosity, thermal and physical properties and stability under thermal cycling of beryllium materials are presented. The value of thermal expansion coefficient and thermal conductivity of condensed beryllium are approximately the same as for industrial grade material produced by powder mettalurgy technique. However, the condensed beryllium has higher purity (up to 99.9-99.99 % wt.). (author)

  5. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    International Nuclear Information System (INIS)

    Edmonds, P.H.

    1985-09-01

    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (10 22 atoms/cm 2 ) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project

  6. 5. IEA International workshop on beryllium technology for fusion. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The collection includes the abstracts of reports presented to the 5-th IEA international workshop on beryllium technology for fusion. The themes of reports are as follows: status of beryllium technology for fusion in Russia; manufacturing and testing of Be armoured first wall mock-up for ITER; development of the process of diffusion welding of metals stainless steel-copper-beryllium into a single composite; some features of beryllium-laser beam interaction; the effect of irradiation dose on tritium and helium release from neutron irradiated beryllium; thermal properties of neutron irradiated Be{sub 12}Ti. The results of investigating the mechanical properties variation and swelling of beryllium under high temperature neutron irradiation are presented.

  7. 5. IEA International workshop on beryllium technology for fusion. Book of abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    The collection includes the abstracts of reports presented to the 5-th IEA international workshop on beryllium technology for fusion. The themes of reports are as follows: status of beryllium technology for fusion in Russia; manufacturing and testing of Be armoured first wall mock-up for ITER; development of the process of diffusion welding of metals stainless steel-copper-beryllium into a single composite; some features of beryllium-laser beam interaction; the effect of irradiation dose on tritium and helium release from neutron irradiated beryllium; thermal properties of neutron irradiated Be 12 Ti. The results of investigating the mechanical properties variation and swelling of beryllium under high temperature neutron irradiation are presented [ru

  8. Development of the NBS beryllium isotopic standard reference material

    International Nuclear Information System (INIS)

    Inn, K.G.W; Fassett, J.D.; Coursey, B.M.; Walker, R.L.; Raman, S.

    1987-01-01

    The National Bureau of Standards, in conjunction with the Oak Ridge National Laboratory and the Accelerator Mass Spectrometry community, is in the process of developing a beryllium isotopic solution Standard Reference Material. The master 10 Be/ 9 Be solution was characterized isotopically by resonance-ionization and secondary-ion mass-spectrometric-based techniques, and radioactivity measurements were by liquid scintillation counting. The master solution was gravimetrically diluted with 9 Be to a final 10 Be/ 9 Be atomic ratio of 3 x 10 -11 . The preliminary data indicate a half life for 10 Be of 1.3 million years, and AMS measurements are within 10% of the known beryllium isotopic ratio

  9. Multiscale modelling of hydrogen behaviour on beryllium (0001 surface

    Directory of Open Access Journals (Sweden)

    Ch. Stihl

    2016-12-01

    Full Text Available Beryllium is proposed to be a neutron multiplier and plasma facing material in future fusion devices. Therefore, it is crucial to acquire an understanding of the microscopic mechanisms of tritium accumulation and release as a result of transmutation processes that Be undergoes under neutron irradiation. A multiscale simulation of ad- and desorption of hydrogen isotopes on the beryllium (0001 surface is developed. It consists of ab initio calculations of certain H adsorption configurations, a suitable cluster expansion approximating the energies of arbitrary configurations, and a kinetic Monte Carlo method for dynamic simulations of adsorption and desorption. The processes implemented in the kinetic Monte Carlo simulation are deduced from further ab initio calculations comprising both, static relaxation as well as molecular dynamics runs. The simulation is used to reproduce experimental data and the results are compared and discussed. Based on the observed results, proposals for a refined model are made.

  10. Response of porous beryllium to static and dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Isbell, W.M.; Walton, O.R.; Ree, F.H.

    1977-07-01

    Previous investigstions of the mechanical response of porous materials to dynamic loading have been extended to include the shock wave response of a brittle metal. The complex response of berylliums of 85 to 90 percent porosity in two initial conditions has been examined in a theoretical and experimental program to be described. The study has resulted in the development of constitutive relations placed in hydrocodes which are capable of accurately predicting wave propagation in the berylliums. A comprehensive set of static (0 to 4 Gpa) and dynamic (0 to 35 Gpa) experiments was performed to measure the behavior of these brittle, porous materials to imposed loads. The results of the experiments guided a modeling effort which added several new features to previous models, including deviatoric stresses, porosity-dependent relaxation time of pore closure, elastic-plastic reopening of pores, and improved compaction functions.

  11. Status of RF beryllium characterization for ITER Fist Wall

    Science.gov (United States)

    Kupriyanov, I. B.; Nikolaev, G. N.; Roedig, M.; Gervash, A. А.; Linke, I. J.; Kurbatova, L. A.; Perevalov, S. I.; Giniyatulin, R. N.

    2011-10-01

    The status of RF R&D activities in production and characterization of TGP-56FW beryllium grade is presented. The results of metallographic studies of microstructure and cracks morphology are reported for full-scale Be tiles (56 × 56 × 10 mm) subjected to VDE simulation tests in TSEFEY-M testing facility (VDE-10 MJ/m 2 during 0.1 s, 1 shot ) and following low cycle thermal fatigue tests (500 thermal cycles at 1.5 MW/m 2). First results of plasma disruption tests ( E = 1.2-5 MJ/m 2, 5 ms), which were obtained during the realization of Thermal Shock/VDE Qualification program of RF beryllium in JUDITH-1 facility, are also discussed.

  12. Status of RF beryllium characterization for ITER Fist Wall

    International Nuclear Information System (INIS)

    Kupriyanov, I.B.; Nikolaev, G.N.; Roedig, M.; Gervash, A.A.; Linke, I.J.; Kurbatova, L.A.; Perevalov, S.I.; Giniyatulin, R.N.

    2011-01-01

    The status of RF R and D activities in production and characterization of TGP-56FW beryllium grade is presented. The results of metallographic studies of microstructure and cracks morphology are reported for full-scale Be tiles (56 x 56 x 10 mm) subjected to VDE simulation tests in TSEFEY-M testing facility (VDE-10 MJ/m 2 during 0.1 s, 1 shot) and following low cycle thermal fatigue tests (500 thermal cycles at 1.5 MW/m 2 ). First results of plasma disruption tests (E = 1.2-5 MJ/m 2 , 5 ms), which were obtained during the realization of Thermal Shock/VDE Qualification program of RF beryllium in JUDITH-1 facility, are also discussed.

  13. Gravimetric determination of beryllium in the presence of transition metals

    International Nuclear Information System (INIS)

    Morozova, S.S.; Nikitina, L.V.; Dyatlova, N.M.; Serebryakova, G.V.; Vol'nyagina, A.N.

    1976-01-01

    A new organic reagent, nitrolotrimethylphosphonic acid (H 6 L), is proposed for gravimetric determination of beryllium. This complexone forms with Be hardly soluble complexes in a wide pH range. The separated complex has a composition Be 5 (HL) 2 x10H 2 O. To elucidate the possibility of determining Be in the presence of transition metals, often accompanying beryllium in alloys, interaction of cations of these metals with H 6 L at different pH has been studied potentiometrically. It has been established that at pH=1.1 in the presence of masking reagent (diethylentriaminopentacetic acid) Be can be determined when zinc, copper, chromium, cobalt, nickel, iron, manganese and cadmium are present. Gravimetric method of determining Be with the help of H 6 L has been developed. The weight form is obtained by drying the precipitate which reduces considerably the time of analysis and the error of determination

  14. Response of porous beryllium to static and dynamic loading

    International Nuclear Information System (INIS)

    Isbell, W.M.; Walton, O.R.; Ree, F.H.

    1977-07-01

    Previous investigstions of the mechanical response of porous materials to dynamic loading have been extended to include the shock wave response of a brittle metal. The complex response of berylliums of 85 to 90 percent porosity in two initial conditions has been examined in a theoretical and experimental program to be described. The study has resulted in the development of constitutive relations placed in hydrocodes which are capable of accurately predicting wave propagation in the berylliums. A comprehensive set of static (0 to 4 Gpa) and dynamic (0 to 35 Gpa) experiments was performed to measure the behavior of these brittle, porous materials to imposed loads. The results of the experiments guided a modeling effort which added several new features to previous models, including deviatoric stresses, porosity-dependent relaxation time of pore closure, elastic-plastic reopening of pores, and improved compaction functions

  15. The BaBar Mini

    International Nuclear Information System (INIS)

    Brown, David N.

    2003-01-01

    BaBar has recently deployed a new event data format referred to as the Mini. The mini uses efficient packing and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The Mini packs detector information into simple transient data objects, which are then aggregated into roughly 10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being ported to use Root persistence. The Mini contains enough information to support detailed detector studies, while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable, allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format covering all its needs

  16. The BaBar mini

    International Nuclear Information System (INIS)

    Brown, David N.; BaBar Collaboration

    2003-01-01

    BaBar has recently deployed a new event data format referred to as the Mini. The mini uses efficient packing and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The Mini packs detector information into simple transient data objects, which are then aggregated into roughly 10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being ported to use Root persistence. The Mini contains enough information to support detailed detector studies, while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable, allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format covering all its needs

  17. Examination of respiratory tract in workers occupationally exposed to beryllium

    International Nuclear Information System (INIS)

    Cianciara, M.; Swiatkowski, J.

    1989-01-01

    In a group (30) occupationally exposed to beryllium below the Maximum Allowed Concentration, deviations from the norm were found in 13% of chest x rays and impairments of lung ventilatory reserves in 46%. The low intensity and non-specific character of the changes did not allow confirmation of connection with occupational exposure. Radiological examination of the lungs, expanded functional testing of the respiratory system and measurements of blood gases are recommended to identify workers with respiratory changes at an early stage. (UK)

  18. Solid state bonding of beryllium to copper and vanadium

    International Nuclear Information System (INIS)

    Floyd, D.R.; Liby, A.L.; Weaver, W.

    1993-01-01

    The intent of this effort was to demonstrate that ingot metallurgy (IM) beryllium (Be) can be bonded to dissimilar metals such as copper (Cu) or vanadium (V) at low temperatures by using silver (Ag) as a bonding aid. It is hoped that success at the coupon stage will stimulate more extensive studies of the mechanical and thermal integrity of such joints, leading ultimately to use of this technology to fabricate first wall structures for ITER. (orig.)

  19. Beryllium isotopes in cosmic radiation measured with plastic detectors

    International Nuclear Information System (INIS)

    Fukui, K.; Enge, W.; Beaujean, R.

    1976-01-01

    Plastic stacks consisting of Daicel cellulose nitrate and Kodak cellulose nitrate were flown from Fort Churchill, Canada in 1971 for the study of isotopic components of light nuclei, especially beryllium, in primary cosmic rays. Tracks found in these detectors were analysed for charge and mass identification; the ratio between Be 7 and total Be is obtained as 0.64 +- 0.25 at detector level. (orig.) [de

  20. Pre-melting hcp to bcc Transition in Beryllium

    OpenAIRE

    Lu, Y.; Sun, T.; Zhang, Ping.; Zhang, P.; Zhang, D. -B.; Wentzcovitch, R. M.

    2017-01-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to X-ray equipments. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp to bcc transition occurs near the melting curve at 0

  1. Standard specification for nuclear-grade beryllium oxide powder

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This specification defines the physical and chemical requirements of nuclear-grade beryllium oxide (BeO) powder to be used in fabricating nuclear components. This specification does not include requirements for health and safety. It recognizes the material as a Class B poison and suggests that producers and users become thoroughly familiar with and comply to applicable federal, state and local regulations and handling guidelines. Special tests and procedures are given

  2. Photoneutron cross sections for D2O and beryllium

    International Nuclear Information System (INIS)

    Bowsher, H.F.; Woods, F.J.; Baumann, N.P.

    1975-01-01

    The photodissociation cross section by 24 Na gamma rays was measured for deuterium in order to resolve a discrepancy between earlier measurements (1.43 to 1.59 millibarns) and a more recently reported one (1.34 mb). The measurement of the beryllium (γ,n) cross section for 24 Na gamma rays was also included as a check. Results for deuterium (1.54 mb) are in agreement with the earlier values

  3. Thermal fatigue behavior of US and Russian grades of beryllium

    International Nuclear Information System (INIS)

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-01-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 KW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degrees C for each pass of the beam. Large thermal stress in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m 2 . Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S-65H, S-200F, S-300F-H, Sr-200, I-400, extruded high purity. HIP'd sperical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe 12 . Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be(SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  4. Some implications of accurate thermal parameters for beryllium

    International Nuclear Information System (INIS)

    Collins, D.M.; Whitehurst, F.W.

    1981-01-01

    Authoritative values for the parameters of harmonic thermal motion have been used as criteria for various least-squares refinements of the structure model for beryllium metal. A change in the absolute scale of Brown [Philos. Mag. (1972), 26, 1377-1394] improves the correspondence of the associated data with the true thermal parameters. Contraction of the core-electron distribution upon bonding is a possible implication of the rescaled data. (Auth.)

