WorldWideScience

Sample records for berry inhibits growth

  1. The Lignan-containing Extract of Schisandra chinensis Berries Inhibits the Growth of Chlamydia pneumonia.

    Science.gov (United States)

    Hakala, Elina; Hanski, Leena L; Yrjönen, Teijo; Vuorela, Heikki J; Vuorela, Pia M

    2015-06-01

    The purpose of this study was to investigate the effect and selectivity of an extract of Schisandra chinensis berries against Chlamydia pneumoniae and C. trachomatis. Among the ethnopharmacological uses of the extract from Schisandrae fructus are cough and pneumonia. Therefore we focused on respiratory pathogens. The extract completely inhibited the growth of C. pneumoniae strain CV6 at 250 μg/mL concentration. The inhibition of C. pneumoniae and C. trachomatis growth was dose dependent and established with three different strains. The extract inhibited C. pneumoniae production of infectious progeny in a dose dependent manner. Chlamydia selectivity was elucidated with growth inhibition measurements of three other respiratory bacterial species. A pure compound found in Schisandra chinensis berries, schisandrin B at 20.0 μg/mL concentration inhibited the growth of both C. pneumoniae and C. trachomatis. The extract was found to be non-toxic to the human host cells. These findings highlight the potential of the extract from Schisandra chinensis berries as a source for antichlamydial compounds.

  2. 4β-Hydroxywithanolide E from Physalis peruviana (golden berry inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    Directory of Open Access Journals (Sweden)

    Guo Zong-Lun

    2010-02-01

    Full Text Available Abstract Background The crude extract of the fruit bearing plant, Physalis peruviana (golden berry, demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Methods Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299 using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE assay was used to evaluate the DNA damage due to the drug. Results It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p p 50 of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 μg/mL for 24 h. Conclusions In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.

  3. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

    Science.gov (United States)

    Cheng, Guo; He, Yan-Nan; Yue, Tai-Xin; Wang, Jun; Zhang, Zhen-Wen

    2014-09-02

    Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two "Cabernet Sauvignon (Vitis vinifera L.V)" vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3'5'-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes

  4. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles

    Directory of Open Access Journals (Sweden)

    Guo Cheng

    2014-09-01

    Full Text Available Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012. The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of

  5. The action of berry phenolics against human intestinal pathogens.

    Science.gov (United States)

    Puupponen-Pimiä, Riitta; Nohynek, Liisa; Alakomi, Hanna-Leena; Oksman-Caldentey, Kirsi-Marja

    2005-01-01

    Phenolic compounds present in berries selectively inhibit the growth of human gastrointestinal pathogens. Especially cranberry, cloudberry, raspberry, strawberry and bilberry possess clear antimicrobial effects against e.g. salmonella and staphylococcus. Complex phenolic polymers, such as ellagitannins, are strong antibacterial agents present in cloudberry, raspberry and strawberry. Berry phenolics seem to affect the growth of different bacterial species with different mechanisms. Adherence of bacteria to epithelial surfaces is a prerequisite for colonization and infection of many pathogens. Antimicrobial activity of berries may also be related to anti-adherence activity of the berries. Utilization of enzymes in berry processing increases the amount of phenolics and antimicrobial activity of the berry products. Antimicrobial berry compounds are likely to have many important applications in the future as natural antimicrobial agents for food industry as well as for medicine.

  6. Berry and Citrus Phenolic Compounds Inhibit Dipeptidyl Peptidase IV: Implications in Diabetes Management

    Directory of Open Access Journals (Sweden)

    Junfeng Fan

    2013-01-01

    Full Text Available Beneficial health effects of fruits and vegetables in the diet have been attributed to their high flavonoid content. Dipeptidyl peptidase IV (DPP-IV is a serine aminopeptidase that is a novel target for type 2 diabetes therapy due to its incretin hormone regulatory effects. In this study, well-characterized anthocyanins (ANC isolated from berry wine blends and twenty-seven other phenolic compounds commonly present in citrus, berry, grape, and soybean, were individually investigated for their inhibitory effects on DPP-IV by using a luminescence assay and computational modeling. ANC from blueberry-blackberry wine blends strongly inhibited DPP-IV activity (IC50, 0.07 ± 0.02 to >300 μM. Of the twenty-seven phenolics tested, the most potent DPP-IV inhibitors were resveratrol (IC50, 0.6 ± 0.4 nM, luteolin (0.12 ± 0.01 μM, apigenin (0.14 ± 0.02 μM, and flavone (0.17 ± 0.01 μM, with IC50 values lower than diprotin A (4.21 ± 2.01 μM, a reference standard inhibitory compound. Analyses of computational modeling showed that resveratrol and flavone were competitive inhibitors which could dock directly into all three active sites of DPP-IV, while luteolin and apigenin docked in a noncompetitive manner. Hydrogen bonding was the main binding mode of all tested phenolic compounds with DPP-IV. These results indicate that flavonoids, particularly luteolin, apigenin, and flavone, and the stilbenoid resveratrol can act as naturally occurring DPP-IV inhibitors.

  7. Bioactive berry compounds-novel tools against human pathogens.

    Science.gov (United States)

    Puupponen-Pimiä, Riitta; Nohynek, Liisa; Alakomi, Hanna-Leena; Oksman-Caldentey, Kirsi-Marja

    2005-04-01

    Berry fruits are rich sources of bioactive compounds, such as phenolics and organic acids, which have antimicrobial activities against human pathogens. Among different berries and berry phenolics, cranberry, cloudberry, raspberry, strawberry and bilberry especially possess clear antimicrobial effects against, e.g. Salmonella and Staphylococcus. Complex phenolic polymers, like ellagitannins, are strong antibacterial agents present in cloudberry and raspberry. Several mechanisms of action in the growth inhibition of bacteria are involved, such as destabilisation of cytoplasmic membrane, permeabilisation of plasma membrane, inhibition of extracellular microbial enzymes, direct actions on microbial metabolism and deprivation of the substrates required for microbial growth. Antimicrobial activity of berries may also be related to antiadherence of bacteria to epithelial cells, which is a prerequisite for colonisation and infection of many pathogens. Antimicrobial berry compounds may have important applications in the future as natural antimicrobial agents for food industry as well as for medicine. Some of the novel approaches are discussed.

  8. Validation of a predictive model for the growth of Botrytis cinerea and Penicillium expansum on grape berries.

    Science.gov (United States)

    Judet-Correia, Daniela; Bollaert, Sophie; Duquenne, Alison; Charpentier, Claudine; Bensoussan, Maurice; Dantigny, Philippe

    2010-08-15

    The objective of this study was to develop and to validate a model for predicting the combined effect of temperature and a(w) on the radial growth rate, mu, of Botrytis cinerea and Penicillium expansum on grape berries. The proposed strategy was based on the gamma-concept developed previously [Zwietering, M.H., Wijtzes, T., de Wit, J.C., van't Riet, K. 1992. A decision support system for prediction of the microbial spoilage in foods. Journal of Food Protection. 12, 973-979]: mu=mu(opt).gamma(T).gamma(a(w)), where the gamma functions were cardinal models with inflection (CMI), mu(opt) the radial growth rate on grape berries. Firstly, the cardinal temperatures and a(w)'s were estimated independently from experiments carried out on Potato Dextrose Agar. Secondly, the gamma concept was validated i/ on a synthetic grape juice medium (SGJ) and ii/ on a grape juice agar (GJA). Accuracy and bias factors were closer to 1 with the latter analogue, thus suggesting that GJA should be preferred to SGJ. Thirdly, an experimental protocol taken into account the isotropic nature of fungal growth was developed for estimating mu(opt) on grape berries. This study demonstrated that CMI's can be validated on agri-food products over a wide range of temperature and a(w) using the described methodology.

  9. Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor (PDGF/PDGFR) signaling.

    Science.gov (United States)

    Lamy, Sylvie; Beaulieu, Edith; Labbé, David; Bédard, Valérie; Moghrabi, Albert; Barrette, Stéphane; Gingras, Denis; Béliveau, Richard

    2008-05-01

    Most cancers are dependent on the growth of tumor blood vessels and inhibition of tumor angiogenesis may thus provide an efficient strategy to retard or block tumor growth. Recently, tumor vascular targeting has expanded to include not only endothelial cells (ECs) but also smooth muscle cells (SMCs), which contribute to a mature and functional vasculature. We have reported previously that delphinidin, a major biologically active constituent of berries, inhibits the vascular endothelial growth factor-induced phosphorylation of vascular endothelial growth factor receptor-2 and blocks angiogenesis in vitro and in vivo. In the present study, we show that delphinidin also inhibits activation of the platelet-derived growth factor (PDGF)-BB receptor-beta [platelet-derived growth factor receptor-beta (PDGFR-beta)] in SMC and that this inhibition may contribute to its antitumor effect. The inhibitory effect of delphinidin on PDGFR-beta was very rapid and led to the inhibition of PDGF-BB-induced activation of extracellular signal-regulated kinase (ERK)-1/2 signaling and of the chemotactic motility of SMC, as well as the differentiation and stabilization of EC and SMC into capillary-like tubular structures in a three-dimensional coculture system. Using an anthocyan-rich extract of berries, we show that berry extracts were able to suppress the synergistic induction of vessel formation by basic fibroblast growth factor-2 and PDGF-BB in the mouse Matrigel plug assay. Oral administration of the berry extract also significantly retarded tumor growth in a lung carcinoma xenograft model. Taken together, these results provide new insight into the molecular mechanisms underlying the antiangiogenic activity of delphinidin that will be helpful for the development of dietary-based chemopreventive strategies.

  10. NMR metabolomics demonstrates phenotypic plasticity of sea buckthorn (Hippophaë rhamnoides) berries with respect to growth conditions in Finland and Canada.

    Science.gov (United States)

    Kortesniemi, Maaria; Sinkkonen, Jari; Yang, Baoru; Kallio, Heikki

    2017-03-15

    The berries of sea buckthorn (Hippophaë rhamnoides ssp. rhamnoides) cultivars 'Terhi' and 'Tytti' were studied with respect to their growth location, 60° and 68°N latitude in Finland and 46°N in Canada, using (1)H NMR metabolomics. The berries of 'Terhi' were characterised by stronger signals of quinic acid, while 'Tytti' had higher levels of O-ethyl β-d-glucopyranoside. The metabolic profile of the northernmost berries was distinctly different from those grown in southern Finland or Canada. Berries from northern Finland had relatively higher levels of quinic acid, glucose, l-quebrachitol and ascorbic acid. Ethyl glucoside was shown to accumulate by several fold at the late stage of maturation in the south as it correlated with degree days (r=0.63) and global radiation (r=0.59), but not in the north. The variance in the composition of the sea buckthorn berries demonstrates plasticity in the acclimatisation to growth environments.

  11. α-Amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits α-amylases from the coffee berry borer pest

    Directory of Open Access Journals (Sweden)

    Oliveira-Neto Osmundo B

    2010-06-01

    Full Text Available Abstract Background Coffee is an important crop and is crucial to the economy of many developing countries, generating around US$70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei, is responsible for worldwide annual losses of around US$500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an α-amylase inhibitor gene (α-AI1, which confers resistance against the coffee berry borer insect-pest, into C. arabica plants. Results We transformed C. arabica with the α-amylase inhibitor-1 gene (α-AI1 from the common bean, Phaseolus vulgaris, under control of the seed-specific phytohemagglutinin promoter (PHA-L. The presence of the α-AI1 gene in six regenerated transgenic T1 coffee plants was identified by PCR and Southern blotting. Immunoblotting and ELISA experiments using antibodies against α-AI1 inhibitor showed a maximum α-AI1 concentration of 0.29% in crude seed extracts. Inhibitory in vitro assays of the α-AI1 protein against H. hampei α-amylases in transgenic seed extracts showed up to 88% inhibition of enzyme activity. Conclusions This is the first report showing the production of transgenic coffee plants with the biotechnological potential to control the coffee berry borer, the most important insect-pest of crop coffee.

  12. In vitro production of two chitinolytic proteins with an inhibiting effect on the insect coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae) and the fungus Hemileia vastatrix the most limiting pests of coffee crops.

    Science.gov (United States)

    Martínez, Claudia P; Echeverri, Claudia; Florez, Juan C; Gaitan, Alvaro L; Góngora, Carmenza E

    2012-03-30

    Two genes from Streptomyces albidoflavus, one exochitinase (905-bp) and an endochitinase (1100-bp) were functionally expressed in Escherichia coli in form of a fusion protein with a maltose binding protein (MBP). The goal was to produce and test proteins that inhibit both the coffee berry borer insect Hypothenemus hampei and the coffee rust fungus Hemileia vastatrix. Both recombinant proteins MBP/exochitinase and MBP/endochitinase showed chitinolytic activity. When recombinant purified proteins were added to an artificial coffee-based diet for the coffee berry borer, MBP/exochitinase at a concentration of 0.5% W/W caused delayed growth of larvae and 100% mortality between days 8 and 15, while MBP/endochitinase caused 100% mortality at day 35. H. vastatrix urediniospores presented total cell wall degradation in their germinative tubes within 18 h of exposure to the proteins at enzyme concentrations of 5 and 6 mg ml-1, with exochitinase having the greatest effect. The dual deleterious effect of S. albidoflavus chitinases on two of the most limiting coffee pests worldwide, the coffee borer and the coffee rust, make them potential elements to be incorporated in integrated control strategies.

  13. Evaluation of the in vitro/in vivo potential of five berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) commonly used as herbal supplements to inhibit uridine diphospho-glucuronosyltransferase.

    Science.gov (United States)

    Choi, Eu Jin; Park, Jung Bae; Yoon, Kee Dong; Bae, Soo Kyung

    2014-10-01

    In this study, we evaluated inhibitory potentials of popularly-consumed berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) as herbal supplements on UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 in vitro. We also investigated the potential herb-drug interaction via UGT1A1 inhibition by blueberry in vivo. We demonstrated that these berries had only weak inhibitory effects on the five UGTs. Bilberry and elderberry had no apparent inhibitions. Blueberry weakly inhibited UGT1A1 with an IC50 value of 62.4±4.40 μg/mL and a Ki value of 53.1 μg/mL. Blueberry also weakly inhibited UGT2B7 with an IC50 value of 147±11.1 μg/mL. In addition, cranberry weakly inhibited UGT1A9 activity (IC50=458±49.7 μg/mL) and raspberry ketones weakly inhibited UGT2B7 activity (IC50=248±28.2 μg/mL). Among tested berries, blueberry showed the lowest IC50 value in the inhibition of UGT1A1 in vitro. However, the co-administration of blueberry had no effect on the pharmacokinetics of irinotecan and its active metabolite, SN-38, which was mainly eliminated via UGT1A1, in vivo. Our data suggests that these five berries are unlikely to cause clinically significant herb-drug interactions mediated via inhibition of UGT enzymes involved in drug metabolism. These findings should enable an understanding of herb-drug interactions for the safe use of popularly-consumed berries.

  14. Targeted inhibition of tumor growth and angiogenesis

    NARCIS (Netherlands)

    van der Meel, R.

    2013-01-01

    Two main strategies have been pursued for the development of an effective and targeted anti-cancer treatment. The first strategy comprised the generation of a targeted nanomedicine for the inhibition of tumor cell proliferation by blocking growth factor receptor pathways. The epidermal growth factor

  15. The multifunctionality of berries toward blood platelets and the role of berry phenolics in cardiovascular disorders.

    Science.gov (United States)

    Olas, Beata

    2016-10-25

    Diet and nutrition have an important influence on the prophylaxis and progression of cardiovascular disease; one example is the inhibition of blood platelet functions by specific components of fruits and vegetables. Garlic, onion, ginger, dark chocolate and polyunsaturated fatty acids all reduce blood platelet aggregation. A number of fruits contain a range of cardioprotective antioxidants and vitamins, together with a large number of non-nutrient phytochemicals such as phenolic compounds, which may possess both antioxidant properties and anti-platelet activity. Fresh berries and berry extracts possess high concentrations of phenolic compounds, i.e. phenolic acid, stilbenoids, flavonoids and lignans. The aim of this review article is to provide an overview of current knowledge of the anti-platelet activity of berries, which form an integral part of the human diet. It describes the effects of phenolic compounds present in a number of berries, i.e. black chokeberries - aronia berries (Aronia melanocarpa), blueberries (Vaccinium myrtillus), cranberries (Vaccinium sect. Oxycoccus), sea buckthorn berries (Hippophae rhamnoides) and grapes (Vitis), as well as various commercial products from berries (i.e. juices), on platelets and underlying mechanisms. Studies show that the effects of berries on platelet activity are dependent on not only the concentrations of the phenolic compounds in the berries or the class of phenolic compounds, but also the types of berry and the form (fresh berry, juice or medicinal product). Different results indicate that berries may play a role in the prevention of cardiovascular disorders, but the development of well-controlled clinical studies with berries is encouraged.

  16. Hydroxyapatite growth inhibition by osteopontin hexapeptide sequences.

    Science.gov (United States)

    Silverman, L D; Saadia, M; Ishal, J S; Tishbi, N; Leiderman, E; Kuyunov, I; Recca, B; Reitblat, C; Viswanathan, R

    2010-06-15

    The effects of three acidic hexapeptides on in vitro hydroxyapatite growth were characterized by pH-stat kinetic studies, adsorption isotherms, and molecular modeling. The three peptides, pSDEpSDE, SDESDE, and DDDDDD, are equal-length model compounds for the acidic sequences in osteopontin, a protein that inhibits mineral formation in both calcified and noncalcified tissues. Growth rates from 1.67 mM calcium and 1.00 mM phosphate solution were measured at pH 7.4 and 37 degrees C in 150 mM NaCl. pSDEpSDE was a strong growth inhibitor when preadsorbed onto hydroxyapatite (HA) seeds from > or = 0.67 mM solutions, concentrations where adsorption isotherms showed relatively complete surface coverage. The nonphosphorylated SDESDE control showed no growth inhibition. Although it adsorbed to almost the same extent as pSDEpSDE, it rapidly desorbed under the pH-stat growth conditions while pSDEpSDE did not. DDDDDD exhibited weak inhibition as its concentration was increased and similar adsorption/desorption behavior to pSDEpSDE. Molecular modeling yielded binding energy trends based on simple adsorption of peptides on the [100] surface that were consistent with observed inhibition, but not for the [001] surface. The relatively unfavorable binding energies for peptides on the [001] surface suggest that their absorption will be primarily on the [100] face. The kinetic and adsorption data are consistent with phosphorylation of osteopontin acting to control mineral formation.

  17. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  18. Homochiral growth through enantiomeric cross-inhibition

    CERN Document Server

    Brandenburg, A; Höfner, S; Nilsson, M

    2004-01-01

    The stability and conservation properties of a recently proposed polymerization model are studied. The achiral (racemic) solution is linearly unstable once the relevant control parameter (here the fidelity of the catalyst) exceeds a critical value. The growth rate is calculated for different fidelity parameters and cross-inhibition rates. A chirality parameter is defined and shown to be conserved by the nonlinear terms of the model. Finally, a truncated version of the model is used to derive a set of two ordinary differential equations and it is argued that these equations are more realistic than those used in earlier models of that form.

  19. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity....... High-quality toxicity data are carefully selected from peer-reviewed scientific literature and QSAR databases. This presentation shows how the chemical activity concept can be used to compare and combine toxicity data across compounds and species in order to characterize toxicity – and further how...

  20. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  1. Supersymmetric Berry index

    CERN Document Server

    Ilinskii, K N; Melezhik, V S; Ilinski, K N; Kalinin, G V; Melezhik, V V

    1994-01-01

    We revise the sequences of SUSY for a cyclic adiabatic evolution governed by the supersymmetric quantum mechanical Hamiltonian. The condition (supersymmetric adiabatic evolution) under which the supersymmetric reductions of Berry (nondegenerated case) or Wilczek-Zee (degenerated case) phases of superpartners are taking place is pointed out. The analogue of Witten index (supersymmetric Berry index) is determined. As the examples of suggested concept of supersymmetric adiabatic evolution the Holomorphic quantum mechanics on complex plane and Meromorphic quantum mechanics on Riemann surface are considered. The supersymmetric Berry indexes for the models are calculated.

  2. Effects of ABA Content on the Development of Abscission Zone and Berry Falling After Harvesting of Grapes

    Institute of Scientific and Technical Information of China (English)

    ZHANG You-lin; ZHANG Run-guang

    2009-01-01

    The commodity price of grape reduces as berry falling after harvest. It is crucial to prevent grape from berry falling during storage. In this article, the structure change of grape cells in the abscission zone was observed, the ABA content and the activities of cellulase and polygalacturonase (PG) were measured, and the relationship of ABA and berry falling was investigated. The results suggest that cells in the abscission zone grow into a separation layer soon after the grapes are cut off. According to the level of development, we designed 6 grades to sort the different development stages. The grade 3 plays an important role in berry falling. ABA enhances the activities of cellulase and polygalacturonase, and accelerates the decomposition of cellulose and pectin, which determines the level of development of abscission zone and berry falling. If ABA ratio is less than 20 ng g-1 fresh weight (FW), the abscission zone is not developed to the grade 3, and the berry falling is effectively stopped. We treated grape bunches with nine plant growth regulators and two chemicals. The results indicated that 2,3,5-triiodobenzoic acid (TIBA) can (a) inhibit the generation of ABA significantly, (b) inactivate the activities of cellulase and PG, (c) delay the development of the grade 3 of abscission zone, and (d) stop berry falling. Indole acetic acid (IAA), gibberellic acid (GA3), naphthalene acetic acid (NAA), 6-benzylaminopurine (6-BA), calcium chloride (CaCl2), and potassium permanganate (KMnO4) caused similar results as TIBA. Chlorocholine chloride (CCC), dimethyl amino succinamic acid (B9), chloroethylphosphonic acid (CEPA) and exogenous ABA showed opposite effects.

  3. Calcite crystal growth rate inhibition by polycarboxylic acids

    Science.gov (United States)

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  4. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    OpenAIRE

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control...

  5. Inhibition of spinach bolting by growth regulators

    Directory of Open Access Journals (Sweden)

    Jan Borkowski

    2015-06-01

    Full Text Available Spinach (Spinacia oleracea L. plants must be harvested during a short period of time because they bolt just after producing some edible leaves. Maleic hydrazide (MH and its commercial preparation "Antyrost" were found to inhibit bolting very strongly. The preparation Off-shoot-O showed very weak activity in suppressing bolting but diminished markedly the resistance of spinach plants to fungus diseases. Triiodobenzoic acid stimulated bolting, and the retardant succinic acid-2-2-dimethylhydrazide (SADH did not affect bolting. Application of MH to inhibit spinach bolting cannot be recommended in practice before investigating the residues of this compound in leaves.

  6. Endocannabinoids inhibit the growth of free-living amoebae.

    Science.gov (United States)

    Dey, Rafik; Pernin, Pierre; Bodennec, Jacques

    2010-07-01

    The cannabinoid Delta(9)-tetrahydrocannabinol inhibits the growth of some pathogenic amoebae in vitro and exacerbates amoebic encephalitis in animal models. However, the effects of endogenous cannabinoids on amoebae remain unknown. Therefore, we tested several endocannabinoids (N-acyl ethanolamines and 2-O-acyl glycerol) on different genera of amoebae. The results showed that all of the endocannabinoids tested inhibit amoebic growth at subpharmacological doses, with 50% inhibitory concentrations ranging from 15 to 20 microM. A nonhydrolyzable endocannabinoid had similar effects, showing that the inhibition seen results from endocannabinoids per se rather than from a catabolic product.

  7. BlackBerry For Dummies

    CERN Document Server

    Kao, Robert

    2010-01-01

    Get the most juice out of your BlackBerry handheld!. Feature-rich and complex, the BlackBerry is the number one smartphone in the corporate world is among the most popular handhelds for business users. This new and updated edition includes all the latest and greatest information on new and current BlackBerry mobile devices. Covering a range of valuable how-to topics, this helpful guide explores the BlackBerry's most useful features, techniques for getting the most out of your BlackBerry, and practical information about power usage.: Covers all aspects of the number one smartphone in the corpor

  8. Ellagic Acid Inhibits Bladder Cancer Invasiveness and In Vivo Tumor Growth

    Directory of Open Access Journals (Sweden)

    Claudia Ceci

    2016-11-01

    Full Text Available Ellagic acid (EA is a polyphenolic compound that can be found as a naturally occurring hydrolysis product of ellagitannins in pomegranates, berries, grapes, green tea and nuts. Previous studies have reported the antitumor properties of EA mainly using in vitro models. No data are available about EA influence on bladder cancer cell invasion of the extracellular matrix triggered by vascular endothelial growth factor-A (VEGF-A, an angiogenic factor associated with disease progression and recurrence, and tumor growth in vivo. In this study, we have investigated EA activity against four different human bladder cancer cell lines (i.e., T24, UM-UC-3, 5637 and HT-1376 by in vitro proliferation tests (measuring metabolic and foci forming activity, invasion and chemotactic assays in response to VEGF-A and in vivo preclinical models in nude mice. Results indicate that EA exerts anti-proliferative effects as a single agent and enhances the antitumor activity of mitomycin C, which is commonly used for the treatment of bladder cancer. EA also inhibits tumor invasion and chemotaxis, specifically induced by VEGF-A, and reduces VEGFR-2 expression. Moreover, EA down-regulates the expression of programmed cell death ligand 1 (PD-L1, an immune checkpoint involved in immune escape. EA in vitro activity was confirmed by the results of in vivo studies showing a significant reduction of the growth rate, infiltrative behavior and tumor-associated angiogenesis of human bladder cancer xenografts. In conclusion, these results suggest that EA may have a potential role as an adjunct therapy for bladder cancer.

  9. Spectroscopic analysis of urinary calculi and inhibition of their growth

    Science.gov (United States)

    Manciu, Felicia; Durrer, William; Govani, Jayesh; Reza, Layra; Pinales, Luis

    2009-10-01

    We present here a study of kidney stone formation and growth inhibition based on a traditional medicine approach with Aquatica Lour (RAL) herbal extracts. Kidney stone material systems were synthesized in vitro using a simplified single diffusion gel growth technique. With the objective of revealing the mechanism of inhibition of calculi formation by RAL extracts, samples prepared without the presence of extract, and with the presence of extract, were analyzed using Raman, photoluminescence, and XPS. The unexpected presence of Zn revealed by XPS in a sample prepared with RAL provides an explanation for the inhibition process, and also explains the dramatic reflectance of incident light observed in attempts to obtain infrared transmission data. Raman data are consistent with the binding of the inhibitor to the oxygen of the kidney stone. Photoluminescence data corroborate with the other results to provide additional evidence of Zn-related inhibition.

  10. Inhibition of Bacillus subtilis growth and sporulation by threonine.

    Science.gov (United States)

    Lamb, D H; Bott, K F

    1979-01-01

    A 1-mg/ml amount of threonine (8.4 mM) inhibited growth and sporulation of Bacillus subtilis 168. Inhibition of sporulation was efficiently reversed by valine and less efficiently by pyruvate, arginine, glutamine, and isoleucine. Inhibition of vegetative growth was reversed by asparate and glutamate as well as by valine, arginine, or glutamine. Cells in minimal growth medium were inhibited only transiently by very high concentrations of threonine, whereas inhibition of sporulation was permanent. Addition of threonine prevented the normal increase in alkaline phosphatase and reduced the production of extracellular protease by about 50%, suggesting that threonine blocked the sporulation process relatively early. 2-Ketobutyrate was able to mimic the effect of threonine on sporulation. Sporulation in a strain selected for resistance to azaleucine was partially resistant. Seventy-five percent of the mutants selected for the ability to grow vegetatively in the presence of high threonine concentrations were found to be simultaneously isoleucine auxotrophs. In at least one of these mutants, the threonine resistance phenotpye could not be dissociated from the isoleucine requirement by transformation. This mutation was closely linked to a known ilvA mutation (recombination index, 0.16). This strain also had reduced intracellular threonine deaminase activity. These results suggest that threonine inhibits B. subtilis by causing valine starvation.

  11. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ahmad

    Full Text Available We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  12. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Science.gov (United States)

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  13. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  14. Lactobacillus acidophilus Probiotic Inhibits the Growth of Candida albicans

    Directory of Open Access Journals (Sweden)

    Sawitri D. Pertami

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Candida albicans is the most common organism causing oral candidiasis. Drug resistance to synthetic antifungal medication is becoming a problem in the treatment of oral candidiasis, especially in immunocompromised patients.Probiotic has been known for its health benefits. It produces lactic acid and bacteriocin that has antibacterial effect. Research focuses on antifungal effect of probiotic, escpecially for C. albicans is still needed. Objective: To determinethe inhibition effect of probiotic in the growth of C. albicans. Methods: Three concentrations of Lactobacillus acidophilus-containing probiotic (McFarland 6, 8, 10 were used to determine their inhibition effect on C. albicans (McFarland 0.5 growing in trypticase yeast-extract cystine (TYC agar. The inhibition effect of probiotic was determined by measuring the inhibition zone produced after 48 hours of culture. Difference in inhibition zone among experimental groups was analyzed using one-way ANOVA and LSD post-test. Results: Probiotic with McFarland 10 had the highest inhibition effect against C. albicans and the difference to other experimental groups was statistically significant (p<0.05. Conclusion: L. acidophilus probiotic has inhibition effect in the growth of C. albicans.DOI: 10.14693/jdi.v20i3.196

  15. GROWTH INHIBITION OF FUSARIUM SP. IN LIVESTOCK FEED

    Directory of Open Access Journals (Sweden)

    Gabriella Kanižai Šarić

    2011-12-01

    Full Text Available Contamination with phytopathogenic forms of Fusarium, besides field crops, may also occur in stored products. Addition of antifungal substances to stored livestock feed is therefore common. This paper examined the effectiveness of a mixture of synthetic and natural antioxidants against the growth of Fusarium graminearum and F. verticillioides in a concentrate mixture. The most effective inhibition of growth was achieved with a mixture of butylated hydroxyanisole, propyl paraben and thymol.

  16. Berry phase in lattice QCD

    CERN Document Server

    Yamamoto, Arata

    2016-01-01

    We propose the lattice QCD calculation of the Berry phase which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.

  17. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development

    Directory of Open Access Journals (Sweden)

    Schlauch Karen A

    2007-11-01

    Full Text Available Abstract Background Grape berry development is a dynamic process that involves a complex series of molecular genetic and biochemical changes divided into three major phases. During initial berry growth (Phase I, berry size increases along a sigmoidal growth curve due to cell division and subsequent cell expansion, and organic acids (mainly malate and tartrate, tannins, and hydroxycinnamates accumulate to peak levels. The second major phase (Phase II is defined as a lag phase in which cell expansion ceases and sugars begin to accumulate. Véraison (the onset of ripening marks the beginning of the third major phase (Phase III in which berries undergo a second period of sigmoidal growth due to additional mesocarp cell expansion, accumulation of anthocyanin pigments for berry color, accumulation of volatile compounds for aroma, softening, peak accumulation of sugars (mainly glucose and fructose, and a decline in organic acid accumulation. In order to understand the transcriptional network responsible for controlling berry development, mRNA expression profiling was conducted on berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0 spanning seven stages of berry development from small pea size berries (E-L stages 31 to 33 as defined by the modified E-L system, through véraison (E-L stages 34 and 35, to mature berries (E-L stages 36 and 38. Selected metabolites were profiled in parallel with mRNA expression profiling to understand the effect of transcriptional regulatory processes on specific metabolite production that ultimately influence the organoleptic properties of wine. Results Over the course of berry development whole fruit tissues were found to express an average of 74.5% of probes represented on the Vitis microarray, which has 14,470 Unigenes. Approximately 60% of the expressed transcripts were differentially expressed between at least two out of the seven stages of berry

  18. [Inhibition of growth of microscopic fungi with organic acids].

    Science.gov (United States)

    Conková, E; Para, L; Kocisová, A

    1993-01-01

    Fungicidal effects of five selected organic acids (lactic, acetic, formic, oxalic, and propionic) in concentrations 3, 5, 10, 20 and 50 ml/l on nine selected species of moulds were tested. Lactic and oxalic acids did not prove the satisfactory fungicidal activity in any of the chosen concentrations. The antifungal effect of the other three acids, manifested by the growth inhibition of the tested moulds is shown in Tab. I and it can be expressed by sequence: propionic acid, formic acid, and acetic acid. These acids also had effects only in concentrations 20 ml/l and 50 ml/l. Propionic acid in concentration 20 ml/l inhibited the growth of five moulds (Penicillium glabrum, Aspergillus niger, Fusarium moniliforme, Aspergillus fumigatus, Cladosporium sphaerospermum). In testing of concentration 50 ml/l, the lower fungicidal ability was ascertained only in growth suppression of Aspergillus flavus. The fungicidal activity of formic acid was registered in concentration 20 ml/l in two cases and in concentration 50 ml/l in six cases. Acetic acid inhibited the growth in concentration 50 ml/l only in two cases. Tab. II shows the percentual evaluation of propionic acid and formic acid with regard to their inhibition abilities. The fungicidal efficiency of propionic acid resulting from the experiment is 88.9%.

  19. Inhibition of placenta growth factor with TB-403

    DEFF Research Database (Denmark)

    Nielsen, Dorte Lisbet; Sengeløv, Lisa

    2012-01-01

    targeting angiogenesis. AREAS COVERED: The data are obtained by searching in the PubMed database. The search terms used included antiangiogenic therapy, TB-403 (RO5323441), placenta growth factor (PlGF) and VEGFR-1 (Flt-1). We review preclinical data concerning the function and inhibition of Pl...

  20. Inhibition mechanism of aspartic acid on crystal growth of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    HUANG Su-ping; ZHOU Ke-chao; LI Zhi-you

    2007-01-01

    The effects of aspartic acid on the crystal growth, morphology of hydroxyapatite(HAP) crystal were investigated, and the inhibition mechanism of aspartic acid on the crystal growth of hydroxyapatite was studied. The results show that the crystal growth rate of HAP decreases with the increase of the aspartic acid concentration, and the HAP crystal is thinner significantly compared with that without amino acid, which is mainly due to the (10(-)10) surface of HAP crystal being inhibited by the aspartic acids. The calculation analysis indicates that the crystal growth mechanism of HAP, following surface diffusion controlled mechanism, is not changed due to the presence of aspartic acid. AFM result shows that the front of terrace on vicinal growth hillocks is pinned, which suggests that the aspartic acid is adsorbed onto the (10(-)10) surface of HAP and interacts with the Ca2+ ions of HAP surface, so as to block the growth active sites and result in retarding of the growth of HAP crystal.

  1. Epidermal growth factor inhibits cysteamine-induced duodenal ulcers

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1983-01-01

    The effect of the duodenal ulcerogen cysteamine on secretion of epidermal growth factor from Brunner's gland pouches was studied in the rat. Total output of immunoreactive epidermal growth factor was reduced to approximately 55%, compared with controls, 5 h after administration of cysteamine (300...... mg/kg, s.c.). Furthermore, measurements on tissue extracts of the pouches revealed that 5 h after cysteamine treatment, Brunner's glands were depleted of epidermal growth factor. The effect on ulcer development of intraduodenally applied exogenous epidermal growth factor (1 micrograms/kg . h) also...... factor used, when tested on chronic fistula rats, had no effect on acid secretion and did not influence bicarbonate secretion from Brunner's gland pouches. These results demonstrate that epidermal growth factor has a cytoprotective effect on the duodenal mucosa, and it is suggested that inhibition...

  2. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Govindsamy Vediyappan

    Full Text Available Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine.

  3. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth

    Energy Technology Data Exchange (ETDEWEB)

    Lin Daohui [Department of Environmental Science, Zhejiang University, Hangzhou 310028 (China); Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2007-11-15

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC{sub 50}) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. - Engineered nanoparticles can inhibit the seed germination and root growth.

  4. Coffee berry disease in Kenya

    NARCIS (Netherlands)

    Vermeulen, H.

    1979-01-01

    Data are presented on research in Kenya in 1964 - 1969 on anatomical, mycological, epidemiological, chemical control and cultural aspects of coffee berry disease, Colletotrichum coffeanum Noack, of Coffea arabica L. The pathogen causes flower and berry losses and was found in branches where it occup

  5. Berry Fermi liquid theory

    Science.gov (United States)

    Chen, Jing-Yuan; Son, Dam Thanh

    2017-02-01

    We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current-current correlator exactly matches with the result obtained from the kinetic theory.

  6. Shiraz wines made from grape berries (Vitis vinifera) delayed in ripening by plant growth regulator treatment have elevated rotundone concentrations and "pepper" flavor and aroma.

    Science.gov (United States)

    Davies, Christopher; Nicholson, Emily L; Böttcher, Christine; Burbidge, Crista A; Bastian, Susan E P; Harvey, Katie E; Huang, An-Cheng; Taylor, Dennis K; Boss, Paul K

    2015-03-01

    Preveraison treatment of Shiraz berries with either 1-naphthaleneacetic acid (NAA) or Ethrel delayed the onset of ripening and harvest. NAA was more effective than Ethrel, delaying harvest by 23 days, compared to 6 days for Ethrel. Sensory analysis of wines from NAA-treated fruit showed significant differences in 10 attributes, including higher "pepper" flavor and aroma compared to those of the control wines. A nontargeted analysis of headspace volatiles revealed modest differences between wines made from control and NAA- or Ethrel-treated berries. However, the concentration of rotundone, the metabolite responsible for the pepper character, was below the level of detection by solid phase microextraction-gas chromatography-mass spectrometry in control wines, low in Ethrel wines (2 ng/L), and much higher in NAA wines (29 ng/L). Thus, NAA, and to a lesser extent Ethrel, treatment of grapes during the preveraison period can delay ripening and enhance rotundone concentrations in Shiraz fruit, thereby enhancing wine "peppery" attributes.

  7. Growth inhibition of Listeria monocytogenes by a nonbacteriocinogenic Carnobacterium piscicola

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Bech Hansen, T.; Garrido, P.

    2005-01-01

    Aims: This study elucidates the mechanisms by which a nonbacteriocinogenic Carnobacterium piscicola inhibits growth of Listeria monocytogenes. Methods and Results: Listeria monocytogenes was exposed to live cultures of a bacteriocin-negative variant of C. piscicola A9b in co-culture, in a diffusion...... chamber system, and to a cell-free supernatant. Suppression of maximum cell density (0-3.5 log units) of L. monocytogenes was proportional to initial levels of C. pisciola (10(3)-10(7) CFU ml(-1)). Cell-to-cell contact was not required to cause inhibition. The cell-free C. piscicola supernatant caused...... a decrease in L. monocytogenes maximum cell density, which was abolished by glucose addition but not by amino acid, vitamin or mineral addition. The fermentate also gave rise to a longer lag phase and a reduction in growth rate. These effects were independent of glucose and may have been caused by acetate...

  8. DNA Walker-Regulated Cancer Cell Growth Inhibition.

    Science.gov (United States)

    Li, Feiran; Cha, Tae-Gon; Pan, Jing; Ozcelikkale, Altug; Han, Bumsoo; Choi, Jong Hyun

    2016-06-16

    We demonstrate a DNAzyme-based walker system as a controlled oligonucleotide drug AS1411 release platform for breast cancer treatment. In this system, AS1411 strands are released from fuel strands as a walker moves along its carbon nanotube track. The release rate and amount of anticancer oligonucleotides are controlled by the walker operation. With a walker system embedded within the collagen extracellular matrix, we show that this drug release system can be used for in situ cancer cell growth inhibition.

  9. The Theaflavin Monomers Inhibit the Cancer Cells Growth in Vitro

    Institute of Scientific and Technical Information of China (English)

    You-Ying TU; An-Bin TANG; Naoharu WATANABE

    2004-01-01

    The inhibition effects of tea theaflavins complex (TFs), theaflavin-3-3 '-digallate (TFDG),theaflavin-3'-gallate (TF2B), and an unidentified compound (UC) on the growth of human liver cancer BEL-7402 cells, gastric cancer MKN-28 cells and acute promyelocytic leukemia LH-60 cells were investigated.TFs was obtained through the catalysis of catechins with immobilized polyphenols oxidase. TFDG, TF2B and UC were isolated from TFs with high speed countercurrent chromatography (HSCCC). The results showed that TF2B significantly inhibited the growth of all three kinds of cancer cells, TFs, TFDG and UC had some effect on BEL-7402 and MKN-28, but little activity on LH-60. The inhibition effects of TF2B, TFDG, and UC on BEL-7402 and MKN-28 were stronger than TFs. The relationship coefficients between monomer concentration and its inhibition rate against MKN-28 and BEL-7402 were 0.87 and 0.98 for TF2B, 0.96 and 0.98 for UC, respectively. The IC50 values ofTFs, TF2B, and TFDG were 0.18, 0.11, and 0.16 mM on BEL-7402 cells, and 1.11, 0.22, and 0.25 mM on MKN-28 cells respectively.

  10. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis.

    Science.gov (United States)

    Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2015-02-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro. However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer.

  11. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro.

    Science.gov (United States)

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A

    2016-03-15

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles.

  12. Inhibition of somatotroph growth and growth hormone biosynthesis by activin in vitro

    DEFF Research Database (Denmark)

    Billestrup, Nils; González-Manchón, C; Potter, E

    1990-01-01

    ]methionine-labeled cells, could be observed after 24 h of activin treatment, and maximal (70%) inhibition of GH biosynthesis was observed after 3 days. Activin inhibited basal as well as GH-releasing factor (GRF)-, glucocorticoid-, and thyroid hormone-stimulated GH biosynthesis. Inhibin, which is known to reverse...... the effect of activin on FSH secretion, did not reverse the effect of activin on GH biosynthesis. Treatment of somatotrophs with activin for 3 days completely inhibited the growth-promoting effect of GRF on somatotrophs. However, no effect of activin on GRF-stimulated expression of the c-fos protooncogene...... was observed. These data demonstrate that activin, in addition to its stimulatory effect on FSH secretion, is able to inhibit both expression of GH and growth of somatotropic cells....

  13. Maesa indica: a nutritional wild berry rich in polyphenols with special attention to radical scavenging and inhibition of key enzymes, α-amylase and α-glucosidase.

    Science.gov (United States)

    Shanmugam, Saravanan; Baby, John Prakash; Chandran, Rahul; Thankarajan, Sajeesh; Thangaraj, Parimelazhagan

    2016-07-01

    The present study was aimed to evaluate the nutritional, antioxidant properties and inhibition of the key enzyme such as α-amylase and α-glucosidase from the fruits of Maesa indica. The results revealed that M. indica fruits possess an enormous amount of protein (45.68 mg/g), carbohydrates (25.12 mg/g) and mineral elements. The acetone extract were capable of hunting radicals by providing electrons and break chain reaction, especially in ABTS(·+) (3719.23 µmol TE/g extract), OH(·) (66.50 %) and NO(·) (81.50 %) radical scavenging assays. The methanol extract showed a strong inhibition towards α-amylase and α-glucosidase (IC50 of 37.80 and 23.74 µg/mL, respectively). HPLC analysis enumerate that both extracts illustrates the presence of polyphenolic compounds namely quercetin, caffeic acid, rutin and chlorogenic acid.

