WorldWideScience

Sample records for beryllium boron carbon

  1. Dosage of boron traces in graphite, uranium and beryllium oxide

    International Nuclear Information System (INIS)

    Coursier, J.; Hure, J.; Platzer, R.

    1955-01-01

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.) [fr

  2. Sintering of beryllium oxide with 3-4 per cent elemental boron

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1958-01-01

    In order to manufacture a baffle absorbing neutrons of various energies, there was developed or mixture of a slower and an absorber. It is made by hot pressing impure beryllium containing boron carbide. The dense briquette has 100 x 100 x 50 mm and is machined on all her faces. She is of 2,85 density and about 3 to 4 per cent porosity, according to 5 per cent of boron. Difference of boron amount is lower than ten per cent between any two points of the briquette. (author) [fr

  3. Implanted Deuterium Retention and Release in Carbon-Coated Beryllium

    Science.gov (United States)

    Anderl, R. A.; Longhurst, G. R.; Pawelko, R. J.; Oates, M. A.

    1997-06-01

    Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 Å. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 Å revealed that exposure to a temperature of 400°C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400°C and an incident deuterium flux of approximately 6 × 1019 D/m2-s), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples.

  4. Implanted deuterium retention and release in carbon-coated beryllium

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Oates, M.A.

    1997-01-01

    Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 angstrom. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 angstrom revealed that exposure to a temperature of 400 degrees C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400 degrees C and an incident deuterium flux of approximately 6 X 10 19 D/m 2 sec), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples. 4 refs., 8 figs., 1 tab

  5. Sintering of beryllium oxide with 3-4 per cent elemental boron; Frittage de l'oxyde de beryllium a 3 et 5 pour cent de bore element

    Energy Technology Data Exchange (ETDEWEB)

    Pointud, R; Rispal, Ch; Le Garec, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In order to manufacture a baffle absorbing neutrons of various energies, there was developed or mixture of a slower and an absorber. It is made by hot pressing impure beryllium containing boron carbide. The dense briquette has 100 x 100 x 50 mm and is machined on all her faces. She is of 2,85 density and about 3 to 4 per cent porosity, according to 5 per cent of boron. Difference of boron amount is lower than ten per cent between any two points of the briquette. (author) [French] Pour fabriquer un ecran absorbeur des neutrons d'energies diverses, on a realise l'association d'un element ralentisseur, Ie beryllium, et d'un element absorbant, le bore, par frittage sous charge d'une poudre mixte contenant de l'oxyde de beryllium technique et du carbure de bore technique. Le comprime obtenu est une brique de 100 x 100 x 50 mm, usinee sur toutes sur toutes surfaces, d'une densite de 2,85, porosite d'environ 3 a 4 pour cent pour une teneur en bore de 5 pour cent. L'heterogeneite en bore entre les differents points de cette brique est inferieure a 10 pour cent. (auteur)

  6. Sintering of beryllium oxide with 3-4 per cent elemental boron; Frittage de l'oxyde de beryllium a 3 et 5 pour cent de bore element

    Energy Technology Data Exchange (ETDEWEB)

    Pointud, R.; Rispal, Ch.; Le Garec, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In order to manufacture a baffle absorbing neutrons of various energies, there was developed or mixture of a slower and an absorber. It is made by hot pressing impure beryllium containing boron carbide. The dense briquette has 100 x 100 x 50 mm and is machined on all her faces. She is of 2,85 density and about 3 to 4 per cent porosity, according to 5 per cent of boron. Difference of boron amount is lower than ten per cent between any two points of the briquette. (author) [French] Pour fabriquer un ecran absorbeur des neutrons d'energies diverses, on a realise l'association d'un element ralentisseur, Ie beryllium, et d'un element absorbant, le bore, par frittage sous charge d'une poudre mixte contenant de l'oxyde de beryllium technique et du carbure de bore technique. Le comprime obtenu est une brique de 100 x 100 x 50 mm, usinee sur toutes sur toutes surfaces, d'une densite de 2,85, porosite d'environ 3 a 4 pour cent pour une teneur en bore de 5 pour cent. L'heterogeneite en bore entre les differents points de cette brique est inferieure a 10 pour cent. (auteur)

  7. Dosage of boron traces in graphite, uranium and beryllium oxide; Dosage de traces de bore dans le graphite, l'uranium et l'oxyde de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Coursier, J [Ecole Nationale Superieure de Physique et Chimie Industrielles, 75 - Paris (France); Hure, J; Platzer, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.) [French] Le probleme du dosage du bore dans les materiaux servant a la construction de reacteurs nucleaires se pose de la facon suivante: determiner a environ 0,1 ppm pres des quantites de bore de l'ordre de quelques dixiemes de ppm. Nous avons choisit la colorimetrie a la curcumine comme methode de dosage. Pour atteindre les teneurs indiquees, il est necessaire d'effectuer une separation prealable du bore et des materiaux de base, soit par extraction du fluoborate de tetraphenylarsonium dans le cas du dosage de bore dans l'uranium et l'oxyde de beryllium, soit par l'utilisation d'une resine echangeuse de cations dans le cas du graphite. (M.B.)

  8. The research of a method for determination of total carbon, combination carbon and free carbon in beryllium metal

    International Nuclear Information System (INIS)

    Yang Xingzhong; Zhu Xiaohong

    1996-02-01

    A method for determination of total carbon, combination carbon and free carbon in beryllium metal with LECO CS-344 carbon/sulphur determinant has been studied. Tungsten-copper mixed pellets are used as flux to the determination of total carbon. Ratio of weight of the flux to the sample is greater than 20:1. Good analytical results are got. By this method the relative standard deviation is <10% when the content of total carbon in the range of 0.050%∼0.080% in beryllium. A standard steel sample of carbon is added into beryllium, the recoveries are 94%∼106%. For determination of free carbon, the sample are decomposed with 3 mol/L HCl, filtered and followed determination. By this method the relative standard deviation is ≤10% when the content of free carbon in the range of 0.006%∼0.020% in beryllium. the balance of total carbon and free carbon is equal to combination carbon. The method is used to determine the sample of content of total carbon in the range of 0.050%∼1.00%, free carbon in the range of 0.006%∼0.500% in metal beryllium. (6 refs., 1 fig., 13 tabs.)

  9. Investigations of the ternary system beryllium-carbon-tungsten and analyses of beryllium on carbon surfaces

    International Nuclear Information System (INIS)

    Kost, Florian

    2009-01-01

    Beryllium, carbon and tungsten are planned to be used as first wall materials in the future fusion reactor ITER. The aim of this work is a characterization of mixed material formation induced by thermal load. To this end, model systems (layers) were prepared and investigated, which give insight into the basic physical and chemical concepts. Before investigating ternary systems, the first step was to analyze the binary systems Be/C and Be/W (bottom-up approach), where the differences between the substrates PG (pyrolytic graphite) and HOPG (highly oriented pyrolytic graphite) were of special interest. Particularly X-ray photoelectron spectroscopy (XPS), low energy ion scattering (ISS) and Rutherford backscattering spectroscopy (RBS) were used as analysis methods. Beryllium evaporated on carbon shows an island growth mode, whereas a closed layer can be assumed for layer thicknesses above 0.7 nm. Annealing of the Be/C system induces Be 2 C island formation for T≥770 K. At high temperatures (T≥1170 K), beryllium carbide dissociates, resulting in (metallic) beryllium desorption. For HOPG, carbide formation starts at higher temperatures compared to PG. Activation energies for the diffusion processes were determined by analyzing the decreasing beryllium amount versus annealing time. Surface morphologies were characterized using angle-resolved XPS (ARXPS) and atomic force microscopy (AFM). Experiments were performed to study processes in the Be/W system in the temperature range from 570 to 1270 K. Be 2 W formation starts at 670 K, a complete loss of Be 2 W is observed at 1170 K due to dissociation (and subsequent beryllium desorption). Regarding ternary systems, particularly Be/C/W and C/Be/W were investigated, attaching importance to layer thickness (reservoir) variations. At room temperature, Be 2 C, W 2 C, WC and Be 2 W formation at the respective interfaces was observed. Further Be 2 C is forming with increasing annealing temperatures. Depending on the layer

  10. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  11. Feasibility demonstration of consolidating porous beryllium/carbon structures. Final report

    International Nuclear Information System (INIS)

    Browning, M.J.; Hoover, G.E.; Mueller, J.J.; Hanes, H.D.

    1977-01-01

    A preliminary feasibility study was initiated to determine if porous beryllium structures could be fabricated by consolidating beryllium-coated microballoons into a rigid structure. The target specifications were to coat nominally 1-mm diameter microspheres with 0.5-mil beryllium coatings and then bond into a structure. Because of the very short time period, it was agreeable to use existing or quickly-available materials. The general approach was to apply coatings to carbon or quartz microspheres. Physical vapor deposition and ''snow-balling'' of fine beryllium powder were the two methods investigated. Once the particles were coated, HIP (pressure bonding) and pressureless sintering were to be investigated as methods for consolidating the microballoons. A low level of effort was to be spent to look at means of fabricating an all-carbon structure

  12. Investigations of the ternary system beryllium-carbon-tungsten and analyses of beryllium on carbon surfaces; Untersuchung des ternaeren Systems Beryllium-Kohlenstoff-Wolfram und Betrachtungen von Beryllium auf Kohlenstoffoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, Florian

    2009-05-25

    Beryllium, carbon and tungsten are planned to be used as first wall materials in the future fusion reactor ITER. The aim of this work is a characterization of mixed material formation induced by thermal load. To this end, model systems (layers) were prepared and investigated, which give insight into the basic physical and chemical concepts. Before investigating ternary systems, the first step was to analyze the binary systems Be/C and Be/W (bottom-up approach), where the differences between the substrates PG (pyrolytic graphite) and HOPG (highly oriented pyrolytic graphite) were of special interest. Particularly X-ray photoelectron spectroscopy (XPS), low energy ion scattering (ISS) and Rutherford backscattering spectroscopy (RBS) were used as analysis methods. Beryllium evaporated on carbon shows an island growth mode, whereas a closed layer can be assumed for layer thicknesses above 0.7 nm. Annealing of the Be/C system induces Be{sub 2}C island formation for T{>=}770 K. At high temperatures (T{>=}1170 K), beryllium carbide dissociates, resulting in (metallic) beryllium desorption. For HOPG, carbide formation starts at higher temperatures compared to PG. Activation energies for the diffusion processes were determined by analyzing the decreasing beryllium amount versus annealing time. Surface morphologies were characterized using angle-resolved XPS (ARXPS) and atomic force microscopy (AFM). Experiments were performed to study processes in the Be/W system in the temperature range from 570 to 1270 K. Be{sub 2}W formation starts at 670 K, a complete loss of Be{sub 2}W is observed at 1170 K due to dissociation (and subsequent beryllium desorption). Regarding ternary systems, particularly Be/C/W and C/Be/W were investigated, attaching importance to layer thickness (reservoir) variations. At room temperature, Be{sub 2}C, W{sub 2}C, WC and Be{sub 2}W formation at the respective interfaces was observed. Further Be{sub 2}C is forming with increasing annealing temperatures

  13. ICP-MS determination of boron: method optimization during preparation of graphite reference material for boron

    International Nuclear Information System (INIS)

    Granthali, S.K.; Shailaja, P.P.; Mainsha, V.; Venkatesh, K.; Kallola, K.S.; Sanjukta, A.K.

    2017-01-01

    Graphite finds widespread use in nuclear reactors as moderator, reflector, and fuel fabricating components because of its thermal stability and integrity. The manufacturing process consists of various mixing, moulding and baking operations followed by heat-treatment between 2500 °C and 3000 °C. The high temperature treatment is required to drive the amorphous carbon-to-graphite phase transformation. Since synthetic graphite is processed at high temperature, impurity concentrations in the precursor carbon get significantly reduced due to volatilization. However boron may might partly gets converted into boron carbide at high temperatures in the carbon environment of graphite and remains stable (B_4C: boiling point 3500 °C) in the matrix. Literature survey reveals the use of various methods for determination of boron. Previously we have developed a method for determination of boron in graphite electrodes using inductively coupled plasma mass spectrometry (ICP-MS). The method involves removal of graphite matrix by ignition of the sample at 800°C in presence of saturated barium hydroxide solution to prevent the loss of boron. Here we are reporting a modification in the method by using calcium carbonate in place of barium hydroxide and using beryllium (Be) as an internal standard, which resulted in a better precession. The method was validated by spike recovery experiments as well as using another technique viz. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The modified method was applied in evaluation of boron concentration in the graphite reference material prepared

  14. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  15. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  16. Influence of dopants, particularly carbon, on β-rhombohedral boron

    Science.gov (United States)

    Werheit, H.; Flachbart, K.; Pristáš, G.; Lotnyk, D.; Filipov, V.; Kuhlmann, U.; Shitsevalova, N.; Lundström, T.

    2017-09-01

    Due to the high affinity of carbon to boron, the preparation of carbon-free boron is problematic. Even high-purity (6 N) β-rhombohedral boron contains 30-60 ppm of C. Hence, carbon affects the boron physical properties published so far more or less significantly. We studied well-defined carbon-doped boron samples based on pure starting material carefully annealed with up to about 1% C, thus assuring homogeneity. We present and discuss their electrical conductivity, optical absorption, luminescence and phonon spectra. Earlier attempts of other authors to determine the conductivity of C-doped boron are revised. Our results allow estimating the effects of oxygen and iron doping on the electrical conductivity using results taken from literature. Discontinuities at low T impair the electronic properties.

  17. Structure and photoluminescence of boron and nitrogen co-doped carbon nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Gao, B. [College of Computer Science, Chongqing University, Chongqing 400044 (China); Chongqing Municipal Education Examinations Authority, Chongqing 401147 (China); Zhong, X.X., E-mail: xxzhong@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2016-07-15

    Graphical abstract: Boron- and nitrogen- doped carbon nanorods. - Highlights: • The co-doping of nitrogen and boron in carbon nanorods. • The doping mechanism of nitrogen and boron in carbon nanorods by plasma. • Photoluminescence properties of nitrogen- and boron-doped carbon nanorods. - Abstract: Boron and nitrogen doped carbon nanorods (BNCNRs) were synthesized by plasma-enhanced hot filament chemical vapor deposition, where methane, nitrogen and hydrogen were used as the reaction gases and boron carbide was the boron source. The results of scanning electron microscopy, micro-Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicate that boron and nitrogen can be used as co-dopants in amorphous carbon nanorods. Combined with the characterization results, the doping mechanism was studied. The mechanism is used to explain the formation of different carbon materials by different methods. The photoluminescence (PL) properties of BNCNRs were studied. The PL results show that the BNCNRs generate strong green PL bands and weak blue PL bands, and the PL intensity lowered due to the doping of boron. The outcomes advance our knowledge on the synthesis and optical properties of carbon-based nanomaterials and contribute to the development of optoelectronic nanodevices based on nano-carbon mateirals.

  18. Spectrographic measurement of beryllium in the atmosphere; Dosage spectrographique du beryllium dans l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, J; Cittanova, J [Commissariat a l' Energie Atomique, Service d' Analyses et Recherches Chimiques Appliquees, Saclay (France). Centre d' Etudes Nucleaires; Crehange, G; Frequelin, S [Commissariat a l' Energie Atomique, Dir. des Applications Militaires, Service Chimie, Saclay (France). Centre d' Etudes Nucleaires; Baudin, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-07-01

    We describe here a method for the spectrographic determination of beryllium on filters which is valid for amounts varying between 0,01 and 30 {mu}g of beryllium and which is independent of the nature of the beryllium compound involved. This is a flux method (graphite-lithium carbonate mixture), the excitation being by a direct current arc. (author) [French] Nous decrivons ici, une methode de dosage spectrographique de beryllium sur filtre, valable pour des teneurs comprises entre 0,01 et 30 {mu}g de beryllium et independante de la nature du compose de beryllium a doser. C'est une methode de 'flux' (melange graphite-carbonate de lithium) l'excitation etant un arc a courant continu. (auteur)

  19. Experimental determination of boron and carbon thermodynamic activities in the carbide phase of the boron-carbon system

    International Nuclear Information System (INIS)

    Froment, A.K.

    1990-01-01

    - The boron-carbon phase diagram presents a single phase area ranging from 9 to 20 atomic percent of carbon. The measurement of carbon activity, in this range of composition, has been measured according to the following methods: - quantitative analysis of the methane-hydrogen mixture in equilibrium with the carbide, - high temperature mass spectrometry measurements. The first method turned out to be a failure; however, the apparatus used enabled the elaboration of a B 4 C composition pure phase from a two-phase (B 4 C + graphite) industrial product. The results obtained with the other two methods are consistent and lead to a law expressing the increase of the carbon activity in relation with the amount of this element; the high temperature mass spectrometry method has also made it possible to measure the boron activity which decreases when the carbon activity increases, but with a variation of amplitude much lower, according to the theoretical calculations. These results are a first step towards the knowledge of the boron carbide thermodynamical data for compositions different from B 4 C [fr

  20. New carbon-carbon linked amphiphilic carboranyl-porphyrins as boron neutron capture agents

    International Nuclear Information System (INIS)

    Vicente, M.G.H.; Wickramasinghe, A.; Shetty, S.J.; Smith, K.M.

    2000-01-01

    Novel amphiphilic carboranyl-porphyrins have been synthesized for Boron Neutron Capture Therapy (BNCT). These compounds have carbon-carbon bonds between the carborane residues and the porphyrin meso-phenyl groups, and contain 28-31% boron by weight . (author)

  1. INFLUENCE RESEARCH OF COLD PLASTIC DEFORMATION ON DIFFUSION SATURATION PROCESS BY CARBON AND BORON OF THE LOW-CARBON AND BORON-CONTAINING ALLOYS

    Directory of Open Access Journals (Sweden)

    N. Yu. Filonenko

    2010-06-01

    Full Text Available This work is devoted to the study of influence of cold prestrain with degree of deformation within the range 0…40 % on diffusion saturation with boron and carbon for low-carbon and boron steels. It is determined that the plastic prestrain with degree of deformation 20 % at temperature 750 °С for the low-carbon steel promote increasing of boron-cementation layer thickness by 25 % and microhardness of perlite layer by 20 %.

  2. Contribution to the study of the uranium-carbon-beryllium ternary system

    International Nuclear Information System (INIS)

    Vaugoyeau, H.

    1969-01-01

    The isothermal section at 1000 deg. C of the uranium-carbon- beryllium system has been determined, and the quasi linear character of the sections UC-UBe 13 , UC-Be 2 C and Be 2 C-UBe 13 has been shown. The very low solubility of beryllium in uranium monocarbide has also been evidenced; quenching experiments have thus allowed the study of the limits of the solid solution UC 1+x Be y up to 1900 deg. C. (author) [fr

  3. Continuum modelling for carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M

    2007-01-01

    Continuum based models are presented here for certain boron nitride and carbon nanostructures. In particular, certain fullerene interactions, C 60 -C 60 , B 36 N 36 -B 36 N 36 and C 60 -B 36 N 36 , and fullerene-nanotube oscillator interactions, C 60 -boron nitride nanotube, C 60 -carbon nanotube, B 36 N 36 -boron nitride nanotube and B 36 N 36 -carbon nanotube, are studied using the Lennard-Jones potential and the continuum approach, which assumes a uniform distribution of atoms on the surface of each molecule. Issues regarding the encapsulation of a fullerene into a nanotube are also addressed, including acceptance and suction energies of the fullerenes, preferred position of the fullerenes inside the nanotube and the gigahertz frequency oscillation of the inner molecule inside the outer nanotube. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures

  4. Method for hot pressing beryllium oxide articles

    Science.gov (United States)

    Ballard, Ambrose H.; Godfrey, Jr., Thomas G.; Mowery, Erb H.

    1988-01-01

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  5. Boron ion irradiation induced structural and surface modification of glassy carbon

    International Nuclear Information System (INIS)

    Kalijadis, Ana; Jovanović, Zoran; Cvijović-Alagić, Ivana; Laušević, Zoran

    2013-01-01

    The incorporation of boron into glassy carbon was achieved by irradiating two different types of targets: glassy carbon polymer precursor and carbonized glassy carbon. Targets were irradiated with a 45 keV B 3+ ion beam in the fluence range of 5 × 10 15 –5 × 10 16 ions cm −2 . For both types of targets, the implanted boron was located in a narrow region under the surface. Following irradiation, the polymer was carbonized under the same condition as the glassy carbon samples (at 1273 K) and examined by Raman spectroscopy, temperature programmed desorption, hardness and cyclic voltammetry measurements. Structural analysis showed that during the carbonization process of the irradiated polymers, boron is substitutionally incorporated into the glassy carbon structure, while for irradiated carbonized glassy carbon samples, boron irradiation caused an increase of the sp 3 carbon fraction, which is most pronounced for the highest fluence irradiation. Further analyses showed that different nature of boron incorporation, and thus changed structural parameters, are crucial for obtaining glassy carbon samples with modified mechanical, chemical and electrochemical properties over a wide range

  6. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    Science.gov (United States)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  7. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  8. Boron nitride protective coating of beryllium window surfaces

    International Nuclear Information System (INIS)

    Gmuer, N.F.

    1991-12-01

    The use of beryllium windows on white synchrotron radiation beamlines is constrained by the fact that the downstream surfaces of these windows should not be exposed to ambient atmosphere. They should, rather, be protected by a tail-piece under vacuum or containing helium atmosphere. This tailpiece is typically capped by Kapton (3M Corporation, St. Paul, MN) or aluminum foil. The reason for such an arrangement is due to the health risk associated with contaminants (BeO) which from on the exposed beryllium window surfaces and due to possible loss of integrity of the windows. Such a tail-piece may, however, add unwanted complications to the beamline in the form of vacuum pumps or helium supplies and their related monitoring systems. The Kapton windows may burn through in the case of high intensity beams and lower energy radiation may be absorbed in the case of aluminum foil windows. A more ideal situation would be to provide a coating for the exposed beryllium window surface, sealing it off from the atmosphere, thus preventing contamination and/or degradation of the window, and eliminating the need for helium or vacuum equipment

  9. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  10. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  11. Structural Modification in Carbon Nanotubes by Boron Incorporation

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2009-01-01

    Full Text Available Abstract We have synthesized boron-incorporated carbon nanotubes (CNTs by decomposition of ferrocene and xylene in a thermal chemical vapor deposition set up using boric acid as the boron source. Scanning and transmission electron microscopy studies of the synthesized CNT samples showed that there was deterioration in crystallinity and improvement in alignment of the CNTs as the boron content in precursor solution increased from 0% to 15%. Raman analysis of these samples showed a shift of ~7 cm−1in wave number to higher side and broadening of the G band with increasing boron concentration along with an increase in intensity of the G band. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position with increase in boron content. We speculate that these structural modifications in the morphology and microstructure of CNTs might be due to the charge transfer from boron to the graphite matrix, resulting in shortening of the carbon–carbon bonds.

  12. Beryllium

    International Nuclear Information System (INIS)

    Hansen, N.B.

    1980-01-01

    A method for determination of beryllium in minerals and rocks is described. The method comprises microanalysis and trace analysis. Because of the toxidity of beryllium the method is designed for determination of a hitherto unknown small amount, 1-10 nanogram Be. With the optimal amount for determination, 3 ng Be, the relative error of the method is 10%. The description includes an inventory of chemicals and apparatus, also an example of application of the method on the mineral epididymite. In brief, the sample is melted with sodium carbonate and sodium tetra borate; when required the sample in advance is fumed with hydrogen fluoride and sulphuric acid to evaporate silica. The residuum is dissolved in water and hydrogen chloride, upon which the solution is made to volume. In the Ring oven interfering compounds are masked with EDTA. Beryllium is settled with chrome azurol and ammonia. Beryllium is identified and evaluated in comparison with previously produced standards. (author)

  13. Beryllium

    International Nuclear Information System (INIS)

    Hansen, N.B.

    1979-01-01

    A method for determination of beryllium in minerals and rocks is described. The method comprises microanalysis and trace analysis. Because of the toxidity of beryllium the method is designed for determination of a hitherto unknown small amount, 1-10 nanogram Be. With the optimal amount for determination, 3 ng Be, the relative error of the method is 10%. The description includes an inventory of chemicals and apparatus, also an example of application of the method on the mineral epididymite. In brief, the sample is melted with sodium carbonate and sodium tetra borate; when required the sample in advance is fumed with hydrogen fluoride and sulphuric acid to evaporate silica. The residuum is dissolved in water and hydrogen chloride, upon which the solution is made to volume. In the Ring oven interfering compounds are masked with EDTA. Beryllium is settled with chrome azurol and ammonia. Beryllium is identified and evaluated in comparison with previously produced standards. (author)

  14. Improved ductility of Ni3Si by microalloying with boron or carbon

    International Nuclear Information System (INIS)

    Taub, A.I.; Briant, C.L.

    1989-01-01

    The effects of boron and carbon additions on the tendency for intergranular fracture in trinickel silicide intermetallics are reported. Melt spinning of Ni 77 Si 23 alloyed with 0.1 at. pct boron results in full bend ductility and complete transgranular fracture compared with brittle intergranular fracture for the unmodified compound. Alloying with 0.1 at. pct carbon also produced full bend ductility but a mixed mode failure (30 pct transgranular). For both carbon and boron additions, reducing the Ni concentration of the base compound results in a greater percentage of intergranular fracture. For Ni 77 Si 23 , the solubility limit is between 0.1 and 0.2 t. pct boron. For compounds with silicon concentrations of 23.5 and 24.0 at. pct, the solubility limit is less than 0.1 at. pct boron. Boron additions above the solubility limit result in Ni 3 B precipitates which degrade the bend ductility and increase the percentage of intergranular fracture. Alloying with carbon above the solubility limit ( 77 Si 23 , increasing the carbon concentration from 0.1 to 1.0 at. pct resulted in no change in the ductility. Auger examination of the grain boundary composition showed strong segregation of both boron and carbon. Enrichment in silicon concentration was also observed

  15. Conditionings for boron-carbon plasma facing wall

    International Nuclear Information System (INIS)

    Hino, Tomoaki; Yamauchi, Yuji; Yamashina, Toshiro

    1994-01-01

    For plasma facing material with components of boron and carbon, the method of conditionings due to He discharge cleaning and baking is considered. The conditioning time required to suppress the hydrogen recycling is discussed. It is shown that the hydrogen trapped by the boron can be relatively easily removed only by the baking at 300degC or only by He discharge cleaning with current density of 0.1 mA/cm 2 . It is not easy to remove the hydrogen trapped by the carbon by the baking since the temperature required becomes 500degC. The current density required also becomes high, 1 mA/cm 2 , for the reduction of the hydrogen trapped by the carbon. (author)

  16. Determination of free and combined carbon in boron carbide

    International Nuclear Information System (INIS)

    Shankaran, P.S.; Kulkarni, Amit S.; Pandey, K.L.; Ramanjaneyulu, P.S.; Yadav, C.S.; Sayi, Y.S.; Ramakumar, K.L.

    2009-01-01

    A simple, sensitive and fast method for the determination of free and combined carbon in boron carbide samples, based on combustion in presence of oxygen at different temperatures, has been developed. Method has been standardized by analyzing mixture of two different boron carbide samples. Error associated with the method in the determination of free carbon is less than 5%. (author)

  17. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Zhang, L.L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X.

    2015-01-01

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B 4 C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B 4 C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp 3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp 3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp 3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  18. Modeling the suppression of boron transient enhanced diffusion in silicon by substitutional carbon incorporation

    Science.gov (United States)

    Ngau, Julie L.; Griffin, Peter B.; Plummer, James D.

    2001-08-01

    Recent work has indicated that the suppression of boron transient enhanced diffusion (TED) in carbon-rich Si is caused by nonequilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank-Turnbull reactions. This study of boron TED reduction in Si1-x-yGexCy during 750 °C inert anneals has revealed that the use of an additional reaction that further reduces the Si self-interstitial concentration is necessary to describe accurately the time evolved diffusion behavior of boron. In this article, we present a comprehensive model which includes {311} defects, boron-interstitial clusters, a carbon kick-out reaction, a carbon Frank-Turnbull reaction, and a carbon interstitial-carbon substitutional (CiCs) pairing reaction that successfully simulates carbon suppression of boron TED at 750 °C for anneal times ranging from 10 s to 60 min.

  19. Modeling the suppression of boron transient enhanced diffusion in silicon by substitutional carbon incorporation

    International Nuclear Information System (INIS)

    Ngau, Julie L.; Griffin, Peter B.; Plummer, James D.

    2001-01-01

    Recent work has indicated that the suppression of boron transient enhanced diffusion (TED) in carbon-rich Si is caused by nonequilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank--Turnbull reactions. This study of boron TED reduction in Si 1-x-y Ge x C y during 750 o C inert anneals has revealed that the use of an additional reaction that further reduces the Si self-interstitial concentration is necessary to describe accurately the time evolved diffusion behavior of boron. In this article, we present a comprehensive model which includes {311} defects, boron-interstitial clusters, a carbon kick-out reaction, a carbon Frank--Turnbull reaction, and a carbon interstitial-carbon substitutional (C i C s ) pairing reaction that successfully simulates carbon suppression of boron TED at 750 o C for anneal times ranging from 10 s to 60 min. copyright 2001 American Institute of Physics

  20. Enhanced oxidation resistance of carbon fiber reinforced lithium aluminosilicate composites by boron doping

    International Nuclear Information System (INIS)

    Xia, Long; Jin, Feng; Zhang, Tao; Hu, Xueting; Wu, Songsong; Wen, Guangwu

    2015-01-01

    Highlights: • C f /LAS composites exhibit enhanced oxidation resistance by boron doping. • Boron doping is beneficial to the improvement of graphitization degree of carbon fibers. • Graphitization of carbon fibers together with the decrease of viscosity of LAS matrix is responsible to the enhancement of oxidation resistance of C f /LAS composites. - Abstract: Carbon fiber reinforced lithium aluminosilicate matrix composites (C f /LAS) modified with boron doping were fabricated and oxidized for 1 h in static air. Weight loss, residual strength and microstructure were analyzed. The results indicate that boron doping has a remarkable effect on improving the oxidation resistance for C f /LAS. The synergism of low viscosity of LAS matrix at high temperature and formation of graphite crystals on the surface of carbon fibers, is responsible for excellent oxidation resistance of the boron doped C f /LAS.

  1. Nanotube bundle oscillators: Carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2009-01-01

    In this paper, we investigate the oscillation of a fullerene that is moving within the centre of a bundle of nanotubes. In particular, certain fullerene-nanotube bundle oscillators, namely C 60 -carbon nanotube bundle, C 60 -boron nitride nanotube bundle, B 36 N 36 -carbon nanotube bundle and B 36 N 36 -boron nitride nanotube bundle are studied using the Lennard-Jones potential and the continuum approach which assumes a uniform distribution of atoms on the surface of each molecule. We address issues regarding the maximal suction energies of the fullerenes which lead to the generation of the maximum oscillation frequency. Since bundles are also found to comprise double-walled nanotubes, this paper also examines the oscillation of a fullerene inside a double-walled nanotube bundle. Our results show that the frequencies obtained for the oscillation within double-walled nanotube bundles are slightly higher compared to those of single-walled nanotube bundle oscillators. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures.

  2. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Lowrance, B.R.

    1975-01-01

    A process is described for the preparation of beryllium hydride which comprises pyrolyzing, while in solution in a solvent inert under the reaction conditions, with respect to reactants and products and at a temperature in the range of about 100 0 to about 200 0 C, sufficient to result in the formation of beryllium hydride, a di-t-alkyl beryllium etherate wherein each tertiary alkyl radical contains from 4 to 20 carbon atoms. The pyrolysis is carried out under an atmosphere inert under the reaction conditions, with respect to reactants and products. (U.S.)

  3. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  4. Study of a portion of Al-Be-B system and boron effect on ABM-1 alloy properties

    International Nuclear Information System (INIS)

    Novoselova, A.V.; Molchanova, L.V.; Yatsenko, K.P.; Fridlyander, I.N.

    1989-01-01

    The phase composition of Al-Be-B system alloys, phase transformations and boron effect on magnesium-containing ABM-1 alloy properties are investigated. Depending on the composition and crystallization conditions, the following phases in the investigated alloys are determined: a beryllium-base phase, an aluminium-base phase and a phase on the base of borides. It is found that boron content growth up to 1% increases ultimate strength, which sharply decreases with the boron content rise up to 2% as a result of crystallization of coarse needle-like inclusions of beryllium boride. With the aluminium content decrease the boron amount in the alloy can be increased

  5. Modeling boron separation from water by activated carbon, impregnated and unimpregnated

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M.; Grbavcic, Z. [Belgrade Univ., Belgrade (BA). Faculty of Technology and Metallurgy; Marinovic, V. [Belgrade Univ., Belgrade (BA). Ist. of Technical Science of the Serbian Academy of Science and Arts

    2000-10-01

    The sorption of boron from boric acid water solution by impregnated activated carbon has been studied. Barium, calcium, mannitol, tartaric acid and citric acid were used as chemical active materials. All processes were performed in a chromatographic continuous system at 22{sup 0} C. Experimental results show that activated carbon impregnated with mannitol is effective in removing boron from water. The separation of boron from the wastewater from a factory for producing enameled dishes by activated carbon impregnated with mannitol was also performed. Two models have been applied to describe published and new data on boron sorption by impregnated activated carbon. Both of them are based on the analysis of boron concentration response to the step input function. This led to a mathematical model that quite successfully described impregnation effects on adsorption capacities. [Italian] E' stato studiato l'assorbimento del boro, mediante carbone attivo impregnato, da soluzioni acquose di acido borico. Quali materiali chimici attivi sono stati utilizzati: bario, calcio, mannitolo, acido tartarico ed acido citrico. Tutti i processi sono stati condotti in un sistema cromatografico continuo a 22{sup 0}C. I risultati sperimentali mostrano che il carbone attivo impregnato con mannitolo e' efficace nella rimozione del boro dall'acqua. E' anche stata effettuata la separazione del boro da acque di scarico di un'industria per la produzione di piatti smaltati mediante carbone attivo impregnato con mannitolo. Sono stati applicati due modelli per descrivere i risultati, pubblicati e nuovi, dell'assorbimento del boro mediante carbone attivo impregnato. Entrambi sono basati sull'analisi della risposta alla concentrazione di boro successivamente incrementata a stadi. Cio' porta ad un modello matematico che descrive abbastanza soddisfacentemente gli effetti dell'impregnazione sulla capacita' di assorbimento.

  6. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  7. Ion beam assisted deposition of metal-coatings on beryllium

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2015-01-01

    Thin films were applied on beryllium substrates on the basis of metals (Cr, Ti, Cu and W) with method of the ion-assisted deposition in vacuum. Me/Be structures were prepared using 20 kV ions irradiation during deposition on beryllium neutral fraction generated from vacuum arc plasma. Rutherford back scattering and computer simulation RUMP code were applied to investigate the composition of the modified beryllium surface. Researches showed that the superficial structure is formed on beryllium by thickness ~ 50-60 nm. The covering composition includes atoms of the deposited metal (0.5-3.3 at. %), atoms of technological impurity carbon (0.8-1.8 at. %) and oxygen (6.3-9.9 at. %), atoms of beryllium from the substrate. Ion assisted deposition of metals on beryllium substrate is accompanied by radiation enhanced diffusion of metals, oxygen atoms in the substrate, out diffusion of beryllium, carbon atoms in the deposited coating and sputtering film-forming ions assists. (authors)

  8. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    Science.gov (United States)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2015-03-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B / Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species-specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32- and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the δ11B and B / Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B / Ca increases with increasing B(OH)4- / HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B / Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B / Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  9. Ionic conductivity in BC3 type boron carbon nanolayers

    Directory of Open Access Journals (Sweden)

    Irina V. Zaporotskova

    2017-06-01

    Full Text Available Studies of ionic conductivity and structuresf in which it can be achieved are of great importance for the development of modern batteries. The use of new materials will allow avoiding such typical disadvantages of batteries as short service life, low capacity and leaks. In this article we present the results of our study of the ionic conductivity in boron carbon nanolayers. We have simulated three types of boron carbon nanolayers containing different amounts of boron. The studies have been carried out using the MNDO method within the framework of the molecular cluster model and the DFT method with the B3LYP functional and the 6–31G basis. To study the ion conduction process we have simulated vacancy formation for each type of the nanolayers and studied the energy and electronic characteristics of these processes. We show that 25% boron substitution is the most energetically favorable for vacancy formation. We have also simulated vacancy migration and determined the thermal conductivity as a function of temperature.

  10. Electronic structures and three-dimensional effects of boron-doped carbon nanotubes

    International Nuclear Information System (INIS)

    Koretsune, Takashi; Saito, Susumu

    2008-01-01

    We study boron-doped carbon nanotubes by first-principles methods based on the density functional theory. To discuss the possibility of superconductivity, we calculate the electronic band structure and the density of states (DOS) of boron-doped (10,0) nanotubes by changing the boron density. It is found that the Fermi level density of states D(ε F ) increases upon lowering the boron density. This can be understood in terms of the rigid band picture where the one-dimensional van Hove singularity lies at the edge of the valence band in the DOS of the pristine nanotube. The effect of three-dimensionality is also considered by performing the calculations for bundled (10,0) nanotubes and boron-doped double-walled carbon nanotubes (10,0)/(19,0). From the calculation of the bundled nanotubes, it is found that interwall dispersion is sufficiently large to broaden the peaks of the van Hove singularity in the DOS. Thus, to achieve the high D(ε F ) using the bundle of nanotubes with single chirality, we should take into account the distance from each nanotube. In the case of double-walled carbon nanotubes, we find that the holes introduced to the inner tube by boron doping spread also on the outer tube, while the band structure of each tube remains almost unchanged.

  11. Covalently bound molecular states in beryllium and carbon isotopes

    International Nuclear Information System (INIS)

    Wolfram von, Oertzen; Hans-Gerhard, Bohlen; Wolfram von, Oertzen

    2003-01-01

    Nuclear clustering in N=Z nuclei has been studied since many decades. States close to the decay thresholds, as described by the Ikeda diagram, are of particular interest. Recent studies in loosely bound systems, as observed with neutron-rich nuclei has revived the interest in cluster structures in nuclei, with additional valence neutrons, which give rise to pronounced covalent molecular structures. The Beryllium isotopes represent the first example of such unique states in nuclear physics with extreme deformations. In the deformed shell model these are referred to as super- and hyper-deformation. These states can be described explicitly by molecular concepts, with neutrons in covalent binding orbits. Examples of recent experiments performed at the HMI-Berlin demonstrating the molecular structure of the rotational bands in Beryllium isotopes are presented. Further work on chain states (nuclear polymers) in the carbon isotopes is in progress, these are the first examples of deformed structures in nuclei with an axis ratio of 3:1. A threshold diagram with clusters bound via neutrons in covalent molecular configurations can be established, which can serve as a guideline for future work. (authors)

  12. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    International Nuclear Information System (INIS)

    Celik, Z. Ceylan; Can, B.Z.; Kocakerim, M. Muhtar

    2008-01-01

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid

  13. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Z. Ceylan [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)], E-mail: zcelik@atauni.edu.tr; Can, B.Z. [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, Atatuerk University, Faculty of Engineering, 25240 Erzurum (Turkey)

    2008-03-21

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid.

  14. Gap state related blue light emitting boron-carbon core shell structures

    International Nuclear Information System (INIS)

    Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet; Kaur, Gurpreet; Singh, Kulwinder; Kumar, Akshay; Kumar, Manjeet; Bala, Rajni; Thakur, Anup

    2016-01-01

    Boron-carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.

  15. Influence of boron on strain hardening behaviour and ductility of low carbon hot rolled steel

    International Nuclear Information System (INIS)

    Deva, Anjana; Jha, B.K.; Mishra, N.S.

    2011-01-01

    Highlights: → Unique feature of low strain hardening exponent (n) with high total elongation has been discussed in industrially produced low carbon boron containing steel. → n has been correlated with the micro structural changes occurring during deformation of steel. → This feature of low n and high % elongation has potential for higher cold reducibility. → The work is being reported for the first time on industrially produced low carbon boron containing steel. - Abstract: The beneficial effect of boron on mechanical properties of low carbon Al-killed steel has been reported in recent past. However, the effect of boron on strain hardening exponent (n) and ductility has not been fully understood. This aspect has been discussed in present work. The results of mill trials with reference to n and ductility with boron added steel are compared to those for commercial grade. The lowering of 'n' with increased total elongation in boron bearing steel has been related to the microstructural evolution as a result of boron addition.

  16. Boron-doped MnO{sub 2}/carbon fiber composite electrode for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hong Zhong, E-mail: hzchi@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhu, Hongjie [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Gao, Linhui [Center of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Interstitial ion in MnO{sub 2} lattice. • Porous film composed by interlocking worm-like nanostructure. • Boron-doped birnessite-type MnO{sub 2}/carbon fiber composite electrode. • Enhanced capacitive properties through nonmetal element doping. - Abstract: The boron-doped MnO{sub 2}/carbon fiber composite electrode has been prepared via in situ redox reaction between potassium permanganate and carbon fibers in the presence of boric acid. The addition of boron as dopant results in the increase of growth-rate of MnO{sub 2} crystal and the formation of worm-like nanostructure. Based on the analysis of binding energy, element boron incorporates into the MnO{sub 2} lattice through interstitial mode. The doped electrode with porous framework is beneficial to pseudocapacitive reaction and surface charge storage, leading to higher specific capacitance and superior rate capability. After experienced 1000 cycles, the boron-doped MnO{sub 2} still retain a higher specific capacitance by about 80% of its initial value. The fall in capacitance is blamed to be the combination of the formation of soluble Mn{sup 2+} and the absence of active site on the outer surface.

  17. Erosion behaviour of ultrathin carbon layers and hydrogen retention in beryllium

    International Nuclear Information System (INIS)

    Reinelt, Matthias

    2008-01-01

    Plasma-wall-interaction plays an important role on the way to technical feasibility of thermonuclear fusion. In this context, the erosion behavior of few nanometer thin amorphous carbon layers on different metallic substrates by energetic deuterium and helium ions is investigated. Several aspects of the interaction are distinguishable by XPS. Ion induced carbide formation is governed by kinematic intermixing of carbon and metal substrate. Several methods of quantification of XPS measurements are developed and discussed. Comparison of results from these methods with NRA measurements show that surface roughness and implantation of particles into the carbon layer and intermixing zone influence the XPS measurements, which are sensitive to parameters such as material density. The retention of 1 keV deuterium ions implanted into single crystalline and cleaned beryllium at room temperature is investigated by temperature programmed desorption (TPD). The residual BeO coverage was 0.2 ML. The retention is 78% at low fluences and saturates above a bombardment with a fluence of 2.10 17 cm -2 . The retained maximum areal density is 2.10 17 cm -2 . Above 900 K, no deuterium is retained in the sample. An onset of self diffusion is observed at this temperature and metallic beryllium from the bulk segregates though thin BeO layers on the surface. From deuterium desorption traces, retention mechanisms are obtained. The measured TPDspectra are modeled by TMAP7 and rate equations to obtain activation energies for the release processes. From these, binding energies for the system Be-D are derived. Up to a implantation fluence of 1.10 17 cm -2 , deuterium is trapped in ion induced defects in the beryllium lattice with binding energies of 1.69 eV and 1.86 eV and release temperatures of 770 K and 840 K, respectively. The occupation of these states shows a different isotope behavior for 1 H and 2 H. The states are filled by diffusion of deuterium at the end of its implantation trajectory

  18. Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators

    Science.gov (United States)

    Kritcher, A. L.; Clark, D.; Haan, S.; Yi, S. A.; Zylstra, A. B.; Callahan, D. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Hurricane, O. A.; Landen, O. L.; MacLaren, S. A.; Meezan, N. B.; Patel, P. K.; Ralph, J.; Thomas, C. A.; Town, R.; Edwards, M. J.

    2018-05-01

    Detailed radiation hydrodynamic simulations calibrated to experimental data have been used to compare the relative strengths and weaknesses of three candidate indirect drive ablator materials now tested at the NIF: plastic, high density carbon or diamond, and beryllium. We apply a common simulation methodology to several currently fielded ablator platforms to benchmark the model and extrapolate designs to the full NIF envelope to compare on a more equal footing. This paper focuses on modeling of the hohlraum energetics which accurately reproduced measured changes in symmetry when changes to the hohlraum environment were made within a given platform. Calculations suggest that all three ablator materials can achieve a symmetric implosion at a capsule outer radius of ˜1100 μm, a laser energy of 1.8 MJ, and a DT ice mass of 185 μg. However, there is more uncertainty in the symmetry predictions for the plastic and beryllium designs. Scaled diamond designs had the most calculated margin for achieving symmetry and the highest fuel absorbed energy at the same scale compared to plastic or beryllium. A comparison of the relative hydrodynamic stability was made using ultra-high resolution capsule simulations and the two dimensional radiation fluxes described in this work [Clark et al., Phys. Plasmas 25, 032703 (2018)]. These simulations, which include low and high mode perturbations, suggest that diamond is currently the most promising for achieving higher yields in the near future followed by plastic, and more data are required to understand beryllium.

  19. Defect complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-05-01

    Full Text Available The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented...

  20. Beryllium

    Science.gov (United States)

    Foley, Nora K.; Jaskula, Brian W.; Piatak, Nadine M.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Beryllium is a mineral commodity that is used in a variety of industries to make products that are essential for the smooth functioning of a modern society. Two minerals, bertrandite (which is supplied domestically) and beryl (which is currently supplied solely by imports), are necessary to ensure a stable supply of high-purity beryllium metal, alloys, and metal-matrix composites and beryllium oxide ceramics. Although bertrandite is the source mineral for more than 90 percent of the beryllium produced globally, industrial beryl is critical for the production of the very high purity beryllium metal needed for some strategic applications. The current sole domestic source of beryllium is bertrandite ore from the Spor Mountain deposit in Utah; beryl is imported mainly from Brazil, China, Madagascar, Mozambique, and Portugal. High-purity beryllium metal is classified as a strategic and critical material by the Strategic Materials Protection Board of the U.S. Department of Defense because it is used in products that are vital to national security. Beryllium is maintained in the U.S. stockpile of strategic materials in the form of hot-pressed beryllium metal powder.Because of its unique chemical properties, beryllium is indispensable for many important industrial products used in the aerospace, computer, defense, medical, nuclear, and telecommunications industries. For example, high-performance alloys of beryllium are used in many specialized, high-technology electronics applications, as they are energy efficient and can be used to fabricate miniaturized components. Beryllium-copper alloys are used as contacts and connectors, switches, relays, and shielding for everything from cell phones to thermostats, and beryllium-nickel alloys excel in producing wear-resistant and shape-retaining high-temperature springs. Beryllium metal composites, which combine the fabrication ability of aluminum with the thermal conductivity and highly elastic modulus of beryllium, are ideal for

  1. Boron carbide-carbon composites and composites for cryogenic applications

    International Nuclear Information System (INIS)

    Sheinberg, H.