  5. Presence of Beryllium (Be) in urban soils: human health risk

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Gonzalez, M. J.; Lobo, M. C.

    2009-07-01

    Berylium (Be) is, together with As, Cd, Hg, Pb and Ti, one of the trace elements more toxic for human being (Vaessen) and Szteke, 2000; Yaman and Avci, 2006), but in spite of the exponential increment of its applications during the last decades, surprisingly there isn't hardly information about its presence and environmental distribution. The aim of this work is to evaluate the presence of Beryllium in urban soils in Alcala de Henares, (Madrid Spain).

  6. Triple bar, high efficiency mechanical sealer

    Science.gov (United States)

    Pak, Donald J.; Hawkins, Samantha A.; Young, John E.

    2013-03-19

    A clamp with a bottom clamp bar that has a planar upper surface is provided. The clamp may also include a top clamp bar connected to the bottom clamp bar, and a pressure distribution bar between the top clamp bar and the bottom clamp bar. The pressure distribution bar may have a planar lower surface in facing relation to the upper surface of the bottom clamp bar. An object is capable of being disposed in a clamping region between the upper surface and the lower surface. The width of the planar lower surface may be less than the width of the upper surface within the clamping region. Also, the pressure distribution bar may be capable of being urged away from the top clamp bar and towards the bottom clamp bar.

  7. Detail analysis of fusion neutronics benchmark experiment on beryllium

    International Nuclear Information System (INIS)

    Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke; Ohnishi, Seiki; Kondo, Keitaro; Wada, Masayuki; Sato, Satoshi

    2010-01-01

    Our previous analysis of the integral experiments (in situ and TOF experiments) on beryllium with DT neutrons at JAEA/FNS pointed out two problems by using MCNP4C and the latest nuclear data libraries; one was a strange larger neutron peak around 12 MeV appearing in the TOF experiment analysis with JEFF-3.1 and the other was an overestimation on law energy neutrons in the in situ experiment analyses with all the nuclear data libraries. We investigated reasons for these problems in detail. It was found out that the official ACE file MCJEFF3.1 of JEFF-3.1 had an inconsistency with the original JEFF-3.1, which caused the strange larger neutron peak around 12 MeV in the TOF experiment analysis. We also found out that the calculated thermal neutron peak was probably too large in the in situ experiment. On trial we examined influence of the thermal neutron scattering law data of beryllium metal in ENDF/B-VI. The result pointed out that the coherent elastic scattering cross-section data in the thermal neutron scattering law data of beryllium metal were probably too large.

  8. Zone-refining of beryllium(II) acetylacetonate

    International Nuclear Information System (INIS)

    Yoshida, Isao; Kobayashi, Hiroshi; Ueno, Keihei

    1975-01-01

    Zone melting was applied to bis (acetylacetonato) beryllium(II), Be(AA) 2 , to remove trace metal constiutents. The effective distribution coefficient, k, of a minor component measured in a binary mixture with the majority of Be(AA) 2 , fell in the range of 0.4 to 0.8, while the value obtained in a multiple component mixture fell in the range of 0.8 to 0.9 except Zn(II)- and Ni(II) chelates. Cr(AA) 3 was concentrated upward in the direction of the zone travelling, and similar results were obtained with Cu(II)-, Co(III)- Fe(III)- and Al(III) acetylacetonates, while Zn(II)-, Ni(II)- and Mn(III) chelates were fractionated in the both ends of the column. On the other hand, when the zone was moved downward, the minor components were concentrated in the lower end of a column. Efficiency in zone refining was compared to each other between the upward- and downward zone travelling modes on the crude beryllium acetylacetonates obtained from a commercial reagent of beryllium nitrate, and the latter mode was found more effective in the concentration of trace components. Discussion was given on possible mechanisms resulting in the difference in the refining efficiency. (author)

  9. Investigation of the beryllium ion-surface interaction

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I. [Kurchatov Inst., Moscow (Russian Federation); Birukov, A.Yu. [Kurchatov Inst., Moscow (Russian Federation); Gureev, V.M. [Kurchatov Inst., Moscow (Russian Federation); Daneljan, L.S. [Kurchatov Inst., Moscow (Russian Federation); Korshunov, S.N. [Kurchatov Inst., Moscow (Russian Federation); Martynenko, Yu.V. [Kurchatov Inst., Moscow (Russian Federation); Moskovkin, P.S. [Kurchatov Inst., Moscow (Russian Federation); Sokolov, Yu.A. [Kurchatov Inst., Moscow (Russian Federation); Stoljarova, V.G. [Kurchatov Inst., Moscow (Russian Federation); Kulikauskas, V.S. [M.V. Lomonosov University, Moscow (Russian Federation); Zatekin, V.V. [M.V. Lomonosov University, Moscow (Russian Federation)

    1996-10-01

    The energy and temperature dependence of self-sputtering yields of beryllium were measured. The energy dependence of the beryllium self-sputtering yield agrees well with that calculated by Eckstein et al. Below 770 K the self-sputtering yields are temperature independent; at T{sub irr.}>870 K the yield increases steeply. Beryllium samples were implanted at 370 K with monoenergetic 5 keV hydrogen ions and with a stationary hydrogen plasma power flux of about 5 MW/m{sup 2}. In the fluence range of 5 x 10{sup 22}-1.5 x 10{sup 25} m{sup -2} the depth profile is shifted towards the surface with increasing fluence and the concentration of trapped hydrogen atoms is reduced from 3.3 x 10{sup 21} to 7.4 x 10{sup 20} m{sup -2}. About 95% of the trapped hydrogen is located within bubbles and only {proportional_to}5% is trapped as atoms. With increasing implantation fluence the bubbles coalesce, producing channels through which hydrogen escapes. (orig.).

  10. A diethylhydroxylaminate based mixed lithium/beryllium aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Raphael J.F. [Paris-Lodron Universitaet Salzburg (Austria). Fachbereich fuer Materialwissenschaften und Physik; Jana, Surajit [Asansol Girls College, West-Bengal (India). Dept. of Chemistry; Froehlich, Roland [Muenster Univ. (Germany). Organisch-Chemisches Inst.; Mitzel, Norbert W. [Bielefeld Univ. (Germany). Anorganische Chemie und Strukturchemie

    2015-07-01

    A mixed lithium/beryllium diethylhydroxylaminate compound containing {sup n}butyl beryllium units of total molecular composition {sup n}Be(ONEt{sub 2}){sub 2} [(LiONEt{sub 2}){sup 2} {sup n}BuBeONEt{sub 2}]{sub 2} (1) was isolated from a reaction mixture of {sup n}butyl lithium, N,N-diethylhydroxylamine and BeCl{sub 2} in diethylether/thf. The crystal structure of 1 has been determined by X-ray diffraction. The aggregate is composed of two ladder-type subunits connected in a beryllium-centered distorted tetrahedron of four oxygen atoms. Only the lithium atoms are engaged in coordination with the nitrogen donor atoms. The DFT calculations support the positional occupation determined for Li and Be in the crystal structure. The DFT and the solid-state structure are in excellent agreement, indicating only weak intermolecular interactions in the solid state. Structural details of metal atom coordination are discussed.

  11. Test of a beryllium limiter in the tokamak UNITOR

    International Nuclear Information System (INIS)

    Hackmann, J.; Uhlenbusch, J.

    1984-01-01

    Beryllium rail limiters are inserted into the tokamak UNITOR to study the compatibility of this material with the plasma. The power load onto the limiter surface is 1-2 kW/cm 2 during the plasma pulse length of 50 ms duration. The concentration of heavy (Cr) and light (O) impurities is monitored by means of spectroscopy. In comparison with other materials tested likewise (graphite, Ni, Al 2 O 3 , TiC, SiC, SS) the Be-experiments have shown the following improvements: (a) the concentration of heavy impurities is considerably reduced, (b) this reduction is preserved if the poloidal Be-limiters are retracted from the plasma, (c) the plasma resistivity is diminished, (d) the occurrence of disruptions decreases. A total amount of 6 mg beryllium was found distributed on the inner torus wall after 1500 shots. The decontamination of the apparatus was performed without major problems. Only very little volatile Be-dust was detected, and peripheric parts (pumps, mass spectrometer etc.) were not contaminated. The beryllium released from the limiters was found to be entirely deposited on the torus wall mainly in the vicinity of the limiters. (orig.)

  12. Boron nitride protective coating of beryllium window surfaces

    International Nuclear Information System (INIS)

    Gmuer, N.F.

    1991-12-01

    The use of beryllium windows on white synchrotron radiation beamlines is constrained by the fact that the downstream surfaces of these windows should not be exposed to ambient atmosphere. They should, rather, be protected by a tail-piece under vacuum or containing helium atmosphere. This tailpiece is typically capped by Kapton (3M Corporation, St. Paul, MN) or aluminum foil. The reason for such an arrangement is due to the health risk associated with contaminants (BeO) which from on the exposed beryllium window surfaces and due to possible loss of integrity of the windows. Such a tail-piece may, however, add unwanted complications to the beamline in the form of vacuum pumps or helium supplies and their related monitoring systems. The Kapton windows may burn through in the case of high intensity beams and lower energy radiation may be absorbed in the case of aluminum foil windows. A more ideal situation would be to provide a coating for the exposed beryllium window surface, sealing it off from the atmosphere, thus preventing contamination and/or degradation of the window, and eliminating the need for helium or vacuum equipment

  13. CFD Simulation on Cooling Down of Beryllium Filters for Neutron Conditioning for Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Azraf Azman; Shahrir Abdullah; Mohd Rizal Mamat

    2011-01-01

    The cryogenic system for cooling Beryllium filter utilizing liquid nitrogen was designed, fabricated, tested and installed at SANS instrument of TRIGA MARK II PUSPATI research reactor. A computational fluid dynamics (CFD) modeling was used to predict the cooling performance of the beryllium for optimization of neutron beam resolution and transmission. This paper presents the transient CFD results of temperature distributions via the thermal link to the beryllium and simulation of heat flux. The simulation data are also compared with the experimental results for the cooling time and distribution to the beryllium. (author)

  14. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    Energy Technology Data Exchange (ETDEWEB)

    Hanafee, J.E. (ed.)

    1988-02-19

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers. (DLC)

  15. Method of crude ore defluoridation in hydrometallurgy of beryllium, affording fluorosilicic acid

    International Nuclear Information System (INIS)

    Samojlov, V.I.; Borsuk, A.N.; Zherin, I.I.

    2006-01-01

    Results of laboratory and industrial tests conducted at Ul'ba Metallurgical Plant on leaching bertrandite - phenacite - fluorite flotation concentrate containing ∼4 wt. % beryllium in a rotary furnace using sulfuric acid are presented. The technology is shown to provide a 7.8% reduction in the net cost of beryllium production (1 kg) in the form of technical-grade Be(OH) 2 by obviating the need of smelting beryllium concentrates and alkali fluxes. Besides, the technology permits concomitant production of H 2 SiF 6 , its commercial sales promoting a 17.6% reduction in beryllium production net cost [ru

  16. Testing of beryllium marker coatings in PISCES-B for the JET ITER-like wall

    International Nuclear Information System (INIS)

    Widdowson, A.; Baldwin, M.J.; Coad, J.P.; Doerner, R.P.; Hanna, J.; Hole, D.E.; Matthews, G.F.; Rubel, M.; Seraydarian, R.; Xu, H.

    2009-01-01

    Beryllium has been chosen as the first wall material for ITER. In order to understand the issues of material migration and tritium retention associated with the use of beryllium, a largely beryllium first wall will be installed in JET. As part of the JET ITER-like wall, beryllium tiles with marker coatings are proposed as a diagnostic tool for studying the erosion and deposition of beryllium around the vessel. The nominal structure for these coatings is a ∼10 μm beryllium surface layer separated from the beryllium tile by a 2-3 μm metallic inter-layer. Two types of coatings are tested here; one with a nickel inter-layer and one with a copper/beryllium mixed inter-layer. The coating samples were deposited by DC magnetron sputtering at General Atomics and were exposed to deuterium plasma in PISCES-B. The results of this testing show that the beryllium/nickel marker coating would be suitable for installation in JET.

  17. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    International Nuclear Information System (INIS)

    Hanafee, J.E.

    1988-01-01

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers

  18. The beryllium quandary: will the lower exposure limits spur new developments in sampling and analysis?

    Energy Technology Data Exchange (ETDEWEB)

    Brisson, Michael

    2013-06-03

    At the time this article was written, new rulemakings were under consideration at OSHA and the U.S. Department of Energy (DOE) that would propose changes to occupational exposure limits for beryllium. Given these developments, it’s a good time to review the tools and methods available to IHs for assessing beryllium air and surface contamination in the workplace—what’s new and different, and what’s tried and true. The article discusses limit values and action levels for beryllium, problematic aspects of beryllium air sampling, sample preparation, sample analysis, and data evaluation.