  14. Inhibition of normal human lung fibroblast growth by beryllium.

    Science.gov (United States)

    Lehnert, N M; Gary, R K; Marrone, B L; Lehnert, B E

    2001-03-07

    Inhalation of particulate beryllium (Be) and its compounds causes chronic Be disease (CBD) in a relatively small subset ( approximately 1-6%) of exposed individuals. Hallmarks of this pulmonary disease include increases in several cell types, including lung fibroblasts, that contribute to the fibrotic component of the disorder. In this regard, enhancements in cell proliferation appear to play a fundamental role in CBD development and progression. Paradoxically, however, some existing evidence suggests that Be actually has antiproliferative effects. In order to gain further information about the effects of Be on cell growth, we: (1) assessed cell proliferation and cell cycle effects of low concentrations of Be in normal human diploid fibroblasts, and (2) investigated the molecular pathway(s) by which the cell cycle disturbing effects of Be may be mediated. Treatment of human lung and skin fibroblasts with Be added in the soluble form of BeSO(4) (0.1-100 microM) caused inhibitions of their growth in culture in a concentration-dependent manner. Such growth inhibition was found to persist, even after cells were further cultured in Be(2+)-free medium. Flow cytometric analyses of cellular DNA labeled with the DNA-binding fluorochrome DAPI revealed that Be causes a G(0)-G(1)/pre-S phase arrest. Western blot analyses indicated that the Be-induced G(0)-G(1)/pre-S phase arrest involves elevations in TP53 (p53) and the cyclin-dependent kinase inhibitor CDKN1A (p21(Waf-1,Cip1)). That Be at low concentrations inhibits the growth of normal human fibroblasts suggests the possibility of the existence of abnormal cell cycle inhibitory responses to Be in individuals who are sensitive to the metal and ultimately develop CBD.

  15. Activation of phospholipase D activity in transforming growth factor—beta—induced cell growth inhibition

    Institute of Scientific and Technical Information of China (English)

    ZHOUBINGHONG; JUNSONGCHEN; 等

    2000-01-01

    Cells regulate phospholipase D(PLD) activity in response to numerous extracellular signals.Here,we investigated the involvement of PLD activity in transforming growth factor-β(TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1 inhibits the growth of MDCK,Mv1Lu,and A-549 cells.In the presence of 0.4% butanol,TGF-β1 induces an increase in the formation of phosphatidylbutanol,a unique product catalyzed by PLD.TGF-β1 also induces an increase in phosphatidic acid (PA) level in A-549 and MDCK cells.TGF-β1 induces an increase in the levels of DAG labeled with [3H]-myristic acid in A-549 and MDCK cells but not in Mv1Lu cells.No increase of DAG was observed in cells prelabeled with [3H]-arachidonic acid.The data presented suggest that PLD activation is involved in the TGF-β1-induced cell growth inhibition.

  16. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.

    Science.gov (United States)

    Lin, Daohui; Xing, Baoshan

    2007-11-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50mg/L for radish, and about 20mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles.

  17. Berry's Phase in Noncommutative Spaces

    Institute of Scientific and Technical Information of China (English)

    S. A. Alavi

    2003-01-01

    We discuss the perturbative aspects of noncommutative quantum mechanics. Then we study Berry's phase within the framework of noncommutative quantum mechanics. The results show deviations from the usual quantum mechanics, which depend on the parameter of space/space noncommutativity.

  18. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth.

    Science.gov (United States)

    Harel, Sivan; Higgins, Claire A; Cerise, Jane E; Dai, Zhenpeng; Chen, James C; Clynes, Raphael; Christiano, Angela M

    2015-10-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells.

  19. Roy Fuentes: Fuentes Berry Farms

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    As president of Fuentes Berry Farms, Rogelio (Roy) Fuentes is one of many independent growers producing organic berries for Driscoll’s—a company that was initiated more than a century ago by two strawberry farmers on California’s Central Coast, and has since evolved into an international concern devoted to research, breeding, production, sales and distribution of conventionally and organically farmed strawberries, raspberries, blackberries and blueberries. Driscoll’s CEO Miles Reiter and his ...

  20. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    Science.gov (United States)

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production.

  1. N and P addition inhibits growth of rich fen bryophytes

    DEFF Research Database (Denmark)

    Andersen, Dagmar Kappel; Ejrnæs, Rasmus; Riis, Tenna

    2016-01-01

    vernicosus and paludella squarrosa) rich fen bryophytes were grown in mixed culture and subjected to rainwater or groundwater and three levels of N (0, 1 and 3 mg N L-1) and P (0, 0.05 and 0.1 mg P NL-1). All species responded negatively to higher N-levels and three of four species responded negatively...... to rainwater and higher P-levels. C. cuspidata had highest relative growth rate in all treatments, and the infrequently occurringrare species had lower relative growth rate and were more negatively affected by high levels of N than the frequently occurringcommon species. A negative effect of rainwater seemed...... to be caused by higher background levels of N in rainwater compared to groundwater rather than a pH-effect per se. We found a negative effect of high initial bryophyte density in three of four species indicating density dependent inhibition between species.We suggest that maintenance of oligotrophic conditions...

  2. FH535 inhibited migration and growth of breast cancer cells.

    Science.gov (United States)

    Iida, Joji; Dorchak, Jesse; Lehman, John R; Clancy, Rebecca; Luo, Chunqing; Chen, Yaqin; Somiari, Stella; Ellsworth, Rachel E; Hu, Hai; Mural, Richard J; Shriver, Craig D

    2012-01-01

    There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN) breast cancer cell lines (MDA-MB231 and HCC38) in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231) but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3) when cultured in three dimensional (3D) type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  3. FH535 inhibited migration and growth of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joji Iida

    Full Text Available There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN breast cancer cell lines (MDA-MB231 and HCC38 in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231 but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3 when cultured in three dimensional (3D type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  4. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Pangburn Heather A

    2005-09-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  5. Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer.

    Science.gov (United States)

    Harding, Thomas C; Long, Li; Palencia, Servando; Zhang, Hongbing; Sadra, Ali; Hestir, Kevin; Patil, Namrata; Levin, Anita; Hsu, Amy W; Charych, Deborah; Brennan, Thomas; Zanghi, James; Halenbeck, Robert; Marshall, Shannon A; Qin, Minmin; Doberstein, Stephen K; Hollenbaugh, Diane; Kavanaugh, W Michael; Williams, Lewis T; Baker, Kevin P

    2013-03-27

    The fibroblast growth factor (FGF) pathway promotes tumor growth and angiogenesis in many solid tumors. Although there has long been interest in FGF pathway inhibitors, development has been complicated: An effective FGF inhibitor must block the activity of multiple mitogenic FGF ligands but must spare the metabolic hormone FGFs (FGF-19, FGF-21, and FGF-23) to avoid unacceptable toxicity. To achieve these design requirements, we engineered a soluble FGF receptor 1 Fc fusion protein, FP-1039. FP-1039 binds tightly to all of the mitogenic FGF ligands, inhibits FGF-stimulated cell proliferation in vitro, blocks FGF- and vascular endothelial growth factor (VEGF)-induced angiogenesis in vivo, and inhibits in vivo growth of a broad range of tumor types. FP-1039 antitumor response is positively correlated with RNA levels of FGF2, FGF18, FGFR1c, FGFR3c, and ETV4; models with genetic aberrations in the FGF pathway, including FGFR1-amplified lung cancer and FGFR2-mutated endometrial cancer, are particularly sensitive to FP-1039-mediated tumor inhibition. FP-1039 does not appreciably bind the hormonal FGFs, because these ligands require a cell surface co-receptor, klotho or β-klotho, for high-affinity binding and signaling. Serum calcium and phosphate levels, which are regulated by FGF-23, are not altered by administration of FP-1039. By selectively blocking nonhormonal FGFs, FP-1039 treatment confers antitumor efficacy without the toxicities associated with other FGF pathway inhibitors.

  6. Berry morphology and composition in irrigated and non-irrigated grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Sofo, Adriano; Nuzzo, Vitale; Tataranni, Giuseppe; Manfra, Michele; De Nisco, Mauro; Scopa, Antonio

    2012-07-15

    The present study was carried out in a 5-year-old vineyard (Vitis vinifera L., cv. Aglianico) located in Southern Italy. Half of the plants (IRR) were fully irrigated, whereas the other half were not irrigated (NIRR). In both of the treatments, plant water status, gas exchange, photosynthetic efficiency and productive performance were determined. The arid conditions resulted in significant decreases in stem water potential in NIRR (minimum values of -1.34 and -1.52 MPa in IRR and NIRR, respectively). The values of yield per plant, cluster weight and total berry weight were significantly higher in IRR. Grape berries were separated into four weight classes, and morphometric and microscopic analyses were carried out to measure and calculate berry skin characteristics. Irrigation determined a marked shift toward heavier (+23% in the class ≥ 1.25 g) and bigger (336.35 mm³ vs 299.15 mm³) berries, and induced significant changes in other morphometric berry parameters. No differences among berry weight classes and irrigation treatments were observed for berry skin thickness. In all of the berry weight classes, total anthocyanins extracted from berry skins were significantly higher in NIRR than in IRR (12301.53 and 9585.52 mg kg⁻¹ fresh berry skin, respectively), and appeared to be positively related to berry weight, whereas total flavonols were not significantly different between the two treatments. Qualitative changes in the levels of single anthocyanin and flavonol compounds were detected between IRR and NIRR. In addition, iron, copper and zinc, whose high concentration can negatively affect wine quality, were significantly higher in the IRR treatment. The results highlighted that the absence of irrigation did not determine decreases in grape quality. Such data can be of primary importance in environments where water availability is by far the most important limiting factor for plant growth.

  7. Inhibition of glioblastoma growth by the thiadiazolidinone compound TDZD-8.

    Directory of Open Access Journals (Sweden)

    Diana Aguilar-Morante

    Full Text Available BACKGROUND: Thiadiazolidinones (TDZD are small heterocyclic compounds first described as non-ATP competitive inhibitors of glycogen synthase kinase 3β (GSK-3β. In this study, we analyzed the effects of 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8, on murine GL261 cells growth in vitro and on the growth of established intracerebral murine gliomas in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Our data show that TDZD-8 decreased proliferation and induced apoptosis of GL261 glioblastoma cells in vitro, delayed tumor growth in vivo, and augmented animal survival. These effects were associated with an early activation of extracellular signal-regulated kinase (ERK pathway and increased expression of EGR-1 and p21 genes. Also, we observed a sustained activation of the ERK pathway, a concomitant phosphorylation and activation of ribosomal S6 kinase (p90RSK and an inactivation of GSK-3β by phosphorylation at Ser 9. Finally, treatment of glioblastoma stem cells with TDZD-8 resulted in an inhibition of proliferation and self-renewal of these cells. CONCLUSIONS/SIGNIFICANCE: Our results suggest that TDZD-8 uses a novel mechanism to target glioblastoma cells, and that malignant progenitor population could be a target of this compound.

  8. Liver acid sphingomyelinase inhibits growth of metastatic colon cancer.

    Science.gov (United States)

    Osawa, Yosuke; Suetsugu, Atsushi; Matsushima-Nishiwaki, Rie; Yasuda, Ichiro; Saibara, Toshiji; Moriwaki, Hisataka; Seishima, Mitsuru; Kozawa, Osamu

    2013-02-01

    Acid sphingomyelinase (ASM) regulates the homeostasis of sphingolipids, including ceramides and sphingosine-1-phosphate (S1P). These sphingolipids regulate carcinogenesis and proliferation, survival, and apoptosis of cancer cells. However, the role of ASM in host defense against liver metastasis remains unclear. In this study, the involvement of ASM in liver metastasis of colon cancer was examined using Asm-/- and Asm+/+ mice that were inoculated with SL4 colon cancer cells to produce metastatic liver tumors. Asm-/- mice demonstrated enhanced tumor growth and reduced macrophage accumulation in the tumor, accompanied by decreased numbers of hepatic myofibroblasts (hMFs), which express tissue inhibitor of metalloproteinase 1 (TIMP1), around the tumor margin. Tumor growth was increased by macrophage depletion or by Timp1 deficiency, but was decreased by hepatocyte-specific ASM overexpression, which was associated with increased S1P production. S1P stimulated macrophage migration and TIMP1 expression in hMFs in vitro. These findings indicate that ASM in the liver inhibits tumor growth through cytotoxic macrophage accumulation and TIMP1 production by hMFs in response to S1P. Targeting ASM may represent a new therapeutic strategy for treating liver metastasis of colon cancer.

  9. Aplicação de bioestimulante nas características ampelométricas da infrutescência da videira 'Tieta' Effect of plant growth regulators application on the cluster and berry morphological characteristics of 'Tieta' grapes

    Directory of Open Access Journals (Sweden)

    Marco Antonio Tecchio

    2005-08-01

    Full Text Available O ensaio foi conduzido em 2003, em vinhedo de 'Tieta'. O objetivo foi avaliar o efeito de bioestimulante nas características dos cachos de uva. Foi aplicado o produto Stimulate® que contém em sua fórmula 0,09g L-1 de cinetina (citocinina, 0,05g L-1 de ácido giberélico (giberelina e 0,05mg L-1 de ácido indolbutírico (auxina. Os tratamentos consistiram na imersão dos cachos, 15 dias após o florescimento, em solução aquosa de 0,5% do adjuvante Natura'l Óleo, acrescidos de 5 doses de Stimulate®: 0; 28; 56; 84 e 112 ml L-1. Analisaram-se o comprimento, a largura e o peso dos cachos, bagos e engaço e o diâmetro do pedicelo. O delineamento estatístico foi em blocos ao acaso, com cinco repetições. Concluiu-se que a maior massa fresca dos cachos foi obtida em função do aumento do número de bagos fixados na ráquis e da massa do engaço. O Stimulate® associado ao Natura'l Óleo provocou o aparecimento de manchas marrons nos bagos e depreciando na qualidade, diminuiu o tamanho dos bagos e atrasou a maturação dos frutos.The trial was carried out in 2003 in a vineyard of 'Tieta'. The objective was to evaluat the effects of plant growth regulator application on the cluster characteristics. The growth regulator used was the Stimulate witch consists in a mix of 0.09g L-1 of kinetin (cytokinin, 0.05g L-1 gibberellic acid (gibberellin e 0.05mg L-1 of indolbutiric acid (auxin. The treatments consisted of the cluster dipping, fifteen days after bloom, in an aqueous solution containing 0.5% of the surfactant Natura'l Óleo, added five dosis of Stimulate®: 0, 28, 56, 84 e 112ml L-1. The width, length and mass of clusters, berries and rachis, and pedicel diameter were evaluated. The experimental design used was completely randomized blocks. The results showed that the mass of the cluster occurred by the increased of the number of berries per cluster and the mass of the rachis. The Stimulate® associated to the Natura'l Oil produced brown

  10. Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems.

    Science.gov (United States)

    Mercy, Chryslène; Ize, Bérengère; Salcedo, Suzana P; de Bentzmann, Sophie; Bigot, Sarah

    2016-01-01

    Contact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT. CdiA-CT are separated from the rest of the protein by conserved peptide motifs falling into two distinct classes, the "E. coli"- and "Burkholderia-type". CDI systems have been described in numerous species except in Pseudomonadaceae. In this study, we identified functional toxin/immunity genes linked to CDI systems in the Pseudomonas genus, which extend beyond the conventional CDI classes by the variability of the peptide motif that delimits the polymorphic CdiA-CT domain. Using P. aeruginosa PAO1 as a model, we identified the translational repressor RsmA as a negative regulator of CDI systems. Our data further suggest that under conditions of expression, P. aeruginosa CDI systems are implicated in adhesion and biofilm formation and provide an advantage in competition assays. All together our data imply that CDI systems could play an important role in niche adaptation of Pseudomonadaceae.

  11. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  12. Kaempferol inhibits Entamoeba histolytica growth by altering cytoskeletal functions.

    Science.gov (United States)

    Bolaños, Verónica; Díaz-Martínez, Alfredo; Soto, Jacqueline; Marchat, Laurence A; Sanchez-Monroy, Virginia; Ramírez-Moreno, Esther

    2015-11-01

    The flavonoid kaempferol obtained from Helianthemum glomeratum, an endemic Mexican medicinal herb used to treat gastrointestinal disorders, has been shown to inhibit growth of Entamoeba histolytica trophozoites in vitro; however, the mechanisms associated with this activity have not been documented. Several works reported that kaempferol affects cytoskeleton in mammalian cells. In order to gain insights into the action mechanisms involved in the anti-amoebic effect of kaempferol, here we evaluated the effect of this compound on the pathogenic events driven by the cytoskeleton during E. histolytica infection. We also carried out a two dimensional gel-based proteomic analysis to evidence modulated proteins that could explain the phenotypical changes observed in trophozoites. Our results showed that kaempferol produces a dose-dependent effect on trophozoites growth and viability with optimal concentration being 27.7 μM. Kaempferol also decreased adhesion, it increased migration and phagocytic activity, but it did not affect erythrocyte binding nor cytolytic capacity of E. histolytica. Congruently, proteomic analysis revealed that the cytoskeleton proteins actin, myosin II heavy chain and cortexillin II were up-regulated in response to kaempferol treatment. In conclusion, kaempferol anti-amoebic effects were associated with deregulation of proteins related with cytoskeleton, which altered invasion mechanisms.

  13. Aurapten, a coumarin with growth inhibition against Leishmania major promastigotes

    Directory of Open Access Journals (Sweden)

    Napolitano H.B.

    2004-01-01

    Full Text Available Several natural compounds have been identified for the treatment of leishmaniasis. Among them are some alkaloids, chalcones, lactones, tetralones, and saponins. The new compound reported here, 7-geranyloxycoumarin, called aurapten, belongs to the chemical class of the coumarins and has a molecular weight of 298.37. The compund was extracted from the Rutaceae species Esenbeckia febrifuga and was purified from a hexane extract starting from 407.7 g of dried leaves and followed by four silica gel chromatographic fractionation steps using different solvents as the mobile phase. The resulting compound (47 mg of shows significant growth inhibition with an LD50 of 30 µM against the tropical parasite Leishmania major, which causes severe clinical manifestations in humans and is endemic in the tropical and subtropical regions. In the present study, we investigated the atomic structure of aurapten in order to determine the existence of common structural motifs that might be related to other coumarins and potentially to other identified inhibitors of Leishmania growth and viability. This compound has a comparable inhibitory activity of other isolated molecules. The aurapten is a planar molecule constituted of an aromatic system with electron delocalization. A hydrophobic side chain consisting of ten carbon atoms with two double bonds and negative density has been identified and may be relevant for further compound synthesis.

  14. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    Science.gov (United States)

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  15. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    Science.gov (United States)

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  16. Perception mechanism of gravity stimuli in hypergravity-induced growth inhibition of azuki bean roots.

    Science.gov (United States)

    Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Hoson, Takayuki

    2003-10-01

    We reported that elongation growth of plant shoots and roots is suppressed by hypergravity, with the rate decreasing in proportion to logarithm of the magnitude of gravity. In hypergravity-induced growth inhibition of shoots, graviperception is supposed to be independent of that in gravitropism and to involve mechanoreceptors. However, the graviperception mechanism in the hypergravity-induced growth inhibition of roots is not known. In the present study, we compared the mechanism in the hypergravity-induced growth inhibition of roots with that in gravitropism. The removal of root cap did not influence hypergravity-induced growth inhibition of roots, although the gravitropic curvature was completely inhibited. Hypergravity had no effects on growth of azuki bean roots in the presence of lanthanum or gadolinium, which are blockers of mechanoreceptors. On the contrary, lanthanum or gadolinium at the same concentration did not influence gravitropism of roots. These results suggest that the graviperception mechanism in the hypergravity-induced growth inhibition of roots is independent of that in gravitropism. Hypergravity-induced growth inhibition of azuki bean roots was observed irrespective of the direction of stimuli, which disappeared in the presence of lanthanum or gadolinium. Thus, in the hypergravity-induced growth inhibition, roots may perceive the gravity signal by mechanoreceptors on the plasma membrane independently of the direction of stimuli, and may utilize it to regulate their growth rate.

  17. MECHANISMS OF FLUID SHEAR-INDUCED INHIBITION OF POPULATION GROWTH IN A RED-TIDE DINOFLAGELLATE

    Science.gov (United States)

    Net population growth of some dinoflagellates is inhibited by fluid shear at shear stresses comparable with those generated during oceanic turbulence. Decreased net growth may occur through lowered cell division, increased mortality, or both. The dominant mechanism under various ...

  18. MK615 inhibits pancreatic cancer cell growth by dual inhibition of Aurora A and B kinases

    Institute of Scientific and Technical Information of China (English)

    Toshie Okada; Tokihiko Sawada; Tatsushi Osawa; Masakazu Adachi; Keiichi Kubota

    2008-01-01

    AIM:To investigate the anti-neoplastic effect of MK615,an anti-neoplastic compound isolated from Japanese apricot,against human pancreatic cancer cells in vitro.METHODS:Three human pancreatic cancer cell lines PANC-1,PK-1,and PK45H were cultured with MK615 at concentrations of 600,300,150,and O μg/mL.Growth inhibition was evaluated by cell proliferation assay,and killing activity was determined by lactate dehydrogenase (LDH) assay.Expression of Aurora A and B kinases was detected by real-time polymerase chain reaction (PCR) and Western blotting.Cell cycle stages were evaluated by flow cytometry.RESULTS:The growth inhibitory rates of MK615 at 150,300,and 600 μg/mL were 2.3% ± 0.9%,8.9% ±3.2% and 67.1% ± 8.1% on PANC1 cells,1.3% ± 0.3%,8.7% ± 4.1% and 45.7 ± 7.6% on PK1 cells,and 1.2 ±0.8%,9.1% ± 2.1% and 52.1% ± 5.5% on PK45H cells,respectively (P<0.05).The percentage cytotoxicities of MK615 at 0,150,300,and 600 μg/mL were 19.6% ±1.3%,26.7% ± 1.8%,25.5% ± 0.9% and 26.4% ± 0.9%in PANC1 cells,19.7% ± 1.3%,24.7% ± 0.8%,25.9% ±0.9% and 29.9% ± 1.1% in PK1 cells,and 28.0% ± 0.9%,31.2% ± 0.9%,30.4% ± 1.1% and 35.3 ± 1.0% in PK45H cells,respectively (P<0.05).Real-time PCR and Western blotting showed that MK615 dually inhibited the expression of Aurora A and B kinases.Cell cycle analysis revealed that MK615 increased the population of cells in G2/M phase.CONCLUSION:MK615 exerts an anti-neoplastic effect on human pancreatic cancer cells in vitro by dual inhibition of Aurora A and B kinases.

  19. Growth of Steptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production

    Science.gov (United States)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin, in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  20. Growth of Streptomyces Hygroscopicus in Rotating-Wall Bioreactor Under Simulated Microgravity Inhibits Rapamycin Production

    Science.gov (United States)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  1. Berry skin development in Norton grape: Distinct patterns of transcriptional regulation and flavonoid biosynthesis

    Directory of Open Access Journals (Sweden)

    Yu Oliver

    2011-01-01

    Full Text Available Abstract Background The complex and dynamic changes during grape berry development have been studied in Vitis vinifera, but little is known about these processes in other Vitis species. The grape variety 'Norton', with a major portion of its genome derived from Vitis aestivalis, maintains high levels of malic acid and phenolic acids in the ripening berries in comparison with V. vinifera varieties such as Cabernet Sauvignon. Furthermore, Norton berries develop a remarkably high level of resistance to most fungal pathogens while Cabernet Sauvignon berries remain susceptible to those pathogens. The distinct characteristics of Norton and Cabernet Sauvignon merit a comprehensive analysis of transcriptional regulation and metabolite pathways. Results A microarray study was conducted on transcriptome changes of Norton berry skin during the period of 37 to 127 days after bloom, which represents berry developmental phases from herbaceous growth to full ripeness. Samples of six berry developmental stages were collected. Analysis of the microarray data revealed that a total of 3,352 probe sets exhibited significant differences at transcript levels, with two-fold changes between at least two developmental stages. Expression profiles of defense-related genes showed a dynamic modulation of nucleotide-binding site-leucine-rich repeat (NBS-LRR resistance genes and pathogenesis-related (PR genes during berry development. Transcript levels of PR-1 in Norton berry skin clearly increased during the ripening phase. As in other grapevines, genes of the phenylpropanoid pathway were up-regulated in Norton as the berry developed. The most noticeable was the steady increase of transcript levels of stilbene synthase genes. Transcriptional patterns of six MYB transcription factors and eleven structural genes of the flavonoid pathway and profiles of anthocyanins and proanthocyanidins (PAs during berry skin development were analyzed comparatively in Norton and Cabernet

  2. Blue light inhibits the growth of B16 melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Kawashima, Yuzo [Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima (Japan)

    2002-05-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm{sup 2}) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  3. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    Science.gov (United States)

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; Dewitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-10-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.

  4. Muricholic acids inhibit Clostridium difficile spore germination and growth.

    Directory of Open Access Journals (Sweden)

    Michael B Francis

    Full Text Available Infections caused by Clostridium difficile have increased steadily over the past several years. While studies on C. difficile virulence and physiology have been hindered, in the past, by lack of genetic approaches and suitable animal models, newly developed technologies and animal models allow these processes to be studied in detail. One such advance is the generation of a mouse-model of C. difficile infection. The development of this system is a major step forward in analyzing the genetic requirements for colonization and infection. While important, it is equally as important in understanding what differences exist between mice and humans. One of these differences is the natural bile acid composition. Bile acid-mediated spore germination is an important step in C. difficile colonization. Mice produce several different bile acids that are not found in humans. These muricholic acids have the potential to impact C. difficile spore germination. Here we find that the three muricholic acids (α-muricholic acid, β-muricholic acid and ω-muricholic acid inhibit C. difficile spore germination and can impact the growth of vegetative cells. These results highlight an important difference between humans and mice and may have an impact on C. difficile virulence in the mouse-model of C. difficile infection.

  5. Environmental estrogens inhibit growth of rainbow trout (Oncorhynchus mykiss) by modulating the growth hormone-insulin-like growth factor system.

    Science.gov (United States)

    Hanson, Andrea M; Kittilson, Jeffrey D; Martin, Lincoln E; Sheridan, Mark A

    2014-01-15

    Although environmental estrogens (EE) have been found to disrupt a wide variety of developmental and reproductive processes in vertebrates, there is a paucity of information concerning their effects on organismal growth, particularly postembryonic growth. In this study, we exposed juvenile rainbow trout (Oncorhynchus mykiss) to 17β-estradiol (E2) β-sitosterol (βS), or 4-n-nonylphenol (NP) to assess the effects of EE on overall organismal growth and on the growth hormone-insulin-like-growth factor (GH-IGF) system. EE treatment significantly reduced food conversion, body condition, and body growth. EE-inhibited growth resulted from alterations in peripheral elements of the GH-IGF system, which includes multiple GH receptors (GHRs), IGFs, and IGF receptors (IGFRs). In general, E2, βS, and NP reduced the expression of GHRs, IGFs, and IGFRs; however, the effects varied in an EE-, tissue-, element type-specific manner. For example, in liver, E2 was more efficacious than either βS, and NP in reducing GHR expression, and the effect of E2 was greater on GHR 1 than GHR2 mRNA. By contrast, in gill, all EEs affected GHR expression in a similar manner and there was no difference in the effect on GHR1 and GHR 2 mRNA. With regard to IGF expression, all EEs reduced hepatic IGF1 and IGF2 mRNA levels, whereas as in gill, only E2 and NP significantly reduced IGF1 and IGF2 expression. Lastly, E2 and NP reduced the expression of IGFR1A and IGFR1B mRNA expression similarly in gill and red and white muscle, whereas βS had no effect on expression of IGFR mRNAs. These findings indicate that EEs disrupt post-embryonic growth by reducing GH sensitivity, IGF production, and IGF sensitivity.

  6. Modeling Synergistic Drug Inhibition of Mycobacterium tuberculosis Growth in Murine Macrophages

    Science.gov (United States)

    2011-01-01

    synergistic drug inhibition of Mycobacterium tuberculosis growth in murine macrophagesw Xin Fang, Anders Wallqvist and Jaques Reifman* Received 15th...inhibition of Mycobacterium tuberculosis in murine macrophage cells. We used it to simulate ex vivo bacterial growth inhibition due to 3-nitropropionate (3...is felt worldwide, with 9.4 million new cases and 1.8 million deaths in 2008.1,2 The causative agent of the disease, Mycobacterium tuberculosis

  7. Amylase inhibits Neisseria gonorrhoeae by degrading starch in the growth medium.

    OpenAIRE

    Gregory, M.R.; Gregory, W W; Bruns, D E; Zakowski, J J

    1983-01-01

    Highly purified salivary alpha-amylase inhibited the growth of fresh isolates of Neisseria gonorrhoeae on GC agar base medium supplemented with 2% IsoVitaleX (BBL Microbiology Systems). Hydrolysis of starch in the medium by amylase resulted in a negative starch-iodine test. However, purified amylase did not inhibit gonococcal growth on agar plates that contained hemoglobin (chocolate agar). This effect was not caused by inhibition of amylase, since amylase activity was the same in the presenc...

  8. Berry phase in Heisenberg representation

    Science.gov (United States)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  9. Inhibition of growth of Toxoplasma gondii in cultured fibroblasts by human recombinant gamma interferon.

    Science.gov (United States)

    Pfefferkorn, E R; Guyre, P M

    1984-01-01

    The growth of Toxoplasma gondii in cultured human fibroblasts was inhibited by recombinant human gamma interferon at concentrations of 8 to 16 U/ml. The interferon was titrated by observing a total inhibition of parasite plaque formation 7 days after infection. Inhibition of the growth of T. gondii in the early days after infection was measured by marked reductions in the incorporation of radioactive uracil, a precursor that can only be used by the parasites. This assay showed that when cells were pretreated with gamma interferon for 1 day and then infected, inhibition of T. gondii growth could be readily detected 1 or 2 days after infection. When the pretreatment was omitted and parasites and gamma interferon were added at the same time, no inhibition of parasite growth could be detected 1 day later, although it was apparent after 2 days. Cultures from which the gamma interferon had been removed by washing after a 1-day treatment showed inhibition of T. gondii growth. Gamma interferon had no effect on the viability of extracellular parasites, but it did inhibit the synthesis of host cell RNA and protein by ca. 50% 3 days after treatment. This degree of inhibition is unlikely, of itself, to compromise the growth of T. gondii. Recombinant alpha and beta interferons had no effect on the growth of T. gondii. Images PMID:6425215

  10. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    Energy Technology Data Exchange (ETDEWEB)

    Hannon, Patrick R., E-mail: phannon2@illinois.edu; Brannick, Katherine E., E-mail: kbran@illinois.edu; Wang, Wei, E-mail: Wei.Wang2@covance.com; Gupta, Rupesh K., E-mail: drrupesh@yahoo.com; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2015-04-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP

  11. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    Science.gov (United States)

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors.

  12. Galactose inhibits auxin-induced growth of Avena coleoptiles by two mechanisms

    Science.gov (United States)

    Cheung, S. P.; Cleland, R. E.

    1991-01-01

    Galactose inhibits auxin-induced growth of Avena coleoptiles by at least two mechanisms. First, it inhibits auxin-induced H(+)-excretion needed for the initiation of rapid elongation. Galactose cannot be doing so by directly interfering with the ATPase since fusicoccin-induced H(+)-excretion is not affected. Secondly, galactose inhibits long-term auxin-induced growth, even in an acidic (pH 4.5) solution. This may be due to an inhibition of cell wall synthesis. However, galactose does not reduce the capacity of walls to be loosened by H+, given exogenously or excreted in response to fusicoccin.

  13. Growth inhibition of fouling bacteria and diatoms by extract of terrestrial plant, Derris scandens (Dicotyledonae:Leguminocae)

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Sonak, S.; Garg, A.

    Methanol extract of terrestrial plant, Derris scandens Benth, was found to inhibit growth of four diatoms and 7 bacterial species of fouling community. The concentrations required to bring about 100% inhibition of growth of the diatoms ranged...

  14. Inhibition of human gastric carcinoma cell growth by atofluding derivative N3-o-toluyl-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Jian Liu; Wei Tang; Xian-Jun Qu; Wen-Fang Xu; Shu-Xiang Cui; Yong Zhou; Yun-Xia Yuan; Ming-Hui Chen; Ruo-Han Wang; Ruo-Yan Gai; Masatoshi Makuuchi

    2006-01-01

    AIM:To evaluate the growth inhibition efficacy of atofluding derivative N3-o-toluyl-fluorouracil (TFU)on human gastric carcinoma cell lines SGC-7901 and MKN-45.METHODS:Cell growth inhibition by TFU was measured by MTT and clonogenic assays without or with liver microsomal enzymes. Xenografts of cancer cells in nude mice were employed to study the anti-proliferative effects of TFU in vivo,RESULTS:TFU inhibited the growth of SGC-7901 and MKN-45 cells. However, the inhibitory effects of TFU on cell growth were not significant. The inhibition rates were enhanced in the presence of liver microsomal enzymes, ranging 4.73%-48.57% in SGC-7901 cells and 9.0%-62.02% in MKN-45 cells. In vivo, TFU delayed the growth of SGC-7901 and MKN-45 cells in nude mice. The inhibition rates were 40.49%, 63.24%, and 75.98% in SGC-7901 cells and 40.76%, 61.41%, and 82.07% in MKN-45 cells when the oral doses were 25, 50, and 100 mg/kg, respectively. TFU treatment was generally well tolerated by mice with less than 20% reduction in body weight.CONCLUSION:TFU inhibits the growth of human gastric carcinoma cells. The inhibition rates are increased in the presence of liver microsomal enzymes. The efficacy of TFU may be associated with the sustaining release of 5-fluorouracil (5-FU) mediated by the enzymes.

  15. Growth Inhibition of Breast Cancer in Rat by AAV Mediated Angiostatin Gene

    Institute of Scientific and Technical Information of China (English)

    LI Ran; CHEN Hong; REN Chang-shan

    2007-01-01

    Objective: To observe growth inhibition effect of adeno-associated viral vectors (AAV) mediated angiostatin (ANG) gene on implanted breast cancer in rat and its mechanism. Methods: Gene transfer technique was used to transfer AAV-ANG to the tumor. Growth curves were drawn to observe the growth of breast cancer implanted in rat, and immunohistochemical method was used to detect the effects of angiostatin on microvesel density (MVD) of breast cancer implanted in rat. Results: Angiostatin inhibited the growth of breast cancer implanted in rat and decreased the microvessel density of tumor. Conclusion: Expression of an angiostatin transgene can suppress the growth of breast cancer implanted in rat through the inhibition of the growth of microvessels, surggesting that angiostatin gene transfer technique may be effective against breast cancer.

  16. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens.

    Science.gov (United States)

    Nohynek, Liisa J; Alakomi, Hanna-Leena; Kähkönen, Marja P; Heinonen, Marina; Helander, Ilkka M; Oksman-Caldentey, Kirsi-Marja; Puupponen-Pimiä, Riitta H

    2006-01-01

    Antimicrobial activity and mechanisms of phenolic extracts of 12 Nordic berries were studied against selected human pathogenic microbes. The most sensitive bacteria on berry phenolics were Helicobacter pylori and Bacillus cereus. Campylobacter jejuni and Candida albicans were inhibited only with phenolic extracts of cloudberry, raspberry, and strawberry, which all were rich in ellagitannins. Cloudberry extract gave strong microbicidic effects on the basis of plate count with all studied strains. However, fluorescence staining of liquid cultures of virulent Salmonella showed viable cells not detectable by plate count adhering to cloudberry extract, whereas Staphylococcus aureus cells adhered to berry extracts were dead on the basis of their fluorescence and plate count. Phenolic extracts of cloudberry and raspberry disintegrated the outer membrane of examined Salmonella strains as indicated by 1-N-phenylnaphthylamine (NPN) uptake increase and analysis of liberation of [14C]galactose- lipopolysaccharide. Gallic acid effectively permeabilized the tested Salmonella strains, and significant increase in the NPN uptake was recorded. The stability of berry phenolics and their antimicrobial activity in berries stored frozen for a year were examined using Escherichia coli and nonvirulent Salmonella enterica sv. Typhimurium. The amount of phenolic compounds decreased in all berries, but their antimicrobial activity was not influenced accordingly. Cloudberry, in particular, showed constantly strong antimicrobial activity during the storage.

  17. 21 CFR 145.120 - Canned berries.

    Science.gov (United States)

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CANNED FRUITS Requirements for Specific Standardized Canned Fruits § 145.120 Canned berries. (a... section are prepared from stemmed fruit of the following optional varietal types of berry...

  18. Lattice QCD simulation of the Berry curvature

    CERN Document Server

    Yamamoto, Arata

    2016-01-01

    The Berry curvature is a fundamental concept describing topological order of quantum systems. While it can be analytically tractable in non-interacting systems, numerical simulations are necessary in interacting systems. We present a formulation to calculate the Berry curvature in lattice QCD.

  19. Anatomy of Vitis Berries During Their Coloring

    Institute of Scientific and Technical Information of China (English)

    WAN Yi-zhen; HE Pu-chao

    2002-01-01

    During 1998-1999, the course of the berry coloring and the development of the pigment cells from veraison to ripeness were studied by freeze sectioning 43 accessions of 12 Vitis species (including 10 Chinese wild species). External observation showed that the berries of most species began coloring on the fruit top surface or on the sun-lit surface, and the berry surface color was evenly distributed when the berry was ripe.Internal observation revealed that the pigment cells in a few layers between cuticle and sub-cuticle colored first, the cuticle colored from inner layers to outer layers while the sub-cuticle from outer to inner, and the cuticle cells began coloring a little earlier than the sub-cuticle ones in most species. The pigment cells developed unevenly during the berry ripening. In the beginning of berry coloring, the cell pigment density among the layers or among the cells in the same layer was different. Both the numbers of the pigmented cells and the cell pigment density increased during the berry coloring, while the former lasted a short time; however, the latter kept increasing from veraison to ripeness, and they reached the deepest color when the berry was ripe.

  20. Tumour growth inhibition and anti-angiogenic effects using curcumin correspond to combined PDE2 and PDE4 inhibition.

    Science.gov (United States)

    Abusnina, Abdurazzag; Keravis, Thérèse; Zhou, Qingwei; Justiniano, Hélène; Lobstein, Annelise; Lugnier, Claire

    2015-02-01

    Vascular endothelial growth factor (VEGF) plays a major role in angiogenesis by stimulating endothelial cells. Increase in cyclic AMP (cAMP) level inhibits VEGF-induced endothelial cell proliferation and migration. Cyclic nucleotide phosphodiesterases (PDEs), which specifically hydrolyse cyclic nucleotides, are critical in the regulation of this signal transduction. We have previously reported that PDE2 and PDE4 up-regulations in human umbilical vein endothelial cells (HUVECs) are implicated in VEGF-induced angiogenesis and that inhibition of PDE2 and PDE4 activities prevents the development of the in vitro angiogenesis by increasing cAMP level, as well as the in vivo chicken embryo angiogenesis. We have also shown that polyphenols are able to inhibit PDEs. The curcumin having anti-cancer properties, the present study investigated whether PDE2 and PDE4 inhibitors and curcumin could have similar in vivo anti-tumour properties and whether the anti-angiogenic effects of curcumin are mediated by PDEs. Both PDE2/PDE4 inhibitor association and curcumin significantly inhibited in vivo tumour growth in C57BL/6N mice. In vitro, curcumin inhibited basal and VEGF-stimulated HUVEC proliferation and migration and delayed cell cycle progression at G0/G1, similarly to the combination of selective PDE2 and PDE4 inhibitors. cAMP levels in HUVECs were significantly increased by curcumin, similarly to rolipram (PDE4 inhibitor) and BAY-60-550 (PDE2 inhibitor) association, indicating cAMP-PDE inhibitions. Moreover, curcumin was able to inhibit VEGF-induced cAMP-PDE activity without acting on cGMP-PDE activity and to modulate PDE2 and PDE4 expressions in HUVECs. The present results suggest that curcumin exerts its in vitro anti-angiogenic and in vivo anti-tumour properties through combined PDE2 and PDE4 inhibition.

  1. The non-steroidal anti-inflammatory drug niflumic acid inhibits Candida albicans growth.

    Science.gov (United States)

    Baker, Andrew; Northrop, Frederick D; Miedema, Hendrik; Devine, Gary R; Davies, Julia M

    2002-01-01

    The non-steroidal anti-inflammatory drug niflumic acid was found to inhibit growth of the yeast form of Candida albicans. Niflumic acid inhibited respiratory oxygen uptake and it is hypothesised that this was achieved by cytosolic acidification and block of glycolysis. Inhibitory concentrations are compatible with current practice of topical application.

  2. Chemopreventive effect of apple and berry fruits against colon cancer.

    Science.gov (United States)

    Jaganathan, Saravana Kumar; Vellayappan, Muthu Vignesh; Narasimhan, Gayathri; Supriyanto, Eko; Octorina Dewi, Dyah Ekashanti; Narayanan, Aqilah Leela T; Balaji, Arunpandian; Subramanian, Aruna Priyadarshini; Yusof, Mustafa

    2014-12-07

    Colon cancer arises due to the conversion of precancerous polyps (benign) found in the inner lining of the colon. Prevention is better than cure, and this is very true with respect to colon cancer. Various epidemiologic studies have linked colorectal cancer with food intake. Apple and berry juices are widely consumed among various ethnicities because of their nutritious values. In this review article, chemopreventive effects of these fruit juices against colon cancer are discussed. Studies dealing with bioavailability, in vitro and in vivo effects of apple and berry juices are emphasized in this article. A thorough literature survey indicated that various phenolic phytochemicals present in these fruit juices have the innate potential to inhibit colon cancer cell lines. This review proposes the need for more preclinical evidence for the effects of fruit juices against different colon cancer cells, and also strives to facilitate clinical studies using these juices in humans in large trials. The conclusion of the review is that these apple and berry juices will be possible candidates in the campaign against colon cancer.

  3. Hypergravity inhibits elongation growth of azuki bean epicotyls independently of the direction of stimuli

    Science.gov (United States)

    Soga, K.; Wakabayashi, K.; Kamisaka, S.; Hoson, T.

    We examined the effects of basipetal, horizontal, and acropetal hypergravity stimulation on growth and cell wall properties of azuki bean seedlings. Horizontal and acropetal hypergravity inhibited elongation growth of epicotyls by decreasing the cell wall extensibility, as did basipetal hypergravity. Hypergravity stimulation increased the thickness of cell walls and suppressed xyloglucan breakdown regardless of direction. All hypergravity treatments increased the pH in the apoplastic fluid, which is involved in the processes of the suppression of xyloglucan breakdown. Gadolinium and lanthanum, both blockers of mechanoreceptors, nullified the growth-inhibiting effects of hypergravity. These results show that growth inhibition by hypergravity is independent of its direction in azuki bean epicotyls. The findings also suggest that mechanoreceptors on the plasma membrane perceive the gravity signal independently of its direction, and affect growth of azuki bean epicotyls.

  4. VARIETY OF MICROORGANISMS GROUPS LIVING ON BERRIES OF GRAPES

    Directory of Open Access Journals (Sweden)

    Ageeva N. M.