    1979-01-01

    Because of its neutronic properties, high hardness, and high melting temperature, boron carbide (B 4 C) is widely used at the Los Alamos Scientific Laboratory. However because of its hardness and mode of manufacture, it is expensive to machine finish to tight dimensional specifictions. For some neutronic applications, a density considerably below the theoretical 2.52 Mg/m 3 was acceptable, and this relaxation in density specification permitted addition of carbon as a second phase to reduce machining costs. We conducted an experimental program to prepare 50.8-mm-diam by 34.8-mm-thick cylinders of B 4 C and B 4 C-C composites with concentrations of carbon varying from 5.5 to 30 volume percent. Additionally we used three forms of carbon, natural flake graphite, synthetic graphite flour, and a fine furnace black as the source of the second phase. We determined the sound velocity, compressive strength, coefficient of thermal expansion, electrical resistivity, and microstructure as functions of composition. Additionally, an enriched boron ( 10 B)-carbon composite was studied as an alternate material

  2. Erosion behaviour of ultrathin carbon layers and hydrogen retention in beryllium; Untersuchungen zur Erosion ultraduenner Kohlenstoffschichten und Wasserstoffrueckhaltung in Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Reinelt, Matthias

    2008-04-16

    Plasma-wall-interaction plays an important role on the way to technical feasibility of thermonuclear fusion. In this context, the erosion behavior of few nanometer thin amorphous carbon layers on different metallic substrates by energetic deuterium and helium ions is investigated. Several aspects of the interaction are distinguishable by XPS. Ion induced carbide formation is governed by kinematic intermixing of carbon and metal substrate. Several methods of quantification of XPS measurements are developed and discussed. Comparison of results from these methods with NRA measurements show that surface roughness and implantation of particles into the carbon layer and intermixing zone influence the XPS measurements, which are sensitive to parameters such as material density. The retention of 1 keV deuterium ions implanted into single crystalline and cleaned beryllium at room temperature is investigated by temperature programmed desorption (TPD). The residual BeO coverage was 0.2 ML. The retention is 78% at low fluences and saturates above a bombardment with a fluence of 2.10{sup 17} cm{sup -2}. The retained maximum areal density is 2.10{sup 17} cm{sup -2}. Above 900 K, no deuterium is retained in the sample. An onset of self diffusion is observed at this temperature and metallic beryllium from the bulk segregates though thin BeO layers on the surface. From deuterium desorption traces, retention mechanisms are obtained. The measured TPDspectra are modeled by TMAP7 and rate equations to obtain activation energies for the release processes. From these, binding energies for the system Be-D are derived. Up to a implantation fluence of 1.10{sup 17} cm{sup -2}, deuterium is trapped in ion induced defects in the beryllium lattice with binding energies of 1.69 eV and 1.86 eV and release temperatures of 770 K and 840 K, respectively. The occupation of these states shows a different isotope behavior for {sup 1}H and {sup 2}H. The states are filled by diffusion of deuterium at the

  3. Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape

    Science.gov (United States)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    2007-01-01

    The term HYCARB denotes a hybrid composite of polyimide matrices reinforced with carbon and boron fibers. HYCARB and an improved process for fabricating dry HYCARB tapes have been invented in a continuing effort to develop lightweight, strong composite materials for aerospace vehicles. Like other composite tapes in this line of development, HYCARB tapes are intended to be used to build up laminated structures having possibly complex shapes by means of automated tow placement (ATP) - a process in which a computer-controlled multiaxis machine lays down prepreg tape or tows. The special significance of the present process for making dry HYCARB for ATP is that it contributes to the reduction of the overall cost of manufacturing boron-reinforced composite-material structures while making it possible to realize increased compression strengths. The present process for making HYCARB tapes incorporates a "wet to dry" process developed previously at Langley Research Center. In the "wet to dry" process, a flattened bundle of carbon fiber tows, pulled along a continuous production line between pairs of rollers, is impregnated with a solution of a poly(amide acid) in N-methyl-2-pyrrolidinone (NMP), then most of the NMP is removed by evaporation in hot air. In the present case, the polyamide acid is, more specifically, that of LaRC. IAX (or equivalent) thermoplastic polyimide, and the fibers are, more specifically, Manganite IM7 (or equivalent) polyacrylonitrile- based carbon filaments that have a diameter of 5.2 m and are supplied in 12,000-filament tows. The present process stands in contrast to a prior process in which HYCARB tape was made by pressing boron fibers into the face of a wet carbon-fiber/ poly(amide acid) prepreg tape . that is, a prepreg tape from which the NMP solvent had not been removed. In the present process, one or more layer(s) of side-by-side boron fibers are pressed between dry prepreg tapes that have been prepared by the aforementioned gwet to dry h

  4. Effect of doping on electronic properties of double-walled carbon and boron nitride hetero-nanotubes

    International Nuclear Information System (INIS)

    Majidi, R.; Ghafoori Tabrizi, K.; Jalili, S.

    2009-01-01

    The effect of boron nitride (BN) doping on electronic properties of armchair double-walled carbon and hetero-nanotubes is studied using ab initio molecular dynamics method. The armchair double-walled hetero-nanotubes are predicted to be semiconductor and their electronic structures depend strongly on the electronic properties of the single-walled carbon nanotube. It is found that electronic structures of BN-doped double-walled hetero-nanotubes are intermediate between those of double-walled boron nitride nanotubes and double-walled carbon and boron nitride hetero-nanotubes. Increasing the amount of doping leads to a stronger intertube interaction and also increases the energy gap.

  5. Effect of doping on electronic properties of double-walled carbon and boron nitride hetero-nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, R. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-63113 (Iran, Islamic Republic of); Ghafoori Tabrizi, K., E-mail: K-TABRIZI@sbu.ac.i [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-63113 (Iran, Islamic Republic of); Jalili, S. [Department of Chemistry, K.N. Toosi University of Technology, Tehran 16315-1618 (Iran, Islamic Republic of)

    2009-11-01

    The effect of boron nitride (BN) doping on electronic properties of armchair double-walled carbon and hetero-nanotubes is studied using ab initio molecular dynamics method. The armchair double-walled hetero-nanotubes are predicted to be semiconductor and their electronic structures depend strongly on the electronic properties of the single-walled carbon nanotube. It is found that electronic structures of BN-doped double-walled hetero-nanotubes are intermediate between those of double-walled boron nitride nanotubes and double-walled carbon and boron nitride hetero-nanotubes. Increasing the amount of doping leads to a stronger intertube interaction and also increases the energy gap.

  6. Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, E.C. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil)]. E-mail: erica@las.inpe.br; Diniz, A.V. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Trava-Airoldi, V.J. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Ferreira, N.G. [CTA-Divisao de Materiais, Sao Jose dos Campos, SP 12228-904 (Brazil)

    2005-08-01

    Doped diamond films have been deposited on carbon fibers (felt) obtained from polyacrylonitrile at different levels of boron doping. For a successful coating of the fibers, an ultrasonic pretreatment in a bath of diamond powder dissolved in hexane was required. Films were grown on both sample sides, simultaneously, by hot filament-assisted chemical vapour deposition technique at 750 deg. C from a 0.5% H{sub 2}/CH{sub 4} mixture at a total pressure of 6.5 x 10{sup 3} Pa. Boron was obtained from H{sub 2} forced to pass through a bubbler containing B{sub 2}O{sub 3} dissolved in methanol. The doping level studied corresponds to films with acceptor concentrations in the range of 6.5 x 10{sup 18} to 1.5 x 10{sup 21} cm{sup -} {sup 3}, obtained from Mott-Schottky plots. Scanning electron microscopy analyses evidenced fibers totally covered with high quality polycrystalline boron-doped diamond film, also confirmed by Raman spectroscopy spectra. Diamond electrodes grown on carbon fibers demonstrated similar electrochemical behavior obtained from films on Si substrate, for ferri/ferrocyanide redox couple as a function of boron content. The boron content influences electrochemical surface area. A lower boron concentration provides a higher growth rate that results in a higher surface area.

  7. The effect of carbon and boron on the accumulation of vacancy-oxygen complexes in silicon

    International Nuclear Information System (INIS)

    Akhmetov, V.D.; Bolotov, V.V.

    1980-01-01

    By means of IR-absorption measurements the dose dependencies of the concentrations of vacancy-oxygen complexes (VO), interstitial oxygen atoms (Osub(I)), substitutional carbon atoms (Csub(S)) and interstitial carbon-oxygen complexes (Csub(I)Osub(I)) in n- and p-type silicon irradiated with 1.1 MeV electrons have been investigated. The observed increase of the production rate of VO-complexes with the rise of carbon and boron atoms concentrations (these impurities act as sinks for silicon interstitial atoms) has been explained in terms of annihilation of the vacancies and interstitials on the oxygen atoms. The results obtained show that boron atoms are more effective sinks than carbon atoms for the interstitial silicon atoms. That seems to be connected not only with the higher probability of boron injection into interstitial position but also with the further capture of interstitial silicon atoms on the interstitial boron, i.e. with the interstitial cluster formation. (author)

  8. Boron-Doped Carbon Nano-/Microballs from Orthoboric Acid-Starch: Preparation, Characterization, and Lithium Ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Xinhua Lu

    2018-01-01

    Full Text Available A boron-doped carbon nano-/microballs (BC was successfully obtained via a two-step procedure including hydrothermal reaction (180°C and carbonization (800°C with cheap starch and H3BO3 as the carbon and boron source. As a new kind of boron-doped carbon, BC contained 2.03 at% B-content and presented the morphology as almost perfect nano-/microballs with different sizes ranging from 500 nm to 5 μm. Besides that, due to the electron deficient boron, BC was explored as anode material and presented good lithium storage performance. At a current density of 0.2 C, the first reversible specific discharge capacity of BC electrode reached as high as 964.2 mAh g–1 and kept at 699 mAh g–1 till the 11th cycle. BC also exhibited good cycle ability with a specific capacity of 356 mAh g–1 after 79 cycles at a current density of 0.5 C. This work proved to be an effective approach for boron-doped carbon nanostructures which has potential usage for lithium storage material.

  9. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    OpenAIRE

    Mejía, Ignacio; Bedolla Jacuinde, Arnoldo; Maldonado, Cuauhtémoc; Cabrera Marrero, José M.

    2011-01-01

    The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 ◦C) at a constant true strain rate of 0.001 s−1. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless,...

  10. The hot working characteristics of a boron bearing and a conventional low carbon steel

    International Nuclear Information System (INIS)

    Stumpf, Waldo; Banks, Kevin

    2006-01-01

    Constitutive hot working constants were determined for an 11 ppm boron low carbon strip steel and compared from 875 to 1140 deg. C and strain rates of 0.001-2.5 s -1 to a high nitrogen low carbon strip steel. The boron steel showed a different hot working behaviour than the conventional steel with the steady state flow stress about 50-60% higher, the peak strain more than 50% higher and the eventual ferrite grain size about 40% smaller, if compared at the same temperature compensated strain rates or Z values. This difference persisted where the soaking temperature before compression was varied between 1140 and 1250 deg. C, proving that undissolved AlN in the boron-bearing steel was not responsible. With systematically varied linear cooling rates after hot working, the final ferrite grain size in the boron steel is finer and is independent of the two Z values applied during hot working. Retarded softening by dynamic recrystallisation during hot working in the boron containing steel is probably caused by boron solute drag of moving grain boundaries

  11. Effect of dissolved organic carbon in recycled wastewaters on boron adsorption by soils

    Science.gov (United States)

    In areas of water scarcity, recycled municipal wastewaters are being used as water resources for non-potable applications, especially for irrigation. Such wastewaters often contain elevated levels of dissolved organic carbon (DOC) and solution boron (B). Boron adsorption was investigated on eight ...

  12. Thermal desorption spectroscopy of boron/carbon films after keV deuterium irradiation

    International Nuclear Information System (INIS)

    Yamaki, T.; Gotoh, Y.; Ando, T.; Jimbou, R.; Ogiwara, N.; Saidoh, M.

    1994-01-01

    Thermal desorption spectroscopy (TDS) of D 2 and CD 4 was done on boron/carbon films (B/(B+C)=0-74%), after 3 keV D 3 + irradiation to 4.5x10 17 D/cm 2 at 473 K. The D 2 desorption peaks were observed at 1050, 850 and 650 K. For a sputter B/C film (0%), only the 1050 K peak was observed. With increasing boron concentration to 3%, a sharp peak appeared at 850 K, the intensity of which was found to increase with increasing boron concentration to 23%, and then to decrease at 74%. The 650 K shoulder, which was observed for high boron concentration specimens, was speculated to be deuterium trapped by boron atoms in the boron clusters. The relative amount of CD 4 desorption was found to decrease with increasing boron concentration, which was attributed to the decrease in the trapped deuterium concentration in the implantation layer at temperatures at which CD 4 desorption proceeds. ((orig.))

  13. Urea route to coat inorganic nanowires, carbon fibers and nanotubes by boron nitride

    International Nuclear Information System (INIS)

    Gomathi, A.; Ramya Harika, M.; Rao, C.N.R.

    2008-01-01

    A simple route involving urea as the nitrogen source has been employed to carry out boron nitride coating on carbon fibers, multi-walled carbon nanotubes and inorganic nanowires. The process involves heating the carbon fibers and nanotubes or inorganic nanowires in a mixture of H 3 BO 3 and urea, followed by a heat treatment at 1000 deg. C in a N 2 atmosphere. We have been able to characterize the BN coating by transmission electron microscopy as well as X-ray photoelectron spectroscopy. The urea decomposition route affords a simple method to coat boron nitride on one-dimensional nanostructures

  14. Boron erosion and carbon deposition due to simultaneous bombardment with deuterium and carbon ions in plasmas

    International Nuclear Information System (INIS)

    Ohya, K.; Kawata, J.; Wienhold, P.; Karduck, P.; Rubel, M.; Seggern, J. von

    1999-01-01

    Erosion of boron out of a thin film exposed to deuterium edge plasmas and the simultaneous carbon deposition have been investigated in the tokamak TEXTOR-94 and simulated by means of a dynamic Monte Carlo code. The calculated results are compared with some observations (colorimetry, spectroscopy and AES) during and after the exposures. The implantation of carbon impurities strongly changes the effective boron sputtering yield of the film, which results into a lowering of the film erosion and a formation of thick carbon deposits. A strong decrease in the observed BII line emission around a surface location far from the plasma edge can be explained by a carbon deposition on the film. The calculated carbon depth profiles in the film, depending on the distance of the exposed surface from the plasma edge, are in reasonable agreement with measurements by AES after the exposures. Although simultaneous surface erosion and carbon deposition can be simulated, the calculated erosion rate is larger, by a factor of 2, than the observations by colorimetry at the early stage of the exposure

  15. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Mejia, I.; Bedolla-Jacuinde, A.; Maldonado, C.; Cabrera, J.M.

    2011-01-01

    Research highlights: → Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. → Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. → Hot ductility improvement is associated with segregation/precipitation of boron. → Typical hot ductility recovery at lower temperatures does not appear in this steel. → Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of boron segregation towards

  16. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Bedolla-Jacuinde, A.; Maldonado, C. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Cabrera, J.M. [Departament de Ciencia dels Materials i Enginyeria Metal.lurgica, ETSEIB - Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. de las Bases de Manresa 1, 08240 Manresa (Spain)

    2011-05-25

    Research highlights: {yields} Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. {yields} Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. {yields} Hot ductility improvement is associated with segregation/precipitation of boron. {yields} Typical hot ductility recovery at lower temperatures does not appear in this steel. {yields} Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s{sup -1}. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of

  17. Manufacture of sintered bricks of high density from beryllium oxide

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1959-01-01

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm 2 . The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm 2 pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author) [fr

  18. Beryllium R and D for fusion applications

    International Nuclear Information System (INIS)

    Scaffidi-Argentina, F.; Longhurst, G.R.; Shestakov, V.; Kawamura, H.

    2000-01-01

    Beryllium is one of the primary candidates as both plasma-facing material (PFM) and neutron multiplier in the next-step fusion reactors. Both sintered-product blocks and pebbles are considered in fusion reactor designs. Beryllium evaporated on carbon tiles has also been used in Joint European Torus (JET) and may be considered for other designs. Future efforts are directed toward the pebble form of beryllium. Research and evaluations of data are underway to determine the most attractive material processing approaches in terms of fabrication cost and quality; technical issues associated with heat transfer; thermal, mechanical and irradiation stability; safety and tritium release. Beryllium plasma-facing components will require periodic repair or replacement, therefore disposal or recycling of activated and tritiated beryllium will also be a concern. Beryllium as a component of the molten salt, Flibe is also being considered in novel approaches to the plasma-structure interface. This paper deals with the main issues related to the use of Be in a fusion reactor as both neutron multiplier and first wall material. These issues include potential reactions with steam during accidents and the health and environmental aspects of its use, reprocessing and reuse, or disposal

  19. Beryllium R and D for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F. E-mail: francesco.scaffidi@iket.fzk.de; Longhurst, G.R.; Shestakov, V.; Kawamura, H

    2000-11-01

    Beryllium is one of the primary candidates as both plasma-facing material (PFM) and neutron multiplier in the next-step fusion reactors. Both sintered-product blocks and pebbles are considered in fusion reactor designs. Beryllium evaporated on carbon tiles has also been used in Joint European Torus (JET) and may be considered for other designs. Future efforts are directed toward the pebble form of beryllium. Research and evaluations of data are underway to determine the most attractive material processing approaches in terms of fabrication cost and quality; technical issues associated with heat transfer; thermal, mechanical and irradiation stability; safety and tritium release. Beryllium plasma-facing components will require periodic repair or replacement, therefore disposal or recycling of activated and tritiated beryllium will also be a concern. Beryllium as a component of the molten salt, Flibe is also being considered in novel approaches to the plasma-structure interface. This paper deals with the main issues related to the use of Be in a fusion reactor as both neutron multiplier and first wall material. These issues include potential reactions with steam during accidents and the health and environmental aspects of its use, reprocessing and reuse, or disposal.

  20. A comparison of tokamak operation with metallic getters (Ti, Cr, Be) and boronization

    International Nuclear Information System (INIS)

    Winter, J.

    1990-07-01

    In addition to discharge cleaning techniques, gettering of tokamaks has been used since 1975 as a powerful tool for controlling the impurity influx into fusion plasmas. High-Z metals like Ti and Cr, evaporated onto the walls of the fusion devices, have first been used. After the introduction of carbon as low Z plasma facing material for the large tokamaks new scenarios were developed, optimizing the low-Z aspect of wall materials. These are the boronization technique and the evaporation of Be in conjunction with the use of Be limiters. A review of the different getter techniques and of the observed results will be given, focussing on the comparison of the tokamak performance achieved with boronization and the use of beryllium. It is shown that in all cases of gettering the most important mechanism for the improved machine performance is the control of the oxygen impurity influx. Very similar results are found for the impurity control potential. The added benefit of boronization and Be gettering arises from the low Z of the materials. Both scenarios essentially lead to the same machine performance. Both render themselves as an option for future devices. (orig.)

  1. Beryllium. Evaluation of beryllium hydroxide industrial processes. Pt. 3

    International Nuclear Information System (INIS)

    Lires, O.A.; Delfino, C.A.; Botbol, J.

    1991-01-01

    This work continues the 'Beryllium' series. It is a historical review of different industrial processes of beryllium hydroxide obtention from beryllium ores. Flowsheats and operative parameters of five plants are provided. These plants (Degussa, Brush Beryllium Co., Beryllium Corp., Murex Ltd., SAPPI) were selected as representative samples of diverse commercial processes in different countries. (Author) [es

  2. Processing and Properties of Distaloy Sa Sintered Alloys with Boron and Carbon

    Directory of Open Access Journals (Sweden)

    Karwan-Baczewska J.

    2015-04-01

    Full Text Available Prealloyed iron-based powders, manufactured in Höganäs Company, are used in the automotive parts industry. The properties and life time of such sintered parts depend, first of all, on their chemical composition, the production method of the prealloyed powder as well as on the technology of their consolidation and sintering. One of simpler and conventional methods aimed at increasing the density in sintered products is the process of activated sintering, performed, for example, by adding boron as elementary boron powder. Under this research project obtained were novel sintered materials, based on prealloyed and diffusion bonded powder, type: Distaloy SA, with the following chemical composition: Fe-1.75% Ni-1.5%Cu- 0.5%Mo with carbon (0.55%; 0.75% and boron (0.2%, 0.4% and 0.6%. Distaloy SA samples alloyed with carbon and boron were manufactured by mixing powders in a Turbula mixer, then compressed using a hydraulic press under a pressure of 600 MPa and sintered in a tube furnace at 1473 K, for a 60 minute time, in the hydrogen atmosphere. After the sintering process, there were performed density and porosity measurements as well as hardness tests and mechanical properties were carried out, too. Eventually, analyzed was the effect of boron upon density, hardness and mechanical properties of novel sintered construction parts made from Distaloy SA powder.

  3. (Beryllium). Internal Report No. 137, Jan. 15, 1958; Le beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, P; Rigaud, A

    1959-07-01

    After a brief summary of the physical and chemical properties of beryllium, the various chemical treatments which can be applied to beryllium minerals either directly or after a physical enrichment are discussed. These various treatments give either the hydroxide or beryllium salts, from which either beryllium oxide or metallic beryllium can easily be obtained. The purification, analysis and uses of beryllium are also briefly discussed. (author)

  4. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    Energy Technology Data Exchange (ETDEWEB)

    Roosta, Sara [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Hashemianzadeh, Seyed Majid, E-mail: hashemianzadeh@iust.ac.ir [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Ketabi, Sepideh, E-mail: sepidehketabi@yahoo.com [Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol{sup −1} and − 2457.124 kcal mol{sup −1} respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol{sup −1} which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol{sup −1}) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  5. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    International Nuclear Information System (INIS)

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-01-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol"−"1 and − 2457.124 kcal mol"−"1 respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol"−"1 which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol"−"1) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  6. Beryllium production using beryllium fluoride

    International Nuclear Information System (INIS)

    Hubler, Carlos Henrique

    1993-01-01

    This work presents the beryllium production by thermal decomposition of the ammonium beryllium fluoride, followed by magnesium reduction, obtained in the small pilot plant of the Brazilian National Nuclear Energy Commission - Nuclear Engineering Institute

  7. Analysis of surface contaminants on beryllium and aluminum windows

    International Nuclear Information System (INIS)

    Gmur, N.F.

    1987-06-01

    An effort has been made to document the types of contamination which form on beryllium window surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined

  8. Effect of Boron on the Hot Ductility of Resulfurized Low-Carbon Free-Cutting Steel

    Science.gov (United States)

    Liu, Hai-tao; Chen, Wei-qing

    2015-09-01

    The hot ductility of resulfurized low-carbon free-cutting steel with boron additives is studied in the temperature range 850 - 1200°C with the help of a Gleeble-1500 thermomechanical simulator. The introduction of boron increases hot ductility, especially at 900 - 1050°C. In the single-phase austenitic region, this effect is caused by segregation of boron over grain boundaries, acceleration of dynamic recrystallization, and solid-solution softening of deformed austenite.

  9. Be{sub 2}C formation in beryllium-carbon binary system by vacuum heating

    Energy Technology Data Exchange (ETDEWEB)

    Ashida, Kan; Watanabe, Kuniaki [Toyama Univ. (Japan). Hydrogen Isotope Research Center

    1998-01-01

    The surface chemical states of beryllium and carbon binary systems at elevated temperature were investigated by means of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The XPS measurements revealed that the mixed subsurface layers containing Be and C readily yield Be{sub 2}C layers by vacuum heating and ion bombardment. The SIMS measurements showed that hydrogen isotope atoms are trapped by three distinct sites; namely Be, C, and O-sites on the sample surface. The SIMS measurements also showed that carbon atoms lose its ability to bind with hydrogen isotope atoms on forming Be{sub 2}C. It would be a key to control hydrogen inventory when Be and C are used together as PFM. (author)

  10. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  11. Beryllium and copper-beryllium alloys; Beryllium und Kupfer-Beryllium-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Nikolaus [Materion Brush GmbH, Stuttgart (Germany). Operation and Quality/EH and S

    2017-02-15

    The light metal beryllium is a comparatively rare element, which today is primarily derived from bertrandite. It is mainly used as pure metal or in the form of copper-beryllium alloys, e.g., in automotive industry, aerospace, and electrical components. The wide range of applications is mainly attributed to the extremely high rigidity/density ratio. An overview of the history of the metal, its production, and recycling as well as the properties of CuBe alloys are given.

  12. Role of carbon in boron suboxide thin films

    International Nuclear Information System (INIS)

    Music, Denis; Kugler, Veronika M.; Czigany, Zsolt; Flink, Axel; Werner, Oskar; Schneider, Jochen M.; Hultman, Lars; Helmersson, Ulf

    2003-01-01

    Boron suboxide thin films, with controlled carbon content, were grown by rf dual magnetron sputtering of boron and carbon targets in an argon-oxygen atmosphere. Film composition, structure, mechanical, and electrical properties were evaluated with x-ray photoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, transmission electron microscopy, nanoindentation, and high-frequency capacitance-voltage measurements. X-ray amorphous B-O-C films (O/B=0.02) showed an increase in density from 2.0 to 2.4 g/cm 3 as C content was increased from 0 to 0.6 at. % and the film with the highest density had nanocrystalline inclusions. The density increase occurred most likely due to the formation of B-C bonds, which are shorter than B-B bonds. All measured material properties were found to depend strongly on the C content and thus film density. The elastic modulus increased from 188 to 281 GPa with the increasing C content, while the relative dielectric constant decreased from 19.2 to 0.9. Hence, B-O-C films show a potential for protective coatings and even for application in electronic and optical devices

  13. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    International Nuclear Information System (INIS)

    Zhao Peng; Zhang Ying; Wang Pei-Ji; Zhang Zhong; Liu De-Sheng

    2011-01-01

    Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C 60 nanotube caps. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Electron paramagnetic resonance investigations of carbon-doped β rhombohedral boron

    International Nuclear Information System (INIS)

    Gercke, U.; Siems, C.-D.

    1979-01-01

    Electron paramagnetic resonance (EPR) measurements at 9 and 35 GHz on polycrystalline β rhombohedral boron with various carbon contents resulted in partly resolved absorption spectra. At 300 K the spin density ratio of two lines (called D and E) showed a linear increase with the carbon content. This ratio is temperature dependent. The lines D and E are photo-EPR active with different quantum efficiencies at various temperatures. (Auth.)

  15. Theoretical isotopic fractionation between structural boron in carbonates and aqueous boric acid and borate ion

    Science.gov (United States)

    Balan, Etienne; Noireaux, Johanna; Mavromatis, Vasileios; Saldi, Giuseppe D.; Montouillout, Valérie; Blanchard, Marc; Pietrucci, Fabio; Gervais, Christel; Rustad, James R.; Schott, Jacques; Gaillardet, Jérôme

    2018-02-01

    The 11B/10B ratio in calcite and aragonite is an important proxy of oceanic water pH. However, the physico-chemical mechanisms underpinning this approach are still poorly known. In the present study, we theoretically determine the equilibrium isotopic fractionation properties of structural boron species in calcium carbonates, BO33-, BO2(OH)2- and B(OH)4- anions substituted for carbonate groups, as well as those of B(OH)4- and B(OH)3 species in vacuum. Significant variability of equilibrium isotopic fractionation properties is observed among these structural species which is related to their contrasted coordination state, Bsbnd O bond lengths and atomic-scale environment. The isotopic composition of structural boron does not only depend on its coordination number but also on its medium range environment, i.e. farther than its first coordination shell. The isotopic fractionation between aqueous species and their counterparts in vacuum are assessed using previous investigations based on similar quantum-mechanical modeling approaches. At 300 K, the equilibrium isotope composition of structural trigonal species is 7-15‰ lighter than that of aqueous boric acid molecules, whereas substituted tetrahedral borate ions are heavier than their aqueous counterparts by 10-13‰. Although significant uncertainties are known to affect the theoretical prediction of fractionation factors between solids and solutions, the usually assumed lack of isotopic fractionation during borate incorporation in carbonates is challenged by these theoretical results. The present theoretical equilibrium fractionation factors between structural boron and aqueous species differ from those inferred from experiments which may indicate that isotopic equilibrium, unlike chemical equilibrium, was not reached in most experiments. Further research into the isotopic fractionation processes at the interface between calcium carbonates and aqueous solution as well as long duration experiments aimed at

  16. Determination of soluble carbon in nuclear grade boron carbide

    International Nuclear Information System (INIS)

    Vega Bustillos, J.O.; Gomes, R.; Camaro, J.; Zorzetto, F.; Domingues, P.; Riella, H.

    1990-05-01

    The present work describes two different techniques (manometric and wet chemical) for the soluble carbon determination in nuclear grade boron carbide. The techniques are based on the reaction of the boron carbide with a sulfocromic mixture, generating CO 2 . The techniques differ on the mode they do the measurement of CO 2 produced. By wet chemical technique the CO 2 is absorved in a barium hydroxide solution and is determinated by titration. In the manometric technique the CO 2 gas is measured using a McLeod gauge. The gas produced by the latter technique is analysed by mass spectrometry. The details of the analytical technique and the data obtained are discussed. (author) [pt

  17. Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors

    Science.gov (United States)

    Zhou, Ying; Wang, Dao-Long; Wang, Chun-Lei; Jin, Xin-Xin; Qiu, Jie-Shan

    2014-08-01

    Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3/H2SO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC—OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC—OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC—SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC—OA are 1103 m2·g-1 and 0.921 cm3·g-1, respectively. At a current density of 0.1 A·g-1, the specific capacitance of BNC-OA is 335 F·g-1 and the capacitance retention can still reach 83% at 1 A·g-1. The analysis shows that the superior electrochemical performance of the BNC—OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.

  18. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    Science.gov (United States)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  19. Method for welding beryllium

    Science.gov (United States)

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  20. Method for welding beryllium

    International Nuclear Information System (INIS)

    Dixon, R.D.; Smith, F.M.; O'Leary, R.F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs

  1. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  2. Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics and Astronomy, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples " Federico II," I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991 Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N. [INFN, Sezione di Rome " Tor Vergata," I-00133 Rome (Italy); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Danilchenko, I. A. [National Research Nuclear University MEPhI, RU-115409 Moscow (Russian Federation); and others

    2014-08-20

    The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei as well as the B/C ratio from the PAMELA space experiment. The results span the range 0.44-129 GeV/n in kinetic energy for data taken in the period 2006 July to 2008 March.

  3. Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15-3 alloy

    International Nuclear Information System (INIS)

    Sarkar, R.; Ghosal, P.; Muraleedharan, K.; Nandy, T.K.; Ray, K.K.

    2011-01-01

    Highlights: → Development of β Ti alloys with B and C addition for improved mechanical properties. → Detailed characterization of microstructural constituents using electron microscopy. → Microstructure-mechanical property correlation in this new class of alloys. → Strengthening mechanism in β Ti alloy in the presence of hard and non-deformable phases. - Abstract: A detailed microstructure-mechanical property correlation was carried out in beta titanium alloys (Ti-15V-3Al-3Sn-3Cr) with boron and carbon additions. The alloys were prepared by non-consumable vacuum arc melting followed by hot rolling. Microstructural characterization was carried out using an optical microscope, a scanning electron microscope (SEM), a transmission electron microscope (TEM) and a high resolution TEM (HRTEM). Addition of boron and carbon resulted in the precipitation of TiB and TiC, respectively, and these phases acted as reinforcements. Evaluation of mechanical properties in solution treated and solution treated plus aged condition showed strengthening in the boron and carbon containing alloy with respect to the base. Strengthening in solution treated condition was attributed to a synergistic effect of grain refinement and load transfer in the presence of non-deformable phases. On the other hand, higher strength in boron and carbon containing alloys on aging was ascribed to the presence of finer aged microstructures.

  4. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    International Nuclear Information System (INIS)

    Sabirianov, Ildar F.; Brand, Jennifer I.; Fairchild, Robert W.

    2008-01-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% 10 B and 80% 11 B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  5. Mechanisms of hydrogen retention in metallic beryllium and beryllium oxide and properties of ion-induced beryllium nitride

    International Nuclear Information System (INIS)

    Oberkofler, Martin

    2011-01-01

    In the framework of this thesis laboratory experiments on atomically clean beryllium surfaces were performed. They aim at a basic understanding of the mechanisms occurring upon interaction of a fusion plasma with a beryllium first wall. The retention and the temperature dependent release of implanted deuterium ions are investigated. An atomistic description is developed through simulations and through the comparison with calculations based on density functional theory. The results of these investigations are compared to the behaviour of hydrogen upon implantation into thermally grown beryllium oxide layers. Furthermore, beryllium nitride is produced by implantation of nitrogen into metallic beryllium and its properties are investigated. The results are interpreted with regard to the use of beryllium in a fusion reactor. (orig.)

  6. Preparation and characterization of beryllium doped organic plasma polymer coatings

    International Nuclear Information System (INIS)

    Brusasco, R.; Letts, S.; Miller, P.; Saculla, M.; Cook, R.

    1995-01-01

    We report the formation of beryllium doped plasma polymerized coatings derived from a helical resonator deposition apparatus, using diethylberyllium as the organometaric source. These coatings had an appearance not unlike plain plasma polymer and were relatively stable to ambient exposure. The coatings were characterized by Inductively Coupled Plasma Mass Spectrometry and X-Ray Photoelectron Spectroscopy. Coating rates approaching 0.7 μm hr -1 were obtained with a beryllium-to-carbon ratio of 1:1.3. There is also a significant oxygen presence in the coating as well which is attributed to oxidation upon exposure of the coating to air. The XPS data show only one peak for beryllium with the preponderance of the XPS data suggesting that the beryllium exists as BeO. Diethylberyllium was found to be inadequate as a source for beryllium doped plasma polymer, due to thermal decomposition and low vapor recovery rates

  7. Detection of beryllium in oxides and silicates by electron-probe microanalysis

    Directory of Open Access Journals (Sweden)

    V. V. Khiller

    2017-12-01

    Full Text Available The author developed the technique of electron-probe microanalysis for quantitative determination of beryllium content, providing the example of studying natural minerals (aluminosilicates and oxides. This technique allowed to obtain a quantitative content of beryllium (in combination with other elements in the emeralds of the Mariinsky beryllium deposit and in zonal mariinskite-chrysoberyl from the chromitites of the Bazhenov ophiolite complex. All analyzes of minerals were performed on a CAMECA SX 100 electron probe microanalyzer with five wave spectrometers (IGG UB RAS. The pressure in the sample chamber was 2 × 10–4 Pa, in the electron gun region – 4 × 10–6 Pa, in wave spectrometers – 7 Pa. Accelerating voltage was 10 kV, the current of absorbed electrons on the Faraday cylinder (beam current was 100–150 nA. Diameter of the electron beam focused on the sample was 2 μm, the angle of x-ray extraction was 40°. The spectra were obtained on wave spectrometers with TAP crystal analyzers (2d = 25.745 Å, LPET (2d = 8.75 Å, LiF (2d = 4.0226 Å, and PC3 (2d = 211.4 Å, a specialized crystal for determining the content of beryllium and boron; the author carried out all the elements measurements along the Kα-lines. To determine position of the analytical peak and the background from two sides with the minimum possible spectral overlap, the author preliminarily recorded spectra on wave spectrometers. The obtained microprobe analyzes of minerals with quantitative determination of beryllium converge well with the available theoretical compositions of beryl and chrysoberyl, which indicates the high efficiency of the developed technique. By using this technique, we can relatively quickly and reliably determine the quantitative content of beryllium in natural silicates and oxides, which is an acute need for geological researchers studying the mineralogy of beryllium deposits.

  8. Structural, electronic and magnetic properties of carbon doped boron nitride nanowire: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Jalilian, Jaafar, E-mail: JaafarJalilian@gmail.com [Young Researchers and Elite Club, Kermanshah Br anch, Islamic Azad University, P.O. Box: 6718997551, Kermanshah (Iran, Islamic Republic of); Kanjouri, Faramarz, E-mail: kanjouri@khu.ac.ir [Physics Department, Faculty of Science, Kharazmi University, University Square, P.O. Box: 3197937551, Karaj (Iran, Islamic Republic of)

    2016-11-15

    Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior such as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.

  9. Preparation and characterization of carbons from β-cyclodextrin dehydration and from olive pomace activation and their application for boron

    Directory of Open Access Journals (Sweden)

    Mouna Jaouadi

    2017-11-01

    Full Text Available An activated carbon was prepared by phosphoric activation of olive pomace and further oxidation by nitric acid. Another carbon was obtained from β-cyclodextrin dehydration in concentrated sulfuric acid. A composite of the oxidized activated carbon and the carbon from β-cyclodextrin was prepared. The four materials were characterized by N2 adsorption–desorption measurements, X-ray diffraction, infrared and Raman spectroscopies, elemental analysis, “Boehm” titration and measurements of pH of the point zero charge. The obtained adsorbents were tested for boron adsorption in aqueous solution. Despite their lowest specific surface areas, the composite carbon and the amorphous carbon from cyclodextrin dehydration showed the highest boron adsorption uptake (1.41 and 1.68 mg·g−1 compared to the raw (1.05 mg·g−1 and oxidized (0.95 mg·g−1 activated carbons. The surface chemistry particularly rich in phenolic groups was responsible for the high boron adsorption uptake of the carbon composite and the amorphous carbon, both prepared through cyclodextrin dehydration.

  10. STUDY OF THE EFFECT OF PRELIMINARY PLASTIC DEFORMATION IN THE PROCESS OF DISSOLUTION DURING TEMPERING OF LOW-CARBON AND BORON-CONTAINING ALLOYS

    OpenAIRE

    M. Yu. Filonenko; S. B. Piliaieva

    2009-01-01

    In the paper the influence of preliminary deformation on disintegration of martensite in boron-containing and carbonic alloy is explored. It is shown that at the small degree of deformation (7 per cent) both in low-carbonic and boron-containing alloys the process of martensite disintegration takes place less intensively. The increase of degree of preliminary deformation in a boron-containing alloy is instrumental in more even distribution of boron-cementite particles appearing as a result of ...

  11. Beryllium and growth. II. The effect of beryllium on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, M B

    1952-01-01

    Experiments were undertaken to determine whether beryllium could replace magnesium in a growing organism. This was stimulated by the several known growth effects of beryllium in animals and by the fact that beryllium apparently competes with magnesium for animal alkaline phosphatases. The following findings are noted: (1) beryllium can reduce the magnesium requirement of plants by some 60% within a certain range of magnesium deficiency. (2) The residual obligatory magnesium requirements is probably accounted for by chlorophyll since beryllium appears to have no primary effect on chlorophyll or chlorophyll production. (3) The pH of the nutrient solution is critical: at acid pH's, beryllium is highly toxic, and growth increase due to beryllium only appears at initial pH's above 11.2, although this initial pH rapidly falls to neutrality during the experimental period. 22 references, 4 figures, 1 table.

  12. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1994-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum-4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  13. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  14. Study of the diffusion of iron, of silver and of carbon in beryllium using radioactive tracers; Etude de la diffusion du fer, de l'argent et du carbone dans le beryllium au moyen des traceurs radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Naik, M Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    A study has been made of the diffusion of radioactive iron and silver tracers in beryllium. The following values have been found. D{sub Fe} = 0.53 exp - [51800 / RT], D{sub Ag} = 62 exp - [46100 / RT]. The values for iron are in good agreement with those found previously for chemical diffusion. A comparison of the diffusion coefficients for iron, silver and nickel shows that the diffusion rate increases with increasing solute atom radius. The existence has been shown of diffusion anisotropy for silver; it has been studied quantitatively on monocrystals. It is found that: D{sub parallel} 0.41 exp - [39100 / RT], D{sub perpendicular} = 1.98 exp - [45700 / RT]. The anisotropy decreases as the temperature increases. The silver diffuses more rapidly along the C axis than in the base plane. This result cannot be explained in terms of the model proposed for the diffusion of foreign atoms in solution in zinc. A greater number of experiments is required before a model can be put forward. An attempt has also been made to determine the diffusion coefficients of carbon in beryllium by treatment in an atmosphere of acetylene marked with C-14. Diffusion coefficients have been obtained but these should not be considered to be very significant since a chemical reaction occurs at the surface of the samples. (author) [French] On a etudie la diffusion dans le beryllium de traceurs radioactifs du fer et de l'argent. On trouve: D{sub Fe} = 0.53 exp - [51800 / RT], D{sub Ag} = 62 exp - [46100 / RT].Les valeurs trouvees pour le fer sont en bon accord avec les valeurs obtenues precedemment pour la diffusion chimique. La comparaison des coefficients de diffusion du fer, de l'argent et du nickel montre que la diffusion est d'autant plus rapide que le rayon atomique du solute est plus grand. On a mis en evidence une anisotropie de diffusion de l'argent qui a ete etudiee quantitativement sur des monocristaux. On trouve: D{sub parallele} = 0.41 exp - [39100 / RT], D{sub perpendiculaire} = 1

  15. STUDY OF THE EFFECT OF PRELIMINARY PLASTIC DEFORMATION IN THE PROCESS OF DISSOLUTION DURING TEMPERING OF LOW-CARBON AND BORON-CONTAINING ALLOYS

    Directory of Open Access Journals (Sweden)

    M. Yu. Filonenko

    2009-12-01

    Full Text Available In the paper the influence of preliminary deformation on disintegration of martensite in boron-containing and carbonic alloy is explored. It is shown that at the small degree of deformation (7 per cent both in low-carbonic and boron-containing alloys the process of martensite disintegration takes place less intensively. The increase of degree of preliminary deformation in a boron-containing alloy is instrumental in more even distribution of boron-cementite particles appearing as a result of martensite disintegration.

  16. Structure and single-phase regime of boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1988-01-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B 4 C (the boron carbide with nominally 20% carbon) has B/sub 11/C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B 4 C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C→C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B/sub 13/C 2 , subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B/sub 11/C→B/sub 12/. Maxima of the free energy occur at the most ordered compositions: B 4 C,B/sub 13/C 2 ,B/sub 14/C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides

  17. Tuning the optical response in carbon doped boron nitride nanodots

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-09-04

    Time dependent density functional theory and the hybrid B3LYP functional are used to investigate the structural and optical properties of pristine and carbon doped hexagonal boron nitride nanodots. In agreement with recent experiments, the embedded carbon atoms are found to favor nucleation. Our results demonstrate that carbon clusters of different shapes promote an early onset of absorption by generating in-gap states. The nanodots are interesting for opto-electronics due to their tunable optical response in a wide energy window. We identify cluster sizes and shapes with optimal conversion efficiency for solar radiation and a wide absorption range form infrared to ultraviolet. This journal is

  18. Movement of liquid beryllium during melt events in JET with ITER-like wall

    International Nuclear Information System (INIS)

    Sergienko, G; Huber, A; Brezinsek, S; Coenen, J W; Mertens, Ph; Philipps, V; Samm, U; Arnoux, G; Matthews, G F; Nunes, I; Riccardo, V; Sirinelli, A; Devaux, S

    2014-01-01

    The ITER-like wall recently installed in JET comprises solid beryllium limiters and a combination of bulk tungsten and tungsten-coated carbon fibre composite divertor tiles without active cooling. During a beryllium power handling qualification experiment performed in limiter configuration with 5 MW neutral beam injection input power, accidental beryllium melt events, melt layer motion and splashing were observed locally on a few beryllium limiters in the plasma contact areas. The Lorentz force is responsible for the observed melt layer movement. To move liquid beryllium against the gravity force, the current flowing from the plasma perpendicularly to the limiter surface must be higher than 6 kA m −2 . The thermo-emission current at the melting point of beryllium is much lower. The upward motion of the liquid beryllium against gravity can be due to a combination of the Lorentz force from the secondary electron emission and plasma pressure force. (paper)

  19. Manufacture of sintered bricks of high density from beryllium oxide; Fabrication de frittes de forte densite a base d'oxyde de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Pointud, R; Rispal, Ch; Le Garec, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm{sup 2}. The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm{sup 2} pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author) [French] La fabrication de briques d'oxyde de beryllium de purete nucleaire de 100 x 100 x 50 et de 100 x 100 x 100 mm de densite tres elevee (comprise entre 2.85 et 3.00) est realisee par frittage sous charge dans des moules en graphite entre 1750 et 1850 deg. C, sous 150 kg/cm{sup 2} de pression. L'etat physico-chimique de la matiere premiere a une importance considerable quant au succes de l'operation de frittage. Par ailleurs, l'etude du frittage du mixte BeO a 3 et 5 pour cent de bore element introduit sous forme d'anhydride borique, soit de carbure de bore ou de bore element, montre que seul le frittage sous charge permet d'obtenir des densites elevees. Pour des raisons techniques de fabrication seul le mixte a base de carbure de bore est retenu. Le frittage s'opere dans des moules de graphite a 1500 deg. C sous 150 kg/cm{sup 2} de pression et permet d'obtenir des briques de densite comprise entre 2.85 et 2.90. Les etudes de laboratoire et la fabrication industrielle des differents

  20. Beryllium health effects in the era of the beryllium lymphocyte proliferation test.

    Science.gov (United States)

    Maier, L A

    2001-05-01

    The beryllium lymphocyte proliferation test (BeLPT) has revolutionized our approach to the diagnosis, screening, and surveillance of beryllium health effects. Based on the development of a beryllium-specific cell-mediated immune response, the BeLPT has allowed us to define early health effects of beryllium, including beryllium sensitization (BeS), and chronic beryllium disease (CBD) at a subclinical stage. The use of this test as a screening tool has improved our understanding of these health effects. From a number of studies it is apparent that BeS precedes CBD and develops after as little as 9 weeks of beryllium exposure. CBD occurs within 3 months and up to 30 years after initial beryllium exposure. Exposure-response variables have been associated with BeS/CBD, including work as a machinist, chemical or metallurgical operator, laboratory technician, work in ceramics or beryllium metal production, and years of beryllium exposure. Recent studies have found BeS and CBD in workplaces in which the majority of exposures were below the 2 microg/m3 OSHA time-weighted average (TWA). Ideally, the BeLPT would be used in surveillance aimed at defining other risk-related processes, determining exposure variables which predict BeS and CBD, and defining the exposure level below which beryllium health effects do not occur. Unfortunately, the BeLPT can result in false negative tests and still requires an invasive procedure, a bronchoscopy, for the definitive diagnosis of CBD. Thus, research is needed to establish new tests to be used alone or in conjunction with the BeLPT to improve our ability to detect early beryllium health effects.

  1. Corrosion of beryllium

    International Nuclear Information System (INIS)

    Mueller, J.J.; Adolphson, D.R.

