WorldWideScience

Sample records for beryllium 6 target

  1. Pion Production by Protons on a Thin Beryllium Target at 6.4, 12.3, and 17.5 GeV/c Incident Proton Momenta

    CERN Document Server

    Cianciolo, V; Fernow, R C; Frawley, A D; Gilkes, M; Gushue, S; Hartouni, E P; Hiejima, H; Justice, M; Kang, J H; Kirk, H G; Link, J M; Maeda, N; McGrath, R L; Mioduszewski, S; Monroe, J; Morrison, D; Moulson, M; Namboodiri, M N; Rai, G; Read, K; Remsberg, L; Rosati, M; Shin, Y; Soltz, R A; Sorel, M; Sørensen, S; Thomas, J H; Torun, Y; Winter, D L; Yang, X; Zajc, W A; Zhang, Y

    2007-01-01

    An analysis of inclusive pion production in proton-beryllium collisions at 6.4, 12.3, and 17.5 GeV/c proton beam momentum has been performed. The data were taken by Experiment 910 at the Alternating Gradient Synchrotron at the Brookhaven National Laboratory. The differential $\\pi^+$ and $\\pi^-$ production cross sections ($d^2\\sigma/dpd\\Omega$) are measured up to 400 mRad in $\\theta_{\\pi}$ and up to 6 GeV/c in $p_{\\pi}$. The measured cross section is fit with a Sanford-Wang parameterization.

  2. Investigation of the mechanism of interaction of Lithium 6 ions on Beryllium 9

    International Nuclear Information System (INIS)

    The objective of this research on the interaction of Lithium 6 and Beryllium 9 ions is to obtain new indications on the mode of interaction of these heavy ions, and on the configuration of target nuclei and projectile nuclei. In a first part, the author presents and describes the experimental conditions which comprise a Van de Graaff accelerator, a source, a stripper, and a target. He reports the study of α particles emitted by the reaction between the Lithium and Beryllium ions: description of the experimental installation (irradiation chamber and method), presentation and interpretation of experimental results. In the next part, he reports the study of Lithium 7 and Beryllium 10 nuclides emitted by disintegration of Beryllium 11: description of experimental conditions, variations of cross sections, variation of the cross section rate, and interpretation. The author then addresses the study of the intervention of the mode of interaction by 15N compound nucleus in the reactions between lithium and beryllium ions: study of intensities of the different spectrum lines, measurement of the Doppler effect produced of the 479 keV line, interpretation of results. In conclusion, the author analyses the mechanism of interaction between lithium and beryllium ions, and discusses different theories: the Newns and Glendenning theories, and the Leigh theory

  3. Metallic beryllium-7 target of small diameter

    CERN Document Server

    Zyuzin, A Yu; Vincent, J S; Buckley, K R; Bateman, N P; Snover, K A; Csandjan, J M; Steiger, T D; Adelberger, E G; Swanson, H E

    1999-01-01

    The stellar sup 7 Be(p, gamma) sup 8 B reaction rate has the largest uncertainty among all nuclear reaction rates in the standard solar model. However, the solar neutrino flux predicted for the majority of proposed and existing solar neutrino detectors is directly dependent on the rate of sup 7 Be(p, gamma) sup 8 B reaction. The existing solar neutrino detectors measure rate of sup 8 B decay neutrinos that is too low. This constitutes largely the solar neutrino problem. Existing measurements of the sup 7 Be(p, gamma) sup 8 B reaction rate disagree with one another, indicating the need for more precise experiments. To provide the required targets a new procedure for sup 7 Be production, separation and target manufacturing has been developed. First, a lithium target has been designed for sup 7 Be production at TRIUMF's 13 MeV cyclotron. The lithium target has been extensively tested at 50 mu A proton beam current yielding 8.1 MBq/mu A h of sup 7 Be. An adsorption filtration technique has been developed for sup ...

  4. Conceptual design of the beryllium rotating target for the ESS-Bilbao facility

    Energy Technology Data Exchange (ETDEWEB)

    Terrón, S., E-mail: santiago.terron@essbilbao.org [ESS-Bilbao, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja. 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Sordo, F.; Magán, M.; Ghiglino, A.; Martínez, F.; Vicente, P.J. de; Vivanco, R. [ESS-Bilbao, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja. 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Thomsen, K. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Perlado, J.M. [Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bermejo, F.J. [Instituto de Estructura de la Materia, IEM-CSIC, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain); ESS-Bilbao, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja. 48160 Derio (Spain); Abánades, A. [Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C José Gutiérrez Abascal, 2, 28006 Madrid (Spain)

    2013-10-01

    The ESS-Bilbao facility, hosted by the University of the Basque Country (UPV/EHU), envisages the operation of a high-current proton accelerator delivering beams with energies up to 50 MeV. The time-averaged proton current will be 2.25 mA, delivered by 1.5 ms proton pulses with a repetition rate of 20 Hz. This beam will feed a neutron source based upon the Be (p,n) reaction, which will enable the provision of relevant neutron experimentation capabilities. The neutron source baseline concept consists in a rotating beryllium target cooled by water. The target structure will comprise a rotatable disk made of 6061-T6 aluminium alloy holding 20 beryllium plates. Heat dissipation from the target relies upon a distribution of coolant-flow channels. The practical implementation of such a concept is here described with emphasis put on the beryllium plates thermo-mechanical optimization, the chosen coolant distribution system as well as the mechanical behavior of the assembly. -- Highlights: • The conceptual design of ESS-Bilbao neutron production target has been carried out. • This device is a rotating disk holding Be elements cooled by water. • Thermo-mechanical and lifespan behavior of the Be elements have been analyzed. • Disk structure ensures coolability and a proper mechanical behavior of the assembly.

  5. Beryllium Target for Accelerator - Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    This work is part of a project for developing Accelerator Based Boron Neutron Capture Therapy (AB- BNCT) for which the generation of neutrons through nuclear reactions like 9Be(d,n) is necessary. In this paper first results of the design and development of such neutron production targets are presented. For this purpose, the neutron production target has to be able to withstand the mechanical and thermal stresses produced by intense beams of deuterons (of 1.4 MeV with a total current of about 30mA). In particular, the target should be able to dissipate an energy density of up to 1 kW/cm2 and preserve its physical and mechanical properties for a sufficient length of time under irradiation conditions and hydrogen damage. The target is proposed to consist of a thin Be deposit (neutron producing material) on a thin W or Mo layer to stop the beam and a Cu backing to help carry away the heat load. To achieve the adhesion of the Be films on W, Mo and Cu substrates, a powder blasting technique was applied with quartz and alumina microspheres. On the other hand, Ag deposits were made on some of the substrates previously blasted to favor the chemical affinity between Beryllium and the substrate thus improving adhesion. Be deposits were characterized by means of different techniques including Electron Microscopy (Sem) and Xr Diffraction. Roughness and thickness measurements were also made. To satisfy the power dissipation requirements for the neutron production target, a microchannel system model is proposed. The simulation based on this model permits to determine the geometric parameters of the prototype complying with the requirements of a microchannel system. Results were compared with those in several publications and discrepancies lower than 10% were found in all cases. A prototype for model validation is designed here for which simulations of fluid and structural mechanics were carried out and discussed

  6. Loading beryllium targets to extend the high flux isotope reactor's cycle length

    International Nuclear Information System (INIS)

    beryllium targets to carry away any excess heat. Case 2 with 18 beryllium rods was recommended for implementation at the HFIR. In fact, funding has been allocated for this project and beryllium rod fabrication is scheduled. The proposed beryllium loading does not involve permanent design changes and is predicted to yield a meaningful increase in fuel cycle length that could translate into potential annual savings in direct fuel costs of approximately $235,000, or of more than five million dollars over the projected life of this reactor

  7. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    CERN Document Server

    Alba, R; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, G; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Santonocito, D; Schillaci, M

    2012-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  8. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    International Nuclear Information System (INIS)

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  9. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer

  10. H-3 and Li-6 poisoning of the Maria reactor beryllium matrix

    International Nuclear Information System (INIS)

    This report discusses methods used to evaluate Li-6 and He-3 poison concentrations, initiated by Be-9(n, α) reaction in the beryllium blocks of the Maria reactor. The results based on ENDF/B-VI neutron cross sections, 3D diffusion neutron fluxes, and solutions to the differential equations which describe the time-dependent poison concentrations as function of reactor operation and shutdown periods. MCNP Monte Carlo calculations were used to verify calculated poison levels for observed critical configurations. Previous evaluations used somewhat less refined methods based on asymptotic solutions for the poison concentrations. It was found that Li-6 and He-3 in the beryllium blocks limit the available excess reactivities and alter flux and power distributions. Based on analyses of critical cores, it was determined that poison concentrations need be evaluated for an in-core region and for an excore region and not for each beryllium block. (author)

  11. Comprehensive Measurement of Neutron Yield Produced by 62 MeV Protons on Beryllium Target

    International Nuclear Information System (INIS)

    A low-power prototype of neutron amplifier, based on a 70 MeV, high current proton cyclotron being installed at LNL for the SPES RIB facility, was recently proposed within INFN-E project. This prototype uses a thick Beryllium converter to produce a fast neutron spectrum feeding a sub-critical reactor core. To complete the design of such facility the new measurement of neutron yield from a thick Beryllium target was performed at LNS. This measurement used liquid scintillator detectors to identify produced neutrons by Pulse Shape Discrimination and Time of Flight technique to measure neutron energy in the range 0.5-62 MeV. To extend the covered neutron energy range 3He detector was used to measure neutrons below 0.5 MeV. The obtained yields were normalized to the charge deposited by the proton beam on the metallic Beryllium target. These techniques allowed to achieve a wide angular coverage from 0 to 150 degrees and to explore almost complete neutron energy interval. (authors)

  12. Comprehensive Measurement of Neutron Yield Produced by 62 MeV Protons on Beryllium Target

    CERN Document Server

    Osipenko, M; Alba, R; Ricco, G; Schillaci, M; Barbagallo, M; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, L; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Santonocito, D; Scuderi, V; Viberti, C M

    2013-01-01

    A low-power prototype of neutron amplifier, based on a 70 MeV, high current proton cyclotron being installed at LNL for the SPES RIB facility, was recently proposed within INFN-E project. This prototype uses a thick Beryllium converter to produce a fast neutron spectrum feeding a sub-critical reactor core. To complete the design of such facility the new measurement of neutron yield from a thick Beryllium target was performed at LNS. This measurement used liquid scintillator detectors to identify produced neutrons by Pulse Shape Discrimination and Time of Flight technique to measure neutron energy in the range 0.5-62 MeV. To extend the covered neutron energy range He3 detector was used to measure neutrons below 0.5 MeV. The obtained yields were normalized to the charge deposited by the proton beam on the metallic Beryllium target. These techniques allowed to achieve a wide angular coverage from 0 to 150 degrees and to explore almost complete neutron energy interval.

  13. Spectrum of neutrons emitted from a thick beryllium target bombarded with 7 MeV deuterons

    International Nuclear Information System (INIS)

    The spectrum of neutrons emitted from a thick beryllium target bombarded with 7 MeV deuterons is measured at 25 reaction angles distributed between 00 and 1580, and over the neutron energy range ≅11.0 MeV. The spectrum is determined relative to the standard 252Cf prompt-fission-neutron-spectrum using fast time-of-flight techniques. The results are presented as angle-energy differential distributions and as relative numerical group cross sections suitable for establishing a reference field for applied studies. 24 refs., 4 figs

  14. Late-time radiography of beryllium ignition-target ablators in long-pulse gas-filled hohlraums

    International Nuclear Information System (INIS)

    A multiple-laboratory campaign is underway to qualify beryllium as a fusion capsule ablator for the National Ignition Facility [Moses and Wuest, Fusion Sci. Technol. 43, 420 (2003)]. Although beryllium has many advantages over other ablator materials, individual crystals of beryllium have anisotropic properties, e.g., sound speed, elastic constants, and thermal expansion coefficients, which may seed hydrodynamic instabilities during the implosion phase of ignition experiments. Experiments based on modeling have begun at the OMEGA laser [Boehly, McCrory, Verdon et al., Fusion Eng. Design 44, 35 (1999)] to create a test bed for measuring instability growth rates with face-on radiography of perturbed beryllium samples with the goal of establishing a specification for microstructure in beryllium used as an ablator. The specification would include the size and distribution of sizes of grains and voids and the impurity content. The experimental platform is a 4 kJ laser-heated (for ∼6 ns) hohlraum that is well modeled for radiation temperature and for shock pressure and breakout timing through the driven beryllium sample. A 1 atm methane gas fill has been used to maintain a clear line of sight through the hohlraum for radiography with acceptable plasma backscatter losses. The peak radiation temperature is 145 eV; the pressure early in the laser pulse is 1 Mbar for over 1 ns. Radiographs of sinusoidally perturbed copper-doped (0.9% by atom) beryllium samples have been obtained more than 10 ns after drive initiation. With the current laser drive, a growth factor approaching ten has been measured for initial 2.5 μm perturbations with on-axis radiography

  15. Target particle and heat loads in low-triangularity L-mode plasmas in JET with carbon and beryllium/tungsten walls

    NARCIS (Netherlands)

    Groth, M.; Brezinsek, S.; Belo, P.; Corrigan, G.; Harting, D.; Wiesen, S.; Beurskens, M. N. A.; Brix, M.; Clever, M.; Coenen, J. W.; Eich, T.; Flanagan, J.; Giroud, C.; Huber, A.; Jachmich, S.; Kruezi, U.; Lehnen, M.; Lowry, C.; Maggi, C. F.; Marsen, S.; Meigs, A. G.; Sergienko, G.; Sieglin, B.; Silva, C.; Sirinelli, A.; Stamp, M. F.; van Rooij, G. J.

    2013-01-01

    Divertor radiation profiles, and power and particle fluxes to the target have been measured in attached \\{JET\\} L-mode plasmas with carbon and beryllium/tungsten wall materials. In the beryllium/tungsten configuration, factors of 2–3 higher power loads and peak temperatures at the low field side tar

  16. A New Target Design with a Beryllium Multiplier for a Lead Slowing Down Time Spectrometer (LSDTS) System

    International Nuclear Information System (INIS)

    In order to quantify fissile isotopes in the spent nuclear fuel or the recycled nuclear material, a lead slowing down time spectrometer (LSDTS) system has been investigated and developed. Among several components of LSDTS, a highly intense neutron should be produced in the system to overcome the background neutrons from spontaneous fission in the curium isotopes. Thus a thin and plate target is designed using tantalum based on the successive reactions such as a bremmstrahlung conversion (e,g) and a photoneutron production (g,n). The beam energy of incident electrons is as high as 35 MeV in LSDTS system, which will decrease in the lead medium after interaction with target. It is known that the higher energy than 5 MeV is enough to produce neutrons for light elements such as beryllium and deuterium Beryllium is widely used as a reflector due to its good characteristics of neutron scattering. Above all, a neutron multiplier is a good choice for beryllium especially in a fusion facility based on the following chain reaction, Be-9 + n (>2MeV) -> 2 He-4 + 2n -1.666 MeV and the cross section is as high as about 580 mb. Using the above application, a beryllium plate is installed on back side of tantalum target in order to multiply neutrons emitting from the target. Furthermore, some sensitivity tests are carried out by changing the thickness of beryllium plate. As a computing tool, MCNPX-2.5 code, a popular Monte Carlo three dimensional code, is taken into consideration

  17. Feasibility of organo-beryllium target mandrels using organo-germanium PECVD as a surrogate

    International Nuclear Information System (INIS)

    Inertial Confinement Fusion capsules incorporating beryllium are becoming attractive for use in implosion experiments designed for modest energy gain. This paper explores the feasibility of chemical vapor deposition of organo-beryllium precursors to form coating materials of interest as ablators and fuel containers. Experiments were performed in a surrogate chemical system utilizing tetramethylgermane as the organometallic precursor. Coatings with up to 60 mole percent germanium were obtained. These coatings compare favorably with those previously reported in the literature and provide increasing confidence that a similar deposition process with an organo-beryllium precursor would be successful

  18. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    CERN Document Server

    Osipenko, M; Alba, R; Ricco, G; Barbagallo, M; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, L; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Santonocito, D; Schillaci, M; Scuderi, V; Viberti, C M

    2013-01-01

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate called for detailed data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick Beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0 to 150 degrees and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their Time of Flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a $^3$He detector was used. The obtained data are in good agreement with previous measurements at 0 degree with 66 MeV proton beam, covering neutron energies >10 MeV, as well as with measurements at few selected angles with protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60-70 MeV beam energy range. A comparison of measu...

  19. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    International Nuclear Information System (INIS)

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a 3He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed

  20. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, M., E-mail: osipenko@ge.infn.it [INFN, sezione di Genova, 16146 Genova (Italy); Ripani, M. [INFN, sezione di Genova, 16146 Genova (Italy); Alba, R. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Ricco, G. [INFN, sezione di Genova, 16146 Genova (Italy); Schillaci, M. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Barbagallo, M. [INFN, sezione di Bari, 70126 Bari (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Celentano, A. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy); Colonna, N. [INFN, sezione di Bari, 70126 Bari (Italy); Cosentino, L.; Del Zoppo, A.; Di Pietro, A. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Esposito, J. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Figuera, P.; Finocchiaro, P. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Kostyukov, A. [Moscow State University, Moscow 119992 (Russian Federation); Maiolino, C.; Santonocito, D.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Viberti, C.M. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy)

    2013-09-21

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a {sup 3}He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  1. Measurement of the neutron spectrum from the reaction of 30-MeV deuterons on a thick beryllium target

    International Nuclear Information System (INIS)

    Measurements were made of the neutron spectrum produced by bombarding a thick beryllium target with 30-MeV deuterons at the University of California, Davis cyclotron. This spectrum is of interest in studying the effect of neutrons on materials to be used in future fusion reactors. The spectrum was inferred from the activation of two sets of detector foils placed at 00 to the deuteron beam, one immediately behind the beryllium target block, and one 40 mm to the rear. A least-squares program was used to analyze the foil activation data to obtain the fluence in each of seven energy groups. The neutron spectrum (fluence/MeV) close to the target decreases continuously with energy in the range 5-32 MeV, while the spectrum 40 mm back has a peak at about 13 MeV. The contribution from neutrons of energies less than 10 MeV is much greater than that found in previous spectral measurements made at large distances from the target. This difference is attributed to the neutrons which are emitted at large angles from the deuteron beam. These observations show the importance of evaluating the neutron spectrum near the target if samples of materials are to be irradiated in this location

  2. Beryllium. Its minerals. Pt. 1

    International Nuclear Information System (INIS)

    With this work a series of reports begins, under the generic name 'Beryllium', related to several aspects of beryllium technology. The target is to update, with critical sense, current bibliographic material in order to be used in further applications. Some of the most important beryllium ores, the Argentine emplacement of their deposits and world occurrence are described. Argentine and world production, resources and reserves are indicated here as well. (Author)

  3. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Science.gov (United States)

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. PMID:26260448

  4. Beryllium allergy

    International Nuclear Information System (INIS)

    Beryllium is not only a high potent allergen, but also a fotoallergen and can provoke contact allergic reactions, fotoallergic reactions, granulomatous skin reactions, pulmonary granulomatous diseases and sometimes even systemic diseases. The authors present 9 own cases of a patch test positive beryllium allergy, 7 patients with relevant allergy and 5 patients with an allergic contact stomatitis. (author)

  5. Beryllium Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  6. Beryllium Toxicity

    Science.gov (United States)

    ... Favorites Del.icio.us Digg Facebook Google Bookmarks Yahoo MyWeb Beryllium Toxicity Patient Education Care Instruction Sheet ... Favorites Del.icio.us Digg Facebook Google Bookmarks Yahoo MyWeb Page last reviewed: May 23, 2008 Page ...

  7. Study of low mass dimuons produced in the interactions of 450 GeV/c protons on a beryllium target

    International Nuclear Information System (INIS)

    We described the measurement of the low mass (less than 1 GeV/c2) dimuon spectrum produced in the interaction of 450 GeV/c protons on a Beryllium target. This measurement uses the first data taken by the NA34 experiment at CERN in 1986. The production cross-sections have been measured as a function of the dimuon mass, transverse momentum and rapidity. The contribution of the Dalitz decays of the η, η' and ω mesons, and the ρ, ω and ψ decays into dimuons, has been evaluated. For masses below 600 MeV/c2, about two third of the signal remains unexplained. The observed excess is localised in the low transverse momentum and central rapidity region. The study of the dimuon production rate as a function of the transverse energy and multiplicity measured in the interaction should allow us to discriminate among the models proposed to explain the observed excess. In our case, the low statistics and the experimental difficulties prevent us to draw a conclusion. Our results are in agreement with similar measurements by other experiments at lower energies. The understanding of the origin of the observed excess is essential for the interpretation of the CERN heavy-ion experiments

  8. Reactivity test between beryllium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Kato, M. [NGK Insulators, Ltd., Aichi-ken (Japan)

    1995-09-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700{degrees}C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper).

  9. Method for welding beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1995-12-31

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. Beryllium parts made using this method can be used as structural components in aircraft, satellites and space applications.

  10. Effect of material strength on the relationship between the principal Hugoniot and quasi-isentrope of beryllium and 6061-T6 aluminum below 35 GPa

    International Nuclear Information System (INIS)

    Quasi-isentropic (QI) compression can be achieved by loading a specimen with a low strain rate, long rise time uniaxial strain wave. Recent experimental data show that the quasi-isentrope of 6061-T6 aluminum lies a few percent above the principal Hugoniot, that is, at a given specific volume, the QI stress exceeds the principal Hugoniot stress. It has been suggested that this effect is due to material strength. Using Hugoniot data, shock-reshock, and shock-unload data for beryllium and 6061-T6 aluminum, we have constructed the quasi-isentropes as functions of specific volume. Our results show that the QI stress exceeds the principal Hugoniot stress above a Hugoniot stress of 8.4 GPa in beryllium, and between Hugoniot stresses of 3.8 and 21.4 GPa in aluminum. The effect is due to strength and implies that the QI yield strength can be large. Our calculations show that the QI yield strength is 0.9 GPa in aluminum at a QI stress of 9 GPa, and 5.2 GPa in beryllium at a QI stress of 35 GPa

  11. Method for welding beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  12. Compatibility problems with beryllium in ceramic blankets

    International Nuclear Information System (INIS)

    Compatibility of beryllium with structural materials (316L austenitic steel and 1.4914 martensitic steel) and with tritium breeding ceramics (lithium aluminate or silicate) has been studied in contact tests between 550 C and 700 C and for durations reaching 3000 hours. Beryllium-ceramic interaction is negligeable in all the temperature range with aluminate and up to 600 C with silicates. On the other hand, noticeable interaction is observed between beryllium and 316L steel at 580 C and above. Beryllium interaction with 1.4914 steel is visible only at 650 C and above and its amplitude is lower than 316L steel one. In these two cases, the superficial layer is brittle, and adherent to the steel. Comparison between beryllium - 0.4 wt% calcium alloy and beryllium at 700 C shows that interaction with steels or ceramics is qualitatively the same but slightly weaker. (author). 6 refs.; 6 figs.; 3 tabs

  13. Chronic Beryllium Disease

    Science.gov (United States)

    ... an immune response or “allergy” to beryllium metal, ceramic or alloy, termed beryllium sensitization (BeS). Beryllium sensitization occurs after ... Mroz MM, Newman LS. Beryllium disease screening in ceramics industry: Blood test ... at a metal, alloy and oxide production plant. Occup Environ Med 1997; ...

  14. Beryllium facilities in India

    International Nuclear Information System (INIS)

    Due to its unique combination of physical, mechanical, thermal and nuclear properties, beryllium is indispensable for many applications in the fields of nuclear and space sciences. Beryllia and copper beryllium alloys have also found extensive applications in the electrical and electronic industries. Beryllium facilities at Bhabha Atomic Research Centre (BARC) have been set up to meet indigenous requirements for these materials. Besides developing beryllium technology, the project team has also designed and developed a number of special purpose equipment. (Author)

  15. Neutron irradiation of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Ermi, R.M. [Pacific Northwest National Lab., Richland, WA (United States); Tsai, H. [Argonne National Lab., IL (United States)

    1998-03-01

    Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

  16. Worker Environment Beryllium Characterization Study

    International Nuclear Information System (INIS)

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, 'Minnema Report.'

  17. Worker Environment Beryllium Characterization Study

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environment, Safety, Health & Quality

    2009-12-28

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, “Minnema Report.”

  18. Beryllium chemistry and processing

    CERN Document Server

    Walsh, Kenneth A

    2009-01-01

    This book introduces beryllium; its history, its chemical, mechanical, and physical properties including nuclear properties. The 29 chapters include the mineralogy of beryllium and the preferred global sources of ore bodies. The identification and specifics of the industrial metallurgical processes used to form oxide from the ore and then metal from the oxide are thoroughly described. The special features of beryllium chemistry are introduced, including analytical chemical practices. Beryllium compounds of industrial interest are identified and discussed. Alloying, casting, powder processing, forming, metal removal, joining and other manufacturing processes are covered. The effect of composition and process on the mechanical and physical properties of beryllium alloys assists the reader in material selection. The physical metallurgy chapter brings conformity between chemical and physical metallurgical processing of beryllium, metal, alloys, and compounds. The environmental degradation of beryllium and its all...

  19. Beryllium. Evaluation of beryllium hydroxide industrial processes. Pt. 3

    International Nuclear Information System (INIS)

    This work continues the 'Beryllium' series. It is a historical review of different industrial processes of beryllium hydroxide obtention from beryllium ores. Flowsheats and operative parameters of five plants are provided. These plants (Degussa, Brush Beryllium Co., Beryllium Corp., Murex Ltd., SAPPI) were selected as representative samples of diverse commercial processes in different countries. (Author)

  20. Thermal fatigue of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Deksnis, E.; Ciric, D.; Falter, H. [JET Joint undertaking, Abingdon (United Kingdom)] [and others

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  1. Neutron spectra produced by 30, 35 and 40 MeV proton beams at KIRAMS MC-50 cyclotron with a thick beryllium target

    Science.gov (United States)

    Shin, Jae Won; Bak, Sang-In; Ham, Cheolmin; In, Eun Jin; Kim, Do Yoon; Min, Kyung Joo; Zhou, Yujie; Park, Tae-Sun; Hong, Seung-Woo; Bhoraskar, V. N.

    2015-10-01

    Neutrons over a wide range of energies are produced by bombarding a 1.05 cm thick beryllium target with protons of different energies delivered by the MC-50 Cyclotron of the Korea Institute of Radiological Medical Sciences (KIRAMS). The neutron flux Φ(En) versus neutron energy En, produced by protons of 30, 35, and 40 MeV energies, was obtained by using the GEANT4 code with a data-based hadronic model. For the experimental validation of the simulated neutron spectra, a number of pure aluminum and iron oxide samples were irradiated with the neutrons produced by 30, 35, and 40 MeV protons at 20 μA beam current. The gamma-ray activities of 24Na and 56Mn produced, respectively, through 27Al(n,α)24Na and 56Fe(n,p)56Mn reactions were measured by a HPGe detector. The neutron flux Φ(En) at each neutron energy from the simulation was multiplied with the evaluated cross-sections σ(En) of the respective nuclear reaction, and the summation ∑ Φ(En) σ(En) was calculated over the neutron spectrum for each proton energy of 30, 35, and 40 MeV. The measured gamma-ray activities of 24Na and 56Mn were found in good agreement with the activities estimated by using the summed values of ∑ Φ(En) σ(En) along with other parameters in a neutron activation method.

  2. Characterization of the energy distribution of neutrons generated by 5 MeV protons on a thick beryllium target at different emission angles

    International Nuclear Information System (INIS)

    Neutron energy spectra at different emission angles, between 0° and 120° from the Be(p,xn) reaction generated by a beryllium thick-target bombarded with 5 MeV protons, have been measured at the Legnaro Laboratories (LNL) of the Italian National Institute for Nuclear Physics research (INFN). A new and quite compact recoil-proton spectrometer, based on a monolithic silicon telescope, coupled to a polyethylene converter, was efficiently used with respect to the traditional Time-of-Flight (TOF) technique. The measured distributions of recoil-protons were processed through an iterative unfolding algorithm in order to determine the neutron energy spectra at all the angles accounted for. The neutron energy spectrum measured at 0° resulted to be in good agreement with the only one so far available at the requested energy and measured years ago with TOF technique. Moreover, the results obtained at different emission angles resulted to be consistent with detailed past measurements performed at 4 MeV protons at the same angles by TOF techniques.

  3. Characterization of the energy distribution of neutrons generated by 5 MeV protons on a thick beryllium target at different emission angles

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P., E-mail: paolo.colautti@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Esposito, J., E-mail: juan.esposito@tin.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Fazzi, A.; Introini, M.V.; Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Neutron energy spectra at different emission angles, between 0 Degree-Sign and 120 Degree-Sign from the Be(p,xn) reaction generated by a beryllium thick-target bombarded with 5 MeV protons, have been measured at the Legnaro Laboratories (LNL) of the Italian National Institute for Nuclear Physics research (INFN). A new and quite compact recoil-proton spectrometer, based on a monolithic silicon telescope, coupled to a polyethylene converter, was efficiently used with respect to the traditional Time-of-Flight (TOF) technique. The measured distributions of recoil-protons were processed through an iterative unfolding algorithm in order to determine the neutron energy spectra at all the angles accounted for. The neutron energy spectrum measured at 0 Degree-Sign resulted to be in good agreement with the only one so far available at the requested energy and measured years ago with TOF technique. Moreover, the results obtained at different emission angles resulted to be consistent with detailed past measurements performed at 4 MeV protons at the same angles by TOF techniques.

  4. Beryllium: genotoxicity and carcinogenicity

    International Nuclear Information System (INIS)

    Beryllium (Be) has physical-chemical properties, including low density and high tensile strength, which make it useful in the manufacture of products ranging from space shuttles to golf clubs. Despite its utility, a number of standard setting agencies have determined that beryllium is a carcinogen. Only a limited number of studies, however, have addressed the underlying mechanisms of the carcinogenicity and mutagenicity of beryllium. Importantly, mutation and chromosomal aberration assays have yielded somewhat contradictory results for beryllium compounds and whereas bacterial tests were largely negative, mammalian test systems showed evidence of beryllium-induced mutations, chromosomal aberrations, and cell transformation. Although inter-laboratory differences may play a role in the variability observed in genotoxicity assays, it is more likely that the different chemical forms of beryllium have a significant effect on mutagenicity and carcinogenicity. Because workers are predominantly exposed to airborne particles which are generated during the machining of beryllium metal, ceramics, or alloys, testing of the mechanisms of the mutagenic and carcinogenic activity of beryllium should be performed with relevant chemical forms of beryllium

  5. Parametric studies of carbon erosion mitigation dynamics in beryllium seeded deuterium plasmas

    International Nuclear Information System (INIS)

    The characteristic time of protective beryllium layer formation on a graphite target, τBe/C, has been investigated as a function of surface temperature, Ts, ion energy, Ei, ion flux, Γi, and beryllium ion concentration, cBe, in beryllium seeded deuterium plasma. τBe/C is found to be strongly decreased with increasing Ts in the range of 550-970K. This is thought to be associated with the more efficient formation of beryllium carbide (Be2C). By scanning the parameters, a scaling expression for τBe/C has been derived as τBe/C[s]=1.0x10-7cBe-1.9+/-0.1Ei0.9+/-0.3Γi-0.6+/-0.3exp ((4.8+/-0.5)x103/Ts) where cBe is dimensionless, Ei in eV, Γi in 1022m-2s-1 and Ts in K. Should this scaling extend to an ITER scenario, carbon erosion of the divertor strike point region may be reduced with characteristic time of ∼6ms. This is much shorter than the time between predicted ITER type I ELMs (∼1s), and suggests that protective beryllium layers can be formed in between ELMs, and mitigate carbon erosion.

  6. Update of neutron dose yields as a function of energy for protons and deuterons incident on beryllium targets

    International Nuclear Information System (INIS)

    Neutron absorbed dose yields (absorbed dose rates per unit incident current on targets at a given SAD or SSD) increase with incident charged particle energy for both protons and deuterons. Analyses of neutron dose yield versus incident particle energy have been performed for both deuterons and protons. It is the purpose of this report to update those analyses by pooling all of the more recent published results and to reanalyze the trend of yield, Y, versus incident energy, E, which in the past has been described by an expression of the form Y = aE/sup b/, where a and b are empirical constants. From the reanalyzed trend it is concluded that for a given size cyclotron (E/sub p/ = 2E/sub d/), the dose yields using protons are higher than those using deuterons up to a proton energy E/sub p/ of 64 MeV

  7. Beryllium concentration in pharyngeal tonsils in children

    Directory of Open Access Journals (Sweden)

    Ewa Nogaj

    2014-06-01

    Full Text Available Power plant dust is believed to be the main source of the increased presence of the element beryllium in the environment which has been detected in the atmospheric air, surface waters, groundwater, soil, food, and cigarette smoke. In humans, beryllium absorption occurs mainly via the respiratory system. The pharyngeal tonsils are located on the roof of the nasopharynx and are in direct contact with dust particles in inhaled air. As a result, the concentration levels of beryllium in the pharyngeal tonsils are likely to be a good indicator of concentration levels in the air. The presented study had two primary aims: to investigate the beryllium concentration in pharyngeal tonsils in children living in southern Poland, and the appropriate reference range for this element in children’s pharyngeal tonsils. Pharyngeal tonsils were extracted from a total of 379 children (age 2–17 years, mean 6.2 ± 2.7 years living in southern Poland. Tonsil samples were mineralized in a closed cycle in a pressure mineralizer PDS 6, using 65% spectrally pure nitric acid. Beryllium concentration was determined using the ICP-AES method with a Perkin Elmer Optima 5300DVTM. The software Statistica v. 9 was used for the statistical analysis. It was found that girls had a significantly greater beryllium concentration in their pharyngeal tonsils than boys. Beryllium concentration varies greatly, mostly according to the place of residence. Based on the study results, the reference value for beryllium in pharyngeal tonsils of children is recommended to be determined at 0.02–0.04 µg/g.

  8. Beryllium development programme in India

    International Nuclear Information System (INIS)

    India has fairly large deposits of beryl. The requirement of beryllium and copper-beryllium alloys in space and electronic industries has provided the incentive for the setting up of an indigenous base for the development of beryllium process metallurgy. The paper presents the developmental work carried out, in the Metallurgy Division of the Bhabha Atomic Research Centre, on the preparation of beryllium metal and its alloys starting from Indian beryl. A laboratory facility incorporating essential precautionary measures has been set up for the safe handling of beryllium and its compounds. Based on the laboratory investigations a flow-sheet suitable to Indian conditions has been developed. The flow-sheet involves preparation of anhydrous beryllium fluoride from beryl through the silico-fluoride route, magnesiothermic reduction of beryllium fluoride for the production of beryllium metal or its master alloy with copper or aluminium, and fabrication of beryllium metal. (author)

  9. Gas retention in irradiated beryllium

    International Nuclear Information System (INIS)

    Helium (an inert gas) with low solubility in beryllium is trapped in irradiated beryllium at low temperatures (22 n/cm2 (E > 1 MeV). In these samples the calculated helium generated was ∼ 14,000 appm. They are described in terms of swelling, annealing, microstructure, and helium bubble behavior (size, density and mobility). A second sample was irradiated to ∼5 x 1022 n/cm2 (E > 1 MeV). In that one the calculated helium and tritium generated were ∼24,000 appm He and ∼3720 appm, and tritium content was examined in a dissolution experiment. Most of the tritium was released as gas to the glovebox indicating the generated tritium was retained in the helium bubbles. In a third set of experiments a specimen was examined by annealing at a succession of temperatures to more than 600 degree C for tritium release. In the temperature range of 300--500 degree C little release (0.01--0.4%) occurred, but there was a massive release at just over 600 degree C. Theories of swelling appear to adequately describe bubble behavior with breakaway release occurring at high helium contents and at large bubble diameters. 8 refs., 6 figs

  10. The natural history of beryllium sensitization and chronic beryllium disease.

    OpenAIRE

    Newman, L. S.; Lloyd, J.; Daniloff, E.

    1996-01-01

    With the advent of in vitro immunologic testing, we can now detect exposed individuals who are sensitized to beryllium and those who have chronic beryllium disease (CBD) with lung pathology and impairment. Earlier detection and more accurate diagnostic tools raise new questions about the natural history of sensitization and granulomatous disease. Preliminary data suggest that early detection identifies people who are sensitized to beryllium and that these individuals are at risk for progressi...

  11. Low-temperature solubility of copper in beryllium, in beryllium--aluminum, and in beryllium--silicon using ion beam

    International Nuclear Information System (INIS)

    Ion implantation and ion backscattering analysis have been used to measure the solubility of copper in beryllium over the temperature range 593 to 1023 K, and to determine the effect on the copper solubility of aluminum and silicon impurities. The binary data extend 280 K lower in temperature than previous results, while the ternary measurements are unique. The information is pertinent to the use of copper for solution strengthening of beryllium. Diffusion couples were formed by ion implantation of copper into single-crystal beryllium at room temperature, followed where appropriate by implantation of aluminum or silicon. The samples were then annealed isothermally, and the time-evolution of the composition-vs-depth profile, determined by ion backscattering analysis, yielded the solubility of copper. Measurements at exceptionally low temperatures were facilitated by the short diffusion distances, approximately equal to 0.1 mu m, and the use of neon irradiation to accelerate diffusion. The resulting binary data for the solubility C0 of copper in beryllium merge smoothly into previous results at higher temperatures. The combined data, covering the temperature range 593 to 1373 K, are well described by C0 = (12.6 at. pct) . exp (-842 K/T). In the ternary regime, the effects of aluminum and silicon on the solubility of copper were found to be small

  12. Reprocessing technology development for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H.; Sakamoto, N. [Oarai Research Establishment, Ibaraki-ken (Japan); Tatenuma, K. [KAKEN Co., Ibaraki-ken (Japan)] [and others

    1995-09-01

    At present, beryllium is under consideration as a main candidate material for neutron multiplier and plasma facing material in a fusion reactor. Therefore, it is necessary to develop the beryllium reprocessing technology for effective resource use. And, we have proposed reprocessing technology development on irradiated beryllium used in a fusion reactor. The preliminary reprocessing tests were performed using un-irradiated and irradiated beryllium. At first, we performed beryllium separation tests using un-irradiated beryllium specimens. Un-irradiated beryllium with beryllium oxide which is a main impurity and some other impurities were heat-treated under chlorine gas flow diluted with Ar gas. As the results high purity beryllium chloride was obtained in high yield. And it appeared that beryllium oxide and some other impurities were removed as the unreactive matter, and the other chloride impurities were separated by the difference of sublimation temperature on beryllium chloride. Next, we performed some kinds of beryllium purification tests from beryllium chloride. And, metallic beryllium could be recovered from beryllium chloride by the reduction with dry process. In addition, as the results of separation and purification tests using irradiated beryllium specimens, it appeared that separation efficiency of Co-60 from beryllium was above 96%. It is considered that about 4% Co-60 was carried from irradiated beryllium specimen in the form of cobalt chloride. And removal efficiency of tritium from irradiated beryllium was above 95%.

  13. Estimation of the tritium production and inventory in beryllium

    International Nuclear Information System (INIS)

    Beryllium has been proposed as a candidate material for the neutron multiplier in fusion blanket designs. Tritium will be produced and will accumulate in beryllium under neutron irradiation. The tritium production and inventories under 1.5 and 3.0GW fusion power operation were calculated for a layered pebble bed blanket with lithium oxide (Li2O) breeder and beryllium (Be) multiplier. Neutronics calculations were carried out using the one-dimensional transport code ANISN, and the tritium production due to direct reaction of 9Be(n,T)7Li and the two-step reactions 9Be(n,α)6Li(n,α)Twas taken into account. The tritium production due to the two-step reaction was calculated to be 50% of the total tritium production after 1 year full power operation (FPY). The tritium inventory was estimated by considering three kinetic parameters, the permeability from the breeder region, diffusivity in a beryllium matrix, and solubility. Tritium permeation from the breeder region to the beryllium region through a 316SS wall was as much as 3gh-1, which is 30% of the tritium production (9.6gh-1) in the breeder region. Using the diffusion coefficient of beryllium with no oxide layer on its surface, the total tritium inventory was calculated to be 7gFPY-1, mainly owing to solubility. The content of beryllium oxide significantly affects the effective diffusion coefficient. Using a diffusion coefficient for beryllium with beryllium oxide layer on its surface, the tritium inventory was found to be equal to the amount produced. (orig.)

  14. Joining of Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-02-01

    A handbook dealing with the many aspects of beryllium that would be important for the users of this metal is currently being prepared. With an introduction on the applications, advantages and limitations in the use of this metal the following topics will be discussed in this handbook: physical, thermal, and nuclear properties; extraction from the ores; purification and casting of ingots; production and types of beryllium powders; consolidation methods, grades, and properties; mechanical properties with emphasis on the various factors affecting these properties; forming and mechanical working; welding, brazing, bonding, and fastening; machining; powder deposition; corrosion; health aspects; and examples of production of components. This report consists of ''Section X--Joining'' from the handbook. The prefix X is maintained here for the figures, tables and references. In this section the different methods used for joining beryllium and the advantages, disadvantages and limitations of each are presented. The methods discussed are fusion welding, brazing, solid state bonding (diffusion bonding and deformation bonding), soldering, and mechanical fastening. Since beryllium has a high affinity for oxygen and nitrogen with the formation of oxides and nitrides, considerable care must be taken on heating the metal, to protect it from the ambient atmosphere. In addition, mating surfaces must be cleaned and joints must be designed to minimize residual stresses as well as locations for stress concentration (notch effects). In joining any two metals the danger exists of having galvanic corrosion if the part is subjected to moisture or to any type of corroding environment. This becomes a problem if the less noble (anodic) metal has a significantly smaller area than the more noble (cathodic) metal since the ions (positive charges) from the anodic (corroding) metal must correspond to the number of electrons (negative charges) involved at the cathode. Beryllium

  15. Beryllium. Beryllium oxide, obtention and properties. Pt.4

    International Nuclear Information System (INIS)

    As a continuation of the 'Beryllium' series this work reviews several methods of high purity beryllia production. Diverse methods of obtention and purification from different beryllium compounds are described. Some chemical, mechanical and electrical properties related with beryllia obtention methods are summarized. (Author)

  16. Magnesium Cermets and Magnesium-Beryllium Alloys

    International Nuclear Information System (INIS)

    The paper describes some results of work on the development of magnesium-magnesium oxide cermets and of super heat-resistant magnesiumberyllium alloys produced by powder metallurgical methods. The introduction of even a minute quantity of finely dispersed magnesium oxide into magnesium results in a strengthening of the material, the degree of which increases with increased magnesium oxide concentration, although variation of this concentration within the limits of 0.3 to 5 wt.% has a comparatively slight effect on the corresponding variation in the short-term strength over the whole range of temperatures investigated. At 20oC, in the case of the cermets, σβ = 28 to 31 kg/mm2 and δ = 3 .5 to 4.5%; at 500oC σβ = 2.6 to 3.2 kg/mm2 and δ =30 to 40%. The positive effect of the finely dispersed oxide phase is particularly evident in protracted tests. For magnesium cermets, σ (300)/100 = 2.2 kg/mm2. Characteristic of the mixtures is the high thermal stability of the strength properties, linked chiefly with the thermodynamic stability of the strength-giving oxide phase in the metal matrix. The use of powder metallurgical methods has yielded super heat-resistant magnesium-beryllium alloys containing heightened concentrations of beryllium (PMB alloys). In their strength characteristics PMB alloys are close to Mg-MgO cermets, but the magnesium-beryllium alloys have a degree and duration of resistance to high temperature oxidation which exceeds the corresponding qualities of the magnesium alloys at present known. Thus, in air of 580oC, PMB alloys with 2 to 5% beryllium maintain a high resistance to oxidation for a period of over 12000 to 14000 h. This long-term heat resistance is chiefly a result of the amount of beryllium in the alloy, and increases with increasing beryllium content. PMB alloys are also marked by high resistance to short bursts of overheating. Magnesium cermets and magnesium-beryllium alloys, with their enhanced high-temperature stability, are capable

  17. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  18. Technical Basis for PNNL Beryllium Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  19. Beryllium coprecipitation with iron hydroxide

    International Nuclear Information System (INIS)

    Coprecipitation and sorption are studied of beryllium with hydroxide of Fe(3) in solutions of NH4NO3, KNO3, NH4HCO3, and H2O2 over a wide range of pH of the medium. The conditions are found for concentrating and separating beryllium from the carrier within definite ranges of pH of the medium

  20. Development of AN Active 238UF6 Gas Target

    Science.gov (United States)

    Eckardt, C.; Enders, J.; Freudenberger, M.; Göök, A.; von Neumann-Cosel, P.; Oberstedt, A.; Oberstedt, S.

    2014-09-01

    Detailed studies of the fission process, e.g., the search for parity nonconservation (PNC) effects, the energy dependence of fission modes or the population of fission isomers, depend on high quality data, therefore requiring high luminosities. An active gas target containing uranium may overcome the deterioration of energy and angular resolution caused by large solid target thicknesses. A single Frisch-grid ionization chamber has been built to test a mixture of standard counting gases (e.g., argon) with depleted uranium hexafluoride (238UF6), utilizing a triple alpha source to evaluate signal quality and drift velocity. For mass fractions of up to 4 percent of 238U the drift velocity increases with rising UF6 content, while a good signal quality and energy resolution is preserved.

  1. Development of Biomarkers for Chronic Beryllium Disease in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Terry

    2013-01-25

    Beryllium is a strategic metal, indispensable for national defense programs in aerospace, telecommunications, electronics, and weaponry. Exposure to beryllium is an extensively documented occupational hazard that causes irreversible, debilitating granulomatous lung disease in as much as 3 - 5% of exposed workers. Mechanistic research on beryllium exposure-disease relationships has been severely limited by a general lack of a sufficient CBD animal model. We have now developed and tested an animal model which can be used for dissecting dose-response relationships and pathogenic mechanisms and for testing new diagnostic and treatment paradigms. We have created 3 strains of transgenic mice in which the human antigen-presenting moiety, HLA-DP, was inserted into the mouse genome. Each mouse strain contains HLA-DPB1 alleles that confer different magnitude of risk for chronic beryllium disease (CBD): HLA-DPB1*0401 (odds ratio = 0.2), HLA-DPB1*0201 (odds ratio = 15), HLA-DPB1*1701 (odds ratio = 240). Our preliminary work has demonstrated that the *1701 allele, as predicted by human studies, results in the greatest degree of sensitization in a mouse ear swelling test. We have also completed dose-response experiments examining beryllium-induced lung granulomas and identified susceptible and resistant inbred strains of mice (without the human transgenes) as well as quantitative trait loci that may contain gene(s) that modify the immune response to beryllium. In this grant application, we propose to use the transgenic and normal inbred strains of mice to identify biomarkers for the progression of beryllium sensitization and CBD. To achieve this goal, we propose to compare the sensitivity and accuracy of the lymphocyte proliferation test (blood and bronchoalveolar lavage fluid) with the ELISPOT test in the three HLA-DP transgenic mice strains throughout a 6 month treatment with beryllium particles. Because of the availability of high-throughput proteomics, we will also identify

  2. Beryllium usage in fusion blankets and beryllium data needs

    International Nuclear Information System (INIS)

    Increasing numbers of designers are choosing beryllium for fusion reactor blankets because it, among all nonfissile materials, produces the highest number (2.5 neutron in an infinite media) of neutrons per 14-MeV incident neutron. In amounts of about 20 cm of equivalent solid density, it can be used to produce fissile material, to breed all the tritium consumed in ITER from outboard blankets only, and in designs to produce Co-60. The problem is that predictions of neutron multiplication in beryllium are off by some 10 to 20% and appear to be on the high side, which means that better multiplication measurements and numerical methods are needed. The n,2n reactions result in two helium atoms, which cause radiation damage in the form of hardening at low temperatures (300/degree/C). The usual way beryllium parts are made is by hot pressing the powder. A lower cost method is to cold press and then sinter. There is no radiation damage data on this form of beryllium. The issues of corrosion, safety relative to the release of the tritium built-up inside beryllium, and recycle of used beryllium are also discussed. 10 figs

  3. Characterization of shocked beryllium

    International Nuclear Information System (INIS)

    Explosively driven arrested beryllium experiments were performed with post mortem characterization to evaluate the failure behaviors. The test samples were encapsulated in an aluminum assembly that was large relative to the sample, and the assembly features both axial and radial momentum traps. The sample carrier was inserted from the explosively-loaded end and has features to lock the carrier to the surrounding cylinder using the induced plastic flow. Calculations with Lagrangian codes showed that the tensile stresses experienced by the Be sample were below the spall stress. Metallographic characterization of the arrested Be showed radial cracks present in the samples may have been caused by bending moments. Fractography showed the fractures propagated from the side of the sample closest to the explosives, the side with the highest tensile stress. There was evidence that the fractures may have propagated from the circumferential crack outward and downward radially.

  4. Low cycle thermal fatigue testing of beryllium

    International Nuclear Information System (INIS)

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated, due to very high spot heat flux, 25 MWm-2. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S-65H, S-200F, S200F-H, SR-200, I-400, extruded high purity, HIP'd spherical powder, porous beryllium (94 and 98% dense), Be/30%, BeO, Be/60% BeO, and TiBe12. Russian grades included: TPG-56, TShGT, DShG-200, and TSHG-56. Both thenumber of cycles tocrack initiation and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis. (orig.)

  5. Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991

    International Nuclear Information System (INIS)

    This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET

  6. Study of beryllium redeposition under bombardment by high intensity -low energy- hydrogen ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gureev, V.M.; Guseva, M.I.; Danelyan, L.S. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)] [and others

    1998-01-01

    The results of studying the erosion of beryllium under an effect of intense ion fluxes with the energy of 250 eV, at the fluences {approx}10{sup 2}1 cm{sup -2}, at the MAGRAS-stand are given. The operating conditions under which a practically-complete redeposition of the sputtered beryllium upon the target surface were experimentally-realized. A change in the microstructure of a beryllium target under sputtering and redeposition is analyzed. Some technological applications are considered. (author)

  7. Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant

    Science.gov (United States)

    Guerrero, Carlo L.; Perlado, Jose M.

    2016-03-01

    In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.

  8. Processing Irradiated Beryllium For Disposal

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

    2005-11-01

    The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

  9. Status of beryllium materials for fusion application

    International Nuclear Information System (INIS)

    The possible use of beryllium as a material for fusion reactors is discussed. Based on the results of recent Russian elaborations, which were not covered previously in the scientific literature, an attempt of complex analysis of the techniques of using beryllium is made. The specific requirements on beryllium as a protective material for first wall and divertor are considered. Also the possibility of creating a fusion grade of beryllium is discussed and an optimum strategy is suggested. (orig.)

  10. Spectrographic measurement of beryllium in the atmosphere

    International Nuclear Information System (INIS)

    We describe here a method for the spectrographic determination of beryllium on filters which is valid for amounts varying between 0,01 and 30 μg of beryllium and which is independent of the nature of the beryllium compound involved. This is a flux method (graphite-lithium carbonate mixture), the excitation being by a direct current arc. (author)

  11. Measurement of the ultracold neutron loss coefficient in beryllium powder

    International Nuclear Information System (INIS)

    The ultracold neutron (UCN) reflection from beryllium powder at different slab thicknesses and different packing densities is measured. The reduced UCN loss coefficient η=(1.75±0.35)x10-4 for thermally untreated beryllium is extracted from experimental data. The formerly obtained experimental results on UCN reflection from beryllium after high temperature annealing are reconsidered. The loss coefficient η at room temperature in this case is obtained to be (6.4±2.5)x10-5, which is an order of magnitude higher than the theoretical one. The extraction of the loss coefficient from the experimental data is based on the modified diffusion theory where albedo reflection depends on packing density

  12. Extraction of beryllium sulfate by a long chain amine

    International Nuclear Information System (INIS)

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author)

  13. CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Ekechukwu, A

    2009-04-20

    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  14. Modes of Occurrence and Geological Origin of Beryllium in Coals from the Pu'an Coalfield, Guizhou, Southwest China

    Institute of Scientific and Technical Information of China (English)

    YANG Jianye

    2007-01-01

    The concentration, modes of occurrence and geological origin of beryllium in five workable coal beds from the Pu'an Coalfield of Guizbou were studied using the inductively coupled-plasma mass spectrometry (ICP-MS), floating and sinking experiments (FSE) and sequential chemical extraction procedures (SCEP). The results show that the average concentration of beryllium in coals from the Pu'an Coalfield is 1.54 μg/g, much lower than that in most Chinese and worldwide coals.Beryllium in the Pu'an coals was not significantly enriched. However, it should be noted that the No. 8 coal bed from the study area has a high concentration of beryllium, 6.89 μg/g, three times higher than the background value of beryllium in coal. Beryllium in coal mainly occurs as organic association and has predominantly originated from coal-forming plants when its concentration is relatively low. The concentration of beryllium occurring as organic association is close to that distributed in inorganic matter when beryllium concentration of coal is similar to its background value, and in addition to coal-forming plants, beryllium is mainly derived from detrital materials of terrigenous origin. When beryllium is anomalously enriched in coal, it mainly occurs as organic association and is derived from volcanic tonsteins leached for a long geological time and then adsorbed by organic matter in peat mire.

  15. Defense programs beryllium good practice guide

    International Nuclear Information System (INIS)

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D ampersand D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is

  16. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    Science.gov (United States)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  17. Cryogenic Properties of Aluminum-Beryllium and Beryllium Materials

    Science.gov (United States)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum- beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-32O F) and (- 252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMet162 material was purchased to the requirements of SAE- AMs7912, "Aluminum-Beryllium Alloy, Extrusions". O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMet162 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O-30H elongation decreased with decreasing temperature.

  18. Isotopic Transmutations in Irradiated Beryllium and Their Implications on MARIA Reactor Operation

    International Nuclear Information System (INIS)

    Beryllium irradiated by neutrons with energies above 0.7 MeV undergoes (n,α) and (n,2n) reactions. The Be(n,α) reaction results in subsequent buildup of 6Li and 3He isotopes with large thermal neutron absorption cross sections causing poisoning of irradiated beryllium. The amount of the poison isotopes depends on the neutron flux level and spectrum. The high-flux MARIA reactor operated in Poland since 1975 consists of a beryllium matrix with fuel channels in cutouts of beryllium blocks. As the experimental determination of 6Li, 3H, and 3He content in the operational reactor is impossible, a systematic computational study of the effect of 3He and 6Li presence in beryllium blocks on MARIA reactor reactivity and power density distribution has been undertaken. The analysis of equations governing the transmutation has been done for neutron flux parameters typical for MARIA beryllium blocks. Study of the mutual influence of reactor operational parameters and the buildup of 6Li, 3H, and 3He in beryllium blocks has shown the necessity of a detailed spatial solution of transmutation equations in the reactor, taking into account the whole history of its operation. Therefore, fuel management calculations using the REBUS code with included chains for Be(n,α)-initiated reactions have been done for the whole reactor lifetime. The calculated poisoning of beryllium blocks has been verified against the critical experiment of 1993. Finally, the current 6Li, 3H, and 3He contents, averaged for each beryllium block, have been calculated. The reactivity drop caused by this poisoning is ∼7%

  19. Neutron irradiation behavior of ITER candidate beryllium grades

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.