    2015-09-01

    Full Text Available The wide variety of microorganisms has been identified in many wine-making countries on the berries of grapes. These are yeasts of different families, forms and kinds, bacterium, mold fungi. In the article, we present the results of investigating species composition of microflora of berries of white and red types of grape, which grows in different economies of the Krasnodar region and the republic of Abkhaziya. The sowings onto the elective media were conducted for the development of entire spectrum of yeast. The grown colonies after preliminary microscoping were separated into the cultures and subjected to testing according to the culturalmorphological signs, being guided by determinants and benefits. It was established the specific variety of microflora on the surface of the berries of grapes of all investigated types, without dependence on the place of their growth. Obtained data showed that the group of yeast, which constantly is present in the complex of the epiphytic microorganisms of grapes of Saccharomyces, Pichia, Hansenula, Hanseniaspora was characteristic for all types of grapes in all investigated regions. The heterogeneity of the taxonometric composition of microflora is shown. Prevailed yeasts were of family Saccharomycetaceae, form Saccharomyces vini. A quantity of yeast of Saccharomyces vini decreases in a number of Myskhako-Caucasus-Fanagoriya, that as a whole will be coordinated with the climatic conditions. Only the type of Pinot nuar grapes had yeasts of Brettanomyces Dekkera. On the berries of Cabernets and Karaburnu we have discovered yeasts of Schisosaccharomyces acidodevoratus, causing acid-reduction. On the berries of the grapes, which grew in joint stock company APF “Fanagoriya” we haven’t revealed the presence of lactic acid bacteria Lactobacillus brevis and yeasts of the form of Schisosaccharomyces acidodevoratus. In the same farm the smallest quantity of yeastswreckers is noted, which we the forms of Pichia and

  5. Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli - a teleologic approach

    NARCIS (Netherlands)

    Velraeds, MMC; van de Belt-Gritter, B; Busscher, HJ; Reid, G; van der Mei, HC

    2000-01-01

    The ability of three Lactobacillus strains to inhibit the adhesion and growth of naturally occurring uropathogens on silicone rubber was investigated in human urine. The importance of biosurfactant production by Lactobacillus in discouraging uropathogen growth was determined in relation to the bindi

  6. Growth Inhibition Effect of DL-Lysine Acetylalicylate on sw480 Colon Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Shu; TIAN Xiao-feng; WANG Li-ming

    2007-01-01

    Objective: To investigate the effect of DL-lysine acetylsalicylate on proliferation of colon carcinoma cells line sw480. Methods: After treatment of DL-lysine acetylsalicylate, the study was performed by observing sw480 colorectal cancer cells with phase contrast microscope, making growth curve, and examining the inhibition rate of sw480 cells with MTT assay. Results: The morphology of sw480 cells showed characteristics of apoptosis, the cell growth curve showed inhibited proliferation of sw480 cells when treated with DL-lysine acetylsalicylate (P<0.05). The rate of inhibition was upward when the drug concentration increased. Conclusion: DL-lysine acetylsalicylate for injection can inhibit the growth of sw480 colorectal cancer cells obviously in a dose dependent manner.

  7. ENDOGENAL COLONIZATION OF GRAPES BERRIES

    Directory of Open Access Journals (Sweden)

    Dana Tančinová

    2015-02-01

    Full Text Available The aim of study was to detect the microscopic filamentous fungi from wine surface of sterilized grapes berries of Slovak origin. We analyzed 21 samples of grapes, harvested in the year 2012 of various wine-growing regions. For the isolation of species we used the method of direct plating surface-sterilized berries (using 0.4% freshly pre-pared chlorine on DRBC (Dichloran Rose Bengal Chloramphenicol agar. The cultivation was carried at 25±1°C, for 5 to 7 days. A total number of 2541 fungal isolates pertaining to 18 genera including Mycelia sterilia were recovered. Isolates of genus Alternaria were found in all of tested samples with the highest relative density 56.4%. The second highest isolation frequency we detected for genus Fusarium (90.48% positive samples, but with low relative density (31 isolates and 2.99% RD. Another genera with higher isolation frequency were Cladosporium (Fr 85.71%, RD 14.6%, Mycelia sterilia (Fr 85.71%, RD 4.25%, Penicillium (Fr 80.95%, RD 13.42%, Botrytis (Fr 71.43%, RD 2.95% Rhizopus (Fr 66.66%, RD 1.34%, Aspergillus (Fr 57.14%, RD 0.87%, Epicoccum (Fr 47.62%, RD 1.22%, Trichoderma (Fr 42.86%, RD 1.26%. Isolation frequency of another eight genera (Arthrinium, Dichotomophtora, Geotrichum, Harzia, Chaetomium, Mucor, Nigrospora and Phoma was less than 10% and relative density less than 0.5%. Chosen isolates of potential producers of mycotoxin (species of Alternaria, Aspergillus, Fusarium and Penicillium were tested for the ability to produce relevant mycotoxins in in vitro conditions using TLC method. None isolate of Aspergillus niger aggregate (13 tested did not produce ochratoxin A – mycotoxin monitored in wine and another products from grapes berries. Isolates of potentially toxigenic species recovered from the samples were found to produce another mycotoxins: aflatoxin B1, altenuene, alternariol, alternariol monomethylether, citrinin, diacetoxyscirpenol, deoxynivalenol, HT-2 patulin, penitrem A and T-2 toxin

  8. The evolving fresh market berry industry in Santa Cruz and Monterey counties

    Directory of Open Access Journals (Sweden)

    Laura Tourte

    2016-08-01

    Full Text Available The fresh market berry industry in Santa Cruz and Monterey counties has contributed significantly to the agricultural vibrancy of the two counties and the state of California. Dramatic growth in strawberry, raspberry and blackberry production has been documented over the last 50 years, and most notably since the 1980s. Factors influencing this growth include innovations in agricultural practices and heightened consumer demand. Here, we review the historical context for the berry industry in Santa Cruz and Monterey counties. Organic production, production economics and challenges for the future are also discussed.

  9. Inhibition of fungal growth with extreme low oxygen levels

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Haasum, Iben

    1998-01-01

    contaminants of a wide range of products, and to determine the limit of growthFungi isolated from a wide range of products were incubated for up to three weeks at 25oC , 90% relative humidity at 1.0, 0.5, 0.25, 0.1, and 0.05% oxygen respectively in a custom made incubator with an interlock system...

  10. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth

    OpenAIRE

    Harel, Sivan; Higgins, Claire A.; Cerise, Jane E.; Dai, Zhenpeng; Chen, James C.; Clynes, Raphael; Christiano, Angela M.

    2015-01-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)–signal transducer and activator of transc...

  11. Leaf Litter Inhibits Growth of an Amphibian Fungal Pathogen.

    Science.gov (United States)

    Stoler, Aaron B; Berven, Keith A; Raffel, Thomas R

    2016-06-01

    Past studies have found a heterogeneous distribution of the amphibian chytrid fungal pathogen, Batrachochytrium dendrobatidis (Bd). Recent studies have accounted for some of this heterogeneity through a positive association between canopy cover and Bd abundance, which is attributed to the cooling effect of canopy cover. We questioned whether leaf litter inputs that are also associated with canopy cover might also alter Bd growth. Leaf litter inputs exhibit tremendous interspecific chemical variation, and we hypothesized that Bd growth varies with leachate chemistry. We also hypothesized that Bd uses leaf litter as a growth substrate. To test these hypotheses, we conducted laboratory trials in which we exposed cultures of Bd to leachate of 12 temperate leaf litter species at varying dilutions. Using a subset of those 12 litter species, we also exposed Bd to pre-leached litter substrate. We found that exposure to litter leachate and substrate reduced Bd spore and sporangia densities, although there was substantial variation among treatments. In particular, Bd densities were inversely correlated with concentrations of phenolic acids. We conducted a field survey of phenolic concentrations in natural wetlands which verified that the leachate concentrations in our lab study are ecologically relevant. Our study reinforces prior indications that positive associations between canopy cover and Bd abundance are likely mediated by water temperature effects, but this phenomenon might be counteracted by changes in aquatic chemistry from leaf litter inputs.

  12. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    Science.gov (United States)

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  13. CH5137291, an androgen receptor nuclear translocation-inhibiting compound, inhibits the growth of castration-resistant prostate cancer cells.

    Science.gov (United States)

    Ishikura, Nobuyuki; Kawata, Hiromitsu; Nishimoto, Ayako; Nakamura, Ryo; Tsunenari, Toshiaki; Watanabe, Miho; Tachibana, Kazutaka; Shiraishi, Takuya; Yoshino, Hitoshi; Honma, Akie; Emura, Takashi; Ohta, Masateru; Nakagawa, Toshito; Houjo, Takao; Corey, Eva; Vessella, Robert L; Aoki, Yuko; Sato, Haruhiko

    2015-04-01

    Resistance of prostate cancer to castration is currently an unavoidable problem. The major mechanisms underlying such resistance are androgen receptor (AR) overexpression, androgen-independent activation of AR, and AR mutation. To address this problem, we developed an AR pure antagonist, CH5137291, with AR nuclear translocation-inhibiting activity, and compared its activity and characteristics with that of bicalutamide. Cell lines corresponding to the mechanisms of castration resistance were used: LNCaP-BC2 having AR overexpression and LNCaP-CS10 having androgen-independent AR activation. VCaP and LNCaP were used as hormone-sensitive prostate cancer cells. In vitro functional assay clearly showed that CH5137291 inhibited the nuclear translocation of wild-type ARs as well as W741C- and T877A-mutant ARs. In addition, it acted as a pure antagonist on the transcriptional activity of these types of ARs. In contrast, bicalutamide did not inhibit the nuclear translocation of these ARs, and showed a partial/full agonistic effect on the transcriptional activity. CH5137291 inhibited cell growth more strongly than bicalutamide in VCaP and LNCaP cells as well as in LNCaP-BC2 and LNCaP-CS10 cells in vitro. In xenograft models, CH5137291 strongly inhibited the tumor growth of LNCaP, LNCaP-BC2, and LNCaP-CS10, whereas bicalutamide showed a weaker effect in LNCaP and almost no effect in LNCaP-BC2 and LNCaP-CS10 xenografts. Levels of prostate-specific antigen (PSA) in plasma correlated well with the antitumor effect of both agents. CH5137291 inhibited the growth of LNCaP tumors that had become resistant to bicalutamide treatment. A docking model suggested that CH5137291 intensively collided with the M895 residue of helix 12, and therefore strongly inhibited the folding of helix 12, a cause of AR agonist activity, in wild-type and W741C-mutant ARs. In cynomolgus monkeys, the serum concentration of CH5137291 increased dose-dependently and PSA level decreased 80% at 100 mg/kg. CH

  14. Sumoylation Inhibits the Growth Suppressive Properties of Ikaros.

    Directory of Open Access Journals (Sweden)

    Apostol Apostolov

    Full Text Available The Ikaros transcription factor is a tumor suppressor that is also important for lymphocyte development. How post-translational modifications influence Ikaros function remains partially understood. We show that Ikaros undergoes sumoylation in developing T cells that correspond to mono-, bi- or poly-sumoylation by SUMO1 and/or SUMO2/3 on three lysine residues (K58, K240 and K425. Sumoylation occurs in the nucleus and requires DNA binding by Ikaros. Sumoylated Ikaros is less effective than unsumoylated forms at inhibiting the expansion of murine leukemic cells, and Ikaros sumoylation is abundant in human B-cell acute lymphoblastic leukemic cells, but not in healthy peripheral blood leukocytes. Our results suggest that sumoylation may be important in modulating the tumor suppressor function of Ikaros.

  15. Dual effect of metformin on growth inhibition and oestradiol production in breast cancer cells.

    Science.gov (United States)

    Rice, S; Pellat, L; Ahmetaga, A; Bano, G; Mason, H D; Whitehead, S A

    2015-04-01

    Evidence has been accumulating for a role for metformin in reducing breast cancer risk in post-menopausal women. It inhibits growth of breast cancer cells via several mechanisms, primarily the AMPK/mTOR signalling pathway. Another possible protective mechanism may be the ability of metformin to inhibit aromatase activity. In the present study, we investigated the effects of metformin on the basal growth of MCF-7 cells, after oestradiol (E2) stimulation and after the inhibition of mTOR by rapamycin. Secondly, we investigated the effects of metformin on the activity of a number of steroidogenic enzymes and the mRNA expression of aromatase and steroid sulphatase (STS). High doses of metformin significantly inhibited both basal and oestrogen-stimulated cell division. Low-dose rapamycin (10-10 M) did not inhibit growth, but the addition of metformin induced a significant reduction in growth. High-dose rapamycin (10-8 M) inhibited growth, and this was further attenuated by the addition of metformin. Exposure to low (10-7 M) and high (10-4 M) doses of metformin for 7-10 days significantly reduced the conversion of androstenedione (ANDRO) and testosterone (TESTO) (both requiring aromatase), but not the conversion of oestrone or oestrone sulphate (ES) via 17β-hydroxysteroid dehydrogenase/sulphatase to E2. This attenuation was via a downregulation in the expression of total aromatase mRNA and promoter II, whilst the expression of sulphatase was unaffected by metformin. In conclusion, plasma levels of metformin have a dual therapeutic action, first by directly inhibiting cell proliferation which can be augmented by rapamycin analogues, and secondly, by inhibiting aromatase activity and reducing the local conversion of androgens to E2.

  16. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    Science.gov (United States)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  17. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition

    Science.gov (United States)

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.

    2016-08-01

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation

  18. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  19. Neuronal growth inhibitory factor inhibits pheochromo-cytoma PC12 in vitro

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Neuronal growth inhibitory factor (GIF),named Metaliothioneins-Ⅲ (MT-Ⅲ), is the first protein validated to be capable of inhibiting the growth of neurons in nervous system. We have detected the effects of recombinant GIF on the growth of neuroblastoma SY5Y and pheochromocytoma PC12 by the MTT (Thiazolyl blue) reduction assay. Recombinant GIF inhibited PC12 in vitro; the inhibitory rate was about 25% when GIF was at 100 mg/L; and the inhibitory rate was about 50% when GIF was at 300 mg/L. It is shown that PC12 could serve as a proper model for detecting neuronal growth inhibitory activity of GIF. Recombinant GIF did not inhibit neuroblastoma SY5Y in vitro, a common model of neuroma; it is also shown that GIF could not inhibit neuromata extensively. The reason for GIF inhibiting PC12 may be that PC12 have some properties of cholinergic neuron. It must play an important role in discovering the mechanism of GIF's neuronal growth inhibitory activity.``

  20. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.

    Science.gov (United States)

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E

    2008-11-01

    Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer.

  1. Noscapine inhibits tumor growth in TMZ-resistant gliomas.

    Science.gov (United States)

    Jhaveri, Niyati; Cho, Heeyeon; Torres, Shering; Wang, Weijun; Schönthal, Axel H; Petasis, Nicos A; Louie, Stan G; Hofman, Florence M; Chen, Thomas C

    2011-12-22

    Noscapine, a common oral antitussive agent, has been shown to have potent antitumor activity in a variety of cancers. Treatment of glioblastoma multiforme (GBM) with temozolomide (TMZ), its current standard of care, is problematic because the tumor generally recurs and is then resistant to this drug. We therefore investigated the effects of noscapine on human TMZ-resistant GBM tumors. We found that noscapine significantly decreased TMZ-resistant glioma cell growth and invasion. Using the intracranial xenograft model, we showed that noscapine increased survival of animals with TMZ-resistant gliomas. Thus noscapine can provide an alternative therapeutic approach for the treatment of TMZ-resistant gliomas.

  2. Inhibition of Breast Cancer Growth by IGFBP-3

    Science.gov (United States)

    1998-10-01

    interacting proteins including putative IGFBP-3 receptor in human breast cancer cells by employing the yeast two-hybrid system. Two cDNA clones matched sequences in the GenBank database: (1) Eps8 - epidermal growth factor receptor kinase substrate, and (2) GRP78/BiP - glucose regulated stress protein, or human immunoglobulin heavy chain binding protein. The third cDNA, designated clone 4-33, was not identified in the database and represents a novel gene / protein. I have thus far concentrated my efforts on this novel cDNA clone: (1) synthesis of recombinant human

  3. Hydroxyapatite-binding peptides for bone growth and inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, Carolyn R. (Berkeley, CA); Song, Jie (Shrewsbury, MA); Lee, Seung-Wuk (Walnut Creek, CA)

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  4. Matrine inhibits proliferation of mouse skin fibroblasts induced by platelet-derived growth factor-BB

    Institute of Scientific and Technical Information of China (English)

    WU Yan-an; GAO Chun-fang; WANG Hao; HUANG Chao; KONG Xian-tao

    2001-01-01

    To study the effect of matrine on proliferation of mouse skin fibroblasts induced by platelet-derived growth factor-BB (PDGF-BB). Methods: Mouse skin fibroblasts were obtained from newborn ⅠCR mice and propagated in vitro. Proliferation of cell was analyzed by mitochondrial reduction of tetrazolium salt MTT and actual cell count. Results: Matrine (50 to 500 μg/ml) caused dose-dependent reduction of serum-stimulated cell growth. Growth inhibition was totally reversed after removal of the drug. Matrine also inhibited PDGF-BB induced cell growth dose-dependently. Conclusion: Matrine exhibits potent anti-proliferation effect on mouse skin fibroblast. This effect appears to be mediated by decrease of PDGF-induced growth. These results suggest that matrine might have preventive and therapeutic implication in skin fibrosis.

  5. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kanayo [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Tanaka, Satoshi [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Yoshimoto, Tadashi [Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka 572-8508 (Japan); Takaoka, Masanori [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  6. Pharmacologic inhibition of MEK signaling prevents growth of canine hemangiosarcoma

    Science.gov (United States)

    Andersen, Nicholas J.; Nickoloff, Brian J.; Dykema, Karl J.; Boguslawski, Elissa A.; Krivochenitser, Roman I.; Froman, Roe E.; Dawes, Michelle J.; Baker, Laurence H.; Thomas, Dafydd G.; Kamstock, Debra A.; Kitchell, Barbara E.; Furge, Kyle A.; Duesbery, Nicholas S.

    2013-01-01

    Angiosarcoma (AS) is a rare neoplasm of endothelial origin that has limited treatment options and poor five-year survival. As a model for human AS, we studied primary cells and tumorgrafts derived from canine hemangiosarcoma (HSA), which is also an endothelial malignancy with similar presentation and histology. Primary cells isolated from HSA showed constitutive ERK activation. The MEK inhibitor CI-1040 reduced ERK activation and the viability of primary cells derived from visceral, cutaneous, and cardiac HSA in vitro. HSA-derived primary cells were also sensitive to sorafenib, an inhibitor of B-Raf and multi-receptor tyrosine kinases. In vivo, CI-1040 or PD0325901 decreased the growth of cutaneous cell-derived xenografts and cardiac-derived tumorgrafts. Sorafenib decreased tumor size in both in vivo models, although cardiac tumorgrafts were more sensitive. In human AS, we noted that 50% of tumors stained positively for phosphorylated ERK1/2 and that the expression of several MEK-responsive transcription factors was up-regulated. Our data showed that MEK signaling is essential for the growth of HSA in vitro and in vivo and provided evidence that the same pathways are activated in human AS. This indicates that MEK inhibitors may form part of an effective therapeutic strategy for the treatment of canine HSA or human AS, and it highlights the utility of spontaneous canine cancers as a model of human disease. PMID:23804705

  7. mTOR inhibitors block Kaposi sarcoma growth by inhibiting essential autocrine growth factors and tumor angiogenesis.

    Science.gov (United States)

    Roy, Debasmita; Sin, Sang-Hoon; Lucas, Amy; Venkataramanan, Raman; Wang, Ling; Eason, Anthony; Chavakula, Veenadhari; Hilton, Isaac B; Tamburro, Kristen M; Damania, Blossom; Dittmer, Dirk P

    2013-04-01

    Kaposi sarcoma originates from endothelial cells and it is one of the most overt angiogenic tumors. In Sub-Saharan Africa, where HIV and the Kaposi sarcoma-associated herpesvirus (KSHV) are endemic, Kaposi sarcoma is the most common cancer overall, but model systems for disease study are insufficient. Here, we report the development of a novel mouse model of Kaposi sarcoma, where KSHV is retained stably and tumors are elicited rapidly. Tumor growth was sensitive to specific allosteric inhibitors (rapamycin, CCI-779, and RAD001) of the pivotal cell growth regulator mTOR. Inhibition of tumor growth was durable up to 130 days and reversible. mTOR blockade reduced VEGF secretion and formation of tumor vasculature. Together, the results show that mTOR inhibitors exert a direct anti-Kaposi sarcoma effect by inhibiting angiogenesis and paracrine effectors, suggesting their application as a new treatment modality for Kaposi sarcoma and other cancers of endothelial origin.

  8. Methoxychlor and its metabolites inhibit growth and induce atresia of baboon antral follicles.

    Science.gov (United States)

    Gupta, Rupesh K; Aberdeen, Graham; Babus, Janice K; Albrecht, Eugene D; Flaws, Jodi A

    2007-08-01

    Methoxychlor (MXC), an organochlorine pesticide, inhibits growth and induces atresia of antral follicles in rodents. MXC metabolites, mono-OH MXC (mono-OH) and bis-OH MXC (HPTE), are thought to be more toxic than the parent compound. Although studies have examined effects of MXC in rodents, few studies have evaluated the effects of MXC in primates. Therefore, the present study tested the hypothesis that MXC, mono-OH, and HPTE inhibit growth and induce atresia of baboon antral follicles. To test this hypothesis, antral follicles were isolated from adult baboon ovaries and cultured with vehicle (dimethylsulfoxide; DMSO), MXC (1-100 micro g/ml), mono-OH (0.1-10 micro g/ml), or HPTE (0.1-10 micro g/ml) for 96 hr. Growth was monitored at 24 hr intervals. After culture, follicles were processed for histological evaluation of atresia. MXC, mono-OH, and HPTE significantly inhibited follicular growth and increased atresia compared to DMSO. Moreover, the adverse effects of MXC and its metabolites on growth and atresia in baboon antral follicles were observed at lower (100-fold) doses than those causing similar effects in rodents. These data suggest that MXC and its metabolites inhibit growth and induce atresia of baboon antral follicles, and that primate follicles are more sensitive to MXC than rodent follicles.

  9. The effect of polyamine biosynthesis inhibition on growth and differentiation of the phytopathogenic fungus Sclerotinia sclerotiorum.

    Science.gov (United States)

    Pieckenstain, F L; Gárriz, A; Chornomaz, E M; Sánchez, D H; Ruiz, O A

    2001-12-01

    We studied the effects of several polyamine biosynthesis inhibitors on growth, differentiation, free polyamine levels and in vivo and in vitro activity of polyamine biosynthesis enzymes in Sclerotinia sclerotiorum. Alpha-Difluoromethylornithine (DFMO) and alpha-difluoromethylarginine (DFMA) were potent inhibitors of mycelial growth. The effect of DFMO was due to inhibition of ornithine decarboxylase (ODC). No evidence for the existence of an arginine decarboxylase (ADC) pathway was found. The effect of DFMA was partly due to inhibition of ODC, presumably after its conversion into DFMO by mycelial arginase, as suggested by the high activity of this enzyme detected both in intact mycelium and mycelial extracts. In addition, toxic effects of DFMA on cellular processes other than polyamine metabolism might have occurred. Cyclohexylamine (CHA) slightly inhibited mycelial growth and caused an important decrease of free spermidine associated with a drastic increase of free putrescine concentration. Methylglyoxal bis-[guanyl hydrazone] (MGBG) had no effect on mycelial growth. Excepting MGBG, all the inhibitors strongly decreased sclerotial formation. Results demonstrate that sclerotial development is much more sensitive to polyamine biosynthesis inhibition than mycelial growth. Our results suggest that mycelial growth can be supported either by spermidine or putrescine, while spermidine (or the putrescine/spermidine ratio) is important for sclerotial formation to occur. Ascospore germination was completely insensitive to the inhibitors.

  10. Sirolimus inhibits growth of human hepatoma cells alone or combined with tacrolimus, while tacrolimus promotes cell growth

    Institute of Scientific and Technical Information of China (English)

    Guido Schumacher; Marijke Oidtmann; Anne Rueggeberg; Dietmar Jacob; Sven Jonas; Jan M. Langrehr; Ruth Neuhaus; Marcus Bahra; Peter Neuhaus

    2005-01-01

    AIM: Standard immunosuppression after organ transplantation stimulates tumor growth. Sirolimus has a strong antiproliferative and a tumor inhibiting effect. The purpose is to assess the effect on tumor growth of the immunosuppressive compounds sirolimus and tacrolimus alone and in combination on cells of human hepatocellular carcinoma.METHODS: We used the human cell lines SK-Hep 1 and Hep 3B derived from hepatocellular carcinoma. Proliferation analyses after treatment with sirolimus, tacrolimus, or the combination of both were performed. FACS analyses were done to reveal cell cycle changes and apoptotic cell death. The expression of apoptosis-related proteins was estimated by Western blots.RESULTS: Sirolimus alone or combined with tacrolimus inhibited the growth of both cell lines after 5 d by up to 35% in SK-Hep 1 cells, and by up to 68% in Hep 3B cells at 25 ng/mL. Tacrolimus alone stimulated the growth by 12% after 5 ng/mL and by 25% after 25 ng/mL in Hep 3B cells. We found an increase of apoptotic Hep 3B cells from 6 to 16%, and a G1-arrest in SK-Hep 1 cells with an increase of cells from 61 to 82%, when sirolimus and tacrolimus were combined. Bcl-2 was down-regulated in Hep 3B, but not in SK-Hep 1 cells after combined treatment.CONCLUSION: Sirolimus appears to inhibit the growth of hepatocellular carcinoma cells alone and in combination with tacrolimus. Sirolimus seems to inhibit the growth stimulation of tacrolimus.

  11. Effect of anaerobic bovine colostrum fermentation on bacteria growth inhibition

    Directory of Open Access Journals (Sweden)

    Mara Helena Saalfeld

    Full Text Available ABSTRACT: Efficient handling programs that provide high quality colostrum in adequate amounts to dairy farm calves are needed to assure their health and survival. Replacers (or milk substitutes often become necessary when colostrum presents inadequate quality, or in order to break the cycle of infectious disease transmission. In this study we aimed to assess the effect of anaerobic fermentation processing (colostrum silage on bacterial that represent interest to animal health. Colostrum samples were inoculated with cultures of Brucella abortus , Escherichia coli , Leptospira interrogans serovar Copenhageni , Mycobacterium bovis , Salmonella Enteritidis , Salmonella Typhimurium , Staphylococcus aureus , and Bacillus cereus and then subjected to anaerobic fermentation. On the first day, and every seven days until 30th days after fermentation, the samples were cultured and colony forming units counted. At seven days of fermentation, B. abortus , L. interrogans , and M. bovis were not detected. At 14th days of fermentation, E. coli , S. aureus , S. Enteritidis and S. Typhimurium were no longer detected. However, we were able to detect both lactic acid bacteria and B. cereus until 30th days of fermentation. From this study we suggested that anaerobic fermentation processing can inhibit important bacteria that cause economical losses for the cattle industry. The observations suggested that colostrum silage is a promising form to conserve bovine colostrum.

  12. Climate change: Anti-transpirant effects on grape physiology and berry and wine composition (Vitis Vinifera L.)

    OpenAIRE

    Marallo, Nadia

    2015-01-01

    Plant growth, yield and quality are highly dependent on climate. In the last few decades the trend of increasing global temperatures has affected the accumulation of sugars in berries and hence the degree of alcohol in resultant wines. Therefore numerous studies have considered different agronomic practices that limit photosynthetic activity. The aim of our study was to evaluate the effect of a natural anti-transpirant on grapevine physiology and berry and wine composition on different cultiv...

  13. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth.

    Science.gov (United States)

    Wegiel, Barbara; Gallo, David; Csizmadia, Eva; Harris, Clair; Belcher, John; Vercellotti, Gregory M; Penacho, Nuno; Seth, Pankaj; Sukhatme, Vikas; Ahmed, Asif; Pandolfi, Pier Paolo; Helczynski, Leszek; Bjartell, Anders; Persson, Jenny Liao; Otterbein, Leo E

    2013-12-01

    One classical feature of cancer cells is their metabolic acquisition of a highly glycolytic phenotype. Carbon monoxide (CO), one of the products of the cytoprotective molecule heme oxygenase-1 (HO-1) in cancer cells, has been implicated in carcinogenesis and therapeutic resistance. However, the functional contributions of CO and HO-1 to these processes are poorly defined. In human prostate cancers, we found that HO-1 was nuclear localized in malignant cells, with low enzymatic activity in moderately differentiated tumors correlating with relatively worse clinical outcomes. Exposure to CO sensitized prostate cancer cells but not normal cells to chemotherapy, with growth arrest and apoptosis induced in vivo in part through mitotic catastrophe. CO targeted mitochondria activity in cancer cells as evidenced by higher oxygen consumption, free radical generation, and mitochondrial collapse. Collectively, our findings indicated that CO transiently induces an anti-Warburg effect by rapidly fueling cancer cell bioenergetics, ultimately resulting in metabolic exhaustion.

  14. Growth rate inhibition of phytopathogenic fungi by characterized chitosans

    Directory of Open Access Journals (Sweden)

    Enio N. Oliveira Junior

    2012-06-01

    Full Text Available The inhibitory effects of fifteen chitosans with different degrees of polymerization (DP and different degrees of acetylation (F A on the growth rates (GR of four phytopathogenic fungi (Alternaria alternata, Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer were examined using a 96-well microtiter plate and a microplate reader. The minimum inhibitory concentrations (MICs of the chitosans ranged from 100 µg × mL-1 to 1,000 µg × mL-1 depending on the fungus tested and the DP and F A of the chitosan. The antifungal activity of the chitosans increased with decreasing F A. Chitosans with low F A and high DP showed the highest inhibitory activity against all four fungi. P. expansum and B. cinerea were relatively less susceptible while A. alternata and R. stolonifer were relatively more sensitive to the chitosan polymers. Scanning electron microscopy of fungi grown on culture media amended with chitosan revealed morphological changes.

  15. Measuring Berry curvature with quantum Monte Carlo

    CERN Document Server

    Kolodrubetz, Michael

    2014-01-01

    The Berry curvature and its descendant, the Berry phase, play an important role in quantum mechanics. They can be used to understand the Aharonov-Bohm effect, define topological Chern numbers, and generally to investigate the geometric properties of a quantum ground state manifold. While Berry curvature has been well-studied in the regimes of few-body physics and non-interacting particles, its use in the regime of strong interactions is hindered by the lack of numerical methods to solve it. In this paper we fill this gap by implementing a quantum Monte Carlo method to solve for the Berry curvature, based on interpreting Berry curvature as a leading correction to imaginary time ramps. We demonstrate our algorithm using the transverse-field Ising model in one and two dimensions, the latter of which is non-integrable. Despite the fact that the Berry curvature gives information about the phase of the wave function, we show that our algorithm has no sign or phase problem for standard sign-problem-free Hamiltonians...

  16. COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition.

    Science.gov (United States)

    Zaharevitz, Daniel W; Holbeck, Susan L; Bowerman, Christopher; Svetlik, Penny A

    2002-01-01

    For more than 10 years the National Cancer Institute (NCI) has tested compounds for their ability to inhibit the growth of human tumor cell lines in culture (NCI screen). Work of Ken Paull [J. Natl. Cancer Inst. 81 (1989) 1088] demonstrated that compounds with similar mechanism of cell growth inhibition show similar patterns of activity in the NCI screen. This observation was developed into an algorithm called COMPARE and has been successfully used to predict mechanisms for a wide variety of compounds. More recently, this method has been extended to associate patterns of cell growth inhibition by compounds with measurements of molecular entities (such as gene expression) in the cell lines in the NCI screen. The COMPARE method and associated data are freely available on the Developmental Therapeutics Program (DTP) web site (http://dtp.nci.nih.gov/). Examples of the use of COMPARE on these web pages will be explained and demonstrated. Published by Elsevier Science Inc.

  17. Novel EphB4 Monoclonal Antibodies Modulate Angiogenesis and Inhibit Tumor Growth

    OpenAIRE

    Krasnoperov, Valery; Kumar, S. Ram; Ley, Eric; Li, Xiuqing; Scehnet, Jeffrey; Liu, Ren; Zozulya, Sergey; Gill, Parkash S.

    2010-01-01

    EphB4 receptor tyrosine kinase and its cognate ligand EphrinB2 regulate induction and maturation of newly forming vessels. Inhibition of their interaction arrests angiogenesis, vessel maturation, and pericyte recruitment. In addition, EphB4 is expressed in the vast majority of epithelial cancers and provides a survival advantage to most. Here, we describe two anti-EphB4 monoclonal antibodies that inhibit tumor angiogenesis and tumor growth by two distinct pathways. MAb131 binds to fibronectin...

  18. Modeling Growth of Cellulomonas cellulans NRRL B 4567 under Substrate Inhibition During Cellulase Production

    OpenAIRE

    Agarwal, R; Mahanty, B.; Dasu, V. Venkata

    2009-01-01

    Cellulase production study was performed in shake flask and bioreactor system using Cellulomonas cellulans NRRL B 4567 for initial substrate concentration from γS0 = 2 to 12 g L–1. The growth, substrate uptake profile and enzyme activity at different initial substrate concentrations were measured. The results inferred the presence of substrate inhibition kinetics. Various substrate inhibition models were tested and parameters were estimated, using non-linear regression analysis. Han-Levenspie...

  19. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    Directory of Open Access Journals (Sweden)

    Yong Miao

    Full Text Available Ginger (Zingiber officinale has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  20. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Mei [Department of Pharmacy, Shanghai Institute of Health Sciences and Health School Attached to SJTU-SM, 279 Zhouzhu Road, Shanghai 201318 (China); Liu, Ya-Rong; Liu, Hai-Jun [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Fang, Chao, E-mail: fangchao100@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Hong-Zhuan, E-mail: hongzhuan_chen@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China)

    2014-11-15

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC.

  1. Curcumin inhibits growth of Saccharomyces cerevisiae through iron chelation.

    Science.gov (United States)

    Minear, Steven; O'Donnell, Allyson F; Ballew, Anna; Giaever, Guri; Nislow, Corey; Stearns, Tim; Cyert, Martha S

    2011-11-01

    Curcumin, a polyphenol derived from turmeric, is an ancient therapeutic used in India for centuries to treat a wide array of ailments. Interest in curcumin has increased recently, with ongoing clinical trials exploring curcumin as an anticancer therapy and as a protectant against neurodegenerative diseases. In vitro, curcumin chelates metal ions. However, although diverse physiological effects have been documented for this compound, curcumin's mechanism of action on mammalian cells remains unclear. This study uses yeast as a model eukaryotic system to dissect the biological activity of curcumin. We found that yeast mutants lacking genes required for iron and copper homeostasis are hypersensitive to curcumin and that iron supplementation rescues this sensitivity. Curcumin penetrates yeast cells, concentrates in the endoplasmic reticulum (ER) membranes, and reduces the intracellular iron pool. Curcumin-treated, iron-starved cultures are enriched in unbudded cells, suggesting that the G(1) phase of the cell cycle is lengthened. A delay in cell cycle progression could, in part, explain the antitumorigenic properties associated with curcumin. We also demonstrate that curcumin causes a growth lag in cultured human cells that is remediated by the addition of exogenous iron. These findings suggest that curcumin-induced iron starvation is conserved from yeast to humans and underlies curcumin's medicinal properties.

  2. A functional connection between pRB and transforming growth factor beta in growth inhibition and mammary gland development.

    Science.gov (United States)

    Francis, Sarah M; Bergsied, Jacqueline; Isaac, Christian E; Coschi, Courtney H; Martens, Alison L; Hojilla, Carlo V; Chakrabarti, Subrata; Dimattia, Gabriel E; Khoka, Rama; Wang, Jean Y J; Dick, Frederick A

    2009-08-01

    Transforming growth factor beta (TGF-beta) is a crucial mediator of breast development, and loss of TGF-beta-induced growth arrest is a hallmark of breast cancer. TGF-beta has been shown to inhibit cyclin-dependent kinase (CDK) activity, which leads to the accumulation of hypophosphorylated pRB. However, unlike other components of TGF-beta cytostatic signaling, pRB is thought to be dispensable for mammary development. Using gene-targeted mice carrying subtle missense changes in pRB (Rb1(DeltaL) and Rb1(NF)), we have discovered that pRB plays a critical role in mammary gland development. In particular, Rb1 mutant female mice have hyperplastic mammary epithelium and defects in nursing due to insensitivity to TGF-beta growth inhibition. In contrast with previous studies that highlighted the inhibition of cyclin/CDK activity by TGF-beta signaling, our experiments revealed that active transcriptional repression of E2F target genes by pRB downstream of CDKs is also a key component of TGF-beta cytostatic signaling. Taken together, our work demonstrates a unique functional connection between pRB and TGF-beta in growth control and mammary gland development.

  3. Heat stable cell growth inhibiting factor isolated from rat liver microsomes.

    Directory of Open Access Journals (Sweden)

    Inaba,Kozo

    1979-08-01

    Full Text Available A heat stable cell growth inhibiting factor was isolated from rat liver microsomes by hot salt extraction, ethanol fractionation and the hot phenol method. The factor was contained in the RNA fraction (designated as mhRNA. mhRNA inhibited the growth of mouse fibroblast (L-929 cells at a relatively low concentration (55 microgram/ml of culture medium. The molecular weight of mhRNA was about 27,000 and the base composition was guanine and cytosine rich.

  4. Epidermal growth factor inhibits hormone- and fibroblast growth factor-induced activation of phospholipase C in rat pancreatic acini.

    Science.gov (United States)

    Stryjek-Kaminska, D; Piiper, A; Caspary, W F; Zeuzem, S

    1995-01-01

    Epidermal growth factor (EGF) inhibits cholecystokinin-octapeptide-stimulated amylase release and inositol 1,4,5-trisphosphate (1,4,5-IP3) production in isolated rat pancreatic acini. In the present study, pancreatic acini were used to investigate the effect of EGF on amylase release and 1,4,5-IP3 production induced by secretagogues that activate either phospholipase C-beta (carbachol, bombesin) or phospholipase C-gamma [basic fibroblast growth factor (bFGF)]. The results show that EGF (100 ng/ml) inhibited bombesin (0.1 nM-1 microM)-induced amylase release almost completely. Similarly, the effect of EGF on carbachol-stimulated amylase release was substantial at submaximal (0.1 microM: 44% inhibition), maximal (1 microM: 75% inhibition), and supramaximal (100 microM: 33% inhibition) carbachol concentrations. EGF reduced amylase release at submaximal bFGF concentrations (0.1 nM: 40% inhibition), but not at supramaximal bFGF concentrations (1 and 10 nM). EGF decreased the peak increase of 1,4,5-IP3 in response to bombesin and carbachol (5 s after beginning of the incubation) and bFGF (15 s after beginning of the incubation) by 81 +/- 19%, 65 +/- 15%, and 56 +/- 18%, respectively. Receptor binding characteristics for secretagogues that activate phospholipase C were not influenced by coincubation with EGF excluding heterologous transmembrane receptor modulation. These results suggest that EGF inhibits the action of phospholipase C-beta- and gamma-isoenzyme-activating secretagogues in the exocrine pancreas by a postreceptor mechanism.

  5. From Berries to Orchards: Tracing the History of Berrying and Economic Transformation among Lake Superior Ojibwe

    Science.gov (United States)

    Norrgard, Chantal

    2009-01-01

    This article explores the history of berrying as a significant example of how Lake Superior Ojibwe weathered economic transitions in the late nineteenth and early twentieth centuries. It looks at the emergence of the berry industry surrounding the Fond du Lac, Red Cliff, and Bad River communities, beginning with Ojibwe relocation to these…

  6. In vitro inhibition of Helicobacter pylori growth and adherence to gastric mucosal cells by Pycnogenol.

    Science.gov (United States)

    Rohdewald, Peter; Beil, Winfried

    2008-05-01

    The emergence of antibiotic resistant H. pylori strains has necessitated the identification of alternative additive therapies for the treatment of this infection. The study tested whether a specific pine bark extract (Pycnogenol is effective in inhibiting the growth and adherence of H. pylori in vitro. Inhibition of H. pylori growth by Pycnogenol was tested in liquid medium as well as in an in vitro model by using sessile bacteria attached to AGS cells. Adherence was determined by co-incubation of gastric cells with Pycnogenol and H. pylori in vitro. Pycnogenol inhibited H. pylori growth in suspension with an MIC(50) of 12.5 microg/mL. Growth of H. pylori in infected cells was reduced to 10% of the control value by 125 microg/mL Pycnogenol. Adherence of H. pylori to gastric cells was reduced by 70% after 3 h incubation with 125 microg/mL Pycnogenol. The results show a significant, yet limited inhibition of growth and adherence of H. pylori to gastric cells by Pycnogenol. In vivo studies have to demonstrate the clinical relevance of these findings.

  7. BlackBerry All-in-One for Dummies

    CERN Document Server

    Sarigumba, Dante; Petz, William

    2010-01-01

    Go beyond BlackBerry basics and get everything your BlackBerry can deliver. BlackBerry is the leading smartphone for business users, and its popularity continues to explode. When you discover the amazing array of BlackBerry possibilities in this fun and friendly guide, you'll be even happier with your choice of smartphones. BlackBerry All-in-One For Dummies explores every feature and application common to all BlackBerry devices. It explains the topics in depth, with tips, tricks, workarounds, and includes detailed information about cool new third-party applications, accessories, and downloads

  8. CrackBerry The Tales of BlackBerry Use and Abuse

    CERN Document Server

    Michaluk, Kevin J; Trautschold, Martin

    2011-01-01

    A delayed train, a dip in the conversation, an early morning hour with no sleep - during these moments, do you feel an overwhelming urge to grab your BlackBerry? Do you know someone else who does? If the answer is yes, then look no further than this one-of-a-kind book...CrackBerry: True Tales of Blackberry Use and Abuse covers the phenomenon of "BlackBerry Addiction," offering true-life accounts of BlackBerry dependence and mishaps. You'll find comfort and humor in the unbelievable tales of BlackBerry abuse and also learn some valuable tips along the way. * The definitive guide to respons

  9. Maqui berry vs Sloe berry--liquor-based beverage for new development.

    Science.gov (United States)

    Gironés-Vilaplana, Amadeo; Moreno, Diego A; García-Viguera, Cristina

    2015-01-01

    "Pacharin" is an aniseed liquor-based beverage made with sloe berry (Prunus spinosa L.) that has been produced in northern Spain. On the other hand, maqui berry (Aristotelia chilensis) is a common edible berry from Chile, and currently under study because of its multiple beneficial effects on health. The aim of this work was to design a new aniseed liquor-based beverage with maqui berry, as an industrial alternative to a traditional alcoholic product with bioactive berries. The characterization of its composition, compared with the traditional "Pacharin", and its evolution during maceration (6 and 12 months) showed that the new maqui liquor had significantly-higher anthocyanin retention over time. More studies on the organoleptic properties and bioactivity are underway.