    1987-01-01

    The corrosion behavior of beryllium in aqueous and elevated-temperature oxidizing environments has been extensively studied for early-intended use of beryllium in nuclear reactors and in jet and rocket propulsion systems. Since that time, beryllium has been used as a structural material in les corrosive environments. Its primary applications include gyro systems, mirror and reentry vehicle structures, and aircraft brakes. Only a small amount of information has been published that is directly related to the evaluation of beryllium for service in the less severe or normal atmospheric environments associated with these applications. Despite the lack of published data on the corrosion of beryllium in atmospheric environments, much can be deduced about its corrosion behavior from studies of aqueous corrosion and the experiences of fabricators and users in applying, handling, processing, storing, and shipping beryllium components. The methods of corrosion protection implemented to resist water and high-temperature gaseous environments provide useful information on methods that can be applied to protect beryllium for service in future long-term structural applications

  2. Structure and microhardness of alloy VT22 granules additionally doped with carbon and boron

    International Nuclear Information System (INIS)

    Sysoeva, N.V.; Polyakova, I.G.; Karpova, I.G.

    1996-01-01

    Aimed to improve heat resistance and strength of titanium base alloys due to carbon and boron additions (up to 0.3%) a study was made into regularities of phase decomposition in VT22 alloy during its rapid quenching from a liquid state on manufacturing granules 100-400 μm in size. Cooling rates on quenching were found to be sufficiently high to prevent precipitating carbides and borides. Subsequent annealing of granules promotes homogeneous precipitation of strengthening phases in the form of titanium carbides and borides, a reasonable amount of carbon and boron remaining in solid solution. An increase in microhardness of annealed granules reaches 20-25% compared to the standard alloy. 6 refs.; 2 figs.; 2 tabs

  3. Superior critical current density obtained in MgB_2 bulks via employing carbon-coated boron and minor Cu addition

    International Nuclear Information System (INIS)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-01-01

    Highlights: • Usage of carbon-coated boron leads to high level of homogeneous carbon doping. • Cu addition improves MgB_2 grain connectivity, leading to higher J_c at low fields. • Cu addition reduces MgO impurity, also contributing to the improvement of J_c. - Abstract: High performance Cu doped MgB_2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB_2 grains, as well as a high level of homogeneous carbon doping in the MgB_2 samples, which significantly enhance the J_c in both Cu doped and undoped bulks compared to MgB_2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB_2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (J_c) at self fields and low fields (the best values are 7 × 10"5 A/cm"2 at self fields, and 1 × 10"5 A/cm"2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of J_c at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB_2 bulks or wires with excellent J_c on an industrial scale.

  4. Laser fabrication of beryllium components

    International Nuclear Information System (INIS)

    Hanafee, J.E.; Ramos, T.J.

    1995-08-01

    Working with the beryllium industry on commercial applications and using prototype parts, the authors have found that the use of lasers provides a high-speed, low-cost method of cutting beryllium metal, beryllium alloys, and beryllium-beryllium oxide composites. In addition, they have developed laser welding processes for commercial structural grades of beryllium that do not need a filler metal; i.e., autogenous welds were made in commercial structural grades of beryllium by using lasers

  5. Beryllium and growth. III. The effect of beryllium on plant phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, M B

    1952-01-01

    The purpose of the investigations was to correlate the apparent ability of beryllium to substitute for magnesium in plant growth with a specific biochemical effect of the metal. Through association with earlier work on beryllium inhibition of animal alkaline phosphatase, a study was made of the effect of beryllium and other metals upon the activity of a phosphatase derived from tomato leaves. Although only indirect evidence is available that this enzyme system was magnesium-activated, beryllium was found to inhibit reversibly the splitting of GP and ATP. Other metals were also found to be inhibitory but the ATP-ase inhibition - and especially the ratio of P split from GP to P split from ATP - was higher for beryllium than for any other metal studied. The significance of this finding in relation to energy metabolism, growth, and beryllium toxicity is discussed. 12 references, 5 figures, 2 tables.

  6. Carbon and tungsten effect on characteristics of sputtered and re-deposited beryllium target layers under deuteron bombardment

    International Nuclear Information System (INIS)

    Danelyan, L.S.; Gureev, V.M.; Elistratov, N.G.

    2004-01-01

    The behavior of the plasma facing Be-elements in the International Thermonuclear Experimental Reactor ITER will be affected by the re-deposition of other eroded plasma facing materials. The effect of carbon- and tungsten-additions on the microstructure, chemical composition and hydrogen isotope accumulation in the sputtered and re-deposited layers of beryllium TGP-56 at its interaction with 200 - 300 eV hydrogen isotope ions was studied in the MAGRAS facility equipped with a magnetron sputtering system. (author)

  7. Beryllium chemistry and processing

    CERN Document Server

    Walsh, Kenneth A

    2009-01-01

    This book introduces beryllium; its history, its chemical, mechanical, and physical properties including nuclear properties. The 29 chapters include the mineralogy of beryllium and the preferred global sources of ore bodies. The identification and specifics of the industrial metallurgical processes used to form oxide from the ore and then metal from the oxide are thoroughly described. The special features of beryllium chemistry are introduced, including analytical chemical practices. Beryllium compounds of industrial interest are identified and discussed. Alloying, casting, powder processing, forming, metal removal, joining and other manufacturing processes are covered. The effect of composition and process on the mechanical and physical properties of beryllium alloys assists the reader in material selection. The physical metallurgy chapter brings conformity between chemical and physical metallurgical processing of beryllium, metal, alloys, and compounds. The environmental degradation of beryllium and its all...

  8. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.

    1975-01-01

    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  9. Low-Z material for limiters and wall surfaces in JET: beryllium and carbon

    International Nuclear Information System (INIS)

    Rebut, P.H.; Hugon, M.; Booth, S.J.; Dean, J.R.; Dietz, K.J.; Sonnenberg, K.; Watkins, M.L.

    1985-01-01

    The relative merits of graphite and beryllium, as a low-Z material for limiters and wall surfaces in JET, are compared. A consideration of data on thermomechanical properties, retention of hydrogen and gettering action, indicates that beryllium offers the best prospects as a material for the JET belt limiters and walls. (U.K.)

  10. Beryllium. Beryllium oxide, obtention and properties. Pt.4

    International Nuclear Information System (INIS)

    Lires, O.A.; Delfino, C.A.; Botbol, J.

    1991-01-01

    As a continuation of the 'Beryllium' series this work reviews several methods of high purity beryllia production. Diverse methods of obtention and purification from different beryllium compounds are described. Some chemical, mechanical and electrical properties related with beryllia obtention methods are summarized. (Author) [es

  11. Codeposition of deuterium ions with beryllium oxide at elevated temperatures

    CERN Document Server

    Markin, A V; Gorodetsky, A E; Negodaev, M A; Rozhanskii, N V; Scaffidi-Argentina, F; Werle, H; Wu, C H; Zalavutdinov, R K; Zakharov, A P

    2000-01-01

    Deuterium-loaded BeO films were produced by sputtering the beryllium target with 10 keV Ne ions in D sub 2 gas at a pressure of approximately 1 Pa. The sputtered beryllium reacts - on the substrate surface - with the residual oxygen, thus forming a beryllium oxide layer. Biasing the substrate negatively with respect to the target provides the simultaneous bombardment of the growing film surface with D ions formed by Ne-D sub 2 collisions. Substrate potential governs the maximum energy of ions striking the growing film surface while its size governs the flux density. According to X-ray photoelectron spectroscopy (XPS), electron probe microanalysis (EPMA) and reflection high energy electron diffraction (RHEED) data, the beryllium is deposited in the form of polycrystalline hcp-BeO layers with negligible (about 1 at.%) carbon and neon retention. Thermal desorption spectroscopy (TDS) data shows a strong deuterium bonding, with a desorption peak at 950 K, in the films deposited at -50 and -400 V substrate potentia...

  12. Beryllium

    International Nuclear Information System (INIS)

    1988-01-01

    In this data sheet the occurrence, ore processing, chemical and physical properties and the uses of beryllium and its alloys is presented. The hazards involved in the use of beryllium and its compounds in the laboratory are discussed with particular reference to its toxicity, carcinogenicity, handling, storage, disposal, fire prevention and the principal health hazards. Further reading is suggested. (UK)

  13. Mechanisms of hydrogen retention in metallic beryllium and beryllium oxide and properties of ion-induced beryllium nitride; Rueckhaltemechanismen fuer Wasserstoff in metallischem Beryllium und Berylliumoxid sowie Eigenschaften von ioneninduziertem Berylliumnitrid

    Energy Technology Data Exchange (ETDEWEB)

    Oberkofler, Martin

    2011-09-22

    In the framework of this thesis laboratory experiments on atomically clean beryllium surfaces were performed. They aim at a basic understanding of the mechanisms occurring upon interaction of a fusion plasma with a beryllium first wall. The retention and the temperature dependent release of implanted deuterium ions are investigated. An atomistic description is developed through simulations and through the comparison with calculations based on density functional theory. The results of these investigations are compared to the behaviour of hydrogen upon implantation into thermally grown beryllium oxide layers. Furthermore, beryllium nitride is produced by implantation of nitrogen into metallic beryllium and its properties are investigated. The results are interpreted with regard to the use of beryllium in a fusion reactor. (orig.)

  14. Extractive metallurgy of the beryllium

    International Nuclear Information System (INIS)

    Alonso, Neusa; Capocchi, Jose Deodoro Trani

    1995-01-01

    A bibliographic review is performed on the beryllium extractive metallurgy. The work describes the main type of ores and processes applied to the metallic beryllium production, beryllium oxide production using fluoride, sulfide and direct chlorination. The thermodynamic consideration are made on beryllium reduction processes, discussing the viability of the beryllium oxide and hallide reduction processes. Under the technological viewpoint, the Cu-Be alloys main production processes are discussed, and the main toxicity problems related with beryllium are mentioned

  15. Successive carbon- and boron saturation of KhVG steel in powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, Yu A; Gordienko, S I

    1975-01-01

    Method of successive saturation of KhVG steel with carbon and boron in powder mixtures is described. After carbonization of steel in a charcoal carburator at 930 deg C during 3 hrs a domain of equiaxial large grains is formed there the latter representing carbides of Fe/sub 3/C and (Fe, M)/sub 3/C. The increase of duration of carbonization up to 5 hrs and above results in formation of a cement grid greatly impairing the mechanical properties of the metal. Carbonization is followed by borating in powdered technical boron carbide at 900 deg C for 4 hrs which ensures formation on the sample surface of a borated layer with depth up to 65 mkm covering the carbonized zone. As followed from metallographic and x-ray structural analysis, the borated layer consists of boride needles with complex composition (Fe, Cr, Mn)B. Oil hardening of carbonized KhVG steel from 850 deg C and low-temperature tempering at 180 deg C for 1 hr results in formation in the main metal of martensite-carbide structure and, respectively, in the decrease of the microhardness gradient between the diffusion layers, as compared with borated KhVG steel. Operation tests of strengthened matrices of preforming machines under the conditions of application of dynamic pressing forces up to 1500 kg Fce/cm/sup 2/ demonstrated that the cyclical strength of carboborated coverings is 2.0-3.0 times higher than that of borated ones. The method of carboborating is recommended for strengthening the details of stamp and press tools.

  16. Technical Basis for PNNL Beryllium Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  17. Viability study on using calcium carbonate for the boron adsorption process in waste waters

    International Nuclear Information System (INIS)

    Rodriguez Guerreiro, M. J.; Munoz Camacho, E.; Bernal Pita da Veiga, M. B.

    2009-01-01

    This study evaluates how viable it is to employ calcium carbonate for the boron adsorption process in waters that could be contaminated by this element. A residue form mussel shells-abundant in Galicia, northwestern Spain, was used. The data gathered from the experiments show that the performance of the boron adsorption within the sample is below 2%. Despite the inferior data obtained, the general aim was reached. An attempt was made to find solutions to the environmental problem caused by the residues mentioned above. (Author) 11 refs.

  18. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  19. Graphite and boron carbide composites made by hot-pressing

    International Nuclear Information System (INIS)

    Miyazaki, K.; Hagio, T.; Kobayashi, K.

    1981-01-01

    Composites consisting of graphite and boron carbide were made by hot-pressing mixed powders of coke carbon and boron carbide. The change of relative density, mechanical strength and electrical resistivity of the composites and the X-ray parameters of coke carbon were investigated with increase of boron carbide content and hot-pressing temperature. From these experiments, it was found that boron carbide powder has a remarkable effect on sintering and graphitization of coke carbon powder above the hot-pressing temperature of 2000 0 C. At 2200 0 C, electrical resistivity of the composite and d(002) spacing of coke carbon once showed minimum values at about 5 to 10 wt% boron carbide and then increased. The strength of the composite increased with increase of boron carbide content. It was considered that some boron from boron carbide began to diffuse substitutionally into the graphite structure above 2000 0 C and densification and graphitization were promoted with the diffusion of boron. Improvements could be made to the mechanical strength, density, oxidation resistance and manufacturing methods by comparing with the properties and processes of conventional graphites. (author)

  20. Superior critical current density obtained in MgB{sub 2} bulks via employing carbon-coated boron and minor Cu addition

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Junming; Liu, Yongchang [State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Ma, Zongqing, E-mail: mzq0320@163.com [State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong, Squires Way, North Wollongong, NSW 2500 (Australia); Shahriar Al Hossain, M. [Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong, Squires Way, North Wollongong, NSW 2500 (Australia); Xin, Ying; Jin, Jianxun [Tianjin University – Futong Group Research Center of Applied Superconductivity, Tianjin University, Tianjin 300072 (China)

    2016-09-15

    Highlights: • Usage of carbon-coated boron leads to high level of homogeneous carbon doping. • Cu addition improves MgB{sub 2} grain connectivity, leading to higher J{sub c} at low fields. • Cu addition reduces MgO impurity, also contributing to the improvement of J{sub c}. - Abstract: High performance Cu doped MgB{sub 2} bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB{sub 2} grains, as well as a high level of homogeneous carbon doping in the MgB{sub 2} samples, which significantly enhance the J{sub c} in both Cu doped and undoped bulks compared to MgB{sub 2} bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB{sub 2} grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (J{sub c}) at self fields and low fields (the best values are 7 × 10{sup 5} A/cm{sup 2} at self fields, and 1 × 10{sup 5} A/cm{sup 2} at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of J{sub c} at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB{sub 2} bulks or wires with excellent J{sub c} on an industrial scale.

  1. Effect of ICRH on the JET edge plasma with carbon and beryllium coated limiters

    International Nuclear Information System (INIS)

    Clement, S.; Erents, S.K.; Tagle, J.A.; Brinkschulte, H.; Bures, M.; De Kock, L.

    1990-01-01

    Investigation of the scrape-off Layer (SOL) at different poloidal positions has been carried out with Langmuir probes for limiter discharges with ion cyclotron resonance heating (ICRH) at JET. A comparison of the effects of ICRH on the edge is presented for operation with all carbon limiters, and for operation with a beryllium layer evaporated on the walls and limiters of JET. The behaviour of the SOL parameters is similar for both cases, although edge temperatures tend to be lower in the Be case. Measurements with probes between the belt limiters and close to the ICRH antennas show that the edge parameters in this region are strongly influenced by the vicinity of an active antenna. (orig.)

  2. The role of free carbon in the transport and magnetic properties of boron carbide

    International Nuclear Information System (INIS)

    Bandyopadhyay, A.K.; Beuneu, F.; Zuppiroli, L.; Beauvy, M.

    1984-01-01

    Boron carbide is a ceramic which has a wide field of application because of its mechanical and nuclear properties. This material is difficult to characterise due to the presence of different levels of disorder and inhomogeneities which are found in the usual available samples. The transport and magnetic properties of several samples of boron carbide have been measured from liquid helium to room temperature as a function of temperature and composition. We have attempted to attribute the different features of these properties to the different levels of disorder. The role of free carbon, in form of thin layers of graphite within the disordered semi-conducting matrix, was investigated in particular details, because it was either ignored or neglected by others. Free carbon is found to dominate the D.C. transport when its concentration is larger than 5%; while the principal features of the electron spin resonance (E.S.R.) line show a dominance of free carbon when the concentration is larger than 3.5%. Below these concentrations conductivities as well as spin relaxation rates do not depend very much on free carbon; neither these have been found to be correlated in a simple way to the stoichiometry. (author)

  3. Quantitative chemical microdetermination of beryllium with chrome azurol by the ring-oven technique

    International Nuclear Information System (INIS)

    Hansen, N.B.

    1982-01-01

    A method for determination of beryllium in minerals and rocks is described. Because of the toxicity of beryllium the method is designed for determination of 1-10 ng of Be. The sample is fused with sodium carbonate and sodium tetraborate. Interfering metals are masked with EDTA. Be is determined by the Weisz ring-oven method with Chrome Azurol. The relative error is 10%. (Author)

  4. Tensile and fracture behavior of boron and carbon modified Ti-15-3 alloys in aged conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R., E-mail: rajdeepsarkar@dmrl.drdo.in [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Ghosal, P.; Nandy, T.K. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Ray, K.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2016-02-22

    This work illustrates the effect of boron and carbon addition on the mechanical behavior of a beta Ti alloy, Ti–15V–3Cr–3Al–3Sn (Ti-15-3), in differently aged conditions. The alloys were prepared by consumable vacuum arc melting followed by forging and hot rolling. These were subsequently solution treated and aged at different temperatures above 500 °C for 8 h. Standard tensile and plane strain fracture toughness tests were carried out to understand the mechanical behavior of the alloys and its correlation with the microstructural features characterized by scanning and transmission electron microscopy. Both the boron- and the carbon-containing alloys exhibit improved strength with comparable elongation to failure values as compared to the base Ti-15-3 alloy. The presence of TiB and TiC precipitates in a matrix of fine α with β results in lower fracture toughness (K{sub IC}) in the boron- and carbon-containing alloys as compared to the base alloy. However, at higher aging temperatures K{sub IC} improves due to more tortuous crack path because of the presence of coarse α-phase. An empirical relationship has been proposed correlating K{sub IC} with the volume fraction, size and interspacing of α in these alloys.

  5. Chronic Beryllium Disease

    Science.gov (United States)

    ... who are exposed to beryllium will not experience health effects. Studies have shown that on average, 1 – 6 percent of exposed workers develop beryllium sensitization, although the rates can be ...

  6. Scattering of x rays from low-Z materials

    International Nuclear Information System (INIS)

    Gaines, J.L.; Kissel, L.D.; Catron, H.C.; Hansen, R.A.

    1980-01-01

    X rays incident on thin beryllium, boron, carbon, and other low-Z materials undergo both elastic and inelastic scattering as well as diffraction from the crystalline or crystalline-like structure of the material. Unpolarized monoenergetic x rays in the 1.5 to 8.0-keV energy range were used to determine the absolute scattering efficiency of thin beryllium, carbon, and boron foils. These measurements are compared to calculated scattering efficiencies predicted by single-atom theories. In addition, the relative scattering efficiency versus x-ray energy was measured for other low-Z foils using unpolarized bremsstrahlung x rays. In all the low-Z foils examined, we observed Bragg-like x-ray diffraction due to the ordered structure of the materials

  7. Defense programs beryllium good practice guide

    Energy Technology Data Exchange (ETDEWEB)

    Herr, M.

    1997-07-01

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is likely to

  8. PAMELA measurements of the boron and carbon spectra

    International Nuclear Information System (INIS)

    Mori, N; Adriani, O; Bongi, M; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Bruno, A; Boezio, M; Bonvicini, V; Carbone, R; Bogomolov, E A; Bottai, S; Cafagna, F; Campana, D; Carlson, P; Casolino, M; De Donato, C; De Santis, C; De Simone, N; Castellini, G

    2015-01-01

    The satellite-borne PAMELA experiment is aimed at precision measurements of the charged light component of the cosmic-ray spectrum, with a particular focus on antimatter. It consists of a magnetic spectrometer, a time-of-flight system, an electromagnetic calorimeter with a tail catcher scintillating layer, an anticoincidence system and a neutron detector. PAMELA has measured the absolute fluxes of boron and carbon and the B/C ratio, which plays a central role in galactic propagation studies in order to derive the injection spectra at sources from measurements at Earth. In this paper, the data analysis techniques and the final results are presented. (paper)

  9. Comparative studies of electrochemical properties of carbon nanotubes and nanostructured boron carbide

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manjot; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-05-01

    Boron carbide (B4C) and carbon nanotubes (CNTs) have the potential to act as electrocatalyst as these material show bifunctional behavior. B4C and CNTs were synthesized using solvothermal method. B4C display great catalytic activity as compared to CNTs. Raman spectra confirmed the formation of nanostructured carbon nanotubes. The observed onset potential was smaller 1.58 V in case of B4C as compared to CNTs i.e. 1.96 V in cyclic voltammetry. B4C material can emerge as a promising bifunctional electrocatalyst for battery applications.

  10. Defense programs beryllium good practice guide

    International Nuclear Information System (INIS)

    Herr, M.

    1997-07-01

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D ampersand D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is

  11. Thermomechanical testing of beryllium for the JET/ISX-B beryllium limiter experiment

    International Nuclear Information System (INIS)

    Watson, R.D.; Smith, M.F.; Whitley, J.B.; McDonald, J.M.

    1984-01-01

    Materials testing of S-65-B beryllium has been conducted in support of the beryllium limiter experiment on the ISX-B tokamak. The S-65-B grade of hot-pressed beryllium was chosen over S-200-E because of its superior strength and ductility at elevated temperatures. The testing has included measurement of tensile and yield strength, ductility, Young's Modulus, thermal conductivity, and specific heat from 50 0 C to 700 0 C. Thermal fatigue testing of a 2.5 cm beryllium cube was conducted using an electron beam to apply a heat flux of 2.5 kw/cm 2 for 0.3 second pulses for 1500 cycles. Results from the tests are compared to elastic-plastic finite element stress calculations. The testing indicates that the ISX-B beryllium limiter should survive the tokamak environment without serious structural failure, although some surface cracking is expected to occur. (author)

  12. Beryllium allergy

    International Nuclear Information System (INIS)

    Schoenherr, S.; Pevny, I.

    1989-12-01

    Beryllium is not only a high potent allergen, but also a fotoallergen and can provoke contact allergic reactions, fotoallergic reactions, granulomatous skin reactions, pulmonary granulomatous diseases and sometimes even systemic diseases. The authors present 9 own cases of a patch test positive beryllium allergy, 7 patients with relevant allergy and 5 patients with an allergic contact stomatitis. (author)

  13. Composition and microstructure of beryllium carbide films prepared by thermal MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu-dan; Luo, Jiang-shan; Li, Jia; Meng, Ling-biao; Luo, Bing-chi; Zhang, Ji-qiang; Zeng, Yong; Wu, Wei-dong, E-mail: wuweidongding@163.com

    2016-02-15

    Highlights: • Non-columnar-crystal Be{sub 2}C films were firstly prepared by thermal MOCVD. • Beryllium carbide was always the dominant phase in the films. • α-Be and carbon existed in films deposited below and beyond 400 °C, respectively. • Morphology evolved with temperatures and no columnar grains were characterized. • The preferred substrate temperature for depositing high quality Be{sub 2}C films was 400 °C. - Abstract: Beryllium carbide films without columnar-crystal microstructures were prepared on the Si (1 0 0) substrate by thermal metal organic chemical vapor deposition using diethylberyllium as precursor. The influence of the substrate temperature on composition and microstructure of beryllium carbide films was systematically studied. Crystalline beryllium carbide is always the dominant phase according to XRD analysis. Meanwhile, a small amount of α-Be phase exists in films when the substrate temperature is below 400 °C, and hydrocarbon or amorphous carbon exists when the temperature is beyond 400 °C. Surfaces morphology shows transition from domes to cylinders, to humps, and to tetraquetrous crystalline needles with the increase of substrate temperature. No columnar grains are characterized throughout the thickness as revealed from the cross-section views. The average densities of these films are determined to be 2.04–2.17 g/cm{sup 3}. The findings indicate the substrate temperature has great influences on the composition and microstructure of the Be{sub 2}C films grown by thermal MOCVD.

  14. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    Mueller, D.; Dylla, H.F.; LaMarche, P.H.; Bell, M.G.; Blanchard, W.; Bush, C.E.; Gentile, C.; Hawryluk, R.J.; HIll, K.W.; Janos, A.C.; Jobes, F.C; Owens, D.K.; Pearson, G.; Schivell, J.; Ulrickson, M.A.; Vannoy, C.; Wong, K.L.

    1991-05-01

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 10 5 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  15. Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes.

    Science.gov (United States)

    Gumustas, Mehmet; Ozkan, Sibel A

    2010-05-01

    Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H(2)SO(4) and phosphate buffer at pH 2.0 which allow quantitation over a 4 x 10(-6) to 8 x 10(-5) M range using boron-doped diamond and a 1 x 10(-5) to 1 x 10(-4) M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.

  16. Measurements of beryllium sputtering yields at JET

    Science.gov (United States)

    Jet-Efda Contributors Stamp, M. F.; Krieger, K.; Brezinsek, S.

    2011-08-01

    The lifetime of the beryllium first wall in ITER will depend on erosion and redeposition processes. The physical sputtering yields for beryllium (both deuterium on beryllium (Be) and Be on Be) are of crucial importance since they drive the erosion process. Literature values of experimental sputtering yields show an order of magnitude variation so predictive modelling of ITER wall lifetimes has large uncertainty. We have reviewed the old beryllium yield experiments on JET and used current beryllium atomic data to produce revised beryllium sputtering yields. These experimental measurements have been compared with a simple physical sputtering model based on TRIM.SP beryllium yield data. Fair agreement is seen for beryllium yields from a clean beryllium limiter. However the yield on a beryllium divertor tile (with C/Be co-deposits) shows poor agreement at low electron temperatures indicating that the effect of the higher sputtering threshold for beryllium carbide is important.

  17. Hydrothermal development and characterization of the wear-resistant boron carbide from Pandanus: a natural carbon precursor

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S.

    2018-04-01

    Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet-Visible absorption spectroscopy. The formation of B4C from natural carbon source— Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.

  18. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping

    International Nuclear Information System (INIS)

    Navarro-Santos, P; Ricardo-Chavez, J L; Lopez-Sandoval, R; Reyes-Reyes, M; Rivera, J L

    2010-01-01

    Armchair carbon nanoribbons (ACNRs) substitutionally doped with boron atoms are investigated in the framework of first-principles density functional theory. Different boron-boron arrangements and concentrations are considered in order to simulate possible aggregation patterns, their structural stability and electronic behavior are determined as a function of ribbon size. In agreement with previous studies, our results show that the dopant atoms have in general a preference for edge sites, but specific effects appear as a function of concentration that importantly modify the properties of the ribbons compared to the pristine case. Interesting tendencies are discovered as a function of dopant concentration that significantly affect the electronic properties of the ribbons. We have found that BC 3 island formation and edge doping are the most important factors for the structural stabilization of the ribbons with high boron concentration (>7%) whereas for the cases of low boron concentrations ( 3 island patterns give rise to highly localized B states on top of the Fermi level, resulting in semiconducting behavior. On the other hand, when the average distance between the B atoms increases beyond island stoichiometry, the localization of their states is reduced and the ribbons may become metallic due to a band crossing caused by the lowering of the Fermi level resulting from the positive charge doping. Thus, tuning the dopant interaction would be an appropriate way to tailor the electronic properties of the ribbons in a convenient manner in view of potential technological applications.

  19. Beryllium R&D for blanket application

    Science.gov (United States)

    Donne, M. Dalle; Longhurst, G. R.; Kawamura, H.; Scaffidi-Argentina, F.

    1998-10-01

    The paper describes the main problems and the R&D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point.

  20. Corrosion of beryllium oxide; Corrosion de l'oxyde de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Elston, J; Caillat, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Data are reported on the volatilization rate of beryllium oxide in moist air depending on temperature and water vapour concentration. They are concerned with powder samples or sintered shapes of various densities. For sintered samples, the volatilization rate is very low under the following conditions: - temperature: 1300 deg. C, - water vapour concentration in moist air: 25 g/m{sup 3}, - flow rate: 12 I/hour corresponding to a speed of 40 m/hour on the surface of the sample. For calcinated powders (1300 deg. C), grain growth has been observed under a stream of moist air at 1100 deg. C. For instance, grain size changes from 0,5 to at least 2 microns after 500 hours of exposure at this temperature. Furthermore, results data are reported on corrosion of sintered beryllium oxide in pressurized water. At 250 deg. C, under a pressure of 40 kg/cm{sup 2} water is very slightly corrosive; however, internal strains are revealed. Finally, some features on the corrosion in liquid sodium are exposed. (author)Fren. [French] La volatilisation de l'oxyde de beryllium dans l'air humide est etudiee en fonction de la temperature pour differentes teneurs de vapeur d'eau. Les essais decrits portent sur de l'oxyde de beryllium en poudre ou sur des echantillons d'oxyde de beryllium fritte de differentes densites. Avec un debit d'air de 12 I/h contenant 25 g de vapeur par m{sup 3} correspondant a une vitesse de 40 m/h sur la surface de l'echantillon, la volatilisation des frittes a 1300 deg. C reste tres faible. Sur de la poudre d'oxyde de beryllium calcinee initialement a 1300 deg. C, on observe un grossissement de la taille des grains sous l'influence de l'air humide a 1100 deg. C. Par exemple, elle passe de 0,5 a au moins 2 microns apres 500 heures d'exposition a cette temperature. On donne d'autre part les resultats d'une etude de la corrosion de frittes d'oxyde de beryllium par l'eau, en autoclave. A 250 deg. C, sous une pression de 40 kg/cm{sup 2}, l'action de l'eau reste tres

  1. Effect of boron incorporation on the structure and electrical properties of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, A. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Bourgeois, O. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Sanchez-Lopez, J.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Rouzaud, J.-N. [Laboratoire de Geologie, UMR 8538 CNRS, Ecole Normale Superieure, 45 Rue d' Ulm, 75230 Paris Cedex 05 (France); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla, Avda. Americo Vespucio, 49 41092 Sevilla (Spain); Loir, A.-S. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Garden, J.-L. [Institut Neel, UPR 2940 CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Garrelie, F. [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France); Donnet, C., E-mail: christophe.donnet@univ-st-etienne.f [Laboratoire Hubert Curien, UMR 5516 CNRS, Universite Jean Monnet, 18 Rue Pr. Benoit Lauras, 42000 Saint-Etienne (France)

    2009-12-31

    The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.

  2. Microstructure evolution of SiC sintered bodies activated by boron and carbon

    International Nuclear Information System (INIS)

    Gubernat, A.; Stobierski, L.

    2003-01-01

    Investigation on the role of sintering aids on densification of silicon carbide indicate that boron and carbon modify mass transport mechanisms. It leads to changes of microstructure of polycrystalline silicon carbide. In the present work the influence of varying proportions of sintering aids on the material microstructure was studied. The microstructural changes were related to the changes of the selected properties of the resulting materials. (author)

  3. Thermal effects on beryllium mirrors

    International Nuclear Information System (INIS)

    Weinswig, S.

    1989-01-01

    Beryllium is probably the most frequently used material for spaceborne system scan mirrors. Beryllium's properties include lightweightedness, high Young's modulus, high stiffness value, high resonance value. As an optical surface, beryllium is usually nickel plated in order to produce a higher quality surface. This process leads to the beryllium mirror acting like a bimetallic device. The mirror's deformation due to the bimetallic property can possibly degrade the performance of the associated optical system. As large space borne systems are designed and as temperature considerations become more crucial in the instruments, the concern about temporal deformation of the scan mirrors becomes a prime consideration. Therefore, two sets of tests have been conducted in order to ascertain the thermal effects on nickel plated beryllium mirrors. These tests are categorized. The purpose of this paper is to present the values of the bimetallic effect on typical nickel plated beryllium mirrors

  4. Sintering of beryllium oxide; Frittage de l'oxyde de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, R; Pointud, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [French] Cette etude a eu pour origine la recherche d'un procede permettant de fabriquer industriellement des briques d'oxyde de beryllium nucleaireraent pures, de densite aussi elevee que possible et de forme standardisee. Le frittage sous charge fut la technique retenue pour la fabrication des briques. En raison de la grande toxicite de l'oxyde de beryllium, les caracteristiques generales du frittage, pour l'etude preliminaire, ont ete determine en utilisant de l'alumine. Les resultats obtenus pourront servir d'indication generale pour des etudes ulterieurs avec frittage sous charge. (M.B.)

  5. Fracture toughness of irradiated beryllium

    International Nuclear Information System (INIS)

    Beeston, J.M.

    1978-01-01

    The fracture toughness of nuclear grade hot-pressed beryllium upon irradiation to fluences of 3.5 to 5.0 x 10 21 n/cm 2 , E greater than 1 MeV, was determined. Procedures and data relating to a round-robin test contributing to a standard ASTM method for unirradiated beryllium are discussed in connection with the testing of irradiated specimens. A porous grade of beryllium was also irradiated and tested, thereby enabling some discrimination between the models for describing the fracture toughness behavior of porous beryllium. The fracture toughness of unirradiated 2 percent BeO nuclear grade beryllium was 12.0 MPa m/sup 1 / 2 /, which was reduced 60 percent upon irradiation at 339 K and testing at 295 K. The fracture toughness of a porous grade of beryllium was 13.1 MPa m/sup 1 / 2 /, which was reduced 68 percent upon irradiation and testing at the same conditions. Reasons for the reduction in fracture toughness upon irradiation are discussed

  6. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Santos, P; Ricardo-Chavez, J L; Lopez-Sandoval, R [Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, San Luis Potosi 78216 (Mexico); Reyes-Reyes, M [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi 78000 (Mexico); Rivera, J L, E-mail: sandov@ipicyt.edu.m [Facultad de Ingenieria Quimica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia 403, Morelia, Michoacan, 58000 (Mexico)

    2010-12-22

    Armchair carbon nanoribbons (ACNRs) substitutionally doped with boron atoms are investigated in the framework of first-principles density functional theory. Different boron-boron arrangements and concentrations are considered in order to simulate possible aggregation patterns, their structural stability and electronic behavior are determined as a function of ribbon size. In agreement with previous studies, our results show that the dopant atoms have in general a preference for edge sites, but specific effects appear as a function of concentration that importantly modify the properties of the ribbons compared to the pristine case. Interesting tendencies are discovered as a function of dopant concentration that significantly affect the electronic properties of the ribbons. We have found that BC{sub 3} island formation and edge doping are the most important factors for the structural stabilization of the ribbons with high boron concentration (>7%) whereas for the cases of low boron concentrations (<5%) the structural stabilities are similar. For all the doped cases, we have found that the BC{sub 3} island patterns give rise to highly localized B states on top of the Fermi level, resulting in semiconducting behavior. On the other hand, when the average distance between the B atoms increases beyond island stoichiometry, the localization of their states is reduced and the ribbons may become metallic due to a band crossing caused by the lowering of the Fermi level resulting from the positive charge doping. Thus, tuning the dopant interaction would be an appropriate way to tailor the electronic properties of the ribbons in a convenient manner in view of potential technological applications.

  7. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing.

    Science.gov (United States)

    Wang, Ying; Mortimer, Monika; Chang, Chong Hyun; Holden, Patricia A

    2018-01-30

    Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs) is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA) was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA's biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa ). Using 400 mg·L -1 AA, comparably stable NM (200 mg·L -1 ) stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  8. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA’s biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa. Using 400 mg·L−1 AA, comparably stable NM (200 mg·L−1 stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  9. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Science.gov (United States)

    Feng, Jinpeng; Wang, Youlan

    2016-12-01

    An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.

  10. Beryllium-stimulated neopterin as a diagnostic adjunct in chronic beryllium disease.

    Science.gov (United States)

    Maier, Lisa A; Kittle, Lori A; Mroz, Margaret M; Newman, Lee S

    2003-06-01

    The diagnosis of chronic beryllium disease (CBD) relies on the beryllium lymphocyte proliferation test (BeLPT) to demonstrate a Be specific immune response. This test has improved early diagnosis, but cannot discriminate beryllium sensitization (BeS) from CBD. We previously found high neopterin levels in CBD patients' serum and questioned whether Be-stimulated neopterin production by peripheral blood cells in vitro might be useful in the diagnosis of CBD. CBD, BeS, Be exposed workers without disease (Be-exp) normal controls and sarcoidosis subjects were enrolled. Peripheral blood mononuclear cells (PBMN) were cultured in the presence and absence of beryllium sulfate. Neopterin levels were determined from cell supernatants by enzyme linked immunosorbent assay (ELISA). Clinical evaluation of CBD subjects included chest radiography, pulmonary function testing, exercise testing, and the BeLPT. CBD patients produced higher levels of neopterin in both unstimulated and Be-stimulated conditions compared to all other subjects (P workplace screening. Copyright 2003 Wiley-Liss, Inc.

  11. OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Brisson, M

    2009-04-01

    Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining chapters. The goal of this book is to provide a comprehensive resource to aid personnel in a wide variety of disciplines in selecting sampling and analysis methods that will facilitate informed decision-making in workplace and environmental settings.

  12. Toxicokinetics of beryllium following inhalation of beryllium oxide by Beagle dogs. III

    International Nuclear Information System (INIS)

    Finch, G.L.; Haley, P.J.; Hoover, M.D.; Mewhinney, J.A.; Bice, D.E.; Eidson, A.F.

    1988-01-01

    Young adult Beagle dogs inhaled radiolabeled beryllium oxide aerosols ( 7 BeO) prepared at either 500 deg. or 1000 deg. C to achieve one of two initial lung burdens (ILBs) of BeO. After exposure, animals were monitored by whole body counting for 7 Be, and excreta, clinical, and radiographic data were collected. One group of dogs was assigned for serial sacrifice for quantitation of beryllium clearance from lung, translocation to other organs, and histopathologic analysis of lung and lymph nodes. A second group of dogs was subjected to periodic bronchopulmonary lavage for analysis of lymphocyte responsiveness to beryllium. These latter dogs were subsequently re-exposed to the high ILB level of BeO prepared t 500 deg. C. ILBs following the second exposure were higher than that after the first exposure (74 vs. 42 μg BeO/kg, respectively). Except for one dog that exhibited enhanced beryllium retention after the second exposure, patterns of whole body clearance were similar to those observed after the initial exposures to the 500 deg. C-BeO. Analysis of lymphocyte responsiveness to beryllium in the second group of dogs is continuing. (author)

  13. Toxicokinetics of beryllium following inhalation of beryllium oxide by Beagle dogs. III

    Energy Technology Data Exchange (ETDEWEB)

    Finch, G L; Haley, P J; Hoover, M D; Mewhinney, J A; Bice, D E; Eidson, A F

    1988-12-01

    Young adult Beagle dogs inhaled radiolabeled beryllium oxide aerosols ({sup 7}BeO) prepared at either 500 deg. or 1000 deg. C to achieve one of two initial lung burdens (ILBs) of BeO. After exposure, animals were monitored by whole body counting for {sup 7}Be, and excreta, clinical, and radiographic data were collected. One group of dogs was assigned for serial sacrifice for quantitation of beryllium clearance from lung, translocation to other organs, and histopathologic analysis of lung and lymph nodes. A second group of dogs was subjected to periodic bronchopulmonary lavage for analysis of lymphocyte responsiveness to beryllium. These latter dogs were subsequently re-exposed to the high ILB level of BeO prepared t 500 deg. C. ILBs following the second exposure were higher than that after the first exposure (74 vs. 42 {mu}g BeO/kg, respectively). Except for one dog that exhibited enhanced beryllium retention after the second exposure, patterns of whole body clearance were similar to those observed after the initial exposures to the 500 deg. C-BeO. Analysis of lymphocyte responsiveness to beryllium in the second group of dogs is continuing. (author)

  14. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  15. Optimization of beryllium for fusion blanket applications

    International Nuclear Information System (INIS)

    Billone, M.C.

    1993-01-01

    The primary function of beryllium in a fusion reactor blanket is neutron multiplication to enhance tritium breeding. However, because heat, tritium and helium will be generated in and/or transported through beryllium and because the beryllium is in contact with other blanket materials, the thermal, mechanical, tritium/helium and compatibility properties of beryllium are important in blanket design. In particular, tritium retention during normal operation and release during overheating events are safety concerns. Accommodating beryllium thermal expansion and helium-induced swelling are important issues in ensuring adequate lifetime of the structural components adjacent to the beryllium. Likewise, chemical/metallurgical interactions between beryllium and structural components need to be considered in lifetime analysis. Under accident conditions the chemical interaction between beryllium and coolant and breeding materials may also become important. The performance of beryllium in fusion blanket applications depends on fabrication variables and operational parameters. First the properties database is reviewed to determine the state of knowledge of beryllium performance as a function of these variables. Several design calculations are then performed to indicate ranges of fabrication and operation variables that lead to optimum beryllium performance. Finally, areas for database expansion and improvement are highlighted based on the properties survey and the design sensitivity studies

  16. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)

  17. Method for fabricating beryllium structures

    Science.gov (United States)

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1977-01-01

    Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.

  18. Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1991-12-01

    This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET

  19. Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.

    1991-12-01

    This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET.

  20. The mechanism for the formation of boron ineffective zone and its effect on the properties of ultra low carbon bainitic steels

    International Nuclear Information System (INIS)

    Hsieh, Rongiuan; Wang, Shyichin; Liou, Horngyih.

    1993-01-01

    In the manufacturing of Ultra Low Carbon Bainitic(ULCB) steels, boron is a prerequisite alloying element to promote the desired bainitic transformation. In order to obtain this hardenability effect, boron must be in solution and segregate to austenite grain boundaries and thus decrease the contribution of boundary interfacial energy to ferrite nucleation. During the development of ULCB steels in CSC, a small boron ineffective zone was sometimes found at the center of steel plates. From EPMA and boron autoradiograph analysis, it was found that the formation of this boron ineffective zone was due to center line segregation of inclusions which strongly combined with boron and formed a boron free zone in its vicinity. The microstructure of the boron ineffective zone was conventional ferrite with strength much lower than that of its surrounding bainite. This resulted in the occurrence of separations (splits) in tensile and impact specimens. Also, it was found that the hydrogen induced cracking (HIC) has a propensity to propagate along the boron ineffective zone. in welding y-groove tests, a higher cold cracking sensitivity at this boron ineffective zone was also found

  1. Inhalation hazards from machining beryllium metal

    International Nuclear Information System (INIS)

    Hoover, M.D.; Finch, G.L.; Mewhinney, J.A.; Eidson, A.F.

    1987-01-01

    Beryllium metal has special nuclear and structural properties that make it useful for applications in fission and fusion reactor designs. Unfortunately, concerns for its toxicity have made designers wary of using beryllium metal. The work being reported here was undertaken to characterize the aerosols produced by two very common operations performed during preparation or modification of components for use in reactor systems: sawing and milling of beryllium metal. The study also covered beryllium metal alloys to allow comparison. Information from this study is to enable better assessments of the risk of using beryllium metal in reactor designs

  2. Safe waste management practices in beryllium facilities

    International Nuclear Information System (INIS)

    Bhat, P.N.; Soundararajan, S.; Sharma, D.N.

    2012-01-01

    Beryllium, an element with the atomic symbol Be, atomic number 4, has very high stiffness to weight ratio and low density. It has good electrical conductive properties with low coefficient of thermal expansion. These properties make the metal beryllium very useful in varied technological endeavours, However, beryllium is recognised as one of the most toxic metals. Revelation of toxic effects of beryllium resulted in institution of stringent health and safety practices in beryllium handling facilities. The waste generated in such facilities may contain traces of beryllium. Any such waste should be treated as toxic waste and suitable safe waste management practices should be adopted. By instituting appropriate waste management practice and through a meticulously incorporated safety measures and continuous surveillance exercised in such facilities, total safety can be ensured. This paper broadly discusses health hazards posed by beryllium and safe methods of management of beryllium bearing wastes. (author)

  3. Behaviour of Molten Beryllium with ITER Reference CFC NB31 (SNECMA) Under Moisture

    International Nuclear Information System (INIS)

    Lipa, M.; Martin, G.; Linke, J.

    2006-01-01

    A dramatic exothermic reaction with aluminium, a carbide forming metal, has been observed in Tore Supra. A small rod of 30 mm 3 , acting as a temperature proof, was enclosed in a blind hole of a thermally loaded low density PAN fiber CFC 1001Z block (SGL), which reached a temperature of about 1300 o C during plasma operation. The molten aluminium had penetrated the carbon matrix through to the block's front surface. After component removal and roughly 2 months of exposure to air in the laboratory, the CFC in front of the blind hole was found to have been locally destroyed over a crater-shaped structure of 2 cm diameter. This was due to an enhanced decomposition of aluminium carbide to aluminium hydroxide. Beryllium (Be), also a carbide forming metal, is used on the ITER first wall. Carbon reinforced carbon (CFC) of type NB31 (Snecma) covers the vertical divertor targets. It is expected that beryllium material will be transported during normal and/or off normal plasma operation to the carbon based divertor targets to form beryllium carbide. During air venting or a supposed accidental in-vessel water leak event, it will react exothermically under moisture to beryllium oxide. In order to investigate to which extent the CFC structure could be modified or eventually destroyed, this reaction process has been simulated with a CFC block NB31 of size 16 x 32 x 20 mm 3 , where about 40 mm 3 of Be S65 C (Brush Wellmann) has been placed in a previously drilled blind hole of 4 mm diameter oriented parallel to the high conductivity pitch fibers. When melted, by heating the CFC block, the Be penetrated in the carbon matrix through to the block's front surface. The front surface of the CFC was then exposed to humidity (tap water) for about 2 weeks and then stored for a further 2 months in a closed vinyl bag under atmospheric pressure after which the sample was analysed. After the exposure of the CFC to humidity, reaction products have been detected at the surface of the carbon

  4. Evaluation of plasma disruption simulating short pulse laser irradiation experiments on boronated graphites and CFCs [carbon fibre composites

    International Nuclear Information System (INIS)

    Stad, R.C.L. van der; Klippel, H.T.; Kraaij, G.J.

    1992-12-01

    New experimental and numerical results from disruption heat flux simulations in the millisecond range with laser beams are discussed. For a number of graphites, boronated graphites and carbon fibre composites, the effective enthalpy of ablation is determined as 30 ± 3 MJ/kg, using laser pulses of about -.3 ms. The numerical results predict the experimental results rather well. No effect of boron doping on the ablation enthalpy is found. (author). 9 refs., 4 figs., 1 tab

  5. Beryllium R and D for blanket application

    Energy Technology Data Exchange (ETDEWEB)

    Dalle Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Longhurst, G.R. [Idaho National Engineering Lab., Idaho Falls (United States); Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-10-01

    The paper describes the main problems and the R and D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point. (orig.) 29 refs.

  6. Beryllium R and D for blanket application

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Scaffidi-Argentina, F.; Kawamura, H.

    1998-01-01

    The paper describes the main problems and the R and D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point. (orig.)

  7. (Beryllium). Internal Report No. 137, Jan. 15, 1958

    International Nuclear Information System (INIS)

    Mouret, P.; Rigaud, A.