    1998-01-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  20. Preparation of Beryllium Targets by Vacuum Evaporation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The apparatus is shown in Fig.1, which is mounted within a conventional metal bell jar 45 cm in diameter and 70 cm high. The boat source could be seen through the windows of the appratus and the bell jar.There was no straight-line exit from the apparatus to the interor of the bell jar for Be vapor originating at the boat.Tantalum boat, 13 mm wide, 28 mm long, and 0.1 mm thick, was used as evaporation source. The distance from the boat to the substrate was 15 cm. Microscope glass slide coated with betaine as substrate.The Be foils produced by resistance heating were removed from the glass by dissolving the

  1. OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Brisson, M

    2009-04-01

    Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining chapters. The goal of this book is to provide a comprehensive resource to aid personnel in a wide variety of disciplines in selecting sampling and analysis methods that will facilitate informed decision-making in workplace and environmental settings.

  2. Beryllium - A Unique Material in Nuclear Applications

    International Nuclear Information System (INIS)

    Beryllium, due to its unique combination of structural, chemical, atomic number, and neutron absorption cross section characteristics, has been used successfully as a neutron reflector for three generations of nuclear test reactors at the Idaho National Engineering and Environmental Laboratory (INEEL). The Advanced Test Reactor (ATR), the largest test reactor in the world, has utilized five successive beryllium neutron reflectors and is scheduled for continued operation with a sixth beryllium reflector. A high radiation environment in a test reactor produces radiation damage and other changes in beryllium. These changes necessitate safety analysis of the beryllium, methods to predict performance, and appropriate surveillances. Other nuclear applications also utilize beryllium. Beryllium, given its unique atomic, physical, and chemical characteristics, is widely used as a ''window'' for x-rays and gamma rays. Beryllium, intimately mixed with high-energy alpha radiation emitters has been successfully used to produce neutron sources. This paper addresses operational experience and methodologies associated with the use of beryllium in nuclear test reactors and in ''windows'' for x-rays and gamma rays. Other nuclear applications utilizing beryllium are also discussed

  3. Stellar abundances of beryllium and CUBES

    CERN Document Server

    Smiljanic, R

    2014-01-01

    Stellar abundances of beryllium are useful in different areas of astrophysics, including studies of the Galactic chemical evolution, of stellar evolution, and of the formation of globular clusters. Determining Be abundances in stars is, however, a challenging endeavor. The two Be II resonance lines useful for abundance analyses are in the near UV, a region strongly affected by atmospheric extinction. CUBES is a new spectrograph planned for the VLT that will be more sensitive than current instruments in the near UV spectral region. It will allow the observation of fainter stars, expanding the number of targets where Be abundances can be determined. Here, a brief review of stellar abundances of Be is presented together with a discussion of science cases for CUBES. In particular, preliminary simulations of CUBES spectra are presented, highlighting its possible impact in investigations of Be abundances of extremely metal-poor stars and of stars in globular clusters.

  4. Defense programs beryllium good practice guide

    Energy Technology Data Exchange (ETDEWEB)

    Herr, M.

    1997-07-01

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is likely to

  5. Hyperon and negative particle production at central rapidity in proton-beryllium interactions at 158 GeV/c

    CERN Document Server

    Antinori, Federico; Beusch, Werner; Bloodworth, Ian J; Caliandro, R; Carrer, N; Di Bari, D; Di Liberto, S; Elia, D; Evans, D; Fanebust, K; Fini, R A; Ftácnik, J; Ghidini, B; Grella, G; Helstrup, H; Holme, A K; Huss, D; Jacholkowski, A; Jones, G T; Kinson, J B; Knudson, K P; Králik, I; Lenti, V; Lietava, R; Loconsole, R A; Løvhøiden, G; Manzari, V; Mazzoni, M A; Meddi, F; Michalon, A; Michalon-Mentzer, M E; Morando, M; Norman, P I; Pastircák, B; Quercigh, Emanuele; Romano, G; Safarík, K; Sándor, L; Segato, G F; Staroba, P; Thompson, M; Thorsteinsen, T F; Torrieri, G D; Tveter, T S; Urbán, J; Villalobos Baillie, O; Virgili, T; Votruba, M F; Závada, P

    1999-01-01

    A study of the strangeness enhancement in lead-lead collisions with respect to proton-induced reactions is being carried out at the CERN SPS by the WA97 experiment: up to now, data from proton-lead collisions have been used as a reference sample. In this paper we report on a study of particle production in proton-beryllium collisions. These collisions are expected to constitute a better reference sample than p-Pb, because of the lighter target. The analysis of hyperon and negative particle production is presented and the results are compared with those previously obtained from Pb-Pb and p-Pb collisions. (6 refs).

  6. Belgian research on fusion beryllium waste

    International Nuclear Information System (INIS)

    Future fusion power plants will generate important quantities of neutron irradiated beryllium. Although recycling is the preferred management option for this waste, this may not be technically feasible for all of the beryllium, because of its radiological characteristics. Therefore, at SCK·CEN, we initiated a research programme aimed at studying aspects of the disposal of fusion beryllium, including waste characterisation, waste acceptance criteria, conditioning methods, and performance assessment. One of the main issues to be resolved is the development of fusion-specific waste acceptance criteria for surface or deep geological disposal, in particular with regard to the tritium content. In case disposal is the only solution, critical nuclides can be immobilised by conditioning the waste. As a first approach to immobilising beryllium waste, we investigated the vitrification of beryllium. Corrosion tests were performed on both metallic and vitrified beryllium to provide source data for performance assessment. Finally, a first step in performance assessment was undertaken. (author)

  7. Advances in Identifying Beryllium Sensitization and Disease

    Directory of Open Access Journals (Sweden)

    Peter Kowalski

    2010-01-01

    Full Text Available Beryllium is a lightweight metal with unique qualities related to stiffness, corrosion resistance, and conductivity. While there are many useful applications, researchers in the 1930s and l940s linked beryllium exposure to a progressive occupational lung disease. Acute beryllium disease is a pulmonary irritant response to high exposure levels, whereas chronic beryllium disease (CBD typically results from a hypersensitivity response to lower exposure levels. A blood test, the beryllium lymphocyte proliferation test (BeLPT, was an important advance in identifying individuals who are sensitized to beryllium (BeS and thus at risk for developing CBD. While there is no true "gold standard" for BeS, basic epidemiologic concepts have been used to advance our understanding of the different screening algorithms.

  8. Analysis of impurities in beryllium, affecting evaluation of the tritium breeding ratio

    International Nuclear Information System (INIS)

    In most conceptual fusion power reactor designs, it is proposed to use beryllium as a neutron multiplier in the blanket. Detailed chemical composition of beryllium is necessary for evaluation of the tritium breeding ratio, and estimating the activation and transmutation of beryllium in the fusion reactor. In the present report, special attention was paid to a detailed analysis of impurities in beryllium, relevant to the tritium breeding ratio evaluation. Two different methods were used for the study of impurities: an analysis of the local sample by the ICP-MS method, and an integral analysis of the beryllium assembly, using the pulsed neutron method. The latter method was proposed as the most effective way of analyzing the integral effect to impurities in beryllium on production of the tritium on the lithium-6. The evaluation of the integral effect was based on time behaviour observations of the thermal neutron flux, following the injection of a burst of D-T neutrons into the beryllium assembly. Structural beryllium grade (S-200-F, Brush Wellman Inc.) was used in the study. The influence of the impurities has resulted in a smaller experimental reaction rate for production of the tritium on lithium-6, due to an increase in the parasitic neutron absorption. Experimental data was compared with the reference data and the MCNP Monte Carlo calculations using the JENDL-3.2 data set. Results indicate, that the measured absorption cross section of thermal neutrons in beryllium blocks is approximately 30% larger than the calculated value, based on the data, specified by the manufacturing company. ICP-MS analysis indicated that the impurities include elements such as Li, B, Cd and others. These elements affect the absorption cross section even if the content of impurities is less than 10 ppm. (author)

  9. Thermodynamic properties of beryllium hydroxide

    International Nuclear Information System (INIS)

    The study of the hydro-thermal decomposition of beryllium hydroxide has made it possible to determine the free energy of formation and the entropy. The results obtained are in good agreement with the theoretical values calculated from the solubility product of this substance. They give furthermore the possibility of acquiring a better understanding of the BeO-H2O-Be (OH)2 system between 20 and 1500 C. (authors)

  10. Current Treatment of Chronic Beryllium Disease

    OpenAIRE

    Sood, Akshay

    2009-01-01

    The current mainstay of management of chronic beryllium disease involves cessation of beryllium exposure and use of systemic corticosteroids. However, there are no randomized controlled trials to assess the effect of these interventions on the natural history of this disease. Despite this limitation, it is prudent to remove patients with chronic beryllium disease from further exposure and consider treating progressive disease early with long-term corticosteroids. The effect of treatment shoul...

  11. MEASUREMENTS OF THE PROPERTIES OF BERYLLIUM FOIL

    International Nuclear Information System (INIS)

    The electrical conductivity of beryllium at radio frequency (800 MHz) and liquid nitrogen temperature were investigated and measured. This summary addresses a collection of beryllium properties in the literature, an analysis of the anomalous skin effect, the test model, the experimental setup and improvements, MAFIA simulations, the measurement results and data analyses. The final results show that the conductivity of beryllium is not as good as indicated by the handbook, yet very close to copper at liquid nitrogen temperature

  12. New audio applications of beryllium metal

    International Nuclear Information System (INIS)

    The major applications of beryllium metal in the field of audio appliances are for the vibrating cones for the two types of speakers 'TWITTER' for high range sound and 'SQUAWKER' for mid range sound, and also for beryllium cantilever tube assembled in stereo cartridge. These new applications are based on the characteristic property of beryllium having high ratio of modulus of elasticity to specific gravity. The production of these audio parts is described, and the audio response is shown. (author)

  13. The beryllium "double standard" standard.

    Science.gov (United States)

    Egilman, David S; Bagley, Sarah; Biklen, Molly; Golub, Alison Stern; Bohme, Susanna Rankin

    2003-01-01

    Brush Wellman, the world's leading producer and supplier of beryllium products, has systematically hidden cases of beryllium disease that occurred below the threshold limit value (TLV) and lied about the efficacy of the TLV in published papers, lectures, reports to government agencies, and instructional materials prepared for customers and workers. Hypocritically, Brush Wellman instituted a zero exposure standard for corporate executives while workers and customers were told the 2 microgram standard was "safe." Brush intentionally used its workers as "canaries for the plant," and referred to them as such. Internal documents and corporate depositions indicate that these actions were intentional and that the motive was money. Despite knowledge of the inadequacy of the TLV, Brush has successfully used it as a defense against lawsuits brought by injured workers and as a sales device to provide reassurance to customers. Brush's policy has reaped an untold number of victims and resulted in mass distribution of beryllium in consumer products. Such corporate malfeasance is perpetuated by the current market system, which is controlled by an organized oligopoly that creates an incentive for the neglect of worker health and safety in favor of externalizing costs to victimized workers, their families, and society at large. PMID:14758859

  14. Estimation on tritium production and inventory in beryllium

    International Nuclear Information System (INIS)

    Beryllium has been proposed as a candidate material for neutron multiplier on fusion blanket design, tritium will be produced and accumulated in beryllium during neutron irradiation. It is very important to estimate the tritium inventory on blanket design. Tritium production and inventory under 3.0 GW fusion power were calculated for the layered pebble bed blanket, with Li2O breeder and beryllium multiplier. Neutronics calculations were carried out by one-dimensional transport code, ANISN and tritium production was calculated by direct reaction of 9Be(n,T)7Li and two-step reactions of 9Be(n,α)6Li(n,α)T. At the position near first wall, the direct reaction occupied the majority of tritium production. However, at the position of the mid-depth, contribution of the two-step reaction was included the production from neutron slow down by beryllium itself. The ratio accounting for 50% of total tritium production of two-step reaction production over whole blanket for one year full power operation (FPY) was resulted

  15. Recommended design correlations for S-65 beryllium

    International Nuclear Information System (INIS)

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined form the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing(HIP). The performance of plasma-sprayed beryllium is discussed but not quantified

  16. (Beryllium). Internal Report No. 137, Jan. 15, 1958

    International Nuclear Information System (INIS)

    After a brief summary of the physical and chemical properties of beryllium, the various chemical treatments which can be applied to beryllium minerals either directly or after a physical enrichment are discussed. These various treatments give either the hydroxide or beryllium salts, from which either beryllium oxide or metallic beryllium can easily be obtained. The purification, analysis and uses of beryllium are also briefly discussed. (author)

  17. National Ignition Facility subsystem design requirements target area auxiliary subsystem SSDR 1.8.6

    International Nuclear Information System (INIS)

    This Subsystem Design Requirement (SSDR) establishes the performance, design, development, and test requirements for the Target Area Auxiliary Subsystems (WBS 1.8.6), which is part of the NIF Target Experimental System (WBS 1.8). This document responds directly to the requirements detailed in NIF Target Experimental System SDR 003 document. Key elements of the Target Area Auxiliary Subsystems include: WBS 1.8.6.1 Local Utility Services; WBS 1.8.6.2 Cable Trays; WBS 1.8.6.3 Personnel, Safety, and Occupational Access; WBS 1.8.6.4 Assembly, Installation, and Maintenance Equipment; WBS 1.8.6.4.1 Target Chamber Service System; WBS 1.8.6.4.2 Target Bay Service Systems

  18. The Serotonin-6 Receptor as a Novel Therapeutic Target

    OpenAIRE

    Yun, Hyung-Mun; Rhim, Hyewhon

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that is found in both the central and peripheral nervous systems. 5-HT mediates its diverse physiological responses through 7 different 5-HT receptor families: 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors. Among them, the 5-HT6 receptor (5-HT6R) is the most recently cloned serotonin receptor and plays important roles in the central nervous system (CNS) and in the etiology of neurological diseases. Compared...

  19. Cosmis Lithium-Beryllium-Boron Story

    Science.gov (United States)

    Vangioni-Flam, E.; Cassé, M.

    Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except Lithium-7) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that galactic cosmic rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified, primordial and stellar (Lithium-7) and supernova neutrino spallation (Lithium-7 and Boron-11). In contrast, Beryllium-9, Boron-10 and Lithium-6 are pure spallative products. This last isotope presents a special interest since the Lithium-7/Lithium-6 ratio has been measured in a few halo stars offering a new constraint on the early galactic evolution. However, in the nineties, new observations prompted astrophysicists to reassess the question. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meters KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, unexpected on the basis of GCR scenario, predicting a quadratic relationship. As a consequence, the origin and the evolution of the LiBeB nuclei has been revisited. This linearity implies the acceleration of C and O nuclei freshly synthesized and their fragmentation on the the interstellar Hydrogen and Helium. Wolf-Rayet stars and supernovae via the shock waves induced, are the best candidates to the acceleration of their own material enriched into C and O; so LiBeB is produced independently of the Interstellar Medium chemical composition. Moreover, neutrinos emitted by the newly born neutron stars interacting with the C layer of the supernova could produce specifically Lithium-7 and Boron-11. This process is supported by the

  20. Thermal hydraulics of lead-bismuth target of 0.6 MW target complex

    International Nuclear Information System (INIS)

    The experimental results of the work on the project of target complex - demonstration installation for justification of subcritical accelerator-control system with liquid metal target are given. The investigation program consisted of determination of target pressure drop along the flow path length from suction to outlet nozzles and dependence of injection losses on distance between separating membrane and shaped grid; development of technical design report on coolant flow azimuthal distribution balancing near separating membrane; generation of coolant flow rate profiles in volume energy release zone; investigation of intensity and velocity pulsation spectra near separating membrane

  1. Electron microscope study of irradiated beryllium oxide

    International Nuclear Information System (INIS)

    The beryllium oxide is studied first by fractography, before and after irradiation, using sintered samples. The fractures are examined under different aspects. The higher density sintered samples, with transgranular fractures are the most interesting for a microscopic study. It is possible to mark the difference between the 'pores' left by the sintering process and the 'bubbles' of gases that can be produced by former thermal treatments. After irradiation, the grain boundaries are very much weakened. By annealing, it is possible to observe the evolution of the gases produced by the reaction (n, 2n) and (n. α) and gathered on the grain boundaries. The irradiated beryllium oxide is afterwards studied by transmission. For that, a simple method has been used: little chips of the crushed material are examined. Clusters of point defects produced by neutrons are thus detected in crystals irradiated at the three following doses: 6 x 1019, 9 x 1019 and 2 x 1020 nf cm-2 at a temperature below 100 deg. C. For the irradiation at 6 x 1019 nf cm-2, the defects are merely visible, but at 2 x l020 nf cm-2 the crystals an crowded with clusters and the Kikuchi lines have disappeared from the micro-diffraction diagrams. The evolution of the clusters into dislocation loops is studied by a series of annealings. The activation energy (0,37 eV) calculated from the annealing curves suggests that it must be interstitials that condense into dislocation loops. Samples irradiated at high temperatures (650, 900 and 1100 deg. C) are also studied. In those specimens the size of the loops is not the same as the equilibrium size obtained after out of pile annealing at the same temperature. Those former loops are more specifically studied and their Burgers vector is determined by micro-diffraction. (author)

  2. The Optimedin gene is a downstream target of Pax6

    Czech Academy of Sciences Publication Activity Database

    Grinchuk, O.; Kozmik, Zbyněk; Wu, X.; Tomarev, S.

    2005-01-01

    Roč. 280, č. 42 (2005), s. 35228-35237. ISSN 0021-9258 R&D Projects: GA ČR GA204/04/1358 Institutional research plan: CEZ:AV0Z50520514 Keywords : Pax6 * optimedin * promotor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.854, year: 2005

  3. ICT diagnostic method of beryllium welding quality

    International Nuclear Information System (INIS)

    To avoid the interference of high density material for the quality assay of beryllium welding line, a slice by slice scanning method was proposed based upon the research results of the Industrial Computerized Tomography (ICT) diagnostics for weld penetration, weld width, off-centered deviation and weld defects of beryllium-ring welding seam with high density material inside

  4. Some aspects of beryllium disposal in Kazakhstan

    International Nuclear Information System (INIS)

    Historically in Kazakhstan all disposals of used beryllium and beryllium wasted materials were stored and recycled at JSC ''Ulba Metallurgical Plant''. Since Ulba Metallurgical Plant (beside beryllium and tantalum production) is one of the world largest complex producers of fuel for nuclear power plants as well it has possibilities, technologies and experience in processing toxic and radioactive wastes related with those productions. At present time only one operating Kazakhstan research reactors (EWG1M in Kurchatov) contains beryllium made core. The results of current examination of that core allow using it without replacement long time yet (at least for next five-ten years). Nevertheless the problem how to utilize such irradiated beryllium becomes actual issue for Kazakhstan even today. Since Kazakhstan is the member of ITER/DEMO Reactors Projects and is permanently considered as possible provider of huge amount of beryllium for those reactors so that is the reason for starting studies of possibilities of large scale processing/recycling of such disposed irradiated beryllium. It is clear that the Ulba Metallurgical Plant is considered as the best site for it in Kazakhstan. The draft plan how to organize experimental studies of irradiated beryllium disposals in Kazakhstan involving National Nuclear Center, National University (Almaty), JSC ''Ulba Metallurgical Plant'' (Ust-Kamenogorsk) would be presented in this paper as well as proposals to arrange international collaboration in that field through ISTC (International Science Technology Center, Moscow). (author)

  5. Metastable defects in beryllium oxide crystals

    International Nuclear Information System (INIS)

    The metastable luminescence centers of regular lattice are investigated in binary beryllium oxide crystals. Beryllium oxide hexagonal crystals are the simplest among low-symmetry oxide scintillators and serve as a model system. The anisotropy of energy transformation and transfer is analyzed

  6. Investigation of beryllium/steam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chekhonadskikh, A.M.; Vurim, A.D.; Vasilyev, Yu.S.; Pivovarov, O.S. [Inst. of Atomic Energy National Nuclear Center of the Republic of Kazakstan Semipalatinsk (Kazakhstan); Shestakov, V.P.; Tazhibayeva, I.L.

    1998-01-01

    In this report program on investigations of beryllium emissivity and transient processes on overheated beryllium surface attacked by water steam to be carried out in IAE NNC RK within Task S81 TT 2096-07-16 FR. The experimental facility design is elaborated in this Report. (author)

  7. Modeling of hydrogen interactions with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-01-01

    In this paper, improved mathematical models are developed for hydrogen interactions with beryllium. This includes the saturation effect observed for high-flux implantation of ions from plasmas and retention of tritium produced from neutronic transmutations in beryllium. Use of the models developed is justified by showing how they can replicated experimental data using the TMAP4 tritium transport code. (author)

  8. Assessment of LANL beryllium waste management documentation

    International Nuclear Information System (INIS)

    The objective of this report is to determine present status of the preparation and implementation of the various high priority documents required to properly manage the beryllium waste generated at the Laboratory. The documents being assessed are: Waste Acceptance Criteria, Waste Characterization Plan, Waste Certification Plan, Waste Acceptance Procedures, Waste Characterization Procedures, Waste Certification Procedures, Waste Training Procedures and Waste Recordkeeping Procedures. Beryllium is regulated (as a dust) under 40 CFR 261.33 as ''Discarded commercial chemical products, off specification species, container residues and spill residues thereof.'' Beryllium is also identified in the 3rd thirds ruling of June 1, 1990 as being restricted from land disposal (as a dust). The beryllium waste generated at the Laboratory is handled separately because beryllium has been identified as a highly toxic carcinogenic material

  9. Beryllium for fusion application - recent results

    Science.gov (United States)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-12-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.

  10. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    Energy Technology Data Exchange (ETDEWEB)

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  11. Postirradiation examination of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Postirradiation examinations of COBRA-1A beryllium pebbles irradiated in the EBR-II fast reactor at neutron fluences which generated 2700--3700 appm helium have been performed. Measurements included density change, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The major change in microstructure is development of unusually shaped helium bubbles forming as highly non-equiaxed thin platelet-like cavities on the basal plane. Measurement of the swelling due to cavity formation was in good agreement with density change measurements.

  12. Geochemistry of beryllium in Bulgarian coals

    Energy Technology Data Exchange (ETDEWEB)

    Eskenazy, Greta M. [Geology Department, University of Sofia ' St. Kl. Ohridski' , Tzar Osvoboditel 15, Sofia 1504 (Bulgaria)

    2006-04-03

    The beryllium content of about 3000 samples (coal, coaly shales, partings, coal lithotypes, and isolated coalified woods) from 16 Bulgarian coal deposits was determined by atomic emission spectrography. Mean Be concentrations in coal show great variability: from 0.9 to 35 ppm for the deposits studied. There was no clear-cut relationship between Be content and rank. The following mean and confidence interval Be values were measured: lignites, 2.6+/-0.8 ppm; sub-bituminous coals, 8.2+/-3.3 ppm; bituminous coals, 3.0+/-1.2 ppm; and anthracites, 19+/-9.0 ppm. The Be contents in coal and coaly shales for all deposits correlated positively suggesting a common source of the element. Many samples of the coal lithotypes vitrain and xylain proved to be richer in Be than the hosting whole coal samples as compared on ash basis. Up to tenfold increase in Be levels was routinely recorded in fusain. The ash of all isolated coalified woods was found to contain 1.1 to 50 times higher Be content relative to its global median value for coal inclusions. Indirect evidence shows that Be occurs in both organic and inorganic forms. Beryllium is predominantly organically bound in deposits with enhanced Be content, whereas the inorganic form prevails in deposits whose Be concentration approximates Clarke values. The enrichment in Be exceeding the coal Clarke value 2.4 to 14.5 times in some of the Bulgarian deposits is attributed to subsynchronous at the time of coal deposition hydrothermal and volcanic activity. (author)

  13. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  14. HARP targets pion production cross section and yield measurements. Implications for MiniBooNE neutrino flux

    Energy Technology Data Exchange (ETDEWEB)

    Wickremasinghe, Don Athula Abeyarathna [Univ. of Cincinnati, OH (United States)

    2015-07-01

    The prediction of the muon neutrino flux from a 71.0 cm long beryllium target for the MiniBooNE experiment is based on a measured pion production cross section which was taken from a short beryllium target (2.0 cm thick - 5% nuclear interaction length) in the Hadron Production (HARP) experiment at CERN. To verify the extrapolation to our longer target, HARP also measured the pion production from 20.0 cm and 40.0 cm beryllium targets. The measured production yields, d2Nπ± (p; θ )=dpd Ω, on targets of 50% and 100% nuclear interaction lengths in the kinematic rage of momentum from 0.75 GeV/c to 6.5 GeV/c and the range of angle from 30 mrad to 210 mrad are presented along with an update of the short target cross sections. The best fitted extended Sanford-Wang (SW) model parameterization for updated short beryllium target π+ production cross section is presented. Yield measurements for all three targets are also compared with that from the Monte Carlo predictions in the MiniBooNE experiment for different SW parameterization. The comparisons of vμ flux predictions for updated SW model is presented.

  15. Fluorimetric method for determination of Beryllium

    International Nuclear Information System (INIS)

    The old fluorimetric method for the determination of Beryllium, based essentially on the fluorescence of the Beryllium-Morine complex in a strongly alkaline solution, is still competitive and stands the comparison with more modern methods or at least three reasons: in the presence of solid or gaseous samples (powders), the times necessary to finalize an analytic determination are comparable since the stage of the process which lasts the longest is the mineralization of the solid particles containing Beryllium, the cost of a good fluorimeter is by far Inferior to the cost, e. g., of an Emission Spectrophotometer provided with ICP torch and magnets for exploiting the Zeeman effect and of an Atomic absorption Spectrophotometer provided with Graphite furnace; it is possible to determine, fluorimetrically, rather small Beryllium levels (about 30 ng of Beryllium/sample), this potentiality is more than sufficient to guarantee the respect of all the work safety and hygiene rules now in force. The study which is the subject of this publication is designed to the analysis procedure which allows one to reach good results in the determination of Beryllium, chiefly through the control and measurement of the interference effect due to the presence of some metals which might accompany the environmental samples of workshops and laboratories where Beryllium is handled, either at the pure state or in its alloys. The results obtained satisfactorily point out the merits and limits of this analytic procedure

  16. A charge-density study of crystalline beryllium

    International Nuclear Information System (INIS)

    The X-ray structure factors for crystalline beryllium measured by Brown [Phil. Mag. (1972), 26, 1377] have been analyzed with multipole deformation functions for charge-density information. Single exponential radial functions were used for the valence charge density. A valence monopole plus the three harmonics, P35(cos theta) sin 3phi, P6(cos theta) and P37(cos theta) sin 3phi, provide a least-squares fit to the data with Rsub(w)=0.0081. The superposition of these density functions describes a bonding charge density between Be atoms along the c axis through the tetrahedral vacancy. The results reported here are in qualitative agreement with a recent pseudo-potential calculation of metallic beryllium. The final residuals in the analysis are largest at high sin theta/lambda values. This suggests that core charge deformation is present and/or anharmonic motion of the nuclei is appreciable. (Auth.)

  17. Recommended design correlations for S-65 beryllium

    International Nuclear Information System (INIS)

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The irradiation-independent properties described within are: thermal conductivity, specific heat capacity, thermal expansion, and elastic constants. Irradiation-dependent properties include: yield strength, ultimate tensile strength, plastic tangent modulus, uniform and total tensile elongation, thermal and irradiation-induced creep strength, He-induced swelling and tritium retention/release. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium -- the material chosen for ITER PFC application -- as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined from the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing (HIP). The performance of plasma-sprayed beryllium is discussed but not quantified

  18. Recommended design correlations for S-65 beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States)

    1995-09-01

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The irradiation-independent properties described within are: thermal conductivity, specific heat capacity, thermal expansion, and elastic constants. Irradiation-dependent properties include: yield strength, ultimate tensile strength, plastic tangent modulus, uniform and total tensile elongation, thermal and irradiation-induced creep strength, He-induced swelling and tritium retention/release. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium -- the material chosen for ITER PFC application -- as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined from the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing (HIP). The performance of plasma-sprayed beryllium is discussed but not quantified.

  19. Research of flaw assessment methods for beryllium reflector elements

    International Nuclear Information System (INIS)

    Reflector elements made from metal beryllium is widely used as neutron reflectors to increase neutron flux in test reactors. When beryllium reflector elements are irradiated by neutron, bending of reflector elements caused by swelling occurs, and beryllium reflector elements must be replaced in several years. In this report, literature search and investigation for non-destructive inspection of Beryllium and experiments for Preliminary inspection to establish post irradiation examination method for research of characteristics of metal beryllium under neutron irradiation were reported. (author)

  20. Preliminary proposal for a beryllium technology program for fusion applications

    International Nuclear Information System (INIS)

    The program was designed to provide the answers to the critical issues of beryllium technology needed in fusion blanket designs. The four tasks are as follows: (1) Beryllium property measurements needed for fusion data base. (2) Beryllium stress relaxation and creep measurements for lifetime modelling calculations. (3) Simplified recycle technique development for irradiated beryllium. (4) Beryllium neutron multiplier measurements using manganese bath absolute calibration techniques

  1. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  2. Iron-containing phases in commercial beryllium

    International Nuclear Information System (INIS)

    The effect of hot and cold rolling with subsequent heat treatment on the interrelation of iron-containing phases and texture in commercial beryllium is considered. Using the Moessbauer microscopy it has been established that iron impurities are present both in solid solution and in the composition of intermetallide AlFeBe4 the texture for iron solid solution in beryllium is determined. Beryllium quenching results in nearly complete disappearance of intermetallic phase and iron transfers into substitutional solid solution. Further cold rolling does not result in any phase transformation

  3. Micro-Moving Target IPv6 Defense for 6LoWPAN and the Internet of Things

    OpenAIRE

    Sherburne, Matthew Gilbert

    2015-01-01

    The Internet of Things (IoT) is composed of billions of sensors and actuators that have varying tasks aimed at making industry, healthcare, and home life more efficient. These sensors and actuators are mainly low-powered and resource-constrained embedded devices with little room for implementing IP security in addition to their main function. With the fact that more of these devices are using IPv6 addressing, we seek to adapt a moving-target defense measure called Moving Target IPv6 Defense f...

  4. Growth arrest specific protein 6 participates in DOCA-induced target-organ damage.

    Science.gov (United States)

    Park, Joon-Keun; Theuer, Stefanie; Kirsch, Torsten; Lindschau, Carsten; Klinge, Uwe; Heuser, Arnd; Plehm, Ralph; Todiras, Mihai; Carmeliet, Peter; Haller, Hermann; Luft, Friedrich C; Muller, Dominik N; Fiebeler, Anette

    2009-08-01

    Growth arrest-specific protein 6 (Gas 6) is involved in inflammatory kidney diseases, vascular remodeling, cell adhesion, and thrombus formation. We explored a role for Gas 6 in aldosterone-induced target organ damage. We observed that Gas 6 was upregulated in rats with high aldosterone levels. Mineralocorticoid receptor blockade prevented target organ damage and decreased the elevated Gas 6 expression. Vascular smooth muscle cells given aldosterone increased their Gas 6 expression in vitro. To test the pathophysiological relevance, we investigated the effects of deoxycorticosterone acetate (DOCA) on Gas 6 gene-deleted ((-/-)) mice. After 6 weeks DOCA, Gas 6(-/-) mice developed similar telemetric blood pressure elevations compared to wild-type mice but were protected from cardiac hypertrophy. Cardiac expression of interleukin 6 and collagen IV was blunted in Gas 6(-/-) mice, indicating reduced inflammation and fibrosis. Gas 6(-/-) mice also had an improved renal function with reduced albuminuria, compared to wild-type mice. Renal fibrosis and fibronectin deposition in the kidney were also reduced. Gas 6 deficiency reduces the detrimental effects of aldosterone on cardiac and renal remodeling independent of blood pressure reduction. Gas 6 appears to play a role in mineralocorticoid receptor-mediated target organ damage. Furthermore, because warfarin interferes with Gas 6 protein expression, the findings could be of clinical relevance for anticoagulant choices. PMID:19564549

  5. Chronic Beryllium Disease Prevention Program Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S

    2012-03-29

    This document describes how Lawrence Livermore National Laboratory (LLNL) meets the requirements and management practices of federal regulation 10 CFR 850, 'Chronic Beryllium Disease Prevention Program (CBDPP).' This revision of the LLNL CBDPP incorporates clarification and editorial changes based on lessons learned from employee discussions, observations and reviews of Department of Energy (DOE) Complex and commercial industry beryllium (Be) safety programs. The information is used to strengthen beryllium safety practices at LLNL, particularly in the areas of: (1) Management of small parts and components; and (2) Communication of program status to employees. Future changes to LLNL beryllium activities and on-going operating experience will be incorporated into the program as described in Section S, 'Performance Feedback.'

  6. Nitrogen reactivity toward beryllium: surface reactions.

    Science.gov (United States)

    Allouche, A

    2013-06-01

    Recent experiments with nitrogen as a seeding gas in fusion plasma devices together with the option of using beryllium as an armor material in the future ITER tokamak (International Thermonuclear Experimental Reactor) have raised new interest in the interactions of beryllium surfaces with nitrogen (atomic or molecular). The strong reactivity of nitrogen implies the formation of beryllium nitrite and, in conjunction with oxygen and other possible impurities, experimentalists have to consider the probability of generating various complex moieties such as imine, amine or oxyamine, and amide radicals. This chemistry would obviously dramatically perturb the plasma, and quantum investigations can be of great predictive help. Nitrogen adsorption on beryllium basal surfaces is investigated through quantum density functional theory. Different situations are examined: molecular or atomic nitrogen reactions; nitride radical adsorption or formation on surfaces; hydrogen retention on surfaces; combined nitrogen/oxygen reactivity and hydrogen retention. A tentative comparison with experiment is also proposed. PMID:23594802

  7. Elastic, micro- and macroplastic properties of polycrystalline beryllium

    Science.gov (United States)

    Kardashev, B. K.; Kupriyanov, I. B.

    2011-12-01

    The Young's modulus and the internal friction of beryllium polycrystals (size grain from 6 to 60 μm) prepared by the powder metallurgy method have been studied as functions of the amplitude and temperature in the range from 100 to 873 K. The measurements have been performed using the composite piezoelectric vibrator method for longitudinal vibrations at frequencies about 100 kHz. Based on the acoustic measurements, the data have been obtained on the elastic and inelastic (microplastic) properties as functions of vibration stress amplitudes within the limits from 0.2 to 30-60 MPa. The microplastic deformation diagram is shown to become nonlinear at the amplitudes higher than 5 MPa. The beryllium mechanical characteristics (the yield strength σ 0.2, the ultimate strength σ u , and the conventional microscopic yield strength σ y ) obtained with various grain sizes are compared. At room temperature, all the parameters satisfactorily obey the Hall-Petch relationship, although there is no complete similarity. The temperature dependences are quite different, namely: σ 0.2( T) and σ u ( T) decrease monotonically during heating from room temperature to higher temperatures; however, σ y ( T) behaves unusually, and it has a minimum near 400 K. The different levels of stresses and the absence of similarity indicate that the scattering of the ultrasound energy and the formation of a level of the macroscopic flow stresses in beryllium occur on dislocation motion obstacles of different origins.

  8. Thermal fatigue behavior of US and Russian grades of beryllium

    International Nuclear Information System (INIS)

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 KW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degrees C for each pass of the beam. Large thermal stress in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m2. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S-65H, S-200F, S-300F-H, Sr-200, I-400, extruded high purity. HIP'd sperical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe12. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be(SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  9. Lithium-Beryllium-Boron : Origin and Evolution

    OpenAIRE

    Vangioni-Flam, Elisabeth; Casse, Michel; Audouze, Jean

    1999-01-01

    The origin and evolution of Lithium-Beryllium-Boron is a crossing point between different astrophysical fields : optical and gamma spectroscopy, non thermal nucleosynthesis, Big Bang and stellar nucleosynthesis and finally galactic evolution. We describe the production and the evolution of Lithium-Beryllium-Boron from Big Bang up to now through the interaction of the Standard Galactic Cosmic Rays with the interstellar medium, supernova neutrino spallation and a low energy component related to...

  10. Vitamin B6-Dependent Enzymes in the Human Malaria Parasite Plasmodium falciparum: A Druggable Target?

    OpenAIRE

    Thales Kronenberger; Jasmin Lindner; Meissner, Kamila A.; Zimbres, Flávia M.; Coronado, Monika A.; Sauer, Frank M.; Isolmar Schettert; Carsten Wrenger

    2014-01-01

    Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal...

  11. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  12. Double K-shell photoionization of atomic beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Yip, F. L. [Departamento de Quimica, Modulo 13, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Martin, F. [Departamento de Quimica, Modulo 13, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Instituto Madrilen(tilde sign)o de Estudios Avanzados en Nanociencia, Cantoblanco, E-28049 Madrid (Spain); McCurdy, C. W. [Department of Chemistry, University of California, Davis, California 95616 (United States); Lawrence Berkeley National Laboratory, Chemical Sciences, and Ultrafast X-ray Science Laboratory, Berkeley, California 94720 (United States); Rescigno, T. N. [Lawrence Berkeley National Laboratory, Chemical Sciences, and Ultrafast X-ray Science Laboratory, Berkeley, California 94720 (United States)

    2011-11-15

    Double photoionization of the core 1s electrons in atomic beryllium is theoretically studied using a hybrid approach that combines orbital and grid-based representations of the Hamiltonian. The {sup 1} S ground state and {sup 1} P final state contain a double occupancy of the 2s valence shell in all configurations used to represent the correlated wave function. Triply differential cross sections are evaluated, with particular attention focused on a comparison of the effects of scattering the ejected electrons through the spherically symmetric valence shell with similar cross sections for helium, representing a purely two-electron target with an analogous initial-state configuration.

  13. Phase equilibria, compatibility studies and thermal properties of beryllium systems

    International Nuclear Information System (INIS)

    The quality control of commercial beryllium, the examinations of the phase equilibria in beryllium systems as well as the broad field of incompatibility and the reaction kinetics of beryllium with other materials necessitate a sophisticated method for the analysis of this element in micrometer areas. A powerful tool is the wavelength dispersive X-ray microanalyser. Therefore, a commercial synthetic Mo-B4C multilayer X-ray diffracting device with 2 d = 22.2 nm periodicity was used to extend X-ray microanalysis to the ultra-light elements Be and B in an existing instrument. The spectrometer covers a wavelength range between 5.2 and 13 nm. The wavelength of the Be Kα emission line from elemental Be is λ = 11.35 nm and the full width at half maximum is ΔE = 7.2 eV. The optimum working voltage Uo is 10 kV for moderate X-ray mass absorption of the targets. The determination of Be in oxides is less favourable owing to the high mass absorption. Uo has to be reduced to 5 kV. The chemical shift of the Be Kα line in BeO is Δλ = + 0.3 nm relative to pure Be. Beryllium pebbles are foreseen as neutron multipliers in future fusion reactor blanket concepts. Industrial intermediate Be products which had been produced by a modified Kroll process and subsequent reduction of BeF2 using Mg were investigated by X-ray microanalysis. The following precipitates in the Be matrix of 2 mm pebbles partially annealed up to 790 C could be detected: (Mg, Zr, U) Be13, MgBe13, Mg2Si, Al2Mg3 and (Fe, Cr) alloys. The maximum solubility of selected metallic impurities in beryllium annealed at 800 C is: 0.06 mass % Fe, 0.03 mass % Al, 0.02 mass % Si, 5Fe2, Be2C and Cr-Fe-Si were observed in specimens annealed between 870 and 690 C. It is interesting that Al5Fe2 precipitates were observed; however, the phase AlFeBe4 that would have been expected according to the phase diagram of the ternary Al-Be-Fe system was not found. Probably the Fe/Al ratio is too low for AlFeBe4 formation. The high annealing

  14. Beryllium and lithium resource requirements for solid blanket designs for fusion reactors

    International Nuclear Information System (INIS)

    The lithium and beryllium requirements are analyzed for an economy of 106 MW(e) CTR3 capacity using solid blanket fusion reactors. The total lithium inventory in fusion reactors is only approximately 0.2 percent of projected U. S. resources. The lithium inventory in the fusion reactors is almost entirely 6Li, which must be extracted from natural lithium. Approximately 5 percent of natural lithium can be extracted as 6Li. Thus the total feed of natural lithium required is approximately 20 times that actually used in fusion reactors, or approximately 4 percent of U. S. resources. Almost all of this feed is returned to the U. S. resource base after 6Li is extracted, however. The beryllium requirements are on the order of 10 percent of projected U. S. resources. Further, the present cost of lithium and the cost of beryllium extraction could both be increased tenfold with only minor effects on CTR capital cost. Such an increase should substantially multiply the economically recoverable resources of lithium and beryllium. It is concluded that there are no lithium or beryllium resource limitations preventing large-scale implementation of solid blanket fusion reactors. (U.S.)

  15. Beryllium Project: developing in CDTN of uranium dioxide fuel pellets with addition of beryllium oxide to increase the thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ricardo Alberto Neto; Camarano, Denise das Merces; Miranda, Odair; Grossi, Pablo Andrade; Andrade, Antonio Santos; Queiroz, Carolinne Mol; Gonzaga, Mariana de Carvalho Leal, E-mail: ranf@cdtn.br, E-mail: dmc@cdtn.br, E-mail: odairm@cdtn.br, E-mail: pabloag@cdtn.br, E-mail: antdrade@gmail.com, E-mail: carolmol@gmail.com, E-mail: mari_clgonzaga@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Pampulha, MG (Brazil)

    2013-07-01

    Although the nuclear fuel currently based on pellets of uranium dioxide be very safe and stable, the biggest problem is that this material is not a good conductor of heat. This results in an elevated temperature gradient between the center and its lateral surface, which leads to a premature degradation of the fuel, which restricts the performance of the reactor, being necessary to change the fuel before its full utilization. An increase of only 5 to 10 percent in its thermal conductivity, would be a significant increase. An increase of 50 percent would be a great improvement. A project entitled 'Beryllium Project' was developed in CDTN - Centro de Desenvolvimento da Tecnologia Nuclear, which aimed to develop fuel pellets made from a mixture of uranium dioxide microspheres and beryllium oxide powder to obtain a better heat conductor phase, filling the voids between the microspheres to increase the thermal conductivity of the pellet. Increases in the thermal conductivity in the range of 8.6% to 125%, depending on the level of addition employed in the range of 1% to 14% by weight of beryllium oxide, were obtained. This type of fuel promises to be safer than current fuels, improving the performance of the reactor, in addition to last longer, resulting in great savings. (author)

  16. Generation and characterization of a diabody targeting the αvβ6 integrin.

    Directory of Open Access Journals (Sweden)

    Heide Kogelberg

    Full Text Available The αvβ6 integrin is up-regulated in cancer and wound healing but it is not generally expressed in healthy adult tissue. There is increasing evidence that it has a role in cancer progression and will be a useful target for antibody-directed cancer therapies. We report a novel recombinant diabody antibody fragment that targets specifically αvβ6 and blocks its function. The diabody was engineered with a C-terminal hexahistidine tag (His tag, expressed in Pichia pastoris and purified by IMAC. Surface plasmon resonance (SPR analysis of the purified diabody showed affinity in the nanomolar range. Pre-treatment of αvβ6-expressing cells with the diabody resulted in a reduction of cell migration and adhesion to LAP, demonstrating biological function-blocking activity. After radio-labeling, using the His-tag for site-specific attachment of (99mTc, the diabody retained affinity and targeted specifically to αvβ6-expressing tumors in mice bearing isogenic αvβ6 +/- xenografts. Furthermore, the diabody was specifically internalized into αvβ6-expressing cells, indicating warhead targeting potential. Our results indicate that the new αvβ6 diabody has a range of potential applications in imaging, function blocking or targeted delivery/internalization of therapeutic agents.

  17. Sanitary-hygienic and ecological aspects of beryllium production

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Sidorov, V.L.; Slobodin, D.B.; Tuzov, Y.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)

    1998-01-01

    The Report describes An organization of sanitary-hygienic and ecological control of beryllium production at Ulba metallurgical plant. It involves: (1) the consideration of main methods for protection of beryllium production personnel from unhealthy effect of beryllium, (2) main kinds of filters, used in gas purification systems at different process areas, (3) data on beryllium monitoring in water, soil, on equipment. This Report also outlines problems connected with designing devices for a rapid analysis of beryllium in air as well as problems of beryllium production on ecological situation in the town. (author)

  18. X-ray drive of beryllium capsule implosions at the National Ignition Facility

    Science.gov (United States)

    Wilson, D. C.; Yi, S. A.; Simakov, A. N.; Kline, J. L.; Kyrala, G. A.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Olson, R. E.; Strozzi, D. J.; Celliers, P. M.; Schneider, M. B.; MacPhee, A. G.; Zylstra, A. B.; Callahan, D. A.; Hurricane, O. A.; Milovich, J. L.; Hinkel, D. E.; Rygg, J. R.; Rinderknecht, H. G.; Sio, H.; Perry, T. S.; Batha, S.

    2016-05-01

    National Ignition Facility experiments with beryllium capsules have followed a path begun with “high-foot” plastic capsule implosions. Three shock timing keyhole targets, one symmetry capsule, a streaked backlit capsule, and a 2D backlit capsule were fielded before the DT layered shot. After backscatter subtraction, laser drive degradation is needed to match observed X-ray drives. VISAR measurements determined drive degradation for the picket, trough, and second pulse. Time dependence of the total Dante flux reflects degradation of the of the third laser pulse. The same drive degradation that matches Dante data for three beryllium shots matches Dante and bangtimes for plastic shots N130501 and N130812. In the picket of both Be and CH hohlraums, calculations over-estimate the x-ray flux > 1.8 keV by ∼100X, while calculating the total flux correctly. In beryllium calculations these X-rays cause an early expansion of the beryllium/fuel interface at ∼3 km/s. VISAR measurements gave only ∼0.3 km/s. The X-ray drive on the Be DT capsule was further degraded by an unplanned decrease of 9% in the total picket flux. This small change caused the fuel adiabat to rise from 1.8 to 2.3. The first NIF beryllium DT implosion achieved 29% of calculated yield, compared to CH capsules with 68% and 21%.

  19. Beryllium colorimetric detection for high speed monitoring of laboratory environments.

    Science.gov (United States)

    Taylor, Tammy P; Sauer, Nancy N

    2002-08-01

    The health consequences of beryllium (Be2+) exposure can be severe. Beryllium is responsible for a debilitating and potentially fatal lung disease, chronic beryllium disease (CBD) resulting from inhalation of beryllium particles. The US Code of Federal Register (CFR), 10 CFR 850, has established a limit of 0.2 microg beryllium/100 cm(2) as the maximum amount of beryllium allowable on surfaces to be released from beryllium work areas in Department of Energy (DOE) facilities. The analytical technique described herein reduces the time and cost of detecting beryllium on laboratory working surfaces substantially. The technique provides a positive colorimetric response to the presence of beryllium on a 30.5 cm x 30.5 cm (1 ft(2)) surface at a minimum detection of 0.2 microg/100 cm(2). The method has been validated to provide positive results for beryllium in the presence of excess iron, calcium, magnesium, copper, nickel, chromium and lead at concentrations 100 times that of beryllium and aluminum and uranium (UO2(2+)) at lesser concentrations. The colorimetric detection technique has also been validated to effectively detect solid forms of beryllium including Be(OH)2, BeCl2, BeSO4, beryllium metal and BeO. PMID:12137989

  20. Mannose-6-phosphate receptor: a target for theranostics of prostate cancer.

    Science.gov (United States)

    Vaillant, Ophélie; El Cheikh, Khaled; Warther, David; Brevet, David; Maynadier, Marie; Bouffard, Elise; Salgues, Frédéric; Jeanjean, Audrey; Puche, Pierre; Mazerolles, Catherine; Maillard, Philippe; Mongin, Olivier; Blanchard-Desce, Mireille; Raehm, Laurence; Rébillard, Xavier; Durand, Jean-Olivier; Gary-Bobo, Magali; Morère, Alain; Garcia, Marcel

    2015-05-11

    The development of personalized and non-invasive cancer therapies based on new targets combined with nanodevices is a major challenge in nanomedicine. In this work, the over-expression of a membrane lectin, the cation-independent mannose 6-phosphate receptor (M6PR), was specifically demonstrated in prostate cancer cell lines and tissues. To efficiently target this lectin a mannose-6-phosphate analogue was synthesized in six steps and grafted onto the surface of functionalized mesoporous silica nanoparticles (MSNs). These MSNs were used for in vitro and ex vivo photodynamic therapy to treat prostate cancer cell lines and primary cell cultures prepared from patient biopsies. The results demonstrated the efficiency of M6PR targeting for prostate cancer theranostic. PMID:25802144

  1. REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis

    OpenAIRE

    Yoshihiro Kawasaki; Kosuke Matsumura; Masaya Miyamoto; Shinnosuke Tsuji; Masumi Okuno; Sakiko Suda; Masaya Hiyoshi; Joji Kitayama; Tetsu Akiyama

    2015-01-01

    The transcription factor GATA6 is a critical regulator of cell proliferation and development in the gastrointestinal tract. We have recently reported that GATA6 induces the expression of the intestinal stem cell marker LGR5 and enhances the clonogenicity and tumorigenicity of colon cancer cells, but not the growth of these cells cultured under adherent conditions. Here we show that REG4, a member of the regenerating islet-derived (REG) family, is also a target of GATA6. We further demonstrate...

  2. Beryllium. Health hazards and their control. Pt. 2

    International Nuclear Information System (INIS)

    In this work (continuation of 'Beryllium' series) health hazards, toxic effects, limits of permissible atmospheric contamination and safe exposure to beryllium are described. Guidelines to the design, control operations and hygienic precautions of the working facilities are given. (Author)

  3. Mechanical performance of irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Dalle-Donne, M.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    For the Helium Cooled Pebble Bed (HCPB) Blanket, which is one of the two reference concepts studied within the European Fusion Technology Programme, the neutron multiplier consists of a mixed bed of about 2 and 0.1-0.2 mm diameter beryllium pebbles. Beryllium has no structural function in the blanket, however microstructural and mechanical properties are important, as they might influence the material behavior under neutron irradiation. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating it. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from these irradiation experiments, emphasizing the effects of irradiation of essential material properties and trying to elucidate the processes controlling the property changes. The microstructure, the porosity distribution, the impurity content, the behavior under compression loads and the compatibility of the beryllium pebbles with lithium orthosilicate (Li{sub 4}SiO{sub 4}) during the in-pile irradiation are presented and critically discussed. Qualitative information on ductility and creep obtained by hardness-type measurements are also supplied. (author)

  4. Asymptotic and near-target direct breakup of 6Li and 7Li

    Science.gov (United States)

    Kalkal, Sunil; Simpson, E. C.; Luong, D. H.; Cook, K. J.; Dasgupta, M.; Hinde, D. J.; Carter, I. P.; Jeung, D. Y.; Mohanto, G.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; Simenel, C.; Vo-Phuoc, K.; Williams, E.; Gasques, L. R.; Gomes, P. R. S.; Linares, R.

    2016-04-01

    Background: Li,76 and 9Be are weakly bound against breakup into their cluster constituents. Breakup location is important for determining the role of breakup in above-barrier complete fusion suppression. Recent works have pointed out that experimental observables can be used to separate near-target and asymptotic breakup. Purpose: Our purpose is to distinguish near-target and asymptotic direct breakup of Li,76 in reactions with nuclei in different mass regions. Method: Charged particle coincidence measurements are carried out with pulsed Li,76 beams on 58Ni and 64Zn targets at sub-barrier energies and compared with previous measurements using 208Pb and 209Bi targets. A detector array providing a large angular coverage is used, along with time-of-flight information to give definitive particle identification of the direct breakup fragments. Results: In interactions of 6Li with 58Ni and 64Zn, direct breakup occurs only asymptotically far away from the target. However, in interactions with 208Pb and 209Bi, near-target breakup occurs in addition to asymptotic breakup. Direct breakup of 7Li into α -t is not observed in interactions with 58Ni and 64Zn. However, near-target dominated direct breakup was observed in measurements with 208Pb and 209Bi. A modified version of the Monte Carlo classical trajectory model code platypus, which explicitly takes into account lifetimes associated with unbound states, is used to simulate sub-barrier breakup reactions. Conclusions: Near-target breakup in interactions with Li,76 is an important mechanism only for the heavy targets 208Pb and 209Bi. There is insignificant near-target direct breakup of 6Li and no direct breakup of 7Li in reactions with 58Ni and 64Zn. Therefore, direct breakup is unlikely to suppress the above-barrier fusion cross section in reactions of Li,76 with 58Ni and 64Zn nuclei.

  5. Control of ascariasis through age-targeted chemotherapy: impact of 6-monthly chemotherapeutic regimens.

    OpenAIRE

    Thein-Hlaing; Than-Saw; Myat-Lay-Kyin

    1990-01-01

    A field trial of 6-monthly ascariasis chemotherapeutic regimens targeted at 1-19-, 1-14-, and 5-19-year-olds was carried out in three communities in rural Myanmar to observe the effects on the prevalence, intensity, and morbidity indicators over 2 years. After periodic chemotherapy, the prevalence and intensity of Ascaris infection in age-targeted and non-age-targeted groups fell in all the study areas, more markedly among the 1-19- and 1-14-year-olds. There was also a decrease in the frequen...

  6. Removal of Beryllium Material during Decommissioning of a Slowpoke Reactor, Toronto, Canada

    International Nuclear Information System (INIS)

    The Slowpoke (acronym for Safe LOW-POwer Kritical Experiment) is a low energy, tank-in-pool type nuclear research reactor designed by the Atomic Energy of Canada Limited in the late 1960s. The fuel cage is surrounded by a beryllium assembly at the bottom of a water pool about 6 m deep. The beryllium reflects neutrons back into the core. Basically, the reactor is a subcritical mass of fuel, which the surrounding beryllium makes critical. The rate of reaction is controlled by inserting a neutron absorbing cadmium rod. Slowpokes have a maximum power of 100 kW and normally operate at about 20 kW. The University of Toronto SLOWPOKE-2 Reactor research services ended in December 1998, and the reactor was finally defuelled in June 2000. On 10 November 2000, the Canadian Nuclear Safety Commission (CNSC) issued the decommissioning licence to the University of Toronto for its SLOWPOKE-2 Nuclear Reactor Facility. The reactor decommissioning was completed in January 2001. The beryllium material was to have been shipped under the operating licence, but actually it was shipped under the decommissioning licence. The CNSC revoked the decommissioning licence for the University of Toronto SLOWPOKE-2 Reactor Facility on 24 February 2012, and the site was returned to the university for unrestricted site use. The following is a description of the incident involving the beryllium material management

  7. 75 FR 80734 - Chronic Beryllium Disease Prevention Program

    Science.gov (United States)

    2010-12-23

    ... Beryllium Disease Prevention Program (CBDPP) (63 FR 66940). After considering the comments received, DOE... CFR Part 850 RIN 1992-AA39 Chronic Beryllium Disease Prevention Program AGENCY: Office of Health... beryllium disease prevention program. The Department solicits comment and information on the...