  19. RELATING BOTTOM QUARK MASS IN DR-BAR AND MS-BAR REGULARIZATION SCHEMES

    International Nuclear Information System (INIS)

    2002-01-01

    The value of the bottom quark mass at Q = M Z in the (bar D)(bar R) scheme is an important input for the analysis of supersymmetric models with a large value of tan β. Conventionally, however, the running bottom quark mass extracted from experimental data is quoted in the (bar M)(bar S) scheme at the scale Q = m b . We describe a two loop procedure for the conversion of the bottom quark mass from (bar M)(bar S) to (bar D)(bar R) scheme. The Particle Data Group value m b # bar M# # bar S#(m b # bar M# # bar S#) = 4.2 ± 0.2 GeV corresponds to a range of 2.65-3.03 GeV for m b # bar D# # bar R#(M Z )

  20. Behavior of porous beryllium under thermomechanical loading. Part 6. Effect of pressure on the microstructure of plasma-sprayed beryllium

    International Nuclear Information System (INIS)

    Hanafee, J.E.; Snell, E.O.

    1975-01-01

    The effects of pressure and specimen preparation on the microstructure of two grades of porous plasma-sprayed beryllium were determined. One grade, P-1, was sintered after spraying while the other grade, P-10, was tested in the as-sprayed condition. the principal microstructural characteristics studied were grain size: grain morphology, and void distribution and size. It was found that machining can readily cause a significant dense surface layer on the porous beryllium specimens, and that the dense surface layer can be removed by etching. There was substantial difference in microstructure between the P-1 sintered and P-10 unsintered specimens both before and after being subjected to shock waves and static compression. (U.S.)

  1. Introduction to beryllium: uses, regulatory history, and disease.

    Science.gov (United States)

    Kolanz, M E

    2001-05-01

    Beryllium is an ubiquitous element in the environment, and it has many commercial applications. Because of its strength, electrical and thermal conductivity, corrosion resistance, and nuclear properties, beryllium products are used in the aerospace, automotive, energy, medical, and electronics industries. What eventually came to be known as chronic beryllium disease (CBD) was first identified in the 1940s, when a cluster of cases was observed in workers from the fluorescent light industry. The U.S. Atomic Energy Commission recommended the first 8-hour occupational exposure limit (OEL) for beryllium of 2.0 microg/m3 in 1949, which was later reviewed and accepted by the American Conference of Governmental Industrial Hygienists (ACGIH), the American Industrial Hygiene Association (AIHA), the American National Standards Institute (ANSI), the Occupational Safety and Health Administration (OSHA), and the vast majority of countries and standard-setting bodies worldwide. The 2.0 microg/m3 standard has been in use by the beryllium industry for more than 50 years and has been considered adequate to protect workers against clinical CBD. Recently, improved diagnostic techniques, including immunological testing and safer bronchoscopy, have enhanced our ability to identify subclinical CBD cases that would have formerly remained unidentified. Some recent epidemiological studies have suggested that some workers may develop CBD at exposures less than 2.0 microg/m3. ACGIH is currently reevaluating the adequacy of the current 2.0 microg/m3 guideline, and a plethora of research initiatives are under way to provide a better understanding of the cause of CBD. The research is focusing on the risk factors and exposure metrics that could be associated with CBD, as well as on efforts to better characterize the natural history of CBD. There is growing evidence that particle size and chemical form may be important factors that influence the risk of developing CBD. These research efforts are

  2. Beryllium Project: developing in CDTN of uranium dioxide fuel pellets with addition of beryllium oxide to increase the thermal conductivity

    International Nuclear Information System (INIS)

    Ferreira, Ricardo Alberto Neto; Camarano, Denise das Merces; Miranda, Odair; Grossi, Pablo Andrade; Andrade, Antonio Santos; Queiroz, Carolinne Mol; Gonzaga, Mariana de Carvalho Leal

    2013-01-01

    Although the nuclear fuel currently based on pellets of uranium dioxide be very safe and stable, the biggest problem is that this material is not a good conductor of heat. This results in an elevated temperature gradient between the center and its lateral surface, which leads to a premature degradation of the fuel, which restricts the performance of the reactor, being necessary to change the fuel before its full utilization. An increase of only 5 to 10 percent in its thermal conductivity, would be a significant increase. An increase of 50 percent would be a great improvement. A project entitled 'Beryllium Project' was developed in CDTN - Centro de Desenvolvimento da Tecnologia Nuclear, which aimed to develop fuel pellets made from a mixture of uranium dioxide microspheres and beryllium oxide powder to obtain a better heat conductor phase, filling the voids between the microspheres to increase the thermal conductivity of the pellet. Increases in the thermal conductivity in the range of 8.6% to 125%, depending on the level of addition employed in the range of 1% to 14% by weight of beryllium oxide, were obtained. This type of fuel promises to be safer than current fuels, improving the performance of the reactor, in addition to last longer, resulting in great savings. (author)

  3. Field observations of nearshore bar formation

    DEFF Research Database (Denmark)

    Aagaard, Troels; Kroon, Aart; Greenwood, Brian

    2008-01-01

      The formation of an inner nearshore bar was observed during a high-energy event at the sandy beach of Vejers, Denmark. The bar accreted in situ during surf zone conditions and the growth of the bar was associated with the development of a trough landward of the bar. Measurements of hydrodynamics...

  4. SAFARI-1 research reactor beryllium reflector element replacement, management and relocation

    Energy Technology Data Exchange (ETDEWEB)

    Kock, Marisa De; Vlok, Jwh; Steynberg, B J [South Africa Atomic Energy Corporation (Necsa) (South Africa)

    2012-03-15

    The beryllium (Be) reflector elements of the SAFARI-1 Research Reactor were replaced in October 2011 as part of the Ageing Management Programme of the reactor. After more than three million MWh of operation over a period of 47 years, core reloading became more difficult due to the geometric deformation of the beryllium reflector elements. During the replacement of the reflector elements, criticality and reactivity worth experiments were performed and found to compare favorably with calculated values. A Beryllium Management Programme was established at SAFARI-1 to identify and apply effective and appropriate actions and practices for managing the ageing of the new beryllium reflector elements. This will provide timely detection and mitigation of ageing mechanisms relevant to beryllium reflector elements, supporting the life extension of these elements. These actions and practices include monitoring of the tritium levels in the primary water, calculating and measuring the fluxes within the beryllium reflector positions, measuring the straightness of the elements to track geometric deformation and visually inspecting the reflector elements for crack formation. Acceptance criteria indicating the end of life of the elements were established. These criteria take into account the smallest gap that could exist between elements, sudden changes in the tritium levels and formation of cracks. All the data obtained through the Beryllium Management Programme are recorded in a database. Additional benefits gained through a Beryllium Management Programme are the availability of a complete irradiation history of the beryllium reflector elements at any point in time and the establishment of a knowledge base to assists in the understanding of the behavior of the beryllium reflector elements in an irradiation environment. Straightness baseline measurements of the new beryllium reflector elements were performed with a beryllium straightness measurement tool, designed at SAFARI-1. The

  5. SAFARI-1 research reactor beryllium reflector element replacement, management and relocation

    International Nuclear Information System (INIS)

    Kock, Marisa De; Vlok, Jwh; Steynberg, B.J.

    2012-01-01

    The beryllium (Be) reflector elements of the SAFARI-1 Research Reactor were replaced in October 2011 as part of the Ageing Management Programme of the reactor. After more than three million MWh of operation over a period of 47 years, core reloading became more difficult due to the geometric deformation of the beryllium reflector elements. During the replacement of the reflector elements, criticality and reactivity worth experiments were performed and found to compare favorably with calculated values. A Beryllium Management Programme was established at SAFARI-1 to identify and apply effective and appropriate actions and practices for managing the ageing of the new beryllium reflector elements. This will provide timely detection and mitigation of ageing mechanisms relevant to beryllium reflector elements, supporting the life extension of these elements. These actions and practices include monitoring of the tritium levels in the primary water, calculating and measuring the fluxes within the beryllium reflector positions, measuring the straightness of the elements to track geometric deformation and visually inspecting the reflector elements for crack formation. Acceptance criteria indicating the end of life of the elements were established. These criteria take into account the smallest gap that could exist between elements, sudden changes in the tritium levels and formation of cracks. All the data obtained through the Beryllium Management Programme are recorded in a database. Additional benefits gained through a Beryllium Management Programme are the availability of a complete irradiation history of the beryllium reflector elements at any point in time and the establishment of a knowledge base to assists in the understanding of the behavior of the beryllium reflector elements in an irradiation environment. Straightness baseline measurements of the new beryllium reflector elements were performed with a beryllium straightness measurement tool, designed at SAFARI-1. The

  6. Measurement of the asymmetry parameter for the decay $\\bar\\Lambda \\to \\bar p\\pi^+$

    OpenAIRE

    BES collaboration

    2009-01-01

    Based on a sample of $58\\times10^6J/\\psi$ decays collected with the BESII detector at the BEPC, the $\\bar\\Lambda$ decay parameter $\\alpha_{\\bar\\Lambda}$ for $\\bar\\Lambda\\to \\bar p \\pi^+$ is measured using about 9000 $J/\\psi\\to\\Lambda\\bar\\Lambda\\to p \\bar p \\pi^+\\pi^-$ decays. A fit to the joint angular distributions yields $\\alpha_{\\bar\\Lambda}(\\bar\\Lambda\\to \\bar p\\pi^+)=-0.755\\pm0.083\\pm0.063$, where the first error is statistical, and the second systematic.

  7. Modulation in magnetic exchange interaction, core shell structure and Hopkinson's peak with chromium substitution into Ni0.75Co0.25Fe2O4 nano particles

    Science.gov (United States)

    Uday Bhasker, S.; Choudary, G. S. V. R. K.; Reddy, M. V. Ramana

    2018-05-01

    The ever growing applications and ever evolving challenges of magnetic nano particles has been motivating the researchers from various disciplines towards this area of magnetic nano particles. Cation substitutional effect on the magnetic structure of the nanoparticles forms a crucial aspect in their applications. Here the environmentally benign auto combustion method was employed to synthesize chromium substituted nickel cobalt ferrite (Ni0.75Co0.25Fe2-xCrxO4; x = 0, 0.10, 0.15) nano particles, from aqueous metal nitrate solutions. Chromium substitution has shown its effect on the structural, magnetic and electrical properties of Ni0.75Co0.25Fe2O4. Structural and phase analysis of the prepared samples show increased phase purity of ferrite sample with increasing Cr substitution. The TEM (Transmission Electron Microscope) image confirms the nano size of the particles, EDS (Energy dispersive X-ray Spectroscopy) has supported the stoichiometry of the prepared samples and FTIR (Fourier-transform infrared spectroscopic) analysis confirms the spinel structure and also suggests cation redistributions with chromium substitution. VSM (Vibrational Sample Magnetometer) is used to study the magnetic properties through magnetic hysteresis (M-H) loop and magnetic Hopkinson effect. All samples show hysteresis and show reduction in magnetic properties with increase in chromium content. The thermo magnetic study shows Hopkinson peak(s) in the magnetization vs. temperature (M-T) graph and also shows variation in the nature of Hopkinson peak with chromium substitution. Possible reasons for the changes in the nature of the peak are discussed.

  8. Technical issues and solutions on ITER first wall beryllium application. Industrial viewpoint

    International Nuclear Information System (INIS)

    Iwadachi, T.; Uda, M.; Ito, M.; Miyakawa, M.; Ibuki, M.

    2004-01-01

    Beryllium is selected as reference armor material of ITER primary first wall and is joined to the copper alloy heat sink such as CuCrZr or Dispersion Strengthened Copper (DSCu) Various joining technologies have been successfully developed and the manufacturing possibilities of large size first wall panels with beryllium armor has been demonstrated. Based on such results, further technical improvement is needed to reduce manufacturing cost and ensure the reliability of joining in actual size first wall. The technical issues to optimize the fabrication process of beryllium attachment were shown in this paper from an industrial point of view. Determination of the optimum size and the surface qualities of beryllium tiles are important issues in term of the material specification to ensure joining reliability and to reduce cost. The consolidation method and the finish machining methods of beryllium tiles are also critical in terms of material cost. These items should be determined by paying concern to the accommodation of the joining methods. The selections of slitting methods for attached beryllium have a great influence on fabrication cost. In the actual fabrication of beryllium attachment, safety provisions for exposure to beryllium in working environment and the recycling of the waste from the fabrication processes will be concerned sufficiently. (author)

  9. Continuous operation of a pilot plant for the production of beryllium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Costa, T C; Amaral, S; Silveira, C M.S.; de Oliveira, A P [Instituto de Tecnologia, Governador Valadares (Brazil)

    1975-12-01

    A method of obtaining beryllium oxide with a purity of 99,2% was developed in a pilot plant with a capacity of 7 tons per month destined to operate continuously. The operation market prospects and control of production with the objective of obtaining internacional technical grade beryllium oxide are discussed.