    1959-01-01

    After a brief summary of the physical and chemical properties of beryllium, the various chemical treatments which can be applied to beryllium minerals either directly or after a physical enrichment are discussed. These various treatments give either the hydroxide or beryllium salts, from which either beryllium oxide or metallic beryllium can easily be obtained. The purification, analysis and uses of beryllium are also briefly discussed. (author)

  8. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  9. Study beryllium microplastic deformation

    International Nuclear Information System (INIS)

    Papirov, I.I.; Ivantsov, V.I.; Nikolaenko, A.A.; Shokurov, V.S.; Tuzov, Yu.V.

    2015-01-01

    Microplastic flow characteristics systematically studied for different varieties beryllium. In isostatically pressed beryllium it decreased with increasing particle size of the powder, increasing temperature and increasing the pressing metal purity. High initial values of the limit microelasticity and microflow in some cases are due a high level of internal stresses of thermal origin and over time it can relax slowly. During long-term storage of beryllium materials with high initial resistance values microplastic deformation microflow limit and microflow stress markedly reduced, due mainly to the relaxation of thermal microstrain

  10. High-rate and ultralong cycle-life LiFePO_4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Jinpeng; Wang, Youlan

    2016-01-01

    Highlights: • B-doped carbon decorated LiFePO_4 has been fabricated for the first time. • The LiFePO_4@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO_4@C. • The LiFePO_4@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO_4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO_4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO_4@B_0_._4-C can reach 164.1 mAh g"−"1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g"−"1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g"−"1 and can be maintained at 124.5 mAh g"−"1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO_4@B-C composite for high-performance lithium-ion batteries.

  11. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Roberts, C.B.

    1975-01-01

    A process is described for preparing beryllium hydride by the direct reaction of beryllium borohydride and aluminum hydride trimethylamine adduct. Volatile by-products and unreacted reactants are readily removed from the product mass by sublimation and/or evaporation. (U.S.)

  12. Large quantity production of carbon and boron nitride nanotubes by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Fitzgerald, J.D.; Chadderton, L.; Williams, J.S.; Campbell, S.J.

    2002-01-01

    Full text: Nanotube materials including carbon and boron nitride have excellent properties compared with bulk materials. The seamless graphene cylinders with a high length to diameter ratio make them as superstrong fibers. A high amount of hydrogen can be stored into nanotubes as future clean fuel source. Theses applications require large quantity of nanotubes materials. However, nanotube production in large quantity, fully controlled quality and low costs remains challenges for most popular synthesis methods such as arc discharge, laser heating and catalytic chemical decomposition. Discovery of new synthesis methods is still crucial for future industrial application. The new low-temperature mechano-thermal process discovered by the current author provides an opportunity to develop a commercial method for bulk production. This mechano-thermal process consists of a mechanical ball milling and a thermal annealing processes. Using this method, both carbon and boron nitride nanotubes were produced. I will present the mechano-thermal method as the new bulk production technique in the conference. The lecture will summarise main results obtained. In the case of carbon nanotubes, different nanosized structures including multi-walled nanotubes, nanocells, and nanoparticles have been produced in a graphite sample using a mechano-thermal process, consisting of I mechanical milling at room temperature for up to 150 hours and subsequent thermal annealing at 1400 deg C. Metal particles have played an important catalytic effect on the formation of different tubular structures. While defect structure of the milled graphite appears to be responsible for the formation of small tubes. It is found that the mechanical treatment of graphite powder produces a disordered and microporous structure, which provides nucleation sites for nanotubes as well as free carbon atoms. Multiwalled carbon nanotubes appear to grow via growth of the (002) layers during thermal annealing. In the case of BN

  13. Dynamic response of multiwall boron nitride nanotubes subjected to ...

    Indian Academy of Sciences (India)

    Page 1 ... 1. Introduction. Boron nitride nanotubes (BNNTs) are like carbon nanotubes. (CNTs) in structure in which carbon atoms are replaced by alternate boron and nitrogen atoms. Thus, BNNTs demon- ... istic analyser for intermediate landing situation of inserted mass.15 Also, a macroscopic continuum simulation is sug-.

  14. The INEL beryllium multiplication experiment

    International Nuclear Information System (INIS)

    Smith, J.R.; King, J.J.

    1991-03-01

    The experiment to measure the multiplication of 14-MeV neutrons in bulk beryllium has been completed. The experiment consists of determining the ratio of 56 Mn activities induced in a large manganese bath by a central 14-MeV neutron source, with and without a beryllium sample surrounding the source. In the manganese bath method a neutron source is placed at the center of a totally-absorbing aqueous solution of MnSo 4 . The capture of neutrons by Mn produces a 56 Mn activity proportional to the emission rate of the source. As applied to the measurement of the multiplication of 14- MeV neutrons in bulk beryllium, the neutron source is a tritium target placed at the end of the drift tube of a small deuteron accelerator. Surrounding the source is a sample chamber. When the sample chamber is empty, the neutrons go directly to the surrounding MnSO 4 solution, and produce a 56 Mn activity proportional to the neutron emission rate. When the chamber contains a beryllium sample, the neutrons first enter the beryllium and multiply through the (n,2n) process. Neutrons escaping from the beryllium enter the bath and produce a 56 Mn activity proportional to the neutron emission rate multiplied by the effective value of the multiplication in bulk beryllium. The ratio of the activities with and without the sample present is proportional to the multiplication value. Detailed calculations of the multiplication and all the systematic effects were made with the Monte Carlo program MCNP, utilizing both the Young and Stewart and the ENDF/B-VI evaluations for beryllium. Both data sets produce multiplication values that are in excellent agreement with the measurements for both raw and corrected values of the multiplication. We conclude that there is not real discrepancy between experimental and calculated values for the multiplication of neutrons in bulk beryllium. 12 figs., 11 tabs., 18 refs

  15. Beryllium minerals - demand strong for miniaturisation

    International Nuclear Information System (INIS)

    Griffiths, J.

    1985-01-01

    Beryllium is an essential constituent of over 40 minerals of which two are exploited commercially. Beryl is largely produced in the USSR and China and bertrandite in the U.S.A. Phenacite, from Canada, is also under investigation. The largest extraction plant for the recovery of beryllium in the western world is in Utah, U.S.A. and the company also produces beryllium oxide used in the manufacture of ceramics widely used in the electronics industry and for refractory articles. Beryllium-copper alloys in strip, rod and tube form are produced in the U.S.A., Germany and the U.K. Beryllium ceramics are important because of their high thermal conductivity, electrical insulation, strength and rigidity. The alloys, used as electric connectors, microswitch contacts are important for their high suitability for miniaturisation. The future growth potential for the beryllium industry is in the automotive industries in Europe and Japan. (U.K.)

  16. Short- and long-term response to corticosteroid therapy in chronic beryllium disease.

    Science.gov (United States)

    Marchand-Adam, S; El Khatib, A; Guillon, F; Brauner, M W; Lamberto, C; Lepage, V; Naccache, J-M; Valeyre, D

    2008-09-01

    Chronic beryllium disease (CBD) is a granulomatous disorder that affects the lung after exposure to beryllium. The present study reports short- and long-term evolution of granulomatous and fibrotic components in eight patients with severe CBD receiving corticosteroid therapy. Eight patients with confirmed CBD were studied at baseline, after initial corticosteroid treatment (4-12 months), at relapse and at the final visit. Beryllium exposure, Glu(69) (HLA-DPB1 genes coding for glutamate at position beta69) polymorphism, symptoms, pulmonary function tests (PFT), serum angiotensin-converting enzyme (SACE) and high-resolution computed tomography (HRCT) quantification of pulmonary lesions were analysed. The CBD patients were observed for a median (range) of 69 (20-180) months. After stopping beryllium exposure, corticosteroids improved symptoms and PFT (vital capacity +26%, diffusing capacity of the lung for carbon monoxide +15%), and decreased SACE level and active lesion HRCT score. In total, 18 clinical relapses occurred after the treatment was tapered and these were associated with SACE and active lesion HRCT score impairment. At the final visit, corticosteroids had completely stabilised all parameters including both HRCT scores of active lesions and fibrotic lesions in six out of eight patients. Corticosteroids were beneficial in chronic beryllium disease. They were effective in suppressing granulomatosis lesions in all cases and in stopping the evolution to pulmonary fibrosis in six out of eight patients.

  17. Indirect Measurements for (p,α) Reactions Involving Boron Isotopes

    International Nuclear Information System (INIS)

    Lamia, L.; Spitaleri, C.; Romano, S.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Pizzone, R. G.; Puglia, S. M. R.; Sergi, M. L.; Tudisco, S.; Tumino, A.; Carlin, N.; Szanto, M. G. del; Liguori Neto, R.; Moura, M. M. de; Munhoz, M. G.; Souza, F. A.; Suaide, A. A. P.; Szanto, E.

    2008-01-01

    Light elements lithium, beryllium and boron (LiBeB) were used in the last years as 'possible probe' for a deeper understanding of some extra-mixing phenomena occurring in young Main-Sequence stars. They are mainly destroyed by (p,α) reactions and cross section measurements for such channels are then needed. The Trojan Horse Method (THM) allows one to extract the astrophysical S(E)-factor without the experience of tunneling through the Coulomb barrier. In this work a resume of the recent results about the 11 B(p,α 0 ) 8 Be and 10 B(p,α) 7 Be reactions is shown

  18. Beryllium. Its minerals. Pt. 1

    International Nuclear Information System (INIS)

    Lires, O.A.; Delfino, C.A.; Botbol, J.

    1990-01-01

    With this work a series of reports begins, under the generic name 'Beryllium', related to several aspects of beryllium technology. The target is to update, with critical sense, current bibliographic material in order to be used in further applications. Some of the most important beryllium ores, the Argentine emplacement of their deposits and world occurrence are described. Argentine and world production, resources and reserves are indicated here as well. (Author) [es

  19. Monitoring total boron in blood for BNCT by a novel atomic emission method

    International Nuclear Information System (INIS)

    Laakso, J.; Kulvik, M.; Ruokonen, I.; Vaehaetalo, J.; Faerkkilae, M.; Kallio, M.; Zilliacus, R.

    2000-01-01

    In BNCT the duration and timing of the is adjusted by 10 B concentrations in whole blood. Time-frame for determinations is less than 20 minutes. Therefore fast and accurate boron determinations are a prerequisite for BNCT. We present a method based on ICP-AES instrument for whole blood and plasma boron determinations with protein precipitation with trichloroacetic acid as sample pre-treatment and beryllium as an internal standard. The method was compared to established but tedious ICP-mass spectrometric method with wet ashing as a sample pre-treatment. The ICP-AES method is in good agreement (correlation coefficient 0.99) the ICP-MS. Within-day and between-day imprecisions were less than 3,5% CV for whole blood samples. Samples taken during and after BPA-F infusion (290 mg/kg) revealed an uneven distribution between plasma and erythrocytes. The present method is feasible and one of the fastest currently available for BNCT. Our results indicate that BPA-F or its metabolites do not seem to be tightly bound to plasma proteins. It also seems that determination of boron in plasma sample may be preferable than measuring boron in whole blood. (author)

  20. Acidity enhancement of unsaturated bases of group 15 by association with borane and beryllium dihydride. Unexpected boron and beryllium Brønsted acids.

    Science.gov (United States)

    Martín-Sómer, Ana; Mó, Otilia; Yáñez, Manuel; Guillemin, Jean-Claude

    2015-01-21

    The intrinsic acidity of CH2[double bond, length as m-dash]CHXH2, HC[triple bond, length as m-dash]CXH2 (X = N, P, As, Sb) derivatives and of their complexes with BeH2 and BH3 has been investigated by means of high-level density functional theory and molecular orbital ab initio calculations, using as a reference the ethyl saturated analogues. The acidity of the free systems steadily increases down the group for the three series of derivatives, ethyl, vinyl and ethynyl. The association with both beryllium dihydride and borane leads to a very significant acidity enhancement, being larger for BeH2 than for BH3 complexes. This acidity enhancement, for the unsaturated compounds, is accompanied by a change in the acidity trends down the group, which do not steadily decrease but present a minimum value for both the vinyl- and the ethynyl-phosphine. When the molecule acting as the Lewis acid is beryllium dihydride, the π-type complexes in which the BeH2 molecules interact with the double or triple bond are found, in some cases, to be more stable, in terms of free energies, than the conventional complexes in which the attachment takes place at the heteroatom, X. The most important finding, however, is that P, As, and Sb ethynyl complexes with BeH2 do not behave as P, As, or Sb Brønsted acids, but unexpectedly as Be acids.

  1. Belgian research on fusion beryllium waste

    International Nuclear Information System (INIS)

    Druyts, F.; Mallants, D.; Sillen, X.; Iseghem, P. Van

    2004-01-01

    Future fusion power plants will generate important quantities of neutron irradiated beryllium. Although recycling is the preferred management option for this waste, this may not be technically feasible for all of the beryllium, because of its radiological characteristics. Therefore, at SCK·CEN, we initiated a research programme aimed at studying aspects of the disposal of fusion beryllium, including waste characterisation, waste acceptance criteria, conditioning methods, and performance assessment. One of the main issues to be resolved is the development of fusion-specific waste acceptance criteria for surface or deep geological disposal, in particular with regard to the tritium content. In case disposal is the only solution, critical nuclides can be immobilised by conditioning the waste. As a first approach to immobilising beryllium waste, we investigated the vitrification of beryllium. Corrosion tests were performed on both metallic and vitrified beryllium to provide source data for performance assessment. Finally, a first step in performance assessment was undertaken. (author)

  2. Potential exposures and risks from beryllium-containing products.

    Science.gov (United States)

    Willis, Henry H; Florig, H Keith

    2002-10-01

    Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern.

  3. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron oxide composite for the Removal of Boron and Organics from Wastewater

    Directory of Open Access Journals (Sweden)

    Affam Augustine Chioma

    2018-01-01

    Full Text Available Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal. It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.

  4. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron oxide composite for the Removal of Boron and Organics from Wastewater

    Science.gov (United States)

    Chioma Affam, Augustine; Chung Wong, Chee; Seyam, Mohammed A. B.; Matt, Chelsea Ann Anak Frederick; Lantan Anak Sumbai, Josephine; Evuti, Abdullahi Mohammed

    2018-03-01

    Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT) method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal). It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.

  5. High-rate and ultralong cycle-life LiFePO{sub 4} nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jinpeng, E-mail: goldminer@sina.com; Wang, Youlan

    2016-12-30

    Highlights: • B-doped carbon decorated LiFePO{sub 4} has been fabricated for the first time. • The LiFePO{sub 4}@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO{sub 4}@C. • The LiFePO{sub 4}@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO{sub 4}. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO{sub 4} is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO{sub 4}@B{sub 0.4}-C can reach 164.1 mAh g{sup −1} at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g{sup −1}). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g{sup −1} and can be maintained at 124.5 mAh g{sup −1} after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO{sub 4}@B-C composite for high-performance lithium-ion batteries.

  6. METHOD OF BRAZING BERYLLIUM

    Science.gov (United States)

    Hanks, G.S.; Keil, R.W.

    1963-05-21

    A process is described for brazing beryllium metal parts by coating the beryllium with silver (65- 75 wt%)-aluminum alloy using a lithium fluoride (50 wt%)-lithium chloride flux, and heating the coated joint to a temperature of about 700 un. Concent 85% C for about 10 minutes. (AEC)

  7. Sanitary-hygienic and ecological aspects of beryllium production

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Sidorov, V.L.; Slobodin, D.B.; Tuzov, Y.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)

    1998-01-01

    The Report describes An organization of sanitary-hygienic and ecological control of beryllium production at Ulba metallurgical plant. It involves: (1) the consideration of main methods for protection of beryllium production personnel from unhealthy effect of beryllium, (2) main kinds of filters, used in gas purification systems at different process areas, (3) data on beryllium monitoring in water, soil, on equipment. This Report also outlines problems connected with designing devices for a rapid analysis of beryllium in air as well as problems of beryllium production on ecological situation in the town. (author)

  8. Balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen

    International Nuclear Information System (INIS)

    Zumberge, J.F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen have been measured at energies near 300 MeV amu -1 , using a balloon-borne instrument at an atmospheric depth of approx. 5 g cm -2 . The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approx. 0.3 amu at boron to approx. 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near earth consistent with the measurements

  9. Beryllium for fusion application - recent results

    International Nuclear Information System (INIS)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-01-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described

  10. Beryllium for fusion application - recent results

    Science.gov (United States)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-12-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.

  11. The nature of beryllium disease

    International Nuclear Information System (INIS)

    Williams, W.J.

    1977-01-01

    The increasing use of beryllium in modern industry poses a continuing health hazard with a real risk of producing incapacitating disease and even death. Beryllium and its salts are very toxic, even in small doses and may produce lesions in any organ. The majority of cases follow inhalation and may cause either acute or chronic lung disease. Acute pulmonary disease is a form of chemical pneumonitis while the chronic disease is characterised by the production of granulomas and fibrosis. The skin may be affected with the finding of dermatitis, acute or chronic ulceration. Other organs commonly involved include the liver and kidneys. The pathology of beryllium disease is not specific and diagnosis depends on satisfying the following criteria - history of exposure, consistent clinical, radiographic and pathological finding, presence of beryllium in tissue/fluid and evidence of hypersensitivity. Recent development of 'in vitro' tests of hypersensitivity may prove of value in both diagnosis and prevention of disease. Beryllium disease responds to steroid therapy but the only sure treatment is avoidance of exposure. (author)

  12. Bulk-boronized limiter operation in the Wendelstein 7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Brakel, R; Burhenn, R; Behrisch, R; Grigull, P; Hacker, H; Hildebrandt, D; Hofmann, J V; Mahn, C; Roth, J; Schneider, U; Weller, A [Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany); Hirooka, Y [Inst. of Plasma Physics and Fusion Research, Univ. California, Los Angeles, CA (United States); W7-AS Team; NI Group; ECRH Group

    1992-12-01

    Bulk-boronized graphite (20% boron) has been tested as a limiter material in the Wendelstein 7-AS stellarator. The recycling behaviour and the plasma impurities are compared for the new material and the formerly used TiC-coated graphite with stainless steel and boronized walls. After conditioning the recycling and the oxygen and carbon levels are comparable for both materials. No significant impact of sputter boronization from the limiters on the oxygen level was observed. A drastical reduction of oxygen by about a factor of 10 was obtained only after additional gas boronization. In this case Z[sub eff] is primarily determined by carbon and boron. For ECF standard discharges Z[sub eff][approx equal]2 with P[sub rad]=6% of the input power was found as compared to Z[sub eff]< or approx.3 and P[sub rad]=10% before boronization and Z[sub eff][approx equal]4, P[sub rad]=20% with TiC-limiters. (orig.).

  13. Beryllium electrodeposition on aluminium cathode from chloride melts

    International Nuclear Information System (INIS)

    Nichkov, I.F.; Novikov, E.A.; Serebryakov, G.A.; Kanashin, Yu.P.; Sardyko, G.N.

    1980-01-01

    Cathodic processes during beryllium deposition on liquid and solid aluminium cathodes are investigated. Mixture of sodium, potassium and beryllium chloride melts served as an lectrolyte. Beryllium ion discharge at the expense of alloy formation takes place at more positive potentials than on an indifferent cathode at low current densities ( in the case of liquid aluminium cathode). Metallographic analysis and measurements of microhardness have shown, that the cathodic product includes two phases: beryllium solid solution in aluminium and metallic beryllium. It is concluded, that aluminium-beryllium alloys with high cathodic yield by current can be obtained by the electrolytic method

  14. Beryllium satellite thrust cone design, manufacture and test

    International Nuclear Information System (INIS)

    Schneiter, H.; Chandler, D.

    1977-01-01

    Pre-formed beryllium sheet material has been used in the design, manufacturing and test of a satellite thrust cone structure. Adhesive bonding was used for attachment of aluminium flanges and conical segment lap strips. Difficulties in beryllium structure design such as incompatibilities with aluminium and handling problems are discussed. Testing to optimize beryllium-beryllium and beryllium-aluminium adhesive bonds is described. The completed thrust cone assembly has been subjected to static load testing and the results are presented. A summary of the relative merits of the use of beryllium in satellite structures is given with recommendations for future users. (author)

  15. Beryllium coating on Inconel tiles

    International Nuclear Information System (INIS)

    Bailescu, V.; Burcea, G.; Lungu, C.P.; Mustata, I.; Lungu, A.M.; Rubel, M.; Coad, J.P.; Matthews, G.; Pedrick, L.; Handley, R.

    2007-01-01

    Full text of publication follows: The Joint European Torus (JET) is a large experimental nuclear fusion device. Its aim is to confine and study the behaviour of plasma in conditions and dimensions approaching those required for a fusion reactor. The plasma is created in the toroidal shaped vacuum vessel of the machine in which it is confined by magnetic fields. In preparation for ITER a new ITER-like Wall (ILW) will be installed on Joint European Torus (JET), a wall not having any carbon facing the plasma [1]. In places Inconel tiles are to be installed, these tiles shall be coated with Beryllium. MEdC represented by the National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest and in direct cooperation with Nuclear Fuel Plant Pitesti started to coat Inconel tiles with 8 μm of Beryllium in accordance with the requirements of technical specification and fit for installation in the JET machine. This contribution provides an overview of the principles of manufacturing processes using thermal evaporation method in vacuum and the properties of the prepared coatings. The optimization of the manufacturing process (layer thickness, structure and purity) has been carried out on Inconel substrates (polished and sand blasted) The results of the optimization process and analysis (SEM, TEM, XRD, Auger, RBS, AFM) of the coatings will be presented. Reference [1] Takeshi Hirai, H. Maier, M. Rubel, Ph. Mertens, R. Neu, O. Neubauer, E. Gauthier, J. Likonen, C. Lungu, G. Maddaluno, G. F. Matthews, R. Mitteau, G. Piazza, V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, R and D on full tungsten divertor and beryllium wall for JET TIER-like Wall Project, 24. Symposium on Fusion Technology - 11-15 September 2006 -Warsaw, Poland. (authors)

  16. Control of beryllium powder at a DOE facility

    International Nuclear Information System (INIS)

    Langner, G.C.; Creek, K.L.; Castro, R.G.

    1997-01-01

    Beryllium is contained in a number of domestic and national defense items. Although many items might contain beryllium in some manner, few people need worry about the adverse effects caused by exposure to beryllium because it is the inhalable form of beryllium that is most toxic. Chronic beryllium disease (CBD), a granulomas and fibrotic lung disease with long latency, can be developed after inhalation exposures to beryllium. It is a progressive, debilitating lung disease. Its occurrence in those exposed to beryllium has been difficult to predict because some people seem to react to low concentration exposures whereas others do not react to high concentration exposures. Onset of the disease frequently occurs between 15 to 20 years after exposure begins. Some people develop the disease after many years of low concentration exposures but others do not develop CBD even though beryllium is shown to be present in lungs and urine. Conclusions based on these experiences are that their is some immunological dependence of developing CBD in about 3--4% of the exposed population, but the exact mechanism involved has not yet been identified. Acute beryllium disease can occur after a single exposure to a concentration of greater than 0.100 mg/m3 (inhalation exposure); it is characterized by the development of chemical pneumoconiosis, a respiratory disease. The acute effect of skin contact is a dermatitis characterized by itching and reddened, elevated, or fluid-accumulated lesions which appear particularly on the exposed surfaces of the body, especially the face, neck, arms, and hands. Small particles of beryllium that enter breaks in the skin can lead to the development of granulomas and/or open sores that do not heal until the beryllium has been removed. Our interest is only airborne beryllium, which is found in areas that machine or produce beryllium

  17. Effect of electron injection on defect reactions in irradiated silicon containing boron, carbon, and oxygen

    Science.gov (United States)

    Makarenko, L. F.; Lastovskii, S. B.; Yakushevich, H. S.; Moll, M.; Pintilie, I.

    2018-04-01

    Comparative studies employing Deep Level Transient Spectroscopy and C-V measurements have been performed on recombination-enhanced reactions between defects of interstitial type in boron doped silicon diodes irradiated with alpha-particles. It has been shown that self-interstitial related defects which are immobile even at room temperatures can be activated by very low forward currents at liquid nitrogen temperatures. Their activation is accompanied by the appearance of interstitial carbon atoms. It has been found that at rather high forward current densities which enhance BiOi complex disappearance, a retardation of Ci annealing takes place. Contrary to conventional thermal annealing of the interstitial boron-interstitial oxygen complex, the use of forward current injection helps to recover an essential part of charge carriers removed due to irradiation.

  18. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.

    2015-12-17

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  19. Preparation and application of a carbon paste electrode modified with multi-walled carbon nanotubes and boron-embedded molecularly imprinted composite membranes.

    Science.gov (United States)

    Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Deng, Chunyan; Liao, Lifu; Deng, Jian; Lin, Ying-Wu

    2018-06-01

    An innovative electrochemical sensor was fabricated for the sensitive and selective determination of tinidazole (TNZ), based on a carbon paste electrode (CPE) modified with multi-walled carbon nanotubes (MWCNTs) and boron-embedded molecularly imprinted composite membranes (B-MICMs). Density functional theory (DFT) calculations were carried out to investigate the utility of template-monomer interactions to screen appropriate monomers for the rational design of B-MICMs. The distinct synergic effect of MWCNTs and B-MICMs was evidenced by the positive shift of the reduction peak potential of TNZ at B-MICMs/MWCNTs modified CPE (B-MICMs/MWCNTs/CPE) by about 200 mV, and the 12-fold amplification of the peak current, compared with a bare carbon paste electrode (CPE). Moreover, the coordinate interactions between trisubstituted boron atoms embedded in B-MICMs matrix and nitrogen atoms of TNZ endow the sensor with advanced affinity and specific directionality. Thereafter, a highly sensitive electrochemical analytical method for TNZ was established by different pulse voltammetry (DPV) at B-MICMs/MWCNTs/CPE with a lower detection limit (1.25 × 10 -12  mol L -1 ) (S/N = 3). The practical application of the sensor was demonstrated by determining TNZ in pharmaceutical and biological samples with good precision (RSD 1.36% to 3.85%) and acceptable recoveries (82.40%-104.0%). Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Research of beryllium safety issues

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Dolan, T.J.; Hankins, M.R.; Pawelko, R.J.

    1993-01-01

    Beryllium has been identified as a leading contender for the plasma-facing material in ITER. Its use has some obvious advantages, but there are also a number of safety concerns associated with it. The Idaho National Engineering Laboratory (INEL) has undertaken a number of studies to help resolve some of these issues. One issue is the response of beryllium to neutron irradiation. We have tested samples irradiated in the Advanced Test Reactor (ATR) and are currently preparing to make measurements of the change in mechanical properties of beryllium samples irradiated at elevated temperatures in the Fast Flux Test Facility (FFTF) and the Experimental Breeder Reactor II (EBR-II) at the INEL. Mechanical tests will be conducted at the irradiation temperatures of 375-550 C. Other experiments address permeation and retention of implanted tritium in plasma-sprayed beryllium. In one test the porosity of the material allowed 0.12% of implanted ions and 0.17% of atoms from background gas pressure to pass through the foil with essentially no delay. For comparison, similar tests on fully dense hot-rolled, vacuum melted or sintered powder foils of high purity beryllium showed only 0.001% of implanting ions to pass through the foil, and then only after a delay of several hours. None of the molecular gas appeared to permeate these latter targets. An implication is that plasma-sprayed beryllium may substantially enhance recycling of tritium to the plasma provided it is affixed to a relatively impermeable substrate. (orig.)

  1. Behaviour of molten beryllium with ITER reference CFC SEPCARB NB31 under moisture

    Energy Technology Data Exchange (ETDEWEB)

    Lipa, M. [CEA/Cadarache-DSM/DRFC, Euratom-Association, Saint Paul Lez Durance F-13108 (France)], E-mail: manfred.lipa@cea.fr; Linke, J. [Forschungszentrum Juelich, Euratom-Association, Juelich D-52425 (Germany); Martin, G. [CEA/Cadarache-DSM/DRFC, Euratom-Association, Saint Paul Lez Durance F-13108 (France); Wessel, E. [Forschungszentrum Juelich, Euratom-Association, Juelich D-52425 (Germany)

    2007-10-15

    A dramatic exothermic reaction has been observed in Tore Supra with molten aluminium enclosed in a thermally loaded 2D carbon fibre reinforced carbon composite (CFC) tile, exposed after component removal to atmospheric moisture. This led to an important local destruction of the graphite matrix and fibre texture. Beryllium, as aluminium, a carbide forming metal, is foreseen for the ITER first wall armour. Since it can be expected that sputtered, molten and/or evaporated beryllium material will be transported to the hot CFC based divertor surface during normal and off-normal plasma operation, a preliminary reaction experiment has been performed in order to investigate to which extent the Be contaminated graphite matrix and fibre texture of 3D-CFC SEPCARB NB31 could be locally damaged ('erosion') following a subsequent long lasting air venting or a supposed in-vessel ingress of coolant (steam) event (ICE)

  2. Offshoots from beryllium development programme

    International Nuclear Information System (INIS)

    Sharma, B.P.; Sinha, P.K.

    1995-01-01

    The paper briefly presents extraction and processing of beryllium metal as practiced in the beryllium facilities at Turbhe, New Bombay. These facilities have been set up to meet the indigenous requirements of the metal in space and nuclear science programmes. As offshoot of this beryllium development programme has been the development of a number of pyro and powder metallurgical equipment. Indigenous development of these pieces of equipment has been a professionally rewarding experience. Efforts are now on to promote these equipment for industrial use. (author). 6 refs., 6 figs., 2 tabs

  3. Fluorimetric method for determination of Beryllium

    International Nuclear Information System (INIS)

    Sparacino, N.; Sabbioneda, S.

    1996-10-01

    The old fluorimetric method for the determination of Beryllium, based essentially on the fluorescence of the Beryllium-Morine complex in a strongly alkaline solution, is still competitive and stands the comparison with more modern methods or at least three reasons: in the presence of solid or gaseous samples (powders), the times necessary to finalize an analytic determination are comparable since the stage of the process which lasts the longest is the mineralization of the solid particles containing Beryllium, the cost of a good fluorimeter is by far Inferior to the cost, e. g., of an Emission Spectrophotometer provided with ICP torch and magnets for exploiting the Zeeman effect and of an Atomic absorption Spectrophotometer provided with Graphite furnace; it is possible to determine, fluorimetrically, rather small Beryllium levels (about 30 ng of Beryllium/sample), this potentiality is more than sufficient to guarantee the respect of all the work safety and hygiene rules now in force. The study which is the subject of this publication is designed to the analysis procedure which allows one to reach good results in the determination of Beryllium, chiefly through the control and measurement of the interference effect due to the presence of some metals which might accompany the environmental samples of workshops and laboratories where Beryllium is handled, either at the pure state or in its alloys. The results obtained satisfactorily point out the merits and limits of this analytic procedure

  4. Quantification and micron-scale imaging of spatial distribution of trace beryllium in shrapnel fragments and metallurgic samples with correlative fluorescence detection method and secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Abraham, Jerrold L.; Chandra, Subhash; Agrawal, Anoop

    2014-01-01

    Recently, a report raised the possibility of shrapnel-induced chronic beryllium disease (CBD) from long-term exposure to the surface of retained aluminum shrapnel fragments in the body. Since the shrapnel fragments contained trace beryllium, methodological developments were needed for beryllium quantification and to study its spatial distribution in relation to other matrix elements, such as aluminum and iron, in metallurgic samples. In this work, we developed methodology for quantification of trace beryllium in samples of shrapnel fragments and other metallurgic sample-types with main matrix of aluminum (aluminum cans from soda, beer, carbonated water, and aluminum foil). Sample preparation procedures were developed for dissolving beryllium for its quantification with the fluorescence detection method for homogenized measurements. The spatial distribution of trace beryllium on the sample surface and in 3D was imaged with a dynamic secondary ion mass spectrometry (SIMS) instrument, CAMECA IMS 3f SIMS ion microscope. The beryllium content of shrapnel (~100 ppb) was the same as the trace quantities of beryllium found in aluminum cans. The beryllium content of aluminum foil (~25 ppb) was significantly lower than cans. SIMS imaging analysis revealed beryllium to be distributed in the form of low micron-sized particles and clusters distributed randomly in X-Y-and Z dimensions, and often in association with iron, in the main aluminum matrix of cans. These observations indicate a plausible formation of Be-Fe or Al-Be alloy in the matrix of cans. Further observations were made on fluids (carbonated water) for understanding if trace beryllium in cans leached out and contaminated the food product. A direct comparison of carbonated water in aluminum cans and plastic bottles revealed that beryllium was below the detection limits of the fluorescence detection method (~0.01 ppb). These observations indicate that beryllium present in aluminum matrix was either present in an

  5. Quantification and micron-scale imaging of spatial distribution of trace beryllium in shrapnel fragments and metallurgic samples with correlative fluorescence detection method and secondary ion mass spectrometry (SIMS).

    Science.gov (United States)

    Abraham, J L; Chandra, S; Agrawal, A

    2014-11-01

    Recently, a report raised the possibility of shrapnel-induced chronic beryllium disease from long-term exposure to the surface of retained aluminum shrapnel fragments in the body. Since the shrapnel fragments contained trace beryllium, methodological developments were needed for beryllium quantification and to study its spatial distribution in relation to other matrix elements, such as aluminum and iron, in metallurgic samples. In this work, we developed methodology for quantification of trace beryllium in samples of shrapnel fragments and other metallurgic sample-types with main matrix of aluminum (aluminum cans from soda, beer, carbonated water and aluminum foil). Sample preparation procedures were developed for dissolving beryllium for its quantification with the fluorescence detection method for homogenized measurements. The spatial distribution of trace beryllium on the sample surface and in 3D was imaged with a dynamic secondary ion mass spectrometry instrument, CAMECA IMS 3f secondary ion mass spectrometry ion microscope. The beryllium content of shrapnel (∼100 ppb) was the same as the trace quantities of beryllium found in aluminum cans. The beryllium content of aluminum foil (∼25 ppb) was significantly lower than cans. SIMS imaging analysis revealed beryllium to be distributed in the form of low micron-sized particles and clusters distributed randomly in X-Y- and Z dimensions, and often in association with iron, in the main aluminum matrix of cans. These observations indicate a plausible formation of Be-Fe or Al-Be alloy in the matrix of cans. Further observations were made on fluids (carbonated water) for understanding if trace beryllium in cans leached out and contaminated the food product. A direct comparison of carbonated water in aluminum cans and plastic bottles revealed that beryllium was below the detection limits of the fluorescence detection method (∼0.01 ppb). These observations indicate that beryllium present in aluminum matrix was either

  6. Structure of carbon and boron nitride nanotubes produced by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Conway, M.; FitzGerald, J.; Williams, J.S.; Chadderton, L.T.

    2002-01-01

    Full text: Structure of carbon and boron nitride (BN) nanotubes produced by mechano-thermal process has been investigated by using field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) including high resolution TEM. FESEM and TEM reveal that nanotubes obtained have a diameter varying from several nm to 200 nm and a length of several micrometers. The size of the nanotubes appears to depend on both milling and heating conditions. Many nanotubes are extruded from particle clusters, implying a special growth mechanism. TEM reveals single- and multi- wall tubular structures and different caps. Bomboo-type nanotubes containing small metal particles inside are also observed in both carbon and BN tubes. This investigation shows that nanotubes with controlled size and structure could be produced by the mechano-thermal process

  7. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Bergeron, C.R.; Baker, R.W.

    1975-01-01

    Beryllium hydride of high bulk density, suitable for use as a component of high-energy fuels, is prepared by the pyrolysis, in solution in an inert solvent, of a ditertiary-alkyl beryllium. An agitator introduces mechanical energy into the reaction system, during the pyrolysis, at the rate of 0.002 to 0.30 horsepower per gallon of reaction mixture. (U.S.)

  8. Hot flow behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; El-Wahabi, M.; Cabrera, J.M.

    2008-01-01

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10 -3 , 10 -2 and 10 -1 s -1 ). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure

  9. High-strength beryllium block

    International Nuclear Information System (INIS)

    Pinto, N.P.; Keith, G.H.

    1977-01-01

    Beryllium billets hot isopressed using fine powder of high purity have exceptionally attractive properties; average tensile ultimate, 0.2% offset yield strength and elongation are 590 MPa, 430 MPa and 4.0% respectively. Properties are attributed to the fine grain size (about 4.0 μm average diameter) and the relatively low levels of BeO present as fine, well-dispersed particles. Dynamic properties, e.g., fracture toughness, are similar to those of standard grade, high-purity beryllium. The modulus of beryllium is retained to very high stress levels, and the microyield stress or precision elastic limit is higher than for other grades, including instrument grades. Limited data for billets made from normal-purity fine powders show similar room temperature properties. (author)

  10. Interaction of boron with graphite: A van der Waals density functional study

    International Nuclear Information System (INIS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-01-01

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  11. Interaction of boron with graphite: A van der Waals density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-08-30

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  12. Boron-containing thioureas for neutron capture therapy

    International Nuclear Information System (INIS)

    Ketz, H.

    1993-01-01

    Melanin is produced in large amounts in malignant melanotic melanomas. Because thiourea compounds are covalently incorporated into melanin during its biosynthesis, the preparation of boronated thiourea-derivatives is of particular interest for the BNCT (Boron Neutron Capture Therapy). Accumulation of boron in tumors by means of boronated thiourea-derivatives may therefore provide levels of 10 B which are useful for BNCT. In BNCT the tumor containing the boron compound is irradiated with epithermal neutrons to generate He- and Li-nuclei from the 10 B which can then destroy the tumor cells. Because of the short ranges of these particles (approximately one cell diameter) the damage will be almost exclusively confined to the tumor leaving normal tissue unharmed. High accumulation of 2-mercapto-1-methylimidazole (methimazole) in melanotic melanomas has been described in the literature. Boronated derivatives of methimazole were therefore synthesized. Boron was in the form of a boronic acid, a nido-carbonate and a mercaptoundeca hydro-closo-dodecaborate (BSH). The synthesis of the boron cluster derivatives of methimazole (nido-carborate- and BSH-derivatives) with 9 resp. 12 boron atoms in the molecule were expected to achieve higher concentrations of boron in the tumor than in the case of the boronic acid compound with its single boron atom. (orig.) [de

  13. Reaction-diffusion modeling of hydrogen in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, Mirko; Matveev, Dmitry; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    Beryllium will be used as first-wall material for the future fusion reactor ITER as well as in the breeding blanket of DEMO. In both cases it is important to understand the mechanisms of hydrogen retention in beryllium. In earlier experiments with beryllium low-energy binding states of hydrogen were observed by thermal desorption spectroscopy (TDS) which are not yet well understood. Two candidates for these states are considered: beryllium-hydride phases within the bulk and surface effects. The retention of deuterium in beryllium is studied by a reaction rate approach using a coupled reaction diffusion system (CRDS)-model relying on ab initio data from density functional theory calculations (DFT). In this contribution we try to assess the influence of surface recombination.

  14. Recommended design correlations for S-65 beryllium

    International Nuclear Information System (INIS)

    Billone, M.C.

    1995-01-01

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The irradiation-independent properties described within are: thermal conductivity, specific heat capacity, thermal expansion, and elastic constants. Irradiation-dependent properties include: yield strength, ultimate tensile strength, plastic tangent modulus, uniform and total tensile elongation, thermal and irradiation-induced creep strength, He-induced swelling and tritium retention/release. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium -- the material chosen for ITER PFC application -- as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined from the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing (HIP). The performance of plasma-sprayed beryllium is discussed but not quantified

  15. Exposure and genetics increase risk of beryllium sensitisation and chronic beryllium disease in the nuclear weapons industry.

    Science.gov (United States)

    Van Dyke, Michael V; Martyny, John W; Mroz, Margaret M; Silveira, Lori J; Strand, Matt; Cragle, Donna L; Tankersley, William G; Wells, Susan M; Newman, Lee S; Maier, Lisa A

    2011-11-01

    Beryllium sensitisation (BeS) and chronic beryllium disease (CBD) are caused by exposure to beryllium with susceptibility affected by at least one well-studied genetic host factor, a glutamic acid residue at position 69 (E69) of the HLA-DPβ chain (DPβE69). However, the nature of the relationship between exposure and carriage of the DPβE69 genotype has not been well studied. The goal of this study was to determine the relationship between DPβE69 and exposure in BeS and CBD. Current and former workers (n=181) from a US nuclear weapons production facility, the Y-12 National Security Complex (Oak Ridge, Tennessee, USA), were enrolled in a case-control study including 35 individuals with BeS and 19 with CBD. HLA-DPB1 genotypes were determined by PCR-SSP. Beryllium exposures were assessed through worker interviews and industrial hygiene assessment of work tasks. After removing the confounding effect of potential beryllium exposure at another facility, multivariate models showed a sixfold (OR 6.06, 95% CI 1.96 to 18.7) increased odds for BeS and CBD combined among DPβE69 carriers and a fourfold (OR 3.98, 95% CI 1.43 to 11.0) increased odds for those exposed over an assigned lifetime-weighted average exposure of 0.1 μg/m(3). Those with both risk factors had higher increased odds (OR 24.1, 95% CI 4.77 to 122). DPβE69 carriage and high exposure to beryllium appear to contribute individually to the development of BeS and CBD. Among workers at a beryllium-using facility, the magnitude of risk associated with either elevated beryllium exposure or carriage of DPβE69 alone appears to be similar.

  16. Synthesis of boron and nitrogen co-doped carbon nanofiber as efficient metal-free electrocatalyst for the VO"2"+/VO_2"+ Redox Reaction

    International Nuclear Information System (INIS)

    Shi, Lang; Liu, Suqin; He, Zhen; Yuan, Hao; Shen, Junxi

    2015-01-01

    Boron or nitrogen mono-doped carbon nanofiber (CNF), and boron, nitrogen co-doped CNF are intentionally prepared as positive electrodes in a vanadium redox flow battery (VRFB). The structures and electrochemical properties of the materials are investigated by Scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry and electrochemical impendence spectroscopy. The experimental results indicate that either B or N mono-doped CNF shown better electrochemical performance than untreated one. Interestingly, for the B and N co-doped CNF, the separated case exhibited an outstanding electrochemical activity better than either B or N mono-doped case, while the bonded case leading to a sharp drop in conductivity and shown poor electrochemical performances. These results demonstrated that not the total amount of incorporated B and N but how the B and N are incorporated into carbon nanostructures determines the catalytic activity toward VO"2"+/VO_2"+ reaction. Moreover, the individual mechanism of the nitrogen and boron containing functional groups act as active sites have been analyzed.

  17. Some aspects of beryllium disposal in Kazakhstan

    International Nuclear Information System (INIS)

    Shestakov, V.; Chikhray, Y.; Shakhvorostov, Yr.

    2004-01-01

    Historically in Kazakhstan all disposals of used beryllium and beryllium wasted materials were stored and recycled at JSC ''Ulba Metallurgical Plant''. Since Ulba Metallurgical Plant (beside beryllium and tantalum production) is one of the world largest complex producers of fuel for nuclear power plants as well it has possibilities, technologies and experience in processing toxic and radioactive wastes related with those productions. At present time only one operating Kazakhstan research reactors (EWG1M in Kurchatov) contains beryllium made core. The results of current examination of that core allow using it without replacement long time yet (at least for next five-ten years). Nevertheless the problem how to utilize such irradiated beryllium becomes actual issue for Kazakhstan even today. Since Kazakhstan is the member of ITER/DEMO Reactors Projects and is permanently considered as possible provider of huge amount of beryllium for those reactors so that is the reason for starting studies of possibilities of large scale processing/recycling of such disposed irradiated beryllium. It is clear that the Ulba Metallurgical Plant is considered as the best site for it in Kazakhstan. The draft plan how to organize experimental studies of irradiated beryllium disposals in Kazakhstan involving National Nuclear Center, National University (Almaty), JSC ''Ulba Metallurgical Plant'' (Ust-Kamenogorsk) would be presented in this paper as well as proposals to arrange international collaboration in that field through ISTC (International Science Technology Center, Moscow). (author)

  18. Effect of transient heating loads on beryllium

    International Nuclear Information System (INIS)

    Kupriyanov, Igor B.; Porezanov, Nicolay P.; Nikolaev, Georgyi N.; Kurbatova, Liudmila A.; Podkovyrov, Vyacheslav L.; Muzichenko, Anatoliy D.; Zhitlukhin, Anatoliy M.; Khimchenko, Leonid N.; Gervash, Alexander A.

    2014-01-01

    Highlights: • We study the effect of transient plasma loads on beryllium erosion and surface microstructure. • Beryllium targets were irradiated by plasma streams with energy of 0.5–1 MJ/m 2 at ∼250 °C. • Under plasma loads 0.5–1 MJ/m 2 cracking of beryllium surface is rather slight. • Under 0.5 MJ/m 2 the mass loss of Be is no more than 0.2 g/m 2 shot and decreasing with shots number. • Under 1 MJ/m 2 maximum mass loss of beryllium was 3.7 g/m 2 shot and decreasing with shots number. - Abstract: Beryllium will be used as a plasma facing material for ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of ITER first wall. The results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility are presented. The Be/CuCrZr mock-ups were exposed to upto 100 shots by deuterium plasma streams with pulse duration of 0.5 ms at ∼250 °C and average heat loads of 0.5 and 1 MJ/m 2 . Experiments were performed at 250 °C. The evolution of surface microstructure and cracks morphology as well as beryllium mass loss are investigated under erosion process

  19. Dispersion toughened silicon carbon ceramics

    Science.gov (United States)

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  20. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    Science.gov (United States)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  1. Boron-isotope fractionation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada); Vanderpool, R A [USDA/ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (United States); Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada)

    1997-10-15

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, {sup 11}B and {sup 10}B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in {sup 11}B relative to the nutrient solution, and the leaves were enriched in {sup 10}B and the stem in {sup 11}B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  2. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Marentes, E.; Vanderpool, R.A.; Shelp, B.J.

    1997-01-01

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11 B and 10 B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11 B relative to the nutrient solution, and the leaves were enriched in 10 B and the stem in 11 B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  3. The beryllium production at Ulba metallurgical plant (Ust-Kamenogrsk, Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Tuzov, Y.V. [Ulba Metallurgical Plant (Zavod), Ust-Kamenogorsk, Abay prospect 102 (Kazakhstan)

    1998-01-01

    The Report includes data on beryllium production of Ulba metallurgical plant, located in Ust-Kamenogorsk (Kazakhstan). Beryllium production is showed to have extended technological opportunities in manufacturing semi-products (beryllium ingots, master alloys, metallic beryllium powders, beryllium oxide) and in production of structural beryllium and its parts. Ulba metallurgical plant owns a unique technology of beryllium vacuum distillation, which allows to produce reactor grades of beryllium with a low content of metallic impurities. At present Ulba plant does not depend on raw materials suppliers. The quantity of stored raw materials and semi-products will allow to provide a 25-years work of beryllium production at a full capacity. The plant has a satisfactory experience in solving ecological problems, which could be useful in ITER program. (author)

  4. Beryllium poisonings; Les intoxications par le beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Alibert, S.

    1959-03-15

    This note reports a bibliographical study of beryllium toxicity. Thus, this bibliographical review addresses and outlines aspects and issues like aetiology, cases of acute poisoning (cutaneous manifestations, pulmonary manifestations), chronic poisoning (cutaneous, pulmonary and bone manifestations), excretion and localisation, and prognosis.