  8. Technique of beryllium determination using an (α,n) reaction

    International Nuclear Information System (INIS)

    The possibility of detecting small amounts of 9Be using the (α, n) reaction has been investigated. It is shown that at a 210Po α-particle source intensity of 3x108 s-1 for limit of the detectable amount of beryllium is equal to 0.1 μg in the case of recording neutron-gamma (>= 3.6 MeV) coincidences. Other light elements (B, F, Al, Mg, Si etc.) do not produce a noticeable background under such conditions

  9. Spectrographic determination of impurities in beryllium oxide

    International Nuclear Information System (INIS)

    A method for the spectrographic determination of Al, B, Cd, Co, Cu, Cr, Fe, Mg, NaNi, Si and Zn in nuclear grade beryllium oxide has been developed. The determination of Co, Al, Na and Zn is besed upon a carrier distillation technique. Better results were obtained with 2% Ga2O3 as carrier in beryllium oxide. For the elements B, Cd, Cu, Fe, Cr, Mg, Ni and Si the sample is loaded in a Scribner-Mullin shallow cup electrode, covered with graphite powder and excited in DC arc. The relative standard deviation values for different elements are in the range of 10 to 20%. The method fulfills requirements of precision and sensitivity for specification analysis of nuclear grade beryllium oxide.(Author)

  10. Measurement of the ultracold-neutron loss coefficient for beryllium powder

    International Nuclear Information System (INIS)

    Reflections of ultracold neutrons (UCN) from beryllium powder have been measured for various layer thickness and various packing densities. On the basis of the experimental data, the reduced UCN loss coefficient for the UCN reflected from the thermally untreated beryllium, η, is found to be η = (1.75 ± 0.35) x 10-4. The previously obtained data on the reflection of UCN from beryllium powder annealed at high temperature are reconsidered. the value obtained for η at room temperature is (6.4 ± 2.5) x 10-5, which exceeds the theoretical value by an order of magnitude. The analysis of the experimental data was carried out by using a modified diffusion theory in which the albedo reflection depends on the packing density

  11. Wavefunction and energy of the 1s22sns configuration in a beryllium atom

    Institute of Scientific and Technical Information of China (English)

    Huang Shi-Zhong; Ma Kun; Yu Jia-Ming; Liu Fen

    2008-01-01

    A new set of trial functions for 1s22sns configurations in a beryllium atom is suggested.A Mathematica program baaed on the variational method is developed to calculate the wavefunctions and energies of 1s22sns (n=3-6)configurations in a beryllium atom.Non-relativistic energy,polarization correction and relativistic correction which include mass correction,one- and two-body Darwin corrections,spin-spin contact interaction and orbit-orbit interaction,are calculated respectively.The results are in good agreement with experimental data.

  12. Isothermal compression and phase transition in beryllium to 28.3 GPa

    International Nuclear Information System (INIS)

    In situ high-pressure x-ray diffraction data for polycrystalline beryllium to 28.3 GPa at ambient temperature show that beryllium is transformed from the HCP phase (I) into a slightly distorted HCP phase (II) at pressures between 8.6 and 14.5 GPa. The volume change for the transition is extremely small (approx. 0.4%); the effect of pressure on the c/a ratio for both the Be(I) and Be(II) phases is also very small. (author)

  13. Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, Mercedes; Lago, Natalia;

    2003-01-01

    study demonstrated that transgenic IL-6 production significantly increased wound healing following the cryolesion. Thus, at 20 days postlesion (dpl) the GFAP-IL6 mice showed almost complete wound healing compared to litter mate nontransgenic controls. It seems likely that a reduced inflammatory response...... in the long term could be responsible for this IL-6-related effect. Thus, while in the acute phase following cryolesion (1-6 dpl) the recruitment of macrophages and T lymphocytes was higher in GFAP-IL6 mice, at 10-20 dpl it was significantly reduced compared to controls. Reactive astrogliosis was...... as to the transgenic IL-6-induced increase of the antioxidant, neuroprotective proteins metallothionein-I + II. These results indicate that although in the brain the chronic astrocyte-targeted expression of IL-6 spontaneously induces an inflammatory response causing significant damage, during an...

  14. Recent developments for an active UF6 gas target for photon-induced fission experiments

    Directory of Open Access Journals (Sweden)

    Freudenberger M.

    2013-12-01

    Full Text Available Recent developments for an active uranium-hexafluoride-loaded gas target as well as results on the detector gas properties are presented. The gas of choice is a mixture of argon with small amounts of UF6. This contribution presents the experimental setup and focusses on the electron drift velocity with increasing UF6 content. A time-dependent decrease in electron drift velocity is observed in our setup.

  15. Recent developments for an active UF6 gas target for photon-induced fission experiments

    OpenAIRE

    Freudenberger M.; Eckardt C.; Enders J.; Göök A.; von Neumann-Cosel P.; Oberstedt A.; Oberstedt S.

    2013-01-01

    Recent developments for an active uranium-hexafluoride-loaded gas target as well as results on the detector gas properties are presented. The gas of choice is a mixture of argon with small amounts of UF6. This contribution presents the experimental setup and focusses on the electron drift velocity with increasing UF6 content. A time-dependent decrease in electron drift velocity is observed in our setup.

  16. A 6-MJ P4 target for heavy ion inertial fusion

    International Nuclear Information System (INIS)

    A new target option for energy applications of the heavy ion inertial fusion is analyzed. It has a spherical hohlraum and is irradiated by ion beams along the directions of the zeros of the fourth Legendre polynomial P4. The target performance is simulated with a one-dimensional (1-D) three-temperature hydrodynamics code and with a two-dimensional view factor code. Its efficiency is shown to depend crucially on the structure of the hohlraum wall which, simultaneously, plays a role of the X-ray converter. For the optimized pulse power profile, a 1-D energy gain of G = 78 is calculated with the input energy of Edr = 6.1 MJ in the form of 5 GeV 209Bi ions focused on the target sphere with the outer radius of R = 6.37 mm. (author)

  17. Effect of target deformation and projectile breakup in complete fusion of 6Li + 152Sm

    International Nuclear Information System (INIS)

    Nuclear reaction induced by weakly bound (stable or radioactive) nuclei is a subject of current experimental and theoretical interest. Measurements of fusion cross section involving loosely bound projectile 6Li and 9Be exist with different conclusion about the enhancement or suppression of fusion cross section. Recently we have measured the fusion cross section for 6Li + 144Sm, where it has been found that there is an enhancement of fusion cross section below the barrier in comparison with single BPM calculation, where as there is an overall suppression in fusion cross section as compared to CCFULL calculation in the entire energy range measured. With this motivation, we chose a deformed target, 152Sm, with β2 = 0.24 to compare with the results of 144Sm which is a spherical target. It will also be interesting to see effect of target deformation (enhancement) versus projectile breakup (suppression) specially at subbarrier energy

  18. Preliminary results for explosion bonding of beryllium to copper

    Energy Technology Data Exchange (ETDEWEB)

    Butler, D.J. [Northwest Technical Industries, Inc., Sequim, WA (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)

    1995-09-01

    This program was undertaken to determine if explosive bonding is a viable technique for joining beryllium to copper substrates. The effort was a cursory attempt at trying to solve some of the problems associated with explosive bonding beryllium and should not be considered a comprehensive research effort. There are two issues that this program addressed. Can beryllium be explosive bonded to copper substrates and can the bonding take place without shattering the beryllium? Thirteen different explosive bonding iterations were completed using various thicknesses of beryllium that were manufactured with three different techniques.

  19. Calculations for electron-impact excitation and ionization of beryllium

    CERN Document Server

    Zatsarinny, Oleg; Fursa, Dmitry V; Bray, Igor

    2016-01-01

    The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set o...

  20. Beryllium Abundances in Solar Mass Stars

    Science.gov (United States)

    Krugler, J. A.; Boesgaard, A. M.

    2008-08-01

    Light element abundance analysis allows for a deeper understanding of the chemical composition of a star beneath its surface. Beryllium provides a probe down to 3.5×106 K, where it fuses with protons. In this study, Be abundances were determined for 52 F and G dwarfs selected from a sample of local thin disc stars. These stars were selected by mass to range from 0.9 to 1.1 M⊙. They have effective temperatures from 5600 to 6400 K, and their metallicities [Fe/H]=-0.65 to +0.11. The data were taken with the Keck HIRES instrument and the Gecko spectrograph on the Canada France Hawaii Telescope. The abundances were calculated via spectral synthesis and were analyzed to investigate the Be abundance as a function of age, temperature, metallicity, and its relation to the lithium abundance for this narrow mass range. Be is found to decrease linearly with metallicity down to [Fe/H]˜-4.0 with slope 0.86 ± 0.02. The relation of the Be abundance to effective temperature is dependent upon metallicity, but when metallicity effects are taken into account, there is a spread ˜1.2 dex. We find a 1.5 dex spread in A(Be) when plotted against age, with the largest spread occurring from 6-8 Gyr. The relation with Li is found to be linear with slope 0.36 ± 0.06 for the temperature regime of 5900-6300 K.

  1. The integrin αvβ6: a novel target for CAR T-cell immunotherapy?

    Science.gov (United States)

    Whilding, Lynsey M; Vallath, Sabari; Maher, John

    2016-04-15

    Immunotherapy of cancer using chimeric antigen receptor (CAR) T-cells is a rapidly expanding field. CARs are fusion molecules that couple the binding of a tumour-associated cell surface target to the delivery of a tailored T-cell activating signal. Re-infusion of such genetically engineered T-cells to patients with haematological disease has demonstrated unprecedented response rates in Phase I clinical trials. However, such successes have not yet been observed using CAR T-cells against solid malignancies and this is, in part, due to a lack of safe tumour-specific targets. The αvβ6 integrin is strongly up-regulated in multiple solid tumours including those derived from colon, lung, breast, cervix, ovaries/fallopian tube, pancreas and head and neck. It is associated with poorer prognosis in several cancers and exerts pro-tumorigenic activities including promotion of tumour growth, migration and invasion. By contrast, physiologic expression of αvβ6 is largely restricted to wound healing. These attributes render this epithelial-specific integrin a highly attractive candidate for targeting using immunotherapeutic strategies such as CAR T-cell adoptive immunotherapy. This mini-review will discuss the role and expression of αvβ6 in cancer, as well as its potential as a therapeutic target. PMID:27068939

  2. Potential exposures and risks from beryllium-containing products.

    Science.gov (United States)

    Willis, Henry H; Florig, H Keith

    2002-10-01

    Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern. PMID:12442995

  3. Status of beryllium development for fusion applications

    International Nuclear Information System (INIS)

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma-facing component of first-wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold-isostatic-pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well as its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.In this current work, the range of anticipated fusion operating conditions is reviewed. The thermal, mechanical, chemical compatibility, tritium retention/release, and helium retention/swelling databases are then reviewed for fabrication methods and fusion operating conditions of interest. Properties correlations and uncertainty ranges are also discussed. In the case of the more complex phenomena of tritium retention/release and helium-induced swelling, fundamental mechanisms and models are reviewed in more detail. Areas in which additional data are needed are highlighted, along with some trends which suggest ways of optimizing the performance of beryllium for fusion applications. (orig.)

  4. First beryllium capsule implosions on the National Ignition Facility

    Science.gov (United States)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F.; Haan, S. W.; Celliers, P. M.; Clark, D. S.; Hammel, B. A.; Kozioziemski, B.; Schneider, M. B.; Marinak, M. M.; Rinderknecht, H. G.; Robey, H. F.; Salmonson, J. D.; Patel, P. K.; Ma, T.; Edwards, M. J.; Stadermann, M.; Baxamusa, S.; Alford, C.; Wang, M.; Nikroo, A.; Rice, N.; Hoover, D.; Youngblood, K. P.; Xu, H.; Huang, H.; Sio, H.

    2016-05-01

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  5. RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer.

    Science.gov (United States)

    Ahlers, Katelin E; Chakravarti, Bandana; Fisher, Rory A

    2016-05-01

    Regulator of G protein signaling (RGS) proteins are gatekeepers regulating the cellular responses induced by G protein-coupled receptor (GPCR)-mediated activation of heterotrimeric G proteins. Specifically, RGS proteins determine the magnitude and duration of GPCR signaling by acting as a GTPase-activating protein for Gα subunits, an activity facilitated by their semiconserved RGS domain. The R7 subfamily of RGS proteins is distinguished by two unique domains, DEP/DHEX and GGL, which mediate membrane targeting and stability of these proteins. RGS6, a member of the R7 subfamily, has been shown to specifically modulate Gαi/o protein activity which is critically important in the central nervous system (CNS) for neuronal responses to a wide array of neurotransmitters. As such, RGS6 has been implicated in several CNS pathologies associated with altered neurotransmission, including the following: alcoholism, anxiety/depression, and Parkinson's disease. In addition, unlike other members of the R7 subfamily, RGS6 has been shown to regulate G protein-independent signaling mechanisms which appear to promote both apoptotic and growth-suppressive pathways that are important in its tumor suppressor function in breast and possibly other tissues. Further highlighting the importance of RGS6 as a target in cancer, RGS6 mediates the chemotherapeutic actions of doxorubicin and blocks reticular activating system (Ras)-induced cellular transformation by promoting degradation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) to prevent its silencing of pro-apoptotic and tumor suppressor genes. Together, these findings demonstrate the critical role of RGS6 in regulating both G protein-dependent CNS pathology and G protein-independent cancer pathology implicating RGS6 as a novel therapeutic target. PMID:27002730

  6. Safety handling of beryllium for fusion technology R and D

    International Nuclear Information System (INIS)

    Feasibility of beryllium use as a blanket neutron multiplier, first wall and plasma facing material has been studied for the D-T burning experiment reactors such as ITER. Various experimental work of beryllium and its compounds will be performed under the conditions of high temperature and high energy particle exposure simulating fusion reactor conditions. Beryllium is known as a hazardous substance and its handling has been carefully controlled by various health and safe guidances and/or regulations in many countries. Japanese regulations for hazardous substance provide various guidelines on beryllium for the protection of industrial workers and environment. This report was prepared for the safe handling of beryllium in a laboratory scale experiments for fusion technology R and D such as blanket development. Major items in this report are; (1) Brief review of guidances and regulations in USA, UK and Japan. (2) Safe handling and administration manuals at beryllium facilities in INEL, LANL and JET. (3) Conceptual design study of beryllium handling facility for small to mid-scale blanket R and D. (4) Data on beryllium toxicity, example of clinical diagnosis of beryllium disease, and environmental occurence of beryllium. (5) Personnel protection tools of Japanese Industrial Standard for hazardous substance. (author) 61 refs

  7. Control of beryllium powder at a DOE facility

    International Nuclear Information System (INIS)

    Beryllium is contained in a number of domestic and national defense items. Although many items might contain beryllium in some manner, few people need worry about the adverse effects caused by exposure to beryllium because it is the inhalable form of beryllium that is most toxic. Chronic beryllium disease (CBD), a granulomas and fibrotic lung disease with long latency, can be developed after inhalation exposures to beryllium. It is a progressive, debilitating lung disease. Its occurrence in those exposed to beryllium has been difficult to predict because some people seem to react to low concentration exposures whereas others do not react to high concentration exposures. Onset of the disease frequently occurs between 15 to 20 years after exposure begins. Some people develop the disease after many years of low concentration exposures but others do not develop CBD even though beryllium is shown to be present in lungs and urine. Conclusions based on these experiences are that their is some immunological dependence of developing CBD in about 3--4% of the exposed population, but the exact mechanism involved has not yet been identified. Acute beryllium disease can occur after a single exposure to a concentration of greater than 0.100 mg/m3 (inhalation exposure); it is characterized by the development of chemical pneumoconiosis, a respiratory disease. The acute effect of skin contact is a dermatitis characterized by itching and reddened, elevated, or fluid-accumulated lesions which appear particularly on the exposed surfaces of the body, especially the face, neck, arms, and hands. Small particles of beryllium that enter breaks in the skin can lead to the development of granulomas and/or open sores that do not heal until the beryllium has been removed. Our interest is only airborne beryllium, which is found in areas that machine or produce beryllium

  8. Medical CT image reconstruction accuracy in the presence of metal objects using x-rays up to 1 MeV with x-ray targets of beryllium, carbon, aluminum, copper, and tungsten

    Science.gov (United States)

    Clayton, James; Ganguly, Arundhuti; Virshup, Gary

    2012-04-01

    Flat panels imagers based on amorphous silicon technology (a-Si) for digital radiography have been accepted by the medical community as having several advantages over film-based systems. Radiotherapy treatment planning systems employ computed tomographic (CT) data sets and projection images to delineate tumor targets and normal structures that are to be spared from radiation treatment. The accuracy of CT numbers is crucial for radiotherapy dose calculations. Conventional CT scanners operating at kilovoltage X-ray energies typically exhibit significant image reconstruction artifacts in the presence of metal implants in human body. Megavoltage X-ray energies have problems maintaining contrast sensitivity for the same dose as kV X-ray systems. We intend to demonstrate significant improvement in metal artifact reductions and electron density measurements using an amorphous silicon a-Si imager obtained with an X-ray source that can operate at energies up to 1 MeV. We will investigate the ability to maintain contrast sensitivity at this higher X-ray energy by using targets with lower atomic numbers and appropriate amounts of Xray filtration than are typically used as X-ray production targets and filters.

  9. Modeling of systematic retention of beryllium in rats. Extrapolation to humans

    International Nuclear Information System (INIS)

    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and other animal species. Furchner's work includes the obtained model for whole body retention in rats but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with other previously published

  10. Modeling the systemic retention of beryllium in rat. Extrapolation to human

    International Nuclear Information System (INIS)

    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and others animal species. Furchner's work includes the obtained model for whole body retention in rats, but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with others previously published. (Author) 12 refs

  11. Kdm6b and Pmepa1 as Targets of Bioelectrically and Behaviorally Induced Activin A Signaling.

    Science.gov (United States)

    Link, Andrea S; Kurinna, Svitlana; Havlicek, Steven; Lehnert, Sandra; Reichel, Martin; Kornhuber, Johannes; Winner, Beate; Huth, Tobias; Zheng, Fang; Werner, Sabine; Alzheimer, Christian

    2016-08-01

    The transforming growth factor-β (TGF-β) family member activin A exerts multiple neurotrophic and protective effects in the brain. Activin also modulates cognitive functions and affective behavior and is a presumed target of antidepressant therapy. Despite its important role in the injured and intact brain, the mechanisms underlying activin effects in the CNS are still largely unknown. Our goal was to identify the first target genes of activin signaling in the hippocampus in vivo. Electroconvulsive seizures, a rodent model of electroconvulsive therapy in humans, were applied to C57BL/6J mice to elicit a strong increase in activin A signaling. Chromatin immunoprecipitation experiments with hippocampal lysates subsequently revealed that binding of SMAD2/3, the intracellular effectors of activin signaling, was significantly enriched at the Pmepa1 gene, which encodes a negative feedback regulator of TGF-β signaling in cancer cells, and at the Kdm6b gene, which encodes an epigenetic regulator promoting transcriptional plasticity. Underlining the significance of these findings, activin treatment also induced PMEPA1 and KDM6B expression in human forebrain neurons generated from embryonic stem cells suggesting interspecies conservation of activin effects in mammalian neurons. Importantly, physiological stimuli such as provided by environmental enrichment proved already sufficient to engender a rapid and significant induction of activin signaling concomitant with an upregulation of Pmepa1 and Kdm6b expression. Taken together, our study identified the first target genes of activin signaling in the brain. With the induction of Kdm6b expression, activin is likely to gain impact on a presumed epigenetic regulator of activity-dependent neuronal plasticity. PMID:26215835

  12. Probing nuclear molecular analogue states in carbon, boron and beryllium isotopes

    CERN Document Server

    Leask, P J

    2000-01-01

    enough for definitive statements to be made about the underlying cluster structure of this nucleus. However, some limited evidence for decays to the sup 1 sup 2 Be+alpha final state was obtained. In recent years the possibility of molecular-type binding on the nuclear scale has been raised and models based on this hypothesis have met with considerable success in describing the general energy-spin systematics of the beryllium isotopes. This thesis details the planning, implementation and analysis of two experiments to investigate such structures in the nuclei sup 1 sup 0 Be, sup 1 sup 0 B, sup 1 sup 0 C and sup 1 sup 6 C. The A=10 study was performed at the Australian National University and utilised a sup 1 sup 2 C beam incident on sup 1 sup 2 C and sup 7 Li targets. For the sup 1 sup 0 B decay channel useful data was extracted which provides evidence for two previously unobserved states in this nucleus which decay strongly into the sup 6 Li(3 sup + , 2.186 MeV)+alpha channel. It is possible that the type of ...

  13. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells

    Science.gov (United States)

    Di Martile, Marta; Desideri, Marianna; De Luca, Teresa; Gabellini, Chiara; Buglioni, Simonetta; Eramo, Adriana; Sette, Giovanni; Milella, Michele; Rotili, Dante; Mai, Antonello; Carradori, Simone; Secci, Daniela; De Maria, Ruggero; Del Bufalo, Donatella; Trisciuoglio, Daniela

    2016-01-01

    Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4′-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC. PMID:26870991

  14. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells.

    Science.gov (United States)

    Di Martile, Marta; Desideri, Marianna; De Luca, Teresa; Gabellini, Chiara; Buglioni, Simonetta; Eramo, Adriana; Sette, Giovanni; Milella, Michele; Rotili, Dante; Mai, Antonello; Carradori, Simone; Secci, Daniela; De Maria, Ruggero; Del Bufalo, Donatella; Trisciuoglio, Daniela

    2016-03-01

    Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC. PMID:26870991

  15. REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis.

    Science.gov (United States)

    Kawasaki, Yoshihiro; Matsumura, Kosuke; Miyamoto, Masaya; Tsuji, Shinnosuke; Okuno, Masumi; Suda, Sakiko; Hiyoshi, Masaya; Kitayama, Joji; Akiyama, Tetsu

    2015-01-01

    The transcription factor GATA6 is a critical regulator of cell proliferation and development in the gastrointestinal tract. We have recently reported that GATA6 induces the expression of the intestinal stem cell marker LGR5 and enhances the clonogenicity and tumorigenicity of colon cancer cells, but not the growth of these cells cultured under adherent conditions. Here we show that REG4, a member of the regenerating islet-derived (REG) family, is also a target of GATA6. We further demonstrate that REG4 is downregulated by overexpression of miR-363, which suppresses GATA6 expression. Moreover, we show that GATA6-mediated activation of REG4 enhances the growth of colon cancer cells under adherent conditions and is required for their tumorigenicity. Taken together, our findings demonstrate that GATA6 simultaneously induces the expression of genes essential for the growth of colon cancer cells under adherent conditions (REG4) and genes required for their clonogenicity (LGR5), and that the miR-363-GATA6-REG4/LGR5 signaling cascade promotes the tumorigenicity of colon cancer cells. PMID:26387746

  16. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  17. Status of material development for lifetime expansion of beryllium reflector

    International Nuclear Information System (INIS)

    Beryllium has been used as the reflector element material in the reactor, specifically S-200F structural grade beryllium manufactured by Materion Brush Beryllium and Composites (former, Brush Wellman Inc.). As a part of the reactor upgrade, the Japan Atomic Energy Agency (JAEA) also has carried out the cooperation experiments to extend the operating lifetime of the beryllium reflector elements. It will first be necessary to determine which of the material's physical, mechanical and chemical properties will be the most influential on that choice. The irradiation testing plans to evaluate the various beryllium grades are also briefly considered and prepared. In this paper, material selection, irradiation test plan and PEI development for lifetime expansion of beryllium are described for material testing reactors. (author)

  18. Characterization of plasma sprayed beryllium ITER first wall mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.

    1998-01-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  19. Mechanisms of hydrogen retention in metallic beryllium and beryllium oxide and properties of ion-induced beryllium nitride; Rueckhaltemechanismen fuer Wasserstoff in metallischem Beryllium und Berylliumoxid sowie Eigenschaften von ioneninduziertem Berylliumnitrid

    Energy Technology Data Exchange (ETDEWEB)

    Oberkofler, Martin

    2011-09-22

    In the framework of this thesis laboratory experiments on atomically clean beryllium surfaces were performed. They aim at a basic understanding of the mechanisms occurring upon interaction of a fusion plasma with a beryllium first wall. The retention and the temperature dependent release of implanted deuterium ions are investigated. An atomistic description is developed through simulations and through the comparison with calculations based on density functional theory. The results of these investigations are compared to the behaviour of hydrogen upon implantation into thermally grown beryllium oxide layers. Furthermore, beryllium nitride is produced by implantation of nitrogen into metallic beryllium and its properties are investigated. The results are interpreted with regard to the use of beryllium in a fusion reactor. (orig.)

  20. Plasma cleaning of beryllium coated mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Newman, M.; Widdowson, A.; Ivanova, D.; Likonen, J.; Petersson, P.; Pintsuk, G.; Rubel, M.; Meyer, E.; Contributors, JET

    2016-02-01

    Cleaning systems of metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Currently, plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). This work presents the results of plasma cleaning of rhodium and molybdenum mirrors exposed in JET-ILW and contaminated with typical tokamak elements (including beryllium and tungsten). Using radio frequency (13.56 MHz) argon or helium plasma, the removal of mixed layers was demonstrated and mirror reflectivity improved towards initial values. The cleaning was evaluated by performing reflectivity measurements, scanning electron microscopy, x-ray photoelectron spectroscopy and ion beam analysis.

  1. Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium

    CERN Document Server

    Catanesi, M G; Apollonio, M; Arce, P; Artamonov, A; Bagulya, A; Barr, G; Blondel, A; Bobisut, F; Bogomilov, M; Bonesini, M; Booth, C; Borghi, S; Bunyatov, S; Burguet-Castell, J; Buttar, C; Campanelli, M; Cervera-Villanueva, A; Chelkov, G A; Chernyaev, E; Chimenti, P; Chizhov, M; Coney, L; De Min, A; De Santo, A; Dedovitch, D; Di Capua, E; Dore, U; Dumarchez, J; Edgecock, R; Ellis, M; Engel, R; Ferri, F; Gastaldi, Ugo; Giani, S; Giannini, G; Gibin, D; Gilardoni, S; Gome-Cadenas, J J; Gorbunov, P; Gostkin, M I; Grant, A; Graulich, J S; Grichine, V; Grossheim, A; Gruber, P; Grégoire, G; Guglielmi, A M; Guskov, A; Gössling, C; Hodgson, P; Howlett, L; Ivanchenko, V; Kato, I; Kayis-Topaksu, A; Khartchenko, D; Kirsanov, M; Kolev, D; Koreshev, V; Krasnoperov, A V; Krumshtein, Z; Martín-Albo, J; Meurer, C; Mezzetto, M; Mills, G B; Morone, M C; Nefedov, Y; Novella, P; Orestano, D; Paganoni, M; Paleari, F; Palladino, V; Panman, J; Papadopoulos, I; Pasternak, J; Pastore, F; Pattison, C; Piperov, S; Polukhina, N; Popov, B; Prior, G; Radicioni, E; Robbins, S; Santin, G; Schmitz, D; Schroeter, R; Semak, A; Serdiouk, V; Soler, F J P; Sorel, M; Temnikov, P; Tereshchenko, V V; Tonazzo, A; Tornero, A; Tortora, L; Tsenov, R; Tsukerman, I; Vannucci, F; Veenhof, R; Vidal-Sitjes, G; Wiebusch, C; Zaets, V; Zhemchugov, A; Zuber, K; Zucchelli, P

    2007-01-01

    The double-differential production cross-section of positive pions, $d^2\\sigma^{\\pi^{+}}/dpd\\Omega$, measured in the HARP experiment is presented. The incident particles are 8.9 \\GeVc protons directed onto a beryllium target with a nominal thickness of 5% of a nuclear interaction length. The measured cross-section has a direct impact on the prediction of neutrino fluxes for the MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons on target produced about 96,000 reconstructable secondary tracks which were used in this analysis. Cross-section results are presented in the kinematic range 0.75~${GeV}/c$ $\\leq p_{\\pi} \\leq$ 6.5 ${GeV}/c$ and 30 mrad $\\leq \\theta_{\\pi} \\leq$ 210 mrad in the laboratory frame.

  2. Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium

    Science.gov (United States)

    Catanesi, M. G.; HARP Collaboration; Radicioni, E.; Edgecock, R.; Ellis, M.; Robbins, S.; Soler, F. J. P.; Gößling, C.; Bunyatov, S.; Chelkov, G.; Dedovitch, D.; Gostkin, M.; Guskov, A.; Khartchenko, D.; Krasnoperov, A.; Kroumchtein, Z.; Nefedov, Y.; Popov, B.; Serdiouk, V.; Tereshchenko, V.; Zhemchugov, A.; di Capua, E.; Vidal-Sitjes, G.; Artamonov, A.; Arce, P.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Gruber, P.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Pasternak, J.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.; Blondel, A.; Borghi, S.; Campanelli, M.; Morone, M. C.; Prior, G.; Schroeter, R.; Engel, R.; Meurer, C.; Kato, I.; Gastaldi, U.; Mills, G. B.; Graulich, J. S.; Grégoire, G.; Bonesini, M.; de Min, A.; Ferri, F.; Paganoni, M.; Paleari, F.; Kirsanov, M.; Bagulya, A.; Grichine, V.; Polukhina, N.; Palladino, V.; Coney, L.; Schmitz, D.; Barr, G.; de Santo, A.; Pattison, C.; Zuber, K.; Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.; Dumarchez, J.; Vannucci, F.; Ammosov, V.; Koreshev, V.; Semak, A.; Zaets, V.; Dore, U.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Booth, C.; Buttar, C.; Hodgson, P.; Howlett, L.; Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.; Piperov, S.; Temnikov, P.; Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.; Burguet-Castell, J.; Cervera-Villanueva, A.; Gómez-Cadenas, J. J.; Martín-Albo, J.; Novella, P.; Sorel, M.; Tornero, A.

    2007-09-01

    The double-differential production cross-section of positive pions, d^2σ^{π+}/d pdΩ, measured in the HARP experiment is presented. The incident particles are 8.9 GeV/c protons directed onto a beryllium target with a thickness of 5% of a nuclear interaction length. The measured cross-section has a direct impact on the prediction of neutrino fluxes for the MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons on target produced about 96000 reconstructed secondary tracks which were used in this analysis. Cross-section results are presented in the kinematic range 0.75 GeV/c≤pπ≤ 6.5 GeV/c and 30 mrad≤θπ≤ 210 mrad in the laboratory frame.

  3. A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes.

    Science.gov (United States)

    Wang, Wesley Wei; Zeng, Yu; Wu, Bo; Deiters, Alexander; Liu, Wenshe R

    2016-07-15

    As a member of a highly conserved family of NAD(+)-dependent histone deacetylases, Sirt6 is a key regulator of mammalian genome stability, metabolism, and life span. Previous studies indicated that Sirt6 is hardwired to remove histone acetylation at H3K9 and H3K56. However, how Sirt6 recognizes its nucleosome substrates has been elusive due to the difficulty of accessing homogeneous acetyl-nucleosomes and the low activity of Sirt6 toward peptide substrates. Based on the fact that Sirt6 has an enhanced activity to remove long chain fatty acylation from lysine, we developed an approach to recombinantly synthesize histone H3 with a fatty acylated lysine, N(ε)-(7-octenoyl)-lysine (OcK), installed at a number of lysine sites and used these acyl-H3 proteins to assemble acyl-nucleosomes as active Sirt6 substrates. A chemical biology approach that visualizes OcK in nucleosomes and therefore allows direct sensitization of Sirt6 activities on its acyl-nucleosome substrates was also formulated. By combining these two approaches, we showed that Sirt6 actively removes acylation from H3K9, H3K18, and H3K27; has relatively low activities toward H3K4 and K3K23; but sluggishly removes acylation at H3K14, H3K36, H3K56, and H3K79. Overexpressing Sirt6 in 293T cells led to downregulated acetylation at H3K18 and K3K27, confirming these two novel Sirt6-targeted nucleosome lysine sites in cells. Given that downregulation of H3K18 acetylation is correlated with a poor prognosis of several cancer types and H3K27 acetylation antagonizes repressive gene regulation by di- and trimethylation at H3K27, our current study implies that Sirt6 may serve as a target for cancer intervention and regulatory pathway investigation in cells. PMID:27152839

  4. Spectrophotometric determination of beryllium in bronzes with chrome azurol S

    International Nuclear Information System (INIS)

    Some remarks on the spectrophotometric determination of beryllium in bronzes using Chrome Azurol S (CAS) are given. The determination was performed at pH=6.5 and 10.0 using hexamethylene-tetramine and ammoniacal buffers, respectively. It was demonstrated that the determination of Be with CAS at pH=10.0 is slightly less sensitive, but it has two advantages which are important in obtaining reliable results. First, is the shorter time to reach the equilibrium between Be and CAS, and second, is lower pH sensitivity so that a better precision of the results at pH=10.0 overcompensate the slightly lower sensitivity at this pH in comparison with that at pH=6.5. (Author)

  5. Computer simulation of electronic excitations in beryllium

    CERN Document Server

    Popov, A V

    2016-01-01

    An effective method for the quantitative description of the electronic excited states of polyatomic systems is developed by using computer technology. The proposed method allows calculating various properties of matter at the atomic level within the uniform scheme. A special attention is paid to the description of beryllium atoms interactions with the external fields, comparable by power to the fields in atoms, molecules and clusters.

  6. Dynamic behaviour of S200F beryllium

    International Nuclear Information System (INIS)

    Compression tests have been made on a large scale of strain, strain rate (up to 2000 s-1) and temperature (between 20 C and 300 C). From these experiences, we have calculated a constitutive model for beryllium S200F, which can be used by computer codes. Its formulation is not far from Steinberg, Cochran and Guinan's. But in our case, the influences of temperature and strain rate appear clearly within the expression. To validate our equation, we have used it in a computer code. Its extrapolation for higher strain rates is in good agreement with experiments such as Taylor impact tests or plate impact tests (strain rates greater than 104 s-1). With micrography, we could settle a link between the main strain mode within the material, and the variation of one parameter of the model. Beside the constitutive model, we have shown that shock loaded beryllium behaves in two different ways. If the strain rate is lower than 5.106 s-1, then it is proportional to the squared shock pressure. Beyond, it is a linear function of shock pressure to the power of four. By a spall study on beryllium, we have confirmed that it is excessively fragile. Its fracture is sudden, at a strength near 1 GPa. (author)

  7. Permeation behavior of deuterium implanted into beryllium

    International Nuclear Information System (INIS)

    Study on Implantation Driven Permeation (IDP) behavior of deuterium through pure beryllium was investigated as a part of the research to predict the tritium permeation through the first wall components ITER (International Thermonuclear Experimental Reactor). The permeation experiments were carried out with two beryllium specimens, one was an unannealed specimen and the other was that annealed at 1173 K. The permeation flux was measured as a function of specimen temperature and incident ion flux. Surface analysis of specimen was also carried out after the permeation experiment. Permeation was observed only with the annealed specimen and no significant permeation was observed with unannealed specimen under the present experimental condition (maximum temperature: 685 K, detection limit: 1x1013 D atoms/m2s). It could be attributed that the intrinsic lattice defects, which act as diffusion preventing site, decreased with the specimen annealing. Based on the result of steady and transient permeation behavior and surface analysis, it was estimated that the deuterium permeation implanted into annealed beryllium was controlled by surface recombination due to the oxide layer on the surface of the permeated side. (author)

  8. Interaction of nitrogen ions with beryllium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dobes, Katharina [Institute of Applied Physics, TU Wien, Association EURATOM ÖAW, Vienna (Austria); Köppen, Martin [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Oberkofler, Martin [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching (Germany); Lungu, Cristian P.; Porosnicu, Corneliu [National Institute for Laser, Plasma, and Radiation Physics, Bucharest (Romania); Höschen, Till; Meisl, Gerd [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching (Germany); Linsmeier, Christian [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Aumayr, Friedrich, E-mail: aumayr@iap.tuwien.ac.at [Institute of Applied Physics, TU Wien, Association EURATOM ÖAW, Vienna (Austria)

    2014-12-01

    The interaction of energetic nitrogen projectiles with a beryllium surface is studied using a highly sensitive quartz crystal microbalance technique. The overall mass change rate of the beryllium sample under N{sub 2}{sup +} ion impact at an ion energy of 5000 eV (i.e. 2500 eV per N) is investigated in situ and in real-time. A strong dependency of the observed mass change rate on the nitrogen fluence (at constant flux) is found and can be attributed to the formation of a nitrogen-containing mixed material layer within the ion penetration depth. The presented data elucidate the dynamics of the interaction process and the surface saturation with increasing nitrogen fluence in a unique way. Basically, distinct interaction regimes can be discriminated, which can be linked to the evolution of the surface composition upon nitrogen impact. Steady state surface conditions are obtained at a total cumulative nitrogen fluence of ∼80 × 10{sup 16} N atoms per cm{sup 2}. In dynamic equilibrium, the interaction is marked by continuous surface erosion. In this case, the observed total sputtering yield becomes independent from the applied nitrogen fluence and is of the order of 0.4 beryllium atoms per impinging nitrogen atom.

  9. Behavior of beryllium pebbles under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dalle-Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik; Baldwin, D.L.; Gelles, D.S.; Greenwood, L.R.; Kawamura, H.; Oliver, B.M.

    1998-01-01

    Beryllium pebbles are being considered in fusion reactor blanket designs as neutron multiplier. An example is the European `Helium Cooled Pebble Bed Blanket.` Several forms of beryllium pebbles are commercially available but little is known about these forms in response to fast neutron irradiation. Commercially available beryllium pebbles have been irradiated to approximately 1.3 x 10{sup 22} n/cm{sup 2} (E>1 MeV) at 390degC. Pebbles 1-mm in diameter manufactured by Brush Wellman, USA and by Nippon Gaishi Company, Japan, and 3-mm pebbles manufactured by Brush Wellman were included. All were irradiated in the below-core area of the Experimental Breeder Reactor-II in Idaho Falls, USA, in molybdenum alloy capsules containing helium. Post-irradiation results are presented on density change measurements, tritium release by assay, stepped-temperature anneal, and thermal ramp desorption tests, and helium release by assay and stepped-temperature anneal measurements, for Be pebbles from two manufacturing methods, and with two specimen diameters. The experimental results on density change and tritium and helium release are compared with the predictions of the code ANFIBE. (author)

  10. Irradiation effects on aluminium and beryllium

    International Nuclear Information System (INIS)

    The High Flux Reactor (HFR) in Petten (The Netherlands) is a 45 MW light water cooled and moderated research reactor. The vessel was replaced in 1984 after more than 20 years of operation because doubts had arisen over the condition of the aluminium alloy construction material. Data on the mechanical properties of the aluminium alloy Al 5154 with and without neutron irradiation are necessary for the safety analysis of the new HFR vessel which is constructed from the same material as the old vessel. Fatigue, fracture mechanics (crack growth and fracture toughness) and tensile properties have been obtained from several experimental testing programmes with materials of the new and the old HFR vessel. 1) Low-cycle fatigue testing has been carried out on non-irradiated specimens from stock material of the new HFR vessel. The number of cycles to failure ranges from 90 to more than 50,000 for applied strain from 3.0% to 0.4%; 2) Fatigue crack growth rate testing has been conducted: - with unirradiated specimens from stock material of the new vessel; - with irradiated specimens from the remnants of the old core box. Irradiation has a minor effect on the sub-critical fatigue crack growth rate. The ultimate increase of the mean crack growth rate amounts to a factor of 2. However crack extension is strongly reduced due to the smaller crack length for crack growth instability (reduction of KIC). - Irradiated material from the core box walls of the old vessel has been used for fracture toughness testing. The conditional fracture toughness values KIQ ranges from 30.3 down to 16.5 MPa√m. The lowermost meaningful 'KIC' is 17.7 MPa√m corresponding to the thermal fluence of 7.5 1026 n/m2 for the End of Life (EOL) of the old vessel. - Testing carried out on irradiated material from the remnants of the old HFR core box shows an ultimate neutron irradiation hardening of 35 points increase of HSR15N and an ultimate tensile yield stress of 589 MPa corresponding to the ductility of 1.6

  11. Beryllium metal solubility in the lung, comparison of metal and hot pressed forms by in vivo and in vitro dissolution bioassays

    International Nuclear Information System (INIS)

    The solubility of two industrial forms of beryllium, i.e. particles of metal powder and particles of hot-pressed beryllium, was investigated using in vivo and in vitro models. In the in vivo model, baboons and rats were used and were injected via the trachea with amounts of beryllium equivalent to 100,500 and 1000 fold the maximum permissible concentration (MPC). In vivo experiments showed that in both species the daily beryllium solubility rates were about 5 x 10-6 for metal particles and that in rats the daily beryllium solubility rate was about 5 x 10-5 for the hot-pressed particles. With regard to results for the in vitro models, the outcome of the acellular dissolution test using a serum simulant was not consistent with the in vivo results, though a cellular model using cultured macrophages showed the same trends in the dissolution rates for the two forms of beryllium as those observed in vivo. This result suggests that a cellular rather than an acellular dissolution model would be better at predicting solubility of beryllium compounds in the lungs. (author)

  12. Poisoning of reactor Maria beryllium blocks in the period 1993-2000

    International Nuclear Information System (INIS)

    The present work is a continuation of the REBUS-3 calculations of the poisoning of beryllium matrix of the Maria reactor by Li-6, and He-3 for the period 1974-1985. In the present work the decrease in H-3 density and the resulting increase of He-3 density have been determined during the July 1985 - June 1993 break in operation and then the following on-power and off-power period were simulated. The same geometrical model of calculation has been applied as for the first period, i.e. two-dimensional distribution of the parasitic isotopes, average for each beryllium block, has been obtained using REBUS-3 code with its microscopic library determined using WIMS-ANL code. Due to availability of the detailed operational records from the period considered, the exact operation and shutdown times could be applied together with detailed follow-up of actual reloading of fuel assemblies. In addition all the beryllium block movements have been followed. The boron control rods have been simulated by homogeneous admixture of control rod material the control rod containing beryllium blocks. (author)

  13. Spectrophotometric determination of beryllium with sulfochlorophenol S in organo-aqueous acetic-acid media

    International Nuclear Information System (INIS)

    The possibility has been shown of photometric determination of beryllium with sulphochlorophenol S using an acetic acid-propanol mixture (1:1), containing 0.5-1.5 vol% of water, as the reaction medium. Under such conditions, the reaction between beryllium and sulphochlorophenol S is sensitive and selective with respect to some easily hydrolized elements (Sn, Bi, Sb, Hg) as well as to Ga, In, Tl, Zn in the presence of HCl. The following excess amounts do not interfere with the determination of 0.45 μg Be: Hg-1.2x104, Sb-6.2x103, In-2.5x103, Tl-2.0x103, Zn-1.4x103, Ga-1.2x103. The reaction between beryllium and sulphochlorophenol S is selective with respect to a number of complexing agents. Beryllium can be determined in the presence of 150000-200000 times its weight amounts of tartaric, citric and boric acids, 5000-sulphosalycilic acid, 6000-oxalic acid, 6000-dimethyl glyoxime, 150-8-hydroxyquinoline

  14. R and D on full tungsten divertor and beryllium wall for JET ITER-like wall project

    International Nuclear Information System (INIS)

    The ITER reference materials have been tested separately in tokamaks, plasma simulators, ion beams and high heat flux test beds. In order to perform a fully integrated material test JET has launched the ITER-like Wall Project with the aim of installing a full metal wall during the next major shutdown. As a result of R and D projects in 2005-2006, bulk tungsten tiles are foreseen at the outer horizontal target and tungsten coating at the other divertor tiles. In some regions of the main chamber, beryllium coated Inconel tiles and bulk beryllium tiles are utilised which include marker tiles as erosion diagnostics. This paper gives an overview of the R and D carried out in the frame of the ITER-like Wall Project on the development of an inertially cooled bulk tungsten tile design and the characterization of tungsten and beryllium coating technologies

  15. Quantitative method of determining beryllium or a compound thereof in a sample

    Science.gov (United States)

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2010-08-24

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  16. Neutron-induced background by an {alpha}-beam incident on a deuterium gas target and its implications for the study of the {sup 2}H({alpha},{gamma}){sup 6}Li reaction at LUNA

    Energy Technology Data Exchange (ETDEWEB)

    Anders, M.; Bemmerer, D.; Elekes, Z.; Marta, M. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Trezzi, D.; Mazzocchi, C. [INFN, Sezione di Milano, Milano (Italy); Bellini, A.; Costantini, H.; Corvisiero, P.; Lemut, A.; Prati, P. [Universita di Genova (Italy); INFN, Sezione di Genova, Dipartimento di Fisica, Genova (Italy); Aliotta, M.; Davinson, T.; Scott, D. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Broggini, C.; Caciolli, A.; Erhard, M.; Menegazzo, R.; Rossi Alvarez, C. [INFN, Sezione di Padova, Padova (Italy); Formicola, A.; Junker, M. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy); Fueloep, Zs.; Gyuerky, G.; Somorjai, E.; Szuecs, T. [Institute of Nuclear Research (ATOMKI), Debrecen (Hungary); Gervino, G. [Universita di Torino (Italy); INFN, Dipartimento di Fisica Sperimentale, Torino (Italy); Guglielmetti, A. [INFN, Sezione di Milano, Milano (Italy); Universita degli Studi di Milano, Milano (Italy); Gustavino, C. [INFN, Sezione di Roma ' ' La Sapienza' ' , Roma (Italy); Straniero, O. [INFN, Sezione di Napoli, Napoli (Italy); Osservatorio Astronomico di Collurania, Teramo (Italy); Collaboration: LUNA Collaboration

    2013-02-15

    The production of the stable isotope {sup 6}Li in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological {sup 6}Li plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of {sup 7}Li abundances and would point to a predominantly primordial origin of {sup 6}Li, contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang {sup 6}Li production must be revisited. The main production channel for {sup 6}Li in the Big Bang is the {sup 2}H({alpha},{gamma}){sup 6}Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an {alpha}-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the {sup 2}H(d,n){sup 3}He reaction. Due to the ultra-low laboratory neutron background at LUNA, the effect of this weak flux of 2-3 MeV neutrons on well-shielded high-purity germanium detectors has been studied in detail. Data have been taken at 280 and 400keV {alpha}-beam energy and for comparison also using an americium-beryllium neutron source. (orig.)

  17. Comparing MODIS C6 'Deep Blue' and 'Dark Target' Aerosol Data

    Science.gov (United States)

    Hsu, N. C.; Sayer, A. M.; Bettenhausen, C.; Lee, J.; Levy, R. C.; Mattoo, S.; Munchak, L. A.; Kleidman, R.

    2014-01-01

    The MODIS Collection 6 Atmospheres product suite includes refined versions of both 'Deep Blue' (DB) and 'Dark Target' (DT) aerosol algorithms, with the DB dataset now expanded to include coverage over vegetated land surfaces. This means that, over much of the global land surface, users will have both DB and DT data to choose from. A 'merged' dataset is also provided, primarily for visualization purposes, which takes retrievals from either or both algorithms based on regional and seasonal climatologies of normalized difference vegetation index (NDVI). This poster present some comparisons of these two C6 aerosol algorithms, focusing on AOD at 550 nm derived from MODIS Aqua measurements, with each other and with Aerosol Robotic Network (AERONET) data, with the intent to facilitate user decisions about the suitability of the two datasets for their desired applications.

  18. Experiments on studying beryllium - steam interaction, determination of oxidated beryllium emissivity factor

    International Nuclear Information System (INIS)

    The report presents results of beryllium emissivity factor measurements within 700-1300 K temperature range. The tests were conducted at Institute of Atomic Energy of the National Nuclear Center of the Republic of Kazakhstan to receive experimental data for verification of calculation programs describing an accident involving water coolant discharge into ITER reactor vacuum cavity. (author)

  19. The research of a method for determination of total carbon, combination carbon and free carbon in beryllium metal

    International Nuclear Information System (INIS)

    A method for determination of total carbon, combination carbon and free carbon in beryllium metal with LECO CS-344 carbon/sulphur determinant has been studied. Tungsten-copper mixed pellets are used as flux to the determination of total carbon. Ratio of weight of the flux to the sample is greater than 20:1. Good analytical results are got. By this method the relative standard deviation is <10% when the content of total carbon in the range of 0.050%∼0.080% in beryllium. A standard steel sample of carbon is added into beryllium, the recoveries are 94%∼106%. For determination of free carbon, the sample are decomposed with 3 mol/L HCl, filtered and followed determination. By this method the relative standard deviation is ≤10% when the content of free carbon in the range of 0.006%∼0.020% in beryllium. the balance of total carbon and free carbon is equal to combination carbon. The method is used to determine the sample of content of total carbon in the range of 0.050%∼1.00%, free carbon in the range of 0.006%∼0.500% in metal beryllium. (6 refs., 1 fig., 13 tabs.)

  20. Ionization energies of beryllium in strong magnetic fields

    Institute of Scientific and Technical Information of China (English)

    GUANXiao-xu; ZHANGYue-xia

    2004-01-01

    We have develop an effective frozen core approximation to calculate energy levels and ionization enegies of the beryllium atom in magnetic field strengths up to 2.35 × 105T. Systematic improvement over the Hartree-Fock results for the beryllium low-lying states has been accomplished.

  1. 10 CFR 850.20 - Baseline beryllium inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy... Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of the... inventory, the responsible employer must: (1) Review current and historical records; (2) Interview...

  2. Joining of beryllium by braze welding technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.

    1998-01-01

    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  3. The use of a beryllium Hopkinson bar to characterize in-axis and cross-axis accelerometer response in shock environments

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, V.I.; Brown, F.A.

    1997-05-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A beryllium Hopkinson bar capability has been developed to extend the understanding of the piezoresistive accelerometer, in two mechanical configurations and with and without mechanical isolation, in the high frequency, high shock environments where measurements are being made. In this paper, recent measurements with beryllium single and split-Hopkinson bar configurations are described. The in axis performance of the piezoresistive accelerometer in mechanical isolation for frequencies of dc-30 kHz and shock magnitudes of up to 6,000 g as determined from measurements with a beryllium Hopkinson bar with a certified laser doppler vibrometer as the reference measurement are presented. Results of characterizations of the accelerometers subjected to cross axis shocks in a split beryllium Hopkinson bar configuration are also presented.

  4. Preparation and characterization of beryllium doped organic plasma polymer coatings

    International Nuclear Information System (INIS)

    We report the formation of beryllium doped plasma polymerized coatings derived from a helical resonator deposition apparatus, using diethylberyllium as the organometaric source. These coatings had an appearance not unlike plain plasma polymer and were relatively stable to ambient exposure. The coatings were characterized by Inductively Coupled Plasma Mass Spectrometry and X-Ray Photoelectron Spectroscopy. Coating rates approaching 0.7 μm hr-1 were obtained with a beryllium-to-carbon ratio of 1:1.3. There is also a significant oxygen presence in the coating as well which is attributed to oxidation upon exposure of the coating to air. The XPS data show only one peak for beryllium with the preponderance of the XPS data suggesting that the beryllium exists as BeO. Diethylberyllium was found to be inadequate as a source for beryllium doped plasma polymer, due to thermal decomposition and low vapor recovery rates

  5. Protection of air in premises and environment against beryllium aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bitkolov, N.Z.; Vishnevsky, E.P.; Krupkin, A.V. [Research Inst. of Industrial and Marine Medicine, St. Petersburg (Russian Federation)

    1998-01-01

    First and foremost, the danger of beryllium aerosols concerns a possibility of their inhalation. The situation is aggravated with high biological activity of the beryllium in a human lung. The small allowable beryllium aerosols` concentration in air poses a rather complex and expensive problem of the pollution prevention and clearing up of air. The delivery and transportation of beryllium aerosols from sites of their formation are defined by the circuit of ventilation, that forms aerodynamics of air flows in premises, and aerodynamic links between premises. The causes of aerosols release in air of premises from hoods, isolated and hermetically sealed vessels can be vibrations, as well as pulses of temperature and pressure. Furthermore, it is possible the redispersion of aerosols from dirty surfaces. The effective protection of air against beryllium aerosols at industrial plants is provided by a complex of hygienic measures: from individual means of breath protection up to collective means of the prevention of air pollution. (J.P.N.)

  6. Polarizabilities of the beryllium clock transition

    International Nuclear Information System (INIS)

    The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s21Se ground state (37.73a03) and the 2s2p 3P0o metastable state (39.04a03) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s21Se-2s2p 3P0o clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.