  10. Low-Z material for limiters and wall surfaces in JET: beryllium and carbon

    International Nuclear Information System (INIS)

    Rebut, P.H.; Hugon, M.; Booth, S.J.; Dean, J.R.; Dietz, K.J.; Sonnenberg, K.; Watkins, M.L.

    1985-01-01

    The relative merits of graphite and beryllium, as a low-Z material for limiters and wall surfaces in JET, are compared. A consideration of data on thermomechanical properties, retention of hydrogen and gettering action, indicates that beryllium offers the best prospects as a material for the JET belt limiters and walls. (U.K.)

  11. Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1976-01-01

    Studies have been conducted to find materials with microstructures which minimize the formation of blisters. A promising class of materials appears to be sintered metal powder with small average grain sizes and low atomic number Z. Studies of the surface erosion of sintered aluminum powder (SAP 895) and of aluminum held at 400 0 C due to blistering by 100 keV helium ions have been conducted and the results are compared to those obtained earlier for room temperature irradiation. A significant reduction of the erosion rate in SAP 895 in comparison to annealed aluminum and SAP 930 is observed. In addition results on the blistering of sintered beryllium powder (type I) irradiated at room temperature and 600 0 C by 100 keV helium ions are given. These results will be compared with those reported recently for vacuum cast beryllium foil and a foil of sintered beryllium powder (type II) which was fabricated differently, than type I. For room temperature irradiation only a few blisters could be observed in sintered beryllium powder type I and type II and they are smaller in size and in number than in vacuum cast beryllium. For irradiation at 600 0 C large scale exfoliation of blisters was observed for vacuum cast beryllium but much less exfoliation was seen for sintered beryllium powder, type I, and type II. The results show a reduction in erosion rate cast beryllium, for both room temperature and 600 0 C

  12. Continuous operation of a pilot plant for the production of beryllium oxide

    International Nuclear Information System (INIS)

    Costa, T.C.; Amaral, S.; Silveira, C.M.S.; Oliveira, A.P. de

    1975-01-01

    A method of obtaining beryllium oxide with a purity of 99,2% was developed in a pilot plant with a capacity of 7 tons per month destined to operate continuously. The operation market prospects and control of production with the objective of obtaining internacional technical grade beryllium oxide are discussed [pt

  13. Proceedings of the third IEA international workshop on beryllium technology for fusion

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Okamoto, Makoto

    1998-01-01

    This report is the Proceedings of the Third International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on October 22-24, 1997, at the Sangyou Kaikan in Mito City with 68 participants who attended from the Europe, the Russian Federation, the Kazakstan, the United States and Japan. The topics for papers were arranged into 9 sessions; beryllium applications for ITER, production and characterization, chemical compatibility and corrosion, forming and joining, plasma/tritium interactions, beryllium coating, first wall applications, neutron irradiation effects, health and safety. To utilize beryllium in the pebble type blanket, a series of discussions were intensified in multiple view points such as the swelling, He/T release from beryllium pebble irradiated up to high He content, effective thermal conductivity, tritium permeation and coating, and fabrication cost, and so on. As the plasma facing material, life time of beryllium and coated beryllium, dust and particle production, joining, waste treatment, mechanical properties and deformation by swelling were discussed as important issues. Especially, it was recognized throughout the discussions that the comparative study by the different researchers should be carried out to establish the reliability of the data reported in the workshop and in others. To enhance the comparative study, the world wide collaboration for the relative evaluation of the beryllium was proposed by the International Organization Committee and the proposal was approved by all of the participants. The 45 of the presented papers are indexed individually. (J.P.N.)

  14. Analysis of the KANT experiment on beryllium using TRIPOLI-4 Monte Carlo code

    International Nuclear Information System (INIS)

    Lee, Yi-Kang

    2011-01-01

    Beryllium is an important material in fusion technology for multiplying neutrons in blankets. However, beryllium nuclear data are differently presented in modern nuclear data evaluations. Recent investigations with the TRIPOLI-4 Monte Carlo simulation of the tritium breeding ratio (TBR) demonstrated that beryllium reaction data are the main source of the calculation uncertainties between ENDF/B-VII.0 and JEFF-3.1. To clarify the calculation uncertainties from data libraries on beryllium, in this study TRIPOLI-4 calculations of the Karlsruhe Neutron Transmission (KANT) experiment have been performed by using ENDF/B-VII.0 and new JEFF-3.1.1 data libraries. The KANT Experiment on beryllium has been used to validate neutron transport codes and nuclear data libraries. An elaborated KANT experiment benchmark has been compiled and published in the NEA/SINBAD database and it has been used as reference in the present work. The neutron multiplication in bulk beryllium assemblies was considered with a central D-T neutron source. Neutron leakage spectra through the 5, 10, and 17 cm thick spherical beryllium shells were calculated and five-group partial leakage multiplications were reported and discussed. In general, improved C/E ratios on neutron leakage multiplications have been obtained. Both ENDF/B-VII.0 and JEFF-3.1.1 beryllium data libraries of TRIPOLI-4 are acceptable now for fusion neutronics calculations.

  15. Comparison between actively cooled divertor dump plates with beryllium and CFC armour

    International Nuclear Information System (INIS)

    Falter, H.D.; Araki, M.; Sato, K.; Suzuki, S.; Cardella, A.

    1995-01-01

    Actively cooled test sections with beryllium and graphite armour all withstand power densities between 15 and 20 MW/m 2 . Beryllium as structural material fails mechanically at low power densities. Monoblocks appear to be the most rigid design but frequently large variations in surface temperature are observed. All other test sections show a uniform surface temperature distribution. (orig.)

  16. Thermodynamic properties of molten mixtures of lithium, rubidium, cesium and beryllium chlorides

    International Nuclear Information System (INIS)

    Zarubitskij, O.G.; Podafa, B.P.; Dubovoj, P.G.

    1982-01-01

    e. m. f. in binary systems of beryllium chloride with rubidium and cesium chlorides were measured. Concentration dependences of thermodynamic functions (mixing entropy Gibbs free energy) of beryllium chloride in the systems as well as with the participation of lithium chloride were analysed

  17. Summary of beryllium electrorefining technology developed by KBI Division of Cabot Berylco Inc

    International Nuclear Information System (INIS)

    Pistole, C.O.

    1983-01-01

    Proprietary beryllium electrorefining technology has been purchased from the KBI Division of Cabot Berylco Inc. by Rockwell International, Rocky Flats Plant, as part of a DOE beryllium option study. This technology has been reviewed and is summarized. 12 figures, 7 tables

  18. Influence of physicochemical properties of beryllium particles on cultured cell toxicity

    International Nuclear Information System (INIS)

    Finch, G.L.; Brooks, A.L.; Hoover, M.D.; Cuddihy, R.G.

    1988-01-01

    The toxicity of beryllium oxide (BeO)), beryllium metal, and beryllium sulfate (BeSO 4 ) was studied in two cell lines, Chinese hamster ovary cells (CHO) and lung epithelial cells (LEC). Beryllium oxide particles were prepared at either 500 or 1000 deg. C, and two different particle sizes of beryllium metal were used. Following a 20-h exposure to beryllium compounds, cells were grown in culture to quantitate cloning ability relative to controls as a measure of cell killing, The LEC cultures were more sensitive to beryllium cytotoxicity than the CHO cells. When expressed on the basis of the mass of material added to the cultures, the order of toxicity was BeSO 4 ≥ 500 deg. C -BeO > 1000 deg. C -BeO > Be metal (small) Be metal (large). When cytotoxic effects were expressed on the basis of particulate surface rather than mass, the relative differences in toxicity between compounds was decreased. The order of toxicity was Be metal (small) ∼ Be metal (large) ∼ 500 deg. C-BeO ∼ 1000 deg. C-BeO. These data indicate that solubility influences beryllium toxicity to short-term cell cultures. (author)

  19. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  20. Universal precision sine bar attachment

    Science.gov (United States)

    Mann, Franklin D. (Inventor)

    1989-01-01

    This invention relates to an attachment for a sine bar which can be used to perform measurements during lathe operations or other types of machining operations. The attachment can be used for setting precision angles on vises, dividing heads, rotary tables and angle plates. It can also be used in the inspection of machined parts, when close tolerances are required, and in the layout of precision hardware. The novelty of the invention is believed to reside in a specific versatile sine bar attachment for measuring a variety of angles on a number of different types of equipment.

  1. Star formation suppression and bar ages in nearby barred galaxies

    Science.gov (United States)

    James, P. A.; Percival, S. M.

    2018-03-01

    We present new spectroscopic data for 21 barred spiral galaxies, which we use to explore the effect of bars on disc star formation, and to place constraints on the characteristic lifetimes of bar episodes. The analysis centres on regions of heavily suppressed star formation activity, which we term `star formation deserts'. Long-slit optical spectroscopy is used to determine H β absorption strengths in these desert regions, and comparisons with theoretical stellar population models are used to determine the time since the last significant star formation activity, and hence the ages of the bars. We find typical ages of ˜1 Gyr, but with a broad range, much larger than would be expected from measurement errors alone, extending from ˜0.25 to >4 Gyr. Low-level residual star formation, or mixing of stars from outside the `desert' regions, could result in a doubling of these age estimates. The relatively young ages of the underlying populations coupled with the strong limits on the current star formation rule out a gradual exponential decline in activity, and hence support our assumption of an abrupt truncation event.

  2. HEINBE; the calculation program for helium production in beryllium under neutron irradiation

    International Nuclear Information System (INIS)

    Shimakawa, Satoshi; Ishitsuka, Etsuo; Sato, Minoru

    1992-11-01

    HEINBE is a program on personal computer for calculating helium production in beryllium under neutron irradiation. The program can also calculate the tritium production in beryllium. Considering many nuclear reactions and their multi-step reactions, helium and tritium productions in beryllium materials irradiated at fusion reactor or fission reactor may be calculated with high accuracy. The calculation method, user's manual, calculated examples and comparison with experimental data were described. This report also describes a neutronics simulation method to generate additional data on swelling of beryllium, 3,000-15,000 appm helium range, for end-of-life of the proposed design for fusion blanket of the ITER. The calculation results indicate that helium production for beryllium sample doped lithium by 50 days irradiation in the fission reactor, such as the JMTR, could be achieved to 2,000-8,000 appm. (author)

  3. Operational experience with the JET beryllium evaporators in the J1W test bed

    International Nuclear Information System (INIS)

    Peacock, A.T.; Dietz, K.J.; Israel, G.; Jensen, H.S.; Johnson, A.; Pick, M.A.; Saibene, G.; Sartori, R.

    1989-01-01

    Four beryllium evaporators were fitted onto the JET vessel during March 1989. These evaporators are planned to give the first introduction of beryllium into the JET machine to study the effect of using beryllium as a first wall material. Over 200 hours operational experience with such an evaporator had been gained on a test bed facility in which the evaporation rate, radial evaporant distribution and head operating temperature had been determined. The results obtained on this facility with two different heat materials, sintered S-65B and vacuum cast beryllium are described. The test vessel has also been used to conduct beryllium wall pumping experiments using the ''Langmuir effect''. The initial results of these experiments will be described. (author)

  4. Comparative thermal cyclic test of different beryllium grades previously subjected to simulated disruption loads

    International Nuclear Information System (INIS)

    Gervash, A.; Giniyatulin, R.; Mazul, I.

    1999-01-01

    Considering beryllium as plasma facing armour this paper presents recent results obtained in Russia. A special process of joining beryllium to a Cu-alloy material structure is described and recent results of thermal cycling tests of such joints are presented. Summarizing the results, the authors show that a Cu-alloy heat sink structure armoured with beryllium can survive high heat fluxes (≥10 MW/m 2 ) during 1000 heating/cooling cycles without serious damage to the armour material and its joint. The principal feasibility of thermal cycling of beryllium grades and their joints directly in the core of a nuclear reactor is demonstrated and the main results of this test are presented. The paper also describes the thermal cycling of different beryllium grades having cracks initiated by previously applied high heat loads simulating plasma disruptions. (orig.)

  5. Bar-spheroid interaction in galaxies

    Science.gov (United States)

    Hernquist, Lars; Weinberg, Martin D.

    1992-01-01

    N-body simulation and linear analysis is employed to investigate the secular evolution of barred galaxies, with emphasis on the interaction between bars and spheroidal components of galaxies. This interaction is argued to drive secular transfer of angular momentum from bars to spheroids, primarily through resonant coupling. A moderately strong bar, having mass within corotation about 0.3 times the enclosed spheroid mass, is predicted to shed all its angular momentum typically in less than about 10 exp 9 yr. Even shorter depletion time scales are found for relatively more massive bars. It is suggested either that spheroids around barred galaxies are structured so as to inhibit strong coupling with bars, or that bars can form by unknown processes long after disks are established. The present models reinforce the notion that bars can drive secular evolution in galaxies.