  5. Improved critical current densities of bulk MgB.sub.2./sub. using carbon-coated amorphous boron

    Czech Academy of Sciences Publication Activity Database

    Muralidhar, M.; Higuchi, M.; Jirsa, Miloš; Diko, P.; Kokal, I.; Murakami, M.

    2017-01-01

    Roč. 27, č. 4 (2017), s. 1-4, č. článku 6201104. ISSN 1051-8223 Institutional support: RVO:68378271 Keywords : carbon-encapsulated boron * critical current density * flux pinning * micro-structure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.092, year: 2015

  6. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Science.gov (United States)

    Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.

  7. The immunotoxicity of beryllium

    International Nuclear Information System (INIS)

    Reeves, A.L.

    1983-01-01

    In the disease berylliosis, granulomatous hypersensitivity is the specific immune response to tissue contact with a poorly soluble particle of beryllium compound, mediated through the accumulation and proliferation of reticuloendothelial cells. A review is given of the work accomplished since the 1950's and particularly since the 1970's to elucidate the nature and consequences of this response to beryllium and its compounds. (U.K.)

  8. Investigation of beryllium/steam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chekhonadskikh, A.M.; Vurim, A.D.; Vasilyev, Yu.S.; Pivovarov, O.S. [Inst. of Atomic Energy National Nuclear Center of the Republic of Kazakstan Semipalatinsk (Kazakhstan); Shestakov, V.P.; Tazhibayeva, I.L.

    1998-01-01

    In this report program on investigations of beryllium emissivity and transient processes on overheated beryllium surface attacked by water steam to be carried out in IAE NNC RK within Task S81 TT 2096-07-16 FR. The experimental facility design is elaborated in this Report. (author)

  9. Assessment of LANL beryllium waste management documentation

    International Nuclear Information System (INIS)

    Danna, J.G.; Jennrich, E.A.; Lund, D.M.; Davis, K.D.; Hoevemeyer, S.S.

    1991-04-01

    The objective of this report is to determine present status of the preparation and implementation of the various high priority documents required to properly manage the beryllium waste generated at the Laboratory. The documents being assessed are: Waste Acceptance Criteria, Waste Characterization Plan, Waste Certification Plan, Waste Acceptance Procedures, Waste Characterization Procedures, Waste Certification Procedures, Waste Training Procedures and Waste Recordkeeping Procedures. Beryllium is regulated (as a dust) under 40 CFR 261.33 as ''Discarded commercial chemical products, off specification species, container residues and spill residues thereof.'' Beryllium is also identified in the 3rd thirds ruling of June 1, 1990 as being restricted from land disposal (as a dust). The beryllium waste generated at the Laboratory is handled separately because beryllium has been identified as a highly toxic carcinogenic material

  10. Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators

    Science.gov (United States)

    Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.

    2018-03-01

    Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.

  11. Chronic Beryllium Disease Prevention Program Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S

    2012-03-29

    This document describes how Lawrence Livermore National Laboratory (LLNL) meets the requirements and management practices of federal regulation 10 CFR 850, 'Chronic Beryllium Disease Prevention Program (CBDPP).' This revision of the LLNL CBDPP incorporates clarification and editorial changes based on lessons learned from employee discussions, observations and reviews of Department of Energy (DOE) Complex and commercial industry beryllium (Be) safety programs. The information is used to strengthen beryllium safety practices at LLNL, particularly in the areas of: (1) Management of small parts and components; and (2) Communication of program status to employees. Future changes to LLNL beryllium activities and on-going operating experience will be incorporated into the program as described in Section S, 'Performance Feedback.'

  12. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H J; Nesper, R [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  13. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  14. Beryllium concentration in pharyngeal tonsils in children

    Directory of Open Access Journals (Sweden)

    Ewa Nogaj

    2014-06-01

    Full Text Available Power plant dust is believed to be the main source of the increased presence of the element beryllium in the environment which has been detected in the atmospheric air, surface waters, groundwater, soil, food, and cigarette smoke. In humans, beryllium absorption occurs mainly via the respiratory system. The pharyngeal tonsils are located on the roof of the nasopharynx and are in direct contact with dust particles in inhaled air. As a result, the concentration levels of beryllium in the pharyngeal tonsils are likely to be a good indicator of concentration levels in the air. The presented study had two primary aims: to investigate the beryllium concentration in pharyngeal tonsils in children living in southern Poland, and the appropriate reference range for this element in children’s pharyngeal tonsils. Pharyngeal tonsils were extracted from a total of 379 children (age 2–17 years, mean 6.2 ± 2.7 years living in southern Poland. Tonsil samples were mineralized in a closed cycle in a pressure mineralizer PDS 6, using 65% spectrally pure nitric acid. Beryllium concentration was determined using the ICP-AES method with a Perkin Elmer Optima 5300DVTM. The software Statistica v. 9 was used for the statistical analysis. It was found that girls had a significantly greater beryllium concentration in their pharyngeal tonsils than boys. Beryllium concentration varies greatly, mostly according to the place of residence. Based on the study results, the reference value for beryllium in pharyngeal tonsils of children is recommended to be determined at 0.02–0.04 µg/g.

  15. Stable boron nitride diamondoids as nanoscale materials

    International Nuclear Information System (INIS)

    Fyta, Maria

    2014-01-01

    We predict the stability of diamondoids made up of boron and nitrogen instead of carbon atoms. The results are based on quantum-mechanical calculations within density functional theory (DFT) and show some very distinct features compared to the regular carbon-based diamondoids. These features are evaluated with respect to the energetics and electronic properties of the boron nitride diamondoids as compared to the respective properties of the carbon-based diamondoids. We find that BN-diamondoids are overall more stable than their respective C-diamondoid counterparts. The electronic band-gaps (E g ) of the former are overall lower than those for the latter nanostructures but do not show a very distinct trend with their size. Contrary to the lower C-diamondoids, the BN-diamondoids are semiconducting and show a depletion of charge on the nitrogen site. Their differences in the distribution of the molecular orbitals, compared to their carbon-based counterparts, offer additional bonding and functionalization possibilities. These tiny BN-based nanostructures could potentially be used as nanobuilding blocks complementing or substituting the C-diamondoids, based on the desired properties. An experimental realization of boron nitride diamondoids remains to show their feasibility. (paper)

  16. Deuterium trapping in ion implanted and co-deposited beryllium oxide layers

    International Nuclear Information System (INIS)

    Markin, A.V.; Gorodetsky, A.E.; Zakharov, A.P.; Wu, C.H.

    2000-01-01

    Deuterium trapping in beryllium oxide films irradiated with 400 eV D ions has been studied by thermal desorption spectroscopy (TDS). It has been found that for thermally grown BeO films implanted in the range 300 - 900 K the total deuterium retention doesn't depend whereas TDS spectra do markedly on irradiation temperature. For R.T. implantation the deuterium is released in a wide range from 500 to 1100 K. At implantation above 600 K the main portion of retained deuterium is released in a single peak centered at about 1000 K. The similar TDS peak is measured for D/BeO co-deposited layer. In addition we correlate our implantation data on BeO with the relevant data on beryllium metal and carbon. The interrelations between deuterium retention and microstructure are discussed. (orig.)

  17. New audio applications of beryllium metal

    International Nuclear Information System (INIS)

    Sato, M.

    1977-01-01

    The major applications of beryllium metal in the field of audio appliances are for the vibrating cones for the two types of speakers 'TWITTER' for high range sound and 'SQUAWKER' for mid range sound, and also for beryllium cantilever tube assembled in stereo cartridge. These new applications are based on the characteristic property of beryllium having high ratio of modulus of elasticity to specific gravity. The production of these audio parts is described, and the audio response is shown. (author)

  18. An Alternative Explanation of the Varying Boron-to-carbon Ratio in Galactic Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, David [Department of Physics, Ben-Gurion University, Be’er-Sheba 84105 (Israel)

    2017-06-10

    It is suggested that the decline with energy of the boron-to-carbon abundance ratio in Galactic cosmic rays is due, in part, to a correlation between the maximum energy attainable by shock acceleration in a given region of the Galactic disk and the grammage traversed before escape. In this case the energy dependence of the escape rate from the Galaxy may be less than previously thought and the spectrum of antiprotons becomes easier to understand.

  19. Status of beryllium study for fusion in RF

    International Nuclear Information System (INIS)

    Khomutov, A.M.; Kupriyanov, I.B.; Markushkin, Yu.E.; Gervash, A.; Kolbasov, B.N.

    2004-01-01

    The main directions of research activities in the field of beryllium application science and technology carried out in Russia during 2001-2003 have been reviewed. The main results of these investigations have been highlighted. First wall and port-limier. The investigation on the actively cooled components with beryllium cladding is under progress objecting on the clarification of their ultimate thermo cycling capabilities. The study of behavior of bulk beryllium and the boundary region of the contact with the cooling structure under the intensive thermo cycling loading and neutron irradiation have been the object of consideration in particular. The works on the optimization and modification of industrial fabrication processes for commercial scaled production of beryllium tile were also under way. The influence of neutron irradiation. The new experimental data on the nuclear properties of several Russian beryllium grades has been obtained. The samples have been subjected to the high neutron dozes. The influence of low temperature (70-200degree C) neutron irradiation on the thermal conductivity has been examined in particular. The interrelations of the helium inventory and temperature of neutron irradiation with tritium release out of irradiated beryllium samples have been analyzed. The beryllium associated safety questions. The experiments on the modeling of normal working conditions and conditions imitating the plasma disruption events in ITER performance scenario have been continued. The new experimental information on the coefficient of pulverization of beryllium and the accumulation of deuterium in beryllium under the action of proton beam has been collected. The dependence of the reaction rate constant for the beryllium oxidation by the water vapor for different conditions has been analyzed. The compact, porous and powder beryllium samples have been tested at the wide range of temperature, pressure and duration of reaction with water vapor. The calculating

  20. Research of flaw assessment methods for beryllium reflector elements

    International Nuclear Information System (INIS)

    Shibata, Akira; Ito, Masayasu; Takemoto, Noriyuki; Tanimoto, Masataka; Tsuchiya, Kunihiko; Nakatsuka, Masafumi; Ohara, Hiroshi; Kodama, Mitsuhiro

    2012-02-01

    Reflector elements made from metal beryllium is widely used as neutron reflectors to increase neutron flux in test reactors. When beryllium reflector elements are irradiated by neutron, bending of reflector elements caused by swelling occurs, and beryllium reflector elements must be replaced in several years. In this report, literature search and investigation for non-destructive inspection of Beryllium and experiments for Preliminary inspection to establish post irradiation examination method for research of characteristics of metal beryllium under neutron irradiation were reported. (author)

  1. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Luo, Ruiying [School of Science, Beihang University, Beijing 100083 (China); Yoon, Seong-Ho; Mochida, Isao [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-03-15

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g{sup -1} and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by ''molecular bridging'' between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper. (author)

  2. Beryllium-copper reactivity in an ITER joining environment

    International Nuclear Information System (INIS)

    Odegard, B.C.; Cadden, C.H.; Yang, N.Y.C.

    1998-01-01

    Beryllium-copper reactivity was studied using test parameters being considered for use in the ITER reactor. In this application, beryllium-copper tiles are produced using a low-temperature copper-copper diffusion bonding technique. Beryllium is joined to copper by first plating the beryllium with copper followed by diffusion bonding the electrodeposited (ED) copper to a wrought copper alloy (CuNiBe) at 450 C, 1-3 h using a hot isostatic press (HIP). In this bonded assembly, beryllium is the armor material and the CuNiBe alloy is the heat sink material. Interface temperatures in service are not expected to exceed 350 C. For this study, an ED copper-beryllium interface was subjected to diffusion bonding temperatures and times to study the reaction products. Beryllium-copper assemblies were subjected to 350, 450 and 550 C for times up to 200 h. Both BeCu and Be 2 Cu intermetallic phases were detected using scanning electron microscopy and quantitative microprobe analysis. Growth rates were determined experimentally for each phase and activation energies for formation were calculated. The activation energies were 66 mol and 62 kJ mol -1 for the BeCu and Be 2 Cu, respectively. Tensile bars were produced from assemblies consisting of coated beryllium (both sides) sandwiched between two blocks of Hycon-3. Tensile tests were conducted to evaluate the influence of these intermetallics on the bond strength. Failure occurred at the beryllium-copper interface at fracture strengths greater than 300 MPa for the room-temperature tests. (orig.)

  3. Ab initio studies of vacancies in (8,0) and (8,8) single-walled carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-09-01

    Full Text Available -1 Journal of Nanoscience and Nanotechnology Vol. 12, 7030?7036, 2012 Ab Initio Studies of Vacancies in (8,0) and (8,8) Single-Walled Carbon and Boron Nitride NanotubesAb M. G. Mashapa 1, 2, *, N. Chetty 2, and S. Sinha Ray 1, 3 1 DST...

  4. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    Energy Technology Data Exchange (ETDEWEB)

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  5. Beryllium Measurement In Commercially Available Wet Wipes

    International Nuclear Information System (INIS)

    Youmans-Mcdonald, L.

    2011-01-01

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant(trademark) Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  6. Beryllium dust generation resulting from plasma bombardment

    International Nuclear Information System (INIS)

    Doerner, R.; Mays, C.

    1997-01-01

    The beryllium dust resulting from erosion of beryllium samples subjected to plasma bombardment has been measured in PISCES-B. Loose surface dust was found to be uniformly distributed throughout the device and accounts for 3% of the eroded material. A size distribution measurement of the loose surface dust shows an increasing number of particles with decreasing diameter. Beryllium coatings on surfaces with a line of sight view of the target interaction region account for an additional 33% of the eroded beryllium material. Flaking of these surface layers is observed and is thought to play a significant role in dust generation inside the vacuum vessel. (orig.)

  7. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  8. Production of beryllium oxide of nuclear purity from beryl

    Energy Technology Data Exchange (ETDEWEB)

    Copat, A; Sood, S P

    1984-01-01

    Production of beryllium oxide from beryl by the fluoride process was optimized in this study. Optimum results were obtained using a mixture of sodium hexafluorsilicate and sodium hexafluorferrate as flux and calcinating at 740/sup 0/C for 2 hours. The beryllium concentrate produced was further purified by crystallization as beryllium sulfate to obtain nuclear grade beryllium oxide

  9. Production of beryllium oxide of nuclear purity from beryl

    International Nuclear Information System (INIS)

    Copat, A.; Sood, S.P.

    1983-01-01

    Production of beryllium oxide from beryl by the fluoride process was optimized in this study. Optimum results were obtained using a mixture of sodium hexafluorsilicate and sodium hexafluorferrate as flux and calcinating at 740 0 C for 2 hours. The beryllium concentrate produced was further purified by crystallization as beryllium sulfate to obtain nuclear grade beryllium oxide (Author) [pt

  10. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Science.gov (United States)

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Structure prediction of boron-doped graphene by machine learning

    Science.gov (United States)

    M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji

    2018-06-01

    Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted its applications. The atomic structure determination of doped graphene is vital to understand its material properties. Motivated by the recently synthesized boron-doped graphene with relatively high concentration, here we employ machine learning methods to search the most stable structures of doped boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase the work function of graphene by 0.7 eV for a boron content higher than 3.1%.

  12. Mechanical performance of irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Dalle-Donne, M.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    For the Helium Cooled Pebble Bed (HCPB) Blanket, which is one of the two reference concepts studied within the European Fusion Technology Programme, the neutron multiplier consists of a mixed bed of about 2 and 0.1-0.2 mm diameter beryllium pebbles. Beryllium has no structural function in the blanket, however microstructural and mechanical properties are important, as they might influence the material behavior under neutron irradiation. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating it. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from these irradiation experiments, emphasizing the effects of irradiation of essential material properties and trying to elucidate the processes controlling the property changes. The microstructure, the porosity distribution, the impurity content, the behavior under compression loads and the compatibility of the beryllium pebbles with lithium orthosilicate (Li{sub 4}SiO{sub 4}) during the in-pile irradiation are presented and critically discussed. Qualitative information on ductility and creep obtained by hardness-type measurements are also supplied. (author)

  13. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Jun, H.J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kang, J.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Seo, D.H. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Kang, K.B. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Park, C.G. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)]. E-mail: cgpark@postech.ac.kr

    2006-04-25

    The continuous-cooling-transformation (CCT) diagram and continuous cooled microstructure were investigated for low carbon (0.05 wt.% C) high strength low alloy steels with/without boron. Microstructures observed in continuous cooled specimens were composed of pearlite, quasi-polygonal ferrite, granular bainite, acicular ferrite, bainitic ferrite, lower bainite, and martensite depending on cooling rate and transformation temperature. A rapid cooling rate depressed the formation of pearlite and quasi-polygonal ferrite, which resulted in higher hardness. However, hot deformation slightly increased transformation start temperature, and promoted the formation of pearlite and quasi-polygonal ferrite. Hot deformation also strongly promoted the acicular ferrite formation which did not form under non-deformation conditions. Small boron addition effectively reduced the formation of pearlite and quasi-polygonal ferrite and broadened the cooling rate region for bainitic ferrite and martensite.

  14. Laser-induced photochemical enrichment of boron isotopes

    International Nuclear Information System (INIS)

    Freund, S.M.; Ritter, J.J.

    1976-01-01

    A boron trichloride starting material containing both boron-10 isotopes and boron-11 isotopes is selectively enriched in one or the other of these isotopes by a laser-induced photochemical method involving the reaction of laser-excited boron trichloride with either H 2 S or D 2 S. The method is carried out by subjecting a low pressure gaseous mixture of boron trichloride starting material and the sulfide to infrared radiation from a carbon dioxide TE laser. The wave length of the radiation is selected so as to selectively excite one or the other of boron-10 BCl 3 molecules or boron-11 BCl 3 molecules, thereby making them preferentially more reactive with the sulfide. The laser-induced reaction produces both a boron-containing solid phase reaction product and a gaseous phase containing mostly unreacted BCl 3 and small amounts of sulfhydroboranes. Pure boron trichloride selectively enriched in one of the isotopes is recovered as the primary product of the method from the gaseous phase by a multi-step recovery procedure. Pure boron trichloride enriched in the other isotope is recovered as a secondary product of the method by the subsequent chlorination of the solid phase reaction product followed by separation of BCl 3 from the mixture of gaseous products resulting from the chlorination

  15. Preliminary results for explosion bonding of beryllium to copper

    International Nuclear Information System (INIS)

    Butler, D.J.; Dombrowski, D.E.

    1995-01-01

    This program was undertaken to determine if explosive bonding is a viable technique for joining beryllium to copper substrates. The effort was a cursory attempt at trying to solve some of the problems associated with explosive bonding beryllium and should not be considered a comprehensive research effort. There are two issues that this program addressed. Can beryllium be explosive bonded to copper substrates and can the bonding take place without shattering the beryllium? Thirteen different explosive bonding iterations were completed using various thicknesses of beryllium that were manufactured with three different techniques

  16. Preliminary proposal for a beryllium technology program for fusion applications

    International Nuclear Information System (INIS)

    1985-02-01

    The program was designed to provide the answers to the critical issues of beryllium technology needed in fusion blanket designs. The four tasks are as follows: (1) Beryllium property measurements needed for fusion data base. (2) Beryllium stress relaxation and creep measurements for lifetime modelling calculations. (3) Simplified recycle technique development for irradiated beryllium. (4) Beryllium neutron multiplier measurements using manganese bath absolute calibration techniques

  17. The status of beryllium technology for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Longhurst, G.R. E-mail: gx1@inel.gov; Shestakov, V.; Kawamura, H

    2000-12-01

    Beryllium was used for a number of years in the Joint European Torus (JET), and it is planned to be used extensively on the lower heat-flux surfaces of the reduced technical objective/reduced cost international thermonuclear experimental reactor (RTO/RC ITER). It has been included in various forms in a number of tritium breeding blanket designs. There are technical advantages but also a number of safety issues associated with the use of beryllium. Research in a variety of technical areas in recent years has revealed interesting issues concerning the use of beryllium in fusion. Progress in this research has been presented at a series of International Workshops on Beryllium Technology for Fusion. The most recent workshop was held in Karlsruhe, Germany on 15-17 September 1999. In this paper, a summary of findings presented there and their implications for the use of beryllium in the development of fusion reactors are presented.

  18. The status of beryllium technology for fusion

    International Nuclear Information System (INIS)

    Scaffidi-Argentina, F.; Longhurst, G.R.; Shestakov, V.; Kawamura, H.

    2000-01-01

    Beryllium was used for a number of years in the Joint European Torus (JET), and it is planned to be used extensively on the lower heat-flux surfaces of the reduced technical objective/reduced cost international thermonuclear experimental reactor (RTO/RC ITER). It has been included in various forms in a number of tritium breeding blanket designs. There are technical advantages but also a number of safety issues associated with the use of beryllium. Research in a variety of technical areas in recent years has revealed interesting issues concerning the use of beryllium in fusion. Progress in this research has been presented at a series of International Workshops on Beryllium Technology for Fusion. The most recent workshop was held in Karlsruhe, Germany on 15-17 September 1999. In this paper, a summary of findings presented there and their implications for the use of beryllium in the development of fusion reactors are presented

  19. Elemental segregation during resistance spot welding of boron containing advanced high strength steels

    NARCIS (Netherlands)

    Amirthalingam, M.; Van der Aa, E.M.; Kwakernaak, C.; Hermans, M.J.M.; Richardson, I.M.

    2015-01-01

    The partitioning behaviour of carbon, phosphorous and boron during the solidification of a resistance spot weld pool was studied using experimental simulations and a phase field model. Steels with varying carbon, phosphorous and boron contents were designed and subjected to a range of resistant spot

  20. Beryllium processing technology review for applications in plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  1. Beryllium processing technology review for applications in plasma-facing components

    International Nuclear Information System (INIS)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included

  2. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  3. Microstructure Analysis on Beryllium Reflector Blocks of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Jang, Jin Sung; Jeong, Yong Hwan; Han, Chang Hee; Jung, Yang Il; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Yong Seok; Oh, Kyu Hwan [Seoul National University, Seoul (Korea, Republic of)

    2012-05-15

    A pure beryllium has a very low mass absorption coefficient: it has been used as the reflector element material in research reactors. The lifetime of beryllium reflector elements usually determined by the swelling: the swelling leads to dimensional change in the reflector frame, which results in bending or cracking of the parts. The mechanical interference in between parts should be avoided; the anisotropy of beryllium also needs to be considered. A beryllium has hexagonal close-pack (HCP) crystal structure, which is inherently anisotropic. It has virtually no ductility in one direction. There are two main aspects in the manufacturing of beryllium which will affect its isotropy, and those are the powder morphology and the consolidation process. Powder metallurgy permits the material to be produced in isotropic and fine-grained form, which overcomes the crystal structure problem by distributing loads in low ductility oriented grains to high ductility oriented grains. There are three representative consolidating methods to make beryllium reflector blocks. Traditionally, most powder-derived grades of beryllium have been consolidated by vacuum hot-pressing (VHP). A column of loose beryllium powder is compacted under vacuum by the pressure of the opposed upper and lower punches, bringing the billet to final density. The VHP process is directional in nature: it contributes to the anisotropy of the material properties. Another consolidating method for beryllium powder is hot isostatic pressing (HIPing), which will enhance its isotropy. During HIPing, The argon gas exerts pressure uniformly in all directions on the can containing the beryllium powder. The HIP process is effective to improve the isotropy of the resulting material as well as refinement of grain sizes. The last consolidating method is hot extrusion (HE). A roughly close packed beryllium is subjected to severe plastic defomation, the grains are refined and the tensile strength is enhanced. Since the material

  4. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling

    Energy Technology Data Exchange (ETDEWEB)

    Trouillon, Raphael, E-mail: raphael.trouillon06@imperial.ac.u [Department of Bioengineering, Imperial College London, Royal School of Mines Building, London SW7 2AZ (United Kingdom); O' Hare, Danny [Department of Bioengineering, Imperial College London, Royal School of Mines Building, London SW7 2AZ (United Kingdom)

    2010-09-01

    Carbon based electrodes are widely used for in vivo and in vitro electrochemical studies. In particular, monoamine neurochemistry has been investigated using carbon microfibre electrodes. Similarly, glassy carbon (GC) is the preferred material for many biochemical applications, such as electrochemical detection in chromatography. More recently, boron doped diamond (BDD) has been utilized for biosensing, as its carbon sp{sup 3} structure is expected to provide better resistance to analyte fouling. However, the main factor limiting the use of electrochemical sensors for biological studies is the effect of the biological matrix. Indeed, in vivo or in situ measurements expose the sensor to a complex matrix of proteins, which adsorb on the sensing surface and interfere with the electrochemical measurements. Here, we compare the performance of three carbon based electrodes: GC, GC with low surface oxides and BDD. The redox species ruthenium(III) hexaammine (outer-sphere), ferrocyanide (surface sensitive) and the biologically significant dopamine have been investigated in protein and blood-mimicking matrices. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to examine the effect of spectator molecules and reaction products on electrode mechanisms. Our results show that BDD generally exhibits the best performance for most conditions and reactions and should therefore be preferred for measurements in biologically fouling environments. Furthermore, surface oxides seem also to improve resistance of the GC electrode to biofouling.

  5. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling

    International Nuclear Information System (INIS)

    Trouillon, Raphael; O'Hare, Danny

    2010-01-01

    Carbon based electrodes are widely used for in vivo and in vitro electrochemical studies. In particular, monoamine neurochemistry has been investigated using carbon microfibre electrodes. Similarly, glassy carbon (GC) is the preferred material for many biochemical applications, such as electrochemical detection in chromatography. More recently, boron doped diamond (BDD) has been utilized for biosensing, as its carbon sp 3 structure is expected to provide better resistance to analyte fouling. However, the main factor limiting the use of electrochemical sensors for biological studies is the effect of the biological matrix. Indeed, in vivo or in situ measurements expose the sensor to a complex matrix of proteins, which adsorb on the sensing surface and interfere with the electrochemical measurements. Here, we compare the performance of three carbon based electrodes: GC, GC with low surface oxides and BDD. The redox species ruthenium(III) hexaammine (outer-sphere), ferrocyanide (surface sensitive) and the biologically significant dopamine have been investigated in protein and blood-mimicking matrices. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to examine the effect of spectator molecules and reaction products on electrode mechanisms. Our results show that BDD generally exhibits the best performance for most conditions and reactions and should therefore be preferred for measurements in biologically fouling environments. Furthermore, surface oxides seem also to improve resistance of the GC electrode to biofouling.

  6. Safety handling of beryllium for fusion technology R and D

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Okamoto, Makoto; Terai, Takayuki; Odawara, Osamu; Ashibe, Kusuo; Ohara, Atsushi.

    1992-07-01

    Feasibility of beryllium use as a blanket neutron multiplier, first wall and plasma facing material has been studied for the D-T burning experiment reactors such as ITER. Various experimental work of beryllium and its compounds will be performed under the conditions of high temperature and high energy particle exposure simulating fusion reactor conditions. Beryllium is known as a hazardous substance and its handling has been carefully controlled by various health and safe guidances and/or regulations in many countries. Japanese regulations for hazardous substance provide various guidelines on beryllium for the protection of industrial workers and environment. This report was prepared for the safe handling of beryllium in a laboratory scale experiments for fusion technology R and D such as blanket development. Major items in this report are; (1) Brief review of guidances and regulations in USA, UK and Japan. (2) Safe handling and administration manuals at beryllium facilities in INEL, LANL and JET. (3) Conceptual design study of beryllium handling facility for small to mid-scale blanket R and D. (4) Data on beryllium toxicity, example of clinical diagnosis of beryllium disease, and environmental occurence of beryllium. (5) Personnel protection tools of Japanese Industrial Standard for hazardous substance. (author) 61 refs

  7. Hydrogen transport behavior of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Hankins, M.R.; Longhurst, G.R.; Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho, Inc., Idaho Falls, ID (United States)); Macaulay-Newcombe, R.G. (Dept. of Engineering Physics, Univ. Hamilton, ON (Canada))

    1992-12-01

    Beryllium is being evaluated for use as a plasma-facing material in the International Thermonuclear Experimental Reactor (ITER). One concern in the evaluation is the retention and permeation of tritium implanted into the plasma-facing surface. We performed laboratory-scale studies to investigate mechanisms that influence hydrogen transport and retention in beryllium foil specimens of rolled powder metallurgy product and rolled ingot cast beryllium. Specimen characterization was accomplished using scanning electron microscopy. Auger electron spectroscopy, and Rutherford backscattering spectrometry (RBS) techniques. Hydrogen transport was investigated using ion-beam permeation experiments and nuclear reaction analysis (NRA). Results indicate that trapping plays a significant role in permeation, re-emission, and retention, and that surface processes at both upstream and downstream surfaces are also important. (orig.).

  8. Characterization of plasma sprayed beryllium ITER first wall mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.

    1998-01-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  9. Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups

    International Nuclear Information System (INIS)

    Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

    1997-10-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface

  10. MEASUREMENTS OF THE PROPERTIES OF BERYLLIUM FOIL

    International Nuclear Information System (INIS)

    ZHAO, Y.; WANG, H.

    2000-01-01

    The electrical conductivity of beryllium at radio frequency (800 MHz) and liquid nitrogen temperature were investigated and measured. This summary addresses a collection of beryllium properties in the literature, an analysis of the anomalous skin effect, the test model, the experimental setup and improvements, MAFIA simulations, the measurement results and data analyses. The final results show that the conductivity of beryllium is not as good as indicated by the handbook, yet very close to copper at liquid nitrogen temperature

  11. Synthesis and characterization of boron carbon nitride films by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.F.; Bello, I.; Lei, M.K.; Lee, C.S.; Lee, S.T. [City Univ. of Hong Kong, Kowloon (Hong Kong). Dept. of Physics and Materials Science; Li, K.Y. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Kowloon (Hong Kong)

    2000-06-01

    Boron carbon nitride (BCN) films were deposited on silicon substrates by radio frequency (r.f.) (13.56 MHz) magnetron sputtering from hexagonal boron nitride (h-BN) and graphite targets in an Ar-N{sub 2} gas mixture of a constant pressure of 1.0 Pa. During deposition, the substrates were maintained at a temperature of 400 C and negatively biased using a pulsed voltage with a frequency of 330 kHz. Different analysis techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD) and scanning Auger electron microscopy (SAM) were used for characterization. In addition, the mechanical and tribological properties of the films were investigated by nano-indentation and micro-scratching. The carbon concentration in the films could be adjusted by the coverage area of a graphite sheet on the h-BN target, and decreased with increasing bias voltage. It was found that the ternary compound films within the B-C-N composition triangle possessed a less ordered structure. B--N, B--C and C--N chemical bonds were established in the films, and no phase separation of graphite and h-BN occurred. At zero bias voltage, amorphous BC{sub 2}N films with atomically smooth surface could be obtained, and the microfriction coefficient was 0.11 under a normal load of 1000 {mu}N. Hardness as determined by nano-indentation was usually in the range of 10-30 GPa, whereas the Young's modulus was within 100-200 GPa. (orig.)

  12. SHB1/HY1 Alleviates Excess Boron Stress by Increasing BOR4 Expression Level and Maintaining Boron Homeostasis in Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Qiang Lv

    2017-05-01

    Full Text Available Boron is an essential mineral nutrient for higher plant growth and development. However, excessive amounts of boron can be toxic. Here, we report on the characterization of an Arabidopsis mutant, shb1 (sensitive to high-level of boron 1, which exhibits hypersensitivity to excessive boron in roots. Positional cloning demonstrated that the shb1 mutant bears a point mutation in a gene encoding a heme oxygenase 1 (HO1 corresponding to the HY1 gene involved in photomorphogenesis. The transcription level of the SHB1/HY1 gene in roots is up-regulated under excessive boron stimulation. Either overexpressing SHB1/HY1 or applying the HO1 inducer hematin reduces boron accumulation in roots and confers high boron tolerance. Furthermore, carbon monoxide and bilirubin, catalytic products of HO1, partially rescue the boron toxicity-induced inhibition of primary root growth in shb1. Additionally, the mRNA level of BOR4, a boron efflux transporter, is reduced in shb1 roots with high levels of boron supplementation, and hematin cannot relieve the boron toxicity-induced root inhibition in bor4 mutants. Taken together, our study reveals that HO1 acts via its catalytic by-products to promote tolerance of excessive boron by up-regulating the transcription of the BOR4 gene and therefore promoting the exclusion of excessive boron in root cells.

  13. Preparation of a sinterable beryllium oxide through decomposition of beryllium hydroxide (1963)

    International Nuclear Information System (INIS)

    Bernier, M.

    1963-01-01

    In the course of the present study, we have attempted to precise the factors which among the ones effective in the course of the preparation of the beryllium hydroxide and oxide and during the sintering have an influence on the final result: the density and homogeneity of the sintered body. Of the several varieties of hydroxides precipitated from a sulfate solution the β-hydroxide only is always contaminated with beryllium sulfate and cannot be purified even by thorough washing. We noticed that those varieties of the hydroxide (gel, α, β) have different decomposition rates; this behaviour is used to identify and even to dose the different species in (α, β) mixtures. The various hydroxides transmit to the resulting oxides the shape they had when precipitated. Accordingly the history of the oxide is revealed by its behaviour during its fabrication and sintering. By comparing the results of the sintering operation with the various measurements performed on the oxide powders we are led to the conclusion that an oxide obtained from beryllium hydroxide is sinterable under vacuum if the following conditions are fulfilled: the particle size must lie between 0.1 and 0.2 μ and the BeSO 4 content of the powder must be less than 0.25 per cent wt (expressed as SO 3 /BeO). The best fitting is obtained with the oxide issued from an α-hydroxide precipitated as very small aggregates and with a low sulfur-content. We have observed that this is also the case for the oxide obtained by direct calcination of beryllium sulfate. (author) [fr

  14. Beryllium poisonings

    International Nuclear Information System (INIS)

    Alibert, S.

    1959-03-01

    This note reports a bibliographical study of beryllium toxicity. Thus, this bibliographical review addresses and outlines aspects and issues like aetiology, cases of acute poisoning (cutaneous manifestations, pulmonary manifestations), chronic poisoning (cutaneous, pulmonary and bone manifestations), excretion and localisation, and prognosis

  15. Thermogravimetric analysis of the beryllium/steam reaction

    Energy Technology Data Exchange (ETDEWEB)

    Druyts, Frank E-mail: fdruyts@sckcen.be; Iseghem, Pierre van

    2000-11-01

    In view of the safety assessment of new fusion reactor designs, kinetic data are needed on the beryllium/steam reaction. Therefore, thermogravimetric analysis was used to determine the reactivity of beryllium in steam as a function of temperature, irradiation history and porosity of the samples. To this purpose, reference unirradiated S-200 VHP beryllium samples were compared with specimens irradiated in the BR2 reactor up to fast neutron fluences (E>1 MeV) of respectively 1.6x10{sup 21} n cm{sup -2} (resulting in a helium content of 300 appm He and a theoretical density of 99.9%) and 4x10{sup 22} n cm{sup -2} (21000 appm He, 97.2% theoretical density). Kinetics were parabolic for all tested beryllium types at 600 deg. C. At 700 deg. C, kinetics were parabolic for the unirradiated and irradiated 99.9% dense beryllium, and accelerating/linear for the irradiated 97.2% material. At 800 deg. C, all samples showed accelerating/linear behaviour. There was no influence of porosity on the reaction rate of beryllium in steam within the limited investigated density range, except at 700 deg. C, where the measured reaction rate for the irradiated 97.2% dense samples is an order of magnitude higher than for the irradiated 99.9% dense specimens.

  16. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  17. Complete suppression of boron transient-enhanced diffusion and oxidation-enhanced diffusion in silicon using localized substitutional carbon incorporation

    Science.gov (United States)

    Carroll, M. S.; Chang, C.-L.; Sturm, J. C.; Büyüklimanli, T.

    1998-12-01

    In this letter, we show the ability, through introduction of a thin Si1-x-yGexCy layer, to eliminate the enhancement of enhanced boron diffusion in silicon due to an oxidizing surface or ion implant damage. This reduction of diffusion is accomplished through a low-temperature-grown thin epitaxial Si1-x-yGexCy layer which completely filters out excess interstitials introduced by oxidation or ion implant damage. We also quantify the oxidation-enhanced diffusion (OED) and transient-enhanced diffusion (TED) dependence on substitutional carbon level, and further report both the observation of carbon TED and OED, and its dependence on carbon levels.

  18. Effect of machining damage on tensile properties of beryllium

    International Nuclear Information System (INIS)

    Hanafee, J.E.

    1976-01-01

    It is well established that damage introduced at the surface of beryllium during machining operations can lower its mechanical properties. Tensile tests were conducted to illustrate this on beryllium presently being used for parts in the W79 program and similar to the new powder-processed beryllium specified for production (tentative specification MEL 76-001319). The objective of this study is to quantitatively illuminate the importance of controlling machining damage in this particular grade of powder-processed beryllium

  19. Suppression of boron diffusion using carbon co-implantation in DRAM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Suk Hun [School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si 440-746 (Korea, Republic of); Park, Se Geun; Kim, Shin Deuk; Jung, Hyuck-Chai; Kim, Il Gweon [Memory Division, Samsung Electronics Co. Ltd., Hwasung-si 445-330 (Korea, Republic of); Kang, Dong-Ho [School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si 440-746 (Korea, Republic of); Kim, Dae Jung; Lee, Kyu Pil; Choi, Joo Sun [Memory Division, Samsung Electronics Co. Ltd., Hwasung-si 445-330 (Korea, Republic of); Baek, Jung-Woo [Industrial Engineering Department, Chosun University, Gwangju-si 501-759 (Korea, Republic of); Choi, Moonsuk [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, South Korea (Korea, Republic of); Park, Yongkook [School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si 440-746 (Korea, Republic of); Choi, Changhwan, E-mail: cchoi@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, South Korea (Korea, Republic of); Park, Jin-Hong, E-mail: jhpark9@skku.edu [School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon-si 440-746 (Korea, Republic of)

    2016-10-15

    Highlights: • The impact of Ge + C co-implantation on dopant diffusion was investigated. • DIBL and V{sub TH} variation was improved by Ge + C co-implantation. • The V{sub TH} mismatch and the write characteristics were improved in the DRAM device. - Abstract: In this paper, germanium pre-amorphization implantation (PAI) and carbon co-implantation (Ge + C co-IIP) were applied to suppress boron diffusion. The corresponding characteristics were investigated in terms of the dopant diffusion, device performance, and its application to dynamic random access memory (DRAM). A shallow dopant profile was indicated and the threshold voltage (V{sub TH}) was reduced by approximately 45 mV by Ge + C co-IIP. In the DRAM device, the V{sub TH} mismatch of the sense amplifier NMOS pairs was reduced by approximately 15% and the write characteristics were improved two-fold.

  20. Sintering of beryllium oxide

    International Nuclear Information System (INIS)

    Caillat, R.; Pointud, R.

    1955-01-01

    This study had for origin to find a process permitting to manufacture bricks of beryllium oxide of pure nuclear grade, with a density as elevated as possible and with standardized shape. The sintering under load was the technique kept for the manufacture of the bricks. Because of the important toxicity of the beryllium oxide, the general features for the preliminary study of the sintering, have been determined while using alumina. The obtained results will be able to act as general indication for ulterior studies with sintering under load. (M.B.) [fr

  1. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage.

    Science.gov (United States)

    Liu, Yuxin; Liu, Ping; Wu, Dongqing; Huang, Yanshan; Tang, Yanping; Su, Yuezeng; Zhang, Fan; Feng, Xinliang

    2015-03-27

    Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron-doped, carbon-coated SnO2 /graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core-shell architecture and B-doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium-ion batteries with a highly stable capacity of 1165 mA h g(-1) at 0.1 A g(-1) after 360 cycles and an excellent rate capability of 600 mA h g(-1) at 3.2 A g(-1), and thus outperforms most of the previously reported SnO2-based anode materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Managing health effects of beryllium exposure

    National Research Council Canada - National Science Library

    Committee on Beryllium Alloy Exposures; Committee on Toxicology; National Research Council; Division on Earth and Life Studies; National Research Council

    2008-01-01

    ... to its occurrence in exposed people. Despite reduced workplace exposure, chronic beryllium disease continues to occur. In addition, beryllium has been classified as a likely human carcinogen by several agencies, such as the International Agency for Research on Cancer, the National Toxicology Program, and the U.S. Environmental Protection Agency. Thos...

  3. Beryllium in aircraft brakes - a summary

    International Nuclear Information System (INIS)

    Zenczak, S.

    1977-01-01

    Beryllium has been in use in aircraft brakes for ten years. During the original design phases of the several aircraft programs using beryllium a number of problems requiring solution confronted the designers. In actual service the solution to these problems performed much better than had been anticipated. A summary is presented. (author)

  4. Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.

    Science.gov (United States)

    Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E

    2009-07-01

    The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.

  5. Galvanic corrosion of beryllium welds

    International Nuclear Information System (INIS)

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-01-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl - solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed

  6. On Certain Topological Indices of Boron Triangular Nanotubes

    Science.gov (United States)

    Aslam, Adnan; Ahmad, Safyan; Gao, Wei

    2017-08-01

    The topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randić (Rα), first Zagreb (M1) and second Zagreb (M2), atom-bond connectivity (ABC), and geometric-arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC4) and the fifth version of geometric-arithmetic (GA5) indices of boron triangular nanotubes.

  7. Effect of Boronization on Ohmic Plasmas in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Maingi, R.; Wampler, W.R.; Blanchard, W.; Bell, M.; Bell, R.; LeBlanc, B.; Gates, D.; Kaye, S.; LaMarche, P.; Menard, J.; Mueller, D.; Na, H.K.; Nishino, N.; Paul, S.; Sabbagh, S.; Soukhanovskii, V.

    2001-01-01

    Boronization of the National Spherical Torus Experiment (NSTX) has enabled access to higher density, higher confinement plasmas. A glow discharge with 4 mTorr helium and 10% deuterated trimethyl boron deposited 1.7 g of boron on the plasma facing surfaces. Ion beam analysis of witness coupons showed a B+C areal density of 10 to the 18 (B+C) cm to the -2 corresponding to a film thickness of 100 nm. Subsequent ohmic discharges showed oxygen emission lines reduced by x15, carbon emission reduced by two and copper reduced to undetectable levels. After boronization, the plasma current flattop time increased by 70% enabling access to higher density, higher confinement plasmas

  8. Status of material development for lifetime expansion of beryllium reflector

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, C [Materion Brush Beryllium and Composites, California (United States); Tsuchiya, Kunihiko; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Hatano, Y [Univ. of Toyama, Toyama (Japan); Chakrov, P [INP-KNNC, Almaty (Kazakhstan); Kodama, M [Nippon Nuclear Fuel Development Co., Ltd., Oarai, Ibaraki (Japan)

    2012-03-15

    Beryllium has been used as the reflector element material in the reactor, specifically S-200F structural grade beryllium manufactured by Materion Brush Beryllium and Composites (former, Brush Wellman Inc.). As a part of the reactor upgrade, the Japan Atomic Energy Agency (JAEA) also has carried out the cooperation experiments to extend the operating lifetime of the beryllium reflector elements. It will first be necessary to determine which of the material's physical, mechanical and chemical properties will be the most influential on that choice. The irradiation testing plans to evaluate the various beryllium grades are also briefly considered and prepared. In this paper, material selection, irradiation test plan and PEI development for lifetime expansion of beryllium are described for material testing reactors. (author)

  9. Experiments on tritium behavior in beryllium, (1)

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Ishizuka, Etsuo; Matsumoto, Mikio; Inada, Seiji; Sezaki, Katsuji; Saito, Minoru; Kato, Mineo.

    1989-06-01

    In JMTR, it was observed that the tritium concentration of the primary coolant increases with the reactor operation at 50 MW. As one of the tritium generation sources, we paid attention to a neutron reflector made of beryllium because the tritium generation rate in the beryllium is bigger than other components in the reactor core. On the other hand, the irradiation test of blanket materials (i.e. tritium breeding materials and neutron multipling materials) are planned for development of the fusion reactor in JMTR and the beryllium will be also irradiated as a neutron multiplier with tritium breeding materials. Therefore, as the irradiated specimens, we used a hot-pressed beryllium disk fabricated by the same method as the neutron reflector or the neutron multiplier and conducted the irradiation tests in JMTR. The purpose of these tests are to clarify the tritium behavior in the hot-pressed beryllium. In this paper, from a viewpoint of the fabrication of capsules for neutron irradiation, the specifications of the irradiated specimens and capsules are summarized. Additionally, the results on the puncture test of the container of the irradiation specimens are described. (author)

  10. Structure investigations of some beryllium materials

    Energy Technology Data Exchange (ETDEWEB)

    Faeldt, I; Lagerberg, G

    1960-05-15

    Metallographic structure, microhardness and texture have been studied on various types of beryllium metal including hot pressed powder, a rolled strip and an extruded tube It was found that beryllium exhibits its highest hardness in directions perpendicular to the basal plane. Good ideas of the prevailing textures were obtained with an ordinary X-ray diffractometer.

  11. Structure investigations of some beryllium materials

    International Nuclear Information System (INIS)

    Faeldt, I.; Lagerberg, G.

    1960-05-01

    Metallographic structure, microhardness and texture have been studied on various types of beryllium metal including hot pressed powder, a rolled strip and an extruded tube It was found that beryllium exhibits its highest hardness in directions perpendicular to the basal plane. Good ideas of the prevailing textures were obtained with an ordinary X-ray diffractometer

  12. The adhesive bonding of beryllium structural components

    International Nuclear Information System (INIS)

    Fullerton-Batten, R.C.

    1977-01-01

    Where service conditions permit, adhesive bonding is a highly recommendable, reliable means of joining beryllium structural parts. Several important programs have successfully used adhesive bonding for joining structural and non-structural beryllium components. Adhesive bonding minimizes stress concentrations associated with other joining techniques and considerably improves fatigue resistance. In addition, no degradation of base metal properties occur. In many instances, structural joints can be fabricated more cheaply by adhesive bonding or in combination with adhesive bonding than by any other method used alone. An evaluation program on structural adhesive bonding of beryllium sheet components is described. A suitable surface pretreatment for beryllium adherends prior to bonding is given. Tensile shear strength and fatigue properties of FM 1000 and FM 123-5 adhesive bonded joints are reviewed and compared with data obtained from riveted joints of similar geometry. (author)

  13. Beryllium armour produced by evaporation-condensation technique

    International Nuclear Information System (INIS)

    Anisimov, A.; Frolov, V.; Moszherin, S.; Pepekin, G.; Pirogov, A.; Komarov, V.; Mazul, I.