  10. Dickkopf3 overexpression inhibits pancreatic cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Yu-Mei Gu; Yi-Hui Ma; Wu-Gan Zhao; Jie Chen

    2011-01-01

    AIM: To elucidate the role of dickkopf3 (Dkk3) in human pancreatic cancer cell growth.METHODS: Dkk3 mRNA and protein expression in human pancreatic cancer cell lines were detected by real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blotting and immunofluorescence. Methylation of the Dkk3 promoter sequence was examined by methylation-specific polymerase chain reaction (MSP) and Dkk3 mRNA expression was determined by real-time RT-PCR after 5-aza-2'-deoxycytidine (5-aza-dC) treatment. The effects of Dkk3 on cancer cell proliferation and in vitro sensitivity to gemcitabine were investigated by CellTiter 96. AQueous One Solution Cell Proliferation Assay (MTS) after transfecting the Dkk3 expression plasmid into human pancreatic cancer cells. The expression of β-catenin, phosphorylated extracellular signal-regulated protein kinases (pERK) and extracellular signal-regulated protein kinases (ERK) was also examined by real-time RT-PCR and Western blotting after upregulating Dkk3 expression in human pancreatic cancer cells.RESULTS: The results show that the expression levels of both Dkk3 mRNA and protein were low in all pancreatic cancer cell lines tested. The Dkk3 promoter sequence was methylated in the MIA PaCa-2 and AsPC-1 cell lines, which showed reduced Dkk3 expression. These two cell lines, which initially had a methylated Dkk3 promoter, showed increased Dkk3 mRNA expression that was dependent upon the dosage and timing of the DNA demethylating agent, 5-aza-dC, treatment (P < 0.05 or P < 0.01). When Dkk3 expression was upregulated following the transfection of a Dkk3 expression plasmid into MIA PaCa-2 cells, the ability of cells to proliferate decreased (P < 0.01), and the expression of β-catenin and pERK was downregulated (P < 0.01). Sensitivity to gemcitabine was enhanced in Dkk3 expression plasmid-transfected cells.CONCLUSION: Our findings, for the first time, implicate Dkk3 as a tumor suppressor in human pancreatic cancer

  11. Nanoelectroablation of Murine Tumors Triggers a CD8-Dependent Inhibition of Secondary Tumor Growth.

    Directory of Open Access Journals (Sweden)

    Richard Nuccitelli

    Full Text Available We have used both a rat orthotopic hepatocellular carcinoma model and a mouse allograft tumor model to study liver tumor ablation with nanosecond pulsed electric fields (nsPEF. We confirm that nsPEF treatment triggers apoptosis in rat liver tumor cells as indicated by the appearance of cleaved caspase 3 and 9 within two hours after treatment. Furthermore we provide evidence that nsPEF treatment leads to the translocation of calreticulin (CRT to the cell surface which is considered a damage-associated molecular pattern indicative of immunogenic cell death. We provide direct evidence that nanoelectroablation triggers a CD8-dependent inhibition of secondary tumor growth by comparing the growth rate of secondary orthotopic liver tumors in nsPEF-treated rats with that in nsPEF-treated rats depleted of CD8+ cytotoxic T-cells. The growth of these secondary tumors was severely inhibited as compared to tumor growth in CD8-depleated rats, with their average size only 3% of the primary tumor size after the same one-week growth period. In contrast, when we depleted CD8+ T-cells the second tumor grew more robustly, reaching 54% of the size of the first tumor. In addition, we demonstrate with immunohistochemistry that CD8+ T-cells are highly enriched in the secondary tumors exhibiting slow growth. We also showed that vaccinating mice with nsPEF-treated isogenic tumor cells stimulates an immune response that inhibits the growth of secondary tumors in a CD8+-dependent manner. We conclude that nanoelectroablation triggers the production of CD8+ cytotoxic T-cells resulting in the inhibition of secondary tumor growth.

  12. Phytochemical potential of Eruca sativa for inhibition of melanoma tumor growth.

    Science.gov (United States)

    Khoobchandani, M; Ganesh, N; Gabbanini, S; Valgimigli, L; Srivastava, M M

    2011-06-01

    Solvent extracts from the aerial and root parts and seed oil from E. sativa (rocket salad) were assayed for anticancer activity against melanoma cells. The seed oil (isothiocyanates rich) significantly (p<0.01) reduced the tumor growth comparable to the control. Remarkably, the seed oil inhibited melanoma growth and angiogenesis in mice without any major toxicity. The findings qualify seed oil for further investigations in the real of cancer prevention and treatment.

  13. Pharmacological inhibition of microsomal prostaglandin E synthase-1 suppresses epidermal growth factor receptor-mediated tumor growth and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Federica Finetti

    Full Text Available BACKGROUND: Blockade of Prostaglandin (PG E(2 production via deletion of microsomal Prostaglandin E synthase-1 (mPGES-1 gene reduces tumor cell proliferation in vitro and in vivo on xenograft tumors. So far the therapeutic potential of the pharmacological inhibition of mPGES-1 has not been elucidated. PGE(2 promotes epithelial tumor progression via multiple signaling pathways including the epidermal growth factor receptor (EGFR signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we evaluated the antitumor activity of AF3485, a compound of a novel family of human mPGES-1 inhibitors, in vitro and in vivo, in mice bearing human A431 xenografts overexpressing EGFR. Treatment of the human cell line A431 with interleukin-1beta (IL-1β increased mPGES-1 expression, PGE(2 production and induced EGFR phosphorylation, and vascular endothelial growth factor (VEGF and fibroblast growth factor-2 (FGF-2 expression. AF3485 reduced PGE(2 production, both in quiescent and in cells stimulated by IL-1β. AF3485 abolished IL-1β-induced activation of the EGFR, decreasing VEGF and FGF-2 expression, and tumor-mediated endothelial tube formation. In vivo, in A431 xenograft, AF3485, administered sub-chronically, decreased tumor growth, an effect related to inhibition of EGFR signalling, and to tumor microvessel rarefaction. In fact, we observed a decrease of EGFR phosphorylation, and VEGF and FGF-2 expression in tumours explanted from treated mice. CONCLUSION: Our work demonstrates that the pharmacological inhibition of mPGES-1 reduces squamous carcinoma growth by suppressing PGE(2 mediated-EGFR signalling and by impairing tumor associated angiogenesis. These results underscore the potential of mPGES-1 inhibitors as agents capable of controlling tumor growth.

  14. Sorafenib inhibits growth and metastasis of hepatocellular carcinoma by blocking STAT3

    Institute of Scientific and Technical Information of China (English)

    Fang-Ming Gu; Quan-Lin Li; Qiang Gao; Jia-Hao Jiang; Xiao-Yong Huang; Jin-Feng Pan; Jia Fan; Jian Zhou

    2011-01-01

    AIM: To investigate the inhibitory role and the underlying mechanisms of sorafenib on signal transducer and activator of transcription 3 (STAT3) activity in hepatocellular carcinoma (HCC). METHODS: Human and rat HCC cell lines were treated with sorafenib. Proliferation and STAT3 dephosphorylation were assessed. Potential molecular mechanisms of STAT3 pathway inhibition by sorafenib were evaluated. In vivo antitumor action and STAT3 inhibition were investigated in an immunocompetent orthotopic rat HCC model. RESULTS: Sorafenib decreased STAT3 phosphorylation at the tyrosine and serine residues (Y705 and S727), but did not affect Janus kinase 2 (JAK2) and phospha-tase shatterproof 2 (SHP2), which is associated with growth inhibition in HCC cells. Dephosphorylation of S727 was associated with attenuated extracellular signal-regulated kinase (ERK) phosphorylation, similar to the effects of a mitogen-activated protein kinase (MEK) inhibitor U0126, suggesting that sorafenib induced S727 dephosphorylation by inhibiting MEK/ERK signaling. Meanwhile, sorafenib could also inhibit Akt phosphorylation, and both the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 and Akt knockdown resulted in Y705 dephosphorylation, indicating that Y705 dephosphorylation by sorafenib was mediated by inhibiting the PI3K/Akt pathway. Finally, in the rat HCC model, sorafenib significantly inhibited STAT3 activity, reducing tumor growth and metastasis. CONCLUSION: Sorafenib inhibits growth and metastasis of HCC in part by blocking the MEK/ERK/STAT3 and PI3K/Akt/STAT3 signaling pathways, but independent of JAK2 and SHP2 activation.

  15. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Yoshizaki Yumiko

    2010-03-01

    Full Text Available Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF gene via peroxisome proliferator-activated receptor γ (PPARγ; VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC. Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC.

  16. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    Science.gov (United States)

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  17. Effect of sodium chloride on the growth and fruiting of Cabernet Sauvignon vines

    Energy Technology Data Exchange (ETDEWEB)

    Hawker, J.S.; Walker, R.R.

    1978-01-01

    Sodium chloride was supplied to rooted cuttings of Vitis vinifera cv Cabernet Sauvignon grown in a porous growth medium at concentrations of 0, 20, 50 and 75 mM. Shoot and leaf growth and berry set and development were reduced by NaCl, the severity of the effects depending on both NaCl concentration and the age of the plants receiving the treatment. Shoots were not affected by 20 mM NaCl supplied 10 days after flowering but 50 and 75 mM NaCl caused severe stunting of shoots and 75 mM NaCl had a marked effect on berry growth and development. When NaCl was supplied to vines 10 days before flowering, 20, 50 and 75 mM NaCl inhibited shoot growth and reduced berry size and sugar content. Although NaCl caused a decrease in the rate of growth of both leaves and berries, no changes in invertase or pectin methylesterase activities were found in these organs from plants supplied with NaCl.

  18. Growth inhibition of shrimp pathogens by isolated gastrointestinal microflora of Macrobrachium rosenbergii de Man

    Directory of Open Access Journals (Sweden)

    Seehanat, S.

    2005-02-01

    Full Text Available The useful bacteria which were isolated from the gastrointestinal tract of freshwater prawn (Macrobrachium rosenbergii de Man, cultivated in earthen pond at Maha Sarakham province, Thailand, consisted of 14 isolates of Bacillus (B1 – B14 and 18 isolates of Lactic acid bacteria (LA1 – LA18. The abilities of all isolated bacteria on growth inhibition of pathogenic bacteria (Escherichia coli, Bacillus cereus, Aeromonas hydrophila and Pseudomonas aeruginosa were studied by paperdisc plate method. The results showed that the Bacillus B2 and B5 were unable to inhibit the growth of all of the tested pathogens. Bacillus B1, B10 and B12 were capable of inhibiting the growth of 3 of 4 tested pathogen strains. Although all of the isolated lactic acid bacteria (LA1 –LA18 could not inhibit the E. coli growth, all of them could inhibit the growth of B. cereus. The isolated lactic acid bacteria which were capable of inhibiting the growth of 3 tested pathogen strains (excluded E. coli were LA12 , LA13 , LA14 , LA15 , LA16 , LA17 and LA18. In order to select the high potential strain of bacteria for using as probiotics, Bacillus B1 , B3 , B4 , B10 and B12 and lactic acid bacteria LA12 , LA13 , LA14 , LA15 , LA16 , LA17 and LA18 were tested for their growth abilities in various growth conditions. The tested growth conditions included various concentrations of the bile salt and salt (NaCl and various pH and temperatures. The results revealed that Bacillus B1 and B10 and lactic acid bacteria LA13 , LA16 and LA18 exhibited high potential for using as probiotics. The results of biochemical test for identification of these high potential strains showed that Bacillus B1 and B10 were possibly B. licheniformis and B. thuringiensis respectively. The lactic acid bacteria LA13 , LA16 and LA18 were possibly the same strain and belonged to the genus Pediococcus.

  19. Survivin gene silencing sensitizes prostate cancer cells to selenium growth inhibition

    Directory of Open Access Journals (Sweden)

    Liu Xichun

    2010-08-01

    Full Text Available Abstract Background Prostate cancer is a leading cause of cancer-related death in men worldwide. Survivin is a member of the inhibitor of apoptosis (IAP protein family that is expressed in the majority of human tumors including prostate cancer, but is barely detectable in terminally differentiated normal cells. Downregulation of survivin could sensitize prostate cancer cells to chemotherapeutic agents in vitro and in vivo. Selenium is an essential trace element. Several studies have shown that selenium compounds inhibit the growth of prostate cancer cells. The objective of this study is to investigate whether survivin gene silencing in conjunction with selenium treatment could enhance the therapeutic efficacy for prostate cancer and to elucidate the underlying mechanisms. Methods Expression of survivin was analyzed in a collection of normal and malignant prostatic tissues by immunohistochemical staining. In vitro studies were conducted in PC-3M, C4-2B, and 22Rv1 prostate cancer cells. The effect of selenium on survivin expression was analyzed by Western blotting and semi-quantitative RT-PCR. Survivin gene knockdown was carried out by transfecting cells with a short hairpin RNA (shRNA designed against survivin. Cell proliferation was quantitated by the 3-(4,5-Dimethylthiazol-2-yl- 2,5-Diphenyltetrazolium Bromide (MTT assay and apoptosis by propidium iodide staining followed by flow cytometry analysis. Finally, in vivo tumor growth assay was performed by establishing PC-3M xenograft in nude mice and monitoring tumor growth following transfection and treatment. Results We found that survivin was undetectable in normal prostatic tissues but was highly expressed in prostate cancers. Survivin knockdown or selenium treatment inhibited the growth of prostate cancer cells, but the selenium effect was modest. In contrast to what have been observed in other cell lines, selenium treatment had little or no effect on survivin expression in several androgen

  20. In vivo inhibition of polyamine biosynthesis and growth in tobacco ovary tissues.

    Science.gov (United States)

    Slocum, R D; Galston, A W

    1985-01-01

    Post fertilization growth of tobacco ovary tissues treated with inhibitors of polyamine (PA) biosynthesis was examined in relation to endogenous PA titers and the activities of arginine decarboxylase (ADC, EC 4.1.1.19) and ornithine decarboxylase (ODC, EC 4.1.1.17). DL-alpha-Difluoromethylornithine (DFMO) and DL-alpha-difluoromethylarginine (DFMA), specific, irreversible ("suicide") inhibitors of ODC and ADC in vitro, were used to modulate PA biosynthesis in excised flowers. ODC represented >99% of the total decarboxylase activity in tobacco ovaries. In vivo inhibition of ODC with DFMO resulted in a significant decrease in PA titers, ovary fresh weight and protein content. Simultaneous inhibition of both decarboxylases by DFMO and DFMA produced only a marginally greater depression in growth and PA titers, indicating that ODC activity is rate-limiting for PA biosynthesis in these tissues. Paradoxically, DFMA alone inhibited PA biosynthesis, not as a result of a specific inhibition of ADC, but primarily through the inactivation of ODC. In vivo inhibition of ODC by DFMA appears to result from arginase-mediated hydrolysis of this inhibitor to urea and DFMO, the suicide substrate for ODC. Putrescine conjugates in tobacco appear to function as a storage form of this amine which, upon hydrolysis, may contribute to Put homeostasis during growth.

  1. Glyphosate impacts on polyphenolic composition in grapevine (Vitis vinifera L.) berries and wine.

    Science.gov (United States)

    Donnini, Silvia; Tessarin, Paola; Ribera-Fonseca, Alejandra; Di Foggia, Michele; Parpinello, Giuseppina Paola; Rombolà, Adamo Domenico

    2016-12-15

    Glyphosate is the most widespread herbicide for weed management, being extensively used in viticulture. In this study we tested, under field conditions, the effects of glyphosate applications on the quality of berry and wine, from cv. Ancellotta (Vitis vinifera L.), with particular regard to anthocyanin concentration and composition. Ripening and growth were monitored by analyzing berry technological parameters and weight. Additionally, microvinifications were performed, in order to analyze the concentration of anthocyanins, other flavonoids and phenolic acids in wine. Our findings indicated that, at harvest, both pH and anthocyanin concentration were significantly lower and titratable acidity higher in berries collected from vines of plots under glyphosate-treatment compared with those of non-treated parcels. Data suggest that treatment with glyphosate did not change the concentration of anthocyanins, other flavonoids and phenolic acids in the wine. Our results indicate that treatment with glyphosate may affect fruit metabolism and nutritional value in non-target plants.

  2. DIETARY ISOTHIOCYANATE IBERIN INHIBITS GROWTH AND INDUCES APOPTOSIS IN HUMAN GLIOBLASTOMA CELLS

    Science.gov (United States)

    In this study, we evaluated the antiproliferative and proapoptotic effects of the isothiocyanate iberin, a bioactive agent in Brassicaceae species, in human glioblastoma cells. The human glioblastoma cell cultures were treated with different concentrations of iberin and tested for growth inhibition...

  3. Liposome-encapsulated prednisolone phosphate inhibits growth of established tumors in mice

    NARCIS (Netherlands)

    Metselaar, JM; Fens, MHAM; Janssen, APCA; Molema, G; Storm, G

    2005-01-01

    Glucocorticoids can inhibit solid tumor growth possibly due to an inhibitory effect on angiogenesis. The antitumor effects of the free drugs have only been observed using treatment schedules based on high and frequent dosing for prolonged periods of time. As long-circulating liposomes accumulate at

  4. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M

    2005-01-01

    of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor...

  5. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth in vitro and in vivo

    Science.gov (United States)

    Methylselenol is hypothesized to be a critical selenium (Se) metabolite for anticancer activity. Submicromolar methylselenol exposure inhibited cell growth and led to an increase in the G1 and G2 fractions with a concomitant drop in the S-phase, and an induction of apoptosis in cancerous colon HCT11...

  6. RNA interference inhibits expression of vascular endothelial growth factor (VEGF) in human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    CAI Chun-mei; SUN Bao-chen; LIU Xu-yang; WANG Jin-jin; LI Jun-fa; HAN Song; WANG Ning-li; LU Qing-jun

    2005-01-01

    @@ Choroidal neovascularization (CNV), a major cause of vision loss, is the result of the increased vascular endothelial growth factor (VEGF) expression in human retinal pigment epithelial (RPE) cells. It is important to inhibit the expression of VEGF protein in RPE cells.

  7. Erythrocytic malaria growth or invasion inhibition assays with emphasis on suspension culture GIA.

    Science.gov (United States)

    Haynes, J David; Moch, J Kathleen; Smoot, Douglas S

    2002-01-01

    Erythrocytic cycle malaria parasite growth or invasion inhibition assays (GIA) compare the effects of various test and control substances on malaria parasite growth in erythrocytes or invasion into erythrocytes in vitro. Although inhibitions by antimalarial drugs in vitro correlate well with drug protective levels required in vivo, as yet there are too few data to know how well inhibitions by antibodies in vitro correlate with the types and degrees of immune protection in vivo. Antibody-mediated GIA is frequently complicated by parasite strain-specific inhibitions, as well as nonspecific inhibitory factors generated in sera collected or stored under nonoptimal conditions. In this chapter, we describe methods for collecting and processing sera, for using different strains of parasite, and a simplified method for staining parasite DNA with Hoechst dye 33342 before quantitating parasites using ultraviolet (UV)-excited flow cytometry. We also describe a new type of GIA using suspension cultures in a 48-well plate. Critical to this method is enclosing the plate in a gassed, heat-sealed plastic bag, which, being low mass, can easily be rested at a 13.5 degrees angle on a rotor platform (114 rpm with 1-in. displacement) to produce gentle pulsatile waves of media in each well. The suspension GIA, which, relative to the static GIA, increased inhibition by one antibody and decreased inhibition by another (Table 1), may better simulate in vivo blood flow and may thus better predict in vivo efficacy.

  8. Inhibition of Galectin-1 Sensitizes HRAS-driven Tumor Growth to Rapamycin Treatment.

    Science.gov (United States)

    Michael, James V; Wurtzel, Jeremy G T; Goldfinger, Lawrence E

    2016-10-01

    The goal of this study was to develop combinatorial application of two drugs currently either in active use as anticancer agents (rapamycin) or in clinical trials (OTX008) as a novel strategy to inhibit Harvey RAS (HRAS)-driven tumor progression. HRAS anchored to the plasma membrane shuttles from the lipid ordered (Lo) domain to the lipid ordered/lipid disordered border upon activation, and retention of HRAS at these sites requires galectin-1. We recently showed that genetically enforced Lo sequestration of HRAS inhibited mitogen-activated protein kinase (MAPK) signaling, but not phoshatidylinositol 3-kinase (PI3K) activation. Here we show that inhibition of galectin-1 with OTX008 sequestered HRAS in the Lo domain, blocked HRAS-mediated MAPK signaling, and attenuated HRAS-driven tumor progression in mice. HRAS-driven tumor growth was also attenuated by treatment with mammalian target of rapamycin (mTOR) inhibitor rapamycin, and this effect was further enhanced in tumors driven by Lo-sequestered HRAS. These drugs also revealed bidirectional cross-talk in HRAS pathways. Moreover, dual pathway inhibition with OTX008 and rapamycin resulted in nearly complete ablation of HRAS-driven tumor growth. These findings indicate that membrane microdomain sequestration of HRAS with galectin-1 inhibition, coupled with mTOR inhibition, may support a novel therapeutic approach to treat HRAS-mutant cancer.

  9. A synthetic manassantin a derivative inhibits hypoxia-inducible factor 1 and tumor growth.

    Science.gov (United States)

    Lang, Liwei; Liu, Xiaoyu; Li, Yan; Zhou, Qing; Xie, Ping; Yan, Chunhong; Chen, Xiaoguang

    2014-01-01

    The dineolignan manassantin A from Saururaceae was recently identified as a hypoxia-inducible factor 1 (HIF-1) inhibitor, but its in-vivo anti-tumor effect has not been explored. We synthesized a series of manassantin A derivatives, and found that replacing the central tetrahydrofuran moiety with a cyclopentane ring yielded a compound (LXY6006) with increased HIF-1-inhibitory activity yet decreased stereochemically complexity amenable to a simplified synthesis scheme. LXY6006 inhibited HIF-1α nuclear accumulation induced by hypoxia, and inhibited cancer cell growth as a consequence of G2/M arrest. Oral administration of LXY6006 significantly inhibited growth of breast, lung, and pancreatic tumors implanted in nude mice. These results indicate that LXY6006 represents a novel class of agents targeting a broad range of human cancers.

  10. A synthetic manassantin a derivative inhibits hypoxia-inducible factor 1 and tumor growth.

    Directory of Open Access Journals (Sweden)

    Liwei Lang

    Full Text Available The dineolignan manassantin A from Saururaceae was recently identified as a hypoxia-inducible factor 1 (HIF-1 inhibitor, but its in-vivo anti-tumor effect has not been explored. We synthesized a series of manassantin A derivatives, and found that replacing the central tetrahydrofuran moiety with a cyclopentane ring yielded a compound (LXY6006 with increased HIF-1-inhibitory activity yet decreased stereochemically complexity amenable to a simplified synthesis scheme. LXY6006 inhibited HIF-1α nuclear accumulation induced by hypoxia, and inhibited cancer cell growth as a consequence of G2/M arrest. Oral administration of LXY6006 significantly inhibited growth of breast, lung, and pancreatic tumors implanted in nude mice. These results indicate that LXY6006 represents a novel class of agents targeting a broad range of human cancers.

  11. Inhibition of Tumor Growth in Mice by Endostatin Derived from Abdominal Transplanted Encapsulated Cells

    Institute of Scientific and Technical Information of China (English)

    Huaining TENG; Ying ZHANG; Wei WANG; Xiaojun MA; Jian FEI

    2007-01-01

    Endostatin, a C-terminal fragment of collagen 18a, inhibits the growth of established tumors and metastases in vivo by inhibiting angiogenesis. However, the purification procedures required for largescale production and the attendant cost of these processes, together with the low effectiveness in clinical tests, suggest that alternative delivery methods might be required for efficient therapeutic use of endostatin.In the present study, we transfected Chinese hamster ovary (CHO) cells with a human endostatin gene expression vector and encapsulated the CHO cells in alginate-poly-L-lysine microcapsules. The release of biologically active endostatin was confirmed using the chicken chorioallantoic membrane assay. The encapsulated endostatin-expressing CHO cells can inhibit the growth of primary tumors in a subcutaneous B16 tumor model when injected into the abdominal cavity of mouse. These results widen the clinical application of the microencapsulated cell endostatin delivery system in cancer treatment.

  12. Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo1

    Science.gov (United States)

    Faraone, Debora; Aguzzi, Maria Simona; Toietta, Gabriele; Facchiano, Angelo M; Facchiano, Francesco; Magenta, Alessandra; Martelli, Fabio; Truffa, Silvia; Cesareo, Eleonora; Ribatti, Domenico; Capogrossi, Maurizio C; Facchiano, Antonio

    2009-01-01

    Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs) is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Rα may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Rα respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Rα. Proliferation was rescued by PDGF-Rα inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Rα mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Rα was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Rα show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Bα and a marked increase of p38γ, mitogen-activated protein kinase kinase 3, and signal regulatory protein α1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Rα reached a significant 70% inhibition of primary melanoma growth (P < .001) and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Rα strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control. PMID:19649203

  13. Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Debora Faraone

    2009-08-01

    Full Text Available Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Rα may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Rα respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Rα. Proliferation was rescued by PDGF-Rα inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Rα mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Rα was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Rα show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Bα and a marked increase of p38γ, mitogen-activated protein kinase kinase 3, and signal regulatory protein α1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Rα reached a significant 70% inhibition of primary melanoma growth (P < .001 and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Rα strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.

  14. Cutin composition of five finnish berries.

    Science.gov (United States)

    Kallio, Heikki; Nieminen, Riikka; Tuomasjukka, Saska; Hakala, Mari

    2006-01-25

    The raw cutin (i.e., extractive-free isolated cuticular membrane) fraction from Finnish berries, sea buckthorn (Hippophaë rhamnoides), black currant (Ribes nigrum), cranberry (Vaccinium oxycoccos), lingonberry (Vaccinium vitis-idaea), and bilberry (Vaccinium myrtillus), was depolymerized by NaOMe-catalyzed methanolysis. The composition of cutin monomers was determined by GC-(EI)MS analysis either as methyl esters or as TMSi esters, with OH groups derivatized to TMSi ethers. There was a notable difference in the degree of depolymerization, ranging from 6 to 47%. The extractive-free berry cuticle, that is, raw cutin, thus contains cutin. The predominant cutin monomers were C(16) and C(18) omega-hydroxy acids with midchain functionalities, mainly epoxy and hydroxyl groups. Typically, the major compounds were 9,10-epoxy-18-hydroxyoctadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,10,18-trihydroxyoctadecanoic acid, 9,10-epoxy-18-hydroxyoctadec-12-enoic acid, and 18-hydroxyoctadec-9-enoic acid. The amount of epoxyacids was rather high in sea buckthorn ( approximately 70%) and cranberry ( approximately 60%), compared with the other berries. The black currant cutin differed from that of the other berries with a significant portion of hydroxyoxohexadecanoic acid ( approximately 12% of total monomers). This investigation of the cuticular hydroxy acids of five Finnish berries is part of the exploitation of the northern natural resources related to the chemical composition, nutritional value, and sensory properties.

  15. The thioamides methimazole and thiourea inhibit growth of M. avium Subspecies paratuberculosis in culture.

    Directory of Open Access Journals (Sweden)

    Robert J Greenstein

    Full Text Available BACKGROUND: Thyrotoxicosis is conceptualized as an "autoimmune" disease with no accepted infectious etiology. There are increasingly compelling data that another "autoimmune" affliction, Crohn disease, may be caused by Mycobacterium avium subspecies paratuberculosis (MAP. Like M. tb, MAP is systemic. We hypothesized that some cases of thyrotoxicosis may be initiated by a MAP infection. Because other thioamides treat tuberculosis, leprosy and M. avium complex, we hypothesized that a mode of action of some thioamide anti-thyrotoxicosis medications may include MAP growth inhibition. METHODS: The effect of the thioamides, thiourea, methimazole and 6-propo-2-thiouracil (6-PTU were studied in radiometric Bactec culture, on ten strains of three mycobacterial species (six of MAP, two of M. avium and two of M. tb. complex. Data are presented as "cumulative growth index," (cGI or "percent decrease in cumulative GI" (%-DeltacGI. PRINCIPAL FINDINGS: Methimazole was the most effective thioamide at inhibiting MAP growth. At 128microg/ml: MAP UCF-4; 65%-DeltacGI & MAP ATCC 19698; 90%-DeltacGI. Thiourea inhibited MAP "Ben" maximally; 70%-DeltacGI. Neither methimazole nor thiourea inhibited M. avium or M. tb. at the doses tested. 6-PTU has no inhibition on any strain studied, although a structurally analogous control, 5-PTU, was the most inhibitory thioamide tested. SIGNIFICANCE: We show inhibition of MAP growth by the thioamides, thiourea and methimazole in culture. These data are compatible with the hypothesis that these thioamides may have anti-prokaryotic in addition to their well-established eukaryotic actions in thyrotoxic individuals.

  16. Lidamycin Induces Apoptosis of B-Cell Lymphoma Cells and Inhibits Xenograft Growth in Nude Mice

    Institute of Scientific and Technical Information of China (English)

    Hong Fang; Shenghua Zhang; Qingfang Miao; Dongsheng Xiong; Yongsu Zhen

    2009-01-01

    OBJECTIVE To study the cytotoxicity of Lidamycin (LDM) and its induction of apoptosis in Raji and Daudi cells of B-cell lymphoma, and the inhibition of growth of the lymphoma Raji xenograft in nude mice.METHODS MTT assay was used to observe the inhibition by LDM on the proliferation of the Raji and Daudi cells. Annexin V-FITC/PI double-stain, in combination with flow cytometry (FCM), was used to determine the induction of apoptosis by LDM in Raji cells. The B-cell lymphoma Raji xenograft model in nude mice was set up to detect the in vivo antitumor activity of LDM.RESULTS LDM markedly inhibited the proliferation of the Raji and Daudi cells in vitro, with IC50 values of 7.13×10-11 mol/L and 2.91×10-10 mol/L, respectively. The apoptotic rates of Raji cells were respectively 77.98% and 67.63% at 0.5 nmol/L and 0.25 nmol/L of LDM, indicating an obvious induction of apoptosis in Raji cells. LDM inhibited the formation and growth of human B-cell lymphoma Raji xenograft in nude mice. The inhibition rates of tumor growth were respectively 74.9% and 65.2% in LDM at dosage group of 0.05 mg/kg and 0.025 mg/kg, suggesting an apparent prolongation of survival time in the nude mouse bearing lymphoma.CONCLUSION LDM can effectively induce apoptosis of the B-cell lymphoma cells and inhibit the xenograft growth in nude mice.

  17. The role of acidification in the inhibition of Neisseria gonorrhoeae by vaginal lactobacilli during anaerobic growth

    Directory of Open Access Journals (Sweden)

    Wade Jeremy J

    2011-02-01

    Full Text Available Abstract Background Vaginal lactobacilli protect the female genital tract by producing lactic acid, bacteriocins, hydrogen peroxide or a local immune response. In bacterial vaginosis, normal lactobacilli are replaced by an anaerobic flora and this may increase susceptibility to Neisseria gonorrhoeae, a facultative anaerobe. Bacterial interference between vaginal lactobacilli and N. gonorrhoeae has not been studied in liquid medium under anaerobic conditions. By co-cultivating N. gonorrhoeae in the presence of lactobacilli we sought to identify the relative contributions of acidification and hydrogen peroxide production to any growth inhibition of N. gonorrhoeae. Methods Three strains of N. gonorrhoeae distinguishable by auxotyping were grown in the presence of high concentrations (107-108 cfu/mL of three vaginal lactobacilli (L. crispatus, L. gasseri and L. jensenii in an anerobic liquid medium with and without 2-(N-morpholino-ethanesulfonic (MES buffer. Fusobacterium nucleatum was used as an indicator of anaerobiosis. Bacterial counts were performed at 15, 20 and 25 h; at 25 h pH and hydrogen peroxide concentrations were measured. Results Growth of F. nucleatum to >108 cfu/mL at 25 h confirmed anaerobiosis. All bacteria grew in the anaerobic liquid medium and the addition of MES buffer had negligible effect on growth. L. crispatus and L. gasseri produced significant acidification and a corresponding reduction in growth of N. gonorrhoeae. This inhibition was abrogated by the addition of MES. L. jensenii produced less acidification and did not inhibit N. gonorrhoeae. Hydrogen peroxide was not detected in any experiment. Conclusions During anaerobic growth, inhibition of N. gonorrhoeae by the vaginal lactobacilli tested was primarily due to acidification and abrogated by the presence of a buffer. There was no evidence of a specific mechanism of inhibition other than acid production under these conditions and, in particular, hydrogen peroxide was

  18. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency.

    Science.gov (United States)

    Zheng, Hongyan; Pan, Xiaoying; Deng, Yuxia; Wu, Huamao; Liu, Pei; Li, Xuexian

    2016-01-01

    The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3's function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis.

  19. Growth Inhibition by Bupivacaine Is Associated with Inactivation of Ribosomal Protein S6 Kinase 1

    Directory of Open Access Journals (Sweden)

    Mushtaq Ahmad Beigh

    2014-01-01

    Full Text Available Bupivacaine is an amide type long acting local anesthetic used for epidural anesthesia and nerve blockade in patients. Use of bupivacaine is associated with severe cytotoxicity and apoptosis along with inhibition of cell growth and proliferation. Although inhibition of Erk, Akt, and AMPK seemingly appears to mediate some of the bupivacaine effects, potential downstream targets that mediate its effect remain unknown. S6 kinase 1 is a common downstream effector of several growth regulatory pathways involved in cell growth and proliferation known to be affected by bupivacaine. We have accordingly attempted to relate the growth inhibitory effects of bupivacaine with the status of S6K1 activity and we present evidence that decrease in cell growth and proliferation by bupivacaine is mediated through inactivation of S6 kinase 1 in a concentration and time dependent manner. We also show that ectopic expression of constitutively active S6 kinase 1 imparts substantial protection from bupivacaine induced cytotoxicity. Inactivation of S6K1 though associated with loss of putative mTOR mediated phosphorylation did not correspond with loss of similar phosphorylations in 4EBP1 indicating that S6K1 inhibition was not mediated through inactivation of mTORC1 signaling pathway or its down regulation.

  20. Growth inhibition to three red tide microalgae by extracts of Ulva pertusa

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Growth inhibition effect of different concentration of distilled water extract and four polar organic solvent (methanol, acetone, ether and chloroform) extracts of Ulva pertusa on three typical red tide microalgae (Heterosigma akashiwo, Alexandrium tamarense and Prorocentrum micans) were investigated. Liquid-liquid fractionation and HPLC analysis for methanol extract of U. pertusa were carried out.Growth of the three microalgae was significantly inhibited by the distilled water extract of U. pertusa at relatively higher concentration. However, the cells of the three microalgae did not die completely even at high concentration. Methanol extract of U. pertusa showed the highest growth inhibition on the three microalgae, and all the cells of the three microalgae were killed at relatively high concentration. The other three organic solvent extracts of U. pertusa had no apparent effect on the three microalgae. The results of bioassays and HPLC analysis suggested that the inhibitory substances in U. pertusa to the microalgal growth had relatively high polarities. H. akashiwo was the most sensitive one while A. tamarense was the most tolerant one to the growth inhibitory substances.

  1. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition.

    Science.gov (United States)

    Reitz, M U; Gifford, M L; Schäfer, P

    2015-04-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk.

  2. Cystone, a well-known herbal formulation, inhibits struvite crystal growth formation in single diffusion gel growth technique

    Directory of Open Access Journals (Sweden)

    Pralhad S. Patki

    2013-02-01

    Full Text Available Objective: The present study was aimed to evaluate the beneficial effect of Cystone® against struvite crystal growth in in vitro conditions. Methods: Various concentrations of Cystone® was prepared in 1 M magnesium acetate solution and evaluated for crystal growth inhibition assay by a well-known method called single diffusion gel growth technique in vitro. Results: Cystone®, a well-known polyherbal formulation, at 0.5, 1 and 2% concentrations showed significant and dose-dependent inhibition of struvite crystal growth formation in in vitro by reducing number, total mass and total volume of the struvite crystals formed and also caused fragmentation of grown struvite crystals in the gel matrix. Conclusion: The results of the present study indicate, Cystone® significantly retards the formation of struvite stones and also brings about its fragmentation. This could be one of the probable mechanisms behind the beneficial effect offered by Cystone® in the clinical management of urolithiasis and urinary tract infections. [J Exp Integr Med 2013; 3(1: 51-55

  3. Cellular Adhesion Tripeptide RGD Inhibits Growth of Human Ileocecal Adenocarcinoma Cells HCT-8 and Induces Apoptosis

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; ZENG Hong-bin; YANG Shao-juan; GAO Shen; HUANG Yi-bing; HOU Rui-zhen; ZHAO Mi-feng; XU Li; ZHANG Xue-zhong

    2007-01-01

    The tripeptide, Arg-Gly-Asp(RGD) motif is an integrin-recognition site found in adhesive proteins present in extracellular matrices(ECM) and in the blood. HCT-8 cells were treated with cellular adhesion tripeptide RGD at various concentrations. MTT assay was performed to examine the growth and proliferation of HCT-8 cells after treatment with RGD for 48 h. Haematoxylin and Eosin(HE) staining and electromicroscope were used to observe the morphology of apoptotic cells. Survivin and flow cytometry were also used to analyze the HCT-8 apoptosis. Cellular adhesion tripeptide RGD significantly inhibits the growth and proliferation of HCT-8 cells in a dose-dependent manner and induces apoptosis of HCT-8. These results indicate that cellular adhesion tripeptide RGD inhibits the growth and proliferation of tumor HCT-8 cell, probably by the aid of inducing apoptosis of HCT-8 cell.

  4. Cystine growth inhibition through molecular mimicry: a new paradigm for the prevention of crystal diseases.

    Science.gov (United States)

    Lee, Michael H; Sahota, Amrik; Ward, Michael D; Goldfarb, David S

    2015-05-01

    Cystinuria is a genetic disease marked by recurrent kidney stone formation, usually at a young age. It frequently leads to chronic kidney disease. Treatment options for cystinuria have been limited despite comprehensive understanding of its genetic pathophysiology. Currently available therapies suffer from either poor clinical adherence to the regimen or potentially serious adverse effects. Recently, we employed atomic force miscopy (AFM) to identify L-cystine dimethylester (CDME) as an effective molecular imposter of L-cystine, capable of inhibiting crystal growth in vitro. More recently, we demonstrated CDME's efficacy in inhibiting L-cystine crystal growth in vivo utilizing a murine model of cystinuria. The application of AFM to discover inhibitors of crystal growth through structural mimicry suggests a novel approach to preventing and treating crystal diseases.

  5. Growth inhibition of thermotolerant yeast, Kluyveromyces marxianus, in hydrolysates from cassava pulp.

    Science.gov (United States)

    Rugthaworn, Prapassorn; Murata, Yoshinori; Machida, Masashi; Apiwatanapiwat, Waraporn; Hirooka, Akiko; Thanapase, Warunee; Dangjarean, Hatairat; Ushiwaka, Satoru; Morimitsu, Kozo; Kosugi, Akihiko; Arai, Takamitsu; Vaithanomsat, Pilanee

    2014-07-01

    In this study, we report the inhibition of Kluyveromyces marxianus TISTR5925 growth and ethanol fermentation in the presence of furan derivatives and weak acids (acetic acid and lactic acid) at high temperatures. Cassava pulp, obtained as the waste from starch processing, was collected from 14 starch factories located in several provinces of Thailand. At a high temperature (42 °C), the cassava pulp hydrolysate from some starch factories strongly inhibited growth and ethanol production of both K. marxianus (strain TISTR5925) and Saccharomyces cerevisiae (strain K3). HPLC detected high levels of lactic acid and acetic acid in the hydrolysates, suggesting that these weak acids impaired the growth of K. marxianus at high temperature. We isolated Trp-requiring mutants that had reduced tolerance to acetic acid compared to the wild-type. This sensitivity to acetic acid was suppressed by supplementation of the medium with tryptophan.

  6. Novel Antifungal Peptides Produced by Leuconostoc mesenteroides DU15 Effectively Inhibit Growth of Aspergillus niger.

    Science.gov (United States)

    Muhialdin, Belal J; Hassan, Zaiton; Abu Bakar, Fatimah; Algboory, Hussein L; Saari, Nazamid

    2015-05-01

    The ability of Leuconostoc mesenteroides DU15 to produce antifungal peptides that inhibit growth of Aspergillus niger was evaluated under optimum growth conditions of 30 °C for 48 h. The cell-free supernatant showed inhibitory activity against A. niger. Five novel peptides were isolated with the sequences GPFPL, YVPLF, LLHGVPLP, GPFPLEMTLGPT, and TVYPFPGPL as identified by de novo sequencing using PEAKS 6 software. Peptide LLHGVPLP was the only positively charged (cationic peptides) and peptide GPFPLEMTLGPT negatively charged (anionic), whereas the rest are neutral. The identified peptides had high hydrophobicity ratio and low molecular weights with amino acids sequences ranging from 5 to 12 residues. The mode of action of these peptides is observed under the scanning electron microscope and is due to cell lysis of fungi. This work reveals the potential of peptides from L. mesenteroides DU15 as natural antifungal preservatives in inhibiting the growth of A. niger that is implicated to the spoilage during storage.

  7. Methoxychlor inhibits growth of antral follicles by altering cell cycle regulators.

    Science.gov (United States)

    Gupta, Rupesh K; Meachum, Sharon; Hernández-Ochoa, Isabel; Peretz, Jackye; Yao, Humphrey H; Flaws, Jodi A

    2009-10-01

    Methoxychlor (MXC) reduces fertility in female rodents, decreases antral follicle numbers, and increases atresia through oxidative stress pathways. MXC also inhibits antral follicle growth in vitro. The mechanism by which MXC inhibits growth of follicles is unknown. The growth of follicles is controlled, in part, by cell cycle regulators. Thus, we tested the hypothesis that MXC inhibits follicle growth by reducing the levels of selected cell cycle regulators. Further, we tested whether co-treatment with an antioxidant, N-acetyl cysteine (NAC), prevents the MXC-induced reduction in cell cycle regulators. For in vivo studies, adult cycling CD-1 mice were dosed with MXC or vehicle for 20 days. Treated ovaries were subjected to immunohistochemistry for proliferating cell nuclear antigen (PCNA) staining. For in vitro studies, antral follicles isolated from adult cycling CD-1 mouse ovaries were cultured with vehicle, MXC, and/or NAC for 48, 72 and 96 h. Levels of cyclin D2 (Ccnd2) and cyclin dependent kinase 4 (Cdk4) were measured using in vivo and in vitro samples. The results indicate that MXC decreased PCNA staining, and Ccnd2 and Cdk4 levels compared to controls. NAC co-treatment restored follicle growth and expression of Ccnd2 and Cdk4. Collectively, these data indicate that MXC exposure reduces the levels of Ccnd2 and Cdk4 in follicles, and that protection from oxidative stress restores Ccnd2 and Cdk4 levels. Therefore, MXC-induced oxidative stress may decrease the levels of cell cycle regulators, which in turn, results in inhibition of the growth of antral follicles.