  6. Detection of beryllium treatment of natural sapphires by NRA

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, P.C., E-mail: carolina.gutierrez@uam.e [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Ynsa, M.-D.; Climent-Font, A. [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Dpto. Fisica Aplicada C-12, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Calligaro, T. [Centre de Recherche et de Restauration des musees de France C2RMF, CNRS-UMR171, 14 quai Francois Mitterrand, 75001 Paris (France)

    2010-06-15

    Since the 1990's, artificial treatment of natural sapphires (Al{sub 2}O{sub 3} crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of {mu}g/g of beryllium in Al{sub 2}O{sub 3} crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-{mu}m diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction {sup 9}Be({alpha}, n{gamma}){sup 12}C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt {gamma}-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt {gamma}-ray produced during irradiation by the aluminium of the sapphire matrix through the {sup 27}Al({alpha}, p{gamma}){sup 30}Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required {mu}g/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 {mu}C, beryllium concentrations from 5 to 16 {mu}g/g have been measured in the samples, with a detection limit of 1 {mu}g/g.

  7. Model study in chemisorption: atomic hydrogen on beryllium clusters

    International Nuclear Information System (INIS)

    Bauschlicher, C.W. Jr.

    1976-08-01

    The interaction between atomic hydrogen and the (0001) surface of Be metal has been studied by ab initio electronic structure theory. Self-consistent-field (SCF) calculations have been performed using minimum, optimized minimum, double zeta and mixed basis sets for clusters as large as 22 Be atoms. The binding energy and equilibrium geometry (the distance to the surface) were determined for 4 sites. Both spatially restricted (the wavefunction was constrained to transform as one of the irreducible representations of the molecular point group) and unrestricted SCF calculations were performed. Using only the optimized minimum basis set, clusters containing as many as 22 beryllium atoms have been investigated. From a variety of considerations, this cluster is seen to be nearly converged within the model used, providing the most reliable results for chemisorption. The site dependence of the frequency is shown to be a geometrical effect depending on the number and angle of the bonds. The diffusion of atomic hydrogen through a perfect beryllium crystal is predicted to be energetically unfavorable. The cohesive energy, the ionization energy and the singlet-triplet separation were computed for the clusters without hydrogen. These quantities can be seen as a measure of the total amount of edge effects. The chemisorptive properties are not related to the total amount of edge effects, but rather the edge effects felt by the adsorbate bonding berylliums. This lack of correlation with the total edge effects illustrates the local nature of the bonding, further strengthening the cluster model for chemisorption. A detailed discussion of the bonding and electronic structure is included. The remaining edge effects for the Be 22 cluster are discussed

  8. Paramagnetic centers in ternary coordinated oxygen in beryllium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Blaginina, L.A.; Zatsepin, A.F.; Dmitriev, I.A.

    1988-01-01

    Glasses of the composition 3BeO-Al 2 O 3 -6SiO 2 containing a homogenizing additive of MgF 2 were synthesized. The ESR spectra of x-ray and gamma irradiated specimens were determined. A complex ESR spectrum arose in the original glass. The ESR spectrum of the gamma-irradiated polycrystalline Be 2 SiO 4 glass was almost identical to the crystallized glass. It was shown that the presence of beryllium atoms in the composition of silicate glasses created the conditions for the formation of structural fragments with ternary coordinated oxygen

  9. Use of notched beams to establish fracture criteria for beryllium

    International Nuclear Information System (INIS)

    Mayville, R.A.

    1980-01-01

    The fracture of an improved form of pure beryllium was studied under triaxial tensile stresses. This state of stress was produced by testing notched beams, which were thick enough to be in a state of plane strain at the center. A plane strain, elastic-incremental plasticity finite element program was then used to determine the stress and strain distributions at fracture. A four-point bend fixture was used to load the specimens. It was carefully designed and manufactured to eliminate virtually all of the shear stresses at the reduced section of the notched beams. The unixial properties were obtained

  10. Energy dependences of absorption in beryllium windows and argon gas

    International Nuclear Information System (INIS)

    Chantler, C.T.; Staudenmann, J-P.

    1994-01-01

    In part of an ongoing work on x-ray form factors, new absorption coefficients are being evaluated for all elements, across the energy range from below 100 eV to above 100 keV. These new coefficients are applied herein to typical problems in synchrotron radiation stations, namely the use of beryllium windows and argon gas detectors. Results are compared with those of other authors. The electron-ion pair production process in ionization chambers is discussed, and the effects of 3d-element impurities are indicated. 15 refs., 6 figs

  11. Microstructure and mechanical properties of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.

    1998-01-01

    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  12. Study on microstructure of Al coating on beryllium substrates

    International Nuclear Information System (INIS)

    Li Ruiwen; Xian Xiaobin; Zou Juesheng; Zhang Pengcheng

    2002-01-01

    Magnetron sputtering ion plating and plasma spraying have been used to make aluminium coating on beryllium substrate. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Auger electron energy spectrum (AES) and X-ray stress analysis were used to study microstructure and interface and residual stress and diffusion content of Al coating. The results show that width of diffusion zone made by magnetron sputtering ion plating is about 1 μm, coating is composed of columnar grains and internal stress of Al coating is about zero. Coating deposited by plasma spraying is not homogeneous and there are microcracks at interface

  13. Precipitation reactions in a beryllium-bearing stainless steel

    International Nuclear Information System (INIS)

    Carr, M.J.; Heiple, C.R.

    1980-01-01

    Precipitation reactions in a beryllium-bearing stainless steel alloy have been studied by TEM and electron diffraction for ageing temperatures between 400 0 and 900 0 C. The nominal composition of the alloy was 38% Ni - 21% Cr - 1% Mn - 0.5% Be - Bal Fe. Specimens were solutionized for one hour at 1150 0 C and water quenched. The ageing reaction was studied by hardness measurements for times between 0.5 and 16 hours. The TEM specimens dicussed herein were made from samples aged one hour

  14. Effects of dynamic aging and tensile properties of beryllium

    International Nuclear Information System (INIS)

    Lashuk, N.K.; Tkachenko, V.G.; Khamatov, R.I.; Artemyuk, S.A.; Kolesnik, L.I.; Yushko, V.G.

    1979-01-01

    The analysis of temperature dependences of deformation and fracture characteristis (σsub(0.2),σ and σsub(B)) of the TGP beryllium, showed their nonmonotonous character, caused by dynamic aging effects at the temperatures of 200 and 500 deg C. These effects manifest themselves to a variable degree depending on structure and heat treatment of the metal. Dissolved interstitials are responsible for low-temperature aging, while substitutional impurities are responsible for high-temperature aging. Stated is the effect of high-temperature aging berrylium hot brittleness. The corresponding mechanisms are discussed within the frames of dislocation theory of strain aging

  15. Theoretical study of hydrogen-bridged beryllium compounds

    International Nuclear Information System (INIS)

    Hashimoto, Kenro; Osamura, Yoshihiro; Iwata, Suehiro

    1986-01-01

    Ab initio closed-shell SCF method, combined with the energy gradient technique, was applied to study the molecular structures and the stability of (i) beryllium dihydride and its polymers (BeH 2 ) n (n = 1 to 5), and of (ii) monosubstituted beryllium hydrides HBeX (X = BH 2 , CH 3 , NH 2 , OH, F and Cl). Basis set dependence on the geometries and the force constants of BeH 2 and (BeH 2 ) 2 was carefully examined. The minimal basis set gives us a qualitative picture for chemical bonding of beryllium, though at least the split-valence type basis set is needed to obtain quantitative results. The effect of the electron correlation on the dimerization energy of BeH 2 was studied with SDCI and MP3 methods and was not so important as on the dimerization energy of Be atom. The dimer formation of BeH 2 results from the strong orbital interaction between a σ orbital (HOMO) of one of BeH 2 and a vacant 2p π orbital (LUMO) of the other. The energy gain from (BeH 2 ) n to (BeH 2 ) n+1 was almost constant for n = 2, 3, and 4 (about 120 kJ/mol) and it is larger than that from BeH 2 to (BeH 2 ) 2 (about 80 kJ/mol). This result means that in the chemical bonding of Be atom the sp 3 hybridization is more favorable than the sp 2 hybridization, and the sp 2 is more than the sp hybridization. With STO-3G and 3 - 21G basis sets the molecular structures of a series of monosubstituted beryllium hydrides and their dimers were determined, and the vibrational frequencies were evaluated for them. Bond lengths between a Be atom and a neighboring atom become shorter as the electronegativity of the neighboring atom increases. In particular, the bonding with oxygen is found to be very strong. These hydrides tends to dimerize, and the dimerization energy is about 60 ∼ 100 kJ/mol, when the bridged atoms are hydrogen atoms, irrespective of the terminal substituents. (author)

  16. Expandable antivibration bar for a steam generator

    International Nuclear Information System (INIS)

    Lagally, H.O.

    1986-01-01

    A steam generator tube support structure comprises expandable antivibration bars positioned between rows of tubes in the steam generator and attached to retaining rings surrounding the bundle of tubes. The antivibration bars have adjacent bar sections with mating surfaces formed as inclined planes which upon relative longitudinal motion between the upper and lower bars provides a means to increase the overall thickness across the structure to the required value. The bar section is retained against longitudinal movement in take-up assembly whereas the bar section is movable longitudinally by rotation of a nut. (author)

  17. Observations of offshore bar decay

    DEFF Research Database (Denmark)

    Aagaard, Troels; Kroon, Aart; Greenwood, Brian

    2010-01-01

    the upper shoreface, and finally a stage of decaying bar form through loss of sediment volume at the outer boundary of the upper shoreface. The phenomenon has been previously documented in the Netherlands, the USA, the Canadian Great Lakes, and in New Zealand, but our present understanding...

  18. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores: implications for risk assessment.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C

    2008-01-01

    Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to CBD. In comparison to high-CBD risk exposures where the chemical nature of aerosol

  19. Qq(Q-bar)(q-bar)' states in chiral SU(3) quark model

    International Nuclear Information System (INIS)

    Zhang Haixia; Zhang Min; Zhang Zongye

    2007-01-01

    We study the masses of Qq(Q-bar)(q-bar)' states with J PC =0 ++ , 1 ++ , 1 +- and 2 ++ in the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q(q') is the light quark (u,d or s). According to our numerical results, it is improbable to make the interpretation of [cn(c-bar)(n-bar)] 1 ++ and [cn(c-bar)(n-bar)] 2 ++ (n=u,d) states as X(3872) and Y(3940), respectively. However, it is interesting to find the tetraquarks in the bq(b-bar)(q-bar)' system. (authors)

  20. SOURCE AND PATHWAY DETERMINATION FOR BERYLLIUM FOUND IN BECHTEL NEVADA NORTH LAS VEGAS FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2004-07-01

    In response to the report ''Investigation of Beryllium Exposure Cases Discovered at the North Las Vegas Facility of the National Nuclear Security Administration'', published by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) in August 2003, Bechtel Nevada (BN) President and General Manager Dr. F. A. Tarantino appointed the Beryllium Investigation & Assessment Team (BIAT) to identify both the source and pathway for the beryllium found in the North Las Vegas (NLV) B-Complex. From September 8 to December 18, 2003, the BIAT investigated the pathway for beryllium and determined that a number of locations existed at the Nevada Test Site (NTS) which could have contained sufficient quantities of beryllium to result in contamination if transported. Operations performed in the B-1 Building as a result of characterization activities at the Engine Maintenance, Assembly, and Disassembly (EMAD); Reactor Maintenance, Assembly, and Disassembly (RMAD); Test Cells A and C; and the Central Support Facility in Area 25 had the greatest opportunity for transport of beryllium. Investigative monitoring and sampling was performed at these sites with subsequent transport of sample materials, equipment, and personnel from the NTS to the B-1 Building. The timeline established by the BIAT for potential transport of the beryllium contamination into the B-1 Building was from September 1997 through November 2002. Based on results of recently completed swipe sampling, no evidence of transport of beryllium from test areas has been confirmed. Results less than the DOE beryllium action level of 0.2 ???g/100 cm2 were noted for work support facilities located in Area 25. All of the identified sites in Area 25 worked within the B-1 tenant's residency timeline have been remediated. Legacy contaminants have either been disposed of or capped with clean borrow material. As such, no current opportunity exists for release or spread of beryllium

  1. Development and experimental study of beryllium window for ITER radial X-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoxi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Guangxu [Materion Brush (United States); Chen, Kaiyun; Chen, Yebin; Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Liqun, E-mail: lqhu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Niu, Luying; Sheng, Xiuli; Cheng, Yong; Lu, Kun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-12-15