  7. The differential elastic scattering of 14.7 MeV neutron from beryllium

    International Nuclear Information System (INIS)

    A fast neutron associated particle time-of-flight (TOF) spectrometer was used for measuring neutron differential cross sections on beryllium nuclei in this experiment. The total error of the differential cross section is from 7.5% to 11.5% including the statistical error 0.5∼3.5 and the efficiency calibration error 6∼7%. (2 tabs., 1 fig)

  8. Assessment of beryllium Faraday screens of the JET ICRF antennas

    International Nuclear Information System (INIS)

    The JET ICRF antennas, equipped with beryllium (Be) Faraday screens (FS), can be operated in such a way that the RF specific effects on the plasma boundary, by the impurity influx originating at the screens, are reduced to a negligible level. In dipole phasing, k parallel = 7 m-1, the influx is for all purposes negligible. In monopole phasing (kparallel = 0 m-1) the beryllium influx does not exceed ΦFSBe = 1 x 1019 atoms·MW-1·s-1 and the corresponding δZeff/PRF is -1. The observed dependences of ΦFSBe (in monopole phasing) on plasma density, antenna voltage, antenna phasing, and the angle between FS elements and the magnetic field in the boundary, B-vector(a) = B-vectorθ(a) + B-vectorT(a), confirm that the release mechanism is sputtering by ions accelerated in the RF enhanced Bohm-Debye sheaths forming at the front face of the FS. When the angle between FS and B-vector(a) is approx. 22 deg. C, the fraction of the RF power radiated by the antenna, dissipated at the screen, can reach 40%. At high antenna voltage, arcing across the FS can occur. With dipole phasing the heating efficiency is not degraded, even with the large angle, and all the power coupled by the antenna is absorbed at the resonance position near the plasma centre. The open screen design did not introduce any disadvantages. The experience from JET operation at powers of up to 22 MW shows that, if the necessary conditions are met, i.e. if RF rectification is minimized, antennas are phased as dipoles and material with low sputtering coefficients at energies of 0.5-1 keV is used, then the influx from the FS is, for all practical purposes, eliminated. (author). 19 refs, 6 figs

  9. Status of beryllium study for fusion in RF

    International Nuclear Information System (INIS)

    The main directions of research activities in the field of beryllium application science and technology carried out in Russia during 2001-2003 have been reviewed. The main results of these investigations have been highlighted. First wall and port-limier. The investigation on the actively cooled components with beryllium cladding is under progress objecting on the clarification of their ultimate thermo cycling capabilities. The study of behavior of bulk beryllium and the boundary region of the contact with the cooling structure under the intensive thermo cycling loading and neutron irradiation have been the object of consideration in particular. The works on the optimization and modification of industrial fabrication processes for commercial scaled production of beryllium tile were also under way. The influence of neutron irradiation. The new experimental data on the nuclear properties of several Russian beryllium grades has been obtained. The samples have been subjected to the high neutron dozes. The influence of low temperature (70-200degree C) neutron irradiation on the thermal conductivity has been examined in particular. The interrelations of the helium inventory and temperature of neutron irradiation with tritium release out of irradiated beryllium samples have been analyzed. The beryllium associated safety questions. The experiments on the modeling of normal working conditions and conditions imitating the plasma disruption events in ITER performance scenario have been continued. The new experimental information on the coefficient of pulverization of beryllium and the accumulation of deuterium in beryllium under the action of proton beam has been collected. The dependence of the reaction rate constant for the beryllium oxidation by the water vapor for different conditions has been analyzed. The compact, porous and powder beryllium samples have been tested at the wide range of temperature, pressure and duration of reaction with water vapor. The calculating

  10. Assessment of the feasibility and advantages of beryllium recycling

    International Nuclear Information System (INIS)

    This paper proposes a generic route for the recycling of beryllium from fusion reactors, based on critical issues associated with beryllium pebbles after their service life in the HCPB breeding blanket. These critical issues are the high tritium inventory, the presence of long-lived radionuclides (among which transuranics due to traces of uranium in the base metal), and the chemical toxicity of beryllium. On the basis of the chemical and radiochemical characteristics of the neutron irradiated beryllium pebbles, we describe a possible recycling route. The first step is the detritiation of the material. This can be achieved by heating the pebbles to 800 oC under an argon flow. The argon gas avoids oxidation of the beryllium, and at the proposed temperature the tritium inventory is readily released from the pebbles. In a second step, the released tritium can be oxidised on a copper oxide bed to produce tritiated water, which is consistent with the current international strategy to convert all kinds of tritiated waste into tritiated water, which can subsequently be treated in a water detritiation plant. Removal of radionuclides from the beryllium pebbles may be achieved by several types of chloride processes. The first step is to pass chlorine gas (in an argon flow) over the pebbles, thus yielding volatile BeCl2. This beryllium chloride can then be purified by fractional distillation. As a small fraction of the beryllium chloride contains the long-lived 10Be isotope, 10BeCl2 has to be separated from 9BeCl2, which could be achieved by centrifugal techniques. The product can then be reduced to obtain high-purity metallic beryllium. Two candidate reduction methods were identified: fused salt electrolysis and thermal decomposition. Both these methods require laboratory parametric studies to maximise the yield and achieve a high purity metal, before either process can be upgraded to a larger scale. The eventual product of the chloride reduction process must be a high purity

  11. Physical properties of beryllium oxide - Irradiation effects

    International Nuclear Information System (INIS)

    This work has been carried out in view of determining several physical properties of hot-pressed beryllium oxide under various conditions and the change of these properties after irradiation. Special attention has been paid on to the measurement of the thermal conductivity coefficient and thermal diffusivity coefficient. Several designs for the measurement of the thermal conductivity coefficient have been achieved. They permit its determination between 50 and 300 deg. C, between 400 and 800 deg. C. Some measurements have been made above 1000 deg. C. In order to measure the thermal diffusivity coefficient, we heat a perfectly flat surface of a sample in such a way that the heat flux is modulated (amplitude and frequency being adjustable). The thermal diffusivity coefficient is deduced from the variations of temperature observed on several spots. Tensile strength; compressive strength; expansion coefficient; sound velocity and crystal parameters have been also measured. Some of the measurements have been carried out after neutron irradiation. Some data have been obtained on the change of the properties of beryllium oxide depending on the integrated neutron flux. (author)

  12. Beryllium containing plasma interactions with ITER materials

    International Nuclear Information System (INIS)

    A beryllium-seeded deuterium plasma is used in PISCES-B to investigate mixed-material erosion and redeposition properties of ITER relevant divertor materials. The beryllium containing plasma simulates the erosion of first wall material into the ITER sol plasma and its subsequent flow toward the carbon divertor plates. The experiments are designed to quantify the behavior of plasma created mixed Be/C and Be/W surfaces. Developing an understanding of the mixed material surface behavior is crucial to accurately predicting the tritium accumulation rate within the ITER vacuum vessel. The temporal evolution of the plasma interactions with the various mixed surfaces are examined to better understand the fundamental mechanisms in play at the surface and to allow scaling of these results to the conditions expected in the ITER divertor. A new periodic heat pulse deposition system is also installed on PISCES-B to simulate the transient temperature excursions of surfaces expected to occur in the ITER divertor during ELMs and other off-normal events. These periodically applied heat pulses allow us to study the effects of transient power loading on the formation, stability and tritium content of mixed-material surfaces that are created during the experiments. (author)

  13. Potential therapeutic implications of IL-6/IL-6R/gp130-targeting agents in breast cancer

    Science.gov (United States)

    Heo, Tae-Hwe; Wahler, Joseph; Suh, Nanjoo

    2016-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine with known multiple functions in immune regulation, inflammation, and oncogenesis. Binding of IL-6 to the IL-6 receptor (IL-6R) induces homodimerization and recruitment of glycoprotein 130 (gp130), which leads to activation of downstream signaling. Emerging evidence suggests that high levels of IL-6 are correlated with poor prognosis in breast cancer patients. IL-6 appears to play a critical role in the growth and metastasis of breast cancer cells, renewal of breast cancer stem cells (BCSCs), and drug resistance of BCSCs, making anti–IL-6/IL-6R/gp130 therapies promising options for the treatment and prevention of breast cancers. However, preclinical and clinical studies of the applications of anti–IL-6/IL-6R/gp130 therapy in breast cancers are limited. In this review, we summarize the structures, preclinical and clinical studies, mechanisms of action of chemical and biological blockers that directly bind to IL-6, IL-6R, or gp130, and the potential clinical applications of these pharmacological agents as breast cancer therapies. PMID:26840088

  14. Low-Density Lipoprotein Receptor-Related Protein 6 (LRP6 Is a Novel Nutritional Therapeutic Target for Hyperlipidemia, Non-Alcoholic Fatty Liver Disease, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Gwang-woong Go

    2015-06-01

    Full Text Available Low-density lipoprotein receptor-related protein 6 (LRP6 is a member of the low-density lipoprotein receptor family and has a unique structure, which facilitates its multiple functions as a co-receptor for Wnt/β-catenin signaling and as a ligand receptor for endocytosis. The role LRP6 plays in metabolic regulation, specifically in the nutrient-sensing pathway, has recently garnered considerable interest. Patients carrying an LRP6 mutation exhibit elevated levels of LDL cholesterol, triglycerides, and fasting glucose, which cooperatively constitute the risk factors of metabolic syndrome and atherosclerosis. Since the discovery of this mutation, the general role of LRP6 in lipid homeostasis, glucose metabolism, and atherosclerosis has been thoroughly researched. These studies have demonstrated that LRP6 plays a role in LDL receptor-mediated LDL uptake. In addition, when the LRP6 mutant impaired Wnt-LRP6 signaling, hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis developed. LRP6 regulates lipid homeostasis and body fat mass via the nutrient-sensing mechanistic target of the rapamycin (mTOR pathway. Furthermore, the mutant LRP6 triggers atherosclerosis by activating platelet-derived growth factor (PDGF-dependent vascular smooth muscle cell differentiation. This review highlights the exceptional opportunities to study the pathophysiologic contributions of LRP6 to metabolic syndrome and cardiovascular diseases, which implicate LRP6 as a latent regulator of lipid metabolism and a novel therapeutic target for nutritional intervention.

  15. Target and Beam-Target Spin Asymmetries in Exclusive $\\pi^+$ and $\\pi^-$ Electroproduction with 1.6 to 5.7 GeV Electrons

    CERN Document Server

    Bosted, P E; Careccia, S; Dodge, G; Fersch, R; Kuhn, S E; Pierce, J; Prok, Y; Zheng, X; Adhikari, K P; Adikaram, D; Akbar, Z; Amaryan, M J; Pereira, S Anefalos; Asryan, G; Avakian, H; Badui, R A; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Boiarinov, S; Briscoe, W J; Bültmann, S; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Chetry, T; Ciullo, G; Clark, L; Colaneri, L; Cole, P L; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; Deur, A; Djalali, C; Dupre, R; Egiyan, H; Alaoui, A El; Fassi, L El; Eugenio, P; Fanchini, E; Fedotov, G; Filippi, A; Fleming, J A; Forest, T A; Fradi, A; Garçon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Gleason, C; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guo, L; Hafidi, K; Hanretty, C; Harrison, N; Hattawy, M; Heddle, D; Hicks, K; Holtrop, M; Hughes, S M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jenkins, D; Jiang, H; Jo, H S; Joo, K; Joosten, S; Keller, D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Kubarovsky, V; Kuleshov, S V; Lanza, L; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; McCracken, M E; McKinnon, B; Meyer, C A; Minehart, R; Mirazita, M; Mokeev, V; Movsisyan, A; Munevar, E; Camacho, C Munoz; Nadel-Turonski, P; Net, L A; Ni, A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paremuzyan, R; Park, K; Pasyuk, E; Peng, P; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Protopopescu, D; Puckett, A J R; Raue, B A; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schumacher, R A; Seder, E; Sharabian, Y G; Simonyan, A; Skorodumina, Iu; Smith, G D; Sparveris, N; Stankovic, Ivana; Stepanyan, S; Strakovsky, I I; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Torayev, B; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Weinstein, L B; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I

    2016-01-01

    Beam-target double spin asymmetries and target single-spin asymmetries in exclusive $\\pi^+$ and $\\pi^-$ electroproduction were obtained from scattering of 1.6 to 5.7 GeV longitudinally polarized electrons from longitudinally polarized protons (for $\\pi^+$) and deuterons (for $\\pi^-$) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is $1.11.5$ GeV. Very large target-spin asymmetries are observed for $W>1.6$ GeV. When combined with cross section measurements, the present results will provide powerful constraints on nucleon resonance amplitudes at moderate and large values of $Q^2$, for resonances with masses as high as 2.3 GeV.

  16. Fluorimetric method for determination of Beryllium; Determinazione fluorimetrica del berillio

    Energy Technology Data Exchange (ETDEWEB)

    Sparacino, N.; Sabbioneda, S. [ENEA, Centro Ricerche Saluggia, Vercelli (Italy). Dip. Energia

    1996-10-01

    The old fluorimetric method for the determination of Beryllium, based essentially on the fluorescence of the Beryllium-Morine complex in a strongly alkaline solution, is still competitive and stands the comparison with more modern methods or at least three reasons: in the presence of solid or gaseous samples (powders), the times necessary to finalize an analytic determination are comparable since the stage of the process which lasts the longest is the mineralization of the solid particles containing Beryllium, the cost of a good fluorimeter is by far Inferior to the cost, e. g., of an Emission Spectrophotometer provided with ICP torch and magnets for exploiting the Zeeman effect and of an Atomic absorption Spectrophotometer provided with Graphite furnace; it is possible to determine, fluorimetrically, rather small Beryllium levels (about 30 ng of Beryllium/sample), this potentiality is more than sufficient to guarantee the respect of all the work safety and hygiene rules now in force. The study which is the subject of this publication is designed to the analysis procedure which allows one to reach good results in the determination of Beryllium, chiefly through the control and measurement of the interference effect due to the presence of some metals which might accompany the environmental samples of workshops and laboratories where Beryllium is handled, either at the pure state or in its alloys. The results obtained satisfactorily point out the merits and limits of this analytic procedure.

  17. Trace-level beryllium analysis in the laboratory and in the field: State of the art, challenges, and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    BRISSON, MICHAEL

    2006-03-30

    Control of workplace exposure to beryllium is a growing issue in the United States and other nations. As the health risks associated with low-level exposure to beryllium are better understood, the need increases for improved analytical techniques both in the laboratory and in the field. These techniques also require a greater degree of standardization to permit reliable comparison of data obtained from different locations and at different times. Analysis of low-level beryllium samples, in the form of air filters or surface wipes, is frequently required for workplace monitoring or to provide data to support decision-making on implementation of exposure controls. In the United States and the United Kingdom, the current permissible exposure level is 2 {micro}g/m{sup 3} (air), and the United States Department of Energy has implemented an action level of 0.2 {micro}g/m{sup 3} (air) and 0.2 {micro}g/100 cm{sup 2} (surface). These low-level samples present a number of analytical challenges, including (1) a lack of suitable standard reference materials, (2) unknown robustness of sample preparation techniques, (3) interferences during analysis, (4) sensitivity (sufficiently low detection limits), (5) specificity (beryllium speciation), and (6) data comparability among laboratories. Additionally, there is a need for portable, real-time (or near real-time) equipment for beryllium air monitoring and surface wipe analysis that is both laboratory-validated and field-validated in a manner that would be accepted by national and/or international standards organizations. This paper provides a review of the current analytical requirements for trace-level beryllium analysis for worker protection, and also addresses issues that may change those requirements. The current analytical state of the art and relevant challenges facing the analytical community will be presented, followed by suggested criteria for real-time monitoring equipment. Recognizing and addressing these challenges will

  18. Assessment of irradiation effects on beryllium reflector and heavy water tank of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Yoji; Kakehuda, Kazuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M, a swimming pool type research reactor with beryllium and heavy water reflectors, has been operated since 1990. Since the beryllium reflectors are close to fuel and receive high fast neutron fluence in a relatively short time, they may be subject to change their dimensions by swelling due mostly to entrapped helium gaseous. This may bend the reflectors to the outside and narrow gaps between the reflectors and the fuel elements. The gaps have been measured with an ultrasonic thickness gage in an annual inspection. The results in 1996 show that the maximum of expansion in the diametral directions was 0.6 mm against 1.6 mm of a managed value for replacement of the reflector. A heavy water tank of the JRR-3M is made of aluminum alloy A5052. Surveillance tests of the alloy have been conducted to evaluate irradiation effects of the heavy water tank. Five sets of specimens of the alloy have been irradiated in the beryllium reflectors where fast neutron flux is higher than that in the heavy water tank. In 1994, one set of specimens had been unloaded and carried out the post-irradiation tests. The results show that the heavy water tank preserved satisfactory mechanical properties. (author)

  19. Designing a Beryllium-Free Deep-Ultraviolet Nonlinear Optical Material without a Structural Instability Problem.

    Science.gov (United States)

    Zhao, Sangen; Kang, Lei; Shen, Yaoguo; Wang, Xiaodong; Asghar, Muhammad Adnan; Lin, Zheshuai; Xu, Yingying; Zeng, Siyuan; Hong, Maochun; Luo, Junhua

    2016-03-01

    A beryllium-free deep-ultraviolet (deep-UV) nonlinear optical (NLO) material K3Ba3Li2Al4B6O20F is developed mainly by the element substitution of Be for Al and Li from Sr2Be2B2O7 that was considered as one of the most promising deep-UV NLO materials. K3Ba3Li2Al4B6O20F preserves the structural merits of Sr2Be2B2O7 and thus exhibits no layering growth tendency and possesses the optical properties required for deep-UV NLO applications, including deep-UV transparency, phase-matchability, and sufficiently large second-harmonic generation (1.5 × KH2PO4). Furthermore, it overcomes the structural instability problem of Sr2Be2B2O7, which is confirmed by the obtainment of large single crystals and phonon dispersion calculations. These attributes make it very attractive for next-generation deep-UV NLO materials. The substitution of Be for Al and Li in beryllium borates provides a new opportunity to design beryllium-free deep-UV NLO materials with good performance. PMID:26889570

  20. Development of Beryllium Vacuum Chamber Technology for the LHC

    CERN Document Server

    Veness, R; Dorn, C

    2011-01-01

    Beryllium is the material of choice for the beam vacuum chambers around collision points in particle colliders due to a combination of transparency to particles, high specific stiffness and compatibility with ultra-high vacuum. New requirements for these chambers in the LHC experiments have driven the development of new methods for the manufacture of beryllium chambers. This paper reviews the requirements for experimental vacuum chambers. It describes the new beryllium technology adopted for the LHC and experience gained in the manufacture and installation.

  1. Analysis of surface contaminants on beryllium and aluminum windows

    International Nuclear Information System (INIS)

    An effort has been made to document the types of contamination which form on beryllium windows surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined. (orig.)

  2. Beryllium Health and Safety Committee Data Reporting Task Force

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, D H

    2007-02-21

    On December 8, 1999, the Department of Energy (DOE) published Title 10 CFR 850 (hereafter referred to as the Rule) to establish a chronic beryllium disease prevention program (CBDPP) to: {sm_bullet} reduce the number of workers currently exposed to beryllium in the course of their work at DOE facilities managed by DOE or its contractors, {sm_bullet} minimize the levels of, and potential for, expos exposure to beryllium, and {sm_bullet} establish medical surveillance requirements to ensure early detection of the disease.

  3. PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy.

    Science.gov (United States)

    Li, Zhiwei; Wang, Chao; Cheng, Liang; Gong, Hua; Yin, Shengnan; Gong, Qiufang; Li, Yonggang; Liu, Zhuang

    2013-12-01

    Magnetic targeting that utilizes a magnetic field to specifically delivery theranostic agents to targeted tumor regions can greatly improve the cancer treatment efficiency. Herein, we load chlorin e6 (Ce6), a widely used PS molecule in PDT, on polyethylene glycol (PEG) functionalized iron oxide nanoclusters (IONCs), obtaining IONC-PEG-Ce6 as a theranostic agent for dual-mode imaging guided and magnetic-targeting enhanced in vivo PDT. Interestingly, after being loaded on PEGylated IONCs, the absorbance/excitation peak of Ce6 shows an obvious red-shift from ~650 nm to ~700 nm, which locates in the NIR region with improved tissue penetration. Without noticeable dark toxicity, Ce6 loaded IONC-PEG (IONC-PEG-Ce6) exhibits significantly accelerated cellular uptake compared with free Ce6, and thus offers greatly improved in vitro photodynamic cancer cell killing efficiency under a low-power light exposure. After demonstrating the magnetic field (MF) enhanced PDT using IONC-PEG-Ce6, we then further test this concept in animal experiments. Owing to the strong magnetism of IONCs and the long blood-circulation time offered by the condensed PEG coating, IONC-PEG-Ce6 shows strong MF-induced tumor homing ability, as evidenced by in vivo dual modal optical and magnetic resonance (MR) imaging. In vivo PDT experiment based magnetic tumor targeting using IONC-PEG-Ce6 is finally carried out, achieving high therapeutic efficacy with dramatically delayed tumor growth after just a single injection and the MF-enhanced photodynamic treatment. Considering the biodegradability and non-toxicity of iron oxide, our IONC-PEG-Ce6 presented in this work may be a useful multifunctional agent promising in photodynamic cancer treatment under magnetic targeting. PMID:24008045

  4. Interleukin-6 is a potential therapeutic target in interleukin-6 dependent, estrogen receptor-α-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Casneuf T

    2016-02-01

    Full Text Available Tineke Casneuf,1 Amy E Axel,2 Peter King,2 John D Alvarez,2 Jillian L Werbeck,3 Tinne Verhulst,1 Karin Verstraeten,1 Brett M Hall,2 A Kate Sasser2 1Janssen Research and Development, Beerse, Belgium; 2Janssen Research and Development, Spring House, PA, 3LabConnect LLC, Seattle, WA, USAIntroduction: Interleukin-6 (IL-6 is an important growth factor for estrogen receptor-α (ERα-positive breast cancer, and elevated serum IL-6 is associated with poor prognosis.Methods: The role of the phosphorylated signal transducer and activator of transcription 3 pathway was investigated in ERα-positive breast cancer. A panel of cell lines was treated with exogenous IL-6. An IL-6 specific gene signature was generated by profiling ten ERα-positive breast cancer cell lines alone or following treatment with 10 ng/mL recombinant IL-6 or human marrow stromal cell-conditioned media, with or without siltuximab (a neutralizing anti-IL-6 antibody and grown in three-dimensional tumor microenvironment-aligned cultures for 4 days, 5 days, or 6 days. The established IL-6 signature was validated against 36 human ERα-positive breast tumor samples with matched serum. A comparative MCF-7 xenograft murine model was utilized to determine the role of IL-6 in estrogen-supplemented ERa-positive breast cancer to assess the efficacy of anti-IL-6 therapy in vivo.Results: In eight of nine ERα-positive breast cancer cell lines, recombinant IL-6 increased phosphorylation of tyrosine 705 of STAT3. Differential gene expression analysis identified 17 genes that could be used to determine IL-6 pathway activation by combining their expression intensity into a pathway activation score. The gene signature included a variety of genes involved in immune cell function and migration, cell growth and apoptosis, and the tumor microenvironment. Validation of the IL-6 gene signature in 36 matched human serum and ERα-positive breast tumor samples showed that patients with a high IL-6 pathway

  5. Beryllium reflector elements for PARR-1

    International Nuclear Information System (INIS)

    The LEU fuel of PARR-1 was designed for a discharge burnup of 35% of initial /sup 235/U loading. Recently some of the fuel elements have been discharged from the PARR-1 core after attaining the burnup closed to the design value. These fuel elements were discharged due to diminished excess reactivity although they were physically intact. After satisfactory performance of these fuel elements there has been a desire to explore the possibility of enhancing the discharge burnup by boosting up the core reactivity. Use of better reflector elements is one of the methods to obtain this goal. In this report properties of various reflector elements have been compared and it is found that use of Beryllium metal reflector elements may be a promising choice for this purpose. (author)

  6. Investigation of the ion beryllium surface interaction

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I.; Birukov, A.Yu.; Gureev, V.M. [RRC Kurchatov Institute, Moscow (Russian Federation)] [and others

    1995-09-01

    The self -sputtering yield of the Be was measured. The energy dependence of the Be self-sputtering yield agrees well with that calculated by W. Eckstein et. al. Below 770 K the self-sputtering yield is temperature independent; at T{sub irr}.> 870 K it increases sharply. Hot-pressed samples at 370 K were implanted with monoenergetic 5 keV hydrogen ions and with a stationary plasma (flux power {approximately} 5 MW/m{sup 2}). The investigation of hydrogen behavior in beryllium shows that at low doses hydrogen is solved, but at doses {ge} 5x10{sup 22} m{sup -2} the bubbles and channels are formed. It results in hydrogen profile shift to the surface and decrease of its concentration. The sputtering results in further concentration decrease at doses > 10{sup 25}m{sup -2}.

  7. Advances in beryllium powder consolidation simulations

    International Nuclear Information System (INIS)

    A fuzzy logic based multiobjective genetic algorithm (GA) is introduced and the algorithm is used to optimize micromechanical densification modeling parameters for warm isopressed beryllium powder, HIPed copper powder and CIPed/sintered and HIPed tantalum powder. In addition to optimizing the main model parameters using the experimental data points as objective functions, the GA provides a quantitative measure of the sensitivity of the model to each parameter, estimates the mean particle size of the powder, and determines the smoothing factors for the transition between stage 1 and stage 2 densification. While the GA does not provide a sensitivity analysis in the strictest sense, and is highly stochastic in nature, this method is reliable and reproducible in optimizing parameters given any size data set and determining the impact on the model of slight variations in each parameter

  8. Age hardening in beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Three different alloys of beryllium-aluminum-silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight percent, Be-47.5Al-2.5Ag, Be-47Al-3Ag, and Be-46Al-4Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which separates from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatic pressing. Samples of hot isostatically pressed material were solution treated at 550 C for 1 h, followed by a water quench. Aging temperatures were 150, 175, 200, and 225 C for times ranging from half an hour to 65 h. Results indicate that peak hardness was reached in 36--40 h at 175 C and 12--16 h at 200 C aging temperature, relatively independent of alloy composition

  9. Design alternatives for cryogenic beryllium windows in an ICF cryostat

    International Nuclear Information System (INIS)

    We propose three backup design options for the cryogenic beryllium windows in a cryostat. The first, a beryllium flange option, reduces peak tensile stresses to 1/3 of that in the original design. The second, a fiberglass flange option, reduces peak tensile stresses to 1/2 of that in the original design and is also low cost. A third option, replacing the beryllium windows with spherical Mylar caps, would require a development program. Even though Mylar has been used previously at cryogenic temperature, this option is still considered unreliable. The near-zero ductility of beryllium at cryogenic temperature makes the reduction of peak tensile stresses particularly desirable. The orginal window design did function satisfactorily and the backup options were not needed. However, these options remain open for possible incorporation in future cryostat designs

  10. New facility for post irradiation examination of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo; Kawamura, Hiroshi [Oarai Research Establishment, Ibaraki-Ken (Japan)

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  11. Trace determination of sulfur and beryllium by activation in an oxygen-18 ion beam

    International Nuclear Information System (INIS)

    A novel method for determining traces of sulfur and beryllium is described. The reaction 32S(18O,t)47V is selective if using a 39 MeV 18O6+ beam. The detection limit is 3 ppm in an iron matrix and a precision of +-15% has been achieved for samples with 15 to 20 ppm sulfur. In the case of beryllium determination, two reactions were studied, namely 9Be(18O,2α)19O and 9Be(18O,d)25Na. At 25 MeV 18O5+, the first reaction is completely selective and yields a 5 ng detection limit for a 5 minutes irradiation. Boron is a nuclear interference when using the second reaction which yields a 110 ng detection limit in the same conditions. An irradiation chamber has been constructed that allows to decrease these limits. The technique was tested by analyzing two standard materials (NBS-SRM 394 and IRSID 508-1) whose sulfur content is certified. The results obtained by analyzing a biological sample (NBS-SRM 1571) for sulfur and a metallic sample Cu-Be for beryllium, are discussed

  12. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    International Nuclear Information System (INIS)

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degree C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m2. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP'd spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe12. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  13. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R.D.; Youchison, D.L. [Sandia National Labs., Livermore, CA (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States); Guiniatouline, R.N. [Efremov Institute, (Russia); Kupriynov, I.B. [Russian Institute of Inorganic Materials (Russia)

    1996-02-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ``spike`` of 750{degree}C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m{sup 2}. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP`d spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe{sub 12}. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis.

  14. Beryllium nitride thin film grown by reactive laser ablation

    OpenAIRE

    G. Soto; Diaz, J.A.; Machorro, R.; Reyes-Serrato, A.; de la Cruz, W.

    2001-01-01

    Beryllium nitride thin films were grown on silicon substrates by laser ablating a beryllium foil in molecular nitrogen ambient. The composition and chemical state were determined with Auger (AES), X-Ray photoelectron (XPS) and energy loss (EELS) spectroscopies. A low absorption coefficient in the visible region, and an optical bandgap of 3.8 eV, determined by reflectance ellipsometry, were obtained for films grown at nitrogen pressures higher than 25 mTorr. The results show that the reaction ...

  15. Beryllium foils for windows in counter of nuclear radiation

    International Nuclear Information System (INIS)

    Based on the optimization of the main structural characteristics (grain structure, texture, dislocation substructure) are defined modes of deformation and heat treatment of beryllium foils (purity > 99.95%), providing their excellent mechanical properties and optimized modes of deformation and heat treatment. Analyzed various technological methods rolling foils to their rational use for the practical implementation of the results of the study. It is shown that the strength and plastic properties of the foils beryllium higher than that of similar foils foreign manufacture

  16. Measurement of skin and target dose in post-mastectomy radiotherapy using 4 and 6 MV photon beams

    International Nuclear Information System (INIS)

    For patients with high risk breast cancer and mastectomy, radiotherapy is the treatment of choice to improve survival and local control. Target dose is mainly limited due to skin reactions. The feasibility of using 4 MV beams for chest wall treatment was studied and compared to standard 6 MV bolus radiotherapy. Post-mastectomy IMRT was planned on an Alderson-phantom using 4 and 6 MV photon beams without/with a 0.5 cm thick bolus. Dose was measured using TLDs placed at 8 locations in 1 and 3 mm depth to represent skin and superficial target dose, respectively. 4 MV and 6 MV beams with bolus perform equally regarding target coverage. The minimum and mean superficial target dose for the 6 MV and 4 MV were 93.0% and 94.7%, and 93.1% and 94.4%, respectively. Regarding skin dose the 4 MV photon beam was advantageous. The minimum and mean skin dose for the 6 MV and 4 MV was 76.7% and 81.6%, and 69.4% and 72.9%, respectively. The TPS was able to predict dose in the build-up region with a precision of around 5%. The use of 4 MV photon beams are a good alternative for treating the thoracic wall without the need to place a bolus on the patient. The main limitation of 4 MV beams is the limited dose rate

  17. The beryllium production at Ulba metallurgical plant (Ust-Kamenogrsk, Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Tuzov, Y.V. [Ulba Metallurgical Plant (Zavod), Ust-Kamenogorsk, Abay prospect 102 (Kazakhstan)

    1998-01-01

    The Report includes data on beryllium production of Ulba metallurgical plant, located in Ust-Kamenogorsk (Kazakhstan). Beryllium production is showed to have extended technological opportunities in manufacturing semi-products (beryllium ingots, master alloys, metallic beryllium powders, beryllium oxide) and in production of structural beryllium and its parts. Ulba metallurgical plant owns a unique technology of beryllium vacuum distillation, which allows to produce reactor grades of beryllium with a low content of metallic impurities. At present Ulba plant does not depend on raw materials suppliers. The quantity of stored raw materials and semi-products will allow to provide a 25-years work of beryllium production at a full capacity. The plant has a satisfactory experience in solving ecological problems, which could be useful in ITER program. (author)

  18. An sup 2 sup 6 Al target for (n,p) and (n,alpha) cross-section measurements

    CERN Document Server

    Ingelbrecht, C; Wagemans, J; Denecke, B; Altzitzoglou, T; Johnston, P

    2002-01-01

    The radionuclide sup 2 sup 6 Al plays an important role in astrophysics. It can be detected via the 1.8 MeV gamma-ray it emits, providing information on stellar nucleosynthesis processes using maps of the universe made by gamma-ray telescopes. In addition, the decay of sup 2 sup 6 Al to sup 2 sup 6 Mg in meteorites producing anomalous sup 2 sup 6 sup / sup 2 sup 4 Mg ratios gives clues to the origin of the solar system. New studies of the sup 2 sup 6 Al(n,p) sup 2 sup 6 Mg and sup 2 sup 6 Al(n,alpha) sup 2 sup 3 Na destruction mechanisms required an sup 2 sup 6 Al target containing significantly more sup 2 sup 6 Al than that previously used. This target was prepared by molecular plating from isopropanol onto a nickel foil substrate with a yield close to 100%. The total number of sup 2 sup 6 Al atoms, determined by gamma-spectrometry, was (2.6+-0.2)x10 sup 1 sup 7 , corresponding to 11.2+-1.0 mu g (expanded uncertainty, coverage factor k=2). The areal density was 0.37 mu g/cm sup 2. Measurements of (n,p) and (...

  19. Beryllium pressure vessels for creep tests in magnetic fusion energy

    International Nuclear Information System (INIS)

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available

  20. Impurities effect on the swelling of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Donne, M.D.; Scaffidi-Argentina, F. [Institut fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany)

    1995-09-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found.

  1. Pion yield from 450 GeV/c protons on beryllium

    CERN Document Server

    Ambrosini, G; Bernier, K; Biino, C; Bonesini, M; Bonivento, W; Borer, K; Brooijmans, G; Catanesi, M G; Collazuol, G; Daniels, D C; Dittus, F B; Elsener, K; Godley, A; Grant, A; Grégoire, G; Guglielmi, A M; Kabana, S; Klingenberg, R; Lehmann, G; Lindén, T; Linssen, Lucie; Marchionni, A; Mishra, S R; Moffitt, L; Moser, U; Palladino, Vittorio; Pietropaolo, F; Pretzl, Klaus P; Pullia, Antonio; Radicioni, E; Ragazzi, S; Schacher, J; Sergiampietri, F; Soler, F J P; Stoffel, F; Tabarelli de Fatis, T; Terranova, F; Tovey, Stuart N; Tsesmelis, E; Weber, M

    1998-01-01

    This paper reports on the charged pion production yields measured by the SPY/NA56 experiment for 450 GeV/c proton interactions on beryllium targets. The present data cover a secondary momentum range from 7 GeV/c to 135 GeV/c in the forward direction. An experimental accuracy ranging from 5 to 10\\%, depending on the beam momentum, has been achieved, limited mainly by the knowledge of the beam acceptance. These results will be relevant in the calculation of neutrino fluxes in present and future neutrino beams.

  2. Recovery of niobium from irradiated targets

    Science.gov (United States)

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1994-01-01

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  3. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin.

    Science.gov (United States)

    Sowd, Gregory A; Serrao, Erik; Wang, Hao; Wang, Weifeng; Fadel, Hind J; Poeschla, Eric M; Engelman, Alan N

    2016-02-23

    Integration is vital to retroviral replication and influences the establishment of the latent HIV reservoir. HIV-1 integration favors active genes, which is in part determined by the interaction between integrase and lens epithelium-derived growth factor (LEDGF)/p75. Because gene targeting remains significantly enriched, relative to random in LEDGF/p75 deficient cells, other host factors likely contribute to gene-tropic integration. Nucleoporins 153 and 358, which bind HIV-1 capsid, play comparatively minor roles in integration targeting, but the influence of another capsid binding protein, cleavage and polyadenylation specificity factor 6 (CPSF6), has not been reported. In this study we knocked down or knocked out CPSF6 in parallel or in tandem with LEDGF/p75. CPSF6 knockout changed viral infectivity kinetics, decreased proviral formation, and preferentially decreased integration into transcriptionally active genes, spliced genes, and regions of chromatin enriched in genes and activating histone modifications. LEDGF/p75 depletion by contrast preferentially altered positional integration targeting within gene bodies. Dual factor knockout reduced integration into genes to below the levels observed with either single knockout and revealed that CPSF6 played a more dominant role than LEDGF/p75 in directing integration to euchromatin. CPSF6 complementation rescued HIV-1 integration site distribution in CPSF6 knockout cells, but complementation with a capsid binding mutant of CPSF6 did not. We conclude that integration targeting proceeds via two distinct mechanisms: capsid-CPSF6 binding directs HIV-1 to actively transcribed euchromatin, where the integrase-LEDGF/p75 interaction drives integration into gene bodies. PMID:26858452

  4. Beryllium data base for in-pile mockup test on blanket of fusion reactor, (1)

    International Nuclear Information System (INIS)

    Beryllium has been used in the fusion blanket designs with ceramic breeder as a neutron multiplier to increase the net tritium breeding ratio (TBR). The properties of beryllium, that is physical properties, chemical properties, thermal properties, mechanical properties, nuclear properties, radiation effects, etc. are necessary for the fusion blanket design. However, the properties of beryllium have not been arranged for the fusion blanket design. Therefore, it is indispensable to check and examine the material data of beryllium reported previously. This paper is the first one of the series of papers on beryllium data base, which summarizes the reported material data of beryllium. (author)

  5. Therapeutic Targeting of Integrin αvβ6 in Breast Cancer

    OpenAIRE

    Moore, Kate M.; Thomas, Gareth J; Duffy, Stephen W; Warwick, Jane; Gabe, Rhian; Chou, Patrick; Ellis, Ian O.; Green, Andrew R.; Haider, Syed; Brouilette, Kellie; Saha, Antonio; Vallath, Sabari; Bowen, Rebecca; Chelala, Claude; Eccles, Diana

    2014-01-01

    Background Integrin αvβ6 promotes migration, invasion, and survival of cancer cells; however, the relevance and role of αvβ6 has yet to be elucidated in breast cancer. Methods Protein expression of integrin subunit beta66) was measured in breast cancers by immunohistochemistry (n > 2000) and ITGB6 mRNA expression measured in the Molecular Taxonomy of Breast Cancer International Consortium dataset. Overall survival was assessed using Kaplan Meier curves, and bioinformatics statistical analy...

  6. Cosmogenic beryllium cycling in a natural forest setting

    Science.gov (United States)

    Conyers, Grace

    10Bemet, or cosmogenic beryllium, has a long half-life of 1.4 million years and quick adsorption on soil particles, which may make it ideal for dating soil erosion in historical context. However, there are questions on about the fundamental assumptions of the retentivity of 10Bemet. This manuscript explores these assumptions and the context of nutrient cycling in a natural forest setting. To see if 10Bemet was being cycled through the trees, and at what rate, we looked at the[10Bemet ] in the soil, 4 species of trees, and their leaves. The isotopic ratio 10Be/9Be in all four tree species was comparable to the soil on which they grow, ranging from 6-8 x 10 -9. However, there was one exception with hickory (Carya spp.) which strongly bioaccumulate beryllium with an average of 0.38 ppm dry weight in the wood. Abscised hickory leaves have a higher [Be] of 2.0 ppm, over 10 times higher than in the soil. Using standard allometric equations relating tree biomass to trunk diameter, and assuming that belowground biomass has the same [Be] as aboveground, we calculate that hickory trees at our site contain approximately 1% of the total 10Bemet under their canopy and that ~10% of this Be is cycled annually by leaf abscission. It is not clear at this point what fraction of litterfall Be is recycled into the plant, returned to the soil, or carried to groundwater as organic chelates. Hickory trees occupy an average of ~10% of the oak-hickory forest area. Assuming that trees are randomly distributed, that litterfall Be is returned to the soil, and maintaining a constant 10Bemet budget over time for simplicity, then more than half of all 10Be met in the forest soil will have passed through a hickory tree over the past 10 ky. Fully 90% of all 10Bemet will pass through a hickory tree over a period of ~25 ky. It is clear that hickory trees can transport a sizable fraction of the total 10Bemet in their nutrient cycle, and that they may be responsible for landscape-scale Be mobility.

  7. Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11–7082, parthenolide and dimethyl fumarate

    Science.gov (United States)

    Ghashghaeinia, Mehrdad; Giustarini, Daniela; Koralkova, Pavla; Köberle, Martin; Alzoubi, Kousi; Bissinger, Rosi; Hosseinzadeh, Zohreh; Dreischer, Peter; Bernhardt, Ingolf; Lang, Florian; Toulany, Mahmoud; Wieder, Thomas; Mojzikova, Renata; Rossi, Ranieri; Mrowietz, Ulrich

    2016-01-01

    In mature erythrocytes, glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) yield NADPH, a crucial cofactor of the enzyme glutathione reductase (GR) converting glutathione disulfide (GSSG) into its reduced state (GSH). GSH is essential for detoxification processes in and survival of erythrocytes. We explored whether the anti-inflammatory compounds Bay 11–7082, parthenolide and dimethyl fumarate (DMF) were able to completely deplete a common target (GSH), and to impair the function of upstream enzymes of GSH recycling and replenishment. Treatment of erythrocytes with Bay 11–7082, parthenolide or DMF led to concentration-dependent eryptosis resulting from complete depletion of GSH. GSH depletion was due to strong inhibition of G6PDH activity. Bay 11–7082 and DMF, but not parthenolide, were able to inhibit the GR activity. This approach “Inhibitors, Detection of their common target that is completely depleted or inactivated when pharmacologically relevant concentrations of each single inhibitor are applied, Subsequent functional analysis of upstream enzymes for this target” (IDS), can be applied to a broad range of inhibitors and cell types according to the selected target. The specific G6PDH inhibitory effect of these compounds may be exploited for the treatment of human diseases with high NADPH and GSH consumption rates, including malaria, trypanosomiasis, cancer or obesity. PMID:27353740

  8. Beryllium neutron activation detector for pulsed DD fusion sources

    International Nuclear Information System (INIS)

    A compact fast neutron detector based on beryllium activation has been developed to perform accurate neutron fluence measurements on pulsed DD fusion sources. It is especially well suited to moderate repetition-rate (9Be(n,α)6He cross-section, energy calibration of the proportional counters, and numerical simulations of neutron interactions and beta-particle paths using MCNP5. The response function R(En) is determined over the neutron energy range 2-4 MeV. The count rate capability of the detector has been studied and the corrections required for high neutron fluence measurements are discussed. For pulsed DD neutron fluencies >3×104 cm-2, the statistical uncertainty in the fluence measurement is better than 1%. A small plasma focus device has been employed as a pulsed neutron source to test two of these new detectors, and their responses are found to be practically identical. Also the level of interfering activation is found to be sufficiently low as to be negligible.

  9. Comparison of the effects of couplings to breakup channels in reactions induced by {sup 6}Li and {sup 6}He on the same {sup 64}Zn target

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-García, J. P., E-mail: fernandez@lns.infn.it; Di Pietro, A.; Figuera, P.; Fisichella, M. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, 1-95123 Catania (Italy); Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Scuderi, V.; Torresi, D. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, 1-95123 Catania (Italy); Dipartamento di Fisica e Astronomia, via S. Sofia 64, I-95123 Catania (Italy); Moro, A. M. [Departamento de FAMN, Universidad de Sevilla, Apartado 1065, E-41080 Seville (Spain); Zadro, M. [Ruder Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb (Croatia)

    2015-10-15

    The experimental elastic scattering angular distributions for the weakly bound nuclei {sup 6,7}Li and for the halo nucleus {sup 6}He on the same {sup 64}Zn target at several energies around the Coulomb barrier were measured at the Laboratori Nazionali del Sud (LNS, Italy) and at the Cyclotron Research Center, Louvain La Neuve (Belgium), respectively. The measured elastic scattering angular distributions of these three systems at the same center of mass energy have been compared. The experimental data of the {sup 6,7}Li+ {sup 64}Zn systems have been analyzed within the CDCC method, while the {sup 6}He+{sup 64}Zn data have been compared with both both CDCC and CRC calculations.

  10. The unusual properties of beryllium surfaces

    International Nuclear Information System (INIS)

    Be is a ''marginal metal.'' The stable phase, hcp-Be, has a low Fermi-level density of states and very anisotropic structural and elastic properties, similar to a semiconductor's. At the Be(0001) surface, surface states drastically increase the Fermi-level density of states. The different nature of bonding in bulk-Be and at the Be(0001) surface explains the large outward relaxation. The presence of surface states causes large surface core-level shifts by inducing a higher electrostatic potential in the surface layers and by improving the screening at the surface. The authors experimental and theoretical investigations of atomic vibrations at the Be(0001) surface demonstrate clearly that Be screening of atomic motion by the surface states makes the surface phonon dispersion fundamentally different from that of the bulk. Properties of Be(0001) are so different from those of the bulk that the surface can be considered a new ''phase'' of beryllium with unique electronic and structural characteristics. For comparison they also study Be(11 bar 20), a very open surface without important surface states. Be(11 bar 20) is the only clean s-p metal surface known to reconstruct (1 x 3 missing row reconstruction)

  11. Beryllium Abundances of Solar-Analog Stars

    CERN Document Server

    Takeda, Yoichi; Honda, Satoshi; Kawanomoto, Satoshi; Ando, Hiroyasu; Sakurai, Takashi

    2011-01-01

    An extensive beryllium abundance analysis was conducted for 118 solar analogs (along with 87 FGK standard stars) by applying the spectrum synthesis technique to the near-UV region comprising the Be II line at 3131.066 A, in an attempt to investigate whether Be suffers any depletion such as the case of Li showing a large diversity. We found that, while most of these Sun-like stars are superficially similar in terms of their A(Be) (Be abundances) around the solar value within ~ +/- 0.2dex, 4 out of 118 samples turned out strikingly Be-deficient (by more than ~2 dex) and these 4 stars belong to the group of lowest v_e sin i (projected rotation velocity). Moreover, even for the other majority showing an apparent similarity in Be, we can recognize a tendency that A(Be) gradually increases with an increase in v_e sin i. These observational facts suggest that any solar analog star (including the Sun) generally suffers some kind of Be depletion during their lives, where the rotational velocity (or the angular momentu...

  12. Interaction of beryllium and hydrogen isotopes

    International Nuclear Information System (INIS)

    It has been considered that in the plasma nuclear fusion experimental devices of magnetic field confinement type, in order to reduce the energy loss due to bremsstrahlung, the use of the plasma-facing materials (PFM) of low atomic number like carbon is indispensable at present. Attention is paid to beryllium which is one of the PFMs, and its effectiveness was rocognized by the practical use in JET. When Be is considered as a PFM, it is necessary to accumulate many data on the diffusion, dissolution, permeation and surface recoupling of hydrogen isotopes, which regulate the recycling and inventory of deuterium and tritium fuel, and the relation of these factors with the physical and chemical states of Be. In this research, as the first phase of understanding the characteristics of Be as a PFM, the change of the surface condition by heating Be was investigated by X-ray photoelectron spectroscopy, and the chemical form of the Be-related substances emitted from the surface by argon or deuterium ion sputtering and their thermal behavior were measured by secondary ion mass spectrometry. The sample, the measurement and the results are reported. The diversified secondary ions of Be, Be cluster, Be oxide, hydroxide, hydride and deuteride were observed by the measurement, and their features are shown. (K.I.)

  13. Electronic band structure of beryllium oxide

    CERN Document Server

    Sashin, V A; Kheifets, A S; Ford, M J

    2003-01-01

    The energy-momentum resolved valence band structure of beryllium oxide has been measured by electron momentum spectroscopy (EMS). Band dispersions, bandwidths and intervalence bandgap, electron momentum density (EMD) and density of occupied states have been extracted from the EMS data. The experimental results are compared with band structure calculations performed within the full potential linear muffin-tin orbital approximation. Our experimental bandwidths of 2.1 +- 0.2 and 4.8 +- 0.3 eV for the oxygen s and p bands, respectively, are in accord with theoretical predictions, as is the s-band EMD after background subtraction. Contrary to the calculations, however, the measured p-band EMD shows large intensity at the GAMMA point. The measured full valence bandwidth of 19.4 +- 0.3 eV is at least 1.4 eV larger than the theory. The experiment also finds a significantly higher value for the p-to-s-band EMD ratio in a broad momentum range compared to the theory.

  14. Development of Interatomic Potentials for Beryllium

    International Nuclear Information System (INIS)

    Full text of publication follows: To be able to benefit from fusion as a clean and safe power source, we need a comprehensive understanding of the dynamic region of a fusion reactor. Knowing the interplay between the fuel plasma and the reactor components, such as the first wall and the divertor, one can minimize the resulting degradation. The atom-level mechanisms behind the reactions, (e.g. erosion and redeposition) are, however, not accessible to experiments. Hence, computational methods, including molecular dynamics (MD) simulations, are needed. The interactions in a system of particles are within MD described by an interatomic potential. The study of reactor processes requires models for the mixed interaction between the first wall and divertor materials beryllium, carbon and tungsten, as well as for the interaction of these with hydrogen. The absence of proper models for the Be system motivated us to develop potentials for pure Be, Be-C, Be-W and Be-H. We present a Tersoff-like bond order potential for pure Be and the same formalism applied to Be-C and Be-H. The performance of the potentials is discussed and an outlook for the remaining potential is also given. (authors)

  15. Lightweight beryllium wins wings as real heavyweight

    International Nuclear Information System (INIS)

    Development of Be materials with improved strength and ductility levels is possible by exploitation of new consolidation techniques, such as cold and hot isostatic pressing and plasma spraying followed by sintering. Working the vacuum hot pressed billet by cross-rolling or extruding and by forging improves the mechanical properties. The valuable contributions of Be in aerospace and nuclear applications are considered. SNAP-8 and SNAP-10A applications, replacement of an Al alloy on the Minuteman spacer ring by Be, aircraft (flight testing of F-4 Phantom with a Be rudder and actual structural application of Be wrought mill product in F-14 Tomcat) and communication satellite (despin platforms, spinning arms, russ structures) applications are discussed together with instrument applications (guidance systems for Saturn V, Minuteman and the Boeing 747, proportional counters for space-oriented x-ray experiments), Be applications in lunar explorations, expanding use of Be in space applications as a mirror blank material and Be disks for the brakes of giant aircraft. Beryllium has the highest specific heat of all structural metals and it shows chemical inertness to many of the common ocket propellants and their combustion products. Its handicaps are high cost and poor impact behavior. (U.S.)

  16. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  17. Beryllium abundances in stars hosting giant planets

    CERN Document Server

    Santos, N C; Israelian, G; Mayor, M; Rebolo, R; García-Gíl, A; Pérez de Taoro, M R; Randich, S

    2002-01-01

    We have derived beryllium abundances in a wide sample of stars hosting planets, with spectral types in the range F7V-K0V, aimed at studying in detail the effects of the presence of planets on the structure and evolution of the associated stars. Predictions from current models are compared with the derived abundances and suggestions are provided to explain the observed inconsistencies. We show that while still not clear, the results suggest that theoretical models may have to be revised for stars with Teff<5500K. On the other hand, a comparison between planet host and non-planet host stars shows no clear difference between both populations. Although preliminary, this result favors a ``primordial'' origin for the metallicity ``excess'' observed for the planetary host stars. Under this assumption, i.e. that there would be no differences between stars with and without giant planets, the light element depletion pattern of our sample of stars may also be used to further investigate and constraint Li and Be deple...

  18. A Report on the Validation of Beryllium Strength Models

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Derek Elswick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-05

    This report discusses work on validating beryllium strength models with flyer plate and Taylor rod experimental data. Strength models are calibrated with Hopkinson bar and quasi-static data. The Hopkinson bar data for beryllium provides strain rates up to about 4000 per second. A limitation of the Hopkinson bar data for beryllium is that it only provides information on strain up to about 0.15. The lack of high strain data at high strain rates makes it difficult to distinguish between various strength model settings. The PTW model has been calibrated many different times over the last 12 years. The lack of high strain data for high strain rates has resulted in these calibrated PTW models for beryllium exhibiting significantly different behavior when extrapolated to high strain. For beryllium, the α parameter of PTW has recently been calibrated to high precision shear modulus data. In the past the α value for beryllium was set based on expert judgment. The new α value for beryllium was used in a calibration of the beryllium PTW model by Sky Sjue. The calibration by Sjue used EOS table information to model the temperature dependence of the heat capacity. Also, the calibration by Sjue used EOS table information to model the density changes of the beryllium sample during the Hopkinson bar and quasi-static experiments. In this paper, the calibrated PTW model by Sjue is compared against experimental data and other strength models. The other strength models being considered are a PTW model calibrated by Shuh- Rong Chen and a Steinberg-Guinan type model by John Pedicini. The three strength models are used in a comparison against flyer plate and Taylor rod data. The results show that the Chen PTW model provides better agreement to this data. The Chen PTW model settings have been previously adjusted to provide a better fit to flyer plate data, whereas the Sjue PTW model has not been changed based on flyer plate data. However, the Sjue model provides a reasonable fit to

  19. Erosion of beryllium under ITER – Relevant transient plasma loads

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B., E-mail: igkupr@gmail.com [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Nikolaev, G.N.; Kurbatova, L.A.; Porezanov, N.P. [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D.; Zhitlukhin, A.M. [TRINITI, Troitsk, Moscow reg. (Russian Federation); Gervash, A.A. [Efremov Research Institute, S-Peterburg (Russian Federation); Safronov, V.M. [Project Center of ITER, Moscow (Russian Federation)

    2015-08-15

    Highlights: • We study the erosion, mass loss/gain and surface structure evolution of Be/CuCrZr mock-ups, armored with beryllium of TGP-56FW grade after irradiation by deuterium plasma heat load of 0.5 MJ/m{sup 2} at 250 °C and 500 °C. • Beryllium mass loss/erosion under plasma heat load at 250 °C is rather small (no more than 0.2 g/m{sup 2} shot and 0.11 μm/shot, correspondingly, after 40 shots) and tends to decrease with increasing number of shots. • Beryllium mass loss/erosion under plasma heat load at 500 °C is much higher (∼2.3 g/m{sup 2} shot and 1.2 μm/shot, correspondingly, after 10 shot) and tends to decrease with increasing the number of shots (∼0.26 g/m{sup 2} pulse and 0.14 μm/shot, correspondingly, after 100 shot). • Beryllium erosion value derived from the measurements of profile of irradiated surface is much higher than erosion value derived from mass loss data. - Abstract: Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2–0.5 MJ/m{sup 2} at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  20. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  1. Validation of cleaning method for various parts fabricated at a Beryllium facility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cynthia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic beryllium disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.

  2. Beryllium processing technology review for applications in plasma-facing components

    International Nuclear Information System (INIS)

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included

  3. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H2 gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m2

  4. Beryllium processing technology review for applications in plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  5. Novel 1,6-naphthyridin-2(1H)-ones as potential anticancer agents targeting Hsp90.

    OpenAIRE

    Montoir, David; Barillé-Nion, Sophie; Tonnerre, Alain; Juin, Philippe; Duflos, Muriel; Bazin, Marc-Antoine

    2016-01-01

    International audience Hsp90 is an ATP-dependent chaperone known to be overexpressed in many cancers. This way, Hsp90 is an important target for drug discovery. Novobiocin, an aminocoumarin antibiotic, was reported to inhibit Hsp90 targeting C-terminal domain, and showed anti-proliferative properties, leading to the development of new and more active compounds. Consequently, a new set of novobiocin analogs derived from 1,6-naphthyridin-2(1H)-one scaffold was designed, synthesized and evalu...

  6. The results of medical surveillance of beryllium production personnel

    International Nuclear Information System (INIS)

    The report presents results of surveillance of 1836 workers of beryllium production of Ulba Metallurgical Plant JSC with the acute and chronic forms of occupation diseases for 52 years of its operation. The dependence of acute and chronic occupation lesions on the protection degree is shown. It has been found out that, the risk of getting an occupation disease increases sharply at the moments of experimental works and at the time of reconstruction and some other extreme conditions in the production, that is supported by fixed lesions of eye mucous coat, skin and lung lesions. In this case, the readiness of people for their work in deleterious conditions and their personal responsibility for following the regulations of safety occupational standards plays a definite role. Therefore, the issues of protection are of paramount importance in prophylaxis both of acute and chronic exposure to beryllium. An influence of duration of service and occupation on chronic beryllium diseases is shown. A parallel between the lung beryllium disease and skin lesions by insoluble beryllium compounds is drawn for the first time. (author)

  7. Preparation of copper-beryllium alloys from Indian beryl

    International Nuclear Information System (INIS)

    The report presents the results of laboratory scale investigations on the preparation of copper-beryllium and aluminium-beryllium master alloys starting from Indian beryl and adopting the fluoride process. The flow-sheet involves : (1) conversion of the Be-values in beryl into water soluble sodium beryllium fluoride (2) preparation of beryllium hydroxide by alkali treatment of aqueous Na2BeF4 (3) conversion of Be(OH)2 to (NH4)2BeF4 by treatment with NH4HF2 (4) thermal decomposition of (NH4)2BeF4 to BeF2 and (5) magnesium reduction of BeF2 (with the addition of copper/aluminium) to obtain beryllium alloys. The method has been successfully employed for the preparation of Cu-Be master alloys containing about 8% Be and free of Mg on a 200 gm scale. An overall Be-recovery of about 80% has been achieved. Al-8% Be master alloys have also been prepared by this method. Toxicity and health hazards associated with Be are discussed and the steps taken to ensure safe handling of Be are described. (author)

  8. Glucose-6-Phosphate Dehydrogenase of Trypanosomatids: Characterization, Target Validation, and Drug Discovery

    Science.gov (United States)

    Gupta, Shreedhara; Igoillo-Esteve, Mariana; Michels, Paul A. M.; Cordeiro, Artur T.

    2011-01-01

    In trypanosomatids, glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the pentosephosphate pathway, is essential for the defense of the parasite against oxidative stress. Trypanosoma brucei, Trypanosoma cruzi, and Leishmania mexicana G6PDHs have been characterized. The parasites' G6PDHs contain a unique 37 amino acid long N-terminal extension that in T. cruzi seems to regulate the enzyme activity in a redox-state-dependent manner. T. brucei and T. cruzi G6PDHs, but not their Leishmania spp. counterpart, are inhibited, in an uncompetitive way, by steroids such as dehydroepiandrosterone and derivatives. The Trypanosoma enzymes are more susceptible to inhibition by these compounds than the human G6PDH. The steroids also effectively kill cultured trypanosomes but not Leishmania and are presently considered as promising leads for the development of new parasite-selective chemotherapeutic agents. PMID:22091394

  9. Behaviour of Molten Beryllium with ITER Reference CFC NB31 (SNECMA) Under Moisture

    International Nuclear Information System (INIS)

    A dramatic exothermic reaction with aluminium, a carbide forming metal, has been observed in Tore Supra. A small rod of 30 mm3, acting as a temperature proof, was enclosed in a blind hole of a thermally loaded low density PAN fiber CFC 1001Z block (SGL), which reached a temperature of about 1300 oC during plasma operation. The molten aluminium had penetrated the carbon matrix through to the block's front surface. After component removal and roughly 2 months of exposure to air in the laboratory, the CFC in front of the blind hole was found to have been locally destroyed over a crater-shaped structure of 2 cm diameter. This was due to an enhanced decomposition of aluminium carbide to aluminium hydroxide. Beryllium (Be), also a carbide forming metal, is used on the ITER first wall. Carbon reinforced carbon (CFC) of type NB31 (Snecma) covers the vertical divertor targets. It is expected that beryllium material will be transported during normal and/or off normal plasma operation to the carbon based divertor targets to form beryllium carbide. During air venting or a supposed accidental in-vessel water leak event, it will react exothermically under moisture to beryllium oxide. In order to investigate to which extent the CFC structure could be modified or eventually destroyed, this reaction process has been simulated with a CFC block NB31 of size 16 x 32 x 20 mm3, where about 40 mm3 of Be S65 C (Brush Wellmann) has been placed in a previously drilled blind hole of 4 mm diameter oriented parallel to the high conductivity pitch fibers. When melted, by heating the CFC block, the Be penetrated in the carbon matrix through to the block's front surface. The front surface of the CFC was then exposed to humidity (tap water) for about 2 weeks and then stored for a further 2 months in a closed vinyl bag under atmospheric pressure after which the sample was analysed. After the exposure of the CFC to humidity, reaction products have been detected at the surface of the carbon fibre

  10. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    International Nuclear Information System (INIS)

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers

  11. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  12. Experimental studies and modeling of processes of hydrogen isotopes interaction with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibaeva, I.L.; Chikhray, Y.V.; Romanenko, O.G.; Klepikov, A.Kh.; Shestakov, V.P.; Kulsartov, T.V. [Science Research Inst. of Experimental and Theoretical Physics of Kazakh State Univ., Almaty (Kazakhstan); Kenzhin, E.A.