  8. Angiostatin inhibits pancreatic cancer cell proliferation and growth in nude mice

    Institute of Scientific and Technical Information of China (English)

    Ding-Zhong Yang; Jing He; Ji-Cheng Zhang; Zhuo-Ren Wang

    2005-01-01

    AIM: To observe the biologic behavior of pancreatic cancer cells in vitro and in vivo, and to explore the potential value of angiostatin gene therapy for pancreatic cancer.METHODS: The recombinant vector pcDNA3.1(+)-angiostatin was transfected into human pancreatic cancer cells PC-3 with Lipofectamine 2000, and paralleled with the vector and mock control. Angiostatin transcription and protein expression were determined by immunofluorescence and Western blot. The stable cell line was selected by G418. The supernatant was collected to treat endothelial cells. Cell proliferation and growth in vitro were observed under microscope. Cell growth curves were plotted.The troms-fected or untroms-fected cells overexpressing angiostatin vector were implanted subcutaneously into nude mice. The size of tumors was measured, and microvessel density count (MVD) in tumor tissues was assessed by immunohistochemistry with primary anti-CD34antibody.RESULTS: After transfected into PC-3 with Lipofectamine 2000 and selected by G418, macroscopic resistant cell clones were formed in the experimental group transfected with pcDNA 3.1(+)-angiostatin and vector control. But untreated cells died in the mock control. Angiostatin protein expression was detected in the experimental group by immunofluorescence and Western-blot. Cell proliferation and growth in vitro in the three groups were observed respectively under microscope. After treatment with supernatant, significant differences were observed in endothelial cell (ECV-304) growth in vitro. The cell proliferation and growth were inhibited. In nude mice model, markedly inhibited tumorigenesis and slowed tumor expansion were observed in the experimental group as compared to controls, which was parallel to the decreased microvessel density in and around tumor tissue.CONCLUSION: Angiostatin does not directly inhibit human pancreatic cancer cell proliferation and growth in vitro,but it inhibits endothelial cell growthin vitro. It exerts the anti

  9. Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays

    Directory of Open Access Journals (Sweden)

    Crabb Brendan S

    2010-06-01

    Full Text Available Abstract Background Plasmodium falciparum in vitro growth inhibition assays are widely used to evaluate and quantify the functional activity of acquired and vaccine-induced antibodies and the anti-malarial activity of known drugs and novel compounds. However, several constraints have limited the use of these assays in large-scale population studies, vaccine trials and compound screening for drug discovery and development. Methods The D10 P. falciparum line was transfected to express green fluorescent protein (GFP. In vitro growth inhibition assays were performed over one or two cycles of P. falciparum asexual replication using inhibitory polyclonal antibodies raised in rabbits, an inhibitory monoclonal antibody, human serum samples, and anti-malarials. Parasitaemia was evaluated by microscopy and flow cytometry. Results Transfected parasites expressed GFP throughout all asexual stages and were clearly detectable by flow cytometry and fluorescence microscopy. Measurement of parasite growth inhibition was the same when determined by detection of GFP fluorescence or staining with ethidium bromide. There was no difference in the inhibitory activity of samples when tested against the transfected parasites compared to the parental line. The level of fluorescence of GFP-expressing parasites increased throughout the course of asexual development. Among ring-stages, GFP-fluorescent parasites were readily separated from uninfected erythrocytes by flow cytometry, whereas this was less clear using ethidium bromide staining. Inhibition by serum and antibody samples was consistently higher when tested over two cycles of growth compared to one, and when using a 1 in 10 sample dilution compared to 1 in 20, but there was no difference detected when using a different starting parasitaemia to set-up growth assays. Flow cytometry based measurements of parasitaemia proved more reproducible than microscopy counts. Conclusions Flow cytometry based assays using GFP

  10. Role of bicarbonate/CO2 in the inhibition of Escherichia coli growth by cyanate.

    Science.gov (United States)

    Kozliak, E I; Fuchs, J A; Guilloton, M B; Anderson, P M

    1995-06-01

    Cyanase is an inducible enzyme in Escherichia coli that catalyzes the reaction of cyanate with bicarbonate to give two CO2 molecules. The gene for cyanase is part of the cyn operon, which includes cynT and cynS, encoding carbonic anhydrase and cyanase, respectively. Carbonic anhydrase functions to prevent depletion of cellular bicarbonate during cyanate decomposition (the product CO2 can diffuse out of the cell faster than noncatalyzed hydration back to bicarbonate). Addition of cyanate to the culture medium of a delta cynT mutant strain of E. coli (having a nonfunctional carbonic anhydrase) results in depletion of cellular bicarbonate, which leads to inhibition of growth and an inability to catalyze cyanate degradation. These effects can be overcome by aeration with a higher partial CO2 pressure (M. B. Guilloton, A. F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P. M. Anderson, and J. A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). The question considered here is why depletion of bicarbonate/CO2 due to the action of cyanase on cyanate in a delta cynT strain has such an inhibitory effect. Growth of wild-type E. coli in minimal medium under conditions of limited CO2 was severely inhibited, and this inhibition could be overcome by adding certain Krebs cycle intermediates, indicating that one consequence of limiting CO2 is inhibition of carboxylation reactions. However, supplementation of the growth medium with metabolites whose syntheses are known to depend on a carboxylation reaction was not effective in overcoming inhibition related to the bicarbonate deficiency induced in the delta cynT strain by addition of cyanate. Similar results were obtained with a deltacyn strain (since cyanase is absent, this strain does not develop a bicarbonate deficiency when cyanate is added); however, as with the deltacynT strain, a higher partial CO(2) pressure in the aerating gas or expression of carbonic anhydrase activity (which contributes to a higher intercellular

  11. Dibenzocyclooctadiene lignans from Schisandra spp. selectively inhibit the growth of the intracellular bacteria Chlamydia pneumoniae and Chlamydia trachomatis.

    Science.gov (United States)

    Hakala, Elina; Hanski, Leena; Uvell, Hanna; Yrjönen, Teijo; Vuorela, Heikki; Elofsson, Mikael; Vuorela, Pia Maarit

    2015-10-01

    Lignans from Schisandra chinensis berries show various pharmacological activities, of which their antioxidative and cytoprotective properties are among the most studied ones. Here, the first report on antibacterial properties of six dibenzocyclooctadiene lignans found in Schisandra spp. is presented. The activity was shown on two related intracellular Gram-negative bacteria Chlamydia pneumoniae and Chlamydia trachomatis upon their infection in human epithelial cells. All six lignans inhibited C. pneumoniae inclusion formation and infectious progeny production. Schisandrin B inhibited C. pneumoniae inclusion formation even when administered 8 h post infection, indicating a target that occurs relatively late within the infection cycle. Upon infection, lignan-pretreated C. pneumoniae elementary bodies had impaired inclusion formation capacity. The presence and substitution pattern of methylenedioxy, methoxy and hydroxyl groups of the lignans had a profound impact on the antichlamydial activity. In addition our data suggest that the antichlamydial activity is not caused only by the antioxidative properties of the lignans. None of the compounds showed inhibition on seven other bacteria, suggesting a degree of selectivity of the antibacterial effect. Taken together, the data presented support a role of the studied lignans as interesting antichlamydial lead compounds.

  12. Liposome-Encapsulated Prednisolone Phosphate Inhibits Growth of Established Tumors in Mice

    Directory of Open Access Journals (Sweden)

    Raymond M. Schiffelers

    2005-02-01

    Full Text Available Glucocorticoids can inhibit solid tumor growth possibly due to an inhibitory effect on angiogenesis. The antitumor effects of the free drugs have only been observed using treatment schedules based on high and frequent dosing for prolonged periods of time. As long-circulating liposomes accumulate at sites of malignancy, we investigated the tumor-inhibiting potential of liposome-encapsulated prednisolone phosphate. Liposomal prednisolone phosphate could inhibit tumor growth dose-dependently, with 80% to 90% tumor growth inhibition of subcutaneous B16.F10 melanoma and C26 colon carcinoma murine tumor models at 20 mg/kg by single or weekly doses. Prednisolone phosphate in the free form was completely ineffective at this low-frequency treatment schedule, even when administered at a dose of 50 mg/kg. In vitro studies did not show an inhibitory effect of prednisolone (phosphate on tumor cell, nor on endothelial cell proliferation. Histologic evaluation revealed that liposomal prednisolone phosphate-treated tumors contained a center with areas of picnotic/necrotic cells, which were not apparent in untreated tumors or tumors treated with the free drug. In conclusion, the present study shows potent antitumor effects of liposomal formulations of glucocorticoids in a low dose and lowfrequency schedule, offering promise for liposomal glucocorticoids as novel antitumor agents.

  13. SOX7 is involved in aspirin-mediated growth inhibition of human colorectal cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Shu-Yan Huang; Jing-Xin Feng; Yan-Yan Gao; Li Zhao; Jun Lu; Bai-Qu Huang; Yu Zhang

    2011-01-01

    AIM: To confirm the role of sex-determining region Y-box 7 (Sox7) in aspirin-mediated growth inhibition of COX-independent human colorectal cancer cells.METHODS: The cell survival percentage was examined by MTT (Moto-nuclear cell direc cytotoxicity) assay.SOX7 expression was assessed by using reverse transcription-polymerase chain reaction and Western blotting. SB203580 was used to inhibit the p38MAPK signal pathway. SOX7 promoter activity was detected by Luciferase reporter assay.RESULTS: SOX7 was upregulated by aspirin and was involved in aspirin-mediated growth inhibition of SW480 human colorectal cancer cells. The p38MAPK pathway played a role in aspirin-induced SOX7 expression, during which the AP1 transcription factors c-Jun and c-Fos upregulated SOX7 promoter activities.RESULTS: SOX7 is upregulated by aspirin and is involved in aspirin-mediated growth inhibition of human colorectal cancer SW480 cells.

  14. Co-aggregation and growth inhibition of probiotic lactobacilli and clinical isolates of mutans streptococci: An in vitro study

    DEFF Research Database (Denmark)

    Keller, Mette Kirstine; Hassl F, Pamela; Stecks N-Blicks, Christina

    2011-01-01

    Abstract Objective. Co-aggregation and growth inhibition abilities of probiotic bacteria may play a key role in their interference with the oral biofilm. The aim was to investigate the in vitro ability of selected commercial probiotic lactobacilli to co-aggregate and inhibit growth of oral mutans...

  15. The Involvement of Gibberellins in 1,8-Cineole-Mediated Inhibition of Sprout Growth in Russet Burbank Tubers

    Science.gov (United States)

    The involvement of gibberellins in 1,8-cineole-mediated inhibition of tuber sprout growth was investigated in non-dormant field- and greenhouse-grown tubers of Russet Burbank. Continuous exposure of tubers to cineole in the vapor-phase resulted in a dose-dependent inhibition of sprout growth. Comp...

  16. All-trans-retinoic acid inhibits tumour growth of malignant pleural mesothelioma in mice.

    Science.gov (United States)

    Tabata, C; Tabata, R; Hirayama, N; Yasumitsu, A; Yamada, S; Murakami, A; Iida, S; Tamura, K; Terada, T; Kuribayashi, K; Fukuoka, K; Nakano, T

    2009-11-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignant tumour of mesothelial origin associated with asbestos exposure. Because MPM has limited response to conventional chemotherapy and radiotherapy, the prognosis is very poor. Several researchers have reported that cytokines such as interleukin (IL)-6 play an important role in the growth of MPM. Previously, it was reported that all-trans-retinoic acid (ATRA) inhibited the production and function of IL-6 and transforming growth factor (TGF)-beta1 in experiments using lung fibroblasts. We investigated whether ATRA had an inhibitory effect on the cell growth of MPM, the origin of which was mesenchymal cells similar to lung fibroblasts, using a subcutaneous xenograft mouse model. We estimated the tumour growth and performed quantitative measurements of IL-6, TGF-beta1 and platelet-derived growth factor (PDGF) receptor (PDGFR)-beta mRNA levels both of cultured MPM cells and cells grown in mice with or without the administration of ATRA. ATRA significantly inhibited MPM tumour growth. In vitro studies disclosed that the administration of ATRA reduced 1) mRNA levels of TGF-beta1, TGF-beta1 receptors and PDGFR-beta, and 2) TGF-beta1-dependent proliferation and PDGF-BB-dependent migration of MPM cells. These data may provide a rationale to explore the clinical use of ATRA for the treatment of MPM.

  17. Simultaneous Assessment of Acidogenesis-Mitigation and Specific Bacterial Growth-Inhibition by Dentifrices.

    Directory of Open Access Journals (Sweden)

    Sarah Forbes

    Full Text Available Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD; sodium fluoride (FD; stannous fluoride and zinc lactate (SFD1; or stannous fluoride, zinc lactate and stannous chloride (SFD2. Minimum inhibitory concentrations (MIC were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC, a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices.

  18. Disulfiram Is a DNA Demethylating Agent and Inhibits Prostate Cancer Cell Growth

    Science.gov (United States)

    Lin, Jianqing; Haffner, Michael C.; Zhang, Yonggang; Lee, Byron H.; Brennen, W. Nathaniel; Britton, Justin; Kachhap, Sushant K.; Shim, Joong Sup; Liu, Jun O.; Nelson, William G.; Yegnasubramanian, Srinivasan; Carducci, Michael A.

    2011-01-01

    BACKGROUND The clinical success of the nucleoside analogs 5-aza-cytidine (5-azaC) and 5-aza-2′deoxycytidine (5-aza-dC) as DNA methyltransferase (DNMT) inhibitors has spurred interest in the development of non-nucleoside inhibitors with improved pharmacologic and safety profiles. Because DNMT catalysis features attack of cytosine bases by an enzyme thiol group, we tested whether disulfiram (DSF), a thiol-reactive compound with known clinical safety, demonstrated DNMT inhibitory activity. METHODS Inhibition of DNMT1 activity by DSF was assessed using methyltransferase activity assays with recombinant DNMT1. Next, prostate cancer cell lines were exposed to DSF and assessed for: i) reduction of global 5-methyl cytosine (5meC) content using liquid chromatography/tandem mass spectrometry (LC-MS/MS); ii) gene-specific promoter demethylation by methylation-specific PCR (MSP); and iii) gene-reactivation by real-time RT-PCR. DSF was also tested for growth inhibition using prostate cancer cell lines propagated in vitro in cell culture and in vivo as xenografts in nude mice. RESULTS Disulfiram showed a dose-dependent inhibition of DNMT1 activity on a hemimethylated DNA substrate. In prostate cancer cells in culture, DSF exposure led to reduction of global genomic 5meC content, increase in unmethylated APC and RARB gene promoters, and associated re-expression of these genes, but did not significantly alter prostate-specific antigen (PSA) expression. DSF significantly inhibited growth and clonogenic survival of prostate cancer cell lines in culture and showed a trend for reduced growth of prostate cancer xenografts. CONCLUSIONS Disulfiram is a non-nucleoside DNMT1 inhibitor that can reduce global 5meC content, reactivate epigenetically silenced genes, and significantly inhibit growth in prostate cancer cell lines. PMID:20809552

  19. Mechanism of Growth Inhibition of Prostate Cancer Xenografts by Valproic Acid

    Directory of Open Access Journals (Sweden)

    Abhinav Sidana

    2012-01-01

    Full Text Available Valproic Acid (VPA, a histone deacetylase inhibitor, has been demonstrated to cause a marked decrease in proliferation of prostate cancer (PCa cells in vitro and a significant reduction in tumor volume in vivo. The goal of this study is to better understand the VPA-induced growth inhibition in vivo, by studying expression of various markers in PCa xenografts. Methods. For in vitro experiments, PCa cells were treated with 0, 0.6, and 1.2 mM VPA for 14 days. For in vivo models, experimental animals received 0.4% VPA in drinking water for 35 days. Tissue microarray was generated using cell pellets and excised xenografts. Results. VPA treatment causes cell cycle arrest in PCa cells in vivo, as determined by increase in p21 and p27 and decrease in cyclin D1 expression. Increased expression of cytokeratin18 was also seen in xenografts. LNCaP xenografts in treated animals had reduced androgen receptor (AR expression. While decreased proliferation was found in vitro, increase in apoptosis was found to be the reason for decreased tumor growth in vivo. Also, an anti-angiogenic effect was observed after VPA treatment. Conclusion. VPA inhibits tumor growth by multiple mechanisms including cell cycle arrest, induction of differentiation, and inhibition of growth of tumor vasculature.

  20. Human primary brain tumor cell growth inhibition in serum-free medium optimized for neuron survival.

    Science.gov (United States)

    Brewer, Gregory J; LeRoux, Peter D

    2007-07-09

    Glioblastoma is the most common primary brain tumor in adults from which about 15,000 patients die each year in the United States. Despite aggressive surgery, radiotherapy and chemotherapy, median survival remains only 1 year. Here we evaluate growth of primary human brain tumor cells in a defined nutrient culture medium (Neuregen) that was optimized for neuron regeneration. We hypothesized that Neuregen would inhibit tumor cell growth because of its ability to inhibit gliosis in rat brain. Tumor tissue was collected from 18 patients including 10 males and 8 females (mean age 60+/-12 years) who underwent craniotomy for newly diagnosed, histologically confirmed brain tumors. The tissue was shipped overnight in Hibernate transport medium. Tumor cells were isolated and plated in Neurobasal/serum or Neuregen on culture plastic. After 1 week, growth in Neuregen was significantly less in 9/10 glioblastoma multiforme cases, 5/5 meningioma cases and 3/3 cases of brain metastasis. Analysis of deficient formulations of Neuregen and formulations to which selected components were added back implicate no single active component. However, individual cases were sensitive to corticosterone, selenium, ethanolamine, fatty acids and/or antioxidants. Therefore, a defined culture medium that promotes neuron regeneration inhibits the growth of human primary glioblastoma, meningioma and metastatic tumor cells in culture. The possible in vivo efficacy of Neuregen for treatment of brain tumor resections remains to be determined.

  1. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, T.; Pfeifer, U. (Univ. of Wuerzburg (West Germany))

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  2. Growth Inhibition and Apoptosis Inducing Mechanisms of Curcumin on Human Ovarian Cancer Cell Line A2780

    Institute of Scientific and Technical Information of China (English)

    ZHENG Li-duan; TONG Qiang-song; WU Cui-huan

    2006-01-01

    Objective: To explore the growth inhibition effects and apoptosis inducing mechanisms of curcumin on human ovarian cancer cell line A2780. Methods: After treatment with 10-50 μmol/L curcumin for 6-24 h, the growth activity of A2780 cancer cells were studied by [ 4, 5-dimethylthiazol-2-yl]-2, 5-diphenyItetrazolium bromide (MTT) colorimetry. Cellular apoptosis was inspected by flow cytometery and acridine orange-ethidium bromide fluorescent staining methods. The fragmentation of cellular chromosome DNA was detected by DNA ladder, the ultrastructural change was observed under a transmission electron microscope,and the protein levels of nuclear factor-kappa B (NF-κB, P65) and cysteinyl aspartate specific protease-3 (Caspase-3) in ovarian cancer cells were measured by immunohistochemistry. Results: After treatment with various concentrations of curcumin, the growth inhibition rates of cancer cells reached 62.05%- 89.24%,with sub-G1 peaks appearing on histogram. Part of the cancer cells showed characteristic morphological changes of apoptosis under fluorescence and electron microscopes, and the rate of apoptosis was 21.5 % -33.5%. The protein expression of NF-κB was decreased, while that of Caspase-3 was increased in a timedependent manner. Conclusion: Curcumin could significantly inhibit the growth of human ovarian cancer cells;inducing apoptosis through up-regulating Caspase-3 and down-regulating gene expression of NF-κB is probably one of its molecular mechanisms.

  3. Inhibition of angiogenesis and HCT-116 xenograft tumor growth in mice by kallistatin

    Institute of Scientific and Technical Information of China (English)

    Yong Diao; Rui-An Xu; Jian Ma; Wei-Dong Xiao; Jia Luo; Xin-Yan Li; Kin-Wah Chu; Peter WC Fung; Nagy Habib; Farzin Farzaneh

    2007-01-01

    AIM: To investigate the inhibitory effect of kallistatin (KAL) on angiogenesis and HCT-116 xenograft tumor growth.METHODS: Heterotopic tumors were induced by subcutaneous injection of 2 × 106 HCT-11 cells in mice.Seven days later, 2 × 1011 rAAV-GFP or rAAV-KAL was injected intratumorally (n = 5 for each group). The mice were sacrificed at d 28, by which time the tumors in the rAAV-GFP group had grown to beyond 5% of the total body weight. Tumor growth was measured by calipers in two dimensions. Tumor angiogenesis was determined with tumor microvessel density (MVD) by immunohistology. Tumor cell proliferation was assessed by Ki-67 staining.RESULTS: Intratumor injection of rAAV-KAL inhibited tumor growth in the treatment group by 78% (171 ±52 mm3) at d 21 after virus infection compared to the control group (776 ± 241 mm3). Microvessel density was significantly inhibited in tumor tissues treated with rAAV-KAL. rAAV-KAL also decreased the proportion of proliferating cells (Ki-67 positive cells) in tumors compared with the control group.CONCLUSION: rAAV-mediated expression of KAL inhibits the growth of colon cancer by reducing angiogenesis and proliferation of tumor cells, and may provide a promising anti-angiogenesis-based approach to the treatment of metastatic colorectal cancer.

  4. Growth inhibition of Struvite crystals in the presence of juice of Citrus medica Linn.

    Science.gov (United States)

    Chauhan, C K; Joshi, M J

    2008-10-01

    Struvite, one of the components of urinary stone grows rapidly forming "staghorn-calculi", is a painful urological disorder. It is necessary to study the growth-inhibition of Struvite crystals. This in vitro study has been carried out in the presence of the juice of Citrus medica Linn. by using single diffusion gel growth technique. Sodium metasilicate solution of specific gravity 1.05 and an aqueous solution of ammonium dihydrogen phosphate of 0.5 M concentration were mixed so that the pH value 7.0 could be set. After the gelation, supernatant solutions comprising of pure 1.0 M Magnesium acetate (control solution) as well as mixed with the different concentrations of the juice were gently poured on the set gels. From the study of growth-inhibition behavior of Struvite crystals, it was found that Citrus medica Linn. inhibits the growth of the crystals. This study may be used for formulating the strategy for prevention or dissolution of Struvite.

  5. Growth inhibition of struvite crystals in the presence of herbal extract Commiphora wightii.

    Science.gov (United States)

    Chauhan, C K; Joshi, M J; Vaidya, A D B

    2009-12-01

    Struvite is one of the components of urinary stone. Large number of people is suffering from urinary stones (calculi) problem all over the globe. These stones can grow rapidly forming "staghorn-calculi", which is more painful urological disorder. Therefore, it is of prime importance to study the growth and inhibition of Struvite crystals. This in vitro study has been carried out in the presence of herbal extract of Commiphora wightii by using single diffusion gel growth technique. Sodium metasilicate solution of specific gravity 1.05 and an aqueous solution of ammonium dihydrogen phosphate of 0.5 M concentration were mixed so that the pH value 7.0 could be set. After the gelation, equal amount of supernatant solutions comprising of pure 1.0 M magnesium acetate as well as the mixtures of magnesium acetate and the herbal extract solutions of 0.5 and 1% concentrations of C. wightii were gently poured on the set gels. From the study of growth and inhibition behavior of Struvite crystals, it was found that C. wightii inhibits the growth of the Struvite. This study incorporates multidisciplinary interests and may be used for formulating the strategy for prevention or dissolution of urinary stones.

  6. Piperine inhibits the growth and motility of triple-negative breast cancer cells.

    Science.gov (United States)

    Greenshields, Anna L; Doucette, Carolyn D; Sutton, Kimberly M; Madera, Laurence; Annan, Henry; Yaffe, Paul B; Knickle, Allison F; Dong, Zhongmin; Hoskin, David W

    2015-02-01

    Piperine, an alkaloid from black pepper, is reported to have anticancer activities. In this study, we investigated the effect of piperine on the growth and motility of triple-negative breast cancer (TNBC) cells. Piperine inhibited the in vitro growth of TNBC cells, as well as hormone-dependent breast cancer cells, without affecting normal mammary epithelial cell growth. Exposure to piperine decreased the percentage of TNBC cells in the G2 phase of the cell cycle. In addition, G1- and G2-associated protein expression was decreased and p21(Waf1/Cip1) expression was increased in piperine-treated TNBC cells. Piperine also inhibited survival-promoting Akt activation in TNBC cells and caused caspase-dependent apoptosis via the mitochondrial pathway. Interestingly, combined treatment with piperine and γ radiation was more cytotoxic for TNBC cells than γ radiation alone. The in vitro migration of piperine-treated TNBC cells was impaired and expression of matrix metalloproteinase-2 and -9 mRNA was decreased, suggesting an antimetastatic effect by piperine. Finally, intratumoral administration of piperine inhibited the growth of TNBC xenografts in immune-deficient mice. Taken together, these findings suggest that piperine may be useful in the treatment of TNBC.

  7. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David;

    2008-01-01

    pathways, is associated with poor prognosis in many types of cancer. Therefore, down-regulation of HIF-1alpha protein by RNA antagonists may control cancer growth. EZN-2968 is a RNA antagonist composed of third-generation oligonucleotide, locked nucleic acid, technology that specifically binds and inhibits...... the expression of HIF-1alpha mRNA. In vitro, in human prostate (15PC3, PC3, and DU145) and glioblastoma (U373) cells, EZN-2968 induced a potent, selective, and durable antagonism of HIF-1 mRNA and protein expression (IC(50), 1-5 nmol/L) under normoxic and hypoxic conditions associated with inhibition of tumor...

  8. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yihui [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Tang, Qingchao [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China); Li, Mingqi; Jiang, Shixiong [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Wang, Xishan, E-mail: wxshan12081@163.com [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China)

    2014-02-07

    Highlights: • miR-375 is downregulated in colorectal cancer cell lines and tissues. • miR-375 inhibits colorectal cancer cell growth by targeting PIK3CA. • miR-375 inhibits colorectal cancer cell growth in xenograft nude mice model. - Abstract: Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normal human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway.

  9. Growth inhibition and apoptosis induction of Sulindac on Human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yun-Lin Wu; Bo Sun; Xue-Jun Zhang; Sheng-Nian Wang; Heng-Yi He; Min-Min Qiao; Jie Zhong; Jia-Yu Xu

    2001-01-01

    AIM: To evaluate the effects of sulindac in inducing growth inhibition and apoptosis of human gastric cancer cells in comparison with human hepatocellular carcinoma (HCC)cells. METHODS: The human gastric cancer cell lines MKN45 and MKN28 and human hepatocellular carcinoma cell lines HepG2and SMMC7721 were used for the study. Anti-proliferative effect was measured by MTT assay, and apoptosis was determined by Hoechst-33258 staining, electronography and DNA fragmentation. The protein of cyclooxygenase-2 (COX(2) and Bcl-2 were detected by Westem dot blotting. RESULTS: Sulindac could initiate growth inhibition and apoptosis of MKN45, MKN28, HepG2 and SMMC7721 cells in a dose-and time-dependent manner. Growth inhibitory activity and apoptosis were more sensitive in HepG2 cells than in SMMC7721 cells, MKN45 and MKN28 cells. After 24hours incubation with sulindac at 2mmol. L-1 and 4mmol.L-1, the level of COX-2 and Bcl-2 protein were lowered in MKN45, SMMC7721 and HepG2 cells but not in MKN28 cells. CONCLUSION: Sulindac could inhibit the growth of gastric cancer cells and HCC cells effectively in vitro by apoptosis induction, which was associated with regression of COX-2and Bcl-2 expression. The growth inhibition and apoptosis of HCC cells were greater then that of human gastric cancer cells. The different effects of apoptosis in gastric cancer cells may be related to the differentiation of the cells.

  10. miR-134 inhibits non-small cell lung cancer growth by targeting the epidermal growth factor receptor.

    Science.gov (United States)

    Qin, Qin; Wei, Furong; Zhang, Jianbo; Wang, Xingwu; Li, Baosheng

    2016-10-01

    The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti-EGFR therapies. However, more EGFR-targeting miRNAs need to be explored. In this study, we identified a novel EGFR-targeting miRNA, miRNA-134 (miR-134), in non-small-cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR-134. In addition, the overexpression of miR-134 inhibited EGFR-related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR-134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down-regulation of EGFR by miR-134 partially contributes to the antiproliferative role of miR-134. Last, in vivo experiments demonstrated that miR-134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR-134 inhibits non-small cell lung cancer growth by targeting the EGFR.

  11. MiR-34a inhibits colon cancer proliferation and metastasis by inhibiting platelet-derived growth factor receptor α.

    Science.gov (United States)

    Li, Chunyan; Wang, Yulin; Lu, Shuming; Zhang, Zhuqing; Meng, Hua; Liang, Lina; Zhang, Yan; Song, Bo

    2015-11-01

    The microRNA (miRNA), miR‑34a is significant in colon cancer progression. In the present study, the role of miR‑34a in colon cancer cell proliferation and metastasis was investigated. It was found that the expression of miR‑34a in colon cancer tissues and cell lines was lower when compared with that of normal tissues and cells. Further research demonstrated that miR‑34a inhibited cell proliferation, induced G1 phase arrest, and suppressed metastasis and epithelial mesenchymal transition in colon cancer cells. Bioinformatic prediction indicated that platelet‑derived growth factor receptor α (PDGFRA) was a potential target gene of miR‑34a and a luciferase assay identified that PDGFRA was a novel direct target gene of miR‑34a. In addition, assays of western blot analyses and quantitative reverse‑transcription polymerase chain reaction confirmed that miR‑34a decreased PDGFRA mRNA expression and protein levels in colon cancer cells. Assessment of cellular function indicated that miR‑34a inhibited colon cancer progression via PDGFRA. These findings demonstrate that miR‑34a may act as a negative regulator in colon cancer by targeting PDGFRA.

  12. Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition

    Science.gov (United States)

    Subramani, Ramadevi; Gonzalez, Elizabeth; Arumugam, Arunkumar; Nandy, Sushmita; Gonzalez, Viviana; Medel, Joshua; Camacho, Fernando; Ortega, Andrew; Bonkoungou, Sandrine; Narayan, Mahesh; Dwivedi, Alok kumar; Lakshmanaswamy, Rajkumar

    2016-01-01

    The mortality and morbidity rates of pancreatic cancer are high because of its extremely invasive and metastatic nature. Its lack of symptoms, late diagnosis and chemo–resistance and the ineffective treatment modalities warrant the development of new chemo–therapeutic agents for pancreatic cancer. Agents from medicinal plants have demonstrated therapeutic benefits in various human cancers. Nimbolide, an active molecule isolated from Azadirachta indica, has been reported to exhibit several medicinal properties. This study assessed the anticancer properties of nimbolide against pancreatic cancer. Our data reveal that nimbolide induces excessive generation of reactive oxygen species (ROS), thereby regulating both apoptosis and autophagy in pancreatic cancer cells. Experiments with the autophagy inhibitors 3-methyladenine and chloroquine diphosphate salt and the apoptosis inhibitor z-VAD-fmk demonstrated that nimbolide-mediated ROS generation inhibited proliferation (through reduced PI3K/AKT/mTOR and ERK signaling) and metastasis (through decreased EMT, invasion, migration and colony forming abilities) via mitochondrial-mediated apoptotic cell death but not via autophagy. In vivo experiments also demonstrated that nimbolide was effective in inhibiting pancreatic cancer growth and metastasis. Overall, our data suggest that nimbolide can serve as a potential chemo–therapeutic agent for pancreatic cancer. PMID:26804739

  13. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    JIA Xiao-qin; CHENG Hai-qing; LI Hong; ZHU Yan; LI Yu-hua; FENG Zhen-qing; ZHANG Jian-ping

    2011-01-01

    Background We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer.Here,we examined expression of CTGFin human hepatocellular carcinoma (HCC) cells and its effect on cell growth.Methods Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2,SMMC-7721,MHCC-97H and LO2.siRNA for the CTGFgene was designed,synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF.CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting.3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect,and a colony formation assay was used for observing clonogenic growth.In vivo,tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation.Statistical significance was determined by t test for comparison between two groups,or analysis of variance (ANOVA) for multiple groups.Results Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%).CTGF was overexpressed 5-fold in 20 HCC tissues,compared with surrounding non-tumor liver tissue.CTGF mRNA level was 5-8-fold higher in HepG2,SMMC-7721 and MHCC-97H than in LO2 cells.This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P <0.05).Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P <0.05).The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P <0.05).Conclusions CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo.Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  14. Phospho-sulindac inhibits pancreatic cancer growth: NFATc1 as a drug resistance candidate.

    Science.gov (United States)

    Murray, Onika T; Wong, Chi C; Vrankova, Kvetoslava; Rigas, Basil

    2014-02-01

    Phospho-sulindac (P-S), a promising anticancer agent, is efficacious in pre-clinical models of human cancer and is apparently safe. Here, we studied the effect of P-S on pancreatic cancer growth. We found that P-S strongly inhibits the growth of human pancreatic cancer cells in vitro, is efficacious in inhibiting the growth of pancreatic xenografts in nude mice, and has an excellent safety profile. Microarray analysis revealed that P-S induced the expression of nuclear factor of activated T-cells, isoform c1 (NFATc1) gene. NFATc1, a calcineurin-responsive transcription factor associated with aggressive pancreatic cancer. The role of increased NFATc1 expression on the growth inhibitory effect of P-S on cancer growth was evaluated by silencing or by overexpressing it both in vitro and in vivo. We found that when the expression of NFATc1 was abrogated by RNAi, pancreatic cancer cells were more responsive to treatment with P-S. Conversely, overexpressing the NFATc1 gene made the pancreatic cancer cells less responsive to treatment with P-S. NFATc1 likely mediates drug resistance to P-S and is an unfavorable prognostic factor that predicts poor tumor response. We also demonstrated that NFATc1-mediated resistance can be overcome by cyclosporin A (CsA), an NFAT inhibitor, and that the combination of P-S and CsA synergistically inhibited pancreatic cancer cell growth. In conclusion, our preclinical data establish P-S as an efficacious drug for pancreatic cancer in preclinical models, which merits further evaluation.

  15. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  16. Inhibition of growth and sporulation of Penicillium expansum by extracts of selected Basidiomycetes

    Directory of Open Access Journals (Sweden)

    Teresa Florianowicz

    2014-01-01

    Full Text Available A screening of antifungal activity of 33 Basidiomycetes strains was realized with their extracts. The influence of aqueous extracts of fruit-bodies of the testeded fungi after addition of spores or hyphae of Penicillium expansum on growth and sporulation of the fitopathogen in vitro was estimated. The species: Hydnum repandum L.: Fr., Pleurotus ostreatus (Jacq.: Fr. Kummer, Coprinus comatus (Műll Fr. S.F. Gray, Coprinus atramentarius (Bull: Fr. Fr. and Lactarius turpis (Weinm. Fr. reduced the mycelial growth and inhibited sporulation of this pathogen.

  17. In vitro screening assay for teratogens using growth inhibition of human embryonic cells.

    Science.gov (United States)

    Pratt, R M; Willis, W D

    1985-01-01

    We have tested 35 teratogenic and 20 nonteratogenic chemicals or drugs in a short-term, in vitro assay that identifies teratogens by their ability to inhibit growth of an established line of human embryonic palatal mesenchymal cells. Only those chemicals that exhibited a dose-dependent inhibition of growth at concentrations less than 1 mM were classified as inhibitory. An Aroclor-induced rat liver S-9 system was effective in metabolizing cyclophosphamide to its teratogenic form in culture. We suggest that this assay, along with the complementary tumor cell-attachment assay of Braun et al. [Braun, A. G., Emerson, D. J. & Nichinson, B. B. (1979) Nature (London) 282, 507-509] may be useful as a short-term in vitro battery for assessment of the teratogenic potential in environmental agents and to prioritize those chemicals which merit further testing in vivo. Images PMID:3862095

  18. In vitro screening assay for teratogens using growth inhibition of human embryonic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.M.; Willis, W.D.

    1985-09-01

    The authors have tested 35 teratogenic and 20 nonteratogenic chemicals or drugs in a short-term, in vitro assay that identifies teratogens by their ability to inhibit growth of an established line of human embryonic palatal mesenchymal cells. Only those chemicals that exhibited a dose-dependent inhibition of growth at concentrations less than 1 mM were classified as inhibitory. An Aroclor-induced rat liver S-9 system was effective in metabolizing cyclophosphamide to its teratogenic form in culture. The authors suggest that this assay, along with the complementary tumor cell-attachment assay of Braun may be useful as a short-term in vitro battery for assessment of the teratogenic potential in environmental agents and to prioritize those chemicals which merit further testing in vivo.

  19. Growth hormone-releasing peptide-6 inhibits cerebellar cell death in aged rats.

    Science.gov (United States)

    Pañeda, Covadonga; Arroba, Ana I; Frago, Laura M; Holm, Anne Mette; Rømer, John; Argente, Jesús; Chowen, Julie A

    2003-08-26

    Insulin-like growth factor (IGF)-I is essential for cerebellar granule neuron survival and a decline in IGF-I is implicated in various age-dependent processes. Here we show that IGF-I mRNA levels are decreased in the cerebellum of old rats compared with young rats and this was associated with increased cell death and activation of caspases 3 and 9. Growth hormone-releasing peptide (GHRP)-6, a synthetic ligand for the ghrelin receptor, increased IGF-I mRNA levels, decreased cell death and inhibited caspase 3 and 9 activation in the cerebellum of aged rats. These results suggest that increasing IGF-I expression in the cerebellum can decrease cell death in aged rats via inhibition of caspase 3 and 9 activation.

  20. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth.

    Science.gov (United States)

    Waaler, Jo; Machon, Ondrej; von Kries, Jens Peter; Wilson, Steven Ray; Lundenes, Elsa; Wedlich, Doris; Gradl, Dietmar; Paulsen, Jan Erik; Machonova, Olga; Dembinski, Jennifer L; Dinh, Huyen; Krauss, Stefan

    2011-01-01

    Canonical Wnt signaling is deregulated in several types of human cancer where it plays a central role in tumor cell growth and progression. Here we report the identification of 2 new small molecules that specifically inhibit canonical Wnt pathway at the level of the destruction complex. Specificity was verified in various cellular reporter systems, a Xenopus double-axis formation assay and a gene expression profile analysis. In human colorectal cancer (CRC) cells, the new compounds JW67 and JW74 rapidly reduced active β-catenin with a subsequent downregulation of Wnt target genes, including AXIN2, SP5, and NKD1. Notably, AXIN2 protein levels were strongly increased after compound exposure. Long-term treatment with JW74 inhibited the growth of tumor cells in both a mouse xenograft model of CRC and in Apc(Min) mice (multiple intestinal neoplasia, Min). Our findings rationalize further preclinical and clinical evaluation of these new compounds as novel modalities for cancer treatment.

  1. Inhibition effect of phosphate on the crystal grain growth of nanosized titania

    Institute of Scientific and Technical Information of China (English)

    FENG Xiaohui; LIE Jingze; LI Ping; ZHANG Yanfeng; WEI Yu

    2009-01-01

    The inhibitory effect of phosphate on the crystal grain growth of nanosized titania during high temperature calcination was investigated. Nanosized titanium dioxide powders prepared by hydrolysis of titanium tetrachloride were soaked in phosphate solutions with different con-centrations. The obtained powders calcined at various temperatures were characterized by X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), and X-ray photoelectronic spectroscopy (XPS). The grain size of the samples without phosphate treatment in-creased quickly when calcined at high temperatures, while the grain size of the samples with phosphate modification increased slowly when calcined at the same temperature. This phenomenon implies that phosphate treatment plays an important role in inhibiting the crystal grain growth of titania. The possible mechanism of the inhibition effect of phosphate on titania is discussed.

  2. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials

    DEFF Research Database (Denmark)

    Mayer, Philipp; Nyholm, Niels; Verbruggen, Eric M. J.;

    2000-01-01

    Exposure concentrations of many hydrophobic substances are difficult to maintain in algal growth inhibition tests performed in open agitated flasks. This is partly because such compounds tend to volatilize from aqueous solution and partly because of sorption to the algal biomass as well as to the......Exposure concentrations of many hydrophobic substances are difficult to maintain in algal growth inhibition tests performed in open agitated flasks. This is partly because such compounds tend to volatilize from aqueous solution and partly because of sorption to the algal biomass as well...... as to the test container. A simple filled closed bottle test with low algal densities and bicarbonate enrichment is described here as an approach to minimize the loss of test material from solution. The algal medium was enriched with 300 mg NaHCO3/L, the pH was adjusted to 7.0 by addition of HCl...

  3. Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2.

    Science.gov (United States)

    Spratlin, Jennifer

    2011-04-01

    Angiogenesis, a well-recognized characteristic of malignancy, has been exploited more than any other pathway targeted by biologic anti-neoplastic therapies. Vascular endothelial growth factor receptor-2 (VEGFR-2) is the critical receptor involved in malignant angiogenesis with its activation inducing a number of other cellular modifications resulting in tumor growth and metastases. Ramucirumab (IMC-1121B; ImClone Systems Corporation, Branchburg, NJ) is a fully human monoclonal antibody developed to specifically inhibit VEGFR-2. Ramucirumab is currently being investigated in multiple clinical trials across a variety of tumor types. Herein, angiogenesis inhibition in cancer is reviewed and up-to-date information on the clinical development of ramucirumab is presented.

  4. Growth inhibiting effects of terazosin on androgen-independent prostate cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    许克新; 王向红; 凌明达; 王云川

    2003-01-01

    Objective To study the effects of an α1-adrenoceptor antagonist, terazosin on the androgen-independent prostate cancer cell lines PC-3 and DU145.Methods Two androgen independent cell lines, PC-3 and DU145, were used to determine cell viability, colony-forming ability, as well as cell cycle distribution, after exposure to terazosin. Western blot analysis was used to determine the expression of p21WAF1 and p27KIP1.Results This study shows that terazosin inhibits not only prostate cancer cell growth but also its colony forming ability, both of which are main targets of clinical treatment. In addition, terazosin is shown to inhibit cell growth through G1 phase cell cycle arrest and the up-regulation of p27KIP1.Conclusion This study provides evidence that the α1-adrenoceptor antagonist terazosin may have therapeutic potential in the treatment of advanced hormone refractory prostate cancer.

  5. Constitutive SOCS-3 expression protects T-cell lymphoma against growth inhibition by IFNalpha

    DEFF Research Database (Denmark)

    Brender, C; Lovato, P; Sommer, V H;

    2005-01-01

    Signal transducer and activator of transcription (Stat)3 is constitutively activated in cutaneous T-cell lymphoma (CTCL), where it protects tumour cells against apoptosis. The constitutive activation of Stat3 leads to a constitutive expression of suppressor of cytokine signalling (SOCS)-3....... In healthy cells, SOCS-3 is transiently expressed following cytokine stimulation and functions as a negative feedback inhibitor of the Stat3-activating kinases. Here, we attempt to resolve the apparent paradox of a simultaneous SOCS-3 expression and Stat3 activation in the same cells. We show that (i) SOCS-3...... expression in tumour cells is equal to or higher than in cytokine-stimulated nonmalignant T cells, (ii) SOCS-3 is not mutated in CTCL, (iii) overexpression of SOCS-3 blocks IFNalpha-mediated growth inhibition without affecting Stat3 activation, growth, and apoptosis, and (iv) inhibition of SOCS-3...

  6. Andrographolide inhibits melanoma tumor growth by inactivating the TLR4/NF-κB signaling pathway.

    Science.gov (United States)

    Zhang, Qian-Qian; Zhou, Da-Lei; Ding, Yi; Liu, Hong-Ying; Lei, Yan; Fang, Hai-Yan; Gu, Qu-Liang; He, Xiao-Dong; Qi, Cui-Ling; Yang, Yi; Lan, Tian; Li, Jiang-Chao; Gong, Ping; Wu, Xiao-Yun; Yang, Xuesong; Li, Wei-Dong; Wang, Li-Jing

    2014-12-01

    The TLR4/NF-κB signaling pathway plays a critical role in tumor progression. Andrographolide (Andro) has been reported to have anticancer activity in multiple types of cancer. However, the pharmacological activities of Andro in melanoma are not completely understood. In this study, we defined the anticancer effects of Andro in melanoma and elucidated its potential mechanisms of action. Our experiments showed that Andro significantly inhibited melanoma tumor growth and metastasis by inducing cell cycle arrest and apoptosis. In addition, Andro significantly inhibited the TLR4/NF-κB signaling pathway. Furthermore, the inactivation of TLR4/NF-κB signaling inhibited the mRNA and protein expression of CXCR4 and Bcl-6, which are antitumor genes. This work provides evidence that the TLR4/NF-κB signaling pathway is a potential therapeutic target and may also be indispensable in the Andro-mediated anticancer effect in melanoma.