    1997-01-01

    Beryllium, as armour material for ITER plasma facing components, has a limited erosion lifetime. In order to repair the surface of eroded tiles in-situ, Be-deposition technologies are under consideration. One of them uses the physical vapour deposition of beryllium on copper or beryllium substrate produced by a hot Be-target placed in the vicinity of this substrate. Three different options for using this technology for ITER Be-armour application are considered. The first option is the repair in-situ of eroded Be-tiles. The second option suggests the use of this technology to provide the joining of Be to Cu-substrate. The third option assumes the use of evaporated-condensed beryllium as a bulk tile material bonded to copper substrate by conventional joining (Brazing et al.) techniques. The first results and prospects of these approaches are presented below. (orig.)

  14. Experiments on tritium behavior in beryllium, (2)

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo; Kawamura, Hiroshi; Nakata, Hirokatsu; Sugai, Hiroyuki; Tanase, Masakazu.

    1990-02-01

    Beryllium has been used as the neutron reflector of material testing reactor and as the neutron multiplier for the fusion reactor lately. To study the tritium behavior in beryllium, we conducted the experiments, i.e., tritium release by recoil or diffusion by using the hot-pressed beryllium which had been produced both tritium and helium by neutron irradiation. From our experiments, we found that (1) amount of tritium production per one cycle irradiation (lasting 22 days) of JMTR is 10 mCi/g, (2) amount of tritium per surface area of hot-pressed beryllium released by recoil is 4 μCi/cm 2 , (3) diffusion coefficient of tritium in a temperature range of 800 ∼1180degC can be expressed with the following equation; D = 8.7 x 10 4 exp(-2.9x10 5 /R/T) cm 2 /s. (author)

  15. Assessment of the feasibility and advantages of beryllium recycling

    International Nuclear Information System (INIS)

    Druyts, F.; Braet, J.; Ooms, L.

    2006-01-01

    This paper proposes a generic route for the recycling of beryllium from fusion reactors, based on critical issues associated with beryllium pebbles after their service life in the HCPB breeding blanket. These critical issues are the high tritium inventory, the presence of long-lived radionuclides (among which transuranics due to traces of uranium in the base metal), and the chemical toxicity of beryllium. On the basis of the chemical and radiochemical characteristics of the neutron irradiated beryllium pebbles, we describe a possible recycling route. The first step is the detritiation of the material. This can be achieved by heating the pebbles to 800 o C under an argon flow. The argon gas avoids oxidation of the beryllium, and at the proposed temperature the tritium inventory is readily released from the pebbles. In a second step, the released tritium can be oxidised on a copper oxide bed to produce tritiated water, which is consistent with the current international strategy to convert all kinds of tritiated waste into tritiated water, which can subsequently be treated in a water detritiation plant. Removal of radionuclides from the beryllium pebbles may be achieved by several types of chloride processes. The first step is to pass chlorine gas (in an argon flow) over the pebbles, thus yielding volatile BeCl 2 . This beryllium chloride can then be purified by fractional distillation. As a small fraction of the beryllium chloride contains the long-lived 10 Be isotope, 10BeCl 2 has to be separated from 9BeCl 2 , which could be achieved by centrifugal techniques. The product can then be reduced to obtain high-purity metallic beryllium. Two candidate reduction methods were identified: fused salt electrolysis and thermal decomposition. Both these methods require laboratory parametric studies to maximise the yield and achieve a high purity metal, before either process can be upgraded to a larger scale. The eventual product of the chloride reduction process must be a high

  16. Boron effect on stainless steel plasticity under hot deformation

    International Nuclear Information System (INIS)

    Bulat, S.I.; Kardonov, B.A.; Sorokina, N.A.

    1978-01-01

    The effect of boron on plasticity of stainless steels at temperatures of hot deformation has been studied at three levels of alloying, i.e. 0-0.01% (micro-alloying or modifying), 0.01-0.02% (low alloying) and 0.02-2.0% (high alloying). Introduction of 0.001-0.005% of boron increases hot plasticity of both low and high carbon stainless steels due to decrease in grain size and strengthening of grain boundaries. Microalloying by boron has a positive effect at temperatures below 1200-1220 deg C. At higher temperatures, particularly when its content exceeds 0.008%, boron deteriorates plasticity by increasing the size of grains and weakening their boundaries. 0.1-2% boron strengthen the stainless steel and dectease its plasticity

  17. Metallurgical viewpoints on the brittleness of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1960-02-15

    At present the development and use of beryllium metal for structural applications is severely hampered by its brittleness. Reasons for this lack of ductility are reviewed in discussing the deformation behaviour of beryllium in relation to other hexagonal metals. The ease of fracturing in beryllium is assumed to be a consequence of a limited number of deformation modes in combination with high deformation resistance. Models for the nucleation of fracture are suggested. The relation of ductility to elastic constants as well as to grain size, texture and alloying additions is discussed.

  18. Metallurgical viewpoints on the brittleness of beryllium

    International Nuclear Information System (INIS)

    Lagerberg, G.

    1960-02-01

    At present the development and use of beryllium metal for structural applications is severely hampered by its brittleness. Reasons for this lack of ductility are reviewed in discussing the deformation behaviour of beryllium in relation to other hexagonal metals. The ease of fracturing in beryllium is assumed to be a consequence of a limited number of deformation modes in combination with high deformation resistance. Models for the nucleation of fracture are suggested. The relation of ductility to elastic constants as well as to grain size, texture and alloying additions is discussed

  19. Laser welding of a beryllium/tantalum collimator

    International Nuclear Information System (INIS)

    Lingenfelter, A.C.; Anglin, C.D.

    1985-01-01

    This report describes the methods utilized in the fabrication of a collimator from 0.001 inch thick beryllium and tantalum foil. The laser welding process proved to be an acceptable method for joining the beryllium in a standing edge joint configuration

  20. Beryllium brazing considerations in CANDU fuel bundle manufacture

    International Nuclear Information System (INIS)

    Harmsen, J.; Pant, A.; Lewis, B.J.; Thompson, W.T.

    2010-01-01

    'Full text:' Appendages of CANDU fuel bundle elements are currently joined to zircaloy sheaths by vacuum beryllium brazing. Ongoing environmental and workplace concerns about beryllium combined with the continuous efforts by Cameco Fuel Manufacturing in its improvement process, initiated this study to find a substitute for pure beryllium. The presentation will review the necessary functionality of brazing alloy components and short list a series of alloys with the potential to duplicate the performance of pure beryllium. Modifications to current manufacturing processes based on in-plant testing will be discussed in relation to the use of these alloys. The presentation will conclude with a summary of the progress to date and further testing expected to be necessary.

  1. Deuterium permeation and diffusion in high-purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.; Riehm, M.P.; Thompson, D.A.; Smeltzer, W.W.

    1990-01-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. Using multilayer permeation theory the effects of surface oxide were eliminated and the diffusion coefficients of the bulk beryllium determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 =6.7x10 -9 m 2 /s and E D =28.4 kJ/mol. For the high-grade beryllium samples (99%) the parameters are D 0 =8.0x10 -9 m 2 /s and E D =35.1 kJ/mol. (orig.)

  2. Boron-containing catalysts for dry reforming of methane to synthesis gas

    KAUST Repository

    Takanabe, Kazuhiro; Basset, Jean-Marie; Park, Jung-Hyun; Samal, Akshaya Kumar; Alsabban, Bedour

    2018-01-01

    The present invention uses a cobalt catalyst for carbon dioxide reforming of lower alkanes to synthesis gas having a cobalt catalyst on an oxide support where the supported cobalt catalyst has been modified with a boron precursor. The boron

  3. Status of beryllium R and D in Japan

    International Nuclear Information System (INIS)

    Kawamura, H.; Ishida, K.

    2004-01-01

    Recently, several R and D program of beryllium for fusion are being promoted in Japan and community of beryllium study is growing up. In the R and D area of beryllium for solid breeding blanket, major subjects are beryllide application for prototype reactor, lifetime evaluation of neutron multiplier, impurity effect of beryllium and recycling of irradiated beryllium. Especially, the study of beryllide application has significant progress in these two years. The basic properties such as tritium inventory, oxidation behavior, steam interaction for stoichiometric Be 12 Ti fabricated by HIP (Hot Isostatic Pressing) have been studied and some advantages against beryllium were made clear. For manufacturing technology development, phase diagram and ductility improvement have been studied. And, Be 12 Ti pebbles with the improved microstructure were successfully fabricated by Rotating Electrode Process. In order to enhance the R and D activities, the R and D network consisted of industries, universities and laboratories in all Japan have been organized. Many collaboration and information exchange strongly promotes the R and D and some projects for commercial application have been launched form these activities. Also international collaborative project such as IEA and ISTC have been launched or planned. Recent result of R and D in Japan is described on this paper. (author)

  4. Quantitative method of determining beryllium or a compound thereof in a sample

    Science.gov (United States)

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2010-08-24

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  5. Bioenvironmental Engineering Guide to Beryllium

    Science.gov (United States)

    2017-07-26

    Dermal contact with beryllium can result in dermatitis resembling first- or second-degree burns and skin granulomas [7]. Beryllium dust, fume...minute short-term exposure limit (STEL) of 2.0 µg/m3 [§1910.1024(c)(2) & §1926.1124(c)(2)], and added provisions to prevent skin contact [§1910.1024(b...document you want more information, contact the Environmental, Safety, and Occupational Health (ESOH) Service Center at DSN 798-3764, 1-888-232-ESOH (3764

  6. Preparation of a sinterable beryllium oxide through decomposition of beryllium hydroxide (1963); Preparation d'un oxyde de beryllium frittable par decomposition de l'hydiloxyde (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    In the course of the present study, we have attempted to precise the factors which among the ones effective in the course of the preparation of the beryllium hydroxide and oxide and during the sintering have an influence on the final result: the density and homogeneity of the sintered body. Of the several varieties of hydroxides precipitated from a sulfate solution the {beta}-hydroxide only is always contaminated with beryllium sulfate and cannot be purified even by thorough washing. We noticed that those varieties of the hydroxide (gel, {alpha}, {beta}) have different decomposition rates; this behaviour is used to identify and even to dose the different species in ({alpha}, {beta}) mixtures. The various hydroxides transmit to the resulting oxides the shape they had when precipitated. Accordingly the history of the oxide is revealed by its behaviour during its fabrication and sintering. By comparing the results of the sintering operation with the various measurements performed on the oxide powders we are led to the conclusion that an oxide obtained from beryllium hydroxide is sinterable under vacuum if the following conditions are fulfilled: the particle size must lie between 0.1 and 0.2 {mu} and the BeSO{sub 4} content of the powder must be less than 0.25 per cent wt (expressed as SO{sub 3}/BeO). The best fitting is obtained with the oxide issued from an {alpha}-hydroxide precipitated as very small aggregates and with a low sulfur-content. We have observed that this is also the case for the oxide obtained by direct calcination of beryllium sulfate. (author) [French] Au cours de cette etude, nous avons cherche a preciser les facteurs qui, intervenant tout au long de la preparation de l'hydroxyde, puis de l'oxyde de beryllium et enfin du frittage, peuvent avoir une influence sur le resultat final: la densite et l'homogeneite du fritte. Parmi tous les hydroxydes precipites d'une solution de sulfate, seul l'hydroxyde {beta} est toujours fortement pollue par le sulfate

  7. Impurities effect on the swelling of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Donne, M.D.; Scaffidi-Argentina, F.

    1995-01-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found

  8. Boron isotope systematics during magma-carbonate interaction: an experimental study from Merapi (Indonesia) and Vesuvius (Italy)

    Science.gov (United States)

    Deegan, F. M.; Jolis, E. M.; Troll, V. R.; Freda, C.; Whitehouse, M.

    2011-12-01

    Carbonate assimilation is increasingly recognized as an important process affecting the compositional evolution of magma and its inherent ability to erupt explosively due to release of carbonate-derived CO2 [e.g., 1, 2, 3]. In order to gain insights into this process, we performed short time-scale carbonate dissolution experiments in silicate melt using natural starting materials from Merapi and Vesuvius volcanoes at magmatic pressure and temperature [2, 4]. The experiments enable us to resolve in detail the timescales, textures and chemical features of carbonate assimilation. Three compositionally distinct glass domains have been defined: i) Ca-normal glass, similar in composition to the starting material; ii) Ca-rich, contaminated glass; and iii) a diffusional glass interface between the Ca-normal and Ca-rich glass, characterized by steady interchange between SiO2 and CaO. Here we present new boron isotope data for the experimental products obtained by SIMS. The glasses show distinct and systematic variation in their δ11B (%) values. The contaminated glasses generally show extremely negative δ11B values (down to -41 %) relative to both the uncontaminated experimental glass and fresh arc volcanics (-7 to +7 % [5]). Considering that carbonates have δ11B values of +9 to +26 [6], the data cannot be explained by simple mixing processes between the end-members alone. This implies that the δ11B of the original contaminant was drastically modified before being incorporated into the melt, which can be explained by B isotope fractionation during breakdown and degassing of the carbonate. Our data represents the first B isotope analyses of experimental products of carbonate assimilation. They provide novel and well constrained insights into the behavior of boron upon degassing of carbonate. This, in turn, has implications for both i) late stage contamination and volatile addition to hazardous volcanic systems located over carbonate basement (cf. [7]) and ii) studies of

  9. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  10. Fractionation of boron isotopes in Icelandic hydrothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.K.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive δ 1 1B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive δ 1 1B than the high temperature systems, indicating fractionation of boron due to absorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems. (author). 14 refs., 2 figs

  11. Modeling of hydrogen interactions with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-01-01

    In this paper, improved mathematical models are developed for hydrogen interactions with beryllium. This includes the saturation effect observed for high-flux implantation of ions from plasmas and retention of tritium produced from neutronic transmutations in beryllium. Use of the models developed is justified by showing how they can replicated experimental data using the TMAP4 tritium transport code. (author)

  12. 75 FR 80734 - Chronic Beryllium Disease Prevention Program

    Science.gov (United States)

    2010-12-23

    ... are used in nuclear weapons as nuclear reactor moderators or reflectors and as nuclear reactor fuel...), grinding, and machine tooling of parts. Inhalation of beryllium particles may cause chronic beryllium...

  13. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    International Nuclear Information System (INIS)

    Glen R. Longhurst

    2007-01-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  14. Deuterium permeation and diffusion in high purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.

    1990-05-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. A multilayer permeation theory was used in order to eliminate the surface oxide effects and the diffusion coefficients of the bulk beryllium were determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 = 6.7 x 10 -9 [m 2 /s] and E D = 28.4 [KJ/mol]; and for the high-grade beryllium samples (99%) the parameters are D 0 = 8.0 x 10 -9 [m 2 /s] and E D = 35.1 [KJ/mol

  15. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating – A molecular dynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Badjian, H.; Setoodeh, A.R., E-mail: setoodeh@sutech.ac.ir

    2017-02-15

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  16. Formation of cellular structure in beryllium at plastic working

    International Nuclear Information System (INIS)

    Papirov, I.I.; Nikolaenko, A.A.; Shokurov, V.S.; Pikalov, A.I.

    2013-01-01

    Conditions of cellular structure formation are investigated at various kinds of deformation and heat treatment of beryllium ingots. It is shown that the cellular structure plays the important role in formation of complex of physical mechanical properties of beryllium. Influence of impurity, various conditions of deformation (temperature, squeezing degree) and heat treatments on substructure, texture and mechanical properties of metal is investigated. Optimum conditions of rolling and heat treatments of beryllium are defined. The way of sign-variable cyclic deformation of beryllium ingots is offered for reception quasi-isotropic fine-grained metal. Physical-mechanical properties of ultra fine-grained metal are studied

  17. On certain topological indices of boron triangular nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, Adnan [Univ. of Engineering and Technology, Lahore (Pakistan). Dept. of Natural Sciences and Humanities; Ahmad, Safyan [GC Univ. Lahore (Pakistan). Abdus Salam School of Mathematical Sciences; Gao, Wei [Yunnan Normal Univ., Kunming (China). School of Information Science and Technology

    2017-11-01

    The topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randic (R{sub a}), first Zagreb (M{sub 1}) and second Zagreb (M{sub 2}), atom-bond connectivity (ABC), and geometric-arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC{sub 4}) and the fifth version of geometric-arithmetic (GA{sub 5}) indices of boron triangular nanotubes.

  18. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  19. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  20. Preparation of copper-beryllium alloys from Indian beryl

    International Nuclear Information System (INIS)

    Paul, C.M.; Sharma, B.P.; Subba Rao, K.S.; Rajadhyaksha, M.G.; Sundaram, C.V.

    1975-01-01

    The paper presents the results of laboratory-scale investigations on the preparation of copper-beryllium and aluminium beryllium master alloys starting from Indian beryl and adopting the fluoride process. The flowsheet involves: (1) conversion of the Be-values in beryl into water soluble sodium beryllium fluoride, (2) preparation of beryllium hydroxide by alkali treatment of aqueous Na 2 BeF 4 (3) conversion of Be(OH) 2 to (NH 4 ) 2 BeF 4 by treatment with NH 4 HF 2 (4) thermal decomposition of (NH 4 ) 2 BeF 4 to BeF 2 and (5) magnesium reduction of BeF 2 (without/with) the addition of copper/aluminium to obtain beryllium metal/alloys. The method has been successfully employed for the preparation of Cu-Be master alloys containing about 8% Be and free of Mg on a 200 gm scale. A1-80% Be master alloys have also been prepared by this method. Toxicity and health hazards associated with Be are discussed and the steps taken to ensure safe handling of Be are described. (author)

  1. 10 CFR 850.20 - Baseline beryllium inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy... Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of the... inventory, the responsible employer must: (1) Review current and historical records; (2) Interview workers...

  2. Characterization of shocked beryllium

    Directory of Open Access Journals (Sweden)

    Papin P.A.

    2012-08-01

    Full Text Available While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity models, the Preston-Tonks-Wallace (PTW and Mechanical Threshold Stress (MTS models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional “arrested” drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  3. SAFARI-1 research reactor beryllium reflector element replacement, management and relocation

    International Nuclear Information System (INIS)

    Kock, Marisa De; Vlok, Jwh; Steynberg, B.J.

    2012-01-01

    The beryllium (Be) reflector elements of the SAFARI-1 Research Reactor were replaced in October 2011 as part of the Ageing Management Programme of the reactor. After more than three million MWh of operation over a period of 47 years, core reloading became more difficult due to the geometric deformation of the beryllium reflector elements. During the replacement of the reflector elements, criticality and reactivity worth experiments were performed and found to compare favorably with calculated values. A Beryllium Management Programme was established at SAFARI-1 to identify and apply effective and appropriate actions and practices for managing the ageing of the new beryllium reflector elements. This will provide timely detection and mitigation of ageing mechanisms relevant to beryllium reflector elements, supporting the life extension of these elements. These actions and practices include monitoring of the tritium levels in the primary water, calculating and measuring the fluxes within the beryllium reflector positions, measuring the straightness of the elements to track geometric deformation and visually inspecting the reflector elements for crack formation. Acceptance criteria indicating the end of life of the elements were established. These criteria take into account the smallest gap that could exist between elements, sudden changes in the tritium levels and formation of cracks. All the data obtained through the Beryllium Management Programme are recorded in a database. Additional benefits gained through a Beryllium Management Programme are the availability of a complete irradiation history of the beryllium reflector elements at any point in time and the establishment of a knowledge base to assists in the understanding of the behavior of the beryllium reflector elements in an irradiation environment. Straightness baseline measurements of the new beryllium reflector elements were performed with a beryllium straightness measurement tool, designed at SAFARI-1. The

  4. SAFARI-1 research reactor beryllium reflector element replacement, management and relocation

    Energy Technology Data Exchange (ETDEWEB)

    Kock, Marisa De; Vlok, Jwh; Steynberg, B J [South Africa Atomic Energy Corporation (Necsa) (South Africa)

    2012-03-15

    The beryllium (Be) reflector elements of the SAFARI-1 Research Reactor were replaced in October 2011 as part of the Ageing Management Programme of the reactor. After more than three million MWh of operation over a period of 47 years, core reloading became more difficult due to the geometric deformation of the beryllium reflector elements. During the replacement of the reflector elements, criticality and reactivity worth experiments were performed and found to compare favorably with calculated values. A Beryllium Management Programme was established at SAFARI-1 to identify and apply effective and appropriate actions and practices for managing the ageing of the new beryllium reflector elements. This will provide timely detection and mitigation of ageing mechanisms relevant to beryllium reflector elements, supporting the life extension of these elements. These actions and practices include monitoring of the tritium levels in the primary water, calculating and measuring the fluxes within the beryllium reflector positions, measuring the straightness of the elements to track geometric deformation and visually inspecting the reflector elements for crack formation. Acceptance criteria indicating the end of life of the elements were established. These criteria take into account the smallest gap that could exist between elements, sudden changes in the tritium levels and formation of cracks. All the data obtained through the Beryllium Management Programme are recorded in a database. Additional benefits gained through a Beryllium Management Programme are the availability of a complete irradiation history of the beryllium reflector elements at any point in time and the establishment of a knowledge base to assists in the understanding of the behavior of the beryllium reflector elements in an irradiation environment. Straightness baseline measurements of the new beryllium reflector elements were performed with a beryllium straightness measurement tool, designed at SAFARI-1. The

  5. Occupational and non-occupational allergic contact dermatitis from beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Vilaplana, J; Romaguera, C; Grimalt, F [Allergy Department, Dermatological Service Hospital Clinico, Barcelona (Spain)

    1992-01-01

    There are various references to sensitization to beryllium in the literature. Since introducing a patch testing series for patients with suspected sensitization to metals, we have found 3 cases of sensitization to beryllium. Of these 3 cases, we regard the first 2 as having relevant sensitization. Beryllium chloride (1% pet.) was positive in 3 patients and negative in 150 controls. (au).

  6. Occupational and non-occupational allergic contact dermatitis from beryllium

    International Nuclear Information System (INIS)

    Vilaplana, J.; Romaguera, C.; Grimalt, F.

    1992-01-01

    There are various references to sensitization to beryllium in the literature. Since introducing a patch testing series for patients with suspected sensitization to metals, we have found 3 cases of sensitization to beryllium. Of these 3 cases, we regard the first 2 as having relevant sensitization. Beryllium chloride (1% pet.) was positive in 3 patients and negative in 150 controls. (au)

  7. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    Science.gov (United States)

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  8. Boronization in TEXTOR

    International Nuclear Information System (INIS)

    Winter, J.; Esser, H.G.; Koenen, L.; Reimer, H.; Seggern, J. v.; Schlueter, J.; Waelbroeck, F.; Wienhold, P.; Veprek, S.

    1989-01-01

    The liner and limiters of TEXTOR have been coated in situ with a boron containing carbon film using a RG discharge in a throughflow of 0.8 He + 0.1 B 2 H 6 + 0.1 CH 4 . The average film thickness was 30-50 nm, the ratio of boron and carbon in the layer was about 1:1 according to Auger Electron Spectroscopy. Subsequent tokamak discharges are characterized by a small fraction of radiated power ( eff lower than 1.2 are derived from conductivity measurements. The most prominent change in the impurity concentration compared to good conditions in a carbonized surrounding is measured for oxygen. The value OVI/anti n e of the OVI intensity normalized to the averaged plasma density anti n e decreases by more than a factor of four. The decrease in the oxygen content manifests itself also as a reduction of the CO and CO 2 partial pressures measured during and after the discharge with a sniffer probe. The carbon levels are reduced by a factor of about two as measured by the normalized intensity CII/anti n e of the CII line and via the ratio of the C fluxes and deuterium fluxed measured at the limiter (CI/D α ). The wall shows a pronounced sorption of hydrogen from the plasma, easing the density control and the establishment of low recycling conditions. The beneficial conditions did not show a significant deterioration during more than 200 discharges, including numerous shots at ICRH power levels >2 MW. (orig.)

  9. Analysis of Beryllium Having Irradiated at the RSG-GAS Core using ORIGEN2 Code

    International Nuclear Information System (INIS)

    Jaja Sukmana; Jonnie AK; S-Suwarto; Irwan

    2012-01-01

    Analysis of activation products generated by irradiated beryllium at the RSG-GAS core has been done using ORIGEN2 code. By assuming that irradiation is 176 days, neutron flux average of 2.30e+14 n/cm 2 s, radioisotopes rose from activated Be are tritium, lithium, beryllium, carbon, magnesium, aluminum, silicon, argon, calcium, scandium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, and lead. The highest activity after 100 days of irradiation demonstrated by Be-10 (7.99 E-03 Curie), H-3 (2.97 E-03 Curie), Cr-51, Fe-55 and Co-60. Radioactivity generated getting smaller when irradiation time are long. From this analysis it can be conclude that radioactivity was caused by impurities present in Be such as Mn-54, Fe-59, Zn-65, and Li-6. (author)

  10. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.

    1995-01-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H 2 gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m 2

  11. Advanced broadband baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.

    1991-01-01

    In this paper broadband performance characteristics of robust, light-weight, diffuse-absorptive baffle surfaces fabricated from sputter-deposited beryllium on cross-rolled Be ingot sheet material and on Be foam, plasma sprayed beryllium, plasma sprayed boron-on-beryllium, and chemical vapor deposited boron carbide on graphite are described and compared to Martin Black. An overview of the Optics Manufacturing Operations Development and Integration Laboratory (MODIL) Advanced Optical Baffle Program will be discussed

  12. Deuterium/hydrogen isotope exchange on beryllium and beryllium nitride; Deuterium/Wasserstoff-Isotopenaustausch an Beryllium und Berylliumnitrid

    Energy Technology Data Exchange (ETDEWEB)

    Dollase, Petra; Eichler, Michael; Koeppen, Martin; Dittmar, Timo; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    In the fusion experiments JET and ITER, the first wall is made up of beryllium. The use of nitrogen is discussed for radiative cooling in the divertor. This can react with the surface of the first wall to form beryllium nitride (Be{sub 3}N{sub 2}). The hydrogen isotopes deuterium and tritium, which react in the fusion reaction to helium and a neutron, are used as fuel. Since the magnetic confinement of the plasma is not perfect, deuterium and tritium ions are also found on the beryllium wall and can accumulate there. This should be avoided due to the radioactivity of tritium. Therefore the isotope exchange with deuterium is investigated to regenerate the first wall. We investigate the isotopic exchange of deuterium and protium in order to have not to work with radioactive tritium. The ion bombardment is simulated with an ion source. With voltages up to a maximum of 5 kV, deuterium and protic hydrogen ions are implanted in polycrystalline Be and Be{sub 3}N{sub 2}. The samples are then analyzed in situ using X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). Subsequently, samples prepared under the same conditions are characterized ex-situ by means of nuclear reaction analysis (NRA). [German] In den Fusionsexperimenten JET und ITER besteht die erste Wand im Hauptraum aus Beryllium (Be). Zur Strahlungskuehlung im Divertor wird der Einsatz von Stickstoff diskutiert. Dieser kann mit der Oberflaeche der ersten Wand zu Berylliumnitrid (Be{sub 3}N{sub 2}) reagieren. Als Brennstoff werden die Wasserstoffisotope Deuterium und Tritium eingesetzt, die in der Fusionsreaktion zu Helium und einem Neutron reagieren. Da der magnetische Einschluss des Plasmas nicht perfekt ist, treffen auch Deuterium- und Tritiumionen auf die Berylliumwand auf und koennen sich dort anreichern. Das soll aufgrund der Radioaktivitaet von Tritium unbedingt vermieden werden. Daher wird zur Regenerierung der ersten Wand der Isotopenaustausch mit Deuterium untersucht. Wir

  13. Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Jang, S. H.; Hwang, D. Y.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-09-15

    Carbon coating approach is used to prepare carbon-doped MgB{sub 2} bulk samples using low-cost naphthalene (C{sub 10}H{sub 8}) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at 120 degrees C and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with carbon. As compared to un-doped MgB{sub 2}, a systematic enhancement in Jc(H) properties with increasing carbon doping level was observed for naphthalene-derived C-doped MgB{sub 2} samples. The substantial enhancement in Jc is most likely due to the incorporation of C into MgB{sub 2} lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

  14. The Rocky Flats Environmental Technology Site beryllium characterization project

    International Nuclear Information System (INIS)

    Morrell, D.M.; Miller, J.R.; Allen, D.F.

    1999-01-01

    A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found

  15. Phosphorus-containing azo compounds as analytical reagents for beryllium

    International Nuclear Information System (INIS)

    Lisenko, N.F.; Dolzhnikova, E.N.; Petrova, G.S.; Tsvetkov, E.N.; Vsesoyuznyj Nauchno-Issledovatel'skij Inst. Khimicheskikh Reaktivov i Osobo Chistykh Veshchestv, Moscow; AN SSSR, Moscow. Inst. Ehlementoorganicheskikh Soedinenij)

    1979-01-01

    The interaction of beryllium with six new azocompounds based on chromotropic or R-acids and o-aminophenyl-phenylphosphonic acids is studied. A sharp difference in the detection limit for beryllium by the two groups of compounds is found. Azoderivatives based on chromotropic acid are promising agent for beryllium due to sufficiently high selectivity. The introduction of the methyl-group into the o-position of the phosphorus-containing group improves the analytical properties of agents. Techniques are developed for the determination of beryllium in bronze, sewage water and in an artificial mixture using a sodium salt of 1.8-dioxi-2 [2' - (oxi- (o-methylphenyl)-phosphenyl)-phenilazo]-naphtalene-3.6-disulfoacid

  16. Comparison of plastic, high-density carbon, and beryllium as NIF ablators

    Science.gov (United States)

    Kritcher, Andrea

    2017-10-01

    An effort is underway to compare the three principal ablators for National Ignition Facility (NIF) implosions: plastic (CH), High Density Carbon (HDC), and beryllium (Be). This presentation will summarize the comparison and discuss in more detail the issues pertaining to hohlraum performance and symmetry. Several aspects of the hohlraum design are affected by the ablator properties, as the ablator constrains the first shock and determines the overall pulse length. HDC targets can utilize shorter pulse lengths due to the thinner, higher density shell, and should be less susceptible to late time wall motion. However, HDC requires a larger picket energy to ensure adequate melt, leading to increased late time wall movement. Be is intermediate to CH and HDC in both these regards, and has more ablated material in the hohlraum. These tradeoffs as well as other design choices for currently fielded campaigns are assessed in this work. To assess consistently the radiation drive and symmetry, integrated postshot simulations of the hohlraum and capsule were done for each design using the same methodology. The simulation results are compared to experimental data. Using this post-shot model, we make a projection of the relative plausible performance that can be achieved, while maintaining adequate symmetry, using the full NIF laser, i.e. 1.8 MJ/500 TW Full NIF Equivalent (FNE). The hydrodynamic stability of the different ablators is also an important consideration and will be presented for the current platforms and projection to FNE. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Influence of physicochemical properties of beryllium particles on cultured cell toxicity

    International Nuclear Information System (INIS)

    Finch, G.L.; Brooks, A.L.; Hoover, M.D.; Cuddihy, R.G.

    1988-01-01

    The toxicity of beryllium oxide (BeO)), beryllium metal, and beryllium sulfate (BeSO 4 ) was studied in two cell lines, Chinese hamster ovary cells (CHO) and lung epithelial cells (LEC). Beryllium oxide particles were prepared at either 500 or 1000 deg. C, and two different particle sizes of beryllium metal were used. Following a 20-h exposure to beryllium compounds, cells were grown in culture to quantitate cloning ability relative to controls as a measure of cell killing, The LEC cultures were more sensitive to beryllium cytotoxicity than the CHO cells. When expressed on the basis of the mass of material added to the cultures, the order of toxicity was BeSO 4 ≥ 500 deg. C -BeO > 1000 deg. C -BeO > Be metal (small) Be metal (large). When cytotoxic effects were expressed on the basis of particulate surface rather than mass, the relative differences in toxicity between compounds was decreased. The order of toxicity was Be metal (small) ∼ Be metal (large) ∼ 500 deg. C-BeO ∼ 1000 deg. C-BeO. These data indicate that solubility influences beryllium toxicity to short-term cell cultures. (author)

  18. First beryllium capsule implosions on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2016-05-15

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  19. Beryllium and zirconium

    International Nuclear Information System (INIS)

    Salesse, Marc

    1959-01-01

    Pure beryllium and zirconium, both isolated at about the same date but more than a century ago remained practically unused for eighty years. Fifteen years ago they were released from this state of inactivity by atomic energy, which made them into current metal a with an annual production which runs into tens of tons for the one and thousands for the other. The reasons for this promotion promise well for the future of the two metals, which moreover will probably find additional uses in other branches of industry. The attraction of beryllium and zirconium for atomic energy is easily explained. The curve of figure 1 gives the price per gram of uranium-235 as a function of enrichment: this price increases by about a factor of 3 on passing from natural uranium (0, 7 percent 235 U) to almost pure uranium-235. Because of their tow capture cross-section beryllium and zirconium make it possible, or at least easier, to use natural uranium and they thus enjoy an advantage the extent of which must be calculated for each reactor or fuel element project, but which is generally considerable. It will be seen later that this advantage should be based on figures which are even more favourable that would appear from the simple ratio 3 of the price of pure uranium- 235 contained in natural uranium. Reprint of a paper published in 'Industries Atomiques' - n. 1-2, 1959

  20. Validation of cleaning method for various parts fabricated at a Beryllium facility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cynthia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic beryllium disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.

  1. Boron solubility in Fe-Cr-B cast irons

    International Nuclear Information System (INIS)

    Guo Changqing; Kelly, P.M.

    2003-01-01

    Boron solubility in the as-cast and solution treated martensite of Fe-Cr-B cast irons, containing approximately 1.35 wt.% of boron, 12 wt.% of chromium, as well as other alloying elements, has been investigated using conventional microanalysis. The significant microstructural variations after tempering at 750 deg. C for 0.5-4 h, compared with the original as-cast and solution treated microstructures, indicated that the matrix consisted of boron and carbon supersaturated solid solutions. The boron solubility detected by electron microprobe was between 0.185-0.515 wt.% for the as-cast martensite and 0.015-0.0589 wt.% for the solution treated martensite, much higher than the accepted value of 0.005 wt.% in pure iron. These remarkable increases are thought to be associated with some metallic alloying element addition, such as chromium, vanadium and molybdenum, which have atomic diameters larger than iron, and expand the iron lattice to sufficiently allow boron atoms to occupy the interstitial sites in iron lattice

  2. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  3. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E S [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  4. Preparation of copper-beryllium alloys from Indian beryl

    International Nuclear Information System (INIS)

    Paul, C.M.; Sharma, B.P.; Subba Rao, K.S.; Rajadhyaksha, M.G.; Sundaram, C.V.

    1975-01-01

    The report presents the results of laboratory scale investigations on the preparation of copper-beryllium and aluminium-beryllium master alloys starting from Indian beryl and adopting the fluoride process. The flow-sheet involves : (1) conversion of the Be-values in beryl into water soluble sodium beryllium fluoride (2) preparation of beryllium hydroxide by alkali treatment of aqueous Na 2 BeF 4 (3) conversion of Be(OH) 2 to (NH 4 ) 2 BeF 4 by treatment with NH 4 HF 2 (4) thermal decomposition of (NH 4 ) 2 BeF 4 to BeF 2 and (5) magnesium reduction of BeF 2 (with the addition of copper/aluminium) to obtain beryllium alloys. The method has been successfully employed for the preparation of Cu-Be master alloys containing about 8% Be and free of Mg on a 200 gm scale. An overall Be-recovery of about 80% has been achieved. Al-8% Be master alloys have also been prepared by this method. Toxicity and health hazards associated with Be are discussed and the steps taken to ensure safe handling of Be are described. (author)

  5. Erosion of beryllium under ITER - Relevant transient plasma loads

    Science.gov (United States)

    Kupriyanov, I. B.; Nikolaev, G. N.; Kurbatova, L. A.; Porezanov, N. P.; Podkovyrov, V. L.; Muzichenko, A. D.; Zhitlukhin, A. M.; Gervash, A. A.; Safronov, V. M.

    2015-08-01

    Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2-0.5 MJ/m2 at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  6. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  7. Status of beryllium development for fusion applications

    International Nuclear Information System (INIS)

    Billone, M.C.; Donne, M.D.; Macaulay-Newcombe, R.G.

    1994-05-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing component of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation

  8. Critical parameters controlling irradiation swelling in beryllium

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1995-01-01

    Radiation effects in beryllium can hardly be explained within a framework of the conventional theory based on the bias concept due to elastic interaction difference (EID) between vacancies and self-interstitial atoms (SIAs) since beryllium belongs to hexagonal close-packed metals where diffusion has been shown to be anisotropic. Diffusional anisotropy difference (DAD) between point defects changes the cavity bias for their absorption and leads to dependence of the dislocation bias on the distribution of dislocations over crystallographic directions. On the other hand, the elastic interaction between point defects and cavities gives rise to the size and gas pressure dependencies of the cavity bias, resulting in new critical quantities for bubble-void transition effects at low temperature irradiation. In the present paper, we develop the concept of the critical parameters controlling irradiation swelling with account of both DAD and EID, and take care of thermal effects as well since they are of major importance for beryllium which has an anomalously low self-diffusion activation energy. Experimental data on beryllium swelling are analyzed on the basis of the present theory. (orig.)

  9. Beryllium. Health hazards and their control. Pt. 2

    International Nuclear Information System (INIS)

    Lires, O.A.; Delfino, C.A.; Botbol, J.

    1991-01-01

    In this work (continuation of 'Beryllium' series) health hazards, toxic effects, limits of permissible atmospheric contamination and safe exposure to beryllium are described. Guidelines to the design, control operations and hygienic precautions of the working facilities are given. (Author) [es

  10. Beryllium phonon spectrum from cold neutron measurements

    International Nuclear Information System (INIS)

    Bulat, I.A.

    1979-01-01

    The inelastic coherent scattering of neutrons with the initial energy E 0 =4.65 MeV on the spectrometer according to the time of flight is studied in polycrystalline beryllium. The measurements are made for the scattering angles THETA=15, 30, 45, 60, 75 and 90 deg at 293 K. The phonon spectrum of beryllium, i-e. g(w) is reestablished from the experimental data. The data obtained are compared with the data of model calculations. It is pointed out that the phonon spectrum of beryllium has a bit excessive state density in the energy range from 10 to 30 MeV. It is caused by the insufficient statistical accuracy of the experiment at low energy transfer

  11. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    Science.gov (United States)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  12. Preparation of fiber reinforced titanium diboride and boron carbide composite bodies

    International Nuclear Information System (INIS)

    Newkirk, L.R.; Riley, R.E.; Sheinberg, H.; Valencia, F.A.; Wallace, T.C.

    1979-01-01

    A process is described for uniformly infiltrating woven carbon cloth with either titanium diboride or boron carbide at reduced pressure (15 to 25 torr). The effects of deposition temperature on the uniformity of penetration and on coating rate are described for temperatures from 750 to 1000 0 C and deposit loadings from 20 to 43 vol. %. For the boron carbides, boron composition is discussed and evidence is presented suggesting that propene is the dominant rate controlling reactant

  13. ICT diagnostic method of beryllium welding quality

    International Nuclear Information System (INIS)

    Sun Lingxia; Wei Kentang; Ye Yunchang

    2002-01-01

    To avoid the interference of high density material for the quality assay of beryllium welding line, a slice by slice scanning method was proposed based upon the research results of the Industrial Computerized Tomography (ICT) diagnostics for weld penetration, weld width, off-centered deviation and weld defects of beryllium-ring welding seam with high density material inside

  14. European Fusion Programme. ITER task T23: Beryllium characterisation. Progress report. Tensile tests on neutron irradiated and reference beryllium

    International Nuclear Information System (INIS)

    Moons, F.

    1996-02-01

    As part of the European Technology Fusion Programme, the irradiation embrittlement characteristics of the more ductile and isotopic grades of beryllium manufactured by Brush Wellman has been investigated using modern powder production and consolidation techniques . This study was initiated in support of the development and evaluation of beryllium as a neutron multiplier for the solid breeder blanket design concepts proposed for a DEMO fusion power reactor. Four different species of beryllium: S-200 F (vacuum hot pressed, 1.2 wt% BeO), S-200FH (hot isostatic pressed, 0.9 wt% BeO), S-65 (vacuum hot pressed, 0.6 wt% BeO), S-65H (hot isostatic pressed, 0.5 wt% BeO) have been compared. Three batches of the beryllium have been investigated, a neutron batch, a thermal control batch and a reference batch. Neutron irradiation has been performed at temperatures between 175 and 605 degrees Celsius up to a neutron fluence of 2.1 10 25 n.m -2 (E> 1 MeV) or 750 appm He. The results of the tensile tests are summarized

  15. 5. IEA International workshop on beryllium technology for fusion. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The collection includes the abstracts of reports presented to the 5-th IEA international workshop on beryllium technology for fusion. The themes of reports are as follows: status of beryllium technology for fusion in Russia; manufacturing and testing of Be armoured first wall mock-up for ITER; development of the process of diffusion welding of metals stainless steel-copper-beryllium into a single composite; some features of beryllium-laser beam interaction; the effect of irradiation dose on tritium and helium release from neutron irradiated beryllium; thermal properties of neutron irradiated Be{sub 12}Ti. The results of investigating the mechanical properties variation and swelling of beryllium under high temperature neutron irradiation are presented.

  16. 5. IEA International workshop on beryllium technology for fusion. Book of abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    The collection includes the abstracts of reports presented to the 5-th IEA international workshop on beryllium technology for fusion. The themes of reports are as follows: status of beryllium technology for fusion in Russia; manufacturing and testing of Be armoured first wall mock-up for ITER; development of the process of diffusion welding of metals stainless steel-copper-beryllium into a single composite; some features of beryllium-laser beam interaction; the effect of irradiation dose on tritium and helium release from neutron irradiated beryllium; thermal properties of neutron irradiated Be 12 Ti. The results of investigating the mechanical properties variation and swelling of beryllium under high temperature neutron irradiation are presented [ru

  17. Tritium behavior in ITER beryllium

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-10-01

    The beryllium neutron multiplier in the ITER breeding blanket will generate tritium through transmutations. That tritium constitutes a safety hazard. Experiments evaluating tritium storage and release mechanisms have shown that most of the tritium comes out in a burst during thermal ramping. A small fraction of retained tritium is released by thermally activated processes. Analysis of recent experimental data shows that most of the tritium resides in helium bubbles. That tritium is released when the bubbles undergo swelling sufficient to develop porosity that connects with the surface. That appears to occur when swelling reaches about 10--15%. Other tritium appears to be stored chemically at oxide inclusions, probably as Be(OT) 2 . That component is released by thermal activation. There is considerable variation in published values for tritium diffusion through the beryllium and solubility in it. Data from experiments using highly irradiated beryllium from the Idaho National Engineering Laboratory showed diffusivity generally in line with the most commonly accepted values for fully dense material. Lower density material, planned for use in the ITER blanket may have very short diffusion times because of the open structure. The beryllium multiplier of the ITER breeding blanket was analyzed for tritium release characteristics using temperature and helium production figures at the midplane generated in support of the ITER Summer Workshop, 1990 in Garching. Ordinary operation, either in Physics or Technology phases, should not result in the release of tritium trapped in the helium bubbles. Temperature excursions above 600 degree C result in large-scale release of that tritium. 29 refs., 10 figs., 3 tabs

  18. Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust

    Science.gov (United States)

    Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.

    2018-05-01

    Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.

  19. In vitro and in vivo analysis of boronated porphyrins

    International Nuclear Information System (INIS)

    Edwards, Benjamin; Matthews, Kristin; Hou, Yongjin; Vicente, M.G.H.; Autry-Conwell, Susan; James, Boggan

    2000-01-01

    New series of meso-phenylporphyrins linked through carbon-carbon bonds to nido-carboranyl groups, and containing 26-31% boron by weight, have been reported. Dark toxicity, photo-toxicity, and measurements of uptake and efflux were performed using mouse, rat, and human malignant cell lines. Drug uptake and retention by log phase cells are shown by spectrophotometry (porphyrins) and ICP-MS (boron) of cellular extracts to be concentration and time dependent, and to be influenced by plasma lipoproteins. Plasma pharmacokinetics and tissues biodistribution were studied in adult male Fisher 344 rats with bilateral subcutaneous 9L tumors injected (2.2 ml, 2 mM i.v.) with carboranyl porphyrin solutions. Whole blood, brain, liver, spleen, skin and tumors were collected at 2, 8, 18, 24 and 48 hours post-injection. Blood cells were separated from plasma and stored frozen with the other tissues. Tissue boron content was determined quantitatively by ICP-MS analysis following microwave digestion of carefully weighed samples. (author)

  20. Interaction of hydrogen and its isotopes with irradiated beryllium

    International Nuclear Information System (INIS)

    Tazhibaeva, I.L.; Shestakov, V.P.; Klepikov, A.Kh.; Pomanenko, O.G.; Chikhraj, E.V.; Kenzhin, E.A.; Zverev, V.V.; Kolbanenkov, A.N.

    2000-01-01

    In the article the results of experiments on hydrogen and its isotopes accumulation and gas-release from irradiated beryllium are presented. The irradiation was conducted at different media and temperatures in the RA and IVG.1M reactors. The measurements were carried out by thermal desorption method. Hydrogen release from beryllium samples saturated at different conditions were calculated. Dependence of hydrogen confinement character in beryllium from grain orientation in the sample, temperature and irradiation rate was revealed

  1. Defects in boron carbide: First-principles calculations and CALPHAD modeling

    International Nuclear Information System (INIS)

    Saengdeejing, Arkapol; Saal, James E.; Manga, Venkateswara Rao; Liu Zikui

    2012-01-01

    The energetics of defects in B 4+x C boron carbide and β-boron are studied through first-principles calculations, the supercell phonon approach and the Debye–Grüneisen model. It is found that suitable sublattice models for β-boron and B 4+x C are B 101 (B,C) 4 and B 11 (B,C) (B,C,Va) (B,Va) (B,C,Va), respectively. The thermodynamic properties of B 4+x C, β-boron, liquid and graphite are modeled using the CALPHAD approach based on the thermochemical data from first-principles calculations and experimental phase equilibrium data in the literature. The concentrations of various defects are then predicted as a function of carbon composition and temperature.

  2. Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    Science.gov (United States)

    Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.