    1998-01-01

    The objective of this work was to clarify the surface beryllium oxide influence on hydrogen-beryllium interaction characteristics. Analysis of experimental data and modeling of processes of hydrogen isotopes accumulation, diffusion and release from neutron irradiated beryllium was used to achieve this purpose as well as the investigations of the changes of beryllium surface element composition being treated by H{sup +} and Ar{sup +} plasma glowing discharge. (author)

  13. Self-assembled virus-like particles from rotavirus structural protein VP6 for targeted drug delivery.

    Science.gov (United States)

    Zhao, Qinghuan; Chen, Weihong; Chen, Yuanding; Zhang, Liming; Zhang, Jinping; Zhang, Zhijun

    2011-03-16

    Proteins of viral capsid may self-assemble into virus-like particles (VLPs) that can find many biomedical applications such as platform for drug delivery. In this paper, we describe preparation of VLPs by self-assembly of VP6, a rotavirus capsid protein that was chemically conjugated with doxorubicin (DOX), an anticancer drug. VP6 was first highly expressed in E. Coli, followed by purification and renaturation. DOX was then covalently attached to VP6 to form DOX-VP6 (DVP6) conjugates, which were subsequently self-assembled into VLPs under appropriate condition. Next, lactobionic acid (LA) was chemically linked to the surface of the VLPs. We demonstrated that the aforementioned nanosystem shows specific targeting to hepatoma cell line HepG2. The chemically functionalized VLPs, a kind of biological nanoparticles with excellent biocompatibility and biodegradability, can be prepared in large scale from E. Coli through our method, which may find practical applications in biomedicine. PMID:21338097

  14. An RNA Aptamer Targets the PDZ-Binding Motif of the HPV16 E6 Oncoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, Tamara A.; Nicol, Clare; Cesur, Özlem [School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Travé, Gilles [UMR 7242 CNRS-Université de Strasbourg, Ecole Supérieure de Biotechnologie, Boulevard Sébastien Brant, Illkirch 67412 (France); Blair, George Eric; Stonehouse, Nicola J., E-mail: n.j.stonehouse@leeds.ac.uk [School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2014-07-24

    Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus which is the primary causative agent of cervical cancer. Cell transformation arises from deregulated expression of the E6 and E7 oncogenes. E6 has been shown to bind a number of cellular proteins, including p53 and proteins containing a PDZ domain. This study reports the first RNA aptamers to E6. These have been employed as molecular tools to further investigate E6-p53 and E6-PDZ interactions. This study is focussed on two aptamers (termed F2 and F4) which induced apoptosis in cells derived from an HPV16-transformed cervical carcinoma. The molecules were able to inhibit the interaction between E6 and PDZ1 from Magi1, with F2 being the most effective inhibitor. Neither of the aptamers inhibited E6-p53 interaction or p53 degradation. This study shows the specificity of this approach and highlights the potential benefits of the E6 aptamers as potential therapeutic or diagnostic agents in the future.

  15. An RNA Aptamer Targets the PDZ-Binding Motif of the HPV16 E6 Oncoprotein

    International Nuclear Information System (INIS)

    Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus which is the primary causative agent of cervical cancer. Cell transformation arises from deregulated expression of the E6 and E7 oncogenes. E6 has been shown to bind a number of cellular proteins, including p53 and proteins containing a PDZ domain. This study reports the first RNA aptamers to E6. These have been employed as molecular tools to further investigate E6-p53 and E6-PDZ interactions. This study is focussed on two aptamers (termed F2 and F4) which induced apoptosis in cells derived from an HPV16-transformed cervical carcinoma. The molecules were able to inhibit the interaction between E6 and PDZ1 from Magi1, with F2 being the most effective inhibitor. Neither of the aptamers inhibited E6-p53 interaction or p53 degradation. This study shows the specificity of this approach and highlights the potential benefits of the E6 aptamers as potential therapeutic or diagnostic agents in the future

  16. Targeting choline phospholipid metabolism: GDPD5 and GDPD6 silencing decrease breast cancer cell proliferation, migration, and invasion.

    Science.gov (United States)

    Cao, Maria Dung; Cheng, Menglin; Rizwan, Asif; Jiang, Lu; Krishnamachary, Balaji; Bhujwalla, Zaver M; Bathen, Tone F; Glunde, Kristine

    2016-08-01

    Abnormal choline phospholipid metabolism is associated with oncogenesis and tumor progression. We have investigated the effects of targeting choline phospholipid metabolism by silencing two glycerophosphodiesterase genes, GDPD5 and GDPD6, using small interfering RNA (siRNA) in two breast cancer cell lines, MCF-7 and MDA-MB-231. Treatment with GDPD5 and GDPD6 siRNA resulted in significant increases in glycerophosphocholine (GPC) levels, and no change in the levels of phosphocholine or free choline, which further supports their role as GPC-specific regulators in breast cancer. The GPC levels were increased more than twofold during GDPD6 silencing, and marginally increased during GDPD5 silencing. DNA laddering was negative in both cell lines treated with GDPD5 and GDPD6 siRNA, indicating absence of apoptosis. Treatment with GDPD5 siRNA caused a decrease in cell viability in MCF-7 cells, while GDPD6 siRNA treatment had no effect on cell viability in either cell line. Decreased cell migration and invasion were observed in MDA-MB-231 cells treated with GDPD5 or GDPD6 siRNA, where a more pronounced reduction in cell migration and invasion was observed under GDPD5 siRNA treatment as compared with GDPD6 siRNA treatment. In conclusion, GDPD6 silencing increased the GPC levels in breast cancer cells more profoundly than GDPD5 silencing, while the effects of GDPD5 silencing on cell viability/proliferation, migration, and invasion were more severe than those of GDPD6 silencing. Our results suggest that silencing GDPD5 and GDPD6 alone or in combination may have potential as a new molecular targeting strategy for breast cancer treatment. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27356959

  17. Interleukin-6 as a Potential Therapeutic Target for Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Yoshiaki Furuya

    2010-01-01

    Full Text Available Interleukin-6 (IL-6 is a pleiotropic cytokine with a wide range of biologic activities in immune regulation, hematopoiesis, inflammation, and oncogenesis. Recent accumulating evidence indicates a pathologic role for IL-6 in promoting proliferation of both smooth muscle and endothelial cells in the pulmonary arterioles, resulting in development of pulmonary arterial hypertension (PAH. Here, we describe a patient with mixed connective tissue disease and severe, refractory PAH. Her functional activity and hemodynamic parameters dramatically responded to tocilizumab, a humanized monoclonal antibody to human IL-6 receptor, which was aimed at treating multicentric Castleman's disease. It appears that IL-6 blockade may hold promise as an adjunct drug in treatment of PAH in idiopathic form as well as in association with connective tissue disease.

  18. Astrocyte-targeted expression of IL-6 protects the CNS against a focal brain injury

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, Mercedes; Lago, Natalia;

    2003-01-01

    study demonstrated that transgenic IL-6 production significantly increased wound healing following the cryolesion. Thus, at 20 days postlesion (dpl) the GFAP-IL6 mice showed almost complete wound healing compared to litter mate nontransgenic controls. It seems likely that a reduced inflammatory response...... in the long term could be responsible for this IL-6-related effect. Thus, while in the acute phase following cryolesion (1-6 dpl) the recruitment of macrophages and T lymphocytes was higher in GFAP-IL6 mice, at 10-20 dpl it was significantly reduced compared to controls. Reactive astrogliosis was...... acute neuropathological insult such as following traumatic injury, a clear neuroprotective role is evident....

  19. Analysis of HLA-DP association with beryllium disease susceptibility in pooled exposed populations

    Energy Technology Data Exchange (ETDEWEB)

    Cesare Saltini, Massimo Amicosante

    2009-12-19

    Berylliosis or Chronic Beryllium Disease is a chronic granulomatous disorder primarily involving the lung associated with the exposition to low doses of Beryllium (Be) in the workplace. Berylliosis risk has been associated with the presence of a glutamate at position 69 of the HLA-DP beta chain (HLA-DPbetaGlu69) that is expressed in about 97% of disease cases and in 27% of the unaffected Be-exposed controls (p<0.0001) (Richeldi et al. Science 1993; 262: 242-244.12). Since this first observation of an immunogenetic association between berylliosis and HLA-DPbetaGlu69 a number of studies have confirmed the role of this marker as the primary gene of susceptibility of berylliosis (Richeldi et al Am J Ind Med. 1997; 32:337-40; Wang et al J. Immunol. 1999; 163: 1647-53; Saltini et al Eur Respir J. 2001 18:677-84; Rossman et al Am J Respir Crit Care Med. 2002 165:788-94). Moreover, a structure/function interaction between HLA-DP molecules carrying Glu69 and beryllium in driving and developing the immune response against beryllium itself has been observed as: (1) Be-specific T-cells clones obtained from berylliosis patients recognize beryllium as antigen only when presented in the context of the HLA-DP{beta}Glu69 molecules but not in the context of HLA-DP allelic variants carrying Lys69 (Lombardi G et al. J Immunol 2001; 166: 3549-3555), and (2) beryllium presents an affinity for the HLA-DP2, carrying the berylliosis marker of susceptibility HLA-DPGlu69, from 40 to 100 times higher that the HLA-DP molecule carrying Lys69 (Amicosante M. et al Hum. Immunol. 2001; 62: 686-93). However, although the immunogenetic studies performed have been addressed a number of different questions about the genetic association between berylliosis and/or beryllium sensitization, exposure levels to beryllium and HLA markers, a number of questions are still open in the field mainly due to the limitation imposed by the low number of subjects carrying berylliosis or beryllium sensitization enrolled

  20. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    This report on the control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is functioning effectively

  1. Thermochemical study of gaseous oxy salts. Communication 8. Beryllium molybdate and tungstates

    International Nuclear Information System (INIS)

    Gaseous phase reactions involving beryllium molybdate and tungstates were studied by the method of high-temperature mass-spectroscopy. Standard formation enthalpies of BeMoO3, BeWO3, BeWO4 and Be2WO4 were determined, being equal to -432.4 ± 3.1, -424.1 ± 3.7, -794.9 ± 5.2, -973.4 ± 6.7 kJ/mol respectively. Atomization enthalpy of the salts at 298 K amounts to 2162 ± 5, 2347 ± 5, 2967 ± 7, 3470 ± 8 kJ/mol

  2. Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer

    CERN Document Server

    Sharma, Sandeep; Booth, George H; Umrigar, C J; Chan, Garnet Kin-Lic

    2014-01-01

    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, {\\it without} the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of $D_e$=931.2 cm$^{-1}$ which agrees very well with recent experimentally derived estimates $D_e$=929.7$\\pm 2$~cm$^{-1}$ [Science, 324, 1548 (2009)] and $D_e$=934.6~cm$^{-1}$ [Science, 326, 1382 (2009)

  3. Estimation of beryllium ground state energy by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data

  4. Estimation of beryllium ground state energy by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  5. Elemental composition in sealed plutonium–beryllium neutron sources

    International Nuclear Information System (INIS)

    Five sealed plutonium–beryllium (PuBe) neutron sources from various manufacturers were disassembled. Destructive chemical analyses for recovered PuBe materials were conducted for disposition purposes. A dissolution method for PuBe alloys was developed for quantitative plutonium (Pu) and beryllium (Be) assay. Quantitation of Be and trace elements was performed using plasma based spectroscopic instruments, namely inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). Pu assay was accomplished by an electrochemical method. Variations in trace elemental contents among the five PuBe sources are discussed. - Highlights: • A destructive chemical analysis of the PuBe neutron sources includes the solubilization and digestion of the PuBe alloy material. • Plutonium was assayed by an electrochemical method. • Beryllium assay and trace elemental contents were determined by ICP instruments. • A large variation in trace elemental composition was observed among the five PuBe source materials

  6. Photochemical Behavior of Beryllium Complexes with Subporphyrazines and Subphthalocyanines.

    Science.gov (United States)

    Montero-Campillo, M Merced; Lamsabhi, Al Mokhtar; Mó, Otilia; Yáñez, Manuel

    2016-07-14

    Structures of beryllium subphthalocyanines and beryllium subporphyrazines complexes with different substituents are explored for the first time. Their photochemical properties are studied using time-dependent density functional theory calculations and compared to boron-related compounds for which their photochemical activity is already known. These beryllium compounds were found to be thermodynamically stable in a vacuum and present features similar to those of boron-containing analogues, although the nature of bonding between the cation and the macrocycle presents subtle differences. Most important contributions to the main peak in the Q-band region arise from HOMO to LUMO transitions in the case of subphthalocyanines and alkyl subporphyrazine complexes, whereas a mixture of that contribution and a HOMO-2 to LUMO contribution are present in the case of thioalkyl subporphyrazines. The absorption in the visible region could make these candidates suitable for photochemical devices if combined with appropriate donor groups. PMID:26812068

  7. Comparison of C5 and C6 Aqua-MODIS Dark Target Aerosol Validation

    Science.gov (United States)

    Munchak, Leigh A.; Levy, Robert C.; Mattoo, Shana

    2014-01-01

    We compare C5 and C6 validation to compare the C6 10 km aerosol product against the well validated and trusted aerosol product on global and regional scales. Only the 10 km aerosol product is evaluated in this study, validation of the new C6 3 km aerosol product still needs to be performed. Not all of the time series has processed yet for C5 or C6, and the years processed for the 2 products is not exactly the same (this work is preliminary!). To reduce the impact of outlier observations, MODIS is spatially averaged within 27.5 km of the AERONET site, and AERONET is temporatally averaged within 30 minutes of the MODIS overpass time. Only high quality (QA = 3 over land, QA greater than 0 over ocean) pixels are included in the mean.

  8. Identification of BIRC6 as a novel intervention target for neuroblastoma therapy

    International Nuclear Information System (INIS)

    Neuroblastoma are pediatric tumors of the sympathetic nervous system with a poor prognosis. Apoptosis is often deregulated in cancer cells, but only a few defects in apoptotic routes have been identified in neuroblastoma. Here we investigated genomic aberrations affecting genes of the intrinsic apoptotic pathway in neuroblastoma. We analyzed DNA profiling data (CGH and SNP arrays) and mRNA expression data of 31 genes of the intrinsic apoptotic pathway in a dataset of 88 neuroblastoma tumors using the R2 bioinformatic platform. BIRC6 was selected for further analysis as a tumor driving gene. Knockdown experiments were performed using BIRC6 lentiviral shRNA and phenotype responses were analyzed by Western blot and MTT-assays. In addition, DIABLO levels and interactions were investigated with immunofluorescence and co-immunoprecipitation. We observed frequent gain of the BIRC6 gene on chromosome 2, which resulted in increased mRNA expression. BIRC6 is an inhibitor of apoptosis protein (IAP), that can bind and degrade the cytoplasmic fraction of the pro-apoptotic protein DIABLO. DIABLO mRNA expression was exceptionally high in neuroblastoma but the protein was only detected in the mitochondria. Upon silencing of BIRC6 by shRNA, DIABLO protein levels increased and cells went into apoptosis. Co-immunoprecipitation confirmed direct interaction between DIABLO and BIRC6 in neuroblastoma cell lines. Our findings indicate that BIRC6 may have a potential oncogenic role in neuroblastoma by inactivating cytoplasmic DIABLO. BIRC6 inhibition may therefore provide a means for therapeutic intervention in neuroblastoma

  9. Identification of BIRC6 as a novel intervention target for neuroblastoma therapy

    Directory of Open Access Journals (Sweden)

    Lamers Fieke

    2012-07-01

    Full Text Available Abstract Background Neuroblastoma are pediatric tumors of the sympathetic nervous system with a poor prognosis. Apoptosis is often deregulated in cancer cells, but only a few defects in apoptotic routes have been identified in neuroblastoma. Methods Here we investigated genomic aberrations affecting genes of the intrinsic apoptotic pathway in neuroblastoma. We analyzed DNA profiling data (CGH and SNP arrays and mRNA expression data of 31 genes of the intrinsic apoptotic pathway in a dataset of 88 neuroblastoma tumors using the R2 bioinformatic platform (http://r2.amc.nl. BIRC6 was selected for further analysis as a tumor driving gene. Knockdown experiments were performed using BIRC6 lentiviral shRNA and phenotype responses were analyzed by Western blot and MTT-assays. In addition, DIABLO levels and interactions were investigated with immunofluorescence and co-immunoprecipitation. Results We observed frequent gain of the BIRC6 gene on chromosome 2, which resulted in increased mRNA expression. BIRC6 is an inhibitor of apoptosis protein (IAP, that can bind and degrade the cytoplasmic fraction of the pro-apoptotic protein DIABLO. DIABLO mRNA expression was exceptionally high in neuroblastoma but the protein was only detected in the mitochondria. Upon silencing of BIRC6 by shRNA, DIABLO protein levels increased and cells went into apoptosis. Co-immunoprecipitation confirmed direct interaction between DIABLO and BIRC6 in neuroblastoma cell lines. Conclusion Our findings indicate that BIRC6 may have a potential oncogenic role in neuroblastoma by inactivating cytoplasmic DIABLO. BIRC6 inhibition may therefore provide a means for therapeutic intervention in neuroblastoma.

  10. IL-6 Inhibits the Targeted Modulation of PDCD4 by miR-21 in Prostate Cancer.

    Science.gov (United States)

    Dong, Biao; Shi, Zhihao; Wang, Jiaping; Wu, Jing; Yang, Zhaoqing; Fang, Kewei

    2015-01-01

    Prostate cancer is the most common cancer among men in the Unites States. The cytokine IL-6 activates several prostate cancer pathways, but its upstream trans-signaling pathway remains poorly understood. In this study, we evaluated the role of IL-6 in PDCD4 gene expression and how the microRNA miR-21 regulates this process in prostate cancer cell lines PC-3 and LNCaP. The expression pattern of PDCD4 from samples from human prostate cancer, precancerous lesions, and benign prostatic hyperplasia was investigated by immunohistochemistry. PDCD4 transcription and translation were detected by quantitative real-time PCR (qRT-PCR) and Western blot analysis, respectively. The targeted modulation of PDCD4 by miR-21 was analyzed in PC-3 and LNCaP cells, and the effect of IL-6 on the expression of PDCD4 was studied in vitro. PDCD4 expression in samples from the 3 tissue types progressively increased, and the expression levels of PDCD4 and prostate-specific antigen were negatively correlated. The levels of PDCD4 mRNA and protein in PC-3 and LNCaP cells transfected with anti-miR-21 constructs were lower than those in control cells. The expression of PDCD4 was inhibited by IL-6, but this effect was weakened in cell lines with low expression of miR-21. Our study demonstrates that the regulation of PDCD4 by miR-21 is targeted and IL-6 inhibits expression of the PDCD4 gene in PC-3 and LNCaP cells through the targeted function of miR-21 on PDCD4. These findings support the feasibility of future efforts for diagnosis and gene therapy for prostate cancer that are based on IL-6, miR-21, and PDCD4. PMID:26252635

  11. IL-6 Inhibits the Targeted Modulation of PDCD4 by miR-21 in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Biao Dong

    Full Text Available Prostate cancer is the most common cancer among men in the Unites States. The cytokine IL-6 activates several prostate cancer pathways, but its upstream trans-signaling pathway remains poorly understood. In this study, we evaluated the role of IL-6 in PDCD4 gene expression and how the microRNA miR-21 regulates this process in prostate cancer cell lines PC-3 and LNCaP. The expression pattern of PDCD4 from samples from human prostate cancer, precancerous lesions, and benign prostatic hyperplasia was investigated by immunohistochemistry. PDCD4 transcription and translation were detected by quantitative real-time PCR (qRT-PCR and Western blot analysis, respectively. The targeted modulation of PDCD4 by miR-21 was analyzed in PC-3 and LNCaP cells, and the effect of IL-6 on the expression of PDCD4 was studied in vitro. PDCD4 expression in samples from the 3 tissue types progressively increased, and the expression levels of PDCD4 and prostate-specific antigen were negatively correlated. The levels of PDCD4 mRNA and protein in PC-3 and LNCaP cells transfected with anti-miR-21 constructs were lower than those in control cells. The expression of PDCD4 was inhibited by IL-6, but this effect was weakened in cell lines with low expression of miR-21. Our study demonstrates that the regulation of PDCD4 by miR-21 is targeted and IL-6 inhibits expression of the PDCD4 gene in PC-3 and LNCaP cells through the targeted function of miR-21 on PDCD4. These findings support the feasibility of future efforts for diagnosis and gene therapy for prostate cancer that are based on IL-6, miR-21, and PDCD4.

  12. Quasielastic Scattering of the Halo Nucleus 6He at 25 MeV/u from a 9Be Target

    Institute of Scientific and Technical Information of China (English)

    PANG Dan-Yang; ZHANG Gao-Long; HU Qing-Yuan; WANG Jia; A.Ozawa; Y.Yamaguchi; R.Kanungo; D.Fang; I.Tanihata; YE Yan-Lin; JIANG Dong-Xing; ZHENG Tao; WANG Quan-Jin; LI Zhi-Huan; LI Xiang-Qing; GE Yu-Cheng; WU Cui-E

    2004-01-01

    @@ The differential cross sections of quasielastic scattering of a 25 MeV/u 6He from 9Be target have been measured.The double-folding model approach is applied to generate the real part of the optical potential The imaginary potential parameters as well as some of the real potential parameters are studied in comparison with the experimental data. The effect of the unstable nucleus is discussed.

  13. Progress in Heavy Ion Target Capsule and Hohlraum Design

    International Nuclear Information System (INIS)

    Progress in heavy ion target design over the past few years has focused on relaxing the target requirements for the driver and for target fabrication. We have designed a plastic (CH) ablator capsule that is easier to fabricate and fill than the beryllium ablator we previously used. In addition, 2-d Rayleigh-Taylor instability calculations indicate that this capsule can tolerate ablator surface finishes up to ten times rougher than the NIF specification. We have also explored the trade-off between surface roughness and yield as a method for finding the optimum capsule. We have also designed two new hohlraums: a ''hybrid'' target and a large angle, distributed radiator target. The hybrid target allows a beam spot radius of almost 5 mm while giving gain of 55 from 6.7 MJ of beam energy in integrated Lasnex calculations. To achieve the required symmetry with the large beam spot, internal shields were used in the target to control the P2 and P4 asymmetry. The large-angle, distributed radiator target is a variation on the distributed radiator target that allows large beam entrance angles (up to 24 degrees). Integrated calculations have produced 340 MJ from 6.2 MJ of beam energy in a design that is not quite optimal. In addition, we have done a simple scaling to understand the peak ion beam power required to compress fuel for fast ignition using a short pulse laser

  14. The uses and adverse effects of beryllium on health

    DEFF Research Database (Denmark)

    Cooper, Ross G.; Harrison, Adrian Paul

    2009-01-01

    the current review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability, and Health. Articles were classified based on acute and chronic exposure and toxicity of beryllium. Results: The proportions of utilized and nonutilized...... articles were published in sources unobtainable through requests at the British Library, and some had no impact factor and were excluded. Conclusion: Beryllium has some useful but undoubtedly harmful effects on health and well-being. Measures needed to be taken to prevent hazardous exposure to this element...

  15. Method for removal of beryllium contamination from an article

    Science.gov (United States)

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  16. Radiation Damage of Beryllium Reflector for Research Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon [Korea Atomic Energy Research Institute Daejeon (Korea, Republic of)

    2013-07-01

    Beryllium is considered as a reflector material for the research reactor. The neutron fluence results in significant damage of material structure and corresponding degradation of physical.mechanical properties. In this study, the proton radiation damage of the beryllium grade manufactured by hot extrusion was investigated to emulate the effect of neutron radiation. The samples were irradiated by protons at room temperature; the acceleration voltage, and the proton amounts were 120keV, and 2.0 Χ 10{sup 18} ions/cm{sup 2}, respectively. The neutron irradiation experiment also have been conducted in HANARO, their results will be discussed in terms of swelling, and microstructure evolution.

  17. Effect of impurities on the high-temperature brittleness of commercial grade beryllium

    International Nuclear Information System (INIS)

    The variation in the hot-ductility of as-extruded beryllium has been studied, first of all, as a function of the temperature and of the rate of application of the tractive force. At 600 deg. C intergranular brittle fractures were observed. The presence of a Portevin-Le Chatelier phenomenon in the region where the ductility decreases has made it possible for us to connect this brittleness with an impurity-dislocation interaction. Secondly, the influence has been studied of various thermal treatments on the ductility at 600 deg. C, on the presence of the Portevin-Le Chatelier phenomenon, on the aspect of the fracture and on the formation of a face-centred cubic product (a = 6.07 A) whose presence is accompanied by an improvement in the ductility. We show the existence of a correlation between these different parameters. The use of an electronic probe micro-analyser and of X-rays has made it possible to show that the role of the three main impurities is of prime importance in the mechanism of the hot-brittleness of commercial grade beryllium, the iron in solution being responsible for the impurity-dislocation interaction, the aluminium and the silicon being present in the form of a ternary Be-Al-Si eutectic with a melting point of 430 deg. C. As a result of suitable thermal treatments the iron migrates towards the liquid phase of the eutectic, situated at the grain boundaries, and forms a face-centred cubic Be-Al-Fe compound with a = 6.07 A. This has two consequences: the matrix becomes more liable to deformation and the liquid phase disappears to give way to a high melting point compound. These two effects result, in a notable improvement in the hot-ductility of commercial grade beryllium. (author)

  18. MiR-361-5p acts as a tumor suppressor in prostate cancer by targeting signal transducer and activator of transcription-6(STAT6)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dachuang [Department of Urology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province 210009 (China); Department of Urology, Xuzhou Central Hospital Affiliated with Southeast University, Xuzhou, Jiangsu Province 221009 (China); Surgery Central Laboratory of Southeast University, Nanjing, Jiangsu Province 210009 (China); Tao, Tao; Xu, Bin; Chen, Shuqiu; Liu, Chunhui [Department of Urology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province 210009 (China); Surgery Central Laboratory of Southeast University, Nanjing, Jiangsu Province 210009 (China); Zhang, Lei; Lu, Kai [Department of Urology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province 210009 (China); Huang, Yeqing; Jiang, Liang [Department of Urology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province 210009 (China); Surgery Central Laboratory of Southeast University, Nanjing, Jiangsu Province 210009 (China); Zhang, Xiaowen [Department of Urology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province 210009 (China); Huang, Xiaoming [Surgery Central Laboratory of Southeast University, Nanjing, Jiangsu Province 210009 (China); Zhang, Lihua [Department of Pathology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu Province 210009 (China); Han, Conghui [Department of Urology, Xuzhou Central Hospital Affiliated with Southeast University, Xuzhou, Jiangsu Province 221009 (China); Chen, Ming, E-mail: mingchenseu@gmail.com [Department of Urology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province 210009 (China); Surgery Central Laboratory of Southeast University, Nanjing, Jiangsu Province 210009 (China)

    2014-02-28

    Highlights: • The role of miR-361-5p in prostate cancer (PCa) has not been evaluated until date. • We found that the expression of miR-361-5p in CRPC was lower than in ADPC. • MiR-361-5p suppressed DU145 cell proliferation and triggered apoptosis. • STAT6 is a direct target of miR-361-5p. • STAT6 enhances the expression of Bcl-xL at the transcriptional level. - Abstract: Castration-resistant prostate cancer (CRPC), whose pathogenesis is known to be regulated by microRNAs (miRNAs), has a poor prognosis. In our present study, we found that the expression of miR-361-5p in CRPC was lower than in androgen-dependent prostate cancer (ADPC), indicating that miR-361-5p may play an important role in the progression of ADPC to CRPC. The role of miR-361-5p in prostate cancer (PCa) has not been evaluated until date. Our findings suggest that miR-361-5p is a suppressor in CRPC. Signal transducer and activator of transcription-6 (STAT6), a direct target of miR-361-5p, enhances the expression of B-cell lymphoma-extra large (Bcl-xL), while miR-361-5p inhibits its expression through STAT6. Therefore, miR-361-5p has great clinical significance in preventing the malignant progression of PCa.

  19. MiR-361-5p acts as a tumor suppressor in prostate cancer by targeting signal transducer and activator of transcription-6(STAT6)

    International Nuclear Information System (INIS)

    Highlights: • The role of miR-361-5p in prostate cancer (PCa) has not been evaluated until date. • We found that the expression of miR-361-5p in CRPC was lower than in ADPC. • MiR-361-5p suppressed DU145 cell proliferation and triggered apoptosis. • STAT6 is a direct target of miR-361-5p. • STAT6 enhances the expression of Bcl-xL at the transcriptional level. - Abstract: Castration-resistant prostate cancer (CRPC), whose pathogenesis is known to be regulated by microRNAs (miRNAs), has a poor prognosis. In our present study, we found that the expression of miR-361-5p in CRPC was lower than in androgen-dependent prostate cancer (ADPC), indicating that miR-361-5p may play an important role in the progression of ADPC to CRPC. The role of miR-361-5p in prostate cancer (PCa) has not been evaluated until date. Our findings suggest that miR-361-5p is a suppressor in CRPC. Signal transducer and activator of transcription-6 (STAT6), a direct target of miR-361-5p, enhances the expression of B-cell lymphoma-extra large (Bcl-xL), while miR-361-5p inhibits its expression through STAT6. Therefore, miR-361-5p has great clinical significance in preventing the malignant progression of PCa

  20. ETV6–NTRK3 as a therapeutic target of small molecule inhibitor PKC412

    International Nuclear Information System (INIS)

    Highlights: ► ETV6–NTRK3 is an oncogene with transformation activity in multiple cell lineages. ► PKC412 could block ETV6–NTRK3 activation. ► Loss of ETV6–NTRK3 phosphorylation leads to inactivation of its downstream signaling pathway. ► Inhibition of ETV6–NTRK3 activation by PKC412 could be a novel strategy for the treatment. -- Abstract: The ETV6–NTRK3 (EN) fusion gene which encodes a chimeric tyrosine kinase was first identified by cloning of the t(12;15)(p13;q25) translocation in congenital fibrosarcoma (CFS). Since then, EN has been also found in congenital mesoblastic nephroma (CMN), secretory breast carcinoma (SBC) and acute myelogenous leukemia (AML). Using IMS-M2 and M0–91 cell lines harboring the EN fusion gene, and Ba/F3 cells stably transfected with EN, we demonstrated that PKC412, also known as midostaurin, is an inhibitor of EN. Inhibition of EN activity by PKC412 suppressed the activity of it downstream molecules leading to inhibition of cell proliferation and induction of apoptosis. Our data for the first time suggested that PKC412 could serve as therapeutic drug for treatment of patients with this fusion.

  1. ETV6-NTRK3 as a therapeutic target of small molecule inhibitor PKC412

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hoang Thanh, E-mail: kk086406@mgs.k.u-tokyo.ac.jp [Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639 (Japan); Ly, Bui Thi Kim [Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639 (Japan); Kano, Yasuhiko [Division of Hematology and Medical Oncology, Tochigi Cancer Center, Tochigi 321-0293 (Japan); Tojo, Arinobu [Division of Molecular Therapy, Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Watanabe, Toshiki [Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639 (Japan); Sato, Yuko [Musashimurayama Hospital, Musashimurayama, Tokyo 208-0011 (Japan)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer ETV6-NTRK3 is an oncogene with transformation activity in multiple cell lineages. Black-Right-Pointing-Pointer PKC412 could block ETV6-NTRK3 activation. Black-Right-Pointing-Pointer Loss of ETV6-NTRK3 phosphorylation leads to inactivation of its downstream signaling pathway. Black-Right-Pointing-Pointer Inhibition of ETV6-NTRK3 activation by PKC412 could be a novel strategy for the treatment. -- Abstract: The ETV6-NTRK3 (EN) fusion gene which encodes a chimeric tyrosine kinase was first identified by cloning of the t(12;15)(p13;q25) translocation in congenital fibrosarcoma (CFS). Since then, EN has been also found in congenital mesoblastic nephroma (CMN), secretory breast carcinoma (SBC) and acute myelogenous leukemia (AML). Using IMS-M2 and M0-91 cell lines harboring the EN fusion gene, and Ba/F3 cells stably transfected with EN, we demonstrated that PKC412, also known as midostaurin, is an inhibitor of EN. Inhibition of EN activity by PKC412 suppressed the activity of it downstream molecules leading to inhibition of cell proliferation and induction of apoptosis. Our data for the first time suggested that PKC412 could serve as therapeutic drug for treatment of patients with this fusion.

  2. Targeting Translation Control with p70 S6 Kinase 1 Inhibitors to Reverse Phenotypes in Fragile X Syndrome Mice.

    Science.gov (United States)

    Bhattacharya, Aditi; Mamcarz, Maggie; Mullins, Caitlin; Choudhury, Ayesha; Boyle, Robert G; Smith, Daniel G; Walker, David W; Klann, Eric

    2016-07-01

    Aberrant neuronal translation is implicated in the etiology of numerous brain disorders. Although mTORC1-p70 ribosomal S6 kinase 1 (S6K1) signaling is critical for translational control, pharmacological manipulation in vivo has targeted exclusively mTORC1 due to the paucity of specific inhibitors to S6K1. However, small molecule inhibitors of S6K1 could potentially ameliorate pathological phenotypes of diseases, which are based on aberrant translation and protein expression. One such condition is fragile X syndrome (FXS), which is considered to be caused by exaggerated neuronal translation and is the most frequent heritable cause of autism spectrum disorder (ASD). To date, potential therapeutic interventions in FXS have focused largely on targets upstream of translational control to normalize FXS-related phenotypes. Here we test the ability of two S6K1 inhibitors, PF-4708671 and FS-115, to normalize translational homeostasis and other phenotypes exhibited by FXS model mice. We found that although the pharmacokinetic profiles of the two S6K1 inhibitors differed, they overlapped in reversing multiple disease-associated phenotypes in FXS model mice including exaggerated protein synthesis, inappropriate social behavior, behavioral inflexibility, altered dendritic spine morphology, and macroorchidism. In contrast, the two inhibitors differed in their ability to rescue stereotypic marble-burying behavior and weight gain. These findings provide an initial pharmacological characterization of the impact of S6K1 inhibitors in vivo for FXS, and have therapeutic implications for other neuropsychiatric conditions involving aberrant mTORC1-S6K1 signaling. PMID:26708105

  3. Effects of helium production and radiation damage on tritium release behavior of neutron-irradiated beryllium pebbles

    International Nuclear Information System (INIS)

    The tritium release from neutron-irradiated beryllium pebbles, irradiated under different helium production (0.5-1.0 x 103 appm He) and dpa (4.2-8.6) conditions, was studied. From these results, it was clear that the apparent diffusion coefficient at 600 deg. C was significantly affected by irradiation conditions, but returned to normal values at 900 deg. C, apparently due to thermal annealing. Multiple peaks in the tritium release curve at 900 deg. C were observed

  4. Characterization of NIF cryogenic beryllium capsules using x-ray phase contrast imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, D. S. (David S.); Nobile, A. (Arthur), Jr.; Walsh, Peter J.,

    2004-01-01

    Beryllium capsules filled with cryogenic deuterium and tritium fuel layers may provide many advantages for obtaining ignition at the National Ignition Facility (NIF). However, characterizing the uniformity and thickness of the frozen fuel layer in such a target is challenging since traditional x-ray radiography techniques, which rely on absorption for'image contrast, cannot provide sufficient contrast to image the fuel layer in these low-Z materials. We propose using x-ray phase contrast imaging, which relies on gradients in the refractive index and wave interference, to characterize fuel layer uniformity. We present numerical modeling results of x-ray phase contrast imaging demonstrating the feasibility of this method for target characterization, discuss the necessary x-ray source characteristics, and present concepts for using this technique in the context of dynamic high density plasma experiments.

  5. Measurement of charged particle production from 450 GeV/c protons on beryllium

    CERN Document Server

    Ambrosini, G; Bernier, K; Biino, C; Bonesini, M; Bonivento, W; Borer, K; Brooijmans, G; Catanesi, M G; Collazuol, G; Daniels, D C; Dittus, F B; Elsener, K; Godley, A; Grant, A; Grégoire, G; Guglielmi, A M; Kabana, S; Kabana, R; Klingenberg, R; Lehmann, G; Lindén, T; Linssen, Lucie; Marchionni, A; Mishra, S R; Moffitt, L; Moser, U; Palladino, Vittorio; Pietropaolo, F; Pretzl, Klaus P; Pullia, Antonio; Radicioni, E; Ragazzi, S; Stachel, J; Sergiampietri, F; Soler, F J P; Stoffel, F; Tabarelli de Fatis, T; Terranova, F; Tovey, Stuart N; Tsesmelis, E; Weber, M

    1999-01-01

    This paper presents the results on charged particle yields and production ratios as measured by the NA56/SPY experiment for 450 GeV/c proton interactions on beryllium targets. The data cover a secondary momentum range from 7 GeV/c to 135 GeV/c and $p_T$ values up to 600~MeV/c. An experimental accuracy on the measured yields in the range from $5 \\%$ to $10 \\%$, depending on the beam momentum, and around $3 \\%$ for the particle production ratios has been achieved. These measurements are relevant for a precise evaluation of fluxes and composition of neutrino beams at accelerators. Results on the target thickness and shape dependence are also reported. Inclusive invariant cross sections in the forward direction have been derived. %An experimental accuracy of about 3\\% has been achieved on the measurements %of the $K/\\pi$ production ratios. These results will greatly reduce %the uncertainty on the estimation of the $\

  6. The interaction between AMPKβ2 and the PP1-targeting subunit R6 is dynamically regulated by intracellular glycogen content.

    Science.gov (United States)

    Oligschlaeger, Yvonne; Miglianico, Marie; Dahlmans, Vivian; Rubio-Villena, Carla; Chanda, Dipanjan; Garcia-Gimeno, Maria Adelaida; Coumans, Will A; Liu, Yilin; Voncken, J Willem; Luiken, Joost J F P; Glatz, Jan F C; Sanz, Pascual; Neumann, Dietbert

    2016-04-01

    AMP-activated protein kinase (AMPK) is a metabolic stress-sensing kinase. We previously showed that glucose deprivation induces autophosphorylation of AMPKβ at Thr-148, which prevents the binding of AMPK to glycogen. Furthermore, in MIN6 cells, AMPKβ1 binds to R6 (PPP1R3D), a glycogen-targeting subunit of protein phosphatase type 1 (PP1), thereby regulating the glucose-induced inactivation of AMPK. In the present study, we further investigated the interaction of R6 with AMPKβ and the possible dependency on Thr-148 phosphorylation status. Yeast two-hybrid (Y2H) analyses and co-immunoprecipitation (IP) of the overexpressed proteins in human embryonic kidney (HEK) 293T) cells revealed that both AMPKβ1 and AMPK-β2 wild-type (WT) isoforms bind to R6. The AMPKβ-R6 interaction was stronger with the muscle-specific AMPKβ2-WT and required association with the substrate-binding motif of R6. When HEK293T cells or C2C12 myotubes were cultured in high-glucose medium, AMPKβ2-WT and R6 weakly interacted. In contrast, glycogen depletion significantly enhanced this protein interaction. Mutation of AMPKβ2 Thr-148 prevented the interaction with R6 irrespective of the intracellular glycogen content. Treatment with the AMPK activator oligomycin enhanced the AMPKβ2-R6 interaction in conjunction with increased Thr-148 phosphorylation in cells grown in low-glucose medium. These data are in accordance with R6 binding directly to AMPKβ2 when both proteins detach from the diminishing glycogen particle, which is simultaneous with increased AMPKβ2 Thr-148 autophosphorylation. Such a model points to a possible control of AMPK by PP1-R6 upon glycogen depletion in muscle. PMID:26831516

  7. Paramagnetic Gd2O3 Nanoparticle-Based Targeting Theranostic Agent for C6 Rat Glioma Cell

    Directory of Open Access Journals (Sweden)

    Seong-Pyo Hong

    2016-01-01

    Full Text Available This study aimed to synthesize theranostic agent targeting C6 rat glioma cell, which was based on the dextran coated paramagnetic gadolinium oxide nanoparticles (D-PGONs conjugated with folic acid (FA or paclitaxel (PTX. The D-PGONs were synthesized by the in situ coprecipitation method, and the average value of the size distribution was 2.9 nm. FTIR spectroscopy was fulfilled to confirm the conjugations of FA or PTX with D-PGONs. The bioprotective effects of dextran coating and chemotherapeutic effect of PTX in the C6 glioma cell were evaluated by the MTT assay. The differences in uptakes between the synthesized theranostic agents into C6 cells were observed by confocal laser scanning microscopy. In addition, the magnetic contrast enhancement with different concentration of the synthesized agent was compared by the T1-weighted MRI imaging. It was experimentally shown that the synthesized theranostic agent targets C6 cells due to the ligand-receptor-mediated endocytosis and provides enhancement in MR contrast depending on the concentration due to the paramagnetic property of gadolinium nanoparticle. In addition, it was shown by the results of MTT assay that the synthesized nanocomposites were more effective in reducing cell viability than bare gadolinium nanoparticles. In conclusion, it was shown that FA and PTX conjugated D-PGONs could be used as the theranostic agent with paramagnetism and chemotherapeutic property.

  8. The high-risk HPV E6 oncoprotein preferentially targets phosphorylated nuclear forms of hDlg

    International Nuclear Information System (INIS)

    High-risk mucosal HPV E6 oncoproteins target a number of PDZ domain-containing substrates for proteasome mediated degradation. One of these, Discs Large (Dlg), is involved in the regulation of cell polarity and proliferation control. Previous studies had suggested that Dlg when hyperphosphorylated by osmotic shock, or when present in the nucleus could be preferentially targeted by E6. In this study we use phospho-specific antibodies directed against Dlg phosphorylated at residues S158 and S442 to show that these two observations are, in fact, linked. Dlg, when phosphorylated on S158 and S442 by CDK1 or CDK2, shows a preferential nuclear accumulation. However, these forms of Dlg are absent in cells derived from HPV-induced cervical cancers. Upon either proteasome inhibition or siRNA ablation of E6 expression, we see specific rescue of these phosphorylated forms of Dlg. These results demonstrate that nuclear forms of Dlg phosphorylated on its CDK phospho-acceptor sites has enhanced susceptibility to E6-induced degradation and place previous studies on the stress-induced phosphorylation of Dlg into a relevant biological context.

  9. Status of the beryllium replacement project

    International Nuclear Information System (INIS)

    Currently, beryllium (Be) is used as the filler metal for brazing appendages on the sheaths of CANDU® fuel elements. Because of its toxicity, occupational exposure limits for Be are being reduced to very low levels, resulting in significant challenges to CANDU® fuel fabricators. The CANDU® Owners Group (COG) initiated a test program to identify a filler material to replace Be and confirm that the brazed joints meet the established technical requirements for CANDU® fuel. Together with eliminating health risks associated with the use of Be, the industry needs to be assured that continuation of fuel supply remains unaffected and that fuel fabrication processes continue to comply with health and safety standards. A literature survey of studies on brazing and joining of Zircaloy identified potential filler materials that can meet or exceed existing design requirements of the brazed joint, including the required mechanical, microstructural, corrosion resistance, and irradiation properties equivalent to those obtained with Be as braze material. Candidate materials were evaluated against several criteria, including manufacturability, melting point, wettability, mechanical properties, corrosion resistance, effect on neutron economy, potential activation products, and interaction with fuel channels and other related disciplines. This exercise resulted in a list of promising candidate materials that were recommended for the first phase of testing. These materials include stainless steel (304 or 316), Al-Si, Ni-P, and Zr-Mn alloys. To allow a CANDU® utility have sufficient confidence in considering implementation of a different braze filler material, a Be Replacement Test Program, involving out-reactor and in-reactor tests, is being undertaken as a collaborative endeavour by the Canadian nuclear industry. The out-reactor tests consist of: a constructability assessment to determine the material’s suitability with current fuel manufacturing methods; evaluation of

  10. p38 Mitogen-Activated Protein Kinase in beryllium-induced dendritic cell activation

    Science.gov (United States)

    Li, L.; Huang, Z.; Gillespie, M.; Mroz, P.M.; Maier, L.A.

    2014-01-01

    Dendritic cells (DC) play a role in the regulation of immune responses to haptens, which in turn impact DC maturation. Whether beryllium (Be) is able to induce DC maturation and if this occurs via the MAPK pathway is not known. Primary monocyte-derived DCs (moDCs) models were generated from Be non-exposed healthy volunteers as a non-sensitized cell model, while PBMCs from BeS (Be sensitized) and CBD (chronic beryllium disease) were used as disease models. The response of these cells to Be was evaluated. The expression of CD40 was increased significantly (pBeS and CBD subjects, SB203580 downregulated Be-stimulated proliferation in a dose-dependent manner, and decreased Be-stimulated TNF-α and IFNγ cytokine production. Taken together, this study suggests that Be-induces non-sensitized Glu69+ DCs maturation, and that p38MAPK signaling is important in the Be-stimulated DCs activation as well as subsequent T cell proliferation and cytokine production in BeS and CBD. In total, the MAPK pathway may serve as a potential therapeutic target for human granulomatous lung diseases. PMID:25454621

  11. Methylation of H2AR29 is a novel repressive PRMT6 target

    Directory of Open Access Journals (Sweden)

    Waldmann Tanja

    2011-07-01

    Full Text Available Abstract Background Covalent histone modifications are central to all DNA-dependent processes. Modifications of histones H3 and H4 are becoming well characterised, but knowledge of how H2A modifications regulate chromatin dynamics and gene expression is still very limited. Results To understand the function of H2A modifications, we performed a systematic analysis of the histone H2A methylation status. We identified and functionally characterised two new methylation sites in H2A: R11 (H2AR11 and R29 (H2AR29. Using an unbiased biochemical approach in combination with candidate assays we showed that protein arginine methyltransferase (PRMT 1 and PRMT6 are unique in their ability to catalyse these modifications. Importantly we found that H2AR29me2 is specifically enriched at genes repressed by PRMT6, implicating H2AR29me2 in transcriptional repression. Conclusions Our data establishes R11 and R29 as new arginine methylation sites in H2A. We identified the specific modifying enzymes involved, and uncovered a novel functional role of H2AR29me2 in gene silencing in vivo. Thus this work reveals novel insights into the function of H2A methylation and in the mechanisms of PRMT6-mediated transcriptional repression.

  12. Tritium release from beryllium discs and lithium ceramics irradiated in the SIBELIUS experiment

    International Nuclear Information System (INIS)

    The SIBELIUS experiment was designed to obtain information on the compatibility between beryllium and ceramics, as well as beryllium and steel, in a neutron environment. This experiment comprised irradiation of eight capsules, seven of which were independently purged with a He/0.1% H2 gas mixture. Four capsules were used to examine beryllium/ceramic (Li2O, LiAlO2, Li4SiO4, and Li2ZrO3) and beryllium/steel (Types 316L and 1.4914) compacts. Isothermal anneal experiments have been run on representative beryllium and ceramic disks from each of the four capsules at 550 degrees C to 850 degrees C in steps of 100 degrees C. The results indicate that tritium release from the beryllium did not exhibit burst release behavior, as previously reported, but rather a progressive release with increasing temperature. Generally, ∼99% of the tritium was released by 850 degrees C. Tritium release from the ceramic discs was quite similar to the behavior shown in other dynamic tritium release experiments on lithium ceramics. The tritium content in beryllium discs adjacent to a steel sample was found to be significantly lower than that found in a beryllium disc adjacent to a ceramic sample. Recoil of tritium from the ceramic into the beryllium appears to be the source of tritium entering the beryllium, probably residing in the beryllium oxide layer

  13. Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application.

    Science.gov (United States)

    Rousset, Davy; Durand, Thibaut

    2016-01-01

    Modification of an existing sequential extraction procedure for inorganic beryllium species in the particulate matter of emissions and in working areas is described. The speciation protocol was adapted to carry out beryllium extraction in closed-face cassette sampler to take wall deposits into account. This four-step sequential extraction procedure aims to separate beryllium salts, metal, and oxides from airborne particles for individual quantification. Characterization of the beryllium species according to their solubility in air samples may provide information relative to toxicity, which is potentially related to the different beryllium chemical forms. Beryllium salts (BeF(2), BeSO(4)), metallic beryllium (Bemet), and beryllium oxide (BeO) were first individually tested, and then tested in mixtures. Cassettes were spiked with these species and recovery rates were calculated. Quantitative analyses with matched matrix were performed using inductively coupled plasma mass spectrometry (ICP-MS). Method Detection Limits (MDLs) were calculated for the four matrices used in the different extraction steps. In all cases, the MDL was below 4.2 ng/sample. This method is appropriate for assessing occupational exposure to beryllium as the lowest recommended threshold limit values are 0.01 µg.m(-3) in France([) (1) (]) and 0.05 µg.m(-3) in the USA.([ 2 ]) The protocol was then tested on samples from French factories where occupational beryllium exposure was suspected. Beryllium solubility was variable between factories and among the same workplace between different tasks. PMID:26327570

  14. Comparison of elevated temperature properties of HIP'd impact ground beryllium (S-65-H) and HIP'd gas atomized (GA) beryllium

    International Nuclear Information System (INIS)

    Fusion designers have been limited to simple tensile properties and physical properties for modern beryllium grades. The work reported here expands the elevated temperature database to more complicated mechanical tests. The elevated temperature (ambient to 648 C) thermomechanical properties of two beryllium grades made by hot isostatic pressing (HIP) are compared: S-65H (made from impact ground powder) and GA (made from gas atomized powder). Successful measurements of elevated temperature smooth and notched fatigue were made for the first time on modern beryllium grades. Valid beryllium KIC fracture toughness results were obtained for the first time at temperatures above room temperature. Elevated temperature creep, and tensile are also presented. (orig.)

  15. miR-130b-3p Upregulation Contributes to the Development of Thyroid Adenomas Targeting CCDC6 Gene

    Science.gov (United States)

    Leone, Vincenza; Langella, Concetta; Esposito, Francesco; De Martino, Marco; Decaussin-Petrucci, Myriam; Chiappetta, Gennaro; Bianco, Antonio; Fusco, Alfredo

    2015-01-01

    We have previously studied the function of microRNAs (miRNAs) in thyroid cells using the differentiated rat thyroid PC Cl 3 cells that need thyrotropin (TSH) for their growth. The miRNA expression profile examination allowed the detection of a set of miRNAs downregulated and upregulated by TSH. Here, we first demonstrated that upregulation of miR-130b-3p occurs through a protein kinase A-cAMP-responsive element binding protein (CREB)-dependent mechanism. Then, we analyzed its expression in human thyroid follicular adenomas, where a constitutive CREB activation is frequently present. miR-130b-3p results in upregulation with a high fold-change in most thyroid follicular adenomas. Then, we identified CCDC6, coding for a protein that interacts with CREB1 leading to the transcriptional repression of CREB1 target genes, as a target of this miRNA. The targeting of CCDC6 by miR-130b-3p likely accounts for the mechanism by which its upregulation contributes to the development of thyroid adenomas increasing CREB1 activity. PMID:26835423

  16. Electron impact ionization cross sections of beryllium-tungsten clusters*

    Science.gov (United States)

    Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael

    2016-01-01

    We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7

  17. Tritium and helium retention and release from irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Longhurst, G.R.; Oates, M.A.; Pawelko, R.J. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental effort to anneal irradiated beryllium specimens and characterize them for steam-chemical reactivity experiments. Fully-dense, consolidated powder metallurgy Be cylinders, irradiated in the EBR-II to a fast neutron (>0.1 MeV) fluence of {approx}6 x 10{sup 22} n/cm{sup 2}, were annealed at temperatures from 450degC to 1200degC. The releases of tritium and helium were measured during the heat-up phase and during the high-temperature anneals. These experiments revealed that, at 600degC and below, there was insignificant gas release. Tritium release at 700degC exhibited a delayed increase in the release rate, while the specimen was at 700degC. For anneal temperatures of 800degC and higher, tritium and helium release was concurrent and the release behavior was characterized by gas-burst peaks. Essentially all of the tritium and helium was released at temperatures of 1000degC and higher, whereas about 1/10 of the tritium was released during the anneals at 700degC and 800degC. Measurements were made to determine the bulk density, porosity and specific surface area for each specimen before and after annealing. These measurements indicated that annealing caused the irradiated Be to swell, by as much as 14% at 700degC and 56% at 1200degC. Kr gas adsorption measurements for samples annealed at 1000degC and 1200degC determined specific surface areas between 0.04 m{sup 2}/g and 0.1 m{sup 2}/g for these annealed specimens. The tritium and helium gas release measurements and the specific surface area measurements indicated that annealing of irradiated Be caused a porosity network to evolve and become surface-connected to relieve internal gas pressure. (author)

  18. Reducing the cost of S-65C grade beryllium for ITER first wall applications

    International Nuclear Information System (INIS)

    Beryllium is the current material of choice for plasma-facing components in ITER. The present design is for 10 mm thick beryllium tiles bonded to an actively cooled copper substrate. Brush Wellman grade S65C beryllium is preferred grade off beryllium for these tiles. S65C has the best resistance to low-cycle thermal fatigue than any other beryllium grad in the world. S65C grade beryllium has been successfully deployed in fusion reactors for more than two decades, most recently in the JET reactor. This paper will detail a supply chain to produce the most cost-effective S65C plasma facing components for ITER. This paper will also propose some future work too demonstrate the best technology for bonding beryllium to copper. (author)

  19. Synthesis and Optical Characterization of Mixed Ligands Beryllium Complexes for Display Device Applications

    Directory of Open Access Journals (Sweden)

    Vandna Nishal

    2015-01-01

    Full Text Available Synthesis and photoluminescent behaviour of mixed ligand based beryllium complexes with 2-(2-hydroxyphenylbenzoxazole (HPB and 5-chloro-8-hydroxyquinoline (Clq or 5,7-dichloro-8-hydroxyquinoline (Cl2q or 2-methyl-8-hydroxyquinoline (Meq or 8-hydroxyquinoline (q are reported in this work. These complexes, that is, [BeHPB(Clq], [BeHPB(Cl2q], [BeHPB(Meq], and [BeHPB(q], were prepared and their structures were confirmed by elemental analysis, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermal analysis. The beryllium complexes exhibited good thermal stability up to ~300°C temperature. The photophysical properties of beryllium complexes were studied using ultraviolet-visible absorption and photoluminescence emission spectroscopy. The complexes showed absorption peaks due to π-π∗ and n-π∗ electronic transitions. The complexes emitted greenish blue light with peak wavelength at 496 nm, 510 nm, 490 nm, and 505 nm, respectively, consisting of high intensity. Color tuning was observed with changing the substituents in quinoline ring ligand in metal complexes. The emitted light had Commission Internationale d’Eclairage color coordinates values at x=0.15 and y=0.43 for [BeHPB(Clq], x=0.21 and y=0.56 for [BeHPB(Cl2q], x=0.14 and y=0.38 for [BeHPB(Meq], x=0.17 and y=0.41 for [BeHPB(q]. Theoretical calculations using DFT/B3LYP/6-31G(d,p method were performed to reveal the three-dimensional geometries and the frontier molecular orbital energy levels of these synthesized metal complexes.