  7. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Song; Thapa, Ruby; Chi, Zhexu [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Xiu Jun [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Tang, Xiuwen, E-mail: xiuwentang@zju.edu.cn [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China)

    2014-05-16

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2{sup −/−} mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.

  8. BlackBerry's Long March Into China

    Institute of Scientific and Technical Information of China (English)

    HAYET SELLAMI

    2006-01-01

    @@ Some time in the coming weeks, Research In Motion Ltd (RIM) will launch its wireless BlackBerry e-mail service on the Chinese mainland in a partnership with China Mobile Ltd, which has two-thirds of the Chinese market and is the world's biggest mobile carrier by number of subscribers. The exact date of the launch has yet to be set.

  9. Berry Phenolics of Grapevine under Challenging Environments

    Directory of Open Access Journals (Sweden)

    Hernâni Gerós

    2013-09-01

    Full Text Available Plant phenolics have been for many years a theme of major scientific and applied interest. Grape berry phenolics contribute to organoleptic properties, color and protection against environmental challenges. Climate change has already caused significant warming in most grape-growing areas of the world, and the climatic conditions determine, to a large degree, the grape varieties that can be cultivated as well as wine quality. In particular, heat, drought and light/UV intensity severely affect phenolic metabolism and, thus, grape composition and development. In the variety Chardonnay, water stress increases the content of flavonols and decreases the expression of genes involved in biosynthesis of stilbene precursors. Also, polyphenolic profile is greatly dependent on genotype and environmental interactions. This review deals with the diversity and biosynthesis of phenolic compounds in the grape berry, from a general overview to a more detailed level, where the influence of environmental challenges on key phenolic metabolism pathways is approached. The full understanding of how and when specific phenolic compounds accumulate in the berry, and how the varietal grape berry metabolism responds to the environment is of utmost importance to adjust agricultural practices and thus, modify wine profile.

  10. Phytonutrient analysis of Solanum sisymbriifolium Lam. berries

    Science.gov (United States)

    Solanum sisymbriifolium Lam. (Litchi tomato) is grown ornamentally, and in Europe it is used as a trap crop for management of the potato cyst nematode (PCN). Its berries are edible, but little is known about their nutritional content. If more was known about their nutritional value this could provid...

  11. The Berry Phase for Simple Harmonic Oscillators

    CERN Document Server

    Suslov, Sergei K

    2011-01-01

    We evaluate the Berry phase for a "missing" family of the square integrable wavefunctions for the linear harmonic oscillator, which cannot be derived by the separation of variables. It is obtained by the action of the maximal kinematical invariance group on the standard solutions. An explicit simple formula for the phase is found by integration with the help of a computer algebra system.

  12. A rho GDP dissociation inhibitor produced by apoptotic T-cells inhibits growth of Mycobacterium tuberculosis.

    Science.gov (United States)

    Venkatasubramanian, Sambasivan; Dhiman, Rohan; Paidipally, Padmaja; Cheekatla, Satyanarayana S; Tripathi, Deepak; Welch, Elwyn; Tvinnereim, Amy R; Jones, Brenda; Theodorescu, Dan; Barnes, Peter F; Vankayalapati, Ramakrishna

    2015-02-01

    In this study, we found that a subpopulation of CD4(+)CD25(+) (85% Foxp3(+)) cells from persons with latent tuberculosis infection (LTBI) inhibits growth of M. tuberculosis (M. tb) in human monocyte-derived macrophages (MDMs). A soluble factor, Rho GDP dissociation inhibitor (D4GDI), produced by apoptotic CD4(+)CD25(+) (85% Foxp3(+)) cells is responsible for this inhibition of M. tb growth in human macrophages and in mice. M. tb-expanded CD4(+C)D25(+)Foxp3(+)D4GDI(+) cells do not produce IL-10, TGF-β and IFN-γ. D4GDI inhibited growth of M. tb in MDMs by enhancing production of IL-1β, TNF-α and ROS, and by increasing apoptosis of M. tb-infected MDMs. D4GDI was concentrated at the site of disease in tuberculosis patients, with higher levels detected in pleural fluid than in serum. However, in response to M. tb, PBMC from tuberculosis patients produced less D4GDI than PBMC from persons with LTBI. M. tb-expanded CD4+CD25+ (85% Foxp3(+)) cells and D4GDI induced intracellular M. tb to express the dormancy survival regulator DosR and DosR-dependent genes, suggesting that D4GDI induces a non-replicating state in the pathogen. Our study provides the first evidence that a subpopulation of CD4(+)CD25(+) (85% Foxp3+) cells enhances immunity to M. tb, and that production of D4GDI by this subpopulation inhibits M. tb growth.

  13. Tumor growth inhibition through targeting liposomally bound curcumin to tumor vasculature.

    Science.gov (United States)

    Mondal, Goutam; Barui, Sugata; Saha, Soumen; Chaudhuri, Arabinda

    2013-12-28

    Increasing number of Phase I/II clinical studies have demonstrated clinical potential of curcumin for treatment of various types of human cancers. Despite significant anti-tumor efficacies and bio-safety profiles of curcumin, poor systemic bioavailability is retarding its clinical success. Efforts are now being directed toward developing stable formulations of curcumin using various drug delivery systems. To this end, herein we report on the development of a new tumor vasculature targeting liposomal formulation of curcumin containing a lipopeptide with RGDK-head group and two stearyl tails, di-oleyolphosphatidylcholine (DOPC) and cholesterol. We show that essentially water insoluble curcumin can be solubilized in fairly high concentrations (~500 μg/mL) in such formulation. Findings in the Annexin V/Propidium iodide (PI) binding based flow cytometric assays showed significant apoptosis inducing properties of the present curcumin formulation in both endothelial (HUVEC) and tumor (B16F10) cells. Using syngeneic mouse tumor model, we show that growth of solid melanoma tumor can be inhibited by targeting such liposomal formulation of curcumin to tumor vasculature. Results in immunohistochemical staining of the tumor cryosections are consistent with tumor growth inhibition being mediated by apoptosis of tumor endothelial cells. Findings in both in vitro and in vivo mechanistic studies are consistent with the supposition that the presently described liposomal formulation of curcumin inhibits tumor growth by blocking VEGF-induced STAT3 phosphorylation in tumor endothelium. To the best of our knowledge, this is the first report on inhibiting tumor growth through targeting liposomal formulation of curcumin to tumor vasculatures.

  14. Dietary fiber enhances TGF-β signaling and growth inhibition in the gut

    OpenAIRE

    2011-01-01

    Dietary fiber intake links to decreased risk of colorectal cancers. The underlying mechanisms remain unclear. Recently, we found that butyrate, a short-chain fatty acid produced in gut by bacterial fermentation of dietary fiber, enhances TGF-β signaling in rat intestinal epithelial cells (RIE-1). Furthermore, TGF-β represses inhibitors of differentiation (Ids), leading to apoptosis. We hypothesized that dietary fiber enhances TGF-β's growth inhibitory effects on gut epithelium via inhibition ...

  15. A rho GDP dissociation inhibitor produced by apoptotic T-cells inhibits growth of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sambasivan Venkatasubramanian

    2015-02-01

    Full Text Available In this study, we found that a subpopulation of CD4(+CD25(+ (85% Foxp3(+ cells from persons with latent tuberculosis infection (LTBI inhibits growth of M. tuberculosis (M. tb in human monocyte-derived macrophages (MDMs. A soluble factor, Rho GDP dissociation inhibitor (D4GDI, produced by apoptotic CD4(+CD25(+ (85% Foxp3(+ cells is responsible for this inhibition of M. tb growth in human macrophages and in mice. M. tb-expanded CD4(+CD25(+Foxp3(+D4GDI(+ cells do not produce IL-10, TGF-β and IFN-γ. D4GDI inhibited growth of M. tb in MDMs by enhancing production of IL-1β, TNF-α and ROS, and by increasing apoptosis of M. tb-infected MDMs. D4GDI was concentrated at the site of disease in tuberculosis patients, with higher levels detected in pleural fluid than in serum. However, in response to M. tb, PBMC from tuberculosis patients produced less D4GDI than PBMC from persons with LTBI. M. tb-expanded CD4+CD25+ (85% Foxp3(+ cells and D4GDI induced intracellular M. tb to express the dormancy survival regulator DosR and DosR-dependent genes, suggesting that D4GDI induces a non-replicating state in the pathogen. Our study provides the first evidence that a subpopulation of CD4(+CD25(+ (85% Foxp3+ cells enhances immunity to M. tb, and that production of D4GDI by this subpopulation inhibits M. tb growth.

  16. Resveratrol inhibits growth of orthotopic pancreatic tumors through activation of FOXO transcription factors.

    Directory of Open Access Journals (Sweden)

    Sanjit K Roy

    Full Text Available BACKGROUND: The forkhead transcription factors of the O class (FOXO play a direct role in cellular proliferation, oxidative stress response, and tumorigenesis. The objectives of this study were to examine whether FOXOs regulate antitumor activities of resveratrol in pancreatic cancer cells in vitro and in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Pancreatic cancer cell lines were treated with resveratrol. Cell viability, colony formation, apoptosis and cell cycle were measured by XTT, soft agar, TUNEL and flow cytometry assays, respectively. FOXO nuclear translocation, DNA binding and transcriptional activities were measured by fluorescence technique, gelshift and luciferase assay, respectively. Mice were orthotopically implanted with PANC1 cells and orally gavaged with resveratrol. The components of PI3K and ERK pathways, FOXOs and their target gene expressions were measured by the Western blot analysis. Resveratrol inhibited cell viability and colony formations, and induced apoptosis through caspase-3 activation in four pancreatic cancer cell lines (PANC-1, MIA PaCa-2, Hs766T, and AsPC-1. Resveratrol induced cell cycle arrest by up-regulating the expression of p21/CIP1, p27/KIP1 and inhibiting the expression of cyclin D1. Resveratrol induced apoptosis by up-regulating Bim and activating caspase-3. Resveratrol inhibited phosphorylation of FOXOs, and enhanced their nuclear translocation, FOXO-DNA binding and transcriptional activities. The inhibition of PI3K/AKT and MEK/ERK pathways induced FOXO transcriptional activity and apoptosis. Furthermore, deletion of FOXO genes abrogated resveratrol-induced cell cycle arrest and apoptosis. Finally, resveratrol-treated mice showed significant inhibition in tumor growth which was associated with reduced phosphorylation of ERK, PI3K, AKT, FOXO1 and FOXO3a, and induction of apoptosis and FOXO target genes. CONCLUSIONS: These data suggest that inhibition of ERK and AKT pathways act together to activate FOXO

  17. Methylthioadenosine (MTA inhibits melanoma cell proliferation and in vivo tumor growth

    Directory of Open Access Journals (Sweden)

    Cortés Javier

    2010-06-01

    Full Text Available Abstract Background Melanoma is the most deadly form of skin cancer without effective treatment. Methylthioadenosine (MTA is a naturally occurring nucleoside with differential effects on normal and transformed cells. MTA has been widely demonstrated to promote anti-proliferative and pro-apoptotic responses in different cell types. In this study we have assessed the therapeutic potential of MTA in melanoma treatment. Methods To investigate the therapeutic potential of MTA we performed in vitro proliferation and viability assays using six different mouse and human melanoma cell lines wild type for RAS and BRAF or harboring different mutations in RAS pathway. We also have tested its therapeutic capabilities in vivo in a xenograft mouse melanoma model and using variety of molecular techniques and tissue culture we investigated its anti-proliferative and pro-apoptotic properties. Results In vitro experiments showed that MTA treatment inhibited melanoma cell proliferation and viability in a dose dependent manner, where BRAF mutant melanoma cell lines appear to be more sensitive. Importantly, MTA was effective inhibiting in vivo tumor growth. The molecular analysis of tumor samples and in vitro experiments indicated that MTA induces cytostatic rather than pro-apoptotic effects inhibiting the phosphorylation of Akt and S6 ribosomal protein and inducing the down-regulation of cyclin D1. Conclusions MTA inhibits melanoma cell proliferation and in vivo tumor growth particularly in BRAF mutant melanoma cells. These data reveal a naturally occurring drug potentially useful for melanoma treatment.

  18. RNA aptamers inhibit the growth of the fish pathogen viral hemorrhagic septicemia virus (VHSV).

    Science.gov (United States)

    Punnarak, Porntep; Santos, Mudjekeewis D; Hwang, Seong Don; Kondo, Hidehiro; Hirono, Ikuo; Kikuchi, Yo; Aoki, Takashi

    2012-12-01

    Viral hemorrhagic septicemia virus (VHSV) is a serious disease impacting wild and cultured fish worldwide. Hence, an effective therapeutic method against VHSV infection needs to be developed. Aptamer technology is a new and promising method for diagnostics and therapeutics. It revolves around the use of an aptamer molecule, an artificial ligand (nucleic acid or protein), which has the capacity to recognize target molecules with high affinity and specificity. Here, we aimed at selecting RNA aptamers that can specifically bind to and inhibit the growth of a strain of fish VHSV both in vitro and in vivo. Three VHSV-specific RNA aptamers (F1, F2, and C6) were selected from a pool of artificially and randomly produced oligonucleotides using systematic evolution of ligands by exponential enrichment. The three RNA aptamers showed obvious binding to VHSV in an electrophoretic mobility shift assay but not to other tested viruses. The RNA aptamers were tested for their ability to inhibit VHSV in vitro using hirame natural embryo (HINAE) cells. Cytopathic effect and plaque assays showed that all aptamers inhibited the growth of VHSV in HINAE cells. In vivo tests using RNA aptamers produced by Rhodovulum sulfidophilum showed that extracellular RNA aptamers inhibited VHSV infection in Japanese flounder. These results suggest that the RNA aptamers are a useful tool for protection against VHSV infection in Japanese flounder.

  19. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  20. Inhibition of the Growth of Plasmodium falciparum in Culture by Stearylamine-Phosphatidylcholine Liposomes

    Directory of Open Access Journals (Sweden)

    Gulam Mustafa Hasan

    2011-01-01

    Full Text Available We have examined the effect of stearylamine (SA in liposomes on the viability of Plasmodium falciparum in culture by studying the inhibition of incorporation of [3H]-hypoxanthine in the nucleic acid of parasites. Stearylamine in liposomes significantly inhibits the growth of the parasites depending on the phospholipids composition. The maximum inhibition was observed when SA was delivered through Soya phosphatidylcholine (SPC liposomes. The chain length of alkyl group and density of SA in liposomes play a significant role in inhibiting the growth of the parasites. Incorporation of either cholesterol or Distearylphosphatidylethanolamine−Methoxy-Polyethylene glycol-2000 (DSPE-mPEG-2000 in Soya phosphatidylcholine-stearylamine (SPC-SA liposomes improves the efficacy. Intraerythrocytic entry of intact SPC-SA liposomes into infected erythrocytes was visualized using fluorescent microscopy. No hemolysis was observed in uninfected erythrocytes, and slight hemolysis was noted in infected erythrocytes at high concentrations of SPC-SA liposomes. Overall, our data suggested SA in SPC-liposomes might have potential application in malaria chemotherapy.

  1. Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation.

    Science.gov (United States)

    Tanaka, M; Setoguchi, T; Hirotsu, M; Gao, H; Sasaki, H; Matsunoshita, Y; Komiya, S

    2009-06-16

    The study shows constitutive activation of the Notch pathway in various types of malignancies. However, it remains unclear how the Notch pathway is involved in the pathogenesis of osteosarcoma. We investigated the expression of the Notch pathway molecules in osteosarcoma biopsy specimens and examined the effect of Notch pathway inhibition. Real-time PCR revealed overexpression of Notch2, Jagged1, HEY1, and HEY2. On the other hand, Notch1 and DLL1 were downregulated in biopsy specimens. Notch pathway inhibition using gamma-secretase inhibitor and CBF1 siRNA slowed the growth of osteosarcomas in vitro. In addition, gamma-secretase inhibitor-treated xenograft models exhibited significantly slower osteosarcoma growth. Cell cycle analysis revealed that gamma-secretase inhibitor promoted G1 arrest. Real-time PCR and western blot revealed that gamma-secretase inhibitor reduced the expression of accelerators of the cell cycle, including cyclin D1, cyclin E1, E2, and SKP2. On the other hand, p21(cip1) protein, a cell cycle suppressor, was upregulated by gamma-secretase inhibitor treatment. These findings suggest that inhibition of Notch pathway suppresses osteosarcoma growth by regulation of cell cycle regulator expression and that the inactivation of the Notch pathway may be a useful approach to the treatment of patients with osteosarcoma.

  2. Inhibition of autophagy attenuates pancreatic cancer growth independent of TP53/TRP53 status.

    Science.gov (United States)

    Yang, Annan; Kimmelman, Alec C

    2014-09-01

    Basal levels of autophagy are elevated in most pancreatic ductal adenocarcinomas (PDAC). Suppressing autophagy pharmacologically using chloroquine (CQ) or genetically with RNAi to essential autophagy genes inhibits human pancreatic cancer growth in vitro and in vivo, which presents possible treatment opportunities for PDAC patients using the CQ-derivative hydroxychloroquine (HCQ). Indeed, such clinical trials are ongoing. However, autophagy is a complex cellular mechanism to maintain cell homeostasis under stress. Based on its biological role, a dual role of autophagy in tumorigenesis has been proposed: at tumor initiation, autophagy helps maintain genomic stability and prevent tumor initiation; while in advanced disease, autophagy degrades and recycles cellular components to meet the metabolic needs for rapid growth. This model was proven to be the case in mouse lung tumor models. However, in contrast to prior work in various PDAC model systems, loss of autophagy in PDAC mouse models with embryonic homozygous Trp53 deletion does not inhibit tumor growth and paradoxically increases progression. This raised concerns whether there may be a genotype-dependent reliance of PDAC on autophagy. In a recent study, our group used a Trp53 heterozygous mouse PDAC model and human PDX xenografts to address the question. Our results demonstrate that autophagy inhibition was effective against PDAC tumors irrespective of TP53/TRP53 status.

  3. Inhibition of Gallic Acid on the Growth and Biofilm Formation of Escherichia coli and Streptococcus mutans.

    Science.gov (United States)

    Shao, Dongyan; Li, Jing; Li, Ji; Tang, Ruihua; Liu, Liu; Shi, Junling; Huang, Qingsheng; Yang, Hui

    2015-06-01

    New strategies for biofilm inhibition are becoming highly necessary because of the concerns to synthetic additives. As gallic acid (GA) is a hydrolysated natural product of tannin in Chinese gall, this research studied the effects of GA on the growth and biofilm formation of bacteria (Escherichia coli [Gram-negative] and Streptococcus mutans [Gram-positive]) under different conditions, such as nutrient levels, temperatures (25 and 37 °C) and incubation times (24 and 48 h). The minimum antimicrobial concentration of GA against the two pathogenic organisms was determined as 8 mg/mL. GA significantly affected the growth curves of both test strains at 25 and 37 °C. The nutrient level, temperature, and treatment time influenced the inhibition activity of GA on both growth and biofim formation of tested pathogens. The inhibition effect of GA on biofilm could be due to other factors in addition to the antibacterial effect. Overall, GA was most effective against cultures incubated at 37 °C for 24 h and at 25 °C for 48 h in various concentrations of nutrients and in vegetable wash waters, which indicated the potential of GA as emergent sources of biofilm control products.

  4. NEWEST PINK BERRY AROMATIC VINE GRAPE VARIETY – RADOST LEONIDOV

    Directory of Open Access Journals (Sweden)

    Zamanidi P. C.

    2014-12-01

    Full Text Available New wine grape flavored pink berry grape variety named “Radost Leonidov” breed at Athens Institute of Viticulture by P.Zamanidi, L.Troshin and P.Radchevskii in 2009 by crossing the new Moskhoragos Greek muscat variety with old European variety Traminer pink. According to morphological and biological characteristics, it can be assigned to Western European eco-geographical group of varieties. Strong growth of shoots (2,1-3,0 m. The extent of maturation of vines is very high (over the entire length, except for the top. Duration of production period from bud burst to harvest - 146-155 days. Productivity is high: 20-25 t / ha. The average weight of clusters is 260. Characterized by high winter hardiness, drought resistance and increased resistance to fungal diseases in comparison with the varieties of Vitis vinifera. Flower is hermaphrodite, fully developed stamens and gynoecium. Bunch is small, conical, sometimes winged, average density. Berry is small, spherical, pinkish in color, with a thick waxy coating. Peel of medium thickness, dense and durable. Pulp and juice with a strong varietal flavor, similar to the aroma of Traminer pink. Sugar content is very high: more than 24%. Cluster of the variety of Radost Leonidov at overripening is drying and stored on the bushes for a long time. The variety is intended for the production of dry white wines of excellent class, as well as highquality sparkling wines, dessert and sweet wines; suitable for the production of high-quality aromatic juices

  5. Roxatidine- and cimetidine-induced angiogenesis inhibition suppresses growth of colon cancer implants in syngeneic mice.

    Science.gov (United States)

    Tomita, Kazuyoshi; Izumi, Kazuki; Okabe, Susumu

    2003-11-01

    Cimetidine is known to suppress the growth of several tumors, including gastrointestinal cancer, in humans and animals. Nonetheless, whether other histamine H(2)-receptor antagonists exert such tumor suppressive effects remains unclear. The effect of roxatidine acetate hydrochloride (roxatidine), an H(2)-receptor antagonist, on the growth of colon cancer implanted in mice was examined and compared with that of cimetidine. Drugs were orally delivered for 26 - 29 days beginning before or after implantation of syngeneic colon cancer (Colon 38) in C57BL/6 mice. Tumor volume was determined throughout and histochemical analysis was also performed. Tumor tissue and serum vascular endothelial growth factor (VEGF) levels were measured. In vitro cell growth was assessed by the MTT assay. Both roxatidine and cimetidine significantly suppressed the growth of Colon 38 tumor implants. Histologic analysis revealed that such antagonists markedly increased necrotic areas and decreased the density of microvessels in tumor tissue. Both H(2)-receptor antagonists suppressed VEGF levels in tumor tissue and significantly decreased serum VEGF levels in Colon 38-bearing mice. Such drugs, however, failed to suppress in vitro growth of the cell line. In conclusion, both roxatidine and cimetidine were found to exert suppressive effects on the growth of colon cancer implants in mice by inhibiting angiogenesis via reducing VEGF expression.

  6. Amygdalin inhibits the growth of renal cell carcinoma cells in vitro.

    Science.gov (United States)

    Juengel, Eva; Thomas, Anita; Rutz, Jochen; Makarevic, Jasmina; Tsaur, Igor; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-02-01

    Although amygdalin is used by many cancer patients as an antitumor agent, there is a lack of information on the efficacy and toxicity of this natural compound. In the present study, the inhibitory effect of amygdalin on the growth of renal cell carcinoma (RCC) cells was examined. Amygdalin (10 mg/ml) was applied to the RCC cell lines, Caki-1, KTC-26 and A498, for 24 h or 2 weeks. Untreated cells served as controls. Tumor cell growth and proliferation were determined using MTT and BrdU tests, and cell cycle phases were evaluated. Expression of the cell cycle activating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1 and D3 as well as of the cell cycle inhibiting proteins p19 and p27 was examined by western blot analysis. Surface expression of the differentiation markers E- and N-cadherin was also investigated. Functional blockade by siRNA was used to determine the impact of several proteins on tumor cell growth. Amygdalin treatment caused a significant reduction in RCC cell growth and proliferation. This effect was correlated with a reduced percentage of G2/M-phase RCC cells and an increased percentage of cells in the G0/1-phase (Caki-1 and A498) or cell cycle arrest in the S-phase (KTC-26). Furthermore, amygdalin induced a marked decrease in cell cycle activating proteins, in particular cdk1 and cyclin B. Functional blocking of cdk1 and cyclin B resulted in significantly diminished tumor cell growth in all three RCC cell lines. Aside from its inhibitory effects on growth, amygdalin also modulated the differentiation markers, E- and N-cadherin. Hence, exposing RCC cells to amygdalin inhibited cell cycle progression and tumor cell growth by impairing cdk1 and cyclin B expression. Moreover, we noted that amygdalin affected differentiation markers. Thus, we suggest that amygdalin exerted RCC antitumor effects in vitro.

  7. Methoxychlor inhibits growth and induces atresia of antral follicles through an oxidative stress pathway.

    Science.gov (United States)

    Gupta, Rupesh K; Miller, Kimberly P; Babus, Janice K; Flaws, Jodi A

    2006-10-01

    The mammalian ovary contains antral follicles, which are responsible for the synthesis and secretion of hormones that regulate estrous cyclicity and fertility. The organochlorine pesticide methoxychlor (MXC) causes atresia (follicle death via apoptosis) of antral follicles, but little is known about the mechanisms by which MXC does so. Oxidative stress is known to cause apoptosis in nonreproductive and reproductive tissues. Thus, we tested the hypothesis that MXC inhibits growth and induces atresia of antral follicles through an oxidative stress pathway. To test this hypothesis, antral follicles isolated from 39-day-old CD-1 mice were cultured with vehicle control (dimethylsulfoxide [DMSO]), MXC (1-100 microg/ml), or MXC + the antioxidant N-acetyl cysteine (NAC) (0.1-10 mM). During culture, growth was monitored daily. At the end of culture, follicles were processed for quantitative real-time polymerase chain reaction of Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX), and catalase (CAT) mRNA expression or for histological evaluation of atresia. The results indicate that exposure to MXC (1-100 microg/ml) inhibited growth of follicles compared to DMSO controls and that NAC (1-10 mM) blocked the ability of MXC to inhibit growth. MXC induced follicular atresia, whereas NAC (1-10 mM) blocked the ability of MXC to induce atresia. In addition, MXC reduced the expression of SOD1, GPX, and CAT, whereas NAC reduced the effects of MXC on their expression. Collectively, these data indicate MXC causes slow growth and increased atresia by inducing oxidative stress.

  8. SL-01, an oral derivative of gemcitabine, inhibited human breast cancer growth through induction of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Qin, Yi-Zhuo; Wang, Rui-Qi [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China); Li, Wen-Bao, E-mail: wbli92128@yahoo.com [Sanlugen PharmaTech, Rm 506, No. 2766 Yingxiu Road, Jinan 250101 (China); Qu, Xian-Jun, E-mail: qxj@sdu.edu.cn [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China)

    2013-08-23

    Highlights: •SL-01 is an oral derivative of gemcitabine. •SL-01 possessed activity against human breast cancer growth via apoptotic induction. •SL-01’s activity was more potently than that of gemcitabine. •SL-01 inhibited cancer growth without toxicity to mice. -- Abstract: SL-01 is an oral derivative of gemcitabine that was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl) pyrazine-2-carbonyl at N4-position on cytidine ring of gemcitabine. We aimed to evaluate the efficacy of SL-01 on human breast cancer growth. SL-01 significantly inhibited MCF-7 proliferation as estimated by colorimetric assay. Flow cytometry assay indicated the apoptotic induction and cell cycle arrest in G1 phase. SL-01 modulated the expressions of p-ATM, p53 and p21 and decrease of cyclin D1 in MCF-7 cells. Further experiments were performed in a MCF-7 xenografts mouse model. SL-01 by oral administration strongly inhibited MCF-7 xenografts growth. This effect of SL-01 might arise from its roles in the induction of apoptosis. Immunohistochemistry assay showed the increase of TUNEL staining cells. Western blotting indicated the modulation of apoptotic proteins in SL-01-treated xenografts. During the course of study, there was no evidence of toxicity to mice. In contrast, the decrease of neutrophil cells in peripheral and increase of AST and ALT levels in serum were observed in the gemcitabine-treated mice. Conclusion: SL-01 possessed similar activity against human breast cancer growth with gemcitabine, whereas, with lower toxicity to gemcitabine. SL-01 is a potent oral agent that may supplant the use of gemcitabine.

  9. Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage.

    Science.gov (United States)

    Ahuja, Nitina; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2015-02-01

    Plant essential oils and their constituent monoterpenes are widely known plant growth retardants but their mechanism of action is not well understood. We explored the mechanism of phytotoxicity of eugenol, a monoterpenoid alcohol, proposed as a natural herbicide. Eugenol (100-1000 µM) retarded the germination of Avena fatua and strongly inhibited its root growth compared to the coleoptile growth. We further investigated the underlying physiological and biochemical alterations leading to the root growth inhibition. Eugenol induced the generation of reactive oxygen species (ROS) leading to oxidative stress and membrane damage in the root tissue. ROS generation measured in terms of hydrogen peroxide, superoxide anion and hydroxyl radical content increased significantly in the range of 24 to 144, 21 to 91, 46 to 173% over the control at 100 to 1000 µM eugenol, respectively. The disruption in membrane integrity was indicated by 25 to 125% increase in malondialdehyde (lipid peroxidation byproduct), and decreased conjugated diene content (~10 to 41%). The electrolyte leakage suggesting membrane damage increased both under light as well as dark conditions measured over a period from 0 to 30 h. In defense to the oxidative damage due to eugenol, a significant upregulation in the ROS-scavenging antioxidant enzyme machinery was observed. The activities of superoxide dismutases, catalases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases were elevated by ~1.5 to 2.8, 2 to 4.3, 1.9 to 5.0, 1.4 to 3.9, 2.5 to 5.5 times, respectively, in response to 100 to 1000 µM eugenol. The study concludes that eugenol inhibits early root growth through ROS-mediated oxidative damage, despite an activation of the antioxidant enzyme machinery.

  10. Tracing and inhibiting growth of Staphylococcus aureus in barbecue cheese production after product recall.

    Science.gov (United States)

    Johler, S; Zurfluh, K; Stephan, R

    2016-05-01

    Staphylococcal food poisoning is one of the most prevalent causes of foodborne intoxication worldwide. It is caused by ingestion of enterotoxins formed by Staphylococcus aureus during growth in the food matrix. Following a recall of barbecue cheese due to the detection of staphylococcal enterotoxins in Switzerland in July 2015, we analyzed the production process of the respective dairy. Although most cheese-making processes involve acidification to inhibit the growth of pathogenic bacteria, barbecue cheese has to maintain a pH >6.0 to prevent undesired melting of the cheese. In addition, the dairy decided to retain the traditional manual production process of the barbecue cheese. In this study, therefore, we aimed to (1) trace Staph. aureus along the barbecue cheese production process, and (2) develop a sustainable strategy to inhibit growth of Staph. aureus and decrease the risk of staphylococcal food poisoning without changing the traditional production process. To this end, we traced Staph. aureus in a step-wise blinded process analysis on 4 different production days using spa (Staphylococcus protein A gene) typing, DNA microarray profiling, and pulsed-field gel electrophoresis analysis. We subsequently selected a new starter culture and used a model cheese production including a challenge test assay to assess its antagonistic effect on Staph. aureus growth, as well as its sensory and technological implications. We detected Staph. aureus in 30% (37/124) of the collected samples taken from the barbecue cheese production at the dairy. This included detection of Staph. aureus in the final product on all 4 production days, either after enrichment or using quantitative detection. We traced 2 enterotoxigenic Staph. aureus strains (t073/CC45 and t282/CC45) colonizing the nasal cavity and the forearms of the cheesemakers to the final product. In the challenge test assay, we were able to show that the new starter culture inhibited growth of Staph. aureus while meeting

  11. Antioxidant and Anti-Inflammatory Effects of Various Cultivars of Kiwi Berry (Actinidia arguta) on Lipopolysaccharide-Stimulated RAW 264.7 Cells.

    Science.gov (United States)

    An, Xiangxue; Lee, Sang Gil; Kang, Hee; Heo, Ho Jin; Cho, Youn-Sup; Kim, Dae-Ok

    2016-08-28

    The present study evaluated the total phenolic and flavonoid contents as well as total antioxidant capacity (TAC) of three cultivars of Actinidia arguta Planch. kiwi berries; cv. Mansoo (Mansoo), cv. Chiak (Chiak), and cv. Haeyeon (Haeyeon). In addition, the anti-inflammatory effects of the three cultivars of kiwi berries were investigated using a lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cell line. Mansoo had the highest total phenolic content and TAC among the three cultivars, whereas Chiak had the highest total flavonoid content. The total antioxidant capacities of the kiwi berry extracts were more strongly correlated with total phenolic content than with total flavonoid content. The kiwi berry extracts suppressed the secretion of pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor-α, from LPS-stimulated RAW 264.7 cells. The release of nitrite, an indirect indicator of nitric oxide, was also ameliorated by pre-treatment with the kiwi berry extracts in a dose-dependent manner. Cellular-based measurements of antioxidant capacity exhibited that the kiwi berry extracts had cellular antioxidant capacities. Such cellular antioxidant effects are possibly attributed to their direct antioxidant capacity or to the inhibition of reactive oxygen species generation via anti-inflammatory effects. Our findings suggest that kiwi berries are potential antioxidant and anti-inflammatory agents.

  12. Dynamic light scattering study of inhibition of nucleation and growth of hydroxyapatite crystals by osteopontin.

    Directory of Open Access Journals (Sweden)

    John R de Bruyn

    Full Text Available We study the effect of isoforms of osteopontin (OPN on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN, which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN's ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation.

  13. Inhibition of polyamine biosynthesis and growth in plant pathogenic fungi in vitro.

    Science.gov (United States)

    Rajam, B; Rajam, M V

    1996-02-01

    Polyamine (PA) biosynthesis inhibitors, difluoromethylornithine (DFMO), difluoromethylarginine (DFMA), methylglyoxal bis-(guanylhydrazone) (MGBG) and bis-(cyclohexylammonium) sulphate (BCHA) have been tested for their effects on colony diameters at different intervals after inoculation of four plant pathogenic fungi (Helminthosporium oryzae, Curvularia lunata, Pythium aphanidermatum and Colletotrichum capsici). All these inhibitors, except DFMA had strongly retarded the growth of four fungi in a dose- and species-dependent fashion, and H. oryzae and C. lunata were found to be most sensitive to the effects of PA inhibitors. P. aphanidermatum and C. capsici were relatively insensitive and required rather high concentrations of inhibitors to get greater inhibition of mycelial growth, except DFMA which had stimulatory effect on the growth of these two fungi. However DFMA had greatly suppressed the growth of H. oryzae and C. lunata. The effect was generally more pronounced with MGBG than with DFMO and BCHA, and 1 mM Put completely prevented the inhibitory effects of 1 and 5 mM DFMO. Analysis of free and conjugated PAs in two sensitive fungi (H. oryzae and C. lunata) revealed that Put was present in highest concentrations followed by Spd and Spm and their levels were greatly reduced by DFMO application, and such inhibitions were totally reversed by exogenously supplied Put; in fact, PA titers were considerably increased by 1 mM Put alone and in combination with 1 mM DFMO. These results suggest that PA inhibitors, particularly DFMO and MGBG may be useful as target-specific fungicides in plants.

  14. Anthocyanin Induces Apoptosis of DU-145 Cells In Vitro and Inhibits Xenograft Growth of Prostate Cancer

    Science.gov (United States)

    Ha, U-Syn; Bae, Woong Jin; Kim, Su Jin; Yoon, Byung Il; Hong, Sung Hoo; Lee, Ji Youl; Hwang, Tae-Kon; Hwang, Sung Yeoun; Wang, Zhiping

    2015-01-01

    Purpose To investigate the effects of anthocyanins extracted from black soybean, which have antioxidant activity, on apoptosis in vitro (in hormone refractory prostate cancer cells) and on tumor growth in vivo (in athymic nude mouse xenograft model). Materials and Methods The growth and viability of DU-145 cells treated with anthocyanins were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and apoptosis was assessed by DNA laddering. Immunoblotting was conducted to evaluate differences in the expressions of p53, Bax, Bcl, androgen receptor (AR), and prostate specific antigen (PSA). To study the inhibitory effects of anthocyanins on tumor growth in vivo, DU-145 tumor xenografts were established in athymic nude mice. The anthocyanin group was treated with daily oral anthocyanin (8 mg/kg) for 14 weeks. After 2 weeks of treatment, DU-145 cells (2×106) were inoculated subcutaneously into the right flank to establish tumor xenografts. Tumor dimensions were measured twice a week using calipers and volumes were calculated. Results Anthocyanin treatment of DU-145 cells resulted in 1) significant increase in apoptosis in a dose-dependent manner, 2) significant decrease in p53 and Bcl-2 expressions (with increased Bax expression), and 3) significant decrease in PSA and AR expressions. In the xenograft model, anthocyanin treatment significantly inhibit tumor growth. Conclusion This study suggests that anthocyanins from black soybean inhibit the progression of prostate cancer in vitro and in a xenograft model. PMID:25510742

  15. Docetaxel inhibits SMMC-7721 human hepatocellular carcinoma cells growth and induces apoptosis

    Institute of Scientific and Technical Information of China (English)

    Chang-Xin Geng; Zhao-Chong Zeng; Ji-Yao Wang

    2003-01-01

    AIM: To investigate the in vitro anti-hepatocellular carcinoma (HCC) activity of docetaxel against SMMC-7721 HCC cells and its possible mechanism.METHODS: The HCC cells were given different concentrations of docetaxel and their growth was measured by colony forming assay. Cell cycle and apoptosis were analyzed by flow cytometry and fluorescence microscopy (acridine orange/ethidium bromide double staining, AO/EB), as well as electronic microscopy. The SMMC-7721 HCC cell reactive oxygen species (ROS) and glutathione (GSH) were measured after given docetaxel.RESULTS: Docetaxel inhibited the hepatocellular carcinoma cells growth in a concentration dependent manner with IC505×10-10 M. Marked cell apoptosis and G2/M phase arrest were observed after treatment with docetaxel ≥10-8M.Docetaxel promoted SMMC-7721 HCC cells ROS generation and GSH deletion.CONCLUSION: Docetaxel suppressed the growth of SMMC7721 HCC cells in vitro by causing apoptosis and G2/M phase arrest of the human hepatoma cells, and ROS and GSH may play a key role in the inhibition of growth and induction of apoptosis.

  16. Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12.

    Science.gov (United States)

    Zhu, Jiang; Zhang, Kun-Xiao; Wang, Wen-Shu; Gong, Wen; Liu, Wen-Cheng; Chen, Hong-Guo; Xu, Heng-Hao; Lu, Ying-Tang

    2015-04-01

    Plants exhibit reduced root growth when exposed to low temperature; however, how low temperature modulates root growth remains to be understood. Our study demonstrated that low temperature reduces both meristem size and cell number, repressing the division potential of meristematic cells by reducing auxin accumulation, possibly through the repressed expression of PIN1/3/7 and auxin biosynthesis-related genes, although the experiments with exogenous auxin application also suggest the involvement of other factor(s). In addition, we verified that ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12 are involved in low temperature-mediated inhibition of root growth by showing that the roots of arr1-3 arr12-1 seedlings were less sensitive than wild-type roots to low temperature, in terms of changes in root length and meristem cell number. Furthermore, low temperature reduced the levels of PIN1/3 transcripts and the auxin level to a lesser extent in arr1-3 arr12-1 roots than in wild-type roots, suggesting that cytokinin signaling is involved in the low-temperature-mediated reduction of auxin accumulation. Taken together, our data suggest that low temperature inhibits root growth by reducing auxin accumulation via ARR1/12.

  17. Fetal calf serum-mediated inhibition of neurite growth from ciliary ganglion neurons in vitro.

    Science.gov (United States)

    Davis, G E; Skaper, S D; Manthorpe, M; Moonen, G; Varon, S

    1984-01-01

    Embryonic chick ciliary ganglion (CG) neurons cultured in fetal calf serum-containing medium have been previously reported to extend neurites on polyornithine (PORN) substrata precoated with a neurite-promoting factor (PNPF) from rat schwannoma-conditioned medium. On PORN substrata alone, however, no neuritic growth occurred. This was interpreted as evidence that PORN was an incompetent substratum for ciliary neuritic growth. In this study, we now find that an untreated PORN substratum allows neuritic growth in serum-free defined medium. When PNPF was added to PORN, a more rapid and extensive neuritic response occurred. After 5 hr of culture, a 60% neuritic response occurred on PNPF/PORN, whereas no neurons initiated neurites until 10-12 hr on PORN. The inhibitory effect of fetal calf serum noted above on PORN could be obtained in part by pretreating the substratum with serum for 1 hr. Maximal inhibitory effects in the PORN pretreatment were achieved after 30 min and were not further improved by treatments up to 4 hr. Bovine serum albumin was also found to inhibit neurite growth on PORN to about 60% of the inhibition obtained by an equivalent amount of serum protein. Fetal calf serum was shown to cause a 15% reduction in the percentage of neurons bearing neurites after its addition to 18-hr serum-free PORN cultures and to cause statistically significant reductions in neurite lengths measured 2 hr later.

  18. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence

    Science.gov (United States)

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-01-01

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties. DOI: http://dx.doi.org/10.7554/eLife.13768.001 PMID:27697148

  19. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells.

    Science.gov (United States)

    Baldini, P M; De Vito, P; Fraziano, M; Mattioli, P; Luly, P; Di Nardo, P

    2002-10-01

    Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement.

  20. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables.

    Science.gov (United States)

    Zhang, Yanjun; Vareed, Shaiju K; Nair, Muraleedharan G

    2005-02-11

    Anthocyanidins, the aglycones of anthocyanins, impart brilliant colors in many fruits and vegetables. The widespread consumption of diets rich in anthocyanin and anthocyanidins prompted us to determine their inhibitory effects on human cancer cell proliferation. Five anthocyanidins, cyanidin (1), delphinidin (2), pelargonidin (3), petunidin (4) and malvidin (5), and four anthocyanins, cyanidin-3-glucoside, cyanidin-3-galactoside, delphinidin-3-galactoside and pelargonidin-3-galactoside were tested for cell proliferation inhibitory activity against human cancer cell lines, AGS (stomach), HCT-116 (colon), MCF-7 (breast), NCI H460 (lung), and SF-268 (Central Nervous System, CNS) at 12.5-200 microg/mL concentrations. The viability of cells after exposure to anthocyanins and anthocyanidins was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric methods. The anthocyanins assayed did not inhibit cell proliferation of cell lines tested at 200 microg/mL. However, anthocyanidins showed cell proliferation inhibitory activity. Malvidin inhibited AGS, HCT-116, NCI-H460, MCF-7 and SF-268 cell growth by 69, 75.7, 67.7, 74.7 and 40.5%, respectively, at 200 microg/mL. Similarly, pelargonidin inhibited AGS, HCT-116, NCI H460, MCF-7 and SF-268 cell growth by 64, 63, 62, 63 and 34%, respectively, at 200 microg/mL. At 200 microg/mL, cyanidin, delphinidin and petunidin inhibited the breast cancer cell growth by 47, 66 and 53%, respectively. This is the first report of tumor cell proliferation inhibitory activity by anthocyanidins.