    Highlights: • The thickness of the beryllium foil is chosen as 80 μm to guarantee its safety under high pressure differential in accident events. • Using low purity of beryllium as the transition material, the effect of thermal stress caused by diffusion bonding process can be reduced. • Sealing ring and honeycomb-like supports are designed and used in the mechanical clamped beryllium window to enhance its sealing and safety performance. • The beryllium windows have good performance under severe working conditions like high temperature baking, vibration or impact load. -- Abstract: Radial X-ray camera (RXC) is a diagnostic device planned to be installed in the ITER Equatorial Port no. 12. Beryllium window will be installed between the inner and outer camera of RXC, which severs as the transmission photocathode substrate and also the vacuum isolation component. In this paper the design and manufacture process of two types of beryllium windows were introduced. Although 50 μm thickness of beryllium foil is the best choice, the 80 μm one with X-ray threshold of 1.34 keV was selected for safety consideration. Using the intermediate layer (low purity of beryllium) between the beryllium foil and the stainless steel base flange is an effective strategy to limit the welding thermal deformation and thermal stress of the thin foil caused by bonding between different materials. By using ANSYS software, the feasibility of the aperture design was analyzed and validated. Metal sealing ring was applied in the mechanical clamped beryllium window for its good stability under high temperature and neutron radiation. Although both of the hollow metal sealing ring with 0.03 mm silver coating and the pure silver sealing ring can satisfy the sealing requirement, the later one was chosen to produce the final product. Two hours 240 °C high temperature baking test, two hours 3.3 Hz vibration test and fatigue test were performed on the two types of beryllium windows. Based on the

  2. K-shell photodetachment of the negative ion of beryllium

    International Nuclear Information System (INIS)

    Carlin, N M; Ramsbottom, C A; Bell, K L; Hibbert, A

    2003-01-01

    The partial and total cross sections for photodetachment of the metastable 1s 2 2s2p 2 4 P e bound state of the negative ion of beryllium are presented for a range of initial photon energies across and beyond the 1s detachment threshold. The cross sections are computed using a multichannel close-coupling R-matrix approximation, where sophisticated configuration-interaction wavefunctions are used to represent the initial and final states. Twelve target eigenstates with configurations 1s 2 2s2p, 1s 2 2p 2 , 1s2s 2 2p, 1s2s2p 2 and 1s2p 3 are included in the expansion of the total wavefunction describing the neutral Be atom. A number of prominent resonance structures have been identified in the partial cross sections for the three total system symmetry transitions of interest: 4 P e - 4 S o , 4 P o and 4 D o . No comparison can be made at this stage with other theoretical or experimental measurements due to a lack of data describing the inner shell photodetachment of the negative ion of beryllium

  3. Valence force fields and the lattice dynamics of beryllium oxide

    International Nuclear Information System (INIS)

    Ramani, R.; Mani, K.K.; Singh, R.P.

    1976-01-01

    The lattice dynamics of beryllium oxide have been studied using a rigid-ion model, with short-range forces represented by a valence force field. Various existing calculations on group-IV elements using such a field have been examined as a prelude to transference of force constants from diamond to beryllium oxide. The effects of ionicity on the force constants have been included in the form of scale factors. It is shown that no satisfactory fit to the long-wavelength data on BeO can be found with transferred force constants. However, adequate least-squares fits can be found both with four- and six-parameter valence force fields, the discrepancy with experiment being large only for one optical mode at the Brillouin-zone center. Dispersion curves along Δ and Σ are presented and are in fair agreement with experiment, deviations arising essentially from the quality of the fit to the long-wavelength data. The bond-bending interactions are found to play a significant role and arguments have been presented to show that the inclusion of further angle-angle interactions would yield a very satisfactory picture of the dynamics

  4. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  5. Development of all-beryllium riveted structures. [Frustrum; cylinders; cones

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, D. R.; Leslie, W. W.; Miley, D. V.; Nokes, R. W.

    1976-04-20

    Results are presented of a development program aimed at making a full-scale, all-beryllium frustrum by riveted assembly methods. Included are descriptions of the sheet-metal fabrication practices and assembly plans. Results of extensive mechanical testing of both ingot- and powder-source beryllium products that are presented include tensile, notch-tensile, bearing, and shear tests. Although the full-size structure has not been built, examples are given of several conical and cylindrical structures that were made. The largest of these is a 20-in. diameter, 15-in. long cylinder that was roll-formed from one 0.050-in. thick ingot sheet and assembled with 60 countersunk rivets. Tensile testing of riveted flat coupons is also reported as is bulge testing of riveted cylindrical shells. A cost comparison of riveted deep-drawn and powder-source cylinders is made. Results show that when strength and dimensional tolerance requirements are not severe, a riveted assembly approach is warranted. 33 figures, 8 tables. (auth)

  6. Laser-Ablated Beryllium Ions for Cold Antihydrogen in ALPHA

    CERN Document Server

    Sameed, Muhammed; Charlton, Michael

    One of the best ways to study antimatter is to investigate antihydrogen, the bound state of an antiproton and a positron. Antihydrogen atoms do not exist naturally and must be synthesized in the lab by merging carefully-prepared plasmas of positrons and antiprotons. If the atoms are created in a magnetic trap like the one used by the ALPHA experiment at CERN, then a fraction of the coldest atoms remain trapped, while the rest escape and annihilate on the trap walls. The trapped atoms may then be probed using microwaves or lasers to make high-precision comparisons with hydrogen. Increasing the trapping rate would allow us to perform precision measurements on antihydrogen in a shorter period of time and with better systematics. Particle simulations indicate that by sympathetically cooling positrons using laser-cooled beryllium ions, we have the ability to improve the antihydrogen trapping rate by up to two orders of magnitude. This thesis describes the effort to design and qualify a beryllium ion source that is...

  7. Effect of copper on crack propagation in beryllium single crystals

    International Nuclear Information System (INIS)

    Aldinger, F.; Wilhelm, M.

    The effect of copper additives on the fracture energy and the development of cracks parallel to the basal plane was studied in zone-refined single crystalline beryllium. At 77 0 K the cleavage planes are very smooth, so the crack propagation energy, which is independent of copper content (less than 2 at. percent Cu) in the range of measurement accuracy, is only a little higher than the surface energy of the basal plane. At room temperature, due to intense plastic processes taking place in front of the crack tip, the fracture energy is an order of magnitude higher than at low temperatures. The effect of copper on the plastic processes can be divided into two regions. In region I (less than 1.2 at. percent Cu), in which the crack propagation energy increases sharply with increasing copper content, crack propagation is controlled by prism slips. The decrease in crack propagation energy in region II (greater than 1.2 at. percent Cu) can be attributed to a reduction of beryllium twinning energy with increasing copper content. (auth)

  8. Covalently bound molecular states in beryllium and carbon isotopes

    International Nuclear Information System (INIS)

    Wolfram von, Oertzen; Hans-Gerhard, Bohlen; Wolfram von, Oertzen

    2003-01-01

    Nuclear clustering in N=Z nuclei has been studied since many decades. States close to the decay thresholds, as described by the Ikeda diagram, are of particular interest. Recent studies in loosely bound systems, as observed with neutron-rich nuclei has revived the interest in cluster structures in nuclei, with additional valence neutrons, which give rise to pronounced covalent molecular structures. The Beryllium isotopes represent the first example of such unique states in nuclear physics with extreme deformations. In the deformed shell model these are referred to as super- and hyper-deformation. These states can be described explicitly by molecular concepts, with neutrons in covalent binding orbits. Examples of recent experiments performed at the HMI-Berlin demonstrating the molecular structure of the rotational bands in Beryllium isotopes are presented. Further work on chain states (nuclear polymers) in the carbon isotopes is in progress, these are the first examples of deformed structures in nuclei with an axis ratio of 3:1. A threshold diagram with clusters bound via neutrons in covalent molecular configurations can be established, which can serve as a guideline for future work. (authors)

  9. Going Smokefree Matters - Bars and Restaurants Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Going Smokefree Matters – Bars and Restaurants Infographic which outlines key facts related to the effects of secondhand smoke exposure in bars and...

  10. Going Smokefree Matters - Bars and Restaurants Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Going Smokefree Matters – Bars and Restaurants Infographic which outlines key facts related to the effects of secondhand smoke exposure in bars and...

  11. CP asymmetries in B-bar → K-bar *( → K-bar π) l-bar l and untagged B-bar s, Bs → φ( → K+K-) l-bar l decays at NLO

    International Nuclear Information System (INIS)

    Bobeth, Christoph; Hiller, Gudrun; Piranishvili, Giorgi

    2008-01-01

    The decay B-bar → K-bar *( → K-bar π) l-bar l offers great opportunities to explore the physics at and above the electroweak scale by means of an angular analysis. We investigate the physics potential of the seven CP asymmetries plus the asymmetry in the rate, working at low dilepton mass using QCD factorization at next-to leading order (NLO). The b → s CP asymmetries are doubly Cabibbo-suppressed ∼ d , B d → K*( → K 0 π 0 ) l-bar l and B-bar s , B s → φ( → K + K - ) l-bar l decays. Analyses of these CP asymmetries can rule out, or further support the minimal description of CP violation through the CKM mechanism. Experimental studies are promising for (super) flavor factories and at hadron colliders.

  12. Sampling and analysis plan for assessment of beryllium in soils surrounding TA-40 building 15

    Energy Technology Data Exchange (ETDEWEB)

    Ruedig, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-19

    Technical Area (TA) 40 Building 15 (40-15) is an active firing site at Los Alamos National Laboratory. The weapons facility operations (WFO) group plans to build an enclosure over the site in 2017, so that test shots may be conducted year-round. The enclosure project is described in PRID 16P-0209. 40-15 is listed on LANL OSH-ISH’s beryllium inventory, which reflects the potential for beryllium in/on soils and building surfaces at 40-15. Some areas in and around 40-15 have previously been sampled for beryllium, but past sampling efforts did not achieve complete spatial coverage of the area. This Sampling and Analysis Plan (SAP) investigates the area surrounding 40-15 via 9 deep (≥1-ft.) soil samples and 11 shallow (6-in.) soil samples. These samples will fill the spatial data gaps for beryllium at 40-15, and will be used to support OSH-ISH’s final determination of 40-15’s beryllium registry status. This SAP has been prepared by the Environmental Health Physics program in consultation with the Industrial Hygiene program. Industrial Hygiene is the owner of LANL’s beryllium program, and will make a final determination with regard to the regulatory status of beryllium at 40-15.

  13. Mechanical compression tests of beryllium pebbles after neutron irradiation up to 3000 appm helium production

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A. [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • Compression tests of highly neutron irradiated beryllium pebbles have been performed. • Irradiation hardening of beryllium pebbles decreases the steady-state strain-rates. • The steady-state strain-rates of irradiated beryllium pebbles exceed their swelling rates. - Abstract: Results: of mechanical compression tests of irradiated and non-irradiated beryllium pebbles with diameters of 1 and 2 mm are presented. The neutron irradiation was performed in the HFR in Petten, The Netherlands at 686–968 K up to 1890–2950 appm helium production. The irradiation at 686 and 753 K cause irradiation hardening due to the gas bubble formation in beryllium. The irradiation-induced hardening leads to decrease of steady-state strain-rates of irradiated beryllium pebbles compared to non-irradiated ones. In contrary, after irradiation at higher temperatures of 861 and 968 K, the steady-state strain-rates of the pebbles increase because annealing of irradiation defects and softening of the material take place. It was shown that the steady-state strain-rates of irradiated beryllium pebbles always exceed their swelling rates.

  14. On use of beryllium in fusion reactors: Resources, impurities and necessity of detritiation after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kolbasov, B.N., E-mail: b.kolbasov@yandex.ru; Khripunov, V.I., E-mail: Khripunov_VI@nrcki.ru; Biryukov, A.Yu.

    2016-11-01

    Highlights: • Potential needs in Be for fusion power engineering may exceed Be resources. • Be recycling after its operation in a fusion power plant (FPP) seems inevitable. • U impurity in Be seriously impairs environmental properties of fusion power plants. • Upon burial of irradiated Be the main problems are caused by U and {sup 3}H impurities. • Clearance of Be extracted from a FPP is impossible due to U impurity. - Abstract: Worldwide identified resources of beryllium somewhat exceed 80 000 t. Beryllium production in all the countries of the world in 2012 was about 230 t. At the same time, some conceptual designs of fusion power reactors envisage utilization of several hundred tons of this metal. Therefore return of beryllium into the production cycle (recycling) will be necessary. The beryllium ore from some main deposits has uranium content inadmissible for fusion reactors. This fact raises a question on the need to develop and apply an economically acceptable technology for beryllium purification from the uranium. Practically any technological procedure with beryllium used in fusion reactors requires its detritiation. A study of tritium and helium release from irradiated beryllium at different temperatures and rates of temperature increase was performed at Kurchatov Institute.

  15. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  16. Thermal conductivity of beryllium under low temperature high dose neutron irradiation

    International Nuclear Information System (INIS)

    Chakin, V.P.; Latypov, R.N.; Suslov, D.N.; Kupriyanov, I.B.