  20. MicroRNA-106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer.

    Science.gov (United States)

    Li, Nana; Liu, Yuejian; Miao, Yuan; Zhao, Lifen; Zhou, Huimin; Jia, Li

    2016-09-01

    It is demonstrated that the maladjustment of microRNA (miRNA) plays significant roles in the occurrence and development of tumors. MicroRNA-106b-5p (miR-106b), a carcinogenic miRNA, is identified as a dysregulated miRNA in human breast cancer. In this article, the expression levels of miR-106b were discovered to be particularly higher in breast cancer tissues than that in the corresponding adjacent tissues. Accordingly, miR-106b was higher expressed in the breast cancer cell lines compared with that in the normal breast cell lines. Moreover, according to the data previously reported, increased expression of miR-106b was significantly associated with advanced clinical stages and poor prognosis in breast cancer. Fucosyltransferase 6 (FUT6), a member of the fucosyltransferase (FUT) family, was found to have a reduced expression in tissues or cells with higher level of miR-106b in breast cancer. Additionally, down-regulation of miR-106b increased the expression of FUT6 and resulted in an obvious decrease of cell migration, invasion, and proliferation in MDA-MB-231 cells. Furthermore, over-expressed FUT6 reversed the impacts of up-regulated miR-106b on cell migration, invasion, and proliferation in MCF-7 cells, indicating that FUT6 might be directly targeted by miR-106b and serve as therapeutic targets for breast cancer. In brief, our results strongly showed that the low expression of FUT6 regulated by miR-106b contributed to cell migration, invasion, and proliferation in human breast cancer. © 2016 IUBMB Life, 68(9):764-775, 2016. PMID:27519168

  1. Aberrantly activated claudin 6 and 18.2 as potential therapy targets in non-small-cell lung cancer.

    Science.gov (United States)

    Micke, Patrick; Mattsson, Johanna Sofia Margareta; Edlund, Karolina; Lohr, Miriam; Jirström, Karin; Berglund, Anders; Botling, Johan; Rahnenfuehrer, Jörg; Marincevic, Millaray; Pontén, Fredrik; Ekman, Simon; Hengstler, Jan; Wöll, Stefan; Sahin, Ugur; Türeci, Ozlem

    2014-11-01

    Claudins (CLDNs) are central components of tight junctions that regulate epithelial-cell barrier function and polarity. Altered CLDN expression patterns have been demonstrated in numerous cancer types and lineage-specific CLDNs have been proposed as therapy targets. The objective of this study was to assess which fraction of patients with non-small-cell lung cancer (NSCLC) express CLDN6 and CLDN18 isoform 2 (CLDN18.2). Protein expression of CLDN6 and CLDN18.2 was examined by immunohistochemistry on a tissue microarray (n = 355) and transcript levels were supportively determined based on gene expression microarray data from fresh-frozen NSCLC tissues (n = 196). Both were analyzed with regard to frequency, distribution and association with clinical parameters. Immunohistochemical analysis of tissue sections revealed distinct membranous positivity of CLDN6 (6.5%) and CLDN18.2 (3.7%) proteins in virtually non-overlapping subgroups of adenocarcinomas and large-cell carcinomas. Pneumocytes and bronchial epithelial cells were consistently negative. Corresponding to the protein expression, in subsets of non-squamous lung carcinoma high mRNA levels of CLDN6 (7-16%) and total CLDN18 (5-12%) were observed. Protein expression correlated well with total mRNA expression of the corresponding gene (rho = 0.4-0.8). CLDN18.2 positive tumors were enriched among slowly proliferating, thyroid transcription factor 1 (TTF-1)-negative adenocarcinomas, suggesting that isoform-specific CLDN expression may delineate a specific subtype. Noteworthy, high CLDN6 protein expression was associated with worse prognosis in lung adenocarcinoma in the univariate [hazard ratio (HR): 1.8; p = 0.03] and multivariate COX regression model (HR: 1.9; p = 0.02). These findings encourage further clinical exploration of targeting ectopically activated CLDN expression as a valuable treatment concept in NSCLC. PMID:24710653

  2. TEM study of impurity segregations in beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M., E-mail: michael.klimenkov@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  3. Beryllium abundances in stars with planets:Extending the sample

    CERN Document Server

    Gálvez-Ortiz, M C; Hernández, J I González; Israelian, G; Santos, N C; Rebolo, R; Ecuvillon, A

    2011-01-01

    Context: Chemical abundances of light elements as beryllium in planet-host stars allow us to study the planet formation scenarios and/or investigate possible surface pollution processes. Aims: We present here an extension of previous beryllium abundance studies. The complete sample consists of 70 stars hosting planets and 30 stars without known planetary companions. The aim of this paper is to further assess the trends found in previous studies with less number of objects. This will provide more information on the processes of depletion and mixing of light elements in the interior of late type stars, and will provide possible explanations for the abundance differences between stars that host planets and "single" stars. Methods: Using high resolution UVES spectra, we measure beryllium abundances of 26 stars that host planets and 1 "single" star mainly using the \\lambda 3131.065 A Be II line, by fitting synthetic spectra to the observational data. We also compile beryllium abundance measurements of 44 stars hos...

  4. TEM study of impurity segregations in beryllium pebbles

    Science.gov (United States)

    Klimenkov, M.; Chakin, V.; Moeslang, A.; Rolli, R.

    2014-12-01

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  5. Influence of impurities in Beryllium on tritium breeding ratio

    International Nuclear Information System (INIS)

    Several neutronics experiments simulating fusion blankets have been conducted with 14 MeV neutron source to assess the reliability of nuclear analysis codes. However, the analyses have not always presented good agreements so far between calculated and measured tritium production rates. One of the reasons was considered as impurities in beryllium which has negligibly small neutron absorption cross section in low energy range. Chemical compositions of beryllium were analyzed by Inductively Coupled Plasma (ICP) method, and a pulsed neutron decay experiment discovered that the macroscopic neutron absorption cross section for beryllium medium may be about 30% larger than the value calculated by the data specified by manufacturing company. The influence of the impurities on the calculations was studied on the basis of the fusion DEMO-reactor blanket design. As a result of the study, it was made clear that the impurities affect the local tritium production rates when the size of beryllium medium is more than 20-30 mean free paths (30-40 cm) in thickness. In case of some blanket designs that meet the above condition, the effect on tritium breeding ratio may become as large as about 4%. (author)

  6. Thermal cycling tests of actively cooled beryllium copper joints

    International Nuclear Information System (INIS)

    Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)

  7. Extraction of lead and beryllium from a firing site soil

    International Nuclear Information System (INIS)

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) program is being implemented at LANL to conduct tests for evaluating the stability of the nation's aging nuclear stockpile. In order to reduce impact on the environment, containment of the non-fissile explosives tests is being phased in. The resulting shot debris can contain a mix of depleted uranium, lead, and beryllium. We are developing a treatment scheme to separate the radioactive and RCRA-hazardous components in order to recover the uranium, re-use some materials in future shots, and minimize waste for disposal. Our experience using a proprietary water soluble polymer to extract lead from contaminated soil to below TCLP levels has been extended to a surrogate soil from an open-air firing site that contains both lead and beryllium. Results for lead removal from this soil by dendrimers and molecular chelators will also be shown. Because of the potentially severe inhalation hazard associated with beryllium, the fate of this metal in our treatment scheme has been investigated, as well as extraction of beryllium using a variety of chemical agents

  8. Correlation of acoustic emission and dislocation damping in beryllium

    International Nuclear Information System (INIS)

    In a study of the acoustic emission generated in beryllium during tensile deformation, there is substantial evidence showing that the burst rate peak at yield is due to the generation of new dislocations and the burst rate peak at higher strains is due to the breakaway of dislocation line segments from deformation produce pins

  9. Biogeochemistry of beryllium in a forested catchment, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Skřivan, Petr; Vach, Marek; Filippi, Michal

    Edinburg : University of Edinburg, 2003. s. 94. [International Symposium on Environmental Geochemistry.. 07.09.2003-11.09.2003, Edinburg] R&D Projects: GA AV ČR IAB3013203 Institutional research plan: CEZ:AV0Z3013912 Keywords : biogeochemistry * experimental catchment * beryllium Subject RIV: DD - Geochemistry

  10. Thermal cycling tests of actively cooled beryllium copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B. [Forschungszentrum Juelich GmbH (Germany)

    1998-01-01

    Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)

  11. Beryllium Wipe Sampling (differing methods - differing exposure potentials)

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Kent

    2005-03-09

    This research compared three wipe sampling techniques currently used to test for beryllium contamination on room and equipment surfaces in Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling without a wetting agent, with water-moistened wipe materials, and by methanol-moistened wipes. Analysis indicated that methanol-moistened wipe sampling removed about twice as much beryllium/oil-film surface contamination as water-moistened wipes, which removed about twice as much residue as dry wipes. Criteria at 10 CFR 850.30 and .31 were established on unspecified wipe sampling method(s). The results of this study reveal a need to identify criteria-setting method and equivalency factors. As facilities change wipe sampling methods among the three compared in this study, these results may be useful for approximate correlations. Accurate decontamination decision-making depends on the selection of appropriate wetting agents for the types of residues and surfaces. Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced removal efficiency such as methanol when surface contamination includes oil mist residue.

  12. Strain-promoted copper free click chemistry for 64Cu radiolabeling of integrin-αvβ6 targeted peptide

    International Nuclear Information System (INIS)

    Strain promoted copper free click chemistry offers a fast and efficient method for preparation of radio labeled molecular probes and pre-targeted imaging in vivo. The fast reaction kinetics, driven by the release of strain energy ranging from 10-19 kcal/mol for cyclooctynes, precludes the need for toxic copper catalyst for chemical ligation between alkynes and azides. In particular this catalyst free approach provides a favorable platform for synthesis of radiometalated probes requiring macrocycle chelates for formation of stable and kinetically inert complexes where Cu(I) can interfere with metal chelates. In present studies DOTA-ADIBO (azadibenzocyclooctyne amine), a strained chelate-alkyne system has been constructed for bioconjugation with the azide-modified PEGylated peptide, N3-Ala-PEG28-A20FMDV2 and radiolabeled with (64Cu) Cu for assessment as a integrin-αvβ6, targeting molecular probe

  13. Novel 1,6-naphthyridin-2(1H)-ones as potential anticancer agents targeting Hsp90.

    Science.gov (United States)

    Montoir, David; Barillé-Nion, Sophie; Tonnerre, Alain; Juin, Philippe; Duflos, Muriel; Bazin, Marc-Antoine

    2016-08-25

    Hsp90 is an ATP-dependent chaperone known to be overexpressed in many cancers. This way, Hsp90 is an important target for drug discovery. Novobiocin, an aminocoumarin antibiotic, was reported to inhibit Hsp90 targeting C-terminal domain, and showed anti-proliferative properties, leading to the development of new and more active compounds. Consequently, a new set of novobiocin analogs derived from 1,6-naphthyridin-2(1H)-one scaffold was designed, synthesized and evaluated against two breast cancer cell lines. Subsequently, cell cycle progression and apoptosis were conducted on best candidates, finally Western Blot analysis was performed to measure their ability to induce degradation of Hsp90 client proteins. PMID:27153346

  14. Identification of an abnormal beryllium lymphocyte proliferation test

    International Nuclear Information System (INIS)

    The potential hazards from exposure to beryllium or beryllium compounds in the workplace were first reported in the 1930s. The tritiated thymidine beryllium lymphocyte proliferation test (BeLPT) is an in vitro blood test that is widely used to screen beryllium exposed workers in the nuclear industry for sensitivity to beryllium. The clinical significance of the BeLPT was described and a standard protocol was developed in the late 1980s. Cell proliferation is measured by the incorporation of tritiated thymidine into dividing cells on two culture dates and using three concentrations of beryllium sulfate. Results are expressed as a 'stimulation index' (SI) which is the ratio of the amount of tritiated thymidine (measured by beta counts) in the simulated cells divided by the counts for the unstimulated cells on the same culture day. Several statistical methods for use in the routine analysis of the BeLPT were proposed in the early 1990s. The least absolute values (LAV) method was recommended for routine analysis of the BeLPT. This report further evaluates the LAV method using new data, and proposes a new method for identification of an abnormal or borderline test. This new statistical-biological positive (SBP) method reflects the clinical judgment that: (i) at least two SIs show a 'positive' response to beryllium; and (ii) that the maximum of the six SIs must exceed a cut-point that is determined from a reference data set of normal individuals whose blood has been tested by the same method in the same serum. The new data is from the Y-12 National Security Complex in Oak Ridge (Y-12) and consists of 1080 workers and 33 non-exposed control BeLPTs (all tested in the same serum). Graphical results are presented to explain the statistical method, and the new SBP method is applied to the Y-12 group. The true positive rate and specificity of the new method were estimated to be 86% and 97%, respectively. An electronic notebook that is accessible via the Internet was used in

  15. Sensitivity of tungsten neutron cross sections to target band mixing and ν6 deformation

    International Nuclear Information System (INIS)

    It is shown that insertion of a deformation parameter ν6 in coupled channels calculations may be necessary for proper predictions of the neutron total cross sections (sigma/sub T/) at incident energies below approx.700 keV. This is illustrated in the present work with the sigma/sub T/ measurements of Whalen et al. on the /sup 182,184,186/W isotopes. In a previous report it has been established that these data could not be well reproduced using coupled channel calculations involving only ν2 and ν4 deformations. It is shown presently that this discrepancy can be removed if, provided that self-shielding corrections to these measurements are made, a small deformation parameter ν6 is considered in coupled channel analyses. As the W isotopes are lying at the rotational edge of the A = 190--200 transitional mass region, it is also emphasized that band mixing effects on the model predictions might be of some importance. These effects have been investigated for /sup 182,184,186/W as well as for 183W using realistic collective wave functions

  16. Some features of beryllium corrosion behavior in Be-liquid Li-V-4Ti-4Cr alloy system

    International Nuclear Information System (INIS)

    Recent experimental results on beryllium corrosion behavior in a V-4Ti-4Cr alloy, liquid lithium static system during testing for 200-500 h at temperatures from 600 to 800 deg. C are presented. The influence of test conditions (temperature, duration and lithium purity) and beryllium characteristics (microstructure, grain size and chemical composition) on weight loss of beryllium and penetration of lithium into beryllium are discussed. Results of compressive tests for beryllium specimens before and after corrosion testing are also introduced

  17. Hanford Site Beryllium Program: Past, Present, and Future - 12428

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) has a long history of beryllium use because of the element's broad application to many nuclear operations and processes. At the Hanford Site beryllium alloy was used to fabricate parts for reactors, including fuel rods for the N-Reactor during plutonium production. Because of continued confirmed cases of chronic beryllium disease (CBD), and data suggesting CBD occurs at exposures to low-level concentrations, the DOE decided to issue a rule to further protect federal and contractor workers from hazards associated with exposure to beryllium. When the beryllium rule was issued in 1999, each of the Hanford Site contractors developed a Chronic Beryllium Disease Prevention Program (CBDPP) and initial site wide beryllium inventories. A new site-wide CBDPP, applicable to all Hanford contractors, was issued in May, 2009. In the spring of 2010 the DOE Headquarters Office of Health, Safety, and Security (HSS) conducted an independent inspection to evaluate the status of implementation of the Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP). The report identified four Findings and 12 cross-cutting Opportunities for Improvement (OFIs). A corrective action plan (CAP) was developed to address the Findings and crosscutting OFIs. The DOE directed affected site contractors to identify dedicated resources to participate in development of the CAP, along with involving stakeholders. The CAP included general and contractor-specific recommendations. Following initiation of actions to implement the approved CAP, it became apparent that additional definition of product deliverables was necessary to assure that expectations were adequately addressed and CAP actions could be closed. Consequently, a supplement to the original CAP was prepared and transmitted to DOE-HQ for approval. Development of the supplemental CAP was an eight month effort. From the onset a core group of CAP development members were identified to develop a mechanism for

  18. TEM study of beryllium pebbles after neutron irradiation up to 3000 appm helium production

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M., E-mail: michael.klimenkov@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-11-15

    Beryllium is planned to be used as a neutron multiplier in the Helium Cooled Pebble Bed (HCPB) European concept of a breeding blanket of DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron irradiated at temperatures typical for fusion blanket. Beryllium pebbles with a diameter of 1 mm produced by the Rotating Electrode Method were subjected to a TEM study after irradiation at the HFR, Petten, at temperatures of 686, 753, 861, and 968 K. The helium production in the pebbles was calculated in the range from 2090 to 3090 appm. Gas bubbles as disks of hexagonal shape were observed for all four irradiation temperatures. The disks were oriented in the (0 0 0 1) basal plane with a height directed along the [0 0 0 1] “c” axis. The average diameters of the bubbles increase from 7.5 to 80 nm with increasing irradiation temperature, the bulk densities accordingly decrease from 4.4 × 10{sup 22} to 3.8 × 10{sup 20} m{sup −3}. With increasing irradiation temperature, the swelling of the pebbles increases from 0.6% at 686 K up to 6.5% at 968 K.

  19. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  20. The left lung is preferentially targeted during experimental paracoccidioidomycosis in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    F.S.M. Tristao

    2013-10-01

    Full Text Available Paracoccidioidomycosis (PCM is a chronic systemic mycosis caused by the inhalation of the thermally dimorphic fungus Paracoccidioides brasiliensis as well as the recently described P. lutzii. Because the primary infection occurs in the lungs, we investigated the differential involvement of the right and left lungs in experimental P. brasiliensis infection. Lungs were collected from C57BL/6 mice at 70 days after intravenous infection with 1×106 yeast cells of a virulent strain of P. brasiliensis (Pb18. The left lung, which in mice is smaller and has fewer lobes than the right lung, yielded increased fungal recovery associated with a predominant interleukin-4 response and diminished synthesis of interferon-γ and nitric oxide compared with the right lung. Our data indicate differential involvement of the right and left lungs during experimental PCM. This knowledge emphasizes the need for an accurate, standardized protocol for tissue collection during studies of experimental P. brasiliensis infection, since experiments using the same lungs favor the collection of comparable data among different mice.

  1. Methyl 6-Amino-6-deoxy-d-pyranoside-Conjugated Platinum(II) Complexes for Glucose Transporter (GLUT)-Mediated Tumor Targeting: Synthesis, Cytotoxicity, and Cellular Uptake Mechanism.

    Science.gov (United States)

    Li, Taoli; Gao, Xiangqian; Yang, Liu; Shi, Yunli; Gao, Qingzhi

    2016-05-19

    Methyl 6-aminodeoxy-d-pyranoside-derived platinum(II) glycoconjugates were designed and synthesized based on the clinical drug oxaliplatin for glucose transporter (GLUT)-mediated tumor targeting. In addition to a substantial improvement in water solubility, the conjugates exhibited cytotoxicity similar to or higher than that of oxaliplatin in six different human cancer cell lines. GLUT-mediated transport of the complexes was investigated with a cell-based fluorescence competition assay and GLUT-inhibitor-mediated cytotoxicity analysis in a GLUT-overexpressing human colorectal adenocarcinoma (HT29) cell line. The antitumor effect of the aminodeoxypyranoside-conjugated platinum(II) complexes was found to depend significantly on the GLUT inhibitor, and the cellular uptake of the molecules was regulated by GLUT-mediated transport. The results from this study demonstrate the potential advantages of aminodeoxypyranosides as sugar motifs for glycoconjugation for Warburg-effect-targeted drug design. These fundamental results also support the potential of aminodeoxypyranoside-conjugated platinum(II) complexes as lead compounds for further preclinical evaluation. PMID:27135196

  2. Invariant mass spectrum and α-n correlation function studied in the fragmentation of 6He on a carbon target

    International Nuclear Information System (INIS)

    Momentum distributions and invariant mass spectra from the breakup of 6He ions with an energy of 240 MeV/u interacting with a carbon target have been studied. The data were used to extract information about the reaction mechanism which is influenced by the structure of 6He. It is found that the dominant reaction mechanism is a two-step process: knock out of one neutron followed by the decay of the 5He resonance. The shape of the (α+n) two-body invariant mass spectrum is interpreted as mainly reflecting the 5He ground state which is a Jπ=3/2- resonance. However, no evidence for correlations between α particles and neutrons is observed in the momentum widths of the distributions. It is demonstrated that a combined analysis of the two-body invariant mass spectrum and an appropriate correlation function may be used to determine the properties of the intermediate resonance. (orig.)

  3. Investigations of the ternary system beryllium-carbon-tungsten and analyses of beryllium on carbon surfaces; Untersuchung des ternaeren Systems Beryllium-Kohlenstoff-Wolfram und Betrachtungen von Beryllium auf Kohlenstoffoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, Florian

    2009-05-25

    Beryllium, carbon and tungsten are planned to be used as first wall materials in the future fusion reactor ITER. The aim of this work is a characterization of mixed material formation induced by thermal load. To this end, model systems (layers) were prepared and investigated, which give insight into the basic physical and chemical concepts. Before investigating ternary systems, the first step was to analyze the binary systems Be/C and Be/W (bottom-up approach), where the differences between the substrates PG (pyrolytic graphite) and HOPG (highly oriented pyrolytic graphite) were of special interest. Particularly X-ray photoelectron spectroscopy (XPS), low energy ion scattering (ISS) and Rutherford backscattering spectroscopy (RBS) were used as analysis methods. Beryllium evaporated on carbon shows an island growth mode, whereas a closed layer can be assumed for layer thicknesses above 0.7 nm. Annealing of the Be/C system induces Be{sub 2}C island formation for T{>=}770 K. At high temperatures (T{>=}1170 K), beryllium carbide dissociates, resulting in (metallic) beryllium desorption. For HOPG, carbide formation starts at higher temperatures compared to PG. Activation energies for the diffusion processes were determined by analyzing the decreasing beryllium amount versus annealing time. Surface morphologies were characterized using angle-resolved XPS (ARXPS) and atomic force microscopy (AFM). Experiments were performed to study processes in the Be/W system in the temperature range from 570 to 1270 K. Be{sub 2}W formation starts at 670 K, a complete loss of Be{sub 2}W is observed at 1170 K due to dissociation (and subsequent beryllium desorption). Regarding ternary systems, particularly Be/C/W and C/Be/W were investigated, attaching importance to layer thickness (reservoir) variations. At room temperature, Be{sub 2}C, W{sub 2}C, WC and Be{sub 2}W formation at the respective interfaces was observed. Further Be{sub 2}C is forming with increasing annealing temperatures

  4. Fallout beryllium-7 as a soil and sediment tracer in river basins: current status and needs

    Science.gov (United States)

    Taylor, Alex; Blake, Will H.; Smith, Hugh G.; Mabit, Lionel; Keith-Roach, Miranda J.

    2013-04-01

    Beryllium-7 is a cosmogenic radionuclide formed in the upper atmosphere by cosmic ray spallation of nitrogen and oxygen. Its constant natural production and fallout via precipitation coupled with its ability to bind to soil particles have underpinned its application as a sediment tracer. The short half-life of beryllium-7 (53.3 days) lends itself to tracing sediment dynamics over short time periods, thus, enabling assessment of the effect of land use change upon soil redistribution. Although beryllium-7 has been widely applied as a tracer to date, there remain crucial gaps in understanding relating to the assumptions for its use. To further support the application of beryllium-7 as a tracer across a range of environments requires consideration of both the current strengths and shortcomings of the technique to direct research needs. Here we review research surrounding the assumptions underpinning beryllium-7 use as a tracer and identify key knowledge gaps relating to i) the effects of rain shadowing and vegetation interception upon beryllium-7 fallout uniformity at the hillslope-scale; ii) the effect of preferential flow pathways upon beryllium-7 depth distribution in soil and overland flow upon beryllium-7 inventory uniformity and iii) the potential for beryllium-7 desorption in saline and reducing environments. To provide continued support for the use of beryllium-7 as a hillslope and catchment-scale tracer, there is an urgent need to undertake further research to quantify the effect of these factors upon tracer estimates.

  5. Fluorometric determination of beryllium with salicylidene-2-aminophenol in the presence of ethylenediamine

    International Nuclear Information System (INIS)

    This procedure can be carried out in aqueous or water-methanol medium. In aqueous media, the Be-salicylidene-2-aminophenol (SAPH) complex is quantitatively formed in the range of pH 8.1--8.6. This complex has an excitation max. at 345 nm and fluorescence max. at 440 nm. The fluorescence intensity is enhanced remarkably under the addition of ethylene-diamine (en) as a buffer with 1 ml of 0.04 % SAPH, 0.005--4 μg Be/25 ml can be determined in the presence of 1 ml of en. The relative standard deviation(R.S.D.) was 3.5 % for 0.019 μg beryllium. In the water-methanol media, the formation of the complex at pH 10 is highly reproducible. The complex is stood for 25 min before measurements. Here, 0.01--4 μg Be/25 ml can be determined. The R.S.D. was the same as the case of aqueous media. The Be complex was more stable in the water-methanol media than in the aqueous media. The fluorescence of the complex formed in the mixed medium (H2O:MeOH=2:3) keeps the intensity constant at least for 30 min. Although cobalt, chromium, and others interfere with the determination, they can be masked with EDTA. The proposed procedure was applied to the analysis of beryllium-copper alloy. (author)

  6. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    KAUST Repository

    Zhang, ShouDong

    2015-12-15

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1–1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1–1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.

  7. Graphite furnace atomic absorption spectrometry as a routine method for the quantification of beryllium in blood and serum

    Directory of Open Access Journals (Sweden)

    Brousseau Pauline

    2008-07-01

    Full Text Available Abstract Background A routine method for the quantification of beryllium in biological fluids is essential for the development of a chelation therapy for Chronic Beryllium Disease (CBD. We describe a procedure for the direct determination of beryllium in undigested micro quantities of human blood and serum using graphite furnace atomic absorption spectrometry. Blood and serum samples are prepared respectively by a simple 8-fold and 5-fold dilution with a Nash Reagent. Three experimental setups are compared: using no modifier, using magnesium nitrate and using palladium/citric acid as chemical modifiers. Results In serum, both modifiers did not improve the method sensitivity, the optimal pyrolysis and atomization temperatures are 1000°C and 2900°C, respectively. In blood, 6 μg of magnesium nitrate was found to improve the method sensitivity. The optimal pyrolysis and atomization temperatures were 800°C and 2800°C respectively. Conclusion In serum, the method detection limit was 2 ng l-1, the characteristic mass was 0.22 (± 0.07 pg and the accuracy ranged from 95 to 100%. In blood, the detection limit was 7 ng l-1, the characteristic mass was 0.20 (± 0.02 pg and the accuracy ranged from 99 to 101%.

  8. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol.

    Science.gov (United States)

    Patel, Reesha R; Barbosa, Cindy; Brustovetsky, Tatiana; Brustovetsky, Nickolay; Cummins, Theodore R

    2016-08-01

    Mutations in brain isoforms of voltage-gated sodium channels have been identified in patients with distinct epileptic phenotypes. Clinically, these patients often do not respond well to classic anti-epileptics and many remain refractory to treatment. Exogenous as well as endogenous cannabinoids have been shown to target voltage-gated sodium channels and cannabidiol has recently received attention for its potential efficacy in the treatment of childhood epilepsies. In this study, we further investigated the ability of cannabinoids to modulate sodium currents from wild-type and epilepsy-associated mutant voltage-gated sodium channels. We first determined the biophysical consequences of epilepsy-associated missense mutations in both Nav1.1 (arginine 1648 to histidine and asparagine 1788 to lysine) and Nav1.6 (asparagine 1768 to aspartic acid and leucine 1331 to valine) by obtaining whole-cell patch clamp recordings in human embryonic kidney 293T cells with 200 μM Navβ4 peptide in the pipette solution to induce resurgent sodium currents. Resurgent sodium current is an atypical near threshold current predicted to increase neuronal excitability and has been implicated in multiple disorders of excitability. We found that both mutations in Nav1.6 dramatically increased resurgent currents while mutations in Nav1.1 did not. We then examined the effects of anandamide and cannabidiol on peak transient and resurgent currents from wild-type and mutant channels. Interestingly, we found that cannabidiol can preferentially target resurgent sodium currents over peak transient currents generated by wild-type Nav1.6 as well as the aberrant resurgent and persistent current generated by Nav1.6 mutant channels. To further validate our findings, we examined the effects of cannabidiol on endogenous sodium currents from striatal neurons, and similarly we found an inhibition of resurgent and persistent current by cannabidiol. Moreover, current clamp recordings show that cannabidiol reduces

  9. Nuclear Transmutations in HFIR's Beryllium Reflector and Their Impact on Reactor Operation and Reflector Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL; Proctor, Larry Duane [ORNL

    2012-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory utilizes a large cylindrical beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron absorbing and radiation emitting isotopes. During the past year, two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (helium-3 and lithium-6) buildup in the reflector regions and its affect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to helium-3 buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge as well as during decay to assess the viability of transporting, storing, and ultimately disposing the reflector regions currently stored in the spent fuel pool. The post-irradiation curie inventories were used to determine whether the reflector regions are discharged as transuranic waste or become transuranic waste during the decay period for disposal purposes and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be transuranic waste at discharge and the other region was determined to become transuranic waste in less than 2 years after being discharged due to the initial uranium content (0.0044 weight percent uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only).

  10. Chemistry characterization and samples beryllium process impurity determination; Caracterizacao quimica e determinacao de impurezas de amostras de processo de berilio

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Leonel Mathry de

    1992-12-01

    Brazil is the greatest world producer of beryl (3 Be O.Al{sub 2}O{sub 3}.6SiO{sub 2}) and has recently begun to produce beryllium compounds by means of a pilot plant constructed at Governador Valadares city (Minas Gerais - Brazil). The aim of this work was the determination of trace level impurities and macro constituents in the tenth % range to support analytical control process of plant production and characterization of beryllium compounds. The impurities separations and purification process was developed by two steps procedure. The first one using EDTA complexation has separated and reduced some impurities to less than 1 {mu}g/ml level. In the second one it was used a chelating resin (Chelex 100) and the separation efficiency was about 75 to 97 % related with the element tested. High pure berylium oxide standard was obtained from purification of Be(OH)2. The R X fluorescence presented only traces of Cu and Si < 1 % Fe and Mn, Zn, Ca, Al, Na and S were completely removed. The beryllium content was determined by direct atomic emission spectroscopy in argon plasma (Dcp) and compared with classic gravimetric method as Be O. The results were in agreement (49,2+/-0,2 % and 48,3+/-0,1 % respectively) between 95 % of confidence. A low temperature gravimetric method for beryllium determination was also studied using Oxine with microwave furnace. A total of 24 elements including macro and trace level were determined by Dcp and/or spectrophotometric methods. The Be/B separation was studied using anionic resin in poly alcohols medium. A more detailed study of equilibrium conditions is necessary. This work was realized at Laboratorio de Analise Mineral (LAM) of Comissao Nacional de Energia Nuclear - Rio de Janeiro (CNEN). (author)

  11. Modeling the systemic retention of beryllium in rat. Extrapolation to human; Modelizacion de la retencion sistemica del berilio en la rata. Extrapolacion al Hombre

    Energy Technology Data Exchange (ETDEWEB)

    Montero Prieto, M.; Vidania Munoz, R. de

    1994-07-01

    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and others animal species. Furchner's work includes the obtained model for whole body retention in rats, but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with others previously published. (Author) 12 refs.

  12. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    International Nuclear Information System (INIS)

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  13. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    International Nuclear Information System (INIS)

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  14. Rapid-releasing of HI-6 via brain-targeted mesoporous silica nanoparticles for nerve agent detoxification

    Science.gov (United States)

    Yang, Jun; Fan, Lixue; Wang, Feijian; Luo, Yuan; Sui, Xin; Li, Wanhua; Zhang, Xiaohong; Wang, Yongan

    2016-05-01

    The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration.The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and

  15. Hyperon and negative particle production at central rapidity in proton-Beryllium interactions at 158 GeV/c

    International Nuclear Information System (INIS)

    A study of the strangeness enhancement in Lead-Lead collisions with respect to proton-induced reactions is being carried out at the CERN SPS by the WA97 experiment: up to now, data from proton-Lead collisions have been used as a reference sample. In this paper we report on a study of particle production in proton-Beryllium collisions. These collisions are expected to constitute a better reference sample than p-Pb, because of the lighter target. The analysis of hyperon and negative particle production is presented and the results are compared with those previously obtained from Pb-Pb and p-Pb collisions

  16. Proceedings of the 8th specialist meeting on recycling of irradiated Beryllium

    International Nuclear Information System (INIS)

    This report summarizes the documents presented in the 8th Specialist Meeting on Recycling of Irradiated Beryllium, which was held on October 28, 2013, in Bariloche, Río Negro, Argentina, hosted by INVAP and CNEA (Comision Nacional de Energia Atomica). The objective of the meeting is to exchange the information of current status and future plan for beryllium study in the Research/Testing reactors, and to make a discussion of “How to cooperate”. There were 20 participants from USA, Japan, Korea, Austria and Argentina. In this meeting, information exchange of current status and future plan for beryllium study was carried out for the Research/Testing reactor fields, and evaluation results of beryllium materials were discussed based on new irradiated beryllium data such as swelling, deformation, gas release and so on. The subject of the used beryllium recycling was also discussed for the enforcement of demonstration recycling tests. (author)

  17. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    International Nuclear Information System (INIS)

    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (1022 atoms/cm2) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project

  18. Beryllium coating produced by evaporation-condensation method and some their properties

    Energy Technology Data Exchange (ETDEWEB)

    Pepekin, G.I.; Anisimov, A.B.; Chernikov, A.S.; Mozherinn, S.I.; Pirogov, A.A. [SRI SIA Lutch., Podolsk (Russian Federation)

    1998-01-01

    The method of vacuum evaporation-condensation for deposition of beryllium coatings on metal substrates, considered in the paper, side by side with a plasma-spray method is attractive fon ITER application. In particular this technique may be useful for repair the surface of eroded tiles which is operated in a strong magnetic field. The possibility of deposition of beryllium coatings with the rate of layer growth 0.1-0.2 mm/h is shown. The compatibility of beryllium coating with copper or stainless steel substrate is provided due to intermediate barrier. The results of examination of microstructure, microhardness, porosity, thermal and physical properties and stability under thermal cycling of beryllium materials are presented. The value of thermal expansion coefficient and thermal conductivity of condensed beryllium are approximately the same as for industrial grade material produced by powder mettalurgy technique. However, the condensed beryllium has higher purity (up to 99.9-99.99 % wt.). (author)

  19. 5. IEA International workshop on beryllium technology for fusion. Book of abstracts

    International Nuclear Information System (INIS)

    The collection includes the abstracts of reports presented to the 5-th IEA international workshop on beryllium technology for fusion. The themes of reports are as follows: status of beryllium technology for fusion in Russia; manufacturing and testing of Be armoured first wall mock-up for ITER; development of the process of diffusion welding of metals stainless steel-copper-beryllium into a single composite; some features of beryllium-laser beam interaction; the effect of irradiation dose on tritium and helium release from neutron irradiated beryllium; thermal properties of neutron irradiated Be12Ti. The results of investigating the mechanical properties variation and swelling of beryllium under high temperature neutron irradiation are presented

  20. Truncation, modification, and optimization of MIG6(segment 2) peptide to target lung cancer-related EGFR.

    Science.gov (United States)

    Yu, Xiao-Dong; Yang, Rui; Leng, Chang-Jun

    2016-04-01

    Human epidermal growth factor receptor (EGFR) plays a central role in the pathological progression and metastasis of lung cancer; the development and clinical application of therapeutic agents that target the receptor provide important insights for new lung cancer therapies. The tumor-suppressor protein MIG6 is a negative regulator of EGFR, which can bind at the activation interface of asymmetric dimer of EGFR kinase domains to disrupt dimerization and then inactivate the kinase (Zhang X. et al. Nature 2007, 450: 741-744). The protein adopts two separated segments, i.e. MIG6(segment 1) and MIG6(segment 2), to directly interact with EGFR. Here, computational modeling and analysis of the intermolecular interaction between EGFR kinase domain and MIG6(segment 2) peptide revealed that the peptide is folded into a two-stranded β-sheet composed of β-strand 1 and β-strand 2; only the β-strand 2 can directly interact with EGFR activation loop, while leaving β-strand 1 apart from the kinase. A C-terminal island within the β-strand 2 is primarily responsible for peptide binding, which was truncated from the MIG6(segment 2) and exhibited weak affinity to EGFR kinase domain. Structural and energetic analysis suggested that phosphorylation at residues Tyr394 and Tyr395 of truncated peptide can considerably improve EGFR affinity, and mutation of other residues can further optimize the peptide binding capability. Subsequently, three derivative versions of the truncated peptide, including phosphorylated and dephosphorylated peptides as well as a double-point mutant were synthesized and purified, and their affinities to the recombinant protein of human EGFR kinase domain were determined by fluorescence anisotropy titration. As expected theoretically, the dephosphorylated peptide has no observable binding to the kinase, and phosphorylation and mutation can confer low and moderate affinities to the peptide, respectively, suggesting a good consistence between the computational

  1. Quantum-chemical approach to cohesive properties of metallic beryllium

    International Nuclear Information System (INIS)

    Calculations based upon the incremental approach, i.e. an expansion of the correlation energy in terms of one-body, two-body, and higher-order contributions from localized orbital groups, have been performed for metallic beryllium. We apply an embedding scheme which has been successfully applied recently to ground-state properties of magnesium and group 12 elements. This scheme forces localization in metallic-like model systems and allows for a gradual delocalization within the incremental approach. Quantum-chemical methods of the coupled-cluster and multi-reference configuration interaction type are used for evaluating individual increments. Results are given for the cohesive energy and lattice constants of beryllium, and it is shown that further development of the approach is needed for this difficult case

  2. Effects of beryllium-compounds on the hen. 2. Comm

    International Nuclear Information System (INIS)

    After oral application of 7Be2+ this cation is relative slowly absorbed from the intestine. The highest proportion of 7Be appeared in the feces. The absorbed 7Be has been found in the feathers, the bones and in the muscles as well as in the mucosa of the stomach and the intestine. Relative low is the accumulation in the liver and the kidneys as well as in the brain and the spinal cord. After i.v. application a high proportion of 7Be has been observed in the eggs. The rest of the applied radio-beryllium has been accumulated 7Be in the metabolically active tissues is removed very slowly. In contrast to this observation radio-beryllium disappeared relatively rapidly from the blood. (orig.)

  3. Fabrication methods for beryllium spacecraft components (Series 2)

    International Nuclear Information System (INIS)

    The aims of this paper are to conserve and yet promote the use of one of the most versatile metal elements available to the practising engineer. The scope of the work described involves the selection of candidate components suitable for manufacture in beryllium. Evaluation by mathematical modelling using finite element techniques is used as an aid in determining the principal load paths in a structural component. Cost effective techniques which are objectively analysed suggest that the conservation of raw beryllia can best be achieved using recently developed plasma spray methods. The British Aircraft Corporation have been investigating methods of plasma spraying beryllium with A.W.R.E. and current developments are giving clear indications that for certain future space applications plasma spray is the technique which most nearly meets the conservation objective. (author)

  4. Fabrication of beryllium spheres and its validation tests

    International Nuclear Information System (INIS)

    A sphere-pack blanket concept using small size spheres of beryllium is one of the promising design concept of the ITER blanket, because the sphere-pack can accommodate the size deformation due to neutron irradiation damage, helium swelling and cyclic temperature changes. Preliminary R and D for an industrial fabrication technology of beryllium spheres (1.0 ± 0.3 mm in diameter) has been started as part of feasibility study of Japanese blanket concept of layered sphere-pack configuration. The following tests were performed in the several demo-fabrications; feasibility of size distribution control, material characterization such as macroscopic and microscopic structure analysis, impurity analysis, and attainable packing density, mechanical integrity under various thermal cycling conditions. (author)

  5. 3T3 cell lines stably expressing Pax6 or Pax6(5a--a new tool used for identification of common and isoform specific target genes.

    Directory of Open Access Journals (Sweden)

    Yury Kiselev

    Full Text Available Pax6 and Pax6(5a are two isoforms of the evolutionary conserved Pax6 gene often co-expressed in specific stochiometric relationship in the brain and the eye during development. The Pax6(5a protein differs from Pax6 by having a 14 amino acid insert in the paired domain, causing the two proteins to have different DNA binding specificities. Difference in functions during development is proven by the fact that mutations in the 14 amino acid insertion for Pax6(5a give a slightly different eye phenotype than the one described for Pax6. Whereas quite many Pax6 target genes have been published during the last years, few Pax6(5a specific target genes have been reported on. However, target genes identified by Pax6 knockout studies can probably be Pax6(5a targets as well, since this isoform also will be affected by the knockout. In order to identify new Pax6 target genes, and to try to distinguish between genes regulated by Pax6 and Pax6(5a, we generated FlpIn-3T3 cell lines stably expressing Pax6 or Pax6(5a. RNA was harvested from these cell lines and used in gene expression microarrays where we identified a number of genes differentially regulated by Pax6 and Pax6(5a. A majority of these were associated with the extracellular region. By qPCR we verified that Ncam1, Ngef, Sphk1, Dkk3 and Crtap are Pax6(5a specific target genes, while Tgfbi, Vegfa, EphB2, Klk8 and Edn1 were confirmed as Pax6 specific target genes. Nbl1, Ngfb and seven genes encoding different glycosyl transferases appeared to be regulated by both. Direct binding to the promoters of Crtap, Ctgf, Edn1, Dkk3, Pdgfb and Ngef was verified by ChIP. Furthermore, a change in morphology of the stably transfected Pax6 and Pax6(5a cells was observed, and the Pax6 expressing cells were shown to have increased proliferation and migration capacities.

  6. 6p22.3 amplification as a biomarker and potential therapeutic target of advanced stage bladder cancer

    Science.gov (United States)

    Zhang, Jianmin; Underwood, Willie; Yang, Nuo; Frangou, Costa; Eng, Kevin; Head, Karen; Bollag, Roni J.; Kavuri, Sravan K.; Rojiani, Amyn M.; Li, Yingwei; Yan, Li; Hill, Annette; Woloszynska-Read, Anna; Wang, Jianmin; Liu, Song; Trump, Donald L.; Candace, Johnson S.

    2013-01-01

    Genetic and epigenetic alterations have been identified as to contribute directly or indirectly to the generation of transitional cell carcinoma of the urinary bladder (TCC-UB). In a comparative fashion much less is known about copy number alterations in TCC-UB, but it appears that amplification of chromosome 6p22 is one of the most frequent changes. Using fluorescence in situ hybridization (FISH) analyses, we evaluated chromosomal 6p22 amplification in a large cohort of bladder cancer patients with complete surgical staging and outcome data. We have also used shRNA knockdown candidate oncogenes in the cell based study. We found that amplification of chromosome 6p22.3 is significantly associated with the muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) (22%) in contrast to superficial TCC-UB (9%) (p=7.2-04). The rate of 6p22.3 amplification in pN>1 patients (32%) is more than twice that in pN0 (16%) patients (p=0.05). Interestingly, we found that 6p22.3 amplification is as twice as high (p=0.0201) in African American (AA) than European American (EA) TCC-UB patients. Moreover, we showed that the expression of some candidate genes (E2F3, CDKAL1 and Sox4) in the 6p22.3 region is highly correlated with the chromosomal amplification. In particular, knockdown of E2F3 inhibits cell proliferation in a 6p22.3-dependent manner, whereas knockdown of CDKAL1 and Sox4 has no effect on cell proliferation. Using gene expression profiling, we further identified some common as well as distinctive subset targets of the E2F3 family members. In summary, our data indicate that E2F3 is a key regulator of cell proliferation in a subset of bladder cancer and the 6p22.3 amplicon is a biomarker of aggressive phenotype in this tumor type. PMID:24231253

  7. Low-energy electronic stopping for boron in beryllium

    International Nuclear Information System (INIS)

    The range distribution for 50-keV boron bombarding beryllium was measured by an energetic ion-beam backscattering technique using helium ions. This distribution was compared with the range calculated with computer code EDEP1, with the result k 0.101 ± 0.013 for the electronic-stopping k-value. This value is compared with the results of recent interpolations from measurements of other elements. (author)

  8. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Dan [ORNL

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  9. Analysis of features of the deformation of auxetic beryllium

    OpenAIRE

    Гунько, Михаил Николаевич; Олейнич-Лысюк, Алла Васильевна; Раранский, Николай Дмитриевич; Тащук, Александр Юрьевич

    2015-01-01

    In the framework of the linear elasticity theory using the experimentally obtained elastic stiffness modules, temperature dependences of the elastic compliance modules and tensor components of Poisson's ratios    of beryllium in a wide range of temperatures and directions in the crystal lattice were calculated, and it was shown that with increasing temperature, the value and signs of Poisson's ratios  change differently in various temperature intervals. In the interval 0-300K,  become negativ...

  10. Dose Rates from Plutonium Metal and Beryllium Metal in a 9975 Shipping Container

    International Nuclear Information System (INIS)

    A parametric study was performed of the radiation dose rates that might be produced if plutonium metal and beryllium metal were shipped in the 9975 shipping package. These materials consist of heterogeneous combinations plutonium metal and beryllium. The plutonium metal content varies up to 4.4 kilograms while the beryllium metal varies up to 4 kilograms. This paper presents the results of that study

  11. Laser measurements of distances from the ORELA neutron target to experiment stations along flight paths 1 and 6

    International Nuclear Information System (INIS)

    Flight-path lengths have been measured by laser techniques for the 200-, 80-, and 18-m stations along flight path 1, and for the 5-, 20-, 40-, and 150-m stations along flight path 6 at the Oak Ridge Electron Linear Accelerator (ORELA). In each case the distance evaluated from the measurements is the slope distance from the center of the neutron-producing target to a position along the beam path, directly above a suitable benchmark at the experiment station. A total of 25 laser measurements were performed between the various stations. These data, along with appropriate uncertainties, were combined using Bayes' method. From this analysis we obtained the desired flight-path lengths, which typically have uncertainties less than 1.5 mm. The measurment technique, uncertainties, analysis method, and results are documented in detail in this report

  12. Electron microscope study of thin beryllium lamellae (1963)

    International Nuclear Information System (INIS)

    Thin SR beryllium lamellae are examined by electron microscopy after various treatments, together with other samples made up of Be - Fe at 1 per cent and 0.2 per cent iron. The SR beryllium is examined after annealing at 750 deg C and 900 deg C, strongly cold-worked and quenched at 900 deg C. At 950 deg C the metal is perfectly annealed; at 750 deg C the polygonisation is almost complete, the dislocations are arranged either is dislocation walls in the prismatic planes, or in hexagonal lattices with non-dissociated nodes suggesting a high stacking defect energy. The cold-worked structure has a high dislocation density and already existing crystal walls. In the quenched state, the few dislocations are very straight and are aligned in the crystallographic directions. Iron-precipitation is studied in two alloys during tempering at 660 deg after quenching in salt water. The precipitate appears at the grain boundaries and then spreads through the matrix leaving a depleted zone in the neighbourhood of the joints. These precipitates, in the form of platelets parallel to the base planes of the beryllium lattice have been identified as the inter metallic phase Be11 Fe oriented in relation to the matrix (0 0 0 1)//(0 0 0 1) (1 0 1-bar 0)//(1 1 2-bar 0). (authors)

  13. Mannose 6-phosphate-dependent targeting of lysosomal enzymes is required for normal craniofacial and dental development.

    Science.gov (United States)

    Koehne, Till; Markmann, Sandra; Schweizer, Michaela; Muschol, Nicole; Friedrich, Reinhard E; Hagel, Christian; Glatzel, Markus; Kahl-Nieke, Bärbel; Amling, Michael; Schinke, Thorsten; Braulke, Thomas

    2016-09-01

    Mucolipidosis II (MLII) is a severe systemic genetic disorder caused by defects in mannose 6-phosphate-dependent targeting of multiple lysosomal hydrolases and subsequent lysosomal accumulation of non-degraded material. MLII patients exhibit marked facial coarseness and gingival overgrowth soon after birth, accompanied with delayed tooth eruption and dental infections. To examine the pathomechanisms of early craniofacial and dental abnormalities, we analyzed mice with an MLII patient mutation that mimic the clinical and biochemical symptoms of MLII patients. The mouse data were compared with clinical and histological data of gingiva and teeth from MLII patients. Here, we report that progressive thickening and porosity of calvarial and mandibular bones, accompanied by elevated bone loss due to 2-fold higher number of osteoclasts cause the characteristic craniofacial phenotype in MLII. The analysis of postnatal tooth development by microcomputed tomography imaging and histology revealed normal dentin and enamel formation, and increased cementum thickness accompanied with accumulation of storage material in cementoblasts of MLII mice. Massive accumulation of storage material in subepithelial cells as well as disorganization of collagen fibrils led to gingival hypertrophy. Electron and immunofluorescence microscopy, together with (35)S-sulfate incorporation experiments revealed the accumulation of non-degraded material, non-esterified cholesterol and glycosaminoglycans in gingival fibroblasts, which was accompanied by missorting of various lysosomal proteins (α-fucosidase 1, cathepsin L and Z, Npc2, α-l-iduronidase). Our study shows that MLII mice closely mimic the craniofacial and dental phenotype of MLII patients and reveals the critical role of mannose 6-phosphate-dependent targeting of lysosomal proteins for alveolar bone, cementum and gingiva homeostasis. PMID:27239697

  14. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    Energy Technology Data Exchange (ETDEWEB)

    Hanafee, J.E. (ed.)

    1988-02-19

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers. (DLC)

  15. The impact of beryllium chloride and oxide on sexual function and offspring development in female rats

    International Nuclear Information System (INIS)

    The comparative study of the action of soluble chloride and difficultly soluble beryllium oxide on sexual cycle in female rats and their conception capability, revealing of embryotoxic and teratogenic effect of these compounds and determination of significance of terms of their impact on pregnant female as well as beryllium capability to penetrate through the placenta and accumulate in the offspring organism have been performed. A great potential danger of impact on animal reproductive function of soluble (chloride) beryllium compounds as compared with low soluble ones (oxide). In the genesis of embryotoxic teratonic effect probably along with beryllium impact on progeny through the maternal organism there occurs its direct impact on the offspring

  16. Vacuum Brazing of Beryllium Copper Components for the National Ignition Facility

    International Nuclear Information System (INIS)

    A process for vacuum brazing beryllium copper anode assemblies was required for the Plasma Electrode Pockels Cell System, or PEPC, a component for the National Ignition Facility (NIF). Initial problems with the joint design and wettability of the beryllium copper drove some minor design changes. Brazing was facilitated by plating the joint surface of the beryllium copper rod with silver 0.0006 inch thick. Individual air sampling during processing and swipe tests of the furnace interior after brazing revealed no traceable levels of beryllium

  17. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    International Nuclear Information System (INIS)

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers

  18. Problems and future plan on material development of beryllium in materials testing reactors

    International Nuclear Information System (INIS)

    Beryllium has been utilized as a moderator and/or reflector in a number of material testing reactors. The attractive nuclear properties of beryllium are its low atomic number, low atomic weight, low parasitic capture cross section for thermal neutrons, readiness to part with one of its own neutrons, and good neutron elastic scattering characteristics. However, it is difficult to reprocess irradiated beryllium because of high induced radioactivity. Disposal has also been difficult because of toxicity issues and special nuclear material controls. In this paper, problems and future plans of beryllium technology are introduced for nuclear reactors. (author)

  19. CD44v6 Monoclonal Antibody-Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-like Cells

    OpenAIRE

    Liang, Shujing; Li, Chao; Zhang, Chunlei; Chen, Yunsheng; Xu, Liang; Bao, Chenchen; Wang, Xiaoyong; Liu, Gang; ZHANG, FENGCHUN; Cui, Daxiang

    2015-01-01

    Developing safe and effective nanoprobes for targeted imaging and selective therapy of gastric cancer stem cells (GCSCs) has become one of the most promising anticancer strategies. Herein, gold nanostars-based PEGylated multifunctional nanoprobes were prepared with conjugated CD44v6 monoclonal antibodies (CD44v6-GNS) as the targeting ligands. It was observed that the prepared nanoprobes had high affinity towards GCSC spheroid colonies and destroyed them completely with a low power density upo...

  20. Suppressor of cytokine Signaling-3 inhibits interleukin-1 signaling by targeting the TRAF-6/TAK1 complex

    DEFF Research Database (Denmark)

    Frobøse, Helle; Rønn, Sif Groth; Heding, Peter E; Mendoza, Heidi; Cohen, Philip; Mandrup-Poulsen, Thomas; Billestrup, Nils

    2006-01-01

    IL-1 plays a major role in inflammation and autoimmunity through activation of nuclear factor kappa B (NFkappaB) and MAPKs. Although a great deal is known about the mechanism of activation of NFkappaB and MAPKs by IL-1, much less is known about the down-regulation of this pathway. Suppressor of...... cytokine signaling (SOCS)-3 was shown to inhibit IL-1-induced transcription and activation of NFkappaB and the MAPKs JNK and p38, but the mechanism is unknown. We show here that SOCS-3 inhibits NFkappaB-dependent transcription induced by overexpression of the upstream IL-1 signaling molecules MyD88, IL-1R......-activated kinase 1, TNF receptor-associated factor (TRAF)6, and TGFbeta-activated kinase (TAK)1, but not when the MAP3K MAPK/ERK kinase kinase-1 is used instead of TAK1, indicating that the target for SOCS-3 is the TRAF6/TAK1 signaling complex. By coimmunoprecipitation, it was shown that SOCS-3 inhibited the...

  1. State of the drilling technology in the conventional tunelling in the target seam Zollverein 6 at the mine Auguste Victoria; Stand der Bohrtechnik im konventionellen Streckenvortrieb im Floezhorizont Zollverein 6 auf dem Bergwerk Auguste Victoria

    Energy Technology Data Exchange (ETDEWEB)

    Rossbach, Stefan [RAG Deutsche Steinkohle, Herne (Germany). Bergwerk Auguste Victoria; Andrzejewski, Michael [RAG Deutsche Steinkohle, Herne (Germany). Servicebereich Technik und Logistik; Gastberg, Ingolf [DMT GmbH und Co. KG, Essen (Germany). Wettertechnik

    2013-06-15

    The future mining activities and activities of advance at the mine Auguste Victoria mainly concentrate in the level of the target seam Zollverein 6. The achievement of a layer depth of nearly 1,400 m in connection with difficult geological conditions imposed particular demands on the planning, technology, organization and security in mining, so that appropriate adjustments were required in mining technology. The contribution under consideration reports on the process characteristics typical for conventional tunneling in the target seam Zollverein 6.