  1. Delphinidin Inhibits Tumor Growth by Acting on VEGF Signalling in Endothelial Cells.

    Science.gov (United States)

    Keravis, Thérèse; Favot, Laure; Abusnina, Abdurrazag A; Anton, Anita; Justiniano, Hélène; Soleti, Raffaella; Alabed Alibrahim, Eid; Simard, Gilles; Andriantsitohaina, Ramaroson; Lugnier, Claire

    2015-01-01

    The vasculoprotective properties of delphinidin are driven mainly by its action on endothelial cells. Moreover, delphinidin displays anti-angiogenic properties in both in vitro and in vivo angiogenesis models and thereby might prevent the development of tumors associated with excessive vascularization. This study was aimed to test the effect of delphinidin on melanoma-induced tumor growth with emphasis on its molecular mechanism on endothelial cells. Delphinidin treatment significantly decreased in vivo tumor growth induced by B16-F10 melanoma cell xenograft in mice. In vitro, delphinidin was not able to inhibit VEGFR2-mediated B16-F10 melanoma cell proliferation but it specifically reduced basal and VEGFR2-mediated endothelial cell proliferation. The anti-proliferative effect of delphinidin was reversed either by the MEK1/2 MAP kinase inhibitor, U-0126, or the PI3K inhibitor, LY-294002. VEGF-induced proliferation was reduced either by U-0126 or LY-294002. Under these conditions, delphinidin failed to decrease further endothelial cell proliferation. Delphinidin prevented VEGF-induced phosphorylation of ERK1/2 and p38 MAPK and decreased the expression of the transcription factors, CREB and ATF1. Finally, delphinidin was more potent in inhibiting in vitro cyclic nucleotide phosphodiesterases (PDEs), PDE1 and PDE2, compared to PDE3-PDE5. Altogether delphinidin reduced tumor growth of melanoma cell in vivo by acting specifically on endothelial cell proliferation. The mechanism implies an association between inhibition of VEGF-induced proliferation via VEGFR2 signalling, MAPK, PI3K and at transcription level on CREB/ATF1 factors, and the inhibition of PDE2. In conjunction with our previous studies, we demonstrate that delphinidin is a promising compound to prevent pathologies associated with generation of vascular network in tumorigenesis.

  2. Delphinidin Inhibits Tumor Growth by Acting on VEGF Signalling in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Thérèse Keravis

    Full Text Available The vasculoprotective properties of delphinidin are driven mainly by its action on endothelial cells. Moreover, delphinidin displays anti-angiogenic properties in both in vitro and in vivo angiogenesis models and thereby might prevent the development of tumors associated with excessive vascularization. This study was aimed to test the effect of delphinidin on melanoma-induced tumor growth with emphasis on its molecular mechanism on endothelial cells. Delphinidin treatment significantly decreased in vivo tumor growth induced by B16-F10 melanoma cell xenograft in mice. In vitro, delphinidin was not able to inhibit VEGFR2-mediated B16-F10 melanoma cell proliferation but it specifically reduced basal and VEGFR2-mediated endothelial cell proliferation. The anti-proliferative effect of delphinidin was reversed either by the MEK1/2 MAP kinase inhibitor, U-0126, or the PI3K inhibitor, LY-294002. VEGF-induced proliferation was reduced either by U-0126 or LY-294002. Under these conditions, delphinidin failed to decrease further endothelial cell proliferation. Delphinidin prevented VEGF-induced phosphorylation of ERK1/2 and p38 MAPK and decreased the expression of the transcription factors, CREB and ATF1. Finally, delphinidin was more potent in inhibiting in vitro cyclic nucleotide phosphodiesterases (PDEs, PDE1 and PDE2, compared to PDE3-PDE5. Altogether delphinidin reduced tumor growth of melanoma cell in vivo by acting specifically on endothelial cell proliferation. The mechanism implies an association between inhibition of VEGF-induced proliferation via VEGFR2 signalling, MAPK, PI3K and at transcription level on CREB/ATF1 factors, and the inhibition of PDE2. In conjunction with our previous studies, we demonstrate that delphinidin is a promising compound to prevent pathologies associated with generation of vascular network in tumorigenesis.

  3. Effects of salvianolic acid B on in vitro growth inhibition and apoptosis induction of retinoblastoma cells

    Science.gov (United States)

    Liu, Xing-An

    2012-01-01

    AIM To observe the effects of salvianolic acid B (SalB) on in vitro growth inhibition and apoptosis induction of retinoblastoma HXO-RB44 cells. METHODS The effects of SalB on the HXO-RB44 cells proliferation in vitro were observed by MTT colorimetric method. The morphological changes of apoptosis before and after the treatment of SalB were observed by Hoechst 33258 fluorescent staining method. Apoptosis rate and cell cycle changes of HXO-RB44 cells were detected by flow cytometer at 48 hours after treated by SalB. The expression changes of Caspase-3 protein in HXO-RB44 cells were detected by Western Blot. RESULTS SalB significantly inhibited the growth of HXO-RB44 cells, while the inhibition was in a concentration-and time-dependent manner. The results of fluorescent staining method indicated that HXO-RB44 cells showed significant phenomenon of apoptosis including karyorrhexis, fragmentation and the formation of apoptotic bodies, etc. after 24, 48 and 72 hours co-culturing of SalB and HXO-RB44 cells. The results of flow cytometer showed that the apoptosis rate and the proportion of cells in S phase were gradually increased at 48 hours and 72 hours after treated by different concentrations of SalB. Western Blot strip showed that the expression of Caspase-3 protein in HXO-RB44 cells was gradually increased with the increase of the concentration of SalB. CONCLUSION SalB can significantly affect on HXO-RB44 cells growth inhibition and apoptosis induction which may be achieved through the up-regulation of Caspase-3 expression and the induction of cell cycle arrest. PMID:22773971

  4. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    Science.gov (United States)

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  5. Growth inhibition by tungsten in the sulfur-oxidizing bacterium Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Negishi, Atsunori; Muraoka, Tadashi; Maeda, Terunobu; Takeuchi, Fumiaki; Kanao, Tadayoshi; Kamimura, Kazuo; Sugio, Tsuyoshi

    2005-11-01

    Growth of five strains of sulfur-oxidizing bacteria Acidithiobacillus thiooxidans, including strain NB1-3, was inhibited completely by 50 microM of sodium tungstate (Na(2)WO(4)). When the cells of NB1-3 were incubated in 0.1 M beta-alanine-SO(4)(2-) buffer (pH 3.0) with 100 microM Na(2)WO(4) for 1 h, the amount of tungsten bound to the cells was 33 microg/mg protein. Approximately 10 times more tungsten was bound to the cells at pH 3.0 than at pH 7.0. The tungsten binding to NB1-3 cells was inhibited by oxyanions such as sodium molybdenum and ammonium vanadate. The activities of enzymes involved in elemental sulfur oxidation of NB1-3 cells such as sulfur oxidase, sulfur dioxygenase, and sulfite oxidase were strongly inhibited by Na(2)WO(4). These results indicate that tungsten binds to NB1-3 cells and inhibits the sulfur oxidation enzyme system of the cells, and as a result, inhibits cell growth. When portland cement bars supplemented with 0.075% metal nickel and with 0.075% metal nickel and 0.075% calcium tungstate were exposed to the atmosphere of a sewage treatment plant containing 28 ppm of H(2)S for 2 years, the weight loss of the portland cement bar with metal nickel and calcium tungstate was much lower than the cement bar containing 0.075% metal nickel.

  6. The RARgamma selective agonist CD437 inhibits gastric cell growth through the mechanism of apoptosis.

    Science.gov (United States)

    Jiang, S Y; Lin, D Y; Shyu, R Y; Reichert, U; Yeh, M Y

    1999-04-01

    Retinoids are differentiation-inducing agents that exhibit multiple functions. Their activities are mediated through interaction with nuclear retinoic acid receptors (RAR) and retinoid X receptors (RXR). We have investigated the activities of synthetic retinoids on the growth of five gastric cancer cell lines. The effects of agonists selective for RARalpha, RARbeta and RARgamma (AM580, CD2019 and CD437, respectively) on cell growth were determined, in comparison to all-trans retinoic acid, by measuring total cellular DNA. AM580 and CD2019 had little or no effect on the growth of all five cell lines. In contrast, the RARgamma agonist CD437 inhibited cell growth up to 90-99% in both retinoic acid sensitive and resistant gastric cancer cells at a concentration of 1 microM. The growth suppression caused by CD437 was accompanied by the induction of apoptosis as judged by morphological criteria and DNA ladder formation. However, the extent of CD437-induced growth suppression was not correlated with RARgamma mRNA levels, which indicates that CD437 induces apoptosis in gastric cancer cells via an RARgamma independent pathway.

  7. Characterization of growth inhibition of oral bacteria by sophorolipid using a microplate-format assay.

    Science.gov (United States)

    Solaiman, Daniel K Y; Ashby, Richard D; Uknalis, Joseph

    2017-05-01

    Sophorolipid (SL) is a class of glycolipid biosurfactant produced by yeast and has potent antimicrobial activity against many microorganisms. In this paper, a microplate-based method was developed to characterize the growth inhibition by SL on five representative species of caries-causing oral bacteria. Bacterial growth on microplate in the absence and presence of varying concentrations of SL was continuously monitored by recording the absorbance at 600nm of the cultures using a microplate reader. The results showed that SL completely inhibited the growth of the Lactobacilli at ≥1mg/ml and the Streptococci at much lower concentrations of ≥50μg/ml. More importantly, we further defined the mechanism of antimicrobial activity of SL by analyzing the pattern of the cell growth curves. SL at sublethal concentrations (<1mg/ml) is bactericidal towards the Lactobacilli; it lengthens the apparent cell-doubling time (Td) and decreases the final cell density (as indicated by A600nm) in a concentration-dependent manner. Against the oral Streptococci, on the other hand, SL at sublethal concentrations (<50μg/ml) is bacteriostatic; it delays the onset of cell growth in a concentration-dependent fashion, but once the cell growth is commenced there is no noticeable adverse effect on Td and the final A600nm. Scanning electron microscopic (SEM) study of L. acidophilus grown in sublethal concentration of SL reveals extensive structural damage to the cells. S. mutans grown in sublethal level of SL did not show morphological damage to the cells, but numerous protruding structures could be seen on the cell surface. At the respective lethal levels of SL, L. acidophilus cells were lysed (at 1mg/ml SL) and the cell surface structure of S. mutans (at 130μg/ml SL) was extensively deformed. In summary, this paper presents the first report on a detailed analysis of the effects of SL on Lactobacilli and Streptococci important to oral health and hygiene.

  8. Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells.

    Science.gov (United States)

    Klubo-Gwiezdzinska, Joanna; Jensen, Kirk; Costello, John; Patel, Aneeta; Hoperia, Victoria; Bauer, Andrew; Burman, Kenneth D; Wartofsky, Leonard; Vasko, Vasyl

    2012-06-01

    Medullary thyroid cancer (MTC) is associated with activation of mammalian target of rapamycin (mTOR) signaling pathways. Recent studies showed that the antidiabetic agent metformin decreases proliferation of cancer cells through 5'-AMP-activated protein kinase (AMPK)-dependent inhibition of mTOR. In the current study, we assessed the effect of metformin on MTC cells. For this purpose, we determined growth, viability, migration, and resistance to anoikis assays using two MTC-derived cell lines (TT and MZ-CRC-1). Expressions of molecular targets of metformin were examined in MTC cell lines and in 14 human MTC tissue samples. We found that metformin inhibited growth and decreased expression of cyclin D1 in MTC cells. Treatment with metformin was associated with inhibition of mTOR/p70S6K/pS6 signaling and downregulation of pERK in both TT and MZ-CRC-1 cells. Metformin had no significant effects on pAKT in the cell lines examined. Metformin-inducible AMPK activation was noted only in TT cells. Treatment with AMPK inhibitor (compound C) or AMPK silencing did not prevent growth inhibitory effects of metformin in TT cells. Metformin had no effect on MTC cell migration but reduced the ability of cells to form multicellular spheroids in nonadherent conditions. Immunostaining of human MTC showed over-expression of cyclin D1 in all tumors compared with corresponding normal tissue. Activation of mTOR/p70S6K was detected in 8/14 (57.1%) examined tumors. Together, these findings indicate that growth inhibitory effects in MTC cells are associated with downregulation of both mTOR/6SK and pERK signaling pathways. Expression of metformin's molecular targets in human MTC cells suggests its potential utility for the treatment of MTC in patients.

  9. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shu-Cheng [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Tao, Ze-Zhang, E-mail: zezhangtao@gmail.com [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China)

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  10. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress.

    Science.gov (United States)

    Sharma, Ved Parkash; Singh, Harminder Pal; Kohli, Ravinder Kumar; Batish, Daizy Rani

    2009-10-15

    During the last couple of decades, there has been a tremendous increase in the use of cell phones. It has significantly added to the rapidly increasing EMF smog, an unprecedented type of pollution consisting of radiation in the environment, thereby prompting the scientists to study the effects on humans. However, not many studies have been conducted to explore the effects of cell phone EMFr on growth and biochemical changes in plants. We investigated whether EMFr from cell phones inhibit growth of Vigna radiata (mung bean) through induction of conventional stress responses. Effects of cell phone EMFr (power density: 8.55 microW cm(-2); 900 MHz band width; for 1/2, 1, 2, and 4 h) were determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H(2)O(2)) content, root oxidizability and changes in levels of antioxidant enzymes. Our results showed that cell phone EMFr significantly inhibited the germination (at > or =2 h), and radicle and plumule growths (> or =1 h) in mung bean in a time-dependent manner. Further, cell phone EMFr enhanced MDA content (indicating lipid peroxidation), and increased H(2)O(2) accumulation and root oxidizability in mung bean roots, thereby inducing oxidative stress and cellular damage. In response to EMFr, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases, catalases and glutathione reductases, in mung bean roots. The study concluded that cell phone EMFr inhibit root growth of mung bean by inducing ROS-generated oxidative stress despite increased activities of antioxidant enzymes.

  11. Growth Inhibition of Struvite Crystals in the Presence of Herbal Extract Boerhaavia diffusa Linn

    Directory of Open Access Journals (Sweden)

    C. K. Chauhan

    2009-01-01

    Full Text Available Problem statement: The formation of a urinary stone, known as nephrolithiasis, urolithiasis, renal calculi or kidney stone is a serious, debilitating problem in all societies throughout the world. Struvite or Ammonium Magnesium Phosphate Hexahydrate (AMPH is one of the components of urinary stone (calculi. Struvite stones are commonly found in women. Struvites form in humans as a result of urinary tract infection with ureolithic urea splitting micro organisms. These stones can grow rapidly forming "staghorn-calculi", which is more painful urological disorder. Therefore, it is of prime importance to study the growth and inhibition of Struvite crystals. Approach: This in vitro study had been carried out in the presence of herbal extract of Boerhaavia diffusa Linn. by using single diffusion gel growth technique. Sodium metasilicate solution of specific gravity 1.05 and an aqueous solution of ammonium dihydrogen phosphate of 0.5 M concentration were mixed so that the pH value 7.0 could be set. After the gelation, equal amount of supernatant solution of 1.0 M magnesium acetate prepared with 0.5 and 1% concentrations of the herbal extract of B. diffusa Linn. were gently poured on the set gels in the respective test tubes in the aseptic medium. Results: The growth of crystals without and with herbal extracts was monitored at regular time intervals. As the concentration of B. diffusa Linn. increased, the inhibition of crystals also increased in the gel media as well as the dissolution of crystals at the gel-liquid interface increases. The de-fragmentation of some grown crystals was also noticed. Conclusion: The herbal extract of B. diffusa Linn. inhibited the growth of struvite crystals in vitro. This study incorporated multidisciplinary interests and may be used for formulating the strategy for prevention or dissolution of urinary stones.

  12. Maximum Inhibition of Breast Cancer/Stem Cell Growth by Concomitant Blockage of Key Receptors

    Directory of Open Access Journals (Sweden)

    Mossa Gardaneh

    2012-01-01

    Full Text Available The blockage of cancer cell growth and division is the prime objective in clinical cancer therapy both at early stages and for inhibition of minimal residual disease and relapse. The failure of conventional therapies in treating breast cancer (BC has prompted dissection of signalling pathways involved in BC cell growth and characterisation of cellular receptors. Specific sets of membrane-bound receptors promote disarrayed self-renewal of BC stem cells and deregulated BC cell proliferation. Individual blockage of each receptor promotes only incomplete inhibition of BC cell growth and partial regression of metastasis. Such monotherapies are based on either chemotherapy or monoclonal antibodies. However, they do not provide long-lasting benefits and are further compromised by increasing resistance the cancer cells acquire against therapeutic agents, by their evasion of receptor blockage and by adoption of alternative growth routes that are induced by cross-talks between key receptors. On the other hand, dual targeting approaches, including receptor blockage combined with chemotherapy, produce prolonged overall survival but, nevertheless, complicate treatment by inducing side effects. Based on the complex nature of BC, combined targeted strategies that potentially confer maximum coverage for treatment cannot be effective without overcoming drug resistance initiated and further induced by inter-receptor communications. This implies that a comprehensive strategy based on concomitant inhibition of key receptors could provide an ultimate solution for effective treatment of aggressive types of BC. Such a strategy would likely be capable of targeting breast tumour cells and BC stem cells alike eventually forcing the cancer to regress.

  13. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ved Parkash [Department of Environment and Vocational Studies, Panjab University, Chandigarh 160014 (India); Department of Zoology, Panjab University, Chandigarh 160014 (India); Singh, Harminder Pal, E-mail: hpsingh_01@yahoo.com [Department of Environment and Vocational Studies, Panjab University, Chandigarh 160014 (India); Kohli, Ravinder Kumar; Batish, Daizy Rani [Department of Botany, Panjab University, Chandigarh 160014 (India)

    2009-10-15

    During the last couple of decades, there has been a tremendous increase in the use of cell phones. It has significantly added to the rapidly increasing EMF smog, an unprecedented type of pollution consisting of radiation in the environment, thereby prompting the scientists to study the effects on humans. However, not many studies have been conducted to explore the effects of cell phone EMFr on growth and biochemical changes in plants. We investigated whether EMFr from cell phones inhibit growth of Vigna radiata (mung bean) through induction of conventional stress responses. Effects of cell phone EMFr (power density: 8.55 {mu}W cm{sup -2}; 900 MHz band width; for 1/2, 1, 2, and 4 h) were determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H{sub 2}O{sub 2}) content, root oxidizability and changes in levels of antioxidant enzymes. Our results showed that cell phone EMFr significantly inhibited the germination (at {>=}2 h), and radicle and plumule growths ({>=}1 h) in mung bean in a time-dependent manner. Further, cell phone EMFr enhanced MDA content (indicating lipid peroxidation), and increased H{sub 2}O{sub 2} accumulation and root oxidizability in mung bean roots, thereby inducing oxidative stress and cellular damage. In response to EMFr, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases, catalases and glutathione reductases, in mung bean roots. The study concluded that cell phone EMFr inhibit root growth of mung bean by inducing ROS-generated oxidative stress despite increased activities of antioxidant enzymes.

  14. Inhibition of C. difficile and C. perfringens by commercial and potential probiotic strains and their in-vitro growth characteristics

    DEFF Research Database (Denmark)

    Schoster, A.; Kokotovic, Branko; Permin, A.;

    2012-01-01

    and their growth characteristics. The objective of this study was to determine the inhibitory effect of commercial and potential probiotic on C. difficile and C. perfringens and assess their growth characteristics in-vitro. The inhibitory effect of a cell free probiotic supernatant of 17 commercial bacterial...... strains (Lactobacilli n=16, Bifidobacteria n=1) on growth of clostridia spp was assessed in an agar well diffusion assay and broth co-culture experiment, using supernatant harvested at different growth phases and with and without pH adjustment. To study growth characteristics MRS broth was adjusted to pH2...... it was harvested. 10/17 probiotic supernatants inhibited C. difficile in a pH dependant manner when harvested in the stationary growth phase. In the broth co-culture 5/17 probiotics inhibited C. perfringens and 10/17 inhibited C. difficile both in a pH dependant manner. All probiotic strains were able to grow at p...

  15. Mechanoreceptors rather than sedimentable amyloplasts perceive the gravity signal in hypergravity-induced inhibition of root growth in azuki bean.

    Science.gov (United States)

    Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Hoson, Takayuki

    2005-01-01

    Elongation of primary roots of azuki bean (Vigna angularis Ohwi et Ohashi) was suppressed under hypergravity conditions produced by centrifugation, such that the growth rate decreased in proportion to the logarithm of the magnitude of the gravity. The removal of the root cap did not influence the hypergravity-induced inhibition of root growth, although it completely inhibited the gravitropic root curvature. Lanthanum and gadolinium, blockers of mechanoreceptors, nullified the growth-inhibitory effect of hypergravity. These results suggest that the gravity signal for the hypergravity-induced inhibition of root growth is perceived independently from that of gravitropism, which involves amyloplasts as statoliths. Horizontal and basipetal hypergravity suppressed root growth as did acropetal hypergravity, all of which were nullified by the presence of lanthanum or gadolinium. These findings suggest that mechanoreceptors on the plasma membrane perceive the gravity signal independently of the direction of the stimuli and roots may utilise it to regulate their growth rate.

  16. The microbial ecology of wine grape berries.

    Science.gov (United States)

    Barata, A; Malfeito-Ferreira, M; Loureiro, V

    2012-02-15

    Grapes have a complex microbial ecology including filamentous fungi, yeasts and bacteria with different physiological characteristics and effects upon wine production. Some species are only found in grapes, such as parasitic fungi and environmental bacteria, while others have the ability to survive and grow in wines, constituting the wine microbial consortium. This consortium covers yeast species, lactic acid bacteria and acetic acid bacteria. The proportion of these microorganisms depends on the grape ripening stage and on the availability of nutrients. Grape berries are susceptible to fungal parasites until véraison after which the microbiota of truly intact berries is similar to that of plant leaves, which is dominated by basidiomycetous yeasts (e.g. Cryptococcus spp., Rhodotorula spp. Sporobolomyces spp.) and the yeast-like fungus Aureobasidium pullulans. The cuticle of visually intact berries may bear microfissures and softens with ripening, increasing nutrient availability and explaining the possible dominance by the oxidative or weakly fermentative ascomycetous populations (e.g. Candida spp., Hanseniaspora spp., Metschnikowia spp., Pichia spp.) approaching harvest time. When grape skin is clearly damaged, the availability of high sugar concentrations on the berry surface favours the increase of ascomycetes with higher fermentative activity like Pichia spp. and Zygoascus hellenicus, including dangerous wine spoilage yeasts (e.g. Zygosaccharomyces spp., Torulaspora spp.), and of acetic acid bacteria (e.g. Gluconobacter spp., Acetobacter spp.). The sugar fermenting species Saccharomyces cerevisiae is rarely found on unblemished berries, being favoured by grape damage. Lactic acid bacteria are minor partners of grape microbiota and while being the typical agent of malolactic fermentation, Oenococcus oeni has been seldom isolated from grapes in the vineyard. Environmental ubiquitous bacteria of the genus Enterobacter spp., Enterococcus spp., Bacillus spp

  17. Growth Inhibition Occurs Independently of Cell Mortality in Tomato (Solanum lycopersicum) Exposed to High Cadmium Concentrations

    Institute of Scientific and Technical Information of China (English)

    Christine Delpérée; Stanley Lutts

    2008-01-01

    In order to analyze the adaptation potential of tomato shoots to a sudden increase in Cd concentration, tomato plants (Solanum lycopersicum L. var. Ailsa Craig) were exposed under controlled environmental conditions to a high dose of this heavy metal (250 μM CdCl2>) in nutrient solution for 7 and 14 d. Both root and shoot growth was completely inhibited but all plants remained alive until the end of the treatment. Cell viability remained unaffected but the activity of the mitochondrial alternative pathway was stimulated by Cd stress at the expense of the cytochrome pathway. Cadmium concentration was higher in roots than in shoots and a decrease In the rate of net Cd translocation was noticed during the second week of stress. Cadmium decreased both leaf conductance (g1>) and chlorophyll concentration. However, the effect on net CO2 assimilation remained limited and soluble sugars accumulated in leaves. Photochemical efficiency of PSll (FvlFm) was not affected despite a decrease in the number of reaction centers and an inhibition of electron transfer to acceptors of PSII. It is concluded that tomato shoot may sustain short term exposure to high doses of cadmium despite growth inhibition. This property implies several physiological strategies linked to both avoidance and tolerance mechanisms.

  18. Growth Inhibition of Cronobacter sakazakii in Experimentally Contaminated Powdered Infant Formula by Kefir Supernatant.

    Science.gov (United States)

    Kim, Dong-Hyeon; Chon, Jung-Whan; Kang, Il-Byeong; Kim, Hyunsook; Kim, Hong-Seok; Song, Kwang-Young; Seo, Kun-Ho

    2015-09-01

    Kefir is a type of fermented milk containing lactic and acetic acid bacteria and yeast. In this study, we evaluated the antimicrobial activity of kefir supernatant against Cronobacter sakazakii in powdered infant formula (PIF). In a spot-on-lawn test, the growth of 20 C. sakazakii strains, including 10 clinical and 10 food isolates, was completely inhibited in the presence of kefir supernatant. Significant differences in the diameters of inhibition zones were observed upon treatment with kefir compared with the results for Lactobacillus kefiri and Candida kefyr culture supernatants or solutions of lactic and acetic acid and ethyl alcohol in the agar well diffusion test (P < 0.05). The addition of 100 μl of kefir supernatant to 1 ml of nutrient broth completely inhibited the growth of C. sakazakii, as evaluated by spectrophotometry. The antimicrobial activity of kefir supernatant in experimentally contaminated PIF was also tested; we found no viable C. sakazakii cells remaining in PIF rehydrated with 30% kefir supernatant solution for 1 h, demonstrating that the antimicrobial activity of kefir supernatant against C. sakazakii could be applied in real food samples.

  19. Suppression of pancreatic carcinoma growth by activating peroxisome proliferator-activated receptor γ involves angiogenesis inhibition

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Dong; Xing-Peng Wang; Kai Wu

    2009-01-01

    AIM: To study the possible actions and mechanisms of peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor, in pancreatic carcinogenesis,especially in angiogenesis.METHODS: Expressions of PPARγ and retinoid acid receptor (RXRα) were examined by reverse-transcription polymerase chain reaction (RT-PCR) with immunocytochemical staining. Pancreatic carcinoma cells, PANC-1,were treated either with 9-cis-RA, a ligand of RXRα,or with 15-deoxy-Δ12,14 prostaglandin J2(15d-PGJ2), a ligand of PPARγ, or both. Antiproliferative effect was evaluated by cell viability using methyltetrazolium (MTT) assay. A pancreatic carcinoma xenograft tumor model of nude mice was established by inoculating PANC-1 cells subcutaneously. Rosiglitazone, a specific ligand of PPARγ, was administered via water drinking in experimental group of nude mice. After 75 d, all mice were sacrificed. Expression of proliferating cell nuclear antigen (PCNA) in tumor tissue was examined with immunohistochemical staining. Expression of vascular endothelial growth factor (VEGF) mRNA in PANC-1 cells, which were treated with 15d-PGJ2 or 9-cis-RA at variousconcentrations or different duration, was detected by semi-quantitative RT-PCR. Effects of Rosiglitazone on changes of microvascular density (MVD) and VEGF expression were investigated in xenograft tumor tissue. Neovasculature was detected with immunohistochemistry staining labeled with anti-Ⅳ collagen antibody, and indicated by MVD.RESULTS: RT-PCR and immunocytochemical staining showed that PPARγ and RXRα were expressed in PANC-1 cells at both transcription level and translation level. MTT assay demonstrated that 15d-PGJ2, 9-cis-RA and their combination inhibited the growth of PANC-1 cells in a dose-dependent manner. 9-cis-RA had a combined inhibiting action with 15d-PGJ2 on the growth of pancreatic carcinoma. In vivo studies revealed that Rosiglitazone significantly suppressed the growth of pancreatic carcinoma

  20. Penicillium strains isolated from Slovak grape berries taxonomy assessment by secondary metabolite profile.

    Science.gov (United States)

    Santini, Antonello; Mikušová, Petra; Sulyok, Michael; Krska, Rudolf; Labuda, Roman; Srobárová, Antónia

    2014-11-01

    The secondary metabolite profiles of microfungi of the genus Penicillium isolated from samples of grape berries collected in two different phases during two vegetative seasons in Slovakia is described to assess the taxonomy. Three Slovak vine regions have been selected for this study, based on their climatic differences and national economic importance. Cultures of microfungi isolated from berries were incubated on different selective media for macro and micromorphology identification. The species Penicillium brevicompactum, Penicillium crustosum, Penicillium chrysogenum, Penicillium expansum, Penicillium palitans and Penicillium polonicum were identified according to growth and morphology. The related strains were found to produce a broad spectrum of fungal metabolites, including roquefortine C, chaetoglobosin A, penitrem A, cyclopeptin, cyclopenin, viridicatin, methylviridicatin, verrucofortine, secalonic acid D, cyclopiazonic acid, fumigaclavine and mycophenolic acid. Chemotaxonomy was performed using high-performance liquid chromatography (HPLC) and mass spectrometry (MS). Dried grape berries were also analyzed allowing to assess the presence of patulin, roquefortine C and penicillic acid; this last one has been identified in dried berries but not in vitro.

  1. CytoregR inhibits growth and proliferation of human adenocarcinoma cells via induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Hassanhi M

    2006-01-01

    Full Text Available Abstract Background Cancer is one of the devastating neovascular diseases that incapacitate so many people the world over. Recent reports from the National Cancer Institute indicate some significant gain therapy and cancer management as seen in the increase in the 5-year survival rate over the past two decades. Although near-perfect cure rate have been reported in the early-stage disease, these data reveal high recurrence rate and serious side effects including second malignancies and fatalities. Most of the currently used anticancer agents are only effective against proliferating cancer cells. Thus attention has been focused on potential anti-cancer agents capable of killing cancer cells independent of the cell cycle state, to ensure effective elimination of most cancer cells. The objective of this study was to test the chemosensitivity and potential mechanism of action of a novel cancer drug, CytoregR, in a panel of human cancer cells. Methods the study was performed using a series of bioassays including Trypan blue exclusion, MTS Growth inhibition, LDH-cytotoxicity, TUNEL-Terminal DNA fragmentation Apoptosis Assay, and the Caspase protease CPP32 activity assays. Results CytoregR induced significant dose- and time-dependent inhibition of growth in all the cells; with significant differences in chemosensitivity (P < 0.05 between the target cells becoming more apparent at 48 hr exposure. CytoregR showed no significant effect on normal cells relative to the tumor cells. Growth inhibition in all the cells was due to induction of apoptosis at lower concentrations of cytoregR (> 1:300. CytoregR-induced caspase protease-3 (CPP32 activation significantly and positively correlated with apoptosis induction and growth inhibition; thus implicating CPP32 as the principal death pathway in cytoregR-induced apoptosis. Conclusion CytoregR exerted a dose-and time-dependent growth inhibitory effect in all the target cells through induction of apoptosis via the

  2. Gyramides prevent bacterial growth by inhibiting DNA gyrase and altering chromosome topology.

    Science.gov (United States)

    Rajendram, Manohary; Hurley, Katherine A; Foss, Marie H; Thornton, Kelsey M; Moore, Jared T; Shaw, Jared T; Weibel, Douglas B

    2014-06-20

    Antibiotics targeting DNA gyrase have been a clinical success story for the past half-century, and the emergence of bacterial resistance has fueled the search for new gyrase inhibitors. In this paper we demonstrate that a new class of gyrase inhibitors, the gyramides, are bacteriostatic agents that competitively inhibit the ATPase activity of Escherichia coli gyrase and produce supercoiled DNA in vivo. E. coli cells treated with gyramide A have abnormally localized, condensed chromosomes that blocks DNA replication and interrupts chromosome segregation. The resulting alterations in DNA topology inhibit cell division through a mechanism that involves the SOS pathway. Importantly, gyramide A is a specific inhibitor of gyrase and does not inhibit the closely related E. coli enzyme topoisomerase IV. E. coli mutants with reduced susceptibility to gyramide A do not display cross-resistance to ciprofloxacin and novobiocin. The results demonstrate that the gyramides prevent bacterial growth by a mechanism in which the topological state of chromosomes is altered and halts DNA replication and segregation. The specificity and activity of the gyramides for inhibiting gyrase makes these compounds important chemical tools for studying the mechanism of gyrase and the connection between DNA topology and bacterial cell division.

  3. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues

    Science.gov (United States)

    Zanganeh, Saeid; Hutter, Gregor; Spitler, Ryan; Lenkov, Olga; Mahmoudi, Morteza; Shaw, Aubie; Pajarinen, Jukka Sakari; Nejadnik, Hossein; Goodman, Stuart; Moseley, Michael; Coussens, Lisa Marie; Daldrup-Link, Heike Elisabeth

    2016-11-01

    Until now, the Food and Drug Administration (FDA)-approved iron supplement ferumoxytol and other iron oxide nanoparticles have been used for treating iron deficiency, as contrast agents for magnetic resonance imaging and as drug carriers. Here, we show an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers, and lung cancer metastases in liver and lungs. In vitro, adenocarcinoma cells co-incubated with ferumoxytol and macrophages showed increased caspase-3 activity. Macrophages exposed to ferumoxytol displayed increased mRNA associated with pro-inflammatory Th1-type responses. In vivo, ferumoxytol significantly inhibited growth of subcutaneous adenocarcinomas in mice. In addition, intravenous ferumoxytol treatment before intravenous tumour cell challenge prevented development of liver metastasis. Fluorescence-activated cell sorting (FACS) and histopathology studies showed that the observed tumour growth inhibition was accompanied by increased presence of pro-inflammatory M1 macrophages in the tumour tissues. Our results suggest that ferumoxytol could be applied 'off label' to protect the liver from metastatic seeds and potentiate macrophage-modulating cancer immunotherapies.

  4. Berberine inhibits the growth of human colorectal adenocarcinoma in vitro and in vivo.

    Science.gov (United States)

    Cai, Yuchen; Xia, Qing; Luo, Rongzhen; Huang, Peiyu; Sun, Yueli; Shi, Yanxia; Jiang, Wenqi

    2014-01-01

    Berberine is an alkaloid isolated from the Chinese herbal medicine Huanglian, and has long been used as an antibiotic. Its antineoplastic properties were subsequently discovered in vitro. The purpose of this study was to investigate the effects of berberine on the growth of human colorectal carcinoma cells in vitro and in vivo. The results showed that berberine inhibited human colorectal adenocarcinoma (LoVo) cell growth in a time- and dose-dependent manner. A WST-1 assay showed that the IC50 value after 72 h was 40.79 ± 4.11 μM. Cell cycle analysis of 40 μM berberine-treated LoVo cells by flow cytometry showed accumulation of cells in the G2/M phase. The inhibition of LoVo cell growth by berberine was associated with the suppression of cyclin B1, cdc2, and cdc25c proteins. Berberine at a dose of 50 mg kg(-1) day(-1) showed inhibitory rates of 45.3% in a human colorectal adenocarcinoma xenograft in nude mice. The combination of berberine and 5-fluorouracil (5-FU) had a higher inhibitory rate (59.8%) than the berberine group (36.4%, P = 0.01), but no significant difference was observed between the 5-FU group (43.0%, P = 0.06) and the combination group. These results support the possibility that berberine may be useful as an alternative therapy for colorectal carcinoma.

  5. Sinefungin, a Natural Nucleoside Analogue of S-Adenosylmethionine, Inhibits Streptococcus pneumoniae Biofilm Growth

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Yadav

    2014-01-01

    Full Text Available Pneumococcal colonization and disease is often associated with biofilm formation, in which the bacteria exhibit elevated resistance both to antibiotics and to host defense systems, often resulting in infections that are persistent and difficult to treat. We evaluated the effect of sinefungin, a nucleoside analogue of S-adenosylmethionine, on pneumococcal in vitro biofilm formation and in vivo colonization. Sinefungin is bacteriostatic to pneumococci and significantly decreased biofilm growth and inhibited proliferation and structure of actively growing biofilms but did not alter growth or the matrix structure of established biofilms. Sinefungin significantly reduced pneumococcal colonization in rat middle ear. The quorum sensing molecule (autoinducer-2 production was significantly reduced by 92% in sinefungin treated samples. The luxS, pfs, and speE genes were downregulated in biofilms grown in the presence of sinefungin. This study shows that sinefungin inhibits pneumococcal biofilm growth in vitro and colonization in vivo, decreases AI-2 production, and downregulates luxS, pfs, and speE gene expressions. Therefore, the S-adenosylmethionine (SAM inhibitors could be used as lead compounds for the development of novel antibiofilm agents against pneumococci.

  6. Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells.

    Science.gov (United States)

    Chen, Tunan; Yi, Liang; Li, Fei; Hu, Rong; Hu, Shengli; Yin, Yi; Lan, Chuan; Li, Zhao; Fu, Chuhua; Cao, Liu; Chen, Zhi; Xian, Jishu; Feng, Hua

    2015-04-01

    Glioma‑initiating cells are a small population of cells that have the ability to undergo self‑renewal and initiate tumorigenesis. In the present study, the potential role of salinomycin, a polyether antibiotic, on the suppression of glioma cell growth was investigated. GL261 glioma cells were maintained in a stem‑cell‑like status [GL261 neurospheres (GL261‑NS)] or induced for differentiation [GL261 adherent cells (GL261‑AC)]. It was demonstrated that salinomycin significantly reduced the cell viability of GL261‑NS and GL261‑AC cells in a dose‑dependent manner, with a more substantial inhibition of GL261‑NS proliferation (Psalinomycin on cell growth was more effective than that of 1‑(4‑amino‑2‑methyl‑5‑pyrimid l)‑methyl‑3‑(2‑chloroethyl)‑3‑nitrosourea hydrochloride and vincristine (PSalinomycin depleted GL261‑NS from tumorspheres and induced cell apoptosis. In addition, salinomycin prolonged the median survival time of glioma‑bearing mice (Psalinomycin may preferentially inhibit glioma‑initiated cell growth by inducing apoptosis, suggesting that salinomycin may provide a valuable therapeutic strategy for the treatment of malignant glioma.

  7. Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L.) seedlings

    Indian Academy of Sciences (India)

    M N Alvim; F T Ramos; D C Oliveira; R M S Isaias; M G C França

    2012-12-01

    We correlated root growth inhibition with aluminium (Al3+) localization and toxicity symptoms in rice roots using seedlings of two genotypes (tolerant and sensitive) that were exposed to different AlCl3 concentrations. Al3+ localization was evaluated by hematoxylin in primary roots and by morin in cross-sections of the root tips. Neutral invertase enzyme activity and callose (1$\\to$3, -D-glucan) accumulation were observed and compared with Al3+ accumulation sites. Root growth was inhibited by Al3+ in a concentration-specific manner and proportional to the increase of hematoxylin staining, being more pronounced in the sensitive genotype. Morin staining showed the presence of Al3+ deep within the roots of the sensitive genotype, indicating that the metal was able to penetrate beyond the first few cell layers. In the tolerant genotype, Al3+ penetration was restricted to the first two cell layers. Ruptures in exodermis and epidermis layers by lateral root protrusions in both genotypes allowed Al3+ to enter into the roots. More intense activity of invertase in roots of the tolerant genotype was also observed, which could be related to greater root growth of this cultivar when submitted to Al3+ stress. Moreover, Al3+-induced callose accumulation was a late response occurring in the same areas where Al3+ was present.

  8. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis.

    Science.gov (United States)

    Wang, Yong-Gang; Zhan, Yi-Ping; Pan, Shu-Yi; Wang, Hai-Dong; Zhang, Dun-Xiao; Gao, Kai; Qi, Xue-Ling; Yu, Chun-Jiang

    2015-07-01

    Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells.

  9. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-02-01

    Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis.

  10. Inhibition of Growth and Gene Expression by PNA-peptide Conjugates in Streptococcus pyogenes

    Science.gov (United States)

    Patenge, Nadja; Pappesch, Roberto; Krawack, Franziska; Walda, Claudia; Mraheil, Mobarak Abu; Jacob, Anette; Hain, Torsten; Kreikemeyer, Bernd

    2013-01-01

    While Streptococcus pyogenes is consistently susceptible toward penicillin, therapeutic failure of penicillin treatment has been reported repeatedly and a considerable number of patients exhibit allergic reactions to this substance. At the same time, streptococcal resistance to alternative antibiotics, e.g., macrolides, has increased. Taken together, these facts demand the development of novel therapeutic strategies. In this study, S. pyogenes growth was inhibited by application of peptide-conjugated antisense-peptide nucleic acids (PNAs) specific for the essential gyrase A gene (gyrA). Thereby, HIV-1 Tat peptide-coupled PNAs were more efficient inhibitors of streptococcal growth as compared with (KFF)3K-coupled PNAs. Peptide-anti-gyrA PNAs decreased the abundance of gyrA transcripts in S. pyogenes. Growth inhibition by antisense interference was enhanced by combination of peptide-coupled PNAs with protein-level inhibitors. Antimicrobial synergy could be detected with levofloxacin and novobiocin, targeting the gyrase enzyme, and with spectinomycin, impeding ribosomal function. The prospective application of carrier peptide-coupled antisense PNAs in S. pyogenes covers the use as an antimicrobial agent and the employment as a knock-down strategy for the investigation of virulence factor function. PMID:24193033

  11. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells.

    Science.gov (United States)

    Guo, Chih-Hung; Hsia, Simon; Shih, Min-Yi; Hsieh, Fang-Chin; Chen, Pei-Chung

    2015-01-01

    Recent evidence suggests that selenium (Se) yeast may exhibit potential anti-cancer properties; whereas the precise mechanisms remain unknown. The present study was aimed at evaluating the effects of Se yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. Treatments of ER-positive MCF-7 and triple-negative MDA-MB-231 cells with Se yeast (100, 750, and 1500 ng Se/mL), methylseleninic acid (MSA, 1500 ng Se/mL), or methylselenocysteine (MSC, 1500 ng Se/mL) at a time course experiment (at 24, 48, 72, and 96 h) were analyzed. Se yeast inhibited the growth of these cancer cells in a dose- and time-dependent manner. Compared with the same level of MSA, cancer cells exposure to Se yeast exhibited a lower growth-inhibitory response. The latter has also lower superoxide production and reduced antioxidant enzyme activities. Furthermore, MSA (1500 ng Se/mL)-exposed non-tumorigenic human mammary epithelial cells (HMEC) have a significant growth inhibitory effect, but not Se yeast and MSC. Compared with MSA, Se yeast resulted in a greater increase in the early apoptosis in MCF-7 cells as well as a lower proportion of early and late apoptosis in MDA-MB-231 cells. In addition, nuclear morphological changes and loss of mitochondrial membrane potential were observed. In conclusion, a dose of 100 to 1500 ng Se/mL of Se yeast can increase oxidative stress, and stimulate growth inhibitory effects and apoptosis induction in breast cancer cell lines, but does not affect non-tumorigenic cells.

  12. BTA Film Growth on Copper and Its Corrosion Inhibition Investigated by UHV-STM and LEED

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kye Hyun [School of Metallurgy and Materials Engineering College of Engineering, Yeungnam University, Kyungbook (Korea, Republic of)

    1996-12-25

    The adsorption and film growth of the organic inhibitor(Benzotriazole: BTA) on the copper single crystal were investigated by the UHV-STM(Scanning Tunnelling Microscope) and LEED. The BTA adsorbed structure on the clean Cu(110)-1*1 surface exhibited well-ordered c(4*2) structure by STM image and LEED pattern. Further deposition of BTA on monolayer film, BTA film growth on the clean surface exhibited 2-dimensional growth mode with commensurate growth film. On the other hand, the BTA adsorbed structure on oxygen induced Cu(110)-2*1 surface was a fully-disordered cluster-like structure. For the multilayer film on the oxygen induced Cu(110)-2*1 surface, the BTA film was grown by 3-dimensional growth mode. BTA preferential adsorption was seen the oxygen induced Cu(110)-2*1 surface. The inhibition mechanism of the BTA on copper single crystal on both the clean Cu(110)-1*1 surface and the oxygen induced Cu(110)-2*1 surface was exerted by the complete blocking of the polymerized multi-layer film. (author). 24 refs., 4 figs.