    2004-01-01

    Thermal conductivity of compact beryllium of several Russian grades such as TE-400, TE-56, TE-30, TIP and DIP differing in the production technology, grain size and impurity content has been investigated. The thermal diffusivity of beryllium was measured on the disks in the initial and irradiated conditions using the pulse method in the range from room temperature to 200degC. The thermal conductivity was calculated using the table values for the beryllium thermal capacity. The specimens and beryllium neutron source fragments were irradiation in the SM reactor at 70degC and 200degC to a neutron fluence of (0.5-11.4)·10 22 cm -2 (E>0.1 MeV) and in the BOR-60 reactor at 400degC to 16·10 22 cm -2 (E>0.1MeV), respectively. The low-temperature irradiation leads to the drop decrease of the beryllium thermal conductivity and the effect depends on the irradiation parameters. The paper analyses the effect of irradiation parameters (temperature, neutron fluence), measurement temperature and structural factors on beryllium conductivity. The experiments have revealed that the short time post-irradiation annealing at high temperature results in partial reduction of the thermal conductivity of irradiated beryllium. (author)

  17. 49 CFR 236.705 - Bar, locking.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Bar, locking. 236.705 Section 236.705..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.705 Bar, locking. A bar in an interlocking machine to which the locking dogs are attached. ...

  18. Bar code instrumentation for nuclear safeguards

    International Nuclear Information System (INIS)

    Bieber, A.M. Jr.

    1984-01-01

    This paper presents a brief overview of the basic principles of bar codes and the equipment used to make and to read bar code labels, and a summary of some of the more important factors that need to be considered in integrating bar codes into an information system

  19. N-barN interaction theoretical models

    International Nuclear Information System (INIS)

    Loiseau, B.

    1991-12-01

    In the framework of antinucleon-nucleon interaction theoretical models, our present understanding on the N-barN interaction is discussed, either from quark- or/and meson- and baryon-degrees of freedom, by considering the N-barN annihilation into mesons and the N-barN elastic and charge-exchange scattering. (author) 52 refs., 11 figs., 2 tabs

  20. Determination of the quark coupling strength vertical bar V-ub vertical bar using baryonic decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Older, A. A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.

    In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, vertical bar V-ub vertical bar and vertical bar V-ub vertical bar, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron

  1. Derivation of asymptotic Vertical BarΔIVertical Bar = 1/2 rule

    International Nuclear Information System (INIS)

    Terasaki, K.; Oneda, S.

    1982-01-01

    It is argued that the origin of the observed approximate Vertical BarΔIVertical Bar = 1/2 rule is the presence of an asymptotic Vertical BarΔIVertical Bar = 1/2 rule which exists among certain two-body hadronic weak matrix elements, involving especially the ground-state hadrons

  2. The fourth international energy agency international workshop on beryllium technology for fusion

    International Nuclear Information System (INIS)

    Scaffidi-Argentina, F.; Longhurst, G.R.

    2000-01-01

    The main objective of the workshop was to support the advancement of the international development of fusion power through communication and dissemination of information on progress made in beryllium technology. This has been accomplished through presentation of original research on issues of current interest to the fusion beryllium community. The workshop was divided into ten technical sessions that addressed the following general topics: production and characterization, health and safety, forming and joining, chemical compatibility, thermal-mechanical properties, pebble bed behavior, high-heat-flux performance, irradiation effects, plasma-tritium interaction, and molten beryllium-bearing salts

  3. The fourth international energy agency international workshop on beryllium technology for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Longhurst, G.R.

    2000-05-01

    The main objective of the workshop was to support the advancement of the international development of fusion power through communication and dissemination of information on progress made in beryllium technology. This has been accomplished through presentation of original research on issues of current interest to the fusion beryllium community. The workshop was divided into ten technical sessions that addressed the following general topics: production and characterization, health and safety, forming and joining, chemical compatibility, thermal-mechanical properties, pebble bed behavior, high-heat-flux performance, irradiation effects, plasma-tritium interaction, and molten beryllium-bearing salts.

  4. The dominance of thermocicling treatments conditions on microplastic of spheral ground up powder beryllium

    International Nuclear Information System (INIS)

    Ivantsov, V.I.

    2003-01-01

    The dominance of thermocicling treatments conditions on structure,electrical resistance,microplastic characteristics and behavior in the microdeformation area of beryllium was investigated. It is established, that TC causes considerable structural changes in beryllium at the upper thermocicling temperature exceeding 523 K. Attached to upper TC temperature less then 523 K it is observed hardening of metal, conditioned by processes of twining and relaxation of micro stresses in overstrained micro volumes. The temperature range of TC determinate the stage evolution of the flow and the deformation hardening at different stages defined by changes in the beryllium structure caused by processing

  5. Technical aspects of the joint JET-ISX-B beryllium limiter experiment

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Dietz, K.J.; Mioduszewski, P.K.; Watson, R.D.; Emerson, L.C.; Gabbard, W.A.; Goodall, D.; Simpkins, J.E.; Yarber, J.L.

    1984-01-01

    An experiment has been performed on the Impurity Study Experiment (ISX-B) tokamak to test beryllium as a limiter material. Beryllium is an attractive candidate for a limiter and has been proposed for use in the Joint European Torus (JET) experiment. A temperature-controlled, segmented, beryllium top-rail limiter was located inside the plasma radius described by the existing titanium limiters. An extended set of diagnostics was added for measurement of scrapeoff and limiter parameters. These included visible and infrared monitoring systems, probes, and surface analysis experiments. Tokamak experiments included parameter surveys of both ohmically heated and neutral-beam-heated plasmas and an extended fluence test of the limiter

  6. Modelisation and distribution of neutron flux in radium-beryllium source (226Ra-Be)

    Science.gov (United States)

    Didi, Abdessamad; Dadouch, Ahmed; Jai, Otman

    2017-09-01

    Using the Monte Carlo N-Particle code (MCNP-6), to analyze the thermal, epithermal and fast neutron fluxes, of 3 millicuries of radium-beryllium, for determine the qualitative and quantitative of many materials, using method of neutron activation analysis. Radium-beryllium source of neutron is established to practical work and research in nuclear field. The main objective of this work was to enable us harness the profile flux of radium-beryllium irradiation, this theoretical study permits to discuss the design of the optimal irradiation and performance for increased the facility research and education of nuclear physics.

  7. Study of beryllium redeposition under bombardment by high intensity -low energy- hydrogen ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gureev, V.M.; Guseva, M.I.; Danelyan, L.S. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)] [and others

    1998-01-01

    The results of studying the erosion of beryllium under an effect of intense ion fluxes with the energy of 250 eV, at the fluences {approx}10{sup 2}1 cm{sup -2}, at the MAGRAS-stand are given. The operating conditions under which a practically-complete redeposition of the sputtered beryllium upon the target surface were experimentally-realized. A change in the microstructure of a beryllium target under sputtering and redeposition is analyzed. Some technological applications are considered. (author)

  8. Fabrication and replacement work of beryllium frame and gamma-ray shield

    International Nuclear Information System (INIS)

    Watahiki, Shunsuke; Hanawa, Yoshio; Asano, Norikazu; Hiyama, Kazuhisa; Ito, Sachito; Tsuboi, Kazuaki; Fukasaku, Akitomi

    2012-03-01

    This replacement work was carried out under refurbishment plan of JMTR for beryllium distortion draw to acceptable limit. And gamma-ray shield refurbishment was carried out the view point of prevention maintenance in consideration of operation plan. Fabrication of beryllium frame and gamma-ray shield was spent for two years it was finished in February, 2010. It took five months to replacement work from January 2010. In this report is presented fabrication and replacement work of beryllium frame and gamma-ray shield. (author)

  9. Production of n-bar's and Sigma-bar+-'s in e+e- annihilations

    International Nuclear Information System (INIS)

    Ferguson, T.; Buchanan, C.; Nodulman, L.; Poster, R.; Breidenbach, M.; Morehouse, C.C.; Vannucci, F.

    1979-01-01

    The production of antineutrons and charged Sigma-bar's in e + e - annihilations has been measured at √s +- production between 4 and 7 GeV is consistent with simple expectations for charmed-baryon production. A search for the decays Lambda-bar - /sub c/ → Sigma-bar +- π -+ π - and Sigma-baratsup asteriskat/sub c//Sigma-bar/sub c/ → Lambda-bar - /sub c/π +- yields no significant peaks. An upper limit, at the 90% confidence level, of sigmaatsub Lambda-baratc-italicB (Lambda-bar/sub c/ → Sigma-bar +- π -+ π - ) < 56 pb is set

  10. Galaxy Zoo: Observing secular evolution through bars

    International Nuclear Information System (INIS)

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-01-01

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  11. Bar Coding and Tracking in Pathology.

    Science.gov (United States)

    Hanna, Matthew G; Pantanowitz, Liron

    2016-03-01

    Bar coding and specimen tracking are intricately linked to pathology workflow and efficiency. In the pathology laboratory, bar coding facilitates many laboratory practices, including specimen tracking, automation, and quality management. Data obtained from bar coding can be used to identify, locate, standardize, and audit specimens to achieve maximal laboratory efficiency and patient safety. Variables that need to be considered when implementing and maintaining a bar coding and tracking system include assets to be labeled, bar code symbologies, hardware, software, workflow, and laboratory and information technology infrastructure as well as interoperability with the laboratory information system. This article addresses these issues, primarily focusing on surgical pathology. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Dosage of boron traces in graphite, uranium and beryllium oxide

    International Nuclear Information System (INIS)

    Coursier, J.; Hure, J.; Platzer, R.

    1955-01-01

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.) [fr

  13. Spectral distortion due to scattered cold neutrons in beryllium filter

    International Nuclear Information System (INIS)

    Sakamoto, Yukio; Inoue, Kazuhiko

    1980-01-01

    Polycrystalline beryllium filters are used to discriminate the cold neutrons from the thermal neutrons with energies above Bragg cut-off energy. The cold neutron scattering cross section is very small, but the remaining cross section is not zero. Then the neutrons scattered once from the filter in the cold neutron energy region have chance of impinging on the outlet of filter. Those neutrons are almost upscattered and develop into thermal neutrons; thus the discriminated cold neutrons include a small spectral distortion due to the thermal neutrons. In the present work we have evaluated the effect on the cold neutron spectrum due to the repeatedly scattered and transmitted neutrons by using a Monte Carlo calculation method. (author)

  14. Fluid simulation of beryllium transport in the ITER gaseous divertor

    International Nuclear Information System (INIS)

    Knoll, D.A.; Campbell, R.B.; McHugh, P.R.

    1994-01-01

    The transport of either intrinsic or injected impurities will play a crucial role in the energy loss mechanisms in the ITER gaseous/cold plasma target divertor. Both 1-D and 2-D multi-charge state fluid codes are used to model the transport of beryllium in the ITER SOL. Our major conclusion is that in order to model the containment of impurities, the background flow field must be known in detail. Comparing 1-D and 2-D solutions, hydrogen flow reversal plays an important role in the entrainment process. Further, the flow of particles from the core plasma also has a strong impact on the resultant entrainment of the impurities in both 1-D and 2-D. It is imperative that those components of poloidal velocity due to E x B and diamagnetic drifts be included in the models. (orig.)

  15. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  16. Electron microscope observation of single - crystalline beryllium thin foils

    International Nuclear Information System (INIS)

    Antolin, J.; Poirier, J.P.; Dupouy, J.M.

    1965-01-01

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3 . (authors) [fr

  17. Development of beryllium bonds for plasma-facing components

    International Nuclear Information System (INIS)

    Franconi, E.; Ceccotti, G.C.; Magnoli, L.

    1992-01-01

    This study concerns the techniques of bonding beryllium to both structural material (AISI 316 SS) and heat sink material (copper and DS-copper) plates, and the characterization of the bonding material obtained. Conventional bonding techniques for joining Be to SS and copper using brazing alloys were first investigated. The best result was obtained using a silver-copper eutetic alloy as a brazing alloy. However, the high-temperature capability of the materials prepared by this method is limited by the performance of brazing alloys at the operating temperature. To avoid this problem, we are developing a joining process known as solid-state reaction bonding that improves the capability at the operating temperature. (orig.)

  18. The plastic deformation of copper-beryllium alloy

    International Nuclear Information System (INIS)

    Gadalla, A.A.

    1980-01-01

    Copper-2 at. % Be alloy specimens containing coherent and/or incoherent spherical beryllium precipitates have been tested at different temperatures. The precipitation process and dislocation substructure were examined by electron microscopy. The yielding process is consistent with Orwan mechanism, and the work-hardening of the alloy is parabolic in nature for smaller particles but changes to three-stage hardening for larger particles. The extent of stage I deformation is temperature dependent, and the rate of work-hardening is quite steep and may be described by either the Ashby or the Hirsch parabolic models. There is a noticeable softening during this stage which may be attributed to shearing of particles during deformation. The dislocation substructure shows a uniform distribution of fine dislocations as well as propagation of cracks across grains. The precipitates are a mixture of semi-coherent and incoherent particles. (author)

  19. Specification for nuclear-grade beryllium oxide powder

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification defines the physical and chemical requirements of nuclear-grade beryllium oxide (BeO) powder to be used in fabricating nuclear components. 1.2 This specification does not include requirements for health and safety. , , It recognizes the material as a Class B poison and suggests that producers and users become thoroughly familiar with and comply to applicable federal, state, and local regulations and handling guidelines. 1.3 Special tests and procedures are given in Annex A1 and Annex A2. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  20. Modelling of radiation impact on ITER Beryllium wall

    Science.gov (United States)

    Landman, I. S.; Janeschitz, G.