  2. Enhancement of PARR-2 core reactivity by beryllium shim plate addition

    International Nuclear Information System (INIS)

    PARR-2 is a 30 kW research reactor. Its excess reactivity decreased after 10 years operation. Reactor could not be operated continuously for 5 hours during a day to meet the demand of users, because of negative temperature co-efficient of reactivity which is 0.13 mk per degree centigrade. The average temperature increase in the coolant (water) around the core is about 6 deg. C at the end of 5 hours operation. Reactivity of - 0.78 mk is added due to this temperature increase and has to be made available. Beryllium metal shim plate of 1.5mm thickness has been added into the reflector tray of reactor. Reactivity of core increased from 2.96 mk to 3.96 mk. Report covers procedure, preparations for shimming operation and post shimming measurements. (author)

  3. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    International Nuclear Information System (INIS)

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  4. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    Energy Technology Data Exchange (ETDEWEB)

    Luo, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratakis, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Virostek, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bowring, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  5. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tianhuan [LBL, Berkeley; Li, D. [LBL, Berkeley; Virostek, S. [LBL, Berkeley; Palmer, R. [Brookhaven; Stratakis, Diktys [Brookhaven; Bowring, D. [Fermilab

    2015-06-01

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  6. The influence of target oxygen on the YBa2Cu3O6+δ DC Magnetron sputtering process

    International Nuclear Information System (INIS)

    The oxygen partial pressure and the target potential have been monitored under a range of process conditions during single target dc magnetron sputtering of Y-Ba-Cu-O. The introduced sputtering gas consisted in all but one instance of pure argon and hence the oxygen present in the plasma originated mainly from the target. During the first hours of sputtering the oxygen partial pressure was of the same magnitude as the argon pressure (3.0 Pa). As the oxygen was released from the target and subsequently removed by pumping, the target potential increased and the film composition became more stoichiometric. After 30-40 hours of sputtering the target potential and the oxygen pressure stabilized and the film composition was equal to that of the stoichiometric target. If an oxygen flow exceeding a critical level was mixed into the sputtering gas the target potential and the deposition rate decreased swiftly. This was due to target oxidation, further manifested in changing plasma and target colours. In some instances the stabilization after 'presputtering' was incomplete and oscillations in target voltage and oxygen partial pressure were observed. The fluctuations made it virtually impossible to obtain stoichiometric films. The oscillative behaviour of the sputtering process is tentatively explained by a target temperature dependent oxygen diffusion. (au)

  7. Three-coordinate beryllium β-diketiminates: synthesis and reduction chemistry.

    Science.gov (United States)

    Arrowsmith, Merle; Hill, Michael S; Kociok-Köhn, Gabriele; MacDougall, Dugald J; Mahon, Mary F; Mallov, Ian

    2012-12-17

    A series of mononuclear, heteroleptic beryllium complexes supported by the monoanionic β-diketiminate ligand [HC{CMeNDipp}(2)](-) (L; Dipp = 2,6-diisopropylphenyl) have been synthesized. Halide complexes of the form [LBeX] (X = Cl, I) and a bis(trimethylsilyl)amide complex were produced via salt metathesis routes. Alkylberyllium β-diketiminate complexes of the form [LBeR] (R = Me, (n)Bu) were obtained by salt metathesis from the chloride precursor [LBeCl]. Controlled hydrolysis of [LBeMe] afforded an air-stable, monomeric β-diketiminatoberyllium hydroxide complex. [LBeMe] also underwent facile protonolysis with alcohols to form the corresponding β-diketiminatoberyllium alkoxides [LBeOR] (R = Me, (t)Bu, Ph). High temperatures and prolonged reaction times were required for protonolysis of [LBeMe] with primary amines to yield the β-diketiminatoberyllium amide complexes [LBeNHR] (R = (n)Bu, CH(2)Ph, Ph). No reactions were observed between [LBeMe] and silanes, terminal acetylenes, or secondary amines. All compounds were characterized by (1)H, (13)C, and (9)Be NMR spectroscopy and, in most cases, by X-ray crystallography. Reduction of the beryllium chloride complex with potassium metal resulted in apparent hydrogen-atom transfer between two β-diketiminate backbones, yielding two dimeric, potassium chloride bridged diamidoberyllium species. X-ray analysis of a cocrystallized mixture of the 18-crown-6 adducts of these species allowed unambiguous identification of the two reduced diketiminate ligands, one of which had been deprotonated at a backbone methyl substituent and the other reduced by hydride addition to the β-imine position. It is proposed that this process occurs by the formation of an unobserved radical anion species and intermolecular hydrogen-atom transfer by a radical-based hydrogen abstraction mechanism. PMID:23215345

  8. Early secretory antigenic target protein-6/culture filtrate protein-10 fusion protein-specific Th1 and Th2 response and its diagnostic value in tuberculous pleural effusion

    Institute of Scientific and Technical Information of China (English)

    戈启萍

    2013-01-01

    Objective To detect the Th1 and Th2 cell percentage in pleural effusion mononuclear cells (PEMCs) stimulated by early secretory antigenic target protein-6 (ESAT-6) /culture filtrate protein-10 (CFP-10) fusion protein (E/C) with flow cytometry (FCM) ,and to explore the local antigen specific Th1 and Th2 response and

  9. Beryllium migration in JET ITER-like wall plasmas

    Science.gov (United States)

    Brezinsek, S.; Widdowson, A.; Mayer, M.; Philipps, V.; Baron-Wiechec, P.; Coenen, J. W.; Heinola, K.; Huber, A.; Likonen, J.; Petersson, P.; Rubel, M.; Stamp, M. F.; Borodin, D.; Coad, J. P.; Carrasco, A. G.; Kirschner, A.; Krat, S.; Krieger, K.; Lipschultz, B.; Linsmeier, Ch.; Matthews, G. F.; Schmid, K.; contributors, JET

    2015-06-01

    JET is used as a test bed for ITER, to investigate beryllium migration which connects the lifetime of first-wall components under erosion with tokamak safety, in relation to long-term fuel retention. The (i) limiter and the (ii) divertor configurations have been studied in JET-ILW (JET with a Be first wall and W divertor), and compared with those for the former JET-C (JET with carbon-based plasma-facing components (PFCs)). (i) For the limiter configuration, the Be gross erosion at the contact point was determined in situ by spectroscopy as between 4% (Ein = 35 eV) and more than 100%, caused by Be self-sputtering (Ein = 200 eV). Chemically assisted physical sputtering via BeD release has been identified to contribute to the effective Be sputtering yield, i.e. at Ein = 75 eV, erosion was enhanced by about 1/3 with respect to the bare physical sputtering case. An effective gross yield of 10% is on average representative for limiter plasma conditions, whereas a factor of 2 difference between the gross erosion and net erosion, determined by post-mortem analysis, was found. The primary impurity source in the limiter configuration in JET-ILW is only 25% higher (in weight) than that for the JET-C case. The main fraction of eroded Be stays within the main chamber. (ii) For the divertor configuration, neutral Be and BeD from physically and chemically assisted physical sputtering by charge exchange neutrals and residual ion flux at the recessed wall enter the plasma, ionize and are transported by scrape-off layer flows towards the inner divertor where significant net deposition takes place. The amount of Be eroded at the first wall (21 g) and the Be amount deposited in the inner divertor (28 g) are in fair agreement, though the balancing is as yet incomplete due to the limited analysis of PFCs. The primary impurity source in the JET-ILW is a factor of 5.3 less in comparison with that for JET-C, resulting in lower divertor material deposition, by more than one order of

  10. Identification of Rab6a as a New Target of microRNA-155 Involved in Regulating Lipopolysaccharide-Induced TNF Secretion.

    Science.gov (United States)

    Yang, Yang; Yang, Lixia

    2016-02-01

    This study aims to provide experimental proof that Rab6a is an efficient target of microRNA-155 in regulating pro-inflammatory tumor necrosis factor (TNF) secretion stimulated by lipopolysaccharide (LPS) in macrophages. We identified Rab6a as a new target of microRNA-155 (miR-155) and found that overexpression of miR-155 decreased Rab6a expression at both protein and mRNA levels, which resulted in a significant reduction of TNF secretion induced by lipopolysaccharide stimulation. We have demonstrated that miR-155 can negatively regulate inflammatory TNF secretion in lipopolysaccharide stimulated macrophages, partly by targeting Rab6a, thereby providing new insights into the role of miR-155 in cytokine secretion in inflammatory macrophages. PMID:26265120

  11. Proceedings of the third IEA international workshop on beryllium technology for fusion

    International Nuclear Information System (INIS)

    This report is the Proceedings of the Third International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on October 22-24, 1997, at the Sangyou Kaikan in Mito City with 68 participants who attended from the Europe, the Russian Federation, the Kazakstan, the United States and Japan. The topics for papers were arranged into 9 sessions; beryllium applications for ITER, production and characterization, chemical compatibility and corrosion, forming and joining, plasma/tritium interactions, beryllium coating, first wall applications, neutron irradiation effects, health and safety. To utilize beryllium in the pebble type blanket, a series of discussions were intensified in multiple view points such as the swelling, He/T release from beryllium pebble irradiated up to high He content, effective thermal conductivity, tritium permeation and coating, and fabrication cost, and so on. As the plasma facing material, life time of beryllium and coated beryllium, dust and particle production, joining, waste treatment, mechanical properties and deformation by swelling were discussed as important issues. Especially, it was recognized throughout the discussions that the comparative study by the different researchers should be carried out to establish the reliability of the data reported in the workshop and in others. To enhance the comparative study, the world wide collaboration for the relative evaluation of the beryllium was proposed by the International Organization Committee and the proposal was approved by all of the participants. The 45 of the presented papers are indexed individually. (J.P.N.)

  12. Theoretical Chemistry to assess the risk from the Beryllium in ITER

    International Nuclear Information System (INIS)

    The Bestair project was recently awarded the IRSN prize for creativity in exploratory research. The objective of this study was to assess the potential release of beryllium, an extremely toxic element, into the environment in the event of an accident through improved knowledge of the beryllium-based chemical forms present inside the ITER containment. (author)

  13. Tritium release from highly neutron irradiated constrained and unconstrained beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu; Rolli, R.; Vladimirov, P.; Moeslang, A.

    2015-06-15

    Highlights: • For the irradiated constrained beryllium pebbles, the tritium release occurs easier than for the unconstrained ones. • Tritium retention in the irradiated constrained and unconstrained beryllium pebbles decreases with increasing irradiation temperature. • Formation of sub-grains in the constrained beryllium pebbles facilitate the open porosity network formation. - Abstract: Beryllium is the reference neutron multiplier material in the Helium Cooled Pebble Bed (HCPB) breeding blanket of fusion power plants. Significant tritium inventory accumulated in beryllium as a result of neutron-induced transmutations could become a safety issue for the operation of such blankets as well as for the nuclear waste utilization. To provide a related materials database, a neutron irradiation campaign of beryllium pebbles with diameters of 0.5 and 1 mm at 686–1006 K, the HIDOBE-01 experiment, has been performed in the HFR in Petten, the Netherlands, producing up to 3020 appm helium and 298 appm tritium. Thermal desorption tests of irradiated unconstrained and constrained beryllium pebbles were performed in a purge gas flow using a quadrupole mass-spectrometer (QMS) and an ionization chamber. Compared to unconstrained pebbles, constrained beryllium pebbles have an enhanced tritium release at all temperatures investigated. Small elongated sub-grains formed under irradiation in the constrained pebbles promote formation of numerous channels for facilitated tritium release.

  14. Reduction evaporation of BeO to provide a beryllium metal sample for accelerator radiometric dating

    International Nuclear Information System (INIS)

    A technique is described for preparing beryllium metal samples from beryllium oxide for use in accelerator ion sources. These samples are used to measure minute 10Be/9Be ratios for radiometric dating at the University of Washington tandem Van de Graaff accelerator. (orig.)

  15. Analysis of the KANT experiment on beryllium using TRIPOLI-4 Monte Carlo code

    International Nuclear Information System (INIS)

    Beryllium is an important material in fusion technology for multiplying neutrons in blankets. However, beryllium nuclear data are differently presented in modern nuclear data evaluations. Recent investigations with the TRIPOLI-4 Monte Carlo simulation of the tritium breeding ratio (TBR) demonstrated that beryllium reaction data are the main source of the calculation uncertainties between ENDF/B-VII.0 and JEFF-3.1. To clarify the calculation uncertainties from data libraries on beryllium, in this study TRIPOLI-4 calculations of the Karlsruhe Neutron Transmission (KANT) experiment have been performed by using ENDF/B-VII.0 and new JEFF-3.1.1 data libraries. The KANT Experiment on beryllium has been used to validate neutron transport codes and nuclear data libraries. An elaborated KANT experiment benchmark has been compiled and published in the NEA/SINBAD database and it has been used as reference in the present work. The neutron multiplication in bulk beryllium assemblies was considered with a central D-T neutron source. Neutron leakage spectra through the 5, 10, and 17 cm thick spherical beryllium shells were calculated and five-group partial leakage multiplications were reported and discussed. In general, improved C/E ratios on neutron leakage multiplications have been obtained. Both ENDF/B-VII.0 and JEFF-3.1.1 beryllium data libraries of TRIPOLI-4 are acceptable now for fusion neutronics calculations.

  16. Proceedings of the third IEA international workshop on beryllium technology for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroshi; Okamoto, Makoto [eds.

    1998-01-01

    This report is the Proceedings of the Third International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on October 22-24, 1997, at the Sangyou Kaikan in Mito City with 68 participants who attended from the Europe, the Russian Federation, the Kazakstan, the United States and Japan. The topics for papers were arranged into 9 sessions; beryllium applications for ITER, production and characterization, chemical compatibility and corrosion, forming and joining, plasma/tritium interactions, beryllium coating, first wall applications, neutron irradiation effects, health and safety. To utilize beryllium in the pebble type blanket, a series of discussions were intensified in multiple view points such as the swelling, He/T release from beryllium pebble irradiated up to high He content, effective thermal conductivity, tritium permeation and coating, and fabrication cost, and so on. As the plasma facing material, life time of beryllium and coated beryllium, dust and particle production, joining, waste treatment, mechanical properties and deformation by swelling were discussed as important issues. Especially, it was recognized throughout the discussions that the comparative study by the different researchers should be carried out to establish the reliability of the data reported in the workshop and in others. To enhance the comparative study, the world wide collaboration for the relative evaluation of the beryllium was proposed by the International Organization Committee and the proposal was approved by all of the participants. The 45 of the presented papers are indexed individually. (J.P.N.)

  17. Tritium release from highly neutron irradiated constrained and unconstrained beryllium pebbles

    International Nuclear Information System (INIS)

    Highlights: • For the irradiated constrained beryllium pebbles, the tritium release occurs easier than for the unconstrained ones. • Tritium retention in the irradiated constrained and unconstrained beryllium pebbles decreases with increasing irradiation temperature. • Formation of sub-grains in the constrained beryllium pebbles facilitate the open porosity network formation. - Abstract: Beryllium is the reference neutron multiplier material in the Helium Cooled Pebble Bed (HCPB) breeding blanket of fusion power plants. Significant tritium inventory accumulated in beryllium as a result of neutron-induced transmutations could become a safety issue for the operation of such blankets as well as for the nuclear waste utilization. To provide a related materials database, a neutron irradiation campaign of beryllium pebbles with diameters of 0.5 and 1 mm at 686–1006 K, the HIDOBE-01 experiment, has been performed in the HFR in Petten, the Netherlands, producing up to 3020 appm helium and 298 appm tritium. Thermal desorption tests of irradiated unconstrained and constrained beryllium pebbles were performed in a purge gas flow using a quadrupole mass-spectrometer (QMS) and an ionization chamber. Compared to unconstrained pebbles, constrained beryllium pebbles have an enhanced tritium release at all temperatures investigated. Small elongated sub-grains formed under irradiation in the constrained pebbles promote formation of numerous channels for facilitated tritium release

  18. Protection of beryllium metal against microbial influenced corrosion using silane self-assembled monolayers

    Science.gov (United States)

    Vaidya, Rajendra U.; Deshpande, Alina; Hersman, Larry; Brozik, Susan M.; Butt, Darryl

    1999-08-01

    The effectiveness of a self-assembled silane monolayer as protection for beryllium against microbiologically influenced corrosion (MIC) was demonstrated. Four-point bend tests on coated and uncoated beryllium samples were conducted after microbiological exposures, and the effectiveness of these coatings as MIC protection was reported through mechanical property evaluations. Application of the silane monolayer to the beryllium surfaces was found to prevent degradation of the failure strength and displacement-to-failure of beryllium in bending. In contrast, the uncoated beryllium samples exhibited a severe reduction in these mechanical properties in the presence of the marine Pseudomonas bacteria. The potentiodynamic measurements showed that both the uncoated and coated samples pitted at the open-circuit potential. However, the size and distribution of the corrosion pits formed on the surface of the beryllium samples were significantly different for the various cases (coated vs uncoated samples exposed to control vs inoculated medium). This study demonstrates the following: (1) the deleterious effects of MIC on the mechanical properties of beryllium and (2) the potential for developing fast, easy, and cost-effective MIC protection for beryllium metal using silane self-assemblies.

  19. Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder

    International Nuclear Information System (INIS)

    Studies have been conducted to find materials with microstructures which minimize the formation of blisters. A promising class of materials appears to be sintered metal powder with small average grain sizes and low atomic number Z. Studies of the surface erosion of sintered aluminum powder (SAP 895) and of aluminum held at 4000C due to blistering by 100 keV helium ions have been conducted and the results are compared to those obtained earlier for room temperature irradiation. A significant reduction of the erosion rate in SAP 895 in comparison to annealed aluminum and SAP 930 is observed. In addition results on the blistering of sintered beryllium powder (type I) irradiated at room temperature and 6000C by 100 keV helium ions are given. These results will be compared with those reported recently for vacuum cast beryllium foil and a foil of sintered beryllium powder (type II) which was fabricated differently, than type I. For room temperature irradiation only a few blisters could be observed in sintered beryllium powder type I and type II and they are smaller in size and in number than in vacuum cast beryllium. For irradiation at 6000C large scale exfoliation of blisters was observed for vacuum cast beryllium but much less exfoliation was seen for sintered beryllium powder, type I, and type II. The results show a reduction in erosion rate cast beryllium, for both room temperature and 6000C

  20. 20 CFR 30.207 - How does a claimant prove a diagnosis of a beryllium disease covered under Part B?

    Science.gov (United States)

    2010-04-01

    ... this section), together with lung pathology consistent with chronic beryllium disease, including the...) Occupational or environmental history, or epidemiologic evidence of beryllium exposure; and (ii) Any three of...) Lung pathology consistent with chronic beryllium disease. (D) Clinical course consistent with a...

  1. Detection of beryllium treatment of natural sapphires by NRA

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, P.C., E-mail: carolina.gutierrez@uam.e [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Ynsa, M.-D.; Climent-Font, A. [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Dpto. Fisica Aplicada C-12, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Calligaro, T. [Centre de Recherche et de Restauration des musees de France C2RMF, CNRS-UMR171, 14 quai Francois Mitterrand, 75001 Paris (France)

    2010-06-15

    Since the 1990's, artificial treatment of natural sapphires (Al{sub 2}O{sub 3} crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of {mu}g/g of beryllium in Al{sub 2}O{sub 3} crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-{mu}m diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction {sup 9}Be({alpha}, n{gamma}){sup 12}C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt {gamma}-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt {gamma}-ray produced during irradiation by the aluminium of the sapphire matrix through the {sup 27}Al({alpha}, p{gamma}){sup 30}Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required {mu}g/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 {mu}C, beryllium concentrations from 5 to 16 {mu}g/g have been measured in the samples, with a detection limit of 1 {mu}g/g.

  2. Detection of beryllium treatment of natural sapphires by NRA

    Science.gov (United States)

    Gutiérrez, P. C.; Ynsa, M.-D.; Climent-Font, A.; Calligaro, T.

    2010-06-01

    Since the 1990's, artificial treatment of natural sapphires (Al 2O 3 crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of μg/g of beryllium in Al 2O 3 crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-μm diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction 9Be(α, nγ) 12C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt γ-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt γ-ray produced during irradiation by the aluminium of the sapphire matrix through the 27Al(α, pγ) 30Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required μg/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 μC, beryllium concentrations from 5 to 16 μg/g have been measured in the samples, with a detection limit of 1 μg/g.

  3. The influence of target oxygen on the YBa2Cu3O6+δ direct-current magnetron sputtering process

    International Nuclear Information System (INIS)

    The oxygen partial pressure and the target potential have been monitored under a range of process conditions during single target direct-current (dc) magnetron sputtering of Y--Ba--Cu--O. The introduced sputtering gas consisted in most instances of pure argon and hence the oxygen present in the plasma originated mainly from the target. During the first hours of sputtering the oxygen partial pressure was of the same magnitude as the argon pressure (3.0 Pa) and the film composition was off stoichiometric. During the sputtering the oxygen pressure decreased, the target potential increased and the film composition became more stoichiometric. After 30--40 h of sputtering the target potential and the oxygen pressure stabilized and the film composition was equal to that of the stoichiometric target. If an oxygen flow exceeding a critical level was mixed into the sputtering gas the target potential and the deposition rate decreased swiftly. This was due to target oxidation. In some instances the stabilization after ''presputtering'' in pure argon was incomplete and oscillations in target voltage and oxygen partial pressure were observed. The fluctuations made it virtually impossible to obtain stoichiometric films. The oscillative behavior of the sputtering process is tentatively explained by a target temperature dependent oxygen diffusion

  4. G Protein-Coupled Receptor Family C 6A (GPRC6A: Possible molecular target in Bone Receptor acoplado a proteína G familia C6A: Posible blanco molecular en hueso

    Directory of Open Access Journals (Sweden)

    Armando Luis Negri

    2010-12-01

    Full Text Available GPRC6A is a recently identified member of family C of G protein-coupled receptors (GPCRs that is closely related to the calcium-sensing receptor CASR. It has recently been shown that GPRC6A extracellular cations and amino acids and requires both extracellular cations and amino acids for optimal stimulation in vitro. The study of the ligand profile of GPRC6A has shown that l-ornithine is the most potent and efficacious l-amino acid agonist, followed by several other aliphatic, neutral, and basic amino acids. Some studies show cation-dependent activation of GPRC6A, but compared to CASR, much higher extracellular calcium concentrations are needed to activate this receptor. Furthermore, the divalent cation Mg(2+ was found to be a positive modulator of the l-ornithine response. GPRC6A may be a candidate for the elusive extracellular calcium-sensing mechanism known to be present in osteoblasts, which respond to high local Ca²+ concentrations. GPRC6A has also been proposed as a candidate receptor for ostocalcin, regulating energy metabolism and as a molecular target for the action of strontium on bone.El GPRC6A es un miembro recientemente identificado de la familia C de receptores acoplados a proteínas G (GPCRs que está estrechamente emparentado con el receptor sensor de calcio (CASR. Se ha demostrado que este receptor es capaz de sensar cationes extracelulares y aminoácidos y que requiere tanto de los cationes extracelulares y de los aminoácidos para su óptima estimulación in vitro. El estudio del perfil de ligandos ha mostrado que la l-ornithine es el más potente eficaz l-aminoácido agonista seguido de varios otros aminoácidos alifáticos, neutros, y básicos. Algunos estudios han mostrado la activación por cationes del GPRC6A, pero comparado con el CASR, se necesitan concentraciones extracelulares más altas de calcio para activar este receptor. Es más, el Mg(2+ ha mostrado ser un modulador positivo de la respuesta a la l-ornithine. Se

  5. Preliminary irradiation test for new material selection on lifetime extension of beryllium reflector

    International Nuclear Information System (INIS)

    Beryllium has been utilized as a moderator and/or reflector in Japan Materials Testing Reactor (JMTR), because of nuclear properties of beryllium, low neutron capture and high neutron scattering cross sections. At present, the amount of irradiated beryllium frames in JMTR is about 2 tons in the JMTR canal. In this study, preliminary irradiation test was performed from 162nd to 165th operation cycles of JMTR as irradiation and PIE technique development for lifetime expansion of beryllium frames. The design study of irradiation capsule, development of dismount device of irradiation capsule and the high accuracy size measurement device were carried out. The PIEs such as tensile tests, metallurgical observation, and size change measurement were carried out with two kinds of irradiated beryllium metals (S-200F and S-65C)

  6. Preliminary irradiation test for new material selection on lifetime extension of beryllium reflector

    International Nuclear Information System (INIS)

    Beryllium has been utilized as a moderator and/or reflector in Japan Materials Testing Reactor (JMTR), because of nuclear properties of beryllium, low neutron capture and high neutron scattering cross sections. At present, the amount of irradiated beryllium frames in JMTR is about 2 tons in the JMTR canal. In this study, preliminary irradiation test was performed from 162nd to 165th operation cycles of JMTR as irradiation and PIE technique development for lifetime expansion of beryllium frames. The design study of irradiation capsule, development of dismount device of irradiation capsule and the high accuracy size measurement device were carried out. The PIEs such as tensile tests, metallurgical observation, and size change measurement were also carried out with two kinds of irradiated beryllium metals (S-200F and S-65C). (author)

  7. HEINBE; the calculation program for helium production in beryllium under neutron irradiation

    International Nuclear Information System (INIS)

    HEINBE is a program on personal computer for calculating helium production in beryllium under neutron irradiation. The program can also calculate the tritium production in beryllium. Considering many nuclear reactions and their multi-step reactions, helium and tritium productions in beryllium materials irradiated at fusion reactor or fission reactor may be calculated with high accuracy. The calculation method, user's manual, calculated examples and comparison with experimental data were described. This report also describes a neutronics simulation method to generate additional data on swelling of beryllium, 3,000-15,000 appm helium range, for end-of-life of the proposed design for fusion blanket of the ITER. The calculation results indicate that helium production for beryllium sample doped lithium by 50 days irradiation in the fission reactor, such as the JMTR, could be achieved to 2,000-8,000 appm. (author)

  8. Deformation behaviour of fine grained high purity beryllium - influence of fabrication parameters, temperature and copper additions

    International Nuclear Information System (INIS)

    The deformation behaviour of high-purity beryllium was tested on hot isostatically pressed samples of different initial grain size and compared with material manufactured commercially from pure beryllium and with beryllium-copper alloys containing 0.44, 1.1 and 2.1 at.% copper. Initial grain size of these high purity material was 0C. Grain structure of the samples was subsequently analysed by light, rastor and transmission electron microscopy. The influence of copper additions on deformation of high-purity beryllium was analysed. A further aim of this study was to investigate, by suitable methods, the mode of action of relevant impurities and to throw light on their influence on grain formation. This should enable reliable information to be provided for the manufacture of high-purity beryllium which, in turn, will lead to an improvement in ductility. (orig./IHOE)

  9. Use of notched beams to establish fracture criteria for beryllium

    International Nuclear Information System (INIS)

    The fracture of an improved form of pure beryllium was studied under triaxial tensile stresses. This state of stress was produced by testing notched beams, which were thick enough to be in a state of plane strain at the center. A plane strain, elastic-incremental plasticity finite element program was then used to determine the stress and strain distributions at fracture. A four-point bend fixture was used to load the specimens. It was carefully designed and manufactured to eliminate virtually all of the shear stresses at the reduced section of the notched beams. The unixial properties were obtained

  10. Accumulation of tritium in beryllium material under neutron irradiation

    International Nuclear Information System (INIS)

    In the present work the programming code is created on the basis of which the accumulation kinetics of tritium and isotope of He4 in the Be9 sample is analyzed depending on the time. The program is written in C++ programming language and for the calculations Monte Carlo method was applied. This program scoped on the calculation of concentration of helium and tritium in beryllium samples depending on the spectrum of the neutron flux in different experimental reactors such as JMTR, JOYO and IPEN/MB. The processes of accumulation of helium and tritium for each neutron energy spectrum of these reactors were analyzed. (author)

  11. Atomic, Crystal, Elastic, Thermal, Nuclear, and Other Properties of Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-02-01

    This report is part of a series of documents that provide a background to those involved in the construction of beryllium components and their applications. This report is divided into five sub-sections: Atomic/Crystal Structure, Elastic Properties, Thermal Properties, Nuclear Properties, and Miscellaneous Properties. In searching through different sources for the various properties to be included in this report, inconsistencies were at times observed between these sources. In such cases, the values reported by the Handbook of Chemistry and Physics was usually used. In equations, except where indicated otherwise, temperature (T) is in degrees Kelvin.

  12. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    OpenAIRE

    Hammer H.-W.; Phillips D.R.

    2010-01-01

    We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1) strength of the 1/2+ to 1/2− transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accurac...

  13. Portable Beryllium Prospecting Instrument With Large Sensitive Area

    International Nuclear Information System (INIS)

    The instrument described was designed on the basis of the photoneutron method of determining beryllium in rock surfaces and developed with a view to prospecting beryllium minerals in the Ilímaussaq intrusion, south Greenland. These minerals occur,mainly in hydrothermal veins which are from 1 mm to about 2 m wide. Of the ten beryllium minerals found until now, chkalovite (12% BeO) is the most common. The distinctive feature of the prospecting instrument is a comparatively large effective measuring area (∼500 cm2). Since the instrument is intended for use in a difficult terrain without roads, it has been necessary to limit its weight and size as much as possible. The instrument consists of a detector unit and a control unit. The detector unit has the dimensions 46 x 21 x 10 cm, weighs 20 kg, and contains a 30 cm long gamma-activation device, a biological radiation shield, and two 30-cm long 3He-filled neutron proportional detectors embedded in paraffin wax. The gamma- activation device consists of 31 identical 12Sb-sources placed in a steel tube with spacings decreasing towards the ends of the tube and with a total activity of 20 mCi. During transport of the instrument the gamma-activation device is placed at the centre of the radiation shield, when the maximum dose-rate on the surface of the detector unit is 200 mR/h. When the instrument is in use, the activation device is turned to a position just above the bottom of the detector unit. The sensitivity per cm2 of the bottom surface to a 5-cm thick layer of beryllium is 20% of its value at the centre of the bottom surface along a curve which is roughly an ellipse with axes 34 and 18 cm The total sensitivity of the instrument is about 35 counts/min per % BeO per mCi 124Sb, and the background count-rate is 12-20 counts/mm. The corresponding theoretical detection limit for a single measurement of 8-min duration is 35-50 ppm BeO. (author)

  14. Microstructure and mechanical properties of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.

    1998-01-01

    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  15. On solid-phase interaction of beryllium oxide with mullite

    International Nuclear Information System (INIS)

    The interaction of beryllium oxide with mullite has been analyzed thermodynamically. It is shown that the reaction between the above substances must proceed with separation of chrysoberyl but without yielding phenacite, which is inconsistent with some data published. It has been found experimentally that the interaction of pure BeO and mullite is described by equation 3Al2Ox2SiO2+3BeO→3BeAl2O4+2SiO2

  16. Dosage of boron traces in graphite, uranium and beryllium oxide

    International Nuclear Information System (INIS)

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.)

  17. Tritium analyses of COBRA-1A2 beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, D.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Selected tritium measurements have been completed for the COBRA-1A2 experiment C03 and D03 beryllium pebbles. The completed results, shown in Tables 1, 2, and 3, include the tritium assay results for the 1-mm and 3-mm C03 pebbles, and the 1-mm D03 pebbles, stepped anneal test results for both types of 1-mm pebbles, and the residual analyses for the stepped-anneal specimens. All results have been reported with date-of-count and are not corrected for decay. Stepped-anneal tritium release response is provided in addenda.

  18. A new beryllium ion-selective membrane electrode based on dibenzo(perhydrotriazino)aza-14-crown-4 ether

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinod Kumar, E-mail: vinodfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Singh, Ashok Kumar; Mergu, Naveen [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2012-10-24

    Graphical abstract: Variation of potential with Be{sup 2+} activity for membrane sensors based on dibenzo(perhydrotriazino)aza-14-crown-4 ether. Highlights: Black-Right-Pointing-Pointer It is the first report on an ion sensor using substituted aza-14-crown-4 for Be{sup 2+}. Black-Right-Pointing-Pointer Response time is 15 s and life time is more than 4 months with good reproducibility. Black-Right-Pointing-Pointer The proposed electrode works well in a wide pH range 3.0-9.0. - Abstract: Beryllium(II) selective electrodes have been fabricated based on poly(vinyl chloride) (PVC) matrix membranes containing newly synthesized neutral carrier dibenzo(perhydrotriazino)aza-14-crown-4 ethers as ionophore. Best performance was exhibited by the membrane having a composition ionophore (IIa):PVC:sodium tetraphenylborate (NaTPB):tributyl phosphate (TBP) in the ratio (w/w; mg) of 5:30:3:65. This membrane worked well over a wide concentration range 7.6 Multiplication-Sign 10{sup -6} to 1.0 Multiplication-Sign 10{sup -1} M of Be{sup 2+} with a Nernstian slope of 30.7 mV per decade of beryllium activity. The response time of the sensor is 15 s and the membrane can be used over a period of 4 months with good reproducibility. The proposed electrode works well in a wide pH range 3.0-9.0. It was successfully applied to the determination of beryllium in a mineral sample.

  19. Use of Beryllium-7 as a surrogate to determine the deposition of metal and polycyclic aromatic hydrocarbon through urban aerosols in Nantes, France

    OpenAIRE

    Percot, Stéphane; Ruban, Véronique; Roupsard, Pierre; Maro, Denis; MILLET, Maurice

    2013-01-01

    The aerodynamic size distribution of the natural radionuclide Beryllium 7 (7Be) and associated trace metals, pesticides and polycyclic aromatic hydrocarbons (PAHs) in Nantes (France) was determined during 6 campaigns (conducted from June 2010 to March 2012) using a low pressure impactor. The activity distribution of 7Be, as measured by a gamma ray spectrometer, was associated with the accumulation mode (with around 85% of the mass < 1 µm) and explained by post condensation processes on the ai...

  20. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores: implications for risk assessment.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C

    2008-01-01

    Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to CBD. In comparison to high-CBD risk exposures where the chemical nature of aerosol

  1. Beryllium, zinc and lead single crystals as a thermal neutron monochromators

    International Nuclear Information System (INIS)

    Highlights: •Monochromatic features of Be, Zn and Pb single crystals. •Calculations of neutron reflectivity using a computer program MONO. •Optimum mosaic spread, thickness and cutting plane of single crystals. -- Abstract: The monochromatic features of Be, Zn and Pb single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.04 up to 0.5 nm. A computer program MONO written in “FORTRAN-77”, has been adapted to carry out the required calculations. Calculations show that a 5 mm thick of beryllium (HCP structure) single crystal cut along its (0 0 2) plane having 0.6° FWHM are the optimum parameters when it is used as a monochromator with high reflected neutron intensity from a thermal neutron flux. Furthermore, at wavelengths shorter than 0.16 nm it is free from the accompanying higher order ones. Zinc (HCP structure) has the same parameters, with intensity much less than the latter. The same features are seen with lead (FCC structure) cut along its (3 1 1) plane with less reflectivity than the former. However, Pb (3 1 1) is more preferable than others at neutron wavelengths ⩽ 0.1 nm, since the glancing angle (θ ∼ 20°) is more suitable to carry out diffraction experiments. For a cold neutron flux, the first-order neutrons reflected from beryllium is free from the higher orders up to 0.36 nm. While for Zn single crystal is up to 0.5 nm

  2. Fragmentation cross sections of Fe^{26+}, Si^{14+} and C^{6+} ions of 0.3-10 A GeV on CR39, polyethylene and aluminum targets

    CERN Document Server

    Giorgini, Miriam

    2008-01-01

    New measurements of the total and partial fragmentation cross sections in the energy range 0.3-10 A GeV of Fe^{26+}, Si^{14+} and C^{6+} beams on polyethylene, CR39 and aluminum targets are presented. The exposures were made at Brookhaven National Laboratory (BNL), USA, and Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. The CR39 nuclear track detectors were used to identify the incident and survived beams and their fragments. The total fragmentation cross sections for all targets are almost energy independent while they depend on the target mass. The measured partial fragmentation cross sections are also discussed.

  3. Detailed Analysis of Focal Chromosome Arm 1q and 6p Amplifications in Urothelial Carcinoma Reveals Complex Genomic Events on 1q, and SOX4 as a Possible Auxiliary Target on 6p.

    Directory of Open Access Journals (Sweden)

    Pontus Eriksson

    Full Text Available Urothelial carcinoma shows frequent amplifications at 6p22 and 1q21-24. The main target gene at 6p22 is believed to be E2F3, frequently co-amplified with CDKAL1 and SOX4. There are however reports on 6p22 amplifications that do not include E2F3. Previous analyses have identified frequent aberrations occurring at 1q21-24. However, due to complex rearrangements it has been difficult to identify specific 1q21-24 target regions and genes.We selected 29 cases with 6p and 37 cases with 1q focal genomic amplifications from 261 cases of urothelial carcinoma analyzed by array-CGH for high resolution zoom-in oligonucleotide array analyses. Genomic analyses were combined with gene expression data and genomic sequence analyses to characterize and fine map 6p22 and 1q21-24 amplifications.We show that the most frequently amplified gene at 6p22 is SOX4 and that SOX4 can be amplified and overexpressed without the E2F3 or CDKAL1 genes being included in the amplicon. Hence, our data point to SOX4 as an auxiliary amplification target at 6p22. We further show that at least three amplified regions are observed at 1q21-24. Copy number data, combined with gene expression data, highlighted BCL9 and CHD1L as possible targets in the most proximal region and MCL1, SETDB1, and HIF1B as putative targets in the middle region, whereas no obvious targets could be determined in the most distal amplicon. We highlight enrichment of G4 quadruplex sequence motifs and a high number of intraregional sequence duplications, both known to contribute to genomic instability, as prominent features of the 1q21-24 region.Our detailed analyses of the 6p22 amplicon suggest SOX4 as an auxiliary target gene for amplification. We further demonstrate three separate target regions for amplification at 1q21-24 and identified BCL9, CHD1L, and MCL1, SETDB1, and HIF1B as putative target genes within these regions.

  4. Effect of copper on crack propagation in beryllium single crystals

    International Nuclear Information System (INIS)

    The effect of copper additives on the fracture energy and the development of cracks parallel to the basal plane was studied in zone-refined single crystalline beryllium. At 770K the cleavage planes are very smooth, so the crack propagation energy, which is independent of copper content (less than 2 at. percent Cu) in the range of measurement accuracy, is only a little higher than the surface energy of the basal plane. At room temperature, due to intense plastic processes taking place in front of the crack tip, the fracture energy is an order of magnitude higher than at low temperatures. The effect of copper on the plastic processes can be divided into two regions. In region I (less than 1.2 at. percent Cu), in which the crack propagation energy increases sharply with increasing copper content, crack propagation is controlled by prism slips. The decrease in crack propagation energy in region II (greater than 1.2 at. percent Cu) can be attributed to a reduction of beryllium twinning energy with increasing copper content. (auth)

  5. A non-chemical spectroscopic determination of atmospheric beryllium

    International Nuclear Information System (INIS)

    Beryllium in the atmosphere is determined by emission spectroscopy using a non-chemical method of analysis. Long term effects of beryllium poisoning result in respiratory and skin disease, and this is partly reflected by the low threshold limits (0.002 mg/m3). In comparison the threshhold values for lead and cadmium are 0.2 and 0.16 mg/m3 respectively. Air samples are collected at 2 litres/ minute using cellulose filters, and sampling time is dependent on the individual process being monitored, but can be as short as five minutes, eg. dental laboratories. The filters are initially divided in two parts, and one portion is carefully pelletised using a steel press. The pellet is placed in an electrode cup and 'wetted' using isopropanol and ethylene glycol. Wetting is necessary because the pellets tended to explode out of the arcing zone. Calibration graphs were produced using an internal cobalt standard, and the 234.8 nm, 313.0 nm emission lines were used. No spectral and inter-element effects were observed, and the minimum detection limit was one nanogram. Under normal working conditions a 25% precision was obtained. (author)

  6. Steam chemical reactivity of plasma-sprayed beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Pawelko, R.J.; Smolik, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Castro, R.G. [Los Alamos National Lab., NM (United States)

    1998-07-01

    Plasma-spraying with the potential for in-situ repair makes beryllium a primary candidate for plasma facing and structural components in experimental magnetic fusion machines. Deposits with good thermal conductivity and resistance to thermal cycling have been produced with low pressure plasma-spraying (LPPS). A concern during a potential accident with steam ingress is the amount of hydrogen produced by the reactions of steam with hot components. In this study the authors measure the reaction rates of various deposits produced by LPPS with steam from 350 C to above 1,000 C. They correlate these reaction rates with measurements of density, open porosity and BET surface areas. They find the reactivity to be largely dependent upon effective surface area. Promising results were obtained below 600 C from a 94% theoretical dense (TD) deposit with a BET specific surface area of 0.085 m{sup 2}/g. Although reaction rates were higher than those for dense consolidated beryllium they were substantially lower, i.e., about two orders of magnitude, than those obtained from previously tested lower density plasma-sprayed deposits.

  7. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  8. Remarkable Hydrogen Storage on Beryllium Oxide Clusters: First Principles Calculations

    CERN Document Server

    Shinde, Ravindra

    2016-01-01

    Since the current transportation sector is the largest consumer of oil, and subsequently responsible for major air pollutants, it is inevitable to use alternative renewable sources of energies for vehicular applications. The hydrogen energy seems to be a promising candidate. To explore the possibility of achieving a solid-state high-capacity storage of hydrogen for onboard applications, we have performed first principles density functional theoretical calculations of hydrogen storage properties of beryllium oxide clusters (BeO)$_{n}$ (n=2 -- 8). We observed that polar BeO bond is responsible for H$_{2}$ adsorption. The problem of cohesion of beryllium atoms does not arise, as they are an integral part of BeO clusters. The (BeO)$_{n}$ (n=2 -- 8) adsorbs 8--12 H$_{2}$ molecules with an adsorption energy in the desirable range of reversible hydrogen storage. The gravimetric density of H$_{2}$ adsorbed on BeO clusters meets the ultimate 7.5 wt% limit, recommended for onboard practical applications. In conclusion,...

  9. Polarization measurements in π+p and K+p elastic scattering at 6 and 12 GeV/c with the CERN polarized deuteron target

    International Nuclear Information System (INIS)

    The polarization in π+p→π+p and K+p→K+p has been measured at 6 and 12 GeV/c in the four-momentum transfer interval 0.1→=mod(t)2 by scattering on protons of a polarized deuteron target. Comparison with existing results obtained with polarized proton targets shows good general agreement and no evidence for asymmetry effects due to the presence of the spectator neutron. For K+p elastic scattering polarization the experiment yields improved statistics, especially at 6 GeV/c. (Auth.)

  10. Reduction of surface erosion caused by helium blistering: comparison between vacuum-cast and sintered-beryllium

    International Nuclear Information System (INIS)

    The blister formation and the erosion associated with blistering in a vacuum cast beryllium foil and in a foil of sintered beryllium powder have been investigated for irradiation at room temperature and at 6000C with 100 keV 4He+ ions for total doses of 0.5 to 1.0 C cm-2. For room temperature irradiation the blisters in sintered beryllium powder are smaller in size than in vacuum cast beryllium. For irradiation at 6000C large scale exfoliation of blisters was observed for vacuum cast beryllium but only small amount of exfoliation was seen for sintered beryllium powder. The results show a reduction in erosion rate in sintered beryllium as compared to the erosion rate in vacuum cast beryllium. For room temperature irradiation no erosion rate could be determined for the sintered beryllium foil since no blister exfoliation was observed. For 6000C irradiation the erosion rate for sintered beryllium foil is more than an order of magnitude smaller than for vacuum cast beryllium

  11. Determination of picomolar beryllium levels in seawater with inductively coupled plasma mass spectrometry following silica-gel preconcentration

    International Nuclear Information System (INIS)

    Highlights: • We developesd the simplest and robust SPE method for ultra low picomolar level beryllium in seawater. • Just silica gel column can quantitatively adsorb beryllium in neutral pH condition containing natural seawater. • EDTA solution can eliminate seawater matrixes retaining Be in the column, which optimize to ICP-MS detemination. • Accurate and precise Be data have been obtained for natural seawater from North Pacific Ocean. - Abstract: A robust and rapid method for the determination of natural levels of beryllium (Be) in seawater was developed to facilitate mapping Be concentrations in the ocean. A solid-phase extraction method using a silica gel column was applied for preconcentration and purification of Be in seawater prior to determination of Be concentrations with inductively coupled plasma mass spectrometry (ICP-MS). Be was quantitatively adsorbed onto silica gel from solutions with pH values ranging from 6.3 to 9, including natural seawater. The chelating agent ethylenediamine tetraacetic acid was used to remove other ions in the seawater matrix (Na, Mg, and Ca) that interfere with the ICP-MS analysis. The reproducibility of the method was 3% based on triplicate analyses of natural seawater samples, and the detection limit was 0.4 pmol kg−1 for 250 mL of seawater, which is sufficient for the analysis of seawater in the open ocean. The method was then used to determine the vertical profile of Be in the eastern North Pacific Ocean, which was found to be a recycled-type profile in which the Be concentration increased with depth from the surface (7.2 pmol kg−1 at <200 m) to deep water (29.2 pmol kg−1 from 3500 m to the bottom)

  12. Determination of picomolar beryllium levels in seawater with inductively coupled plasma mass spectrometry following silica-gel preconcentration

    Energy Technology Data Exchange (ETDEWEB)

    Tazoe, Hirofumi, E-mail: tazoe@cc.hirosaki-u.ac.jp [Department of Radiation Chemistry, Institute of Radiation Emergency Mediation, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); College of Humanities and Sciences, Nihon University, 3-25-40, Sakurajosui, Setagaya-ku, Tokyo 156-8550 (Japan); Yamagata, Takeyasu [College of Humanities and Sciences, Nihon University, 3-25-40, Sakurajosui, Setagaya-ku, Tokyo 156-8550 (Japan); Obata, Hajime [Atmosphere and Ocean Research Institute, The Tokyo University, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8564 (Japan); Nagai, Hisao [College of Humanities and Sciences, Nihon University, 3-25-40, Sakurajosui, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-12-10

    Highlights: • We developesd the simplest and robust SPE method for ultra low picomolar level beryllium in seawater. • Just silica gel column can quantitatively adsorb beryllium in neutral pH condition containing natural seawater. • EDTA solution can eliminate seawater matrixes retaining Be in the column, which optimize to ICP-MS detemination. • Accurate and precise Be data have been obtained for natural seawater from North Pacific Ocean. - Abstract: A robust and rapid method for the determination of natural levels of beryllium (Be) in seawater was developed to facilitate mapping Be concentrations in the ocean. A solid-phase extraction method using a silica gel column was applied for preconcentration and purification of Be in seawater prior to determination of Be concentrations with inductively coupled plasma mass spectrometry (ICP-MS). Be was quantitatively adsorbed onto silica gel from solutions with pH values ranging from 6.3 to 9, including natural seawater. The chelating agent ethylenediamine tetraacetic acid was used to remove other ions in the seawater matrix (Na, Mg, and Ca) that interfere with the ICP-MS analysis. The reproducibility of the method was 3% based on triplicate analyses of natural seawater samples, and the detection limit was 0.4 pmol kg{sup −1} for 250 mL of seawater, which is sufficient for the analysis of seawater in the open ocean. The method was then used to determine the vertical profile of Be in the eastern North Pacific Ocean, which was found to be a recycled-type profile in which the Be concentration increased with depth from the surface (7.2 pmol kg{sup −1} at <200 m) to deep water (29.2 pmol kg{sup −1} from 3500 m to the bottom)

  13. Compatibility test between beryllium and ferritic stainless steel(F82H)

    International Nuclear Information System (INIS)

    In a fusion blanket, beryllium has been identified for use as neutron multiplier, where it will be in contact with the structural material. Austenitic stainless steel, 316SS has been considered as the structural material. However, from some studies, it is reported that beryllium reacts with 316SS above 600 C. In our investigations, we found that the reaction product between beryllium and nickel, BeNi was formed on 316SS side at 600 C. Therefore, the compatibility between beryllium and ferritic stainless steel without nickel, F82H(Fe - 8%Cr - 2%W - 0.2%V) as the new structural material in JAERI was investigated to determine if it was more compatible with beryllium. In this study, for clarifying the chemical interaction between beryllium and F82H, the out-of-pile compatibility test has been carried out with diffusion couples of beryllium and F82H which were inserted in the capsule filled with high purity helium gas. Annealing temperatures was 400, 600 and 800 C, and annealing periods was 100, 300 and 1000 h, respectively. From the results of this test, it is obvious that the thickness of reaction layer in F82H is 2/3 of that in 316SS in the case of annealing at 800 C for 1000 h. (orig.)

  14. Immobilisation of beryllium in solid waste (red-mud) by fixation and vitrification.

    Science.gov (United States)

    Bhat, P N; Ghosh, D K; Desai, M V M

    2002-01-01

    The objective of this study was to obtain information on the immobilization of beryllium (Be) in solid waste generated in the extraction process of beryllium from its ore, Beryl. This solid waste, termed red-mud, contains oxides of iron, aluminium, calcium, magnesium and beryllium. The red-mud waste contains beryllium at levels above the permissible limit, which prevents its disposal as solid waste. The total beryllium content in the red-mud analysed showed value ranging from 0.39 to 0.59% Be The studies showed that 50% of the total beryllium in red-mud can be extracted by water by repeated leaching over a period of 45 days. The cement mix, casting into cement blocks, was subjected to leachability studies over a period of 105 days and immobilization factor (IF factor) was determined. These IF values, of the order of 102, were compared with those obtained by performing leachability study on vitrified red-mud masses produced at different temperature conditions. Direct heating of the red-mud gave the gray coloured, non-transparent vitreous mass (as 'bad glass') showed effective immobilisation factor for beryllium in red-mud of the order of 10(4). PMID:12092765

  15. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring; FINAL

    International Nuclear Information System (INIS)

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features

  16. Development of radiation resistant grades of beryllium for nuclear and fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    1995-09-01

    R&D results on beryllium with high radiation resistance obtained recently are described in this report. The data are presented on nine different grades of isotropic beryllium manufactured by VNIINM and distinguished by both initial powder characteristics and properties of billets, made of these powders. The average grain size of the investigated beryllium grades varied from 8 to 26 {mu}m, the content of beryllium oxide was 0.9 - 3.9 wt.%, the dispersity of beryllium oxide - 0.04 - 0.5 {mu}m, tensile strength -- 250 - 650 MPa. All materials were irradiated in SM - 2 reactor over the temperature range 550 - 780{degrees}C. The results of the investigation showed, that HIP beryllium grades are less susceptible to swelling at higher temperatures in comparison with hot pressed and extruded grades. Beryllium samples, having the smallest grain size, demonstrated minimal swelling, which was less than 0.8 % at 750{degrees}C and Fs = 3.7 {center_dot}10{sup 21} cm{sup -2} (E>0.1 MeV). The mechanical properties, creep and microstructure parameters, measured before and after irradiation, are presented.

  17. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  18. The development and advantages of beryllium capsules for the National Ignition Facility

    International Nuclear Information System (INIS)

    Capsules with beryllium ablators have long been considered as alternatives to plastic for the National Ignition Facility laser; now the superior performance of beryllium is becoming well substantiated. Beryllium capsules have the advantages of relative insensitivity to instability growth, low opacity, high tensile strength, and high thermal conductivity. 3-D calculation with the HYDRA code NTIS Document No. DE-96004569 (M. M. Marinak et.al. in UCRL-LR-105821-95-3) confirm 2-D LASNEX U. B. Zimmerman and W. L. Kruer, Comments Plasmas Phys. Controlled Thermonucl. Fusion, 2, 51(2975) results that particular beryllium capsule designs are several times less sensitive than the CH point design to instability growth from DT ice roughness. These capsule designs contain more ablator mass and leave some beryllium unablated at ignition. By adjusting the level of copper dopant, the unablated mass can increase or decrease, with a corresponding decrease or increase in sensitivity to perturbations. A plastic capsule with the same ablator mass as the beryllium and leaving the same unablated mass also shows this reduced perturbation sensitivity. Beryllium's low opacity permits the creation of 250 eV capsule designs. Its high tensile strength allows it to contain DT fuel at room temperature. Its high thermal conductivity simplifies cryogenic fielding

  19. Mechanical compression tests of beryllium pebbles after neutron irradiation up to 3000 appm helium production

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A. [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • Compression tests of highly neutron irradiated beryllium pebbles have been performed. • Irradiation hardening of beryllium pebbles decreases the steady-state strain-rates. • The steady-state strain-rates of irradiated beryllium pebbles exceed their swelling rates. - Abstract: Results: of mechanical compression tests of irradiated and non-irradiated beryllium pebbles with diameters of 1 and 2 mm are presented. The neutron irradiation was performed in the HFR in Petten, The Netherlands at 686–968 K up to 1890–2950 appm helium production. The irradiation at 686 and 753 K cause irradiation hardening due to the gas bubble formation in beryllium. The irradiation-induced hardening leads to decrease of steady-state strain-rates of irradiated beryllium pebbles compared to non-irradiated ones. In contrary, after irradiation at higher temperatures of 861 and 968 K, the steady-state strain-rates of the pebbles increase because annealing of irradiation defects and softening of the material take place. It was shown that the steady-state strain-rates of irradiated beryllium pebbles always exceed their swelling rates.

  20. Device for continuous control of beryllium content in atmosphere and on surfaces

    International Nuclear Information System (INIS)

    As known, beryllium and its compounds are characterized by high toxicity, therefore it is necessary to control constantly the content of beryllium and its compounds in the air and also on the surfaces of production areas and equipment to provide safety. The device for a quick measuring of beryllium content in the air, surface deposits and precipitations is described in the report. The mode of functioning of the device is based on nuclear reaction 9Be(αnγ)12C with the use of alpha-source based on plutonium-238, i.e. beryllium can be in any chemical state - metal, oxide, salt, etc. Gamma-quantums with energies 7,65 MeV (10%) and 4,43 MeV (90%), typical for beryllium, are generated as a result of interaction between alpha-particles and beryllium nuclei. The mentioned reaction with beryllium gives maximum release if comparing with another nuclides and along with high energy of gamma-quantums provides maximum sensibility of analysis without any disturbance from another elements. The number of generated gamma-quantums is in proportion to beryllium content in a probe. The device consists of the probe-preparation unit, control unit and two-way communication line. The unit of probe extraction can be placed in different points of an area, at a large distance - up to 30 meters. This device is compact and easy to transport by one person. The device control can be realized by operator via the remote control unit or automatically by the given program. The time of the probe data processing is 10-15 min. The use of the device allows to carry out beryllium content measuring in the mode of current time. (author)

  1. Chemoproteomic Approach to Explore the Target Profile of GPCR ligands: Application to 5-HT1A and 5-HT6 Receptors.

    Science.gov (United States)

    Gamo, Ana M; González-Vera, Juan A; Rueda-Zubiaurre, Ainoa; Alonso, Dulce; Vázquez-Villa, Henar; Martín-Couce, Lidia; Palomares, Óscar; López, Juan A; Martín-Fontecha, Mar; Benhamú, Bellinda; López-Rodríguez, María L; Ortega-Gutiérrez, Silvia

    2016-01-22

    Determination of the targets of a compound remains an essential aspect in drug discovery. A complete understanding of all binding interactions is critical to recognize in advance both therapeutic effects and undesired consequences. However, the complete polypharmacology of many drugs currently in clinical development is still unknown, especially in the case of G protein-coupled receptor (GPCR) ligands. In this work we have developed a chemoproteomic platform based on the use of chemical probes to explore the target profile of a compound in biological systems. As proof of concept, this methodology has been applied to selected ligands of the therapeutically relevant serotonin 5-HT1A and 5-HT6 receptors, and we have identified and validated some of their off-targets. This approach could be extended to other drugs of interest to study the targeted proteome in disease-relevant systems. PMID:26560738

  2. The HFR Petten high dose irradiation programme of beryllium for blanket application

    International Nuclear Information System (INIS)

    This paper reports the objectives of a high dose irradiation of beryllium in the High Flux Reactor in Petten. In addition, the nuclear parameters, irradiation parameters and the provisional test-matrix, i.e. Beryllium grades and pebbles is presented. The irradiation will be performed in the frame of the European Programme for the development of the Helium Cooled Pebble Bed (HCPB) to study the irradiation behaviour of Beryllium. Part of the materials will be provided by Japanese and Russian partners, for which cooperation through IEA agreements is being put into place. (author)

  3. Investigation of activation behind a beryllium slab under irradiation with 14 MeV neutrons

    International Nuclear Information System (INIS)

    Some concepts of a thermonuclear blanket include a neutron multiplier whose purpose is to breed tritium. The best neutron-multiplier is beryllium because the cross section (550 mb) of the (n,2n) reaction is large and the threshold energy (2.7 MeV) is low. The accuracy of the prediction of the tritium ratio depends strongly on the uncertainty of its (n,2n) reaction cross section. It is thus extremely important to check the consistency of the estimated data for beryllium, which are employed in theoretical investigations. The experimental results for beryllium assemblies disagree with the computational data. This makes it necessary to perform new experiments

  4. Conditions for preparation of ultrapure beryllium by electrolytic refining in molten alkali-metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Hagen

    1982-02-01

    Electrolytic refining is regarded as the most suitable process for the production of beryllium with impurity contents below 1 at.-ppM. Several parameters are important for electrolytic refining of beryllium in a BeCl/sub 2/-containing LiCl-KCl melt: current density, BeCl/sub 2/ content, electrolyte temperature, composition of the unpurified beryllium and impurity-ion concentrations in the melt, as well as apparatus characteristics such as rotation speed of the cathode and condition of the crucible material. These factors were studied and optimized such that extensive removal of the maximum number of accompanying and alloying elements was achieved.