  3. Compatibility of stainless steels and lithiated ceramics with beryllium

    Science.gov (United States)

    Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    The introduction of beryllium as a neutron multiplier in ceramic blankets of thermonuclear fusion reactors may give rise to the following compatibility problems: (i) oxidation of Be by ceramics (lithium aluminate and silicates) or by water vapour; (ii) interaction between beryllium and austenitic and martensitic steels. The studies were done in contact tests under vacuum and in tests under wet sweeping helium. The contact tests under vacuum have revealed that the interaction of beryllium with ceramics seems to be low up to 700°C, the interaction of beryllium with steels is significant and is characterized by the formation of a diffusion layer and of a brittle Be-Fe-Ni compound. With type 316 L austenitic steel, this interaction appears quite large at 600°C whereas it is noticeable only at 700°C with martensitic steels. The experiments carried out with sweeping wet helium at 600°C have evidenced a slight oxidation of beryllium due to water vapour which can be enhanced in the front of uncompletely dehydrated ceramics.

  4. Structure/property relationships in multipass GMA welding of beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  5. The results of medical surveillance of beryllium production personnel

    International Nuclear Information System (INIS)

    Koviazin, A.; Urikh, A.; Kovianzina, L.

    2004-01-01

    The report presents results of surveillance of 1836 workers of beryllium production of Ulba Metallurgical Plant JSC with the acute and chronic forms of occupation diseases for 52 years of its operation. The dependence of acute and chronic occupation lesions on the protection degree is shown. It has been found out that, the risk of getting an occupation disease increases sharply at the moments of experimental works and at the time of reconstruction and some other extreme conditions in the production, that is supported by fixed lesions of eye mucous coat, skin and lung lesions. In this case, the readiness of people for their work in deleterious conditions and their personal responsibility for following the regulations of safety occupational standards plays a definite role. Therefore, the issues of protection are of paramount importance in prophylaxis both of acute and chronic exposure to beryllium. An influence of duration of service and occupation on chronic beryllium diseases is shown. A parallel between the lung beryllium disease and skin lesions by insoluble beryllium compounds is drawn for the first time. (author)

  6. Spectrographic determination of impurities in beryllium oxide

    International Nuclear Information System (INIS)

    Paula Reino, L.C. de; Lordello, A.R.; Pereira, A.S.A.

    1986-03-01

    A method for the spectrographic determination of Al, B, Cd, Co, Cu, Cr, Fe, Mg, NaNi, Si and Zn in nuclear grade beryllium oxide has been developed. The determination of Co, Al, Na and Zn is besed upon a carrier distillation technique. Better results were obtained with 2% Ga 2 O 3 as carrier in beryllium oxide. For the elements B, Cd, Cu, Fe, Cr, Mg, Ni and Si the sample is loaded in a Scribner-Mullin shallow cup electrode, covered with graphite powder and excited in DC arc. The relative standard deviation values for different elements are in the range of 10 to 20%. The method fulfills requirements of precision and sensitivity for specification analysis of nuclear grade beryllium oxide.(Author) [pt

  7. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    Science.gov (United States)

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  8. Oxygen collection in the limiter shadow of TEXTOR depending on wall conditioning with boron

    International Nuclear Information System (INIS)

    Wienhold, P.; Seggern, J. v.; Kuenzli, H.

    1991-01-01

    One of the major consequences of the boronization of TEXTOR compared to the carbonized machine was the further and remaining decrease of the oxygen contamination of the plasma. This has lowered also the carbon chemical sputtering by a factor of two in spite of higher radiative power loads to the graphite limiters and made auxiliary heating up to 6 MW possible. The fact, that oxygen did not reoccur as it happened during operation with carbonized walls caused the suggestion of gettering by the formation of a stable bond to the boron. Therefore, a period (May/June 89) where different conditioning treatments with boron were applied to TEXTOR gave ideal circumstances for collection experiments in the SOL and the subsequent analysis of the deposits aiming at the understanding of this hypothesis. (author) 10 refs., 2 figs

  9. Progress report of preliminary studies of beryllium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, H.C.

    1947-09-01

    This document was prepared in connection with a symposium of beryllium poisoning held at the Saranac Laboratories and describes progress made and a research program aimed at characterizing the toxicity of beryllium. Seven individual papers in this document are separately indexed and cataloged for the database.

  10. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.A.; Cowgill, D.F.; Snead, L.L.

    1993-01-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1--5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits

  11. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.W.; Cowgill, D.F.

    1993-01-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1-5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits. (orig.)

  12. Beryllium coating produced by evaporation-condensation method and some their properties

    Energy Technology Data Exchange (ETDEWEB)

    Pepekin, G.I.; Anisimov, A.B.; Chernikov, A.S.; Mozherinn, S.I.; Pirogov, A.A. [SRI SIA Lutch., Podolsk (Russian Federation)

    1998-01-01

    The method of vacuum evaporation-condensation for deposition of beryllium coatings on metal substrates, considered in the paper, side by side with a plasma-spray method is attractive fon ITER application. In particular this technique may be useful for repair the surface of eroded tiles which is operated in a strong magnetic field. The possibility of deposition of beryllium coatings with the rate of layer growth 0.1-0.2 mm/h is shown. The compatibility of beryllium coating with copper or stainless steel substrate is provided due to intermediate barrier. The results of examination of microstructure, microhardness, porosity, thermal and physical properties and stability under thermal cycling of beryllium materials are presented. The value of thermal expansion coefficient and thermal conductivity of condensed beryllium are approximately the same as for industrial grade material produced by powder mettalurgy technique. However, the condensed beryllium has higher purity (up to 99.9-99.99 % wt.). (author)

  13. Technical aspects of the joint JET-ISX-B beryllium limiter experiment

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Dietz, K.J.; Mioduszewski, P.K.; Watson, R.D.; Emerson, L.C.; Gabbard, W.A.; Goodall, D.; Simpkins, J.E.; Yarber, J.L.

    1985-01-01

    An experiment has been performed on the Impurity Study Experiment (ISX-B) tokamak to test beryllium as a limiter material. Beryllium is an attractive candidate for a limiter and has been proposed for use in the Joint European Torus (JET) experiment. A temperature-controlled, segmented, beryllium top-rail limiter was located inside the plasma radius described by the existing titanium limiters. An extended set of diagnostics was added for measurement of scrapeoff and limiter parameters. These included visible and infrared monitoring systems, probes, and surface analysis experiments. Tokamak experiments included parameter surveys of both Ohmically heated and neutral-beam-heated plasmas and an extended fluence test of the limiter. The most significant effect of operation with a beryllium limiter was the reduction in low-Z impurities caused by gettering action of beryllium deposited on the liner walls. The experiment required the design and implementation of contamination control apparatus and work procedures to prevent the accidental dispersion of beryllium dust

  14. Beryllium mock-ups development and ultrasonic testing for ITER divertor conditions

    International Nuclear Information System (INIS)

    Barabash, V.R.; Bykov, V.A.; Giniyatulin, R.N.; Gervash, A.A.; Gurieva, T.M.; Egorov, K.E.; Komarov, V.L.; Korolkov, M.D.; Mazul, I.V.; Gitarsky, L.S.; Strulia, I.L.; Sizenev, V.S.; Pronyakin, V.T.

    1995-01-01

    At the present time beryllium is considered as the most suitable armour material for the ITER divertor application. Different types of Be-divertor mock-up construction are compared in the report. Two different technologies of beryllium tiles joining to a heat sink body are analysed: high temperature brazing and thermodiffusion bonding. The comparative analysis of different constructions has been performed on the basis of 2-D finite element calculation for temperatures and stresses. The main parameters and diagnostic capabilities of electron beam facility for HHF testing of beryllium mock-ups are described. The first results of HHF tests of ''beryllium-copper saddle-MAGT tube'' and ''beryllium-copper plate-SS body'' mock-ups are presented. The reasons of the damages during the HHF are analysed. The technique of ultrasonic testing of the thermodifussion bonding and brazing quality for beryllium-copper joints is presented. The recorded results are prepared in the form of ultrasound grams. The testing results are compared with the metallographic analysis. (orig.)

  15. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  16. Morphological and electrochemical studies of spherical boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br

    2006-08-14

    Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.

  17. Neutron irradiation behavior of ITER candidate beryllium grades

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.

    1998-01-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  18. Erosion of beryllium under ITER – Relevant transient plasma loads

    International Nuclear Information System (INIS)

    Kupriyanov, I.B.; Nikolaev, G.N.; Kurbatova, L.A.; Porezanov, N.P.; Podkovyrov, V.L.; Muzichenko, A.D.; Zhitlukhin, A.M.; Gervash, A.A.; Safronov, V.M.

    2015-01-01

    Highlights: • We study the erosion, mass loss/gain and surface structure evolution of Be/CuCrZr mock-ups, armored with beryllium of TGP-56FW grade after irradiation by deuterium plasma heat load of 0.5 MJ/m 2 at 250 °C and 500 °C. • Beryllium mass loss/erosion under plasma heat load at 250 °C is rather small (no more than 0.2 g/m 2 shot and 0.11 μm/shot, correspondingly, after 40 shots) and tends to decrease with increasing number of shots. • Beryllium mass loss/erosion under plasma heat load at 500 °C is much higher (∼2.3 g/m 2 shot and 1.2 μm/shot, correspondingly, after 10 shot) and tends to decrease with increasing the number of shots (∼0.26 g/m 2 pulse and 0.14 μm/shot, correspondingly, after 100 shot). • Beryllium erosion value derived from the measurements of profile of irradiated surface is much higher than erosion value derived from mass loss data. - Abstract: Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2–0.5 MJ/m 2 at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology

  19. Erosion of beryllium under ITER – Relevant transient plasma loads

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B., E-mail: igkupr@gmail.com [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Nikolaev, G.N.; Kurbatova, L.A.; Porezanov, N.P. [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D.; Zhitlukhin, A.M. [TRINITI, Troitsk, Moscow reg. (Russian Federation); Gervash, A.A. [Efremov Research Institute, S-Peterburg (Russian Federation); Safronov, V.M. [Project Center of ITER, Moscow (Russian Federation)

    2015-08-15

    Highlights: • We study the erosion, mass loss/gain and surface structure evolution of Be/CuCrZr mock-ups, armored with beryllium of TGP-56FW grade after irradiation by deuterium plasma heat load of 0.5 MJ/m{sup 2} at 250 °C and 500 °C. • Beryllium mass loss/erosion under plasma heat load at 250 °C is rather small (no more than 0.2 g/m{sup 2} shot and 0.11 μm/shot, correspondingly, after 40 shots) and tends to decrease with increasing number of shots. • Beryllium mass loss/erosion under plasma heat load at 500 °C is much higher (∼2.3 g/m{sup 2} shot and 1.2 μm/shot, correspondingly, after 10 shot) and tends to decrease with increasing the number of shots (∼0.26 g/m{sup 2} pulse and 0.14 μm/shot, correspondingly, after 100 shot). • Beryllium erosion value derived from the measurements of profile of irradiated surface is much higher than erosion value derived from mass loss data. - Abstract: Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2–0.5 MJ/m{sup 2} at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  20. Boron-containing thioureas for neutron capture therapy. Borhaltige Thioharnstoffe fuer die Neutroneneinfangtherapie

    Energy Technology Data Exchange (ETDEWEB)

    Ketz, H.

    1993-10-21

    Melanin is produced in large amounts in malignant melanotic melanomas. Because thiourea compounds are covalently incorporated into melanin during its biosynthesis, the preparation of boronated thiourea-derivatives is of particular interest for the BNCT (Boron Neutron Capture Therapy). Accumulation of boron in tumors by means of boronated thiourea-derivatives may therefore provide levels of [sup 10]B which are useful for BNCT. In BNCT the tumor containing the boron compound is irradiated with epithermal neutrons to generate He- and Li-nuclei from the [sup 10]B which can then destroy the tumor cells. Because of the short ranges of these particles (approximately one cell diameter) the damage will be almost exclusively confined to the tumor leaving normal tissue unharmed. High accumulation of 2-mercapto-1-methylimidazole (methimazole) in melanotic melanomas has been described in the literature. Boronated derivatives of methimazole were therefore synthesized. Boron was in the form of a boronic acid, a nido-carbonate and a mercaptoundeca hydro-closo-dodecaborate (BSH). The synthesis of the boron cluster derivatives of methimazole (nido-carborate- and BSH-derivatives) with 9 resp. 12 boron atoms in the molecule were expected to achieve higher concentrations of boron in the tumor than in the case of the boronic acid compound with its single boron atom. (orig.)

  1. How are small endohedral silicon clusters stabilized?

    Science.gov (United States)

    Avaltroni, Fabrice; Steinmann, Stephan N; Corminboeuf, Clémence

    2012-11-21

    Clusters in the (Be, B, C)@Si(n)((0,1,2+)) (n = 6-10) series, isoelectronic to Si(n)(2-), present multiple symmetric structures, including rings, cages and open structures, which the doping atom stabilizes using contrasting bonding mechanisms. The most striking feature of these clusters is the absence of electron transfer (for Be) or even the inversion (for B and C) in comparison to classic endohedral metallofullerenes (e.g. from the outer frameworks towards the enclosed atom). The relatively small cavity of the highly symmetric Si(8) cubic cage benefits more strongly from the encapsulation of a boron atom than from the insertion of a too large beryllium atom. Overall, the maximization of multicenter-type bonding, as visualized by the Localized Orbital Locator (LOL), is the key to the stabilization of the small Si(n) cages. Boron offers the best balance between size, electronegativity and delocalized bonding pattern when compared to beryllium and carbon.

  2. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  3. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Zobelli, A.

    2007-10-01

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  4. Reviews and syntheses: Revisiting the boron systematics of aragonite and their application to coral calcification

    Science.gov (United States)

    DeCarlo, Thomas M.; Holcomb, Michael; McCulloch, Malcolm T.

    2018-05-01

    The isotopic and elemental systematics of boron in aragonitic coral skeletons have recently been developed as a proxy for the carbonate chemistry of the coral extracellular calcifying fluid. With knowledge of the boron isotopic fractionation in seawater and the B/Ca partition coefficient (KD) between aragonite and seawater, measurements of coral skeleton δ11B and B/Ca can potentially constrain the full carbonate system. Two sets of abiogenic aragonite precipitation experiments designed to quantify KD have recently made possible the application of this proxy system. However, while different KD formulations have been proposed, there has not yet been a comprehensive analysis that considers both experimental datasets and explores the implications for interpreting coral skeletons. Here, we evaluate four potential KD formulations: three previously presented in the literature and one newly developed. We assess how well each formulation reconstructs the known fluid carbonate chemistry from the abiogenic experiments, and we evaluate the implications for deriving the carbonate chemistry of coral calcifying fluid. Three of the KD formulations performed similarly when applied to abiogenic aragonites precipitated from seawater and to coral skeletons. Critically, we find that some uncertainty remains in understanding the mechanism of boron elemental partitioning between aragonite and seawater, and addressing this question should be a target of additional abiogenic precipitation experiments. Despite this, boron systematics can already be applied to quantify the coral calcifying fluid carbonate system, although uncertainties associated with the proxy system should be carefully considered for each application. Finally, we present a user-friendly computer code that calculates coral calcifying fluid carbonate chemistry, including propagation of uncertainties, given inputs of boron systematics measured in coral skeleton.

  5. Testing of beryllium marker coatings in PISCES-B for the JET ITER-like wall

    International Nuclear Information System (INIS)

    Widdowson, A.; Baldwin, M.J.; Coad, J.P.; Doerner, R.P.; Hanna, J.; Hole, D.E.; Matthews, G.F.; Rubel, M.; Seraydarian, R.; Xu, H.

    2009-01-01

    Beryllium has been chosen as the first wall material for ITER. In order to understand the issues of material migration and tritium retention associated with the use of beryllium, a largely beryllium first wall will be installed in JET. As part of the JET ITER-like wall, beryllium tiles with marker coatings are proposed as a diagnostic tool for studying the erosion and deposition of beryllium around the vessel. The nominal structure for these coatings is a ∼10 μm beryllium surface layer separated from the beryllium tile by a 2-3 μm metallic inter-layer. Two types of coatings are tested here; one with a nickel inter-layer and one with a copper/beryllium mixed inter-layer. The coating samples were deposited by DC magnetron sputtering at General Atomics and were exposed to deuterium plasma in PISCES-B. The results of this testing show that the beryllium/nickel marker coating would be suitable for installation in JET.

  6. Experimental studies and modeling of processes of hydrogen isotopes interaction with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibaeva, I.L.; Chikhray, Y.V.; Romanenko, O.G.; Klepikov, A.Kh.; Shestakov, V.P.; Kulsartov, T.V. [Science Research Inst. of Experimental and Theoretical Physics of Kazakh State Univ., Almaty (Kazakhstan); Kenzhin, E.A.

    1998-01-01

    The objective of this work was to clarify the surface beryllium oxide influence on hydrogen-beryllium interaction characteristics. Analysis of experimental data and modeling of processes of hydrogen isotopes accumulation, diffusion and release from neutron irradiated beryllium was used to achieve this purpose as well as the investigations of the changes of beryllium surface element composition being treated by H{sup +} and Ar{sup +} plasma glowing discharge. (author)

  7. Improving the electrochemical properties of nanosized LiFePO4-based electrode by boron doping

    International Nuclear Information System (INIS)

    Trócoli, Rafael; Franger, Sylvain; Cruz, Manuel; Morales, Julián; Santos-Peña, Jesús

    2014-01-01

    Highlights: • Thermal treatment of boron phosphate with LiFePO 4 provides electrode materials with high performance in lithium half-cells: 160 mAh·g -1 (90% of theoretical capacity) under C/5 rate • The products are composites containing boron-modified LiFePO 4 , FePO 4 and an amorphous phase with ionic diffusion properties • The boron treatment affects textural, conductive and lithium diffusivity of the electrode material leading to higher performance • A limited boron-doping of the phospholivine structure is observed - Abstract: Electrode materials with homogeneous distribution of boron were obtained by heating mixtures of nanosized carbon-coated lithium iron phosphate and BPO 4 in 3-9% weight at 700 °C. The materials can be described as nanocomposites containing i) LiFePO 4 , possibly doped with a low amount of boron, ii) FePO 4 and iii) an amorphous layer based on Li 4 P 2 O 7 -derived material that surrounds the phosphate particles. The thermal treatment with BPO 4 also triggered changes in the carbon coating graphitic order. Galvanostatic and voltammetric studies in lithium half-cells showed smaller polarisation, higher capacity and better cycle life for the boron-doped composites. For instance, one of the solids, called B 6 -LiFePO 4 , provided close to 150 and 140 mAhg -1 (87% and 81% of theoretical capacity, respectively) under C/2.5 and C regimes after several cycles. Improved specific surface area, carbon graphitization, conductivity and lithium ion diffusivity in the boron-doped phospholivine network account for this excellent rate performance. The properties of an amorphous layer surrounding the phosphate particles also account for such higher performance

  8. AMS with light nuclei at small accelerators

    Science.gov (United States)

    Stan-Sion, C.; Enachescu, M.

    2017-06-01

    AMS applications with lighter nuclei are presented. It will be shown how Carbon-14, Boron-10, Beryllium-10, and Tritium-3 can be used to provide valuable information in forensic science, environmental physics, nuclear pollution, in material science and for diagnose of the plasma confinement in fusion reactors. Small accelerators are reliable, efficient and possess the highest ion beam transmissions that confer high precision in measurements.

  9. Protection of air in premises and environment against beryllium aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bitkolov, N.Z.; Vishnevsky, E.P.; Krupkin, A.V. [Research Inst. of Industrial and Marine Medicine, St. Petersburg (Russian Federation)

    1998-01-01

    First and foremost, the danger of beryllium aerosols concerns a possibility of their inhalation. The situation is aggravated with high biological activity of the beryllium in a human lung. The small allowable beryllium aerosols` concentration in air poses a rather complex and expensive problem of the pollution prevention and clearing up of air. The delivery and transportation of beryllium aerosols from sites of their formation are defined by the circuit of ventilation, that forms aerodynamics of air flows in premises, and aerodynamic links between premises. The causes of aerosols release in air of premises from hoods, isolated and hermetically sealed vessels can be vibrations, as well as pulses of temperature and pressure. Furthermore, it is possible the redispersion of aerosols from dirty surfaces. The effective protection of air against beryllium aerosols at industrial plants is provided by a complex of hygienic measures: from individual means of breath protection up to collective means of the prevention of air pollution. (J.P.N.)

  10. Cause of pitting in beryllium

    International Nuclear Information System (INIS)

    Kershaw, R.P.

    1982-01-01

    Light microscopy, bare-film radiography, secondary ion mass spectroscopy, electron microprobe and physical testing were used to examine beryllium specimens exhibiting a stratified, pitted, pattern after chemical milling. The objective was to find the cause of this pattern. Specimens were found to have voids in excess of density specification allowances. These voids are attributed, at least in part, to the sublimation of beryllium fluoride during the vacuum hot pressing operation. The origin of the pattern is attributed to these voids and etching out of fines and associated impurities. Hot isostatic pressing with a subsequent heat treatment close residual porosity and dispersed impurities enough to correct the problem

  11. Thermal conductivity of beryllium under low temperature high dose neutron irradiation

    International Nuclear Information System (INIS)

    Chakin, V.P.; Latypov, R.N.; Suslov, D.N.; Kupriyanov, I.B.

    2004-01-01

    Thermal conductivity of compact beryllium of several Russian grades such as TE-400, TE-56, TE-30, TIP and DIP differing in the production technology, grain size and impurity content has been investigated. The thermal diffusivity of beryllium was measured on the disks in the initial and irradiated conditions using the pulse method in the range from room temperature to 200degC. The thermal conductivity was calculated using the table values for the beryllium thermal capacity. The specimens and beryllium neutron source fragments were irradiation in the SM reactor at 70degC and 200degC to a neutron fluence of (0.5-11.4)·10 22 cm -2 (E>0.1 MeV) and in the BOR-60 reactor at 400degC to 16·10 22 cm -2 (E>0.1MeV), respectively. The low-temperature irradiation leads to the drop decrease of the beryllium thermal conductivity and the effect depends on the irradiation parameters. The paper analyses the effect of irradiation parameters (temperature, neutron fluence), measurement temperature and structural factors on beryllium conductivity. The experiments have revealed that the short time post-irradiation annealing at high temperature results in partial reduction of the thermal conductivity of irradiated beryllium. (author)

  12. Proton irradiation effects on beryllium – A macroscopic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Simos, Nikolaos, E-mail: simos@bnl.gov [Nuclear Sciences & Technology Department, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Elbakhshwan, Mohamed [Nuclear Sciences & Technology Department, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Zhong, Zhong [Photon Sciences, NSLS II, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Camino, Fernando [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973 (United States)

    2016-10-15

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  13. Technical issues and solutions on ITER first wall beryllium application. Industrial viewpoint

    International Nuclear Information System (INIS)

    Iwadachi, T.; Uda, M.; Ito, M.; Miyakawa, M.; Ibuki, M.

    2004-01-01

    Beryllium is selected as reference armor material of ITER primary first wall and is joined to the copper alloy heat sink such as CuCrZr or Dispersion Strengthened Copper (DSCu) Various joining technologies have been successfully developed and the manufacturing possibilities of large size first wall panels with beryllium armor has been demonstrated. Based on such results, further technical improvement is needed to reduce manufacturing cost and ensure the reliability of joining in actual size first wall. The technical issues to optimize the fabrication process of beryllium attachment were shown in this paper from an industrial point of view. Determination of the optimum size and the surface qualities of beryllium tiles are important issues in term of the material specification to ensure joining reliability and to reduce cost. The consolidation method and the finish machining methods of beryllium tiles are also critical in terms of material cost. These items should be determined by paying concern to the accommodation of the joining methods. The selections of slitting methods for attached beryllium have a great influence on fabrication cost. In the actual fabrication of beryllium attachment, safety provisions for exposure to beryllium in working environment and the recycling of the waste from the fabrication processes will be concerned sufficiently. (author)

  14. Study on the bonding state for carbon-boron nitrogen with different ball milling time

    International Nuclear Information System (INIS)

    Xiong, Y.H.; Xiong, C.S.; Wei, S.Q.; Yang, H.W.; Mai, Y.T.; Xu, W.; Yang, S.; Dai, G.H.; Song, S.J.; Xiong, J.; Ren, Z.M.; Zhang, J.; Pi, H.L.; Xia, Z.C.; Yuan, S.L.

    2006-01-01

    The varied bonding state and microstructure characterization were discussed for carbon-boron nitrogen (CBN) with abundant phase structure and nanostructure, which were synthesized directly by mechanical alloying technique at room temperature. According to the results of SEM and X-ray photoelectron spectroscopy (XPS) of CBN with different ball milling time, it is substantiated that the bonding state and microstructure for CBN were closely related to the ball milling time. With the increase of the ball milling time, some new chemical bonding states of CBN were observed, which implies that some new bonding state and microstructures have been formed. The results of XPS are accordance with that of X-ray diffraction of CBN

  15. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  16. Abbreviated machining schedule for fabricating beryllium parts free of surface damage

    International Nuclear Information System (INIS)

    Beitscher, S.; Capes, J.F.; Leslie, W.W.; Luckow, J.R.; Riegel, R.L.

    1979-01-01

    This study was performed to develop a more economical method of machining damage-free beryllium components at Rocky Flats. The present method involves a 9-pass schedule of lathe turning followed by a chemical etch. Prototype beryllium hemispherical shell parts and cylindrical tensile specimens machined to simulate the parts were utilized in this study. The main investigative methods used to evaluate the amount of machining damage were metallography and tensile tests. It was found that damage-free parts could be produced by carefully controlled machining if the number of machining passes was reduced to 4 or even 3, if followed by the standard etching treatment. These findings were made on Select S-65 grade beryllium, and probably apply to other common grades of powder source beryllium but not necessarily to ingot-source beryllium. It is recommended that the 4-pass schedule becomes the standard method to produce damage-free beryllium derived from powder. Significant savings in time, labor, and equipment can be realized by this change in method without decreasing the quality of the product

  17. Manufacturing method for boron carbide/carbon composite neutron shielding material

    International Nuclear Information System (INIS)

    Inoue, Takenori; Ukai, Shigeharu; Maruyama, Tadashi; Suya, Kiyoshi; Sunami, Yoshihiko.

    1994-01-01

    A less volatile binder pitch which is melted upon heating is used as a binder. Raw materials mainly comprising 60 to 85% by volume of a boron carbide powder and 15 to 40% by volume of a binder pitch are mixed, molded under pressure and heating at 480 to 600degC, then baked under non-pressurization, further impregnated with pitch under a reduced pressure and then baked again. The volume percentage of each of the materials is calculated based on the volume obtained by dividing the blending weight for each of raw materials with the intrinsic density respectively. The binding property relative to the boron carbide powder is improved by using a pitch having satisfactory melting performance and reduction of strength is decreased. Moreover, if the binder pitch is baked at about 2,000degC, it is easily converted into a graphitized tissues to have excellent slidability and fabricability. With such procedures, high bending strength and high heat conductivity can be ensured while keeping high boron content and neutron absorbing performance. (T.M.)

  18. Characterization of boron doped nanocrystalline diamonds

    International Nuclear Information System (INIS)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V

    2008-01-01

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range

  19. A theoretical investigation of defects in a boron nitride monolayer

    International Nuclear Information System (INIS)

    Azevedo, Sergio; Kaschny, J R; Castilho, Caio M C de; Mota, F de Brito

    2007-01-01

    We have investigated, using first-principles calculations, the energetic stability and structural properties of antisites, vacancies and substitutional carbon defects in a boron nitride monolayer. We have found that the incorporation of a carbon atom substituting for one boron atom, in an N-rich growth condition, or a nitrogen atom, in a B-rich medium, lowers the formation energy, as compared to antisites and vacancy defects. We also verify that defects, inducing an excess of nitrogen or boron, such as N B and B N , are more stable in its reverse atmosphere, i.e. N B is more stable in a B-rich growth medium, while B N is more stable in a N-rich condition. In addition we have found that the formation energy of a C N , in a N-rich medium, and C B in a B-rich medium, present formation energies comparable to those of the vacancies, V N and V B , respectively

  20. Status of beryllium development for fusion applications

    International Nuclear Information System (INIS)

    Billone, M.C.; Macaulay-Newcombe, R.G.

    1995-01-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma-facing component of first-wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold-isostatic-pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well as its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.In this current work, the range of anticipated fusion operating conditions is reviewed. The thermal, mechanical, chemical compatibility, tritium retention/release, and helium retention/swelling databases are then reviewed for fabrication methods and fusion operating conditions of interest. Properties correlations and uncertainty ranges are also discussed. In the case of the more complex phenomena of tritium retention/release and helium-induced swelling, fundamental mechanisms and models are reviewed in more detail. Areas in which additional data are needed are highlighted, along with some trends which suggest ways of optimizing the performance of beryllium for fusion applications. (orig.)

  1. Identification of an abnormal beryllium lymphocyte proliferation test

    International Nuclear Information System (INIS)

    Frome, Edward L.; Newman, Lee S.; Cragle, Donna L.; Colyer, Shirley P.; Wambach, Paul F.

    2003-01-01

    The potential hazards from exposure to beryllium or beryllium compounds in the workplace were first reported in the 1930s. The tritiated thymidine beryllium lymphocyte proliferation test (BeLPT) is an in vitro blood test that is widely used to screen beryllium exposed workers in the nuclear industry for sensitivity to beryllium. The clinical significance of the BeLPT was described and a standard protocol was developed in the late 1980s. Cell proliferation is measured by the incorporation of tritiated thymidine into dividing cells on two culture dates and using three concentrations of beryllium sulfate. Results are expressed as a 'stimulation index' (SI) which is the ratio of the amount of tritiated thymidine (measured by beta counts) in the simulated cells divided by the counts for the unstimulated cells on the same culture day. Several statistical methods for use in the routine analysis of the BeLPT were proposed in the early 1990s. The least absolute values (LAV) method was recommended for routine analysis of the BeLPT. This report further evaluates the LAV method using new data, and proposes a new method for identification of an abnormal or borderline test. This new statistical-biological positive (SBP) method reflects the clinical judgment that: (i) at least two SIs show a 'positive' response to beryllium; and (ii) that the maximum of the six SIs must exceed a cut-point that is determined from a reference data set of normal individuals whose blood has been tested by the same method in the same serum. The new data is from the Y-12 National Security Complex in Oak Ridge (Y-12) and consists of 1080 workers and 33 non-exposed control BeLPTs (all tested in the same serum). Graphical results are presented to explain the statistical method, and the new SBP method is applied to the Y-12 group. The true positive rate and specificity of the new method were estimated to be 86% and 97%, respectively. An electronic notebook that is accessible via the Internet was used in

  2. Physisorbed o-carborane onto lyso-phosphatidylcholine-functionalized, single-walled carbon nanotubes: a potential carrier system for the therapeutic delivery of boron

    International Nuclear Information System (INIS)

    Yannopoulos, S N; Bouropoulos, N; Zouganelis, G D; Nurmohamed, S; Smith, J R; Fatouros, D G; Tsibouklis, J; Calabrese, G

    2010-01-01

    A combination of data from ICP-MS, Raman spectroscopy, UV-vis spectrometry, atomic force microscopy, ζ-potential measurements and gel electorphoresis studies has shown that o-carborane may be immobilized on stable aqueous dispersions of lyso-phosphatidylcholine-functionalized single-walled carbon nanotubes, which in turn indicates the potential of such structures for deployment as carrier vehicles in boron neutron capture therapy.

  3. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Paschoal, J.O.A.

    1988-01-01

    Boron carbide (B 4 C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B 4 C by carbothermic reduction of B 2 O 3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B 4 C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author) [pt

  4. Beryllium data base for in-pile mockup test on blanket of fusion reactor, (1)

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroshi; Ishitsuka, Etsuo (Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment); Sakamoto, Naoki; Kato, Masakazu; Takatsu, Hideyuki.

    1992-11-01

    Beryllium has been used in the fusion blanket designs with ceramic breeder as a neutron multiplier to increase the net tritium breeding ratio (TBR). The properties of beryllium, that is physical properties, chemical properties, thermal properties, mechanical properties, nuclear properties, radiation effects, etc. are necessary for the fusion blanket design. However, the properties of beryllium have not been arranged for the fusion blanket design. Therefore, it is indispensable to check and examine the material data of beryllium reported previously. This paper is the first one of the series of papers on beryllium data base, which summarizes the reported material data of beryllium. (author).

  5. Spectrochemical determination of beryllium and lithium in stream sediments

    International Nuclear Information System (INIS)

    Gallimore, D.L.; Hues, A.D.; Palmer, B.A.; Cox, L.E.; Simi, O.R.; Bieniewski, T.M.; Steinhaus, D.W.

    1979-11-01

    A spectrochemical method was developed to analyze 200 or more samples of stream sediments per day for beryllium and lithium. One part of ground stream sediment is mixed with two parts graphite-SiO 2 buffer, packed into a graphite electrode, and excited in a direct-current arc. The resulting emission goes to a 3.4-m, direct-reading, Ebert spectrograph. A desk-top computer system is used to record and process the signals, and to report the beryllium and lithium concentrations. The limits of detection are 0.2 μg/g for beryllium and 0.5 μg/g for lithium. For analyses of prepared reference materials, the relative standard deviations were 16% for determining 0.2 to 100 μg/g of beryllium and 15% for determining 0.5 to 500 μg/g of lithium. A correction is made for vanadium interference

  6. New facility for post irradiation examination of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo; Kawamura, Hiroshi

    1995-01-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800 degrees C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and 60 Co;7.4 MBq/day

  7. Microplasticity in hot-pressed beryllium

    International Nuclear Information System (INIS)

    Plane, D.C.; Bonfield, W.

    1977-01-01

    Closed hysteresis loops measured in the microstrain region of hot pressed, commercially pure, polycrystalline beryllium are correlated with a dislocation - impurity atom, energy dissipating mechanism. (author)

  8. Modelling of radiation impact on ITER Beryllium wall

    Science.gov (United States)

    Landman, I. S.; Janeschitz, G.

    2009-04-01

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  9. Modelling of radiation impact on ITER Beryllium wall

    Energy Technology Data Exchange (ETDEWEB)

    Landman, I.S. [Forschungszentrum Karlsruhe, IHM, FUSION, P.O. Box 3640, 76021 Karlsruhe (Germany)], E-mail: igor.landman@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, IHM, FUSION, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2009-04-30

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  10. About kinetics of paramagnetic radiation malformations in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabinkin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petukhov, Yu.V.

    1999-01-01

    This paper [1] specifies that γ-radiation of the beryllium-oxide-based ceramics results in development of paramagnetic radiation malformations emerging the ESR spectrum in form of doublet with the splitting rate of oestrasid Δ∼1.6 and g-factor of 2.008. This report presents evaluation outcomes of dependence of paramagnetic radiation malformations concentration in beryllium ceramics on gamma-radiation dose ( 60 Co) within the range of 0-100 Mrad. Total paramagnetic parameters of beryllium ceramics in the range 0-100 Mrad of gamma-radiation dose varied slightly, and were specified by the first type of paramagnetic radiation malformations

  11. Boron

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  12. Reducing the cost of S-65C grade beryllium for ITER first wall applications

    International Nuclear Information System (INIS)

    Kaczynski, D.; Sato, K.; Savchuk, V.V.; Shestakov, V.P.

    2004-01-01

    Beryllium is the current material of choice for plasma-facing components in ITER. The present design is for 10 mm thick beryllium tiles bonded to an actively cooled copper substrate. Brush Wellman grade S65C beryllium is preferred grade off beryllium for these tiles. S65C has the best resistance to low-cycle thermal fatigue than any other beryllium grad in the world. S65C grade beryllium has been successfully deployed in fusion reactors for more than two decades, most recently in the JET reactor. This paper will detail a supply chain to produce the most cost-effective S65C plasma facing components for ITER. This paper will also propose some future work too demonstrate the best technology for bonding beryllium to copper. (author)

  13. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  14. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    International Nuclear Information System (INIS)

    Reynolds, T.D.; Easterling, S.D.

    2010-01-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  15. Atlas of hot isostatic beryllium powder pressing diagrams

    International Nuclear Information System (INIS)

    Stoev, P.I.; Papirov, I.I.; Tikhinskij, G.F.; Vasil'ev, A.A.

    1995-01-01

    Diagrams of hot isotopic pressing (HIP) of beryllium powder with different grain size in a wide range of pressing parameters are built by mathematical modeling methods. The HIP diagrams presented are divided into 3 groups: parametric dependencies D=f(P,T); technological HIP diagrams; compacting mechanisms. The created data bank permits to optimise beryllium powder HIP with changing parameters. 4 refs., 23 figs

  16. Corrosion of beryllium exposed to celotex and water

    International Nuclear Information System (INIS)

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-01-01

    Celotex is a commercial rigid cellulose fiberboard product primarily used in the building construction industry. Currently celotex is being used as a packing material in AL-R8 containers. Ion chromatography of celotex packing material at Lawrence Livermore National Laboratory (LLNL) has indicated that this material contains aggressive anions, including chloride, which may accelerate corrosion. It is well known that beryllium is susceptible to pitting corrosion when exposed to chloride containing environments. Levy noted pitting in beryllium at the open circuit potential when exposed to 0.1 M NaCl solution. This investigation attempts to evaluate the potential risk of accelerated beryllium corrosion from celotex and water which may occur naturally when celotex dust comes into contact with moisture from the atmosphere

  17. A diethylhydroxylaminate based mixed lithium/beryllium aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Raphael J.F. [Paris-Lodron Universitaet Salzburg (Austria). Fachbereich fuer Materialwissenschaften und Physik; Jana, Surajit [Asansol Girls College, West-Bengal (India). Dept. of Chemistry; Froehlich, Roland [Muenster Univ. (Germany). Organisch-Chemisches Inst.; Mitzel, Norbert W. [Bielefeld Univ. (Germany). Anorganische Chemie und Strukturchemie

    2015-07-01

    A mixed lithium/beryllium diethylhydroxylaminate compound containing {sup n}butyl beryllium units of total molecular composition {sup n}Be(ONEt{sub 2}){sub 2} [(LiONEt{sub 2}){sup 2} {sup n}BuBeONEt{sub 2}]{sub 2} (1) was isolated from a reaction mixture of {sup n}butyl lithium, N,N-diethylhydroxylamine and BeCl{sub 2} in diethylether/thf. The crystal structure of 1 has been determined by X-ray diffraction. The aggregate is composed of two ladder-type subunits connected in a beryllium-centered distorted tetrahedron of four oxygen atoms. Only the lithium atoms are engaged in coordination with the nitrogen donor atoms. The DFT calculations support the positional occupation determined for Li and Be in the crystal structure. The DFT and the solid-state structure are in excellent agreement, indicating only weak intermolecular interactions in the solid state. Structural details of metal atom coordination are discussed.

  18. Proceedings of the third IEA international workshop on beryllium technology for fusion

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Okamoto, Makoto

    1998-01-01

    This report is the Proceedings of the Third International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on October 22-24, 1997, at the Sangyou Kaikan in Mito City with 68 participants who attended from the Europe, the Russian Federation, the Kazakstan, the United States and Japan. The topics for papers were arranged into 9 sessions; beryllium applications for ITER, production and characterization, chemical compatibility and corrosion, forming and joining, plasma/tritium interactions, beryllium coating, first wall applications, neutron irradiation effects, health and safety. To utilize beryllium in the pebble type blanket, a series of discussions were intensified in multiple view points such as the swelling, He/T release from beryllium pebble irradiated up to high He content, effective thermal conductivity, tritium permeation and coating, and fabrication cost, and so on. As the plasma facing material, life time of beryllium and coated beryllium, dust and particle production, joining, waste treatment, mechanical properties and deformation by swelling were discussed as important issues. Especially, it was recognized throughout the discussions that the comparative study by the different researchers should be carried out to establish the reliability of the data reported in the workshop and in others. To enhance the comparative study, the world wide collaboration for the relative evaluation of the beryllium was proposed by the International Organization Committee and the proposal was approved by all of the participants. The 45 of the presented papers are indexed individually. (J.P.N.)

  19. High heat flux tests on beryllium and beryllium-copper joints

    International Nuclear Information System (INIS)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.

    1997-01-01

    A large test program has been set up to evaluate the performance of beryllium as a plasma facing material for the divertor in thermonuclear fusion devices. Simulation of steady state heat loads of 5 MWm -2 and above on actively cooled divertor modules, and off-normal plasma conditions with energy densities in the range 1-7 MJm -2 , have been investigated. Thermal shock tests were carried out with the ITER reference grade S65-C and several Russian grades of beryllium. At incident energies up to 7 MJm -2 the best erosion behaviour is observed for S65-C and for TGP-56. Steady state heating tests with actively cooled Be/Cu mock-ups were performed at incident powers of up to 5.8 MWm -2 . All samples investigated in these tests did not show any indications of failure. A Be/Cu mock-ups with Incusil braze was loaded in thermal fatigue up to 500 cycles at an incident power of 4.8 MWm -2 . Up to the end of the experiment no temperature increase of the surface and no indication of failure was observed. (orig.)

  20. Density functional theory investigation of oxygen interaction with boron-doped graphite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Density-functional approach is applied to study the interaction of oxygen with boron-doped graphite. • Adsorption and diffusion of oxygen atoms on boron doped graphite surfaces are studied. • Recombination of oxygen is investigated by ER and LH mechanisms. • Low boron concentration facilitates O{sub 2} formation while high boron loading inhibits the recombination. • The presence of B−B bonds due to boron accumulation makes it impossible for oxygen recombination. - Abstract: Boron inserted as impurity by substitution of carbon atoms in graphite is known to change (improve or deteriorate) oxidation resistance of nuclear graphite, but the reason for both catalytic and inhibiting oxidation is still uncertain. As a first step, this work is more specially devoted to the adsorption and diffusion of oxygen atoms on the surface and related to the problem of oxygen retention on the pure and boron-containing graphite surfaces. Adsorption energies and energy barriers associated to the diffusion for molecular oxygen recombination are calculated in the density functional theory framework. The existence of boron modifies the electronic structure of the surface, which results in an increase of the adsorption energy for O. However, low boron loading makes it easier for the recombination into molecular oxygen. For high boron concentration, it induces a better O retention capability in graphite because the presence of B-B bonds decreases recombination of the adsorbed oxygen atoms. A possible explanation for both catalytic and inhibiting effects of boron in graphite is proposed.

  1. Method of beryllium implantation in germanium substrate

    International Nuclear Information System (INIS)

    Kagawa, S.; Baba, Y.; Kaneda, T.; Shirai, T.

    1983-01-01

    A semiconductor device is disclosed, as well as a method for manufacturing it in which ions of beryllium are implanted into a germanium substrate to form a layer containing p-type impurity material. There after the substrate is heated at a temperature in the range of 400 0 C. to 700 0 C. to diffuse the beryllium ions into the substrate so that the concentration of beryllium at the surface of the impurity layer is in the order of 10 17 cm- 3 or more. In one embodiment, a p-type channel stopper is formed locally in a p-type germanium substrate and an n-type active layer is formed in a region surrounded by, and isolated from, the channel stopper region. In another embodiment, a relatively shallow p-type active layer is formed at one part of an n-type germanium substrate and p-type guard ring regions are formed surrounding, and partly overlapping said p-type active layer. In a further embodiment, a p-type island region is formed at one part of an n-type germanium substrate, and an n-type region is formed within said p-type region. In these embodiments, the p-type channel stopper region, p-type guard ring regions and the p-type island region are all formed by implanting ions of beryllium into the germanium substrate

  2. TEM study of impurity segregations in beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M., E-mail: michael.klimenkov@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  3. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    OpenAIRE

    Yu, Yuan; Zhou, Yanli; Wu, Liangzhuan; Zhi, Jinfang

    2012-01-01

    Boron-doped diamond (BDD) thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC), carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitiv...

  4. The development of beryllium plasma spray technology for the International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Castro, R.G.; Elliott, K.E.; Hollis, K.J.; Watson, R.D.

    1999-01-01

    Over the past five years, four international parties, which include the European Communities, Japan, the Russian Federation and the United States, have been collaborating on the design and development of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. During the ITER Engineering Design Activity (EDA), beryllium plasma spray technology was investigated by Los Alamos National Laboratory as a method for fabricating and repairing and the beryllium first wall surface of the ITER tokamak. Significant progress has been made in developing beryllium plasma spraying technology for this application. Information will be presented on the research performed to improve the thermal properties of plasma sprayed beryllium coatings and a method that was developed for cleaning and preparing the surface of beryllium prior to depositing plasma sprayed beryllium coatings. Results of high heat flux testing of the beryllium coatings using electron beam simulated ITER conditions will also be presented

  5. SPECTROGRAPHIC DETERMINATION OF BERYLLIUM IN OILFIELD WATERS USING A PLASMA ARC

    Energy Technology Data Exchange (ETDEWEB)

    Collins, A. G.; Pearson, C. A.

    1963-10-15

    Geochemical studies of the distribution of the trace, minor, and major constituents of oilfield waters aid in the exploration for petroleum and other minerals, determination of the origin and distribution of oilfield waters and petroleum, and location of casing leaks and of water pollution sources. The determination of the beryllium and related data should be useful in these studies. An emission spectrographic method utilizing a plasma arc assembly for determining beryllium in oilfield waters, with a sensitivity permitting detection of less than 1 ppb, was developed. Beryllium was extracted from synthetic and natural oilfield waters with chloroform and acetylacetone. The extracts were aspirated directly into the plasma arc, and the beryllium emission intensity was recorded on photographic plates. (auth)

  6. Reactivity effect of poisoned beryllium block shuffling in the MARIA reactor

    International Nuclear Information System (INIS)

    Andrzejewski, K.; Kulikowska, T.