    2009-04-01

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  1. Modelling of radiation impact on ITER Beryllium wall

    Energy Technology Data Exchange (ETDEWEB)

    Landman, I.S. [Forschungszentrum Karlsruhe, IHM, FUSION, P.O. Box 3640, 76021 Karlsruhe (Germany)], E-mail: igor.landman@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, IHM, FUSION, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2009-04-30

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  2. Fracture testing and performance of beryllium copper alloy C 17510

    International Nuclear Information System (INIS)

    Murray, H.A.; Zatz, I.J.

    1992-01-01

    A series of test programs was undertaken on copper beryllium alloy C 17510 for several variations in material process and chemistry. These variations in C 17510 were primarily optimized for combinations of strength and conductivity. While originally intended for use as cyclically loaded high-field, high-strength conductors in fusion energy research, material testing of C 17510 has indicated that it is an attractive and economical alternative for a host of other structural, mechanical and electrical applications. ASTM tests performed on three variations of C 17510 alloys included both J-integral and plane strain fracture toughness testing (E813, E399) and fatigue crack growth rate tests (E647), as well as verifying tensile, hardness, Charpy, and other well defined mechanical properties. Fracture testing was performed at both room and liquid nitrogen temperatures, which bound the thermal environment anticipated for the fusion components being designed. Fatigue crack propagation stress ratios ranged from nominal zero to minus one at each temperature

  3. Deposition of selenium coatings on beryllium foils. Revision 1

    International Nuclear Information System (INIS)

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-01-01

    A technique for preparing selenium films on 50.8 micrometers thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. A water-cooled enclosure was used to minimize contamination of the vacuum system and to reduce the exposure of personnel to toxic and obnoxious materials. Profilometry measurements of the coatings indicated selenium thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 micrometers. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable deposition controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV

  4. Validation of NCSSHP for highly enriched uranium systems containing beryllium

    International Nuclear Information System (INIS)

    Krass, A.W.; Elliott, E.P.; Tollefson, D.A.

    1994-01-01

    This document describes the validation of KENO V.a using the 27-group ENDF/B-IV cross section library for highly enriched uranium and beryllium neutronic systems, and is in accordance with ANSI/ANS-8.1-1983(R1988) requirements for calculational methods. The validation has been performed on a Hewlett Packard 9000/Series 700 Workstation at the Oak Ridge Y-12 Plant Nuclear Criticality Safety Department using the Oak Ridge Y-12 Plant Nuclear Criticality Safety Software code package. Critical experiments from LA-2203, UCRL-4975, ORNL-2201, and ORNL/ENG-2 have been identified as having the constituents desired for this validation as well as sufficient experimental detail to allow accurate construction of KENO V.a calculational models. The results of these calculations establish the safety criteria to be employed in future calculational studies of these types of systems

  5. Nuclear charge radius measurements of radioactive beryllium isotopes

    CERN Multimedia

    2002-01-01

    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  6. Study of the reactions $\\bar{p}p \\rightarrow \\bar{\\Lambda} \\Lambda , \\bar{\\Lambda} \\Sigma^{0}$ or $\\bar{\\Sigma^{0}} \\Lambda , \\bar{\\Sigma^{+}} \\Sigma^{+}$ at 3.6 GeV/c

    CERN Document Server

    Atherton, Henry W; Moebes, J P; Quercigh, Emanuele

    1974-01-01

    The reactions $\\bar{p}p \\rightarrow \\bar{\\Lambda} \\Lambda , \\bar{\\Lambda} \\Sigma^{0}$ or $\\bar{\\Sigma^{0}} \\Lambda , \\bar{\\Sigma^{+}} \\Sigma^{+}$ are studied at an incident momentum of 3.6 GeV/c in a 35.4 event/$\\mu$ b experiment performed in the CERN 2m HBC. Total and differential cross sections are presented. The polarization of the hyperons is measured as a function of $t$ and for the reaction $\\bar{p}p \\rightarrow \\bar{\\Lambda} \\Lambda$ the complete spin correlation matrix is given. (23 refs).

  7. Bar quenching in gas-rich galaxies

    Science.gov (United States)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  8. First beryllium capsule implosions on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2016-05-15

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  9. Polarographic methods for the analysis of beryllium metal and its alloys

    International Nuclear Information System (INIS)

    Wells, J.M.

    1975-10-01

    This report describes polarographic methods for the analysis of beryllium metal and its alloys. The elements covered by these methods are aluminium, bismuth, cadmium, cobalt, copper, iron, lead, molybdenum, nickel, thallium, tungsten, uranium, vanadium and zinc. (author)

  10. REMOVAL OF BERYLLIUM FROM DRINKING WATER BY CHEMICAL COAGULATION AND LIME SOFTENING

    Science.gov (United States)

    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. ar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride and lime softening performed ...

  11. Retrospective beryllium exposure assessment at the Rocky Flats Environmental Technology site

    International Nuclear Information System (INIS)

    Barnard, A.E.; Torma-Krajewski, J.; Viet, S.M.

    1997-01-01

    Since the 1960's, beryllium machining was performed to make nuclear weapon components at the Department of Energy (DOE) Rocky Flats Plant. Beryllium exposure was assessed via fixed airhead (FAH) sampling in which the filter cassette was affixed to the machine, generally within a few feet of the worker's breathing zone. Approximately 500,000 FAH samples were collected for beryllium over three decades. From 1984 to 1987, personal breathing zone (PBZ) samples were also collected as part of the evaluation of a new high velocity/low volume local exhaust ventilation (HV/LV LEV) system. The purpose of this study was to determine how the two types of sampling data could be used for an exposure assessment in the beryllium shop

  12. SPECTROGRAPHIC DETERMINATION OF BERYLLIUM IN OILFIELD WATERS USING A PLASMA ARC

    Energy Technology Data Exchange (ETDEWEB)

    Collins, A. G.; Pearson, C. A.

    1963-10-15

    Geochemical studies of the distribution of the trace, minor, and major constituents of oilfield waters aid in the exploration for petroleum and other minerals, determination of the origin and distribution of oilfield waters and petroleum, and location of casing leaks and of water pollution sources. The determination of the beryllium and related data should be useful in these studies. An emission spectrographic method utilizing a plasma arc assembly for determining beryllium in oilfield waters, with a sensitivity permitting detection of less than 1 ppb, was developed. Beryllium was extracted from synthetic and natural oilfield waters with chloroform and acetylacetone. The extracts were aspirated directly into the plasma arc, and the beryllium emission intensity was recorded on photographic plates. (auth)

  13. Spectroscopy of beryllium-like nitrogen ions by laser-induced recombination

    International Nuclear Information System (INIS)

    Uhlenberg, G.

    1996-04-01

    The following topics were dealt with: Rydberg spectroscopy of beryllium-like nitrogen (N 3+ ) by laser-induced recombination, transition enrgies, Rydberg level shift, configuration interaction, laser intensity effect, laser band width

  14. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    Science.gov (United States)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  15. Feasibility demonstration of consolidating porous beryllium/carbon structures. Final report

    International Nuclear Information System (INIS)

    Browning, M.J.; Hoover, G.E.; Mueller, J.J.; Hanes, H.D.

    1977-01-01

    A preliminary feasibility study was initiated to determine if porous beryllium structures could be fabricated by consolidating beryllium-coated microballoons into a rigid structure. The target specifications were to coat nominally 1-mm diameter microspheres with 0.5-mil beryllium coatings and then bond into a structure. Because of the very short time period, it was agreeable to use existing or quickly-available materials. The general approach was to apply coatings to carbon or quartz microspheres. Physical vapor deposition and ''snow-balling'' of fine beryllium powder were the two methods investigated. Once the particles were coated, HIP (pressure bonding) and pressureless sintering were to be investigated as methods for consolidating the microballoons. A low level of effort was to be spent to look at means of fabricating an all-carbon structure

  16. Analysis of beryllium and depleted uranium: An overview of detection methods in aerosols and soils

    International Nuclear Information System (INIS)

    Camins, I.; Shinn, J.H.

    1988-06-01

    We conducted a survey of commercially available methods for analysis of beryllium and depleted uranium in aerosols and soils to find a reliable, cost-effective, and sufficiently precise method for researchers involved in environmental testing at the Yuma Proving Ground, Yuma, Arizona. Criteria used for evaluation include cost, method of analysis, specificity, sensitivity, reproducibility, applicability, and commercial availability. We found that atomic absorption spectrometry with graphite furnace meets these criteria for testing samples for beryllium. We found that this method can also be used to test samples for depleted uranium. However, atomic absorption with graphite furnace is not as sensitive a measurement method for depleted uranium as it is for beryllium, so we recommend that quality control of depleted uranium analysis be maintained by testing 10 of every 1000 samples by neutron activation analysis. We also evaluated 45 companies and institutions that provide analyses of beryllium and depleted uranium. 5 refs., 1 tab

  17. Reactivity effect of poisoned beryllium block shuffling in the MARIA reactor

    International Nuclear Information System (INIS)

    Andrzejewski, K.; Kulikowska, T.

    2000-01-01

    The paper is a continuation of the analysis of beryllium blocks poisoning by Li-6 and He-3 in the MARIA reactor, presented at the 22 RERTR Meeting in Budapest. A new computational tool, the REBUS-3 code, has been used for predicting the amount of poison. The code has been put into operation on a HP computer and the beryllium transmutation chains have been activated with assistance of the ANL RERTR staff. The horizontal and vertical poison distribution within beryllium blocks has been studied. A simple shuffling of beryllium blocks has been simulated to check the effect of exchanging a block with high poison concentration, adjacent to fuel elements, with a peripheral one with a low poison concentration

  18. The use of beryllium as a canning material the problems arising from the brittleness of the metal and their present solution; L'utilisation du beryllium comme materiau de gaine les problemes poses par la fragilite du metal et leurs solutions actuelles

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, M; Mallen, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Beryllium has been considered as a canning material for reactors of the EL 4 type (CO{sub 2} cooled, operating at 600 C). Two cases may be envisaged: either the can is not deformable under the exterior forces, but in this case a poor ductility may be tolerated, or else, the creep resistance is not sufficiently high; the ductility should then be high at operating temperatures and also at room temperature for thermal cycling. It became rapidly obvious that ordinary beryllium had not a sufficient creep resistance and it appeared difficult to increase it for EL 4 use (5 kg/mm{sup 2}). Other non-metallurgical factors also contributed to discard this approach. The second possibility was this considered and an attempt was made to increase the ductility of the metal which was for two low. The first objection was to determine to what extent this ductility depended on the purity. It is not yet possible to say whether the brittleness at ordinary temperatures is due to some low concentration of a particular impurity. In the purest beryllium, which can be obtained by distillation vacuum fusion zone melting or a combination of these methods the critical shear stress of the two possible slip modes (0001) and (10 1-bar 0) along (11 2-bar 0) are even more different than in the less pure metal. This means that in the polycrystal, the grains which can deform are those which are favourably oriented for basal slip and the fracture mode is still a cleavage along a basal plane. Neither from a theoretical nor a practical point of view has purification led to a solution to the problem of room-temperature brittleness. The lack of ductility observed around 600 C is undoubtedly due to the presence of impurities and inclusions (oxides). The solution is to use cast metal of industrial purity (or thermally treated in order to modify the impurity distribution) and to eliminate sintering as a production process. Since, on the other hand, the intrinsic problem of the low-temperature brittleness was

  19. Quantitative chemical microdetermination of beryllium with chrome azurol by the ring-oven technique

    International Nuclear Information System (INIS)

    Hansen, N.B.

    1982-01-01

    A method for determination of beryllium in minerals and rocks is described. Because of the toxicity of beryllium the method is designed for determination of 1-10 ng of Be. The sample is fused with sodium carbonate and sodium tetraborate. Interfering metals are masked with EDTA. Be is determined by the Weisz ring-oven method with Chrome Azurol. The relative error is 10%. (Author)

  20. Beryllium irradiation embrittlement test programme. Material and specimen specification, manufacture and qualification

    International Nuclear Information System (INIS)

    Harries, D.R.; Dalle Donne, M.

    1996-06-01

    The report presents the specification, manufacture and qualification of the beryllium specimens to be irradiated in the BR2 reactor in Mol to investigate the effect of the neutron irradiation on the embrittlement as a function of temperature and beryllium oxide content. This work was been performed in the framework of the Nuclear Fusion Project of the Forschungszentrum Karlsruhe and is supported by the European Union within the European Fusion Technology Program. (orig.)