  5. Spectrophotometric determination of beryllium in air by a sensitised chrome azurol S reaction

    International Nuclear Information System (INIS)

    Although many spectrophotometric reagents for beryllium are known, their sensitivities do not approach that provided by the fluorimetric method using morin. A spectrophotometric method of comparable sensitivity is reported wherein addition of cetylpyridinium bromide considerably enhances the colour intensity of the beryllium - Chrome Azurol S complex. EDTA serves as a suitable masking agent for eliminating interferences from commonly associated ions. The results obtained are compared with those obtained with the morin method. Similar sensitisation of the beryllium - Chrome Azurol S system by polyoxyethylene dodecylamine and poly(vinyl alcohol) has been reported. (author)

  6. Quasi-elastic Scattering of a Secondary 6He Beam on a 9Be Target at 25MeV/Nucleon

    Institute of Scientific and Technical Information of China (English)

    陈陶; 叶沿林; 李智焕; 江栋兴; 华辉; 李湘庆; 王全进; 葛榆成; 庞丹阳; 狄振宇; 靳根明; 肖国青; 郭忠言; 肖志刚; 王宏伟; 张保国; 吴和宇; 李家兴; 孙志宇; 詹文龙

    2002-01-01

    The quasi-elastic scattering of a secondary 6He beam (25 MeV/n) on a 9Be target has been measured for the firsttime with the application of a sophisticated tracking detector system. The angular distribution is reported. Aphenomenological optical potential is obtained by fitting the experimental data, which encourages more accurateexperimental measurements.

  7. CD44v6 Monoclonal Antibody-Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-like Cells

    Science.gov (United States)

    Liang, Shujing; Li, Chao; Zhang, Chunlei; Chen, Yunsheng; Xu, Liang; Bao, Chenchen; Wang, Xiaoyong; liu, Gang; zhang, Fengchun; Cui, Daxiang

    2015-01-01

    Developing safe and effective nanoprobes for targeted imaging and selective therapy of gastric cancer stem cells (GCSCs) has become one of the most promising anticancer strategies. Herein, gold nanostars-based PEGylated multifunctional nanoprobes were prepared with conjugated CD44v6 monoclonal antibodies (CD44v6-GNS) as the targeting ligands. It was observed that the prepared nanoprobes had high affinity towards GCSC spheroid colonies and destroyed them completely with a low power density upon near-infrared (NIR) laser treatment (790 nm, 1.5 W/cm2, 5 min) in vitro experiment. Orthotopic and subcutaneous xenografted nude mice models of human gastric cancer were established. Subsequently, biodistribution and photothermal therapeutic effects after being intravenously injected with the prepared nanoprobes were assessed. Photoacoustic imaging revealed that CD44v6-GNS nanoprobes could target the gastric cancer vascular system actively at 4 h post-injection, while the probes inhibited tumor growth remarkably upon NIR laser irradiation, and even extended survivability of the gastric cancer-bearing mice. The CD44v6-GNS nanoprobes exhibited great potential for applications of gastric cancer targeted imaging and photothermal therapy in the near future. PMID:26155313

  8. CD44v6 Monoclonal Antibody-Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-like Cells.

    Science.gov (United States)

    Liang, Shujing; Li, Chao; Zhang, Chunlei; Chen, Yunsheng; Xu, Liang; Bao, Chenchen; Wang, Xiaoyong; Liu, Gang; Zhang, Fengchun; Cui, Daxiang

    2015-01-01

    Developing safe and effective nanoprobes for targeted imaging and selective therapy of gastric cancer stem cells (GCSCs) has become one of the most promising anticancer strategies. Herein, gold nanostars-based PEGylated multifunctional nanoprobes were prepared with conjugated CD44v6 monoclonal antibodies (CD44v6-GNS) as the targeting ligands. It was observed that the prepared nanoprobes had high affinity towards GCSC spheroid colonies and destroyed them completely with a low power density upon near-infrared (NIR) laser treatment (790 nm, 1.5 W/cm(2), 5 min) in vitro experiment. Orthotopic and subcutaneous xenografted nude mice models of human gastric cancer were established. Subsequently, biodistribution and photothermal therapeutic effects after being intravenously injected with the prepared nanoprobes were assessed. Photoacoustic imaging revealed that CD44v6-GNS nanoprobes could target the gastric cancer vascular system actively at 4 h post-injection, while the probes inhibited tumor growth remarkably upon NIR laser irradiation, and even extended survivability of the gastric cancer-bearing mice. The CD44v6-GNS nanoprobes exhibited great potential for applications of gastric cancer targeted imaging and photothermal therapy in the near future. PMID:26155313

  9. Failure prediction of thin beryllium sheets used in spacecraft structures

    Science.gov (United States)

    Roschke, Paul N.; Mascorro, Edward; Papados, Photios; Serna, Oscar R.

    1991-01-01

    The primary objective of this study is to develop a method for prediction of failure of thin beryllium sheets that undergo complex states of stress. Major components of the research include experimental evaluation of strength parameters for cross-rolled beryllium sheet, application of the Tsai-Wu failure criterion to plate bending problems, development of a high order failure criterion, application of the new criterion to a variety of structures, and incorporation of both failure criteria into a finite element code. A Tsai-Wu failure model for SR-200 sheet material is developed from available tensile data, experiments carried out by NASA on two circular plates, and compression and off-axis experiments performed in this study. The failure surface obtained from the resulting criterion forms an ellipsoid. By supplementing experimental data used in the the two-dimensional criterion and modifying previously suggested failure criteria, a multi-dimensional failure surface is proposed for thin beryllium structures. The new criterion for orthotropic material is represented by a failure surface in six-dimensional stress space. In order to determine coefficients of the governing equation, a number of uniaxial, biaxial, and triaxial experiments are required. Details of these experiments and a complementary ultrasonic investigation are described in detail. Finally, validity of the criterion and newly determined mechanical properties is established through experiments on structures composed of SR200 sheet material. These experiments include a plate-plug arrangement under a complex state of stress and a series of plates with an out-of-plane central point load. Both criteria have been incorporated into a general purpose finite element analysis code. Numerical simulation incrementally applied loads to a structural component that is being designed and checks each nodal point in the model for exceedance of a failure criterion. If stresses at all locations do not exceed the failure

  10. Intracellular targeting of peroxiredoxin 6 to lysosomal organelles requires MAPK activity and binding to 14-3-3ε

    OpenAIRE

    Sorokina, Elena M.; Feinstein, Sheldon I.; Zhou, Suiping; Fisher, Aron B.

    2011-01-01

    Peroxiredoxin 6 (Prdx6), a bifunctional protein with GSH peroxidase and lysosomal-type phospholipase A2 activities, has been localized to both cytosolic and acidic compartments (lamellar bodies and lysosomes) in lung alveolar epithelium. We postulate that Prdx6 subcellular localization affects the balance between the two activities. Immunostaining localized Prdx6 to lysosome-related organelles in the MLE12 and A549 alveolar epithelial cell lines. Inhibition of trafficking by brefeldin A indic...

  11. Characterization of the first-in-class T-cell-engaging bispecific single-chain antibody for targeted immunotherapy of solid tumors expressing the oncofetal protein claudin 6

    Science.gov (United States)

    Stadler, Christiane R.; Bähr-Mahmud, Hayat; Plum, Laura M.; Schmoldt, Kathrin; Kölsch, Anne C.; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    abstract The fetal tight junction molecule claudin 6 (CLDN6) is virtually absent from any normal tissue, whereas it is aberrantly and frequently expressed in various cancers of high medical need. We engineered 6PHU3, a T-cell-engaging bispecific single chain molecule (bi-(scFv)2) with anti-CD3/anti-CLDN6 specificities, and characterized its pharmacodynamic properties. Our data show that upon engagement by 6PHU3, T cells strongly upregulate cytotoxicity and activation markers, proliferate and acquire an effector phenotype. 6PHU3 exerts potent killing of cancer cells in vitro with EC50 values in the pg/mL range. Subcutaneous xenograft tumors in NSG mice engrafted with human PBMCs are eradicated by 6PHU3 treatment and survival of mice is significantly prolonged. Tumors of 6PHU3-treated mice are strongly infiltrated with activated CD4+, CD8+ T cells and TEM type cells but not Tregs and display a general activation of a mostly inflammatory phenotype. These effects are only observed upon bispecific but not monospecific engagement of 6PHU3. Together with the exceptionally cancer cell selective expression of the oncofetal tumor marker CLDN6, this provides a safeguard with regard to toxicity. In summary, our data shows that the concept of T-cell redirection combined with that of highly selective targeting of CLDN6-positive solid tumors is effective. Thus, exploring 6PHU3 for clinical therapy is warranted. PMID:27141353

  12. Transfection with the ribozyme targeting HPVE6 mRNA results in growth inhibition of E6-expressing cervical carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    郑燕芳; 张积仁

    2003-01-01

    Objective: To acquire a ribozyme against the E6 gene of human papillomaviruses type 16 (HPV16E6) and investigate its effects on the phenotypes and gene expression of cervical cancer cell line. Methods: Anti-HPV16E6 ribozyme (HRz) was designed by computer programs and its activity identified by cleavage experiment in vitro before its transfection via lipofectin into CaSKi cells with the empty eucaryotic expression plasmid transfection of the cells also performed, the resultant cells designated as CaSKi-R, CaSKi-P respectively. The morphology and the soft agar forming ability were studied in CaSKi cells and the transfected cells, and the expression of E6, proliferating cell nuclear antigen (PCNA) and C-erbB-2 genes assayed by flow cytometry. The tumorgenicity of each cell line was evaluated in nude mice receiving inoculations of CaSKi, CaSKi-R and CaSKi-P cells separately, while in one group, both CaSKi and CaSKi-R cells were inoculated on different sides of the mice. Results: HRz was able to cleave HPV16E6 mRNA in a site-specific manner and could be expressed stably in transfected CaSKi cells. Northern blot analysis showed that E6 mRNA was less in CaSKi-R than in CaSKi cells, and no significant difference in the morphology and growth rate was observed between CaSKi and CaSKi-P cells, but the growth rate CaSKi-R was lowered. The colony-forming rate of CaSKi-P in soft agar was similar to that of CaSKi cells, while that of CaSKi-R was decreased. Flow cytometry showed that anti-HPV16E6 ribozyme reduced the expression of E6, PCNA and C-erbB-2 genes in CaSKi-R cells, but not in CaSKi-P cells. The tumorgenicity of CaSKi-R in nude mice was decreased compared with CaSKi cells. Conclusion: HRz can partially reverse the malignant phenotype of CaSKi cells, possibly due to decreased E6 gene expression, and the consequent decrease of PCNA and C-erbB-2 gene expressions.

  13. Thermal desorption analysis of beryllium tile pieces from JET

    International Nuclear Information System (INIS)

    Pieces of beryllium tile exposed to a D-D plasma in JET have been studied by thermal desorption spectroscopy. These tiles have a thick layer of redeposited Be-C-O with considerable hydrogen and deuterium present. The samples were heated at a constant rate of 2 C/min. from 100 C to 900 C. Desorption peaks occurred in the range of 140-480 C. There was no significant desorption at temperatures above 600 C. The amount of deuterium detected varied from a low of 8 x 1021/m2 to a high of 2.1 x 1023/m2. In one case, the amount of deuterium in a tile piece was seven times greater than the amount in a neighboring tile piece. Some of the tile pieces in the plasma-exposed region showed surface melting. Despite this, the deuterium yield from one of these pices is >1023/m2. (orig.)

  14. Specification for nuclear-grade beryllium oxide powder

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification defines the physical and chemical requirements of nuclear-grade beryllium oxide (BeO) powder to be used in fabricating nuclear components. 1.2 This specification does not include requirements for health and safety. , , It recognizes the material as a Class B poison and suggests that producers and users become thoroughly familiar with and comply to applicable federal, state, and local regulations and handling guidelines. 1.3 Special tests and procedures are given in Annex A1 and Annex A2. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  15. Thermal Induced Processes in Laminar System of Stainless Steel - Beryllium

    International Nuclear Information System (INIS)

    The paper reports on investigation of the laminar system 'stainless steel 12Cr18Ni10Ti - Be' at thermal treatment. There have been determined sequences of phase transformations along with relative amount of iron-containing phases in the samples subjected to thermal beryllization. It has been revealed that thermal beryllization of stainless steel thin foils results in γ→α transformation and formation of the beryllides NiBe and FeBe2. It has also been revealed that direct γ→α- and reverse α→γ-transformations are accompanied by, correspondingly, formation and decomposition of the beryllide NiBe. It is shown that distribution of the formed phases within sample bulk is defined by local concentration of beryllium. Based on obtained experimental data there is proposed a physical model of phase transformations in stainless steel at thermal beryllization.

  16. Modelling of radiation impact on ITER Beryllium wall

    International Nuclear Information System (INIS)

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  17. Preparation of nuclear purity beryllium oxalate tri-hydrate

    International Nuclear Information System (INIS)

    In this report we have gathered the whole of the knowledge acquired by our group during the campaign for preparation of beryllium oxalate we carried out through the first half year of 1962. The reader shall find in the first place information and bibliographic data gathered by Miss OLLIVIER, documentalist of the Section d'Etudes, Recherches et Applications Chimiques. We then describe the original process perfected in the laboratories, and the production techniques we employed for the semi-large operative units. Finally, we publish the results we obtained on one hand on the chemical aspect, in the industrial meaning of the term, which is to-day concerning the ponderal output, on the other hand on the analytical aspect as you can evidently not dissociate the quantity of substance produced from its purity. (authors)

  18. Development of beryllium bonds for plasma-facing components

    International Nuclear Information System (INIS)

    This study concerns the techniques of bonding beryllium to both structural material (AISI 316 SS) and heat sink material (copper and DS-copper) plates, and the characterization of the bonding material obtained. Conventional bonding techniques for joining Be to SS and copper using brazing alloys were first investigated. The best result was obtained using a silver-copper eutetic alloy as a brazing alloy. However, the high-temperature capability of the materials prepared by this method is limited by the performance of brazing alloys at the operating temperature. To avoid this problem, we are developing a joining process known as solid-state reaction bonding that improves the capability at the operating temperature. (orig.)

  19. Stress distribution and fracture behavior of beryllium compact tension specimens

    International Nuclear Information System (INIS)

    Compact tension specimens of beryllium (Be) were designed to study fracture behavior and mechanical properties. The local stress distribution near a notch in a compact tension specimen was measured in situ by the combination of an X-ray stress analysis and a custom-designed load device. The fracture morphology was observed by scanning electron microscopy. The result showed that the local stresses near the notch tip are much higher than in other areas, and cracking occurs first in that area. The load-crack opening displacement curve of the Be compact tension specimen was obtained, and used to calculate the fracture toughness as 15.7 MPa√m. The compact tension specimen fracture surfaces were mainly characterized by cleavage fracture over three different areas. Cleavage micro-cracks along the basal slip plane were formed at the crack tip, and their growth was controlled by the primary stress after reaching a critical length

  20. Nuclear charge radius measurements of radioactive beryllium isotopes

    CERN Multimedia

    2002-01-01

    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  1. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    Directory of Open Access Journals (Sweden)

    Hammer H.-W.

    2010-04-01

    Full Text Available We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1 strength of the 1/2+ to 1/2− transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also indicate how higher-order corrections that affect both s-wave and p-wave 10 Be-neutron interactions will affect our results.

  2. Fracture testing of beryllium copper alloy C17510

    International Nuclear Information System (INIS)

    Beryllium copper alloy C17510 has been selected as the primary candidate material for the Burning Plasma Experiment (BPX) toroidal field coil conductors, Since the coils will be subjected to both mechanical and thermal load cycling during their design life, it becomes imperative to be able to predict the fatigue crack propagation characteristics of this essential structural system. While C17510 is well defined in terms of conventional static properties (e.g., yield, modulus, elongation), virtually no data existed for its plane-strain fracture toughness and fatigue crack growth rate constants, which are required if an accurate life prediction of the coils is to be made using linear elastic fracture mechanics (LEFM). This paper will discuss the test program, in particular, fracture toughness and fatigue crack propagation testing, and their respective results

  3. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  4. Electron microscope observation of single - crystalline beryllium thin foils

    International Nuclear Information System (INIS)

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3. (authors)

  5. Using a modified CINDER90 routine in MCNPX 2.6.0 for the prediction of helium production in minor actinide targets

    International Nuclear Information System (INIS)

    Highlights: ► Modification of the CINDER90 depletion code used by MCNPX 2.6.0. ► Testing using the Sodium-Cooled Heterogeneous Innovative Burner Reactor model. ► Verified using the ORIGEN-ARP module of SCALE6. ► Verified by depleting a single Sodium Fast Reactor assembly. ► Gas production rates are more accurate for heterogeneous MA target rods. - Abstract: Fast reactors containing heterogeneous minor actinide (MA) target rods are now being modeled. When studying transmutation in these rods, helium production from α-decay must be considered since it is produced in substantial quantities. This research utilized an innovative method to calculate gas production by modifying the CINDER90 depletion code used by MCNPX 2.6.0 to include helium production from α-decay. The modified CINDER90 code was verified using the ORIGEN-ARP module of SCALE6. It was tested using the Sodium-Cooled Heterogeneous Innovative Burner Reactor model created at the University of South Carolina. It is recommended that the modified version of the cinder.dat file be distributed in subsequent MCNPX 2.6.0 releases for use in fast reactor calculations using heterogeneous MA target rods since it includes helium production otherwise not available from the current version.

  6. Characterization of the Wheat Stripe Rust (Puccinia striiformis f. sp. tritici) Fungal Effector Candidate PEC6 and Its Corresponding Host Targets

    DEFF Research Database (Denmark)

    Liu, Changhai

    HAn strain containing an engineered type-three secretion system. Results show that one of the effector candidates, PEC6, functions as a pattern-triggered immunity (PTI) suppressor in a host species-independent manner. A host-induced gene silencing (HIGS) study revealed PEC6 as an important pathogenicity...... factor. By using the yeast two-hybrid system, the adenosine kinase (ADK) was identified as a host target of PEC6. Virus-induced gene silencing (VIGS) of ADK enhanced wheat susceptibility to stripe rust indicates that ADK is a positive regulator in plant defense. Based on EtHAn-mediated effector delivery...

  7. Cost effective aluminum beryllium mirrors for critical optics applications

    Science.gov (United States)

    Say, Carissa; Duich, Jack; Huskamp, Chris; White, Ray

    2013-09-01

    The unique performance of aluminum-beryllium frequently makes it an ideal material for manufacturing precision optical-grade metal mirrors. Traditional methods of manufacture utilize hot-pressed powder block in billet form which is subsequently machined to final dimensions. Complex component geometries such as lightweighted, non-plano mirrors require extensive tool path programming, fixturing, and CNC machining time and result in a high buy-to-fly ratio (the ratio of the mass of raw material purchased to the mass of the finished part). This increases the cost of the mirror structure as a significant percentage of the procurement cost is consumed in the form of machining, tooling, and scrap material that do not add value to the final part. Inrad Optics, Inc. and IBC Advanced Alloys Corp. undertook a joint study to evaluate the suitability of investment-cast Beralcast® 191 and 363 aluminum-beryllium as a precision mirror substrate material. Net shape investment castings of the desired geometry minimizes machining to just cleanup stock, thereby reducing the recurring procurement cost while still maintaining performance. The thermal stability of two mirrors, (one each of Beralcast® 191 and Beralcast® 363), was characterized from -40°F to +150°F. A representative pocketed mirror was developed, including the creation of a relevant geometry and production of a cast component to validate the approach. Information from the demonstration unit was used as a basis for a comparative cost study of the representative mirror produced in Beralcast® and one machined from a billet of AlBeMet® 162 (AlBeMet® is a registered trademark of Materion Corporation). The technical and financial results of these studies will be discussed in detail.

  8. Tritium release from EXOTIC-7 orthosilicate pebbles. Effect of burnup and contact with beryllium during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-03-01

    EXOTIC-7 was the first in-pile test with {sup 6}Li-enriched (50%) lithium orthosilicate (Li{sub 4}SiO{sub 4}) pebbles and with DEMO representative Li-burnup. Post irradiation examinations of the Li{sub 4}SiO{sub 4} have been performed at the Forschungszentrum Karlsruhe (FZK), mainly to investigate the tritium release kinetics as well as the effect of Li-burnup and/or contact with beryllium during irradiation. The release rate of Li{sub 4}SiO{sub 4} from pure Li{sub 4}SiO{sub 4} bed of capsule 28.1-1 is characterized by a broad main peak at about 400degC and by a smaller peak at about 800degC, and that from the mixed beds of capsule 28.2 and 26.2-1 shows again these two peaks, but most of the tritium is now released from the 800degC peak. This shift of release from low to high temperature may be due to the higher Li-burnup and/or due to contact with Be during irradiation. Due to the very difficult interpretation of the in-situ tritium release data, residence times have been estimated on the basis of the out-of-pile tests. The residence time for Li{sub 4}SiO{sub 4} from caps. 28.1-1 irradiated at 10% Li-burnup agrees quite well with that of the same material irradiated at Li-burnup lower than 3% in the EXOTIC-6 experiment. In spite of the observed shift in the release peaks from low to high temperature, also the residence time for Li{sub 4}SiO{sub 4} from caps. 26.2-1 irradiated at 13% Li-burnup agrees quite well with the data from EXOTIC-6 experiment. On the other hand, the residence time for Li{sub 4}SiO{sub 4} from caps. 28.2 (Li-burnup 18%) is about a factor 1.7-3.8 higher than that for caps. 26.2-1. Based on these data on can conclude that up to 13% Li-burnup neither the contact with beryllium nor the Li-burnup have a detrimental effect on the tritium release of Li{sub 4}SiO{sub 4} pebbles, but at 18% Li-burnup the residence time is increased by about a factor three. (J.P.N.)

  9. Dynamic polarization and relaxation of protons in 1,6-hexanediol and 1,8-octanediol a feasibility study for a frozen spin polarized target

    CERN Document Server

    Borghini, M; Udo, Fred; Weymuth, P

    1972-01-01

    Results are given of an experiment to test 1,6-hexanediol and 1,8- octanediol for their suitability as materials for polarized proton targets. The samples are doped with 15% Cr/sup V/-glycol complexes. Polarization results are reported at temperatures between 0.4 K and 1.0 K. Relaxation times in different magnetic fields are measured for hexanediol down to 270 mK, for octanediol down to 54 mK. Conclusions are drawn for the parameters of a frozen spin target. (28 refs).

  10. Analysis of beryllium and depleted uranium: An overview of detection methods in aerosols and soils

    International Nuclear Information System (INIS)

    We conducted a survey of commercially available methods for analysis of beryllium and depleted uranium in aerosols and soils to find a reliable, cost-effective, and sufficiently precise method for researchers involved in environmental testing at the Yuma Proving Ground, Yuma, Arizona. Criteria used for evaluation include cost, method of analysis, specificity, sensitivity, reproducibility, applicability, and commercial availability. We found that atomic absorption spectrometry with graphite furnace meets these criteria for testing samples for beryllium. We found that this method can also be used to test samples for depleted uranium. However, atomic absorption with graphite furnace is not as sensitive a measurement method for depleted uranium as it is for beryllium, so we recommend that quality control of depleted uranium analysis be maintained by testing 10 of every 1000 samples by neutron activation analysis. We also evaluated 45 companies and institutions that provide analyses of beryllium and depleted uranium. 5 refs., 1 tab

  11. Analysis of beryllium and depleted uranium: An overview of detection methods in aerosols and soils

    Energy Technology Data Exchange (ETDEWEB)

    Camins, I.; Shinn, J.H.

    1988-06-01

    We conducted a survey of commercially available methods for analysis of beryllium and depleted uranium in aerosols and soils to find a reliable, cost-effective, and sufficiently precise method for researchers involved in environmental testing at the Yuma Proving Ground, Yuma, Arizona. Criteria used for evaluation include cost, method of analysis, specificity, sensitivity, reproducibility, applicability, and commercial availability. We found that atomic absorption spectrometry with graphite furnace meets these criteria for testing samples for beryllium. We found that this method can also be used to test samples for depleted uranium. However, atomic absorption with graphite furnace is not as sensitive a measurement method for depleted uranium as it is for beryllium, so we recommend that quality control of depleted uranium analysis be maintained by testing 10 of every 1000 samples by neutron activation analysis. We also evaluated 45 companies and institutions that provide analyses of beryllium and depleted uranium. 5 refs., 1 tab.

  12. Off the Beaten Track-A Hitchhiker's Guide to Beryllium Chemistry.

    Science.gov (United States)

    Naglav, Dominik; Buchner, Magnus R; Bendt, Georg; Kraus, Florian; Schulz, Stephan

    2016-08-26

    This Minireview aims to give an introduction to beryllium chemistry for all less-experienced scientists in this field of research. Up to date information on the toxicity of beryllium and its compounds are reviewed and several basic and necessary guidelines for a safe and proper handling in modern chemical research laboratories are presented. Interesting phenomenological observations are described that are related directly to the uniqueness of this element, which are also put into historical context. Herein we combine the contributions and experiences of many scientist that work passionately in this field. We want to encourage fellow scientists to reconcile the long-standing reservations about beryllium and its compounds and motivate intense research on this spurned element. Who on earth should be able to deal with beryllium and its compounds if not chemists? PMID:27364901

  13. Systemic delivery of siRNA by actively targeted polyion complex micelles for silencing the E6 and E7 human papillomavirus oncogenes.

    Science.gov (United States)

    Nishida, Haruka; Matsumoto, Yoko; Kawana, Kei; Christie, R James; Naito, Mitsuru; Kim, Beob Soo; Toh, Kazuko; Min, Hyun Su; Yi, Yu; Matsumoto, Yu; Kim, Hyun Jin; Miyata, Kanjiro; Taguchi, Ayumi; Tomio, Kensuke; Yamashita, Aki; Inoue, Tomoko; Nakamura, Hiroe; Fujimoto, Asaha; Sato, Masakazu; Yoshida, Mitsuyo; Adachi, Katsuyuki; Arimoto, Takahide; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Nishiyama, Nobuhiro; Kataoka, Kazunori; Osuga, Yutaka; Fujii, Tomoyuki

    2016-06-10

    Human papillomavirus (HPV) E6 and E7 oncogenes are essential for the immortalization and maintenance of HPV-associated cancer and are ubiquitously expressed in cervical cancer lesions. Small interfering RNA (siRNA) coding for E6 and E7 oncogenes is a promising approach for precise treatment of cervical cancer, yet a delivery system is required for systemic delivery to solid tumors. Here, an actively targeted polyion complex (PIC) micelle was applied to deliver siRNAs coding for HPV E6/E7 to HPV cervical cancer cell tumors in immune-incompetent tumor-bearing mice. A cell viability assay revealed that both HPV type 16 and 18 E6/E7 siRNAs (si16E6/E7 and si18E6/E7, respectively) interfered with proliferation of cervical cancer cell lines in an HPV type-specific manner. A fluorescence imaging biodistribution analysis further revealed that fluorescence dye-labeled siRNA-loaded PIC micelles efficiently accumulated within the tumor mass after systemic administration. Ultimately, intravenous injection of si16E6/E7 and si18E6/E7-loaded PIC micelles was found to significantly suppress the growth of subcutaneous SiHa and HeLa tumors, respectively. The specific activity of siRNA treatment was confirmed by the observation that p53 protein expression was restored in the tumors excised from the mice treated with si16E6/E7- and si18E6/E7-loaded PIC micelles for SiHa and HeLa tumors, respectively. Therefore, the actively targeted PIC micelle incorporating HPV E6/E7-coding siRNAs demonstrated its therapeutic potential against HPV-associated cancer. PMID:26979870

  14. Production of charmonium states in 225 GeV/c pi-minus beryllium interactions

    International Nuclear Information System (INIS)

    This thesis reports on the analysis of data obtained during the FNAL experiment E610. The Chicago Cyclotron Magnet Spectrometer was used to perform a study of the hadronic production of charmonium. A 225 GeV/c negative pion beam was incident on a beryllium target. The trigger required a dimuon signature which favored opposite sign muon pairs with a large combined p/sub tau/. A search was then made for chi mesons of the charmonium spectrum by combining J/psi mesons found in the dimuon spectrum with photons detected in a large lead glass shower detector. These events were used to determine the fraction of J/psis produced from chis. A psi(3685) signal seen in the dimuon spectrum was used to determine the fraction of J/psis resulting from psi(3685). Assuming that these are the only particles decaying to J/psi, we obtain the fraction of J/psis produced directly in hadronic collisions - 0.58 +- 0.09 - which is relevant to the production mechanism for charmonium in strong interactions

  15. Hybrid Orbital and Numerical Grid Representationfor Electronic Continuum Processes: Double Photoionization of Atomic Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Frank L; McCurdy, C. William; Rescigno, Thomas N

    2010-04-19

    A general approach for ab initio calculations of electronic continuum processes is described in which the many-electron wave function is expanded using a combination of orbitals at short range and the finite-element discrete variable representation(FEM-DVR) at larger distances. The orbital portion of the basis allows the efficient construction of many-electron configurations in which some of the electrons are bound, but because the orbitals are constructed from an underlying FEM-DVR grid, the calculation of two-electron integrals retains the efficiency of the primitive FEM-DVR approach. As an example, double photoionization of beryllium is treated in a calculation in which the 1s{sup 2} core is frozen. This approach extends the use of exterior complex scaling (ECS) successfully applied to helium and H{sub 2} to calculations with two active electrons on more complicated targets. Integrated, energy-differential and triply-differential cross sections are exhibited, and the results agree well with other theoretical investigations.

  16. Production of charmonium states in 225 GeV/c π-minus beryllium interactions

    International Nuclear Information System (INIS)

    This thesis reports on the analysis of data obtained during FNAL experiment E610. The Chicago Cyclotron Magnet Spectrometer was used to perform a study of the hadronic production of charmonium. A 225 GeV/c negative pion beam was incident on a beryllium target. The trigger required a dimuon signature which favored opposite sign muon pairs with a large combined p/sub tau/. A search was then made for chi mesons of the charmonium spectrum by combining J/psi mesons found in the dimuon spectrum with photons detected in a large lead glass shower detector. These events were used to determine the fraction of J/psi s produced from chi s. A psi(3685) signal seen in the dimuon spectrum was used to determine the fraction of J/psi s resulting from psi(3685). Assuming that these are the only particles decaying to J/psi, we obtain the fraction of J/psi s produced directly in hadronic collisions - 0.58 +- 0.09 - which is relevant to the production mechanism for charmonium in strong interactions

  17. Toxicology - study of the intracellular localization of beryllium by analytical ion microscopy

    International Nuclear Information System (INIS)

    The intracellular distribution of a beryllium salt in the kidneys of rats was studied by analytical ion microscopy. Beryllium has a special affinity for certain regions of the cellular nuclei where heavy concentrations appear. Examining these same nuclei under an electron microscope enables attention to be drawn to very unusual ultrastructural abnormalities in these same nuclear regions. These observations are to be seen in the light of this element's highly carcinogenic action. (author)

  18. Investigation of high purity beryllium for the International Thermonuclear Experimental Reactor (ITER), Task 002. Final report

    International Nuclear Information System (INIS)

    The report includes a description of experimental abilities of Solid Structure Research Laboratory of IAE NNC RK, a results of microstructural characterization of A-4 grade polycrystal Beryllium produced at the Ulba metal plant and a technical project-for irradiation experiments. Technical project contains a detailed description of five proposed experiments, clearing behavior of Beryllium materials under the influence of irradiation, temperature, helium and hydrogen accumulation. Complex irradiation jobs, microstructural investigations and mechanical tests are planned in the framework of these experiments

  19. Quantitative chemical microdetermination of beryllium with chrome azurol by the ring-oven technique

    International Nuclear Information System (INIS)

    A method for determination of beryllium in minerals and rocks is described. Because of the toxicity of beryllium the method is designed for determination of 1-10 ng of Be. The sample is fused with sodium carbonate and sodium tetraborate. Interfering metals are masked with EDTA. Be is determined by the Weisz ring-oven method with Chrome Azurol. The relative error is 10%. (Author)

  20. Molecular dynamics simulations of deuterium-beryllium interactions under fusion reactor conditions

    OpenAIRE

    Safi, Elnaz

    2014-01-01

    Beryllium (Be) is a strong candidate as plasma-facing material for the main wall of future fusion reactors. Thus, its erosion plays a key role in predicting the reactor's life-time and viability. MD simulations can be a powerful tool to study Be behavior under high plasma particle flux. In this work, beryllium sputtering due to D bombardment is studied using MD simulations. We have analyzed the fundamental mechanisms for Be erosion considering some important parameters that ...

  1. Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat

    DEFF Research Database (Denmark)

    Hidalgo, Juan; Florit, Sergi; Giralt, Mercedes;

    2010-01-01

    with astrocyte-targeted IL-6 expression (GFAP-IL6 mice) with a high-fat diet (55% kcal from fat) versus a control diet (10%). The results demonstrate that the GFAP-IL6 mice are resistant to high-fat diet-induced increases in body weight and body fat, apparently without altering food intake and with no...... evidences of increased sympathetic tone. The high-fat diet-induced impaired responses to an insulin tolerance test (ITT), and to an oral glucose tolerance test (OGTT) in both genotypes. The GFAP-IL6 mice did not differ from littermate wild-type (WT) mice in ITT, but they were more glucose intolerant...... following the high-fat diet feeding. In summary, the present results demonstrate that brain-specific IL-6 controls body weight which may be a significant factor in physiological conditions and/or in diseases causing neuroinflammation....

  2. The NAB2-STAT6 gene fusion in solitary fibrous tumor can be reliably detected by anchored multiplexed PCR for targeted next-generation sequencing.

    Science.gov (United States)

    Guseva, Natalya V; Tanas, Munir R; Stence, Aaron A; Sompallae, Ramakrishna; Schade, Jenna C; Bossler, Aaron D; Bellizzi, Andrew M; Ma, Deqin

    2016-01-01

    Solitary fibrous tumor (SFT) is a mesenchymal tumor of fibroblastic origin, which can affect any region of the body. 10-15% of SFTs metastasize and metastatic tumors are uniformly lethal with no effective therapies. The behavior of SFT is difficult to predict based on morphology. Recently, an intrachromosomal gene fusion between NAB2 and STAT6 was identified as the defining driving genetic event of SFT and different fusion types correlated with tumor histology and behavior. Due to the proximity of NAB2 and STAT6 on chromosome 12, this fusion may be missed by fluorescence in-situ hybridization. We evaluated 12 SFTs from 10 patients. All tumors showed strong nuclear staining for STAT6 by immunohistochemistry (IHC). The same formalin-fixed, paraffin-embedded blocks for IHC were used for gene fusion detection by a next-generation sequencing (NGS)-based assay. Targeted RNA fusion sequencing for gene fusions was performed using the Universal RNA Fusion Detection Kit, the Archer(™) FusionPlex(™) Sarcoma Panel and the Ion Torrent PGM, and data were analyzed using the Archer Analysis Pipeline 3.3. All tumors were positive for NAB2-STAT6 fusion. Six types of fusions were detected: NAB2ex4-STAT6ex2, NAB2ex2-STAT6ex5, NAB2ex6-STAT6ex16, NAB2ex6-STAT6ex17, NAB2ex3-STAT6ex18 and NAB2intron6-STAT6Ex17. The NGS findings were confirmed by RT-PCR followed by Sanger sequencing. No STAT6 fusion was detected in selected morphologic mimics of SFT. The assay also allows for detection of novel fusions and can detect NAB2-STAT6 fusions at a single-base resolution. PMID:27292373

  3. Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6

    DEFF Research Database (Denmark)

    Molinero, Amalia; Penkowa, Milena; Hernández, Joaquín;

    2003-01-01

    such as IL-6 and a diminished recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. The GFAP-IL6 mice showed clear evidence of increased oxidative stress, which was significantly decreased by MT-I overexpression. Interestingly, MT-I overexpression......Transgenic expression of interleukin-6 (IL-6) in the CNS under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-IL6 mice) causes significant damage and alters the expression of many genes, including a dramatic upregulation of metallothionein-I (MT-I). The findings in...... this report support the idea that the upregulation of MT-I observed in GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, GFAP-IL6 mice that were crossed with TgMTI transgenic mice (GFAP-IL6xTgMTI) and overexpressed MT-I in the brain showed a decreased upregulation of cytokines...

  4. DsRNA-mediated targeting of ribosomal transcripts RPS6 and RPL26 induces long-lasting and significant reductions in fecundity of the vector Aedes aegypti.

    Science.gov (United States)

    Estep, A S; Sanscrainte, N D; Becnel, J J

    2016-07-01

    Ribosomal transcripts produce critical proteins that are involved in most cellular production processes. Targeting ribosomal transcripts has produced mortality in mites and ticks but the effect of ribosomal transcript knockdown has not been thoroughly examined in mosquitoes. We examine the effects of triggers targeting four ribosomal proteins (RP) transcripts. Although no significant mortality was observed after dsRNA microinjection and subsequent blood feeding, significant contrasts were observed on fecundity. Triggers targeting RPS6 and RPL26 effectively reduced gene expression but more importantly, reduced reproductive output by more than 96% and 91% at the first oviposition while triggers targeting RPL1 and RPS2 did not cause a reduction although gene expression was reduced. Significantly reduced fecundity continued through a second oviposition cycle in dsRPS6 and dsRPL26 cohorts, although the effect was not as strong. Relative gene expression levels confirmed specific transcript knockdown up to 20days post-injection in mosquitoes that did not oviposit or produced reduced clutch sizes. Dissections at 36h post-blood meal indicated defects in oocyte provisioning. The strong phenotype produced by dsRPS6 allowed us to examine the effects in various tissues as well as the dose response, trigger format, delivery method and trigger specificity in Aedes aegypti. Strong knockdown was observed in the abdomen and the ovaries. Greater than 50ng of dsRPS6 significantly reduced fecundity but not when delivered in a sugar meal or as an siRNA. Similar bioassays with mutated dsRPS6 triggers indicates that up to three mismatches per possible siRNA are still effective in reducing fecundity. These studies indicate that while active and effective triggers can be developed for vector species, the lack of an efficient delivery method is the biggest barrier to use as a potential control method. PMID:27180677

  5. Burning the DT-plasma with inert impurities and non-cryogenic ICF-target with solid fuel

    OpenAIRE

    Gus'kov S.Yu.; Il'in D.V.; Sherman V.E.

    2013-01-01

    The ignition criterion, ignition energy and gain of DT-plasma of ICF-target in the presence of impurities of light atoms such as beryllium, carbon and lithium at their arbitrary concentration are found. It is shown that the most promising type of non-cryogenic solid thermonuclear fuel is DT-hydride of beryllium (BeDT). It is suggested to apply the targets with such a fuel as: (1) Fast-ignited ICF-target at the ignition energy of 25–50 kJ and compression driver energy of 2–3 MJ; (2) ICF-target...

  6. Cancer and aging: a multidisciplinary medicinal chemistry approach on relevant biological targets such as proteasome, sirtuins and interleukin 6

    OpenAIRE

    Parenti, Marco Daniele

    2015-01-01

    It is well known that ageing and cancer have common origins due to internal and environmental stress and share some common hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury. Moreover, ageing is involved in a number of events responsible for carcinogenesis and cancer development at the molecular, cellular, and tissue levels. Ageing could represent a “blockbuster” market because the target patient group includes potentially every...

  7. The status of beryllium research for fusion in the United States

    International Nuclear Information System (INIS)

    Use of beryllium in fusion reactor has been considered for neutron multiplication in breeding blankets an as an oxygen getter for plasma - facing surface. Previous beryllium research for fusion in the United States included issues of interest to fission (swelling an changes in mechanical and thermal properties) as well as interactions with plasmas and hydrogen isotopes and methods of fabrication. When the United States formally withdrew its participation in the International Experimental Reactor (ITER) program, much of this effort was terminated. The focus in the U.S. has been mainly on toxic effects of beryllium and on industrial hygiene and health-related issues. Work continued at the INEEL (Idaho National Engineering and Environmental Laboratory) and elsewhere on beryllium-containing molten salts. This activity is part of the JUPITER II Agreement. Plasma spray of ITER first wall samples at Los Alamos National Laboratory has been performed under the European Fusion Development Agreement. Effects of irradiation on beryllium structure are being studied at Oak Ridge National Laboratory. Numerical and phenomenological models are being developed and applied at the University of California Los Angels to investigate thermo-mechanical characteristics of beryllium pebble beds, similar to research being carried out at Forschungszentrum Karlsruhe and elsewhere. Additional work, not funded by the fusion program, has dealt with issues of disposal, and recycling. (author)

  8. Preconcentration and separation of ultra-trace beryllium using quinalizarine-modified magnetic microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ashtari, Parviz, E-mail: pashtari@aeoi.org.ir [State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); NFCS, Nuclear Science and Technology Research Institute, PO Box 11365-8486, Tehran (Iran, Islamic Republic of); Wang Kemin; Yang Xiaohai [State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ahmadi, Seyed Javad [NFCS, Nuclear Science and Technology Research Institute, PO Box 11365-8486, Tehran (Iran, Islamic Republic of)

    2009-07-30

    Magnetically-assisted chemical separation/preconcentration method for the analysis of beryllium from aqueous solutions was developed. According to this method several extractants were coated on certain magnetic microparticles to assist the extraction of beryllium from the aqueous solutions. The influence of different parameters (type and amount of extractant, pH, equilibrium time and ionic strength) was investigated. Also, the interfering effect of various cationic and anionic species on the percent recovery of beryllium was studied. The applied spectrophotometric method showed good linearity and precision at a given wavelength (605.0 nm). Among the extractants used, quinalizarine resulted in almost a full recovery of beryllium at pH 7.4, which was the optimum extraction pH. The equilibrium time of the extraction was 10.0 min. The quantitative re-extraction was carried out by 0.5 M nitric acid. Also, the stability of the extractant-coated magnetic microparticles was 4 cycles (extraction and re-extraction) and the used magnetic microparticles showed good selectivity for beryllium against other cations and anions. Finally, the developed method was applicable for the preconcentration and separation of beryllium from spring water, tap water and certified reference waters. The obtained detection limit was 30 ng L{sup -1}.

  9. The Status of Beryllium Research for Fusion in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Glen R. Longhurst

    2003-12-01

    Use of beryllium in fusion reactors has been considered for neutron multiplication in breeding blankets and as an oxygen getter for plasma-facing surfaces. Previous beryllium research for fusion in the United States included issues of interest to fission (swelling and changes in mechanical and thermal properties) as well as interactions with plasmas and hydrogen isotopes and methods of fabrication. When the United States formally withdrew its participation in the International Thermonuclear Experimental Reactor (ITER) program, much of this effort was terminated. The focus in the U.S. has been mainly on toxic effects of beryllium and on industrial hygiene and health-related issues. Work continued at the INEEL and elsewhere on beryllium-containing molten salts. This activity is part of the JUPITER II Agreement. Plasma spray of ITER first wall samples at Los Alamos National Laboratory has been performed under the European Fusion Development Agreement. Effects of irradiation on beryllium structure are being studied at Oak Ridge National Laboratory. Numerical and phenomenological models are being developed and applied to better understand important processes and to assist with design. Presently, studies are underway at the University of California Los Angeles to investigate thermo-mechanical characteristics of beryllium pebble beds, similar to research being carried out at Forschungszentrum Karlsruhe and elsewhere. Additional work, not funded by the fusion program, has dealt with issues of disposal, and recycling.

  10. Characterization of beryllium deformation using in-situ x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, Eric Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clausen, Bjorn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sisneros, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Park, Jun-Sang [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-08-24

    Beryllium’s unique mechanical properties are extremely important in a number of high performance applications. Consequently, accurate models for the mechanical behavior of beryllium are required. However, current models are not sufficiently microstructure aware to accurately predict the performance of beryllium under a range of processing and loading conditions. Previous experiments conducted using the SMARTS and HIPPO instruments at the Lujan Center(LANL), have studied the relationship between strain rate and texture development, but due to the limitations of neutron diffraction studies, it was not possible to measure the response of the material in real-time. In-situ diffraction experiments conducted at the Advanced Photon Source have allowed the real time measurement of the mechanical response of compressed beryllium. Samples of pre-strained beryllium were reloaded orthogonal to their original load path to show the reorientation of already twinned grains. Additionally, the in-situ experiments allowed the real time tracking of twin evolution in beryllium strained at high rates. The data gathered during these experiments will be used in the development and validation of a new, microstructure aware model of the constitutive behavior of beryllium.

  11. Measurement of the ratio of Σ0 to Λ0 inclusive production by 28.5 GeV/c protons on beryllium

    International Nuclear Information System (INIS)

    The ratio of the cross section for Σ0 inclusive production to the cross section for Λ0 inclusive production has been measured with 28.5 GeV/c protons incident on a beryllium target at an average laboratory production angle of 40. This ratio was measured to be 0.278+-0.011+-0.05 where the uncertainties are statistical and systematic in that order. The ratio does not depend strongly on the momentum of the produced particle between 10 and 24 GeV/c. The effect of Σ0 contamination on previous determinations of the polarization of inclusively produced Λ0's is discussed. (orig.)

  12. Low-Z target optimization for spatial resolution improvement in megavoltage imaging

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Tanner; Robar, James L. [Medical Physics Unit, McGill University Health Center, 1650 Avenue Cedar, Montreal, Quebec H3G 1A4 (Canada); Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7 (Canada)

    2010-01-15

    Purpose: Recently, several authors have shown contrast improvements in megavoltage portal imaging and cone-beam computed tomography using low atomic number (Z) targets. This work compliments previous studies by investigating the effects of varying different beam production parameters including target atomic number, target thickness, and incident electron energy on spatial resolution. Methods: Target materials of beryllium, aluminum, and tungsten were investigated over a range of thicknesses between 10% and 100% of the continuous slowing down approximation range of electrons. Incident electron kinetic energies of 4.5 and 7.0 MeV were used, in conjunction with custom targets installed above the carousel of a modern radiotherapy linear accelerator. Monte Carlo simulations of the accelerator were constructed and compared to the experimental results. Results: The results showed that thinner targets, as well higher incident electron energies, generally produce more favorable modulation transfer function (MTF) curves. Due to an MTF dependence of the detector system on the photon energy, the experimental results showed that low-Z targets produced superior MTF curves. Simulations showed 14.5% and 21.5% increases in f{sub 50} for the 7.0 and 4.5 MeV targets (Al; 60%R{sub %CSDA}), respectively, when moved from the carousel to the location of the clinical target. f{sub 50} values for the custom targets were compared to the clinical 6 MV beam and were found to be between 10.4% lower (4.5 MeV/W) and 15.5% higher (7.0 MeV/Be). Conclusions: Integration of low-Z external targets into the treatment head of a medical linear was achieved with only minor modifications. It was shown that reasonably high resolution images on par or better than those acquired with the clinical 6 MV beam can be achieved using external low-Z targets.

  13. Determination of Beryllium-7 in Water Hyacinth Using Gamma-Ray Spectrometry

    International Nuclear Information System (INIS)

    Full text: Beryllium-7 (7Be) is a cosmogenic radionuclide produced in the upper atmosphere and enters the lower atmosphere by atmospheric circulation processes. About 90% of 7Be decays directly through electron capture to 7Li at ground state and about 10% to 7Li at 1st excited state followed by 477.6 keV gamma-ray emission with a half-life of 53.3 days. The aim of this research was to measure 7Be activity in environmental samples including water and aquatic plants. From the preliminary investigation by measurement of the 477.6 keV gamma-ray peak, 7Be could be found in fresh Water Hyacinth samples. Thus, Water Hyacinth samples were then collected at different times of the year 2007 - 2008 in an area of Bang Khaen campus of Kasetsart University for determination of 7Be activity using a HPGe detector. It was found that 7Be specific activity was about 4-7 Bq/kg in the samples collected in rainy season during August-October 2007 and in June 2008 but could not detect in dry seasons i.e. summer and winter. The specific activity of 7Be in Water Hyacinth sample depended on rainfalls as expected

  14. Computer Modeling of Displacement Cascades in Beryllium Irradiated with Intensive Neutron Flux

    Directory of Open Access Journals (Sweden)

    T. Troev

    2008-02-01

    Full Text Available Computer simulations of the radiation defects created in beryllium irradiated by fast neutrons (E>0.1 MeV using the Geant4 and SRIM packages were carried out. The atom cascade displacements in Be at a neutron fluence of 1.6×1020 n/cm2 were determined to be 0.06 dpa and the helium concentration was calculated to be 168 appm. The concentration of L6i has been estimated to be 5% in comparison to the He concentration. Nanoscale calculations were done in 30×30×30 nm cube of fast neutron-irradiated Be. A correlation between the Be primary knock-on atom (PKA energies and the damage cascades has been established. The final defect distributions of single vacancies, divacancies, and small vacancy clusters were examined. Our results indicate that the damages caused by He atoms are about 3 times less than damages caused by Be primary knock-on atoms (PKAs.

  15. Metallothionein-1+2 deficiency increases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin 6

    DEFF Research Database (Denmark)

    Giralt, Mercedes; Penkowa, Milena; Hernández, Joaquín;

    2002-01-01

    of cytokines such as IL-6, IL-1alpha,beta, and TNFalpha and recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. Clear symptoms of increased oxidative stress and apoptotic cell death caused by MT-1+2 deficiency were observed in the GFAP-IL6xMTKO mice......Transgenic expression of IL-6 under the control of the GFAP gene promoter (GFAP-IL6 mice) in the CNS causes significant damage and alters the expression of many genes, including the metallothionein (MT) family, especially in the cerebellum. The crossing of GFAP-IL6 mice with MT-1+2 knock out (MTKO......) mice provided evidence that the increased MT-1+2 expression normally observed in the GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, the GFAP-IL6xMTKO mice showed a decreased body weight gain and an impaired performance in the rota-rod test, as well as a higher upregulation...

  16. Effect of astrocyte-targeted production of IL-6 on traumatic brain injury and its impact on the cortical transcriptome

    DEFF Research Database (Denmark)

    Quintana, Albert; Molinero, Amalia; Borup, Rehannah;

    2008-01-01

    (freeze) injury in the cortex, increasing healing and decreasing oxidative stress and apoptosis. To determine the transcriptional basis for these responses here we analyzed the global gene expression profile of the cortex, at 0 (unlesioned), 1 or 4 days post lesion (dpl), in both GFAP-IL6 mice and their...... stress (Atf4). Furthermore, the presence of IL-6 altered the expression of genes involved in hemostasis (Vwf), cell migration and proliferation (Cap2), and synaptic activity (Vamp2). All these changes in gene expression could underlie the phenotype of the GFAP-IL6 mice after injury, but many other...

  17. Synthesis and Biological Evaluation of a Peptide Paclitaxel Conjugate Which Targets the Integrin αvβ6

    OpenAIRE

    Li, Shunzi; Gray, Bethany Powell; McGuire, Michael J.; Brown, Kathlynn C.

    2011-01-01

    The integrin αvβ6 is an emergent biomarker for non-small cell lung cancer (NSCLC) as well as other carcinomas. We previously developed a tetrameric peptide, referred to as H2009.1, which binds αvβ6 and displays minimal affinity for other RGD-binding integrins. Here we report the use of this peptide to actively deliver paclitaxel to αvβ6–positive cells. We synthesized a water soluble paclitaxel-H2009.1 peptide conjugate in which the 2′-position of paclitaxel is attached to the tetrameric pepti...

  18. Beam-spot temperature monitoring on the production target at the BigRIPS separator

    International Nuclear Information System (INIS)

    Since 2007, a water-cooled high-power rotating disk target has been in operation at the in-flight radioactive-isotope beam separator (BigRIPS), RIKEN. The target should withstand a goal beam intensity of 1 particle μA (pμA) 238U-beam at 350 AMeV with a spot size of 1 mm in diameter, resulting in a heat deposit of 22 kW in the target. A beam-spot temperature monitoring system using infrared devices in high-radiation environment was elaborately developed. The beam-spot temperature on a beryllium (Be) fixed target and on a rotating Be and tungsten (W) disk target was measured with the most intense beams presently available at our facility. The heat deposit achieved was 0.6 kW, that is 1/37 of the goal value. At the present beam intensity, the result supports our estimation that a water-cooled rotating disk target of 30 cm diameter can withstand an approximately tenfold beam intensity compared to a water-cooled fixed target.

  19. Workshop on beryllium for fusion applications. Proceedings. IEA Implementing Agreement for a Programme of Research and Development on Fusion Materials

    International Nuclear Information System (INIS)

    As shown by recent developments beryllium has become one of the most important materials in the development of fusion reactors. It is practically the only neutron multiplier available for blankets with ceramic breeder materials and can be used with liquid metal breeders as well. It is one of the most likely materials to be used on the surface of the first walls and of the divertor. The neutron irradiation behavior of beryllium in a fusion reactor is not well know. Beryllium was extensively irradiated about 25-40 years ago and has been used since then in material testing reactors as reflector. In the meantime, however, beryllium has been improved quite considerably. Today it is possible to obtain commercially beryllium which is much more isotropic and contains smaller ammounts of oxide. There are already indications that these new kinds of beryllium behave better under irradiation. (orig.)

  20. Separation of carrier-free 64,67Cu radionuclides from irradiated zinc targets using 6-tungstocerate(IV) gel matrix

    International Nuclear Information System (INIS)

    A procedure for the separation of 64,67Cu radioisotopes from irradiated natural zinc targets was developed. Production of 64,67Cu was carried out using 64,67Zn(n,p)64,67Cu reactions by fast neutron bombardment of natural zinc targets at The Second Egyptian Research Reactor (ETRR-2). The sorption behavior of 65Zn and 64,67Cu ions in HCl acid solutions showed high affinity of Cu ions towards 6-tungstocerate(IV) gel matrix compared with Zn ions. Carrier-free 64,67Cu radionuclides were separated from 65Zn on 6-tungstocerate(IV) column matrix by eluting the column with 10 ml 0.001 and 1M HCl acid solutions. The separated 64,67Cu radionuclides were of high chemical, radiochemical and radionuclidic purity. (author)