    2000-01-01

    The paper is a continuation of the analysis of beryllium blocks poisoning by Li-6 and He-3 in the MARIA reactor, presented at the 22 RERTR Meeting in Budapest. A new computational tool, the REBUS-3 code, has been used for predicting the amount of poison. The code has been put into operation on a HP computer and the beryllium transmutation chains have been activated with assistance of the ANL RERTR staff. The horizontal and vertical poison distribution within beryllium blocks has been studied. A simple shuffling of beryllium blocks has been simulated to check the effect of exchanging a block with high poison concentration, adjacent to fuel elements, with a peripheral one with a low poison concentration

  7. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  8. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  9. Development and experimental study of beryllium window for ITER radial X-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoxi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Guangxu [Materion Brush (United States); Chen, Kaiyun; Chen, Yebin; Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Liqun, E-mail: lqhu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Niu, Luying; Sheng, Xiuli; Cheng, Yong; Lu, Kun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-12-15

    Highlights: • The thickness of the beryllium foil is chosen as 80 μm to guarantee its safety under high pressure differential in accident events. • Using low purity of beryllium as the transition material, the effect of thermal stress caused by diffusion bonding process can be reduced. • Sealing ring and honeycomb-like supports are designed and used in the mechanical clamped beryllium window to enhance its sealing and safety performance. • The beryllium windows have good performance under severe working conditions like high temperature baking, vibration or impact load. -- Abstract: Radial X-ray camera (RXC) is a diagnostic device planned to be installed in the ITER Equatorial Port no. 12. Beryllium window will be installed between the inner and outer camera of RXC, which severs as the transmission photocathode substrate and also the vacuum isolation component. In this paper the design and manufacture process of two types of beryllium windows were introduced. Although 50 μm thickness of beryllium foil is the best choice, the 80 μm one with X-ray threshold of 1.34 keV was selected for safety consideration. Using the intermediate layer (low purity of beryllium) between the beryllium foil and the stainless steel base flange is an effective strategy to limit the welding thermal deformation and thermal stress of the thin foil caused by bonding between different materials. By using ANSYS software, the feasibility of the aperture design was analyzed and validated. Metal sealing ring was applied in the mechanical clamped beryllium window for its good stability under high temperature and neutron radiation. Although both of the hollow metal sealing ring with 0.03 mm silver coating and the pure silver sealing ring can satisfy the sealing requirement, the later one was chosen to produce the final product. Two hours 240 °C high temperature baking test, two hours 3.3 Hz vibration test and fatigue test were performed on the two types of beryllium windows. Based on the

  10. SOURCE AND PATHWAY DETERMINATION FOR BERYLLIUM FOUND IN BECHTEL NEVADA NORTH LAS VEGAS FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2004-07-01

    In response to the report ''Investigation of Beryllium Exposure Cases Discovered at the North Las Vegas Facility of the National Nuclear Security Administration'', published by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) in August 2003, Bechtel Nevada (BN) President and General Manager Dr. F. A. Tarantino appointed the Beryllium Investigation & Assessment Team (BIAT) to identify both the source and pathway for the beryllium found in the North Las Vegas (NLV) B-Complex. From September 8 to December 18, 2003, the BIAT investigated the pathway for beryllium and determined that a number of locations existed at the Nevada Test Site (NTS) which could have contained sufficient quantities of beryllium to result in contamination if transported. Operations performed in the B-1 Building as a result of characterization activities at the Engine Maintenance, Assembly, and Disassembly (EMAD); Reactor Maintenance, Assembly, and Disassembly (RMAD); Test Cells A and C; and the Central Support Facility in Area 25 had the greatest opportunity for transport of beryllium. Investigative monitoring and sampling was performed at these sites with subsequent transport of sample materials, equipment, and personnel from the NTS to the B-1 Building. The timeline established by the BIAT for potential transport of the beryllium contamination into the B-1 Building was from September 1997 through November 2002. Based on results of recently completed swipe sampling, no evidence of transport of beryllium from test areas has been confirmed. Results less than the DOE beryllium action level of 0.2 ???g/100 cm2 were noted for work support facilities located in Area 25. All of the identified sites in Area 25 worked within the B-1 tenant's residency timeline have been remediated. Legacy contaminants have either been disposed of or capped with clean borrow material. As such, no current opportunity exists for release or spread of beryllium

  11. Boron-doped manganese dioxide for supercapacitors.

    Science.gov (United States)

    Chi, Hong Zhong; Li, Yuwei; Xin, Yingxu; Qin, Haiying

    2014-11-11

    The addition of boron as a dopant during the reaction between carbon fiber and permanganate led to significant enhancement of the growth-rate and formation of the porous framework. The doped MnO2 was superior to the pristine sample as electrode materials for supercapacitors in terms of the specific capacitance and rate capability.

  12. Method of crude ore defluoridation in hydrometallurgy of beryllium, affording fluorosilicic acid

    International Nuclear Information System (INIS)

    Samojlov, V.I.; Borsuk, A.N.; Zherin, I.I.

    2006-01-01

    Results of laboratory and industrial tests conducted at Ul'ba Metallurgical Plant on leaching bertrandite - phenacite - fluorite flotation concentrate containing ∼4 wt. % beryllium in a rotary furnace using sulfuric acid are presented. The technology is shown to provide a 7.8% reduction in the net cost of beryllium production (1 kg) in the form of technical-grade Be(OH) 2 by obviating the need of smelting beryllium concentrates and alkali fluxes. Besides, the technology permits concomitant production of H 2 SiF 6 , its commercial sales promoting a 17.6% reduction in beryllium production net cost [ru

  13. Thermal Properties of Beryllium Metal

    International Nuclear Information System (INIS)

    Cho, Tae Won; Baek, Je Kyun; Jeong, Gwan Yoon; Kim, Ji Hyeon; Sohn, Dong Seong

    2013-01-01

    It is known that the presence of as-fabricated porosity largely affect thermal conductivity of beryllium. Therefore, in this paper we will suggest a new thermal conductivity equation which consider volume fraction and discuss how this can be applied to irradiation induced degradation of thermal conductivity later. This study was performed to develop a new correlation of thermal conductivity of Beryllium. Although there are many factors like BeO contents, impurity level, grain size, and porosity, we assumed porosity will be the dominant factor for thermal conductivity. Therefore, a new correlation which consider volume fraction by applying Maxwell-Eucken equation is developed and this is consistent to some degrees. However, increasing impurity level and decreasing grain size will decrease thermal conductivity. Therefore, we need to consider their effects although we assume BeO contents, impurity, and grain size do not make noticeable effects in the future. Furthermore, thermal conductivity degradation by neutron irradiation should be considered afterward. There are two main factors for the thermal conductivity degradation: the one is defects formed by neutron collisions and the other is helium generated by transmutation of Be. It is known that they make a considerable degradation of conductivity. Beryllium is known there are considerable volume increases by helium accumulation. Therefore, we anticipate our suggested model can be applicable if it has been developed furthermore considering irradiation induced swelling

  14. Analysis of the KANT experiment on beryllium using TRIPOLI-4 Monte Carlo code

    International Nuclear Information System (INIS)

    Lee, Yi-Kang

    2011-01-01

    Beryllium is an important material in fusion technology for multiplying neutrons in blankets. However, beryllium nuclear data are differently presented in modern nuclear data evaluations. Recent investigations with the TRIPOLI-4 Monte Carlo simulation of the tritium breeding ratio (TBR) demonstrated that beryllium reaction data are the main source of the calculation uncertainties between ENDF/B-VII.0 and JEFF-3.1. To clarify the calculation uncertainties from data libraries on beryllium, in this study TRIPOLI-4 calculations of the Karlsruhe Neutron Transmission (KANT) experiment have been performed by using ENDF/B-VII.0 and new JEFF-3.1.1 data libraries. The KANT Experiment on beryllium has been used to validate neutron transport codes and nuclear data libraries. An elaborated KANT experiment benchmark has been compiled and published in the NEA/SINBAD database and it has been used as reference in the present work. The neutron multiplication in bulk beryllium assemblies was considered with a central D-T neutron source. Neutron leakage spectra through the 5, 10, and 17 cm thick spherical beryllium shells were calculated and five-group partial leakage multiplications were reported and discussed. In general, improved C/E ratios on neutron leakage multiplications have been obtained. Both ENDF/B-VII.0 and JEFF-3.1.1 beryllium data libraries of TRIPOLI-4 are acceptable now for fusion neutronics calculations.

  15. HEINBE; the calculation program for helium production in beryllium under neutron irradiation

    International Nuclear Information System (INIS)

    Shimakawa, Satoshi; Ishitsuka, Etsuo; Sato, Minoru

    1992-11-01

    HEINBE is a program on personal computer for calculating helium production in beryllium under neutron irradiation. The program can also calculate the tritium production in beryllium. Considering many nuclear reactions and their multi-step reactions, helium and tritium productions in beryllium materials irradiated at fusion reactor or fission reactor may be calculated with high accuracy. The calculation method, user's manual, calculated examples and comparison with experimental data were described. This report also describes a neutronics simulation method to generate additional data on swelling of beryllium, 3,000-15,000 appm helium range, for end-of-life of the proposed design for fusion blanket of the ITER. The calculation results indicate that helium production for beryllium sample doped lithium by 50 days irradiation in the fission reactor, such as the JMTR, could be achieved to 2,000-8,000 appm. (author)

  16. Behavior of beryllium pebbles under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dalle-Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik; Baldwin, D.L.; Gelles, D.S.; Greenwood, L.R.; Kawamura, H.; Oliver, B.M.

    1998-01-01

    Beryllium pebbles are being considered in fusion reactor blanket designs as neutron multiplier. An example is the European `Helium Cooled Pebble Bed Blanket.` Several forms of beryllium pebbles are commercially available but little is known about these forms in response to fast neutron irradiation. Commercially available beryllium pebbles have been irradiated to approximately 1.3 x 10{sup 22} n/cm{sup 2} (E>1 MeV) at 390degC. Pebbles 1-mm in diameter manufactured by Brush Wellman, USA and by Nippon Gaishi Company, Japan, and 3-mm pebbles manufactured by Brush Wellman were included. All were irradiated in the below-core area of the Experimental Breeder Reactor-II in Idaho Falls, USA, in molybdenum alloy capsules containing helium. Post-irradiation results are presented on density change measurements, tritium release by assay, stepped-temperature anneal, and thermal ramp desorption tests, and helium release by assay and stepped-temperature anneal measurements, for Be pebbles from two manufacturing methods, and with two specimen diameters. The experimental results on density change and tritium and helium release are compared with the predictions of the code ANFIBE. (author)

  17. Thermoelectric properties of boron and boron phosphide CVD wafers

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sato, A.; Ando, Y. [Yokohama National Univ. (Japan)

    1997-10-01

    Electrical and thermal conductivities and thermoelectric power of p-type boron and n-type boron phosphide wafers with amorphous and polycrystalline structures were measured up to high temperatures. The electrical conductivity of amorphous boron wafers is compatible to that of polycrystals at high temperatures and obeys Mott`s T{sup -{1/4}} rule. The thermoelectric power of polycrystalline boron decreases with increasing temperature, while that of amorphous boron is almost constant in a wide temperature range. The weak temperature dependence of the thermal conductivity of BP polycrystalline wafers reflects phonon scattering by grain boundaries. Thermal conductivity of an amorphous boron wafer is almost constant in a wide temperature range, showing a characteristic of a glass. The figure of merit of polycrystalline BP wafers is 10{sup -7}/K at high temperatures while that of amorphous boron is 10{sup -5}/K.

  18. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  19. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Showkat H. [Centre for Nano Science, Central University of Gujarat, Gandhinagar 382030 (India); Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala 75120 (Sweden); Jha, Prakash C., E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in [School of Applied Material Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Soni, Himadri [Lehrstuhl für Theoretische Chemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany); Jha, Prafulla K. [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002 (India); Ahuja, Rajeev [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Uppsala 75120 (Sweden); Department of Materials and Engineering, Royal Institute of Technology (KTH), 10044 Stockholm (Sweden)

    2016-08-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of the boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.

  20. Retrospective beryllium exposure assessment at the Rocky Flats Environmental Technology site

    International Nuclear Information System (INIS)

    Barnard, A.E.; Torma-Krajewski, J.; Viet, S.M.

    1997-01-01

    Since the 1960's, beryllium machining was performed to make nuclear weapon components at the Department of Energy (DOE) Rocky Flats Plant. Beryllium exposure was assessed via fixed airhead (FAH) sampling in which the filter cassette was affixed to the machine, generally within a few feet of the worker's breathing zone. Approximately 500,000 FAH samples were collected for beryllium over three decades. From 1984 to 1987, personal breathing zone (PBZ) samples were also collected as part of the evaluation of a new high velocity/low volume local exhaust ventilation (HV/LV LEV) system. The purpose of this study was to determine how the two types of sampling data could be used for an exposure assessment in the beryllium shop

  1. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    International Nuclear Information System (INIS)

    Edmonds, P.H.

    1985-09-01

    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (10 22 atoms/cm 2 ) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project

  2. Modeling tritium processes in plasma-facing beryllium

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Dolan, T.J.; Mulock, M.J.

    1995-01-01

    In this paper we present techniques and recommended parameters for modeling tritium implantation, trapping and release, and permeation, in beryllium-clad structures adjacent to the plasma. Among the features that should be considered are the effects of surface films, the mobility of beryllium through those films, damage caused by ion implantation, especially in regions where pitting may be expected, and bubble formation. Tritium transport parameters recommended are based on fits with experimental data and available theory. Estimates of inventories in ITER using these parameters are also given. 31 refs., 2 figs., 1 tab

  3. The status of beryllium research for fusion in the United States

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Snead, L.L.; Abou-Sena, A.A.

    2004-01-01

    Use of beryllium in fusion reactor has been considered for neutron multiplication in breeding blankets an as an oxygen getter for plasma - facing surface. Previous beryllium research for fusion in the United States included issues of interest to fission (swelling an changes in mechanical and thermal properties) as well as interactions with plasmas and hydrogen isotopes and methods of fabrication. When the United States formally withdrew its participation in the International Experimental Reactor (ITER) program, much of this effort was terminated. The focus in the U.S. has been mainly on toxic effects of beryllium and on industrial hygiene and health-related issues. Work continued at the INEEL (Idaho National Engineering and Environmental Laboratory) and elsewhere on beryllium-containing molten salts. This activity is part of the JUPITER II Agreement. Plasma spray of ITER first wall samples at Los Alamos National Laboratory has been performed under the European Fusion Development Agreement. Effects of irradiation on beryllium structure are being studied at Oak Ridge National Laboratory. Numerical and phenomenological models are being developed and applied at the University of California Los Angels to investigate thermo-mechanical characteristics of beryllium pebble beds, similar to research being carried out at Forschungszentrum Karlsruhe and elsewhere. Additional work, not funded by the fusion program, has dealt with issues of disposal, and recycling. (author)

  4. The Status of Beryllium Research for Fusion in the United States

    International Nuclear Information System (INIS)

    Glen R. Longhurst

    2003-01-01

    Use of beryllium in fusion reactors has been considered for neutron multiplication in breeding blankets and as an oxygen getter for plasma-facing surfaces. Previous beryllium research for fusion in the United States included issues of interest to fission (swelling and changes in mechanical and thermal properties) as well as interactions with plasmas and hydrogen isotopes and methods of fabrication. When the United States formally withdrew its participation in the International Thermonuclear Experimental Reactor (ITER) program, much of this effort was terminated. The focus in the U.S. has been mainly on toxic effects of beryllium and on industrial hygiene and health-related issues. Work continued at the INEEL and elsewhere on beryllium-containing molten salts. This activity is part of the JUPITER II Agreement. Plasma spray of ITER first wall samples at Los Alamos National Laboratory has been performed under the European Fusion Development Agreement. Effects of irradiation on beryllium structure are being studied at Oak Ridge National Laboratory. Numerical and phenomenological models are being developed and applied to better understand important processes and to assist with design. Presently, studies are underway at the University of California Los Angeles to investigate thermo-mechanical characteristics of beryllium pebble beds, similar to research being carried out at Forschungszentrum Karlsruhe and elsewhere. Additional work, not funded by the fusion program, has dealt with issues of disposal, and recycling

  5. The preparation method of solid boron solution in silicon carbide in the form of micro powder

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.; Lis, J.; Bialoskorski, J.; Ermer, E.

    1993-01-01

    The preparation method of solid boron solution in silicon carbide in the form of micro power has been worked out. The method consists in introducing mixture of boron, carbon and silicon and heating in the atmosphere of inert gas to the 1573 K

  6. Fabrication and replacement work of beryllium frame and gamma-ray shield

    International Nuclear Information System (INIS)

    Watahiki, Shunsuke; Hanawa, Yoshio; Asano, Norikazu; Hiyama, Kazuhisa; Ito, Sachito; Tsuboi, Kazuaki; Fukasaku, Akitomi

    2012-03-01

    This replacement work was carried out under refurbishment plan of JMTR for beryllium distortion draw to acceptable limit. And gamma-ray shield refurbishment was carried out the view point of prevention maintenance in consideration of operation plan. Fabrication of beryllium frame and gamma-ray shield was spent for two years it was finished in February, 2010. It took five months to replacement work from January 2010. In this report is presented fabrication and replacement work of beryllium frame and gamma-ray shield. (author)

  7. Multidimensional potential of boron-containing molecules in ...

    Indian Academy of Sciences (India)

    Administrator

    The electron deficiency of boron as compared to carbon results .... tal structure analysis of the redox pair [BMes3] o/•– confirmed .... The recognition that meta disubstitution on the benzene ring ..... embed small drug molecules, proteins, peptides and genes inside ... and healthy cells, which results in deleterious side- effects.

  8. Viability study on using calcium carbonate for the boron adsorption process in waste waters; Estudio de viabilidad del proceso de adsorcion de boro de aguas residuales con carbonato calcico

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Guerreiro, M. J.; Munoz Camacho, E.; Bernal Pita da Veiga, M. B.

    2009-07-01

    This study evaluates how viable it is to employ calcium carbonate for the boron adsorption process in waters that could be contaminated by this element. A residue form mussel shells-abundant in Galicia, northwestern Spain, was used. The data gathered from the experiments show that the performance of the boron adsorption within the sample is below 2%. Despite the inferior data obtained, the general aim was reached. An attempt was made to find solutions to the environmental problem caused by the residues mentioned above. (Author) 11 refs.

  9. Electrochemical detection of L-cysteine using a boron-doped carbon nanotube-modified electrode

    International Nuclear Information System (INIS)

    Deng Chunyan; Chen Jinhua; Chen Xiaoli; Wang Mengdong; Nie Zhou; Yao Shouzhuo

    2009-01-01

    A boron-doped carbon nanotube (BCNT)-modified glassy carbon (GC) electrode was constructed for the detection of L-cysteine (L-CySH). The electrochemical behavior of BCNTs in response to L-cysteine oxidation was investigated. The response current of L-CySH oxidation at the BCNT/GC electrode was obviously higher than that at the bare GC electrode or the CNT/GC electrode. This finding may be ascribed to the excellent electrochemical properties of the BCNT/GC electrode. Moreover, on the basis of this finding, a determination of L-CySH at the BCNT/GC electrode was carried out. The effects of pH, scan rate and interferents on the response of L-CySH oxidation were investigated. Under the optimum experimental conditions, the detection response for L-CySH on the BCNT/GC electrode was fast (within 7 s). It was found to be linear from 7.8 x 10 -7 to 2 x 10 -4 M (r = 0.998), with a high sensitivity of 25.3 ± 1.2 nA mM -1 and a low detection limit of 0.26 ± 0.01 μM. The BCNT/GC electrode exhibited high stability and good resistance against interference by other oxidizable amino acids (tryptophan and tyrosine)

  10. Pure and carbon-doped boron phosphide (6,0) zigzag nanotube: A computational NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Arshadi, S., E-mail: sattar_arshadi@yahoo.com [Department of Chemistry, Payame Noor University, 19395-4697, I.R. of Iran (Iran, Islamic Republic of); Bekhradnia, A.R., E-mail: abekhradnia@gmail.com [Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of); Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg (Sweden); Alipour, F.; Abedini, S. [Department of Chemistry, Payame Noor University, 19395-4697, I.R. of Iran (Iran, Islamic Republic of)

    2015-11-15

    Calculations were performed for investigation of the properties of the electronic structure of Carbon- Doped Boron Phosphide Nanotube (CDBPNT). Pristine and three models of C-doped structures of (6,0) zigzag BPNT were studied at density functional theory (DFT) in combination with 6-311G* basis set using Gaussian package of program. The calculated parameters reveal that various {sup 11}B and {sup 31}P nuclei are divided into some layers with equivalent electrostatic properties. The electronic structure properties are highly influenced by replacement of {sup 11}B and {sup 31}P atoms by {sup 12}C atoms in pristine model. Furthermore, the HOMO−LUMO gap energy for suggested doped models (I), (II) and (III) were lower than pure BPNT pristine systems. The dipole moment values of models (II) and (III) were decreased to 1.788 and 1.789, respectively while the dipole moments of model (I) were enhanced to 4.373, in compare to pure pristine one (2.586). The magnitude of changes in Chemical Shielding (CS) tensor parameters revealed that the electron density at the site of {sup 31}P was higher than that at the site of {sup 11}B due to carbon doping.

  11. Boron Steel: An Alternative for Costlier Nickel and Molybdenum Alloyed Steel for Transmission Gears

    Directory of Open Access Journals (Sweden)

    A. Verma

    2010-06-01

    Full Text Available Case Carburized (CC low carbon steels containing Ni, Cr and Mo alloying elements are widely used for transmission gears in automobile, as it possesses desired mechanical properties. In order to cut cost and save scarce materials like Ni and Mo for strategic applications, steel alloyed with Boron has been developed, which gives properties comparable to Ni-Cr-Mo alloyed steel. In the process of steel development, care was taken to ensure precipitation of boron which results in precipitation hardening. The characterization of the developed boron steel had exhibited properties comparable to Ni-Cr-Mo alloyed steel and superior to conventional boron steel.

  12. Hanford Site Beryllium Program: Past, Present, and Future - 12428

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Mark [CH2M Hill Plateau Remediation Company, Richland, Washington 99354 (United States); Garcia, Pete [U.S. Department of Energy - Richland Office, Richland, Washington 99352 (United States); Goeckner, Julie [U.S. Department of Energy - HQ, EMCBC, Cincinnati, Ohio 45202 (United States); Millikin, Emily [Washington Closure Hanford, Richland, Washington 99354 (United States); Stoner, Mike [Mission Support Alliance, Richland, Washington 99354 (United States)

    2012-07-01

    The U.S. Department of Energy (DOE) has a long history of beryllium use because of the element's broad application to many nuclear operations and processes. At the Hanford Site beryllium alloy was used to fabricate parts for reactors, including fuel rods for the N-Reactor during plutonium production. Because of continued confirmed cases of chronic beryllium disease (CBD), and data suggesting CBD occurs at exposures to low-level concentrations, the DOE decided to issue a rule to further protect federal and contractor workers from hazards associated with exposure to beryllium. When the beryllium rule was issued in 1999, each of the Hanford Site contractors developed a Chronic Beryllium Disease Prevention Program (CBDPP) and initial site wide beryllium inventories. A new site-wide CBDPP, applicable to all Hanford contractors, was issued in May, 2009. In the spring of 2010 the DOE Headquarters Office of Health, Safety, and Security (HSS) conducted an independent inspection to evaluate the status of implementation of the Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP). The report identified four Findings and 12 cross-cutting Opportunities for Improvement (OFIs). A corrective action plan (CAP) was developed to address the Findings and crosscutting OFIs. The DOE directed affected site contractors to identify dedicated resources to participate in development of the CAP, along with involving stakeholders. The CAP included general and contractor-specific recommendations. Following initiation of actions to implement the approved CAP, it became apparent that additional definition of product deliverables was necessary to assure that expectations were adequately addressed and CAP actions could be closed. Consequently, a supplement to the original CAP was prepared and transmitted to DOE-HQ for approval. Development of the supplemental CAP was an eight month effort. From the onset a core group of CAP development members were identified to develop a mechanism

  13. The analysis of beryllium-copper diffusion joint after HHF test

    International Nuclear Information System (INIS)

    Guiniatouline, R.N.; Mazul, I.V.; Rubkin, S.Y.

    1995-01-01

    The development of beryllium-copper joints which can withstand to relevant ITER divertor conditions is one of the important tasks at present time. One of the main problem for beryllium-copperjoints, is the inter-metallic layers, the strength and life time of joints significantly depends from the width and contents of the intermetallic layers. The objective of this work is to study the diffusion joint of TGP-56 beryllium to OFHC copper after thermal response and thermocyclic tests with beryllium-copper mockup. The BEY test were performed at e-beam facility (EBTS, SNLA). The following methods were used for analyses: the roentgenographic analysis; X-ray spectrum analysis; the fracture graphic analysis. During the investigation the followed studies were done: the analysis of diffusion boundary Be-Cu, which was obtained at the crossection of one of the tiles, the analysis of the debonded surfaces of a few beryllium tiles and corresponding copper parts; the analysis of upper surface of one of the tiles after HHF tests. The results of this work have showed that: the joint roentgenographic and elements analyses indicated the following phases in the diffusion zone: Cu 2 Be (∼170 μm), CuBe (∼30μm), CuBe 2 (∼1 μm) and solid solution of copper in beryllium. The phases Cu 2 Be, CuBe and solid solution of copper in beryllium were indicated using quantitative microanalysis and phases CuBe, CuBe 2 , Cu, Be - by roentgenographic analysis; the source of fracture (initial crack) is located in the central part of the tiles, the crack caused by the influence of residual stresses during cooling of a mock-up after fabrication and developed under the conditions of slow elastic-plastic growing during the process of thermal fatigue testing. The analysis gives the important data about joint's quality and also may be used for any type of joints and its comparison for ITER applications

  14. Reactivity effects due to beryllium poisoning of BR2

    International Nuclear Information System (INIS)

    Kalcheva, S.; Ponsard, B.; Koonen, E.

    2004-01-01

    This paper illustrates the impact of the poisoning of the beryllium reflector on reactivity variations of the Belgian MTR BR2 in SCK.CEN. Detailed calculations by MCNP-4C of reactivity effects caused by strong neutron absorbers 3 He and 6 Li during reactor operation history are presented. The importance of beryllium poisoning for the accuracy of reactivity predictions is discussed. (authors)

  15. Joining of beryllium by braze welding technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.

    1998-01-01

    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  16. Extraction of beryllium sulfate by a long chain amine

    International Nuclear Information System (INIS)

    Etaix, E.S.

    1968-01-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [fr

  17. Investigation of the beryllium ion-surface interaction

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I. [Kurchatov Inst., Moscow (Russian Federation); Birukov, A.Yu. [Kurchatov Inst., Moscow (Russian Federation); Gureev, V.M. [Kurchatov Inst., Moscow (Russian Federation); Daneljan, L.S. [Kurchatov Inst., Moscow (Russian Federation); Korshunov, S.N. [Kurchatov Inst., Moscow (Russian Federation); Martynenko, Yu.V. [Kurchatov Inst., Moscow (Russian Federation); Moskovkin, P.S. [Kurchatov Inst., Moscow (Russian Federation); Sokolov, Yu.A. [Kurchatov Inst., Moscow (Russian Federation); Stoljarova, V.G. [Kurchatov Inst., Moscow (Russian Federation); Kulikauskas, V.S. [M.V. Lomonosov University, Moscow (Russian Federation); Zatekin, V.V. [M.V. Lomonosov University, Moscow (Russian Federation)

    1996-10-01

    The energy and temperature dependence of self-sputtering yields of beryllium were measured. The energy dependence of the beryllium self-sputtering yield agrees well with that calculated by Eckstein et al. Below 770 K the self-sputtering yields are temperature independent; at T{sub irr.}>870 K the yield increases steeply. Beryllium samples were implanted at 370 K with monoenergetic 5 keV hydrogen ions and with a stationary hydrogen plasma power flux of about 5 MW/m{sup 2}. In the fluence range of 5 x 10{sup 22}-1.5 x 10{sup 25} m{sup -2} the depth profile is shifted towards the surface with increasing fluence and the concentration of trapped hydrogen atoms is reduced from 3.3 x 10{sup 21} to 7.4 x 10{sup 20} m{sup -2}. About 95% of the trapped hydrogen is located within bubbles and only {proportional_to}5% is trapped as atoms. With increasing implantation fluence the bubbles coalesce, producing channels through which hydrogen escapes. (orig.).

  18. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.

    Science.gov (United States)

    Zhang, Jinli; Nie, Ning; Liu, Yuanyuan; Wang, Jiao; Yu, Feng; Gu, Junjie; Li, Wei

    2015-09-16

    An evolutionary composite of LiFePO4 with nitrogen and boron codoped carbon layers was prepared by processing hydrothermal-synthesized LiFePO4. This novel codoping method is successfully applied to LiFePO4 for commercial use, and it achieved excellent electrochemical performance. The electrochemical performance can be improved through single nitrogen doping (LiFePO4/C-N) or boron doping (LiFePO4/C-B). When modifying the LiFePO4/C-B with nitrogen (to synthesis LiFePO4/C-B+N) the undesired nonconducting N-B configurations (190.1 and 397.9 eV) are generated. This decreases the electronic conductivity from 2.56×10(-2) to 1.30×10(-2) S cm(-1) resulting in weak electrochemical performance. Nevertheless, using the opposite order to decorate LiFePO4/C-N with boron (to obtain LiFePO4/C-N+B) not only eliminates the nonconducting N-B impurity, but also promotes the conductive C-N (398.3, 400.3, and 401.1 eV) and C-B (189.5 eV) configurations-this markedly improves the electronic conductivity to 1.36×10(-1) S cm(-1). Meanwhile the positive doping strategy leads to synergistic electrochemical activity distinctly compared with single N- or B-doped materials (even much better than their sum capacity at 20 C). Moreover, due to the electron and hole-type carriers donated by nitrogen and boron atoms, the N+B codoped carbon coating tremendously enhances the electrochemical property: at the rate of 20 C, the codoped sample can elevate the discharge capacity of LFP/C from 101.1 mAh g(-1) to 121.6 mAh g(-1), and the codoped product based on commercial LiFePO4/C shows a discharge capacity of 78.4 mAh g(-1) rather than 48.1 mAh g(-1). Nevertheless, the B+N codoped sample decreases the discharge capacity of LFP/C from 101.1 mAh g(-1) to 95.4 mAh g(-1), while the commercial LFP/C changes from 48.1 mAh g(-1) to 40.6 mAh g(-1).

  19. Microscopic origin of the composition-dependent change of the thermal conductivity in boron carbides

    International Nuclear Information System (INIS)

    Emin, D.; Howard, I.A.; Green, T.A.; Beckel, C.L.

    1987-01-01

    Large grain polycrystalline boron carbides have a high-temperature thermal conductivity which changes from being characteristic of a crystal to being glass-like as the carbon content is reduced from its maximal value. We relate this phenomenon, to compositional changes within the three-atom intericosahedral chains. With a reduction of the carbon concentration from its maximal concentration (20%), a carbon atom within some of the three-atoms (CBC) intericosahedral chains is replaced by a boron atom, thereby producing CBB chains. We estimate that the CBB chains are significantly softer than the CBC chains. Thus, with this reduction of carbon content the intericosahedral chains are inhomogeneously softened. This suppresses the coherent transport of heat through the chains. The remaining thermal transport occurs incoherently through vibrationally inequivalent structural units, i.e. ''phonon hopping.''

  20. Beryllium thin films for resistor applications

    Science.gov (United States)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  1. Experience of beryllium blocks operation in the SM and MIR nuclear reactors useful for fusion

    International Nuclear Information System (INIS)

    Chakin, V.P.; Melder, R.R.; Belozerov, S.V.

    2004-01-01

    The results are presented concerning the examinations of state of beryllium blocks after the completion of their operation in the SM and MIR reactors. Both cracks and more significant mechanical damages are revealed in the irradiated beryllium blocks. Under neutron irradiation of beryllium radiation degradation of its physical and mechanical properties occurs. It shows itself in embrittlement, decrease of brittle strength level as well in worsening of thermal conductivity that leads to increase of thermal stresses into beryllium block. Under irradiation it takes place damage of beryllium microstructure, in particular, formation of radiation defects occurs in the form of dislocation loops and great amount of helium atoms. Optimization of beryllium radioactive waste storage is related to their preliminary surface and volumetric decontamination. (author)

  2. Zone-refining of beryllium(II) acetylacetonate

    International Nuclear Information System (INIS)

    Yoshida, Isao; Kobayashi, Hiroshi; Ueno, Keihei

    1975-01-01

    Zone melting was applied to bis (acetylacetonato) beryllium(II), Be(AA) 2 , to remove trace metal constiutents. The effective distribution coefficient, k, of a minor component measured in a binary mixture with the majority of Be(AA) 2 , fell in the range of 0.4 to 0.8, while the value obtained in a multiple component mixture fell in the range of 0.8 to 0.9 except Zn(II)- and Ni(II) chelates. Cr(AA) 3 was concentrated upward in the direction of the zone travelling, and similar results were obtained with Cu(II)-, Co(III)- Fe(III)- and Al(III) acetylacetonates, while Zn(II)-, Ni(II)- and Mn(III) chelates were fractionated in the both ends of the column. On the other hand, when the zone was moved downward, the minor components were concentrated in the lower end of a column. Efficiency in zone refining was compared to each other between the upward- and downward zone travelling modes on the crude beryllium acetylacetonates obtained from a commercial reagent of beryllium nitrate, and the latter mode was found more effective in the concentration of trace components. Discussion was given on possible mechanisms resulting in the difference in the refining efficiency. (author)

  3. Real-time monitoring of airborne beryllium, at OSHA limit levels, by time-resolved laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Radziemski, L.J.; Loree, T.R.; Cremers, D.A.

    1982-01-01

    Real-time detection of beryllium particulate is being investigated by the new technique of laser-induced breakdown spectroscopy. For beryllium detection we monitor the 313.1-nm feature of once ionized beryllium (Be II). Numerous publications describe the technique, our beryllium results, and other applications. Here we summarize the important points and describe our experiments with beryllium

  4. Influence of impurities in Beryllium on tritium breeding ratio

    International Nuclear Information System (INIS)

    Yamauchi, M.; Ochiai, K.; Verzilov, Y.; Ito, M.; Wada, M.; Nishitani, T.

    2004-01-01

    Several neutronics experiments simulating fusion blankets have been conducted with 14 MeV neutron source to assess the reliability of nuclear analysis codes. However, the analyses have not always presented good agreements so far between calculated and measured tritium production rates. One of the reasons was considered as impurities in beryllium which has negligibly small neutron absorption cross section in low energy range. Chemical compositions of beryllium were analyzed by Inductively Coupled Plasma (ICP) method, and a pulsed neutron decay experiment discovered that the macroscopic neutron absorption cross section for beryllium medium may be about 30% larger than the value calculated by the data specified by manufacturing company. The influence of the impurities on the calculations was studied on the basis of the fusion DEMO-reactor blanket design. As a result of the study, it was made clear that the impurities affect the local tritium production rates when the size of beryllium medium is more than 20-30 mean free paths (30-40 cm) in thickness. In case of some blanket designs that meet the above condition, the effect on tritium breeding ratio may become as large as about 4%. (author)

  5. Influence of impurities in Beryllium on tritium breeding ratio

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, M; Ochiai, K; Verzilov, Y; Ito, M; Wada, M; Nishitani, T [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-03-01

    Several neutronics experiments simulating fusion blankets have been conducted with 14 MeV neutron source to assess the reliability of nuclear analysis codes. However, the analyses have not always presented good agreements so far between calculated and measured tritium production rates. One of the reasons was considered as impurities in beryllium which has negligibly small neutron absorption cross section in low energy range. Chemical compositions of beryllium were analyzed by Inductively Coupled Plasma (ICP) method, and a pulsed neutron decay experiment discovered that the macroscopic neutron absorption cross section for beryllium medium may be about 30% larger than the value calculated by the data specified by manufacturing company. The influence of the impurities on the calculations was studied on the basis of the fusion DEMO-reactor blanket design. As a result of the study, it was made clear that the impurities affect the local tritium production rates when the size of beryllium medium is more than 20-30 mean free paths (30-40 cm) in thickness. In case of some blanket designs that meet the above condition, the effect on tritium breeding ratio may become as large as about 4%. (author)

  6. Effect of Boron and Titanium Addition on the Hot Ductility of Low-Carbon Nb-Containing Steel

    Science.gov (United States)

    Liu, Wei-Jian; Li, Jing; Shi, Cheng-Bin; Huo, Xiang-Dong

    2015-12-01

    The effect of boron and titanium addition on the hot ductility of Nb-containing steel was investigated using hot tensile tests. The fracture surface and the quenched longitudinal microstructure were examined by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that both steel samples had the similar change from 1,100°C to 700°C. The hot ductility of Nb-containing steel with boron and titanium addition was higher than the steel without boron and titanium in the temperature range of 900-750°C. Because the formation of intergranular ferrite was inhibited by solute boron segregating on the grain boundary, the formation of TiN changed the distribution of Nb- and boron-containing precipitates and improved the amount of intragranular ferrite.

  7. Evaluation of the hazard associated with fabricating beryllium copper alloys

    International Nuclear Information System (INIS)

    Senn, T.J.

    1977-01-01

    Beryllium-copper alloys should be considered toxic materials and proper controls must be used when they are machined, heated, or otherwise fabricated. Air samples should be taken for each type of fabrication to determine the worker's exposure and the effectiveness of the controls in use. It has been shown that aerosols containing beryllium are generated during the four methods of fabrication tested, and that these aerosols can be reduced through local exhaust to undetectable levels. Considering the acute, chronic and possibly carcinogenic effects of exposure to beryllium, effective controls should be required because they are feasible both technologically and economically. The health hazards and control measures are reviewed

  8. Historical perspectives on the uses and health risks of beryllium

    International Nuclear Information System (INIS)

    Preuss, O.P.

    1985-01-01

    Unawareness of the health risks of beryllium resulted in a decade of unmitigated exposure of several thousand workers and numerous cases of beryllium disease in employees and nearby residents. Subsequent adoption of exposure limits and their implementation with effective technical controls reduced the occurrence of new cases, which were mainly due to accidental exposures, to a minimum. The fact that continuously growing production and consumption did not alter this trend demonstrates the effectiveness of the present threshold limit value. It shows that the potential health hazard can be well contained and that beryllium can be produced and fabricated without undue risk to employees or the general public

  9. Operational experience with the JET beryllium evaporators in the J1W test bed

    International Nuclear Information System (INIS)

    Peacock, A.T.; Dietz, K.J.; Israel, G.; Jensen, H.S.; Johnson, A.; Pick, M.A.; Saibene, G.; Sartori, R.

    1989-01-01

    Four beryllium evaporators were fitted onto the JET vessel during March 1989. These evaporators are planned to give the first introduction of beryllium into the JET machine to study the effect of using beryllium as a first wall material. Over 200 hours operational experience with such an evaporator had been gained on a test bed facility in which the evaporation rate, radial evaporant distribution and head operating temperature had been determined. The results obtained on this facility with two different heat materials, sintered S-65B and vacuum cast beryllium are described. The test vessel has also been used to conduct beryllium wall pumping experiments using the ''Langmuir effect''. The initial results of these experiments will be described. (author)

  10. Work Function Characterization of Potassium-Intercalated, Boron Nitride Doped Graphitic Petals

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2017-07-01

    Full Text Available This paper reports on characterization techniques for electron emission from potassium-intercalated boron nitride-modified graphitic petals (GPs. Carbon-based materials offer potentially good performance in electron emission applications owing to high thermal stability and a wide range of nanostructures that increase emission current via field enhancement. Furthermore, potassium adsorption and intercalation of carbon-based nanoscale emitters decreases work functions from approximately 4.6 eV to as low as 2.0 eV. In this study, boron nitride modifications of GPs were performed. Hexagonal boron nitride is a planar structure akin to graphene and has demonstrated useful chemical and electrical properties when embedded in graphitic layers. Photoemission induced by simulated solar excitation was employed to characterize the emitter electron energy distributions, and changes in the electron emission characteristics with respect to temperature identified annealing temperature limits. After several heating cycles, a single stable emission peak with work function of 2.8 eV was present for the intercalated GP sample up to 1,000 K. Up to 600 K, the potassium-intercalated boron nitride modified sample exhibited improved retention of potassium in the form of multiple emission peaks (1.8, 2.5, and 3.3 eV resulting in a large net electron emission relative to the unmodified graphitic sample. However, upon further heating to 1,000 K, the unmodified GP sample demonstrated better stability and higher emission current than the boron nitride modified sample. Both samples deintercalated above 1,000 K.

  11. Control of molten salt corrosion of reduced activation steel for fusion applications by metallic beryllium

    International Nuclear Information System (INIS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2007-01-01

    Full text of publication follows: In 2001 the INL started a research program as a part of the 2. Japan/US Program on Irradiation Tests for Fusion Energy Research (JUPITER-II collaboration) aimed at the characterization of the 2LiF-BeF2 (Flibe) molten salt as a breeder and coolant material for fusion applications. A key objective of the work was to demonstrate chemical compatibility between Flibe and potential fusion structural materials once suitable fluoride potential control methods are established. A series of tests performed at INL demonstrated that this can be achieved by contacting the salt with metallic beryllium, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W JLF-1 to static corrosion tests that include an active corrosion agent (hydrofluoric gas) and fluoride potential control (metallic Be) at 530 C, and the results of the tests are presented in this paper. The specimen and a beryllium rod were simultaneously immersed in the molten salt through gas tight fittings mounted on risers extending from the top lid of the test vessel; the beryllium rod was extracted after 5 hours, while the sample was left in the salt for 250 hours during which salt samples were withdrawn from the melt at fixed intervals. A diagnostic system based on the measurement of reacting HF through on-line titration was coupled with the analysis of metallic components in the salt samples that were dissolved and analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Impurity levels of oxygen, nitrogen and carbon were determined from pieces of the solidified melt using Leco analytical systems. The results confirmed the expected correlation of the HF recovery with the concentration of metallic elements dissolved in the salt because of specimen corrosion. The metals concentration falls below the detectable limit when the beryllium rod is inserted and increases when the

  12. Study and optimization of the carbothermic reduction process for obtaining boron carbide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de.

    1989-01-01

    Boron carbide - B sub(4)C - is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Moreover, its high neutron capture cross section makes it suitable for application as neutron absorber in nuclear technology. The process for obtaining carbothermally derived boron carbide has been studied in two steps: firstly, the parameters of the boric acid → boron oxide dehydration reaction have been defined; secondly, the optimization of the carbothermal reduction reaction using boron oxide has been undertaken looking for boron carbide having low level of free carbon. The starting materials as well as the main products have been studied by chemical and spectrographic analyses, X-ray diffractometry, granulometric classification and scanning electron microscopy. The optimization of the carbothermic reduction process allowed for the development and set up of a fabrication procedure yielding high quality B sub(4) C powders, starting from low cost and easily available (in the Brazilian market) raw materials. (author)

  13. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  14. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    International Nuclear Information System (INIS)

    Ulrickson, M.A.; Manly, W.D.; Dombrowski, D.E.

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers

  15. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  16. Thermal fatigue of beryllium

    International Nuclear Information System (INIS)

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-01-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m 2 to 5 MW/m 2 and under pulsed heat fluxes (10-20 MW/m 2 ) for which the time averaged heat flux is 5 MW/m 2 . These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures ≤ 600 degrees C produced no visible fatigue cracks. In the second series of tests, with T max ≤ 750 degrees C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with Φ = 25 MW/m 2 and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed

  17. Corrosion of beryllium oxide

    International Nuclear Information System (INIS)

    Elston, J.; Caillat, R.

    1958-01-01

    Data are reported on the volatilization rate of beryllium oxide in moist air depending on temperature and water vapour concentration. They are concerned with powder samples or sintered shapes of various densities. For sintered samples, the volatilization rate is very low under the following conditions: - temperature: 1300 deg. C, - water vapour concentration in moist air: 25 g/m 3 , - flow rate: 12 I/hour corresponding to a speed of 40 m/hour on the surface of the sample. For calcinated powders (1300 deg. C), grain growth has been observed under a stream of moist air at 1100 deg. C. For instance, grain size changes from 0,5 to at least 2 microns after 500 hours of exposure at this temperature. Furthermore, results data are reported on corrosion of sintered beryllium oxide in pressurized water. At 250 deg. C, under a pressure of 40 kg/cm 2 water is very slightly corrosive; however, internal strains are revealed. Finally, some features on the corrosion in liquid sodium are exposed. (author) [fr

  18. Leachability characteristics of beryllium in redmud waste and its stabilization in cement

    International Nuclear Information System (INIS)

    Saradhi, I.V.; Mahadevan, T.N.; Krishnamoorthy, T.M.

    1999-01-01

    More than 70% of the beryl ore processed by the Beryllium Metal Plant at the BARC Vashi Complex ends up as redmud waste. The presence of significant quantities (0.4 to 0.8%) of beryllium in the redmud qualifies it as hazardous requiring safe handling, storage and disposal. The waste also contains 0.09% of water soluble fluoride. The various standard protocol of procedures were employed to estimate the leachability of beryllium from redmud for both short term and long term periods. Nearly 50% of beryllium present in redmud is leachable in water. We have tried the stabilization of redmud using portland cement. The proportion of redmud to cement was in the ratio of 1:1, 1:2 and 1:4. The blocks were cast, cured and used in the leachability experiments using standard protocols as above. The results of the TCLP test gave the levels of beryllium well below the standard limits in the TCLP extract of cement stabilized waste indicating the suitability of stabilization of redmud with cement whereas that of raw waste (redmud) are much higher than the prescribed limits. The total leach percent of beryllium in 1:2 block is 0.05% over period of 164 days whereas 1:1 and 1:4 gave a leach percent of 0.26 and 0.15% respectively. The DLT results indicate, diffusion controlled release of beryllium from the cement stabilized redmud blocks. The effective diffusion coefficient of beryllium obtained from the modelling study is 10 orders of magnitude less than the molecular diffusion coefficient of beryllium indicating the effectiveness of cement stabilization. From the detailed experiments performed, it is felt that 1:2 proportion of redmud and cement will be the best suited option for stabilization of redmud waste. The 1:1 proportion of redmud to cement mixture which could not be cast into compact cement blocks also exhibited very low leachability characteristics similar to 1:2 and 1:4 and can be be favourably considered for stabilization in case of space constraints at storage sites. The

  19. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores: implications for risk assessment.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C

    2008-01-01

    Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to CBD. In comparison to high-CBD risk exposures where the chemical nature of aerosol

  20. Assessment of the beryllium lymphocyte proliferation test using statistical process control.

    Science.gov (United States)

    Cher, Daniel J; Deubner, David C; Kelsh, Michael A; Chapman, Pamela S; Ray, Rose M

    2006-10-01

    Despite more than 20 years of surveillance and epidemiologic studies using the beryllium blood lymphocyte proliferation test (BeBLPT) as a measure of beryllium sensitization (BeS) and as an aid for diagnosing subclinical chronic beryllium disease (CBD), improvements in specific understanding of the inhalation toxicology of CBD have been limited. Although epidemiologic data suggest that BeS and CBD risks vary by process/work activity, it has proven difficult to reach specific conclusions regarding the dose-response relationship between workplace beryllium exposure and BeS or subclinical CBD. One possible reason for this uncertainty could be misclassification of BeS resulting from variation in BeBLPT testing performance. The reliability of the BeBLPT, a biological assay that measures beryllium sensitization, is unknown. To assess the performance of four laboratories that conducted this test, we used data from a medical surveillance program that offered testing for beryllium sensitization with the BeBLPT. The study population was workers exposed to beryllium at various facilities over a 10-year period (1992-2001). Workers with abnormal results were offered diagnostic workups for CBD. Our analyses used a standard statistical technique, statistical process control (SPC), to evaluate test reliability. The study design involved a repeated measures analysis of BeBLPT results generated from the company-wide, longitudinal testing. Analytical methods included use of (1) statistical process control charts that examined temporal patterns of variation for the stimulation index, a measure of cell reactivity to beryllium; (2) correlation analysis that compared prior perceptions of BeBLPT instability to the statistical measures of test variation; and (3) assessment of the variation in the proportion of missing test results and how time periods with more missing data influenced SPC findings. During the period of this study, all laboratories displayed variation in test results that