  13. The influence of haemoglobin and iron on in vitro mycobacterial growth inhibition assays

    Science.gov (United States)

    Tanner, Rachel; O’Shea, Matthew K.; White, Andrew D.; Müller, Julius; Harrington-Kandt, Rachel; Matsumiya, Magali; Dennis, Mike J.; Parizotto, Eneida A.; Harris, Stephanie; Stylianou, Elena; Naranbhai, Vivek; Bettencourt, Paulo; Drakesmith, Hal; Sharpe, Sally; Fletcher, Helen A.; McShane, Helen

    2017-01-01

    The current vaccine against tuberculosis, live attenuated Mycobacterium bovis BCG, has variable efficacy, but development of an effective alternative is severely hampered by the lack of an immune correlate of protection. There has been a recent resurgence of interest in functional in vitro mycobacterial growth inhibition assays (MGIAs), which provide a measure of a range of different immune mechanisms and their interactions. We identified a positive correlation between mean corpuscular haemoglobin and in vitro growth of BCG in whole blood from healthy UK human volunteers. Mycobacterial growth in peripheral blood mononuclear cells (PBMC) from both humans and macaques was increased following the experimental addition of haemoglobin (Hb) or ferric iron, and reduced following addition of the iron chelator deferoxamine (DFO). Expression of Hb genes correlated positively with mycobacterial growth in whole blood from UK/Asian adults and, to a lesser extent, in PBMC from South African infants. Taken together our data indicate an association between Hb/iron levels and BCG growth in vitro, which may in part explain differences in findings between whole blood and PBMC MGIAs and should be considered when using such assays. PMID:28256545

  14. Knockdown of Stat3 expression using RNAi inhibits growth of laryngeal tumors in vivo

    Institute of Scientific and Technical Information of China (English)

    Li-fang GAO; Lian-ji WEN; Hao YU; Ling ZHANG; Yan MENG; Yue-ting SHAO; De-qi XU; Xue-jian ZHAO

    2006-01-01

    Aim:To study the effect of pSilencer1.0-U6-siRNA-stat3 on the growth of human laryngeal tumors in nude mice.Methods:Hep2 cells were transplanted into nude mice,then at the time of tumor fornaation,growth rates were observed.After the tumor formed,pSilencer1.0-U6-siRNA-stat3 was injected.Tumor volumes were calculated,and growth curves were plotted.Representative histological sections were taken from mice beating transplantation tumors in both treated and control groups,and stat3,Ptyr-star3,Bcl-2,cyclin D1,and survivin expression were detected by Western blotting.survivin Mrna levels were detected by Northern blotting,hematoxylin and cosin staining and terminal deoxvribonucleotidvl transferase-mediated Dutp-digoxigenin nick end-1abeling (TUNEL)assay to confirm the apoptosis of tumors.Results:In nude mice,pSilencer1.0-U6-siRNA-stat3 significantly suppressed the growth of tumors compared with controls (P<0.001). It suppressed stat3 expression,and downregulated BcL2,cyclin D1,and survivin expression within the tumor.This significantly induced apoptosis of the tumors.Conclusion:pSilencer1.0-U6-siRNA-stat3 was able to inhibit the growth of transplanted human laryngeal tumors in nude mice and induce apoptosis.

  15. Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide.

    Directory of Open Access Journals (Sweden)

    Ortal Mizrahy

    Full Text Available The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs, present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH, on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications.

  16. Flipping the transcriptional switch from myelin inhibition to axon growth in the CNS

    Directory of Open Access Journals (Sweden)

    Jason B Carmel

    2015-07-01

    Full Text Available Poor regeneration of severed axons in the central nervous system (CNS limits functional recovery. Regeneration failure involves an interplay of inhibitory environmental elements and the growth state of the neuron. To find internal changes in gene expression that might overcome inhibitory environmental cues, we compared several paradigms that allow growth in the inhibitory environment. Conditions that allow axon growth by axotomized and cultured dorsal root ganglion (DRG neurons on CNS myelin include immaturity (the first few postnatal days, high levels of cyclic adenosine mono phosphate (cAMP, and conditioning with a peripheral nerve lesion before explant. This shift from inhibition to growth depends on transcription. Seeking to understand the transcriptome changes that allow axon growth in the CNS, we collaborated with the Marie Filbin laboratory to identify several mRNAs that are functionally relevant, as determined by gain- and loss-of-function studies. In this Perspective, we review evidence from these experiments and discuss the merits of comparing multiple regenerative paradigms to identify a core transcriptional program for CNS axon regeneration.

  17. Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide.

    Science.gov (United States)

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications.

  18. Dabigatran Potentiates Gemcitabine-Induced Growth Inhibition of Pancreatic Cancer in Mice

    Science.gov (United States)

    Shi, Kun; Damhofer, Helene; Daalhuisen, Joost; ten Brink, Marieke; Richel, Dick J; Spek, C Arnold

    2017-01-01

    Pancreatic cancer is one of the most lethal solid malignancies, with few treatment options. We have recently shown that expression of protease activated receptor (PAR)-1 in the tumor microenvironment drives the progression and induces the chemoresistance of pancreatic cancer. As thrombin is the prototypical PAR-1 agonist, here we address the effects of the direct thrombin inhibitor dabigatran on pancreatic cancer growth and drug resistance in an orthotropic pancreatic cancer model. We show that dabigatran treatment did not affect primary tumor growth, whereas it significantly increased tumor dissemination throughout the peritoneal cavity. Increased dissemination was accompanied by intratumoral bleeding and increased numbers of aberrant and/or collapsed blood vessels in the primary tumors. In combination with gemcitabine, dabigatran treatment limited primary tumor growth, did not induce bleeding complications and prevented tumor cell dissemination. Dabigatran was, however, not as efficient as genetic ablation of PAR-1 in our previous study, suggesting that thrombin is not the main PAR-1 agonist in the setting of pancreatic cancer. Overall, we show that dabigatran potentiates gemcitabine-induced growth inhibition of pancreatic cancer but does not affect primary tumor growth when used as monotherapy. PMID:28182192

  19. Neural progenitor and hemopoietic stem cells inhibit the growth of low-differentiated glioma.

    Science.gov (United States)

    Baklaushev, V P; Grinenko, N F; Savchenko, E A; Bykovskaya, S N; Yusubalieva, G M; Viktorov, I V; Bryukhovetskii, A S; Bryukhovetskii, I S; Chekhonin, V P

    2012-02-01

    The effects of neural progenitor and hemopoietic stem cells on C6 glioma cells were studied in in vivo and in vitro experiments. Considerable inhibition of proliferation during co-culturing of glioma cells with neural progenitor cells was revealed by quantitative MTT test and bromodeoxyuridine incorporation test. Labeled neural progenitor and hemopoietic stem cells implanted into the focus of experimental cerebral glioma C6 survive in the brain of experimental animals for at least 7 days, migrate with glioma cells, and accumulate in the peritumoral space. Under these conditions, neural progenitor cells differentiate with the formation of long processes. Morphometric analysis of glioma cells showed that implantation of neural progenitor and hemopoietic stem cells is accompanied by considerable inhibition of the growth of experimental glioma C6 in comparison with the control. The mechanisms of tumor-suppressive effects of neural and hemopoietic stem cells require further investigation.

  20. Inhibition of microbial growth by spice extracts and their effect of irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Meixu, G. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-08-01

    The antimicrobial activity of black pepper, rosemary and red pepper has been tested against 12 microorganisms. Alcoholic extracts of these spices were not exhibited strong activity against gram-negative bacteria in laboratory media. The growth of Bacillus subtilis and Clostridium botulinum type A was inhibited by 1% of black pepper, 0.5% rosemary and 0.03% red pepper. A little reduction of antimicrobial activity to B. subtilis was observed on extracts of gamma-irradiated black pepper or rosemary at 10 and 50 kGy. In the case of red pepper, irradiation of 10 or 50 kGy enhanced a little of antimicrobial activity to B. subtilis. Similar effect of irradiation was also observed on the inhibition of aflatoxin production by Aspergillus parasiticus in SL broth. (author).

  1. Two novel herbicide candidates affect Arabidopsis thaliana growth by inhibiting nitrogen and phosphate absorption.

    Science.gov (United States)

    Sun, Chongchong; Jin, Yujian; He, Haifeng; Wang, Wei; He, Hongwu; Fu, Zhengwei; Qian, Haifeng

    2015-09-01

    Both 2-[(2,4-dichlorophenoxy)acetoxy](methy)lmethyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIa) and 2-[(4-chloro-2-methyl-phenoxy)-acetoxy](methyl)methyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIr) are novel herbicide candidates that positively affect herbicidal activity via the introduction of a phosphorus-containing heterocyclic ring. This report investigated the mechanism of IIa and IIr on weed control in the model plant Arabidopsis thaliana at physiological, ultrastructural and molecular levels. IIa and IIr significantly inhibited the growth of A. thaliana and altered its root structure by inhibiting energy metabolism and lipid or protein biosynthesis. These compounds also significantly affected the absorption of nitrogen and phosphorus by down-regulating the transcripts of nitrate transporter-related genes, ammonium transporter-related genes and phosphorus transporter-related genes.

  2. [Effects of green tea on growth inhibition and immune regulation of Lewis lung cancer in mice].

    Science.gov (United States)

    Zhu, M; Gong, Y; Ge, G

    1997-11-01

    C57/BL6J mice were inoculated with Lewis lung cancer cells as an experimental model to study the effects of green tea on cancer prevention, inhibition of tumor growth and immune regulation in mice with tumor. Results showed that weight of thymus in C57/BL6J mice and its index declined, proportion of positive CD4 subgroup of T lymphocyte and ratio of CD4+, to CD8+ reduced, baseline chemilumi-nescence decreased in peripheral white blood cells, yeast zymosan stimulated chemiluminescence increased, and number of immunoglobulin M formation cells decreased. It indicated that green tea had obvious inhibition in Lewis lung cancer and protective effects, to various extent, on adverse changes of above indices.

  3. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  4. Control of virus diseases of berry crops.

    Science.gov (United States)

    Martin, Robert R; Tzanetakis, Ioannis E

    2015-01-01

    Virus control in berry crops starts with the development of plants free of targeted pathogens, usually viruses, viroids, phytoplasmas, and systemic bacteria, through a combination of testing and therapy. These then become the top-tier plants in certification programs and are the source from which all certified plants are produced, usually after multiple cycles of propagation. In certification schemes, efforts are made to produce plants free of the targeted pathogens to provide plants of high health status to berry growers. This is achieved using a systems approach to manage virus vectors. Once planted in fruit production fields, virus control shifts to disease control where efforts are focused on controlling viruses or virus complexes that result in disease. In fruiting fields, infection with a virus that does not cause disease is of little concern to growers. Virus control is based on the use of resistance and tolerance, vector management, and isolation.

  5. Expression of Smad7 inhibits fibrogenic responses of keratocytes to transforming growth factor β2

    Institute of Scientific and Technical Information of China (English)

    WANG Ti; ZHOU Xing-tao; YU Yan; DAI Jin-hui; QU Xiao-mei; LE Qi-hua; CHU Ren-yuan

    2011-01-01

    Background Transforming growth factor β (TGFβ) is one of the most important growth factors in the development of fibrosis and scarring on cornea. Smad7, an inhibitory Smad, can inhibit TGFβ signal transaction. In recent years, effects of lentiviral-mediated Smad7 on inhibition of fibrosis on some organs have been studied, while little is known about the effects on cornea. This study aimed to determine the effects of lentiviral-mediated Smad7 gene expression on keratocyte proliferation and fibrosis induced by TGF β2 in vitro.Methods Keratocytes were cultured from comeal tissue isolated from Sprague-Dawley (SD) rats and transfected with Smad7 expressing lentiviral vector (Lv-Smad7) or non-functioning control vector (Lv-blank). Following the exposure to TGFβ2, keratocytes were processed for immunoblotting to assess the phosphorylation of Smad2 as down-stream event of TGFβ/Smad signaling. Expression of fibrotic markers α-smooth muscle actin (α-SMA), type Ⅲ collagen (collagen Ⅲ) were measured by Western blotting and quantitative real time polymerase chain reaction (PCR). Overall cell proliferation was determined by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-dipheny1tetrazolium bromide (MTT) assay and the expression of cell cycle-related marker Ki67 at both mRNA and protein levels.Results The Smad7 gene transfer suppressed TGFβ/Smad signaling in keratocytes by down-regulating phosphorylation of Smad2. Markers of cell proliferation and fibrosis including Ki67, α-SMA, collagen Ⅲ were inhibited by introduction of Smad 7 into TGFβ exposed keratocytes. Consequently, the rate of cell proliferation was attenuated.Conclusion Smad7 gene transfer inhibited fibrogenic responses of keratocytes to TGFβ2.

  6. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and...

  7. Cloning of WWOX Gene and Its Growth-inhibiting Effects on Ovarian Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    熊宙芳; 胡沙; 王泽华

    2010-01-01

    The growth-inhibiting and apoptosis-inducing effects of WW domain-containing oxidoreductase(WWOX) gene on ovarian cancer cell line A2780 were investigated.The full length cDNA of human WWOX gene was amplified from normal human ovary tissues.The correct cDNA of full length WWOX was subcloned into eukaryocytic expression vector pCMV.After introduction of WWOX gene into cancer cells with liposome,the WWOX mRNA and protein level in the cancer cells were detected by reverse transcription polymerase chain reactio...

  8. Isolation of bacteria producing chitinase and inhibiting growth of Rhizoctonia solani

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Five bacteria strains with higher chitinase activity were isolated by using a technique of enriched cell wall of R. solani. All of them showed inhibiting effect on the growth of R. solani. Being cultured 3 d, strain CH-1 showed higher chitinase activity on the chitin plate. The diameter of the transparent circle reached 8.7 mm (4 replications) . In the antagonistic test to R. solani in PDA plate, the circle was 18.1 mm. It was also observed that the antagonistic ability of some strains was not consistent with the chitinase activity (Table 1). It may be connected with the secretion of chitinase at different culture situations.

  9. Cetuximab insufficiently inhibits glioma cell growth due to persistent EGFR downstream signaling

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Lassen, Ulrik; Poulsen, Hans S;

    2010-01-01

    Overexpression and/or amplification of the epidermal growth factor receptor (EGFR) is present in 35-45% of primary glioblastoma multiforme tumors and has been correlated with a poor prognosis. In this study, we investigated the effect of cetuximab and intracellular signaling pathways downstream...... of EGFR, important for cell survival and proliferation. We show insufficient EGFR downregulation and competition with endogenous EGFR ligands upon cetuximab treatment. Dose-response experiments showed inhibition of EGFR phosphorylation without affecting two of the prominent downstream signaling pathways...

  10. An Engineered Arginase FC Protein Inhibits Tumor Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Lihua Li

    2013-01-01

    Full Text Available Arginine is a semiessential amino acid required for the growth of melanoma and hepatocellular carcinoma, and the enzymatic removal of arginine by pegylated arginine deiminase (ADI or arginase is being tested clinically. Here, we report a genetically engineered arginase FC fusion protein exhibiting a prolonged half-life and enhanced efficacy. The use of this enzyme to treat different tumor lines both inhibited cell proliferation and impaired cellular migration in vitro and in vivo. Our data reinforce the hypothesis that nutritional depletion is a key strategy for cancer treatment.

  11. New class of additives to inhibit tree growth in solid extruded cable insulation

    Energy Technology Data Exchange (ETDEWEB)

    Devins, J C; Rzad, S J; Reed, C W; Bartosh, D K; Stines, T W

    1976-03-01

    There is now substantial evidence that in many dielectric failures of solid polyolefinic and other polymeric materials the final disruption may be preceded by the long-time progressive development of a three-dimensional pattern of irregular, sometimes (though not always) carbonized hollow channels diverging from a central stem, and that the ultimate failure follows one of these channels. These minute channels are referred to as ''trees'' and the phenomenon as ''treeing.'' Research conducted from May to Sept. 1975 on techniques for evaluating tree growth and on the development of additives to inhibit tree growth in solid extruded polymeric insulation for electric cables is reported. (LCL)

  12. Can growth inhibition assays (GIA) predict blood-stage malaria vaccine efficacy?

    Science.gov (United States)

    Duncan, Christopher J A; Hill, Adrian V S; Ellis, Ruth D

    2012-06-01

    An effective vaccine against P. falciparum malaria remains a global health priority. Blood-stage vaccines are an important component of this effort, with some indications of recent progress. However only a fraction of potential blood-stage antigens have been tested, highlighting a critical need for efficient down-selection strategies. Functional in vitro assays such as the growth/invasion inhibition assays (GIA) are widely used, but it is unclear whether GIA activity correlates with protection or predicts vaccine efficacy. While preliminary data in controlled human malaria infection (CHMI) studies indicate a possible association between in vitro and in vivo parasite growth rates, there have been conflicting results of immunoepidemiology studies, where associations with exposure rather than protection have been observed. In addition, GIA-interfering antibodies in vaccinated individuals from endemic regions may limit assay sensitivity in heavily malaria-exposed populations. More work is needed to establish the utility of GIA for blood-stage vaccine development.

  13. Allelopathy in two species of Chenopodium -inhibition of germination and seedling growth of certain weeds

    Directory of Open Access Journals (Sweden)

    Subhash C. Datta

    2014-01-01

    Full Text Available The activity of washed leaf and inflorescence material of Chenopodium ambrosioides and C. murale, decaying leaves and inflorescences, and field soils collected beneath Chenopodium plants were examined in terms of the inhibition of seed germination and seedling growth of five weeds, viz. Abutilon indicum, Cassia sophera var. purpurea, C. tora, Evolvulus numularius and Tephrosia hamiltonii. The allelopathic pattern varied in each of the two test species and this depended on the type of test matter. However, the germination as well as the root and hypocotyl growth of A. indicum and E. nummularius were more hampered by phytotoxins or inhibitors from Chenopodium than were the other weeds. Since the leaf and inflorescence of Chenopodium formed the source of inhibitors, the respective plant-parts from the two species were chemically analysed and the presence of three terpenes (p-cymene, ascaridole and aritazone from C. ambrosioides and an organic acid (oxalic acid from C. murale were implicated in the allelopathic effect.

  14. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Yang, Liang; Qu, Di

    2009-01-01

    Multiple bacterial species often coexist as communities, and compete for environmental resources. Here, we describe how an opportunistic pathogen, Pseudomonas aeruginosa, uses extracellular products to interact with the nosocomial pathogen Staphylococcus epidermidis. S. epidermidis biofilms...... and planktonic cultures were challenged with P. aeruginosa supernatant cultures overnight. Results indicated that quorum-sensing-controlled factors from P. aeruginosa supernatant inhibited S. epidermidis growth in planktonic cultures. We also found that P. aeruginosa extracellular products, mainly...... in overnight cultures had no effect on established P. aeruginosa biofilms and planktonic growth. These findings reveal that P. aeruginosa extracellular products are important microbial competition factors that overcome competition with S. epidermidis, and the results may provide clues for the development...

  15. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    Science.gov (United States)

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.

  16. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature.

    Science.gov (United States)

    Sills, A K; Williams, J I; Tyler, B M; Epstein, D S; Sipos, E P; Davis, J D; McLane, M P; Pitchford, S; Cheshire, K; Gannon, F H; Kinney, W A; Chao, T L; Donowitz, M; Laterra, J; Zasloff, M; Brem, H

    1998-07-01

    The novel aminosterol, squalamine, inhibits angiogenesis and tumor growth in multiple animal models. This effect is mediated, at least in part, by blocking mitogen-induced proliferation and migration of endothelial cells, thus preventing neovascularization of the tumor. Squalamine has no observable effect on unstimulated endothelial cells, is not directly cytotoxic to tumor cells, does not alter mitogen production by tumor cells, and has no obvious effects on the growth of newborn vertebrates. Squalamine was also found to have remarkable effects on the primitive vascular bed of the chick chorioallantoic membrane, which has striking similarities to tumor capillaries. Squalamine may thus be well suited for treatment of tumors and other diseases characterized by neovascularization in humans.

  17. Insulin like growth factor-1/insulin bypasses Pref-1/FA1-mediated inhibition of adipocyte differentiation

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Nøhr, Jane; Jensen, Charlotte Harken;

    2003-01-01

    of Pref-1/FA1 in 3T3-L1 or 3T3-F442A cells inhibited adipocyte differentiation when insulin or insulin-like growth factor-1 (IGF-1) was omitted from the differentiation mixture. We demonstrate that the level of the mature form of the IGF-1 receptor is reduced and that IGF-1-dependent activation of p42/p44......, and adipocyte differentiation in a dose-dependent manner. Udgivelsesdato: 2003-Jun-6......Pref-1 is a highly glycosylated Delta-like transmembrane protein containing six epidermal growth factor-like repeats in the extracellular domain. Pref-1 is abundantly expressed in preadipocytes, but expression is down-regulated during adipocyte differentiation. Forced expression of Pref-1 in 3T3-L1...

  18. Inhibition of beta cell growth and function by bone morphogenetic proteins

    DEFF Research Database (Denmark)

    Bruun, Christine; Christensen, Gitte Lund; Jacobsen, Marie L B;

    2014-01-01

    : BMP2 and -4 were found to inhibit basal as well as growth factor-stimulated proliferation of primary beta cells from rats and mice. Bmp2 and Bmp4 mRNA and protein were expressed in islets and regulated by inflammatory cytokines. Neutralisation of endogenous BMP activity resulted in enhanced....../INTERPRETATION: These data show that BMP2 and -4 exert inhibitory actions on beta cells in vitro and suggest that BMPs exert regulatory roles of beta cell growth and function.......AIMS/HYPOTHESIS: Impairment of beta cell mass and function is evident in both type 1 and type 2 diabetes. In healthy physiological conditions pancreatic beta cells adapt to the body's increasing insulin requirements by proliferation and improved function. We hypothesised that during the development...

  19. Real-space Berry phases: Skyrmion soccer (invited)

    Science.gov (United States)

    Everschor-Sitte, Karin; Sitte, Matthias

    2014-05-01

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  20. Real-space Berry phases: Skyrmion soccer (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Everschor-Sitte, Karin, E-mail: karin@physics.utexas.edu; Sitte, Matthias [The University of Texas at Austin, Department of Physics, 2515 Speedway, Austin, Texas 78712 (United States)

    2014-05-07

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  1. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  2. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-08-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10-4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10-4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  3. Inhibition of tubulointerstitial fibrosis by pentoxifylline is associated with improvement of vascular endothelial growth factor expression

    Institute of Scientific and Technical Information of China (English)

    Qiu-gen ZHOU; Fa-lei ZHENG; Fan-fan HOU

    2009-01-01

    Aim: Recent information indicates that pentoxifylline (PTX) has the ability to suppress inflammation and profibrotic cell proliferation. In this study, we investigated the effect of PTX on tubulointerstitial fibrosis and the expression of vascular endothelial growth factor (VEGF) in a rat model of obstructive nephropathy. Methods: Wistar rats with left ureteral ligation were divided into control and PTX-treated groups. The histopathologic degree of tubulointerstitial fibrosis was scored with PAS and Masson-stained sections. The protein and mRNA for vascular endothelial growth factor (VEGF) were semiquantitatively measured with immunohistochemistry and RT-PCR. The pro-tein for transforming growth factor β1 (TGFβ1) and hypoxia-induced factor 1 alpha (HIF-1α) was determined by Western blot. Results: Compared with the control group, PTX treatment reduced fibrosis scores at d 7 and d 14 (P<0.05). The reduction was accompanied by inhibited expression of transforming growth factor-beta 1 (TGFβ1), a key cytokine in tubulointerstitial fibrogenesis (P<0.01). Meanwhile, VEGF protein and mRNA in the kidney were increased in the PTX-treated group com-pared with the control group (P<0.01). PTX up-regulated expression of VEGF mRNA in a dose- and time-dependent man-ner in cultured HK-2 cells (P<0.01). However, expression of HIF-1α (a key transcription factor for VEGF gene expression) was unchanged by PTX treatment. PTX prolonged the half-life of VEGF mRNA by a 1.07-fold increase. Conclusions: PTX inhibited tubulointerstitial fibrosis in a rat model of obstructive nephropathy while preventing loss of VEGF. PTX up-regulated expression of VEGF mRNA through stabilization of its mRNA in cultured renal tubular epithelial cells.

  4. GROWTH INHIBITION OF HUMAN LARYNGEAL CANCER CELL WITH THE ADENOVIRUS-MEDIATED p53 GENE

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; HAN De-min; WANG Wen-ge; WU Zu-ze; ZHANG Wei

    1999-01-01

    Objective: In most laryngeal cancers, the function of p53 gene is down regulated. To explore the potential use of p53 in gene therapy of laryngeal cancer, by introducing wild-type p53 into laryngeal cancer cell line via a recombinant adenoviral vector, Ad5CMV-p53 and analyzing its effects on cell and tumor growth. Methods: A human laryngeal cancer cell line Hep-2 was used.Recombinant cytomegalovirus-promoted adenoviruses containing human wild-type p53 cDNA was transiently introduced into Hep-2 line. The growth suppression of the Hep-2 cells and established s.c. squamous carcinoma model was examined. The p53 protein expression was detected using immunohistochemical analysis. Results: The transduction efficiencies of Hep-2 cell line were 100% at a multiplicity of 100 or greater. The p53 protein expression peaked on day 2 after infection and lasted far 5 days. In vitro growth assays revealed cell death following Ad5CMV-p53 infected. In vivo studies, Ad5CMV-p53 inhibited the tumorigenicity of Hep-2 cell, and in nude mice with established s.c. squamous carcinoma nodules showed that tumor volumes were significantly reduced in mice that received peritumoral infiltration of Ad5CMV-p53. Conclusion: Adenovirus-mediated antitumor therapy carrying the p53 gene is an efficient method to inhibit laryngeal cancer growth. Transfection of laryngeal cancer cells with the wild-type p53 gene via Ad5CMV-p53 is a potential novel approach to the therapy of laryngeal cancer.

  5. beta-Sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids.

    Science.gov (United States)

    Awad, A B; Chen, Y C; Fink, C S; Hennessey, T

    1996-01-01

    The purpose of the present study was to examine the effect of beta-sitosterol, the main dietary phytosterol on the growth of HT-29 cells, a human colon cancer cell line. In addition, the incorporation of this phytosterol into cellular membranes and how this might influence the lipid composition of the membranes were investigated. Tumor cells were grown in DMEM containing 10% FBS and supplemented with sterols (cholesterol or beta-sitosterol) at final concentrations up to 16 microM. The sterols were supplied to the media in the form of sterol cyclodextrin complexes. The cyclodextrin used was 2-hydroxypropyl-beta-cyclodextrin. The sterol to cyclodextrin molar ratio was maintained at 1:300. The study indicated that 8 and 16 microM beta-sitosterol were effective at cel growth inhibition as compared to cholesterol or to the control (no sterol supplementation). After supplementation with 16 microM beta-sitosterol for 9 days, cell growth was only one-third that of cells supplemented with equimolar concentration of cholesterol. No effect was observed on total membrane phospholipid concentration. At 16 microM beta-sitosterol supplementation, membrane cholesterol was reduced by 26%. Cholesterol supplementation resulted in a significant increase in the cholesterol/phospholipid ratio compared to either beta-sitosterol supplemented cells or controls. There was a 50% reduction in membrane sphingomyelin (SM) of cells grown in 16 microM beta-sitosterol. Additional changes were observed in the fatty acid composition of minor phospholipids of beta-sitosterol supplemented cells, such as SM, phosphatidylserine (PS), and phosphatidylinositol (PI). Only in the case of PI, was there an effect of these fatty acid changes on the unsaturation index, beta-sitosterol incorporation resulted in an increase in the U.I. It is possible that the observed growth inhibition by beta-sitosterol may be mediated through the influence of signal transduction pathways that involve membrane phospholipids.

  6. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    Directory of Open Access Journals (Sweden)

    Nigel V. Gale

    2016-08-01

    Full Text Available Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME–gas chromatography–mass spectrometry (GC-MS to qualitatively describe organic compounds in both biochar (through headspace extraction, and in the water leachates (through direct injection. Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species

  7. Inhibition of human breast cancer xenograft growth by cruciferous vegetable constituent benzyl isothiocyanate.

    Science.gov (United States)

    Warin, Renaud; Xiao, Dong; Arlotti, Julie A; Bommareddy, Ajay; Singh, Shivendra V

    2010-05-01

    Benzyl isothiocyanate (BITC), a constituent of cruciferous vegetables such as garden cress, inhibits growth of human breast cancer cell lines in culture. The present study was undertaken to determine in vivo efficacy of BITC against MDA-MB-231 human breast cancer xenografts. The BITC administration retarded growth of MDA-MB-231 cells subcutaneously implanted in female nude mice without causing weight loss or any other side effects. The BITC-mediated suppression of MDA-MB-231 xenograft growth correlated with reduced cell proliferation as revealed by immunohistochemical analysis for Ki-67 expression. Analysis of the vasculature in the tumors from BITC-treated mice indicated smaller vessel area compared with control tumors based on immunohistochemistry for angiogenesis marker CD31. The BITC-mediated inhibition of angiogenesis in vivo correlated with downregulation of vascular endothelial growth factor (VEGF) receptor 2 protein levels in the tumor. Consistent with these results, BITC treatment suppressed VEGF secretion and VEGF receptor 2 protein levels in cultured MDA-MB-231 cells. Moreover, the BITC-treated MDA-MB-231 cells exhibited reduced capacity for migration compared with vehicle-treated control cells. In contrast to cellular data, BITC administration failed to elicit apoptotic response as judged by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. In conclusion, the present study demonstrates in vivo anti-cancer efficacy of BITC against MDA-MB-231 xenografts in association with reduced cell proliferation and suppression of neovascularization. These preclinical observations merit clinical investigation to determine efficacy of BITC against human breast cancers.

  8. Oviposition preference and larval performance of Epiphyas postvittana (Lepidoptera: Tortricidae) on Botrytis cinerea (Helotiales: Sclerotiniaceae) infected berries of Vitis vinifera (Vitales: Vitaceae).

    Science.gov (United States)

    Rizvi, Syed Z M; Raman, Anantanarayanan; Wheatley, Warwick M; Cook, Geoffrey

    2016-04-01

    In this paper we tested the behavior of gravid Epiphyas postvittana in selecting the most-appropriate site for oviposition thus benefitting offspring performance. Our hypothesis was built on Jaenike's preference-performance hypothesis (also referred to as the "mother-knows-the-best" hypothesis). To test this, we used the interacting Epiphyas postvittana, its host Vitis vinifera, and the pathogenic microbe Botrytis cinerea system. Populations of E. postvittana and B. cinerea often exist concurrently on V. vinifera in Australasia and their interaction and mutual influence are currently being explored, although the suggestion presently is that the relationship between E. postvittana and B. cinerea is mutualistic. We tested the effect of volatiles from B. cinerea-infected berries and uninfected (control) berries of V. vinifera on the oviposition behavior of E. postvittana. We also characterized the effects of B. cinerea infection on the berries of V. vinifera on the growth and development of E. postvittana. Contrary to the preference-performance hypothesis, oviposition choices made by gravid E. postvittana did not result in the best offspring survival, development, and performance. The preference for oviposition by E. postvittana was strongly influenced by the olfactory and tactile cues. She laid fewer eggs on B. cinerea-infected berries compared to uninfected berries of V. vinifera. The larvae of E. postvittana showed no preference to uninfected berries of V. vinifera. The larvae fed on B. cinerea-infected berries of V. vinifera showing greater survival rate, shorter time to pupation, greater pupal mass, and on becoming adults they laid more numbers of eggs than the larvae that were enabled to feed on uninfected berries. The larvae of E. postvittana transport the conidia of B. cinerea and transmit grey-mould disease to uninfected berries of V. vinifera.

  9. Neuroprotective effects of berry fruits on neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Selvaraju Subash; Musthafa Mohamed Essa; Samir Al-Adawi; Mushtaq A.Memon; hTamilarasan Manivasagam; Mohammed Akbar

    2014-01-01

    Recent clinical research has demonstrated that berry fruits can prevent age-related neurodegen-erative diseases and improve motor and cognitive functions. The berry fruits are also capable of modulating signaling pathways involved in inflammation, cell survival, neurotransmission and enhancing neuroplasticity. The neuroprotective effects of berry fruits on neurodegenerative diseases are related to phytochemicals such as anthocyanin, caffeic acid, catechin, quercetin, kae-mpferol and tannin. In this review, we made an attempt to clearly describe the beneifcial effects of various types of berries as promising neuroprotective agents.

  10. Acai Berry Products: Do They Have Health Benefits?

    Science.gov (United States)

    ... including arthritis, weight loss, high cholesterol, erectile dysfunction, skin appearance, detoxification and general health. Acai berries contain antioxidants, fiber and heart-healthy fats. They may have ...

  11. Insights into the Role of the Berry-Specific Ethylene Responsive Factor VviERF045

    Science.gov (United States)

    Leida, Carmen; Dal Rì, Antonio; Dalla Costa, Lorenza; Gómez, Maria D.; Pompili, Valerio; Sonego, Paolo; Engelen, Kristof; Masuero, Domenico; Ríos, Gabino; Moser, Claudio

    2016-01-01

    During grape ripening, numerous transcriptional and metabolic changes are required in order to obtain colored, sweet, and flavored berries. There is evidence that ethylene, together with other signals, plays an important role in triggering the onset of ripening. Here, we report the functional characterization of a berry-specific Ethylene Responsive Factor (ERF), VviERF045, which is induced just before véraison and peaks at ripening. Phylogenetic analysis revealed it is close to the SHINE clade of ERFs, factors involved in the regulation of wax biosynthesis and cuticle morphology. Transgenic grapevines lines overexpressing VviERF045 were obtained, in vitro propagated, phenotypically characterized, and analyzed for the content of specific classes of metabolites. The effect of VviERF045 was correlated with the level of transgene expression, with high-expressing lines showing stunted growth, discolored and smaller leaves, and a lower level of chlorophylls and carotenoids. One line with intermediate expression, L15, was characterized at the transcriptomic level and showed 573 differentially expressed genes compared to wild type plants. Microscopy and gene expression analyses point toward a major role of VviERF045 in epidermis patterning by acting on waxes and cuticle. They also indicate that VviERF045 affects phenolic secondary metabolism and induces a reaction resembling a plant immune response with modulation of receptor like-kinases and pathogen related genes. These results suggest also a possible role of this transcription factor in berry ripening, likely related to changes in epidermis and cuticle of the berry, cell expansion, a decrease in photosynthetic capacity, and the activation of several defense related genes as well as from the phenylpropanoid metabolism. All these processes occur in the berry during ripening. PMID:28018369

  12. High iron sequestrating bifidobacteria inhibit enteropathogen growth and adhesion to intestinal epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Pamela Vazquez-Gutierrez

    2016-09-01

    Full Text Available The gut microbiota plays an important role in host health, in particular by its barrier effect and competition with exogenous pathogenic bacteria. In the present study, the competition of Bifidobacterium pseudolongum PV8-2 (Bp PV8-2 and Bifidobacterium kashiwanohense PV20-2 (Bk PV20-2, isolated from anemic infant gut microbiota and selected for their high iron sequestration properties was investigated against Salmonella Typhimurium (S. Typhi and Escherichia coli O157:H45 (EHEC by using co-culture tests and assays with intestinal cell lines. Single and co-cultures were carried out anaerobically in chemically semi-defined low iron (1.5 µM Fe medium (CSDLIM without and with added ferrous iron (30 µM Fe. Surface properties of the tested strains were measured by bacterial adhesion to solvent xylene, chloroform, ethyl acetate, and to extracellular matrix molecules, mucus II, collagen I, fibrinogen, fibronectin. HT29-MTX mucus-secreting intestinal cell cultures were used to study bifidobacteria competition, inhibition and displacement of the enteropatogens. During co-cultures in CSDLIM we observed strain-dependent inhibition of bifidobacterial strains on enteropathogens, independent of pH, organic acid production and supplemented iron. Bp PV8-2 significantly (P<0.05 inhibited S. Typhi N15 and EHEC after 24 h compared to single culture growth. In contrast Bk PV20-2 showed less inhibition on S. Typhi N15 than Bp PV8-2, and no inhibition on EHEC. Affinity for intestinal cell surface glycoproteins was strain-specific, with high affinity of Bp PV8-2 for mucin and Bk PV20-2 for fibronectin. Bk PV20-2 showed high adhesion potential (15.6 +/- 6.0 % to HT29-MTX cell layer compared to Bp PV8-2 (1.4 +/- 0.4 %. In competition, inhibition and displacement tests, Bp PV8-2 significantly (P<0.05 reduced S. Typhi N15 and EHEC adhesion, while Bk PV20-2 was only active on S. Typhi N15 adhesion. To conclude, bifidobacterial strains selected for their high iron binding

  13. Development of a murine mycobacterial growth inhibition assay for evaluating vaccines against Mycobacterium tuberculosis.

    Science.gov (United States)

    Parra, Marcela; Yang, Amy L; Lim, JaeHyun; Kolibab, Kristopher; Derrick, Steven; Cadieux, Nathalie; Perera, Liyanage P; Jacobs, William R; Brennan, Michael; Morris, Sheldon L

    2009-07-01

    The development and characterization of new tuberculosis (TB) vaccines has been impeded by the lack of reproducible and reliable in vitro assays for measuring vaccine activity. In this study, we developed a murine in vitro mycobacterial growth inhibition assay for evaluating TB vaccines that directly assesses the capacity of immune splenocytes to control the growth of Mycobacterium tuberculosis within infected macrophages. Using this in vitro assay, protective immune responses induced by immunization with five different types of TB vaccine preparations (Mycobacterium bovis BCG, an attenuated M. tuberculosis mutant strain, a DNA vaccine, a modified vaccinia virus strain Ankara [MVA] construct expressing four TB antigens, and a TB fusion protein formulated in adjuvant) can be detected. Importantly, the levels of vaccine-induced mycobacterial growth-inhibitory responses seen in vitro after 1 week of coculture correlated with the protective immune responses detected in vivo at 28 days postchallenge in a mouse model of pulmonary tuberculosis. In addition, similar patterns of cytokine expression were evoked at day 7 of the in vitro culture by immune splenocytes taken from animals immunized with the different TB vaccines. Among the consistently upregulated cytokines detected in the immune cocultures are gamma interferon, growth differentiation factor 15, interleukin-21 (IL-21), IL-27, and tumor necrosis factor alpha. Overall, we have developed an in vitro functional assay that may be useful for screening and comparing new TB vaccine preparations, investigating vaccine-induced protective mechanisms, and assessing manufacturing issues, including product potency and stability.

  14. Cripto Binds Transforming Growth Factor β (TGF-β) and Inhibits TGF-β Signaling▿

    Science.gov (United States)

    Gray, Peter C.; Shani, Gidi; Aung, Kevin; Kelber, Jonathan; Vale, Wylie

    2006-01-01

    Cripto is a developmental oncoprotein and a member of the epidermal growth factor-Cripto, FRL-1, Cryptic family of extracellular signaling molecules. In addition to having essential functions during embryogenesis, Cripto is highly expressed in tumors and promotes tumorigenesis. During development, Cripto acts as an obligate coreceptor for transforming growth factor β (TGF-β) ligands, including nodals, growth and differentiation factor 1 (GDF1), and GDF3. As an oncogene, Cripto is thought to promote tumor growth via mechanisms including activation of mitogenic signaling pathways and antagonism of activin signaling. Here, we provide evidence supporting a novel mechanism in which Cripto inhibits the tumor suppressor function of TGF-β. Cripto bound TGF-β and reduced the association of TGF-β with its type I receptor, TβRI. Consistent with its ability to block receptor assembly, Cripto suppressed TGF-β signaling in multiple cell types and diminished the cytostatic effects of TGF-β in mammary epithelial cells. Furthermore, targeted disruption of Cripto expression by use of small inhibitory RNA enhanced TGF-β signaling, indicating that endogenous Cripto plays a role in restraining TGF-β responses. PMID:17030617

  15. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China); Chiu, Chien-Chih [Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Su, Chun-Li [Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan (China); Chen, Kwun-Min [Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan (China); Fang, Kang, E-mail: kangfang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China)

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  16. Enhanced mitochondrial glutamine anaplerosis suppresses pancreatic cancer growth through autophagy inhibition

    Science.gov (United States)

    Jeong, Seung Min; Hwang, Sunsook; Park, Kyungsoo; Yang, Seungyeon; Seong, Rho Hyun

    2016-01-01

    Cancer cells use precursors derived from tricarboxylic acid (TCA) cycle to support their unlimited growth. However, continuous export of TCA cycle intermediates results in the defect of mitochondrial integrity. Mitochondria glutamine metabolism plays an essential role for the maintenance of mitochondrial functions and its biosynthetic roles by refilling the mitochondrial carbon pool. Here we report that human pancreatic ductal adenocarcinoma (PDAC) cells have a distinct dependence on mitochondrial glutamine metabolism. Whereas glutamine flux into mitochondria contributes to proliferation of most cancer cells, enhanced glutamine anaplerosis results in a pronounced suppression of PDAC growth. A cell membrane permeable α-ketoglutarate analog or overexpression of glutamate dehydrogenase lead to decreased proliferation and increased apoptotic cell death in PDAC cells but not other cancer cells. We found that enhanced glutamine anaplerosis inhibits autophagy, required for tumorigenic growth of PDAC, by activating mammalian TORC1. Together, our results reveal that glutamine anaplerosis is a crucial regulator of growth and survival of PDAC cells, which may provide novel therapeutic approaches to treat these cancers. PMID:27477484

  17. Blockade of S100A3 activity inhibits murine hair growth.

    Science.gov (United States)

    Guan, W; Deng, Q; Yu, X L; Yuan, Y S; Gao, J; Li, J J; Zhou, L; Xia, P; Han, G Y Q; Han, W; Yu, Y

    2015-10-28

    Using mouse gene expression microarray analysis, we obtained dynamic expression profiles of the whole genome in a depilation-induced hair growth mouse model. S100A3 expression increased during the anagen phase and returned to normal during the telogen phase. The effects of S100A3 blockade on the hair growth cycle were examined in mice after subcutaneous injection of an anti-mouse S100A3 antibody. Protein localization of S100A3 was confined to the hair shafts during the anagen phase and the sebaceous glands during the telogen phase. S100A3 blockade delayed hair follicle entry into the anagen phase, decreased hair elongation, and reduced the number of hair follicles in the subcutis, which correlated with the downregulated expression of hair growth induction-related genes in vivo. The present study demonstrates that anti-S100A3 antibody inhibits mouse hair growth, suggesting that S100A3 can be used as a target for hair loss treatment.

  18. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  19. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer.

  20. Plant-made trastuzumab (herceptin inhibits HER2/Neu+ cell proliferation and retards tumor growth.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available BACKGROUND: Plant biotechnology provides a valuable contribution to global health, in part because it can decrease the cost of pharmaceutical products. Breast cancer can now be successfully treated by a humanized monoclonal antibody (mAb, trastuzumab (Herceptin. A course of treatment, however, is expensive and requires repeated administrations of the mAb. Here we used an Agrobacterium-mediated transient expression system to produce trastuzumab in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: We describe the cloning and expression of gene constructs in Nicotiana benthamiana plants using intron-optimized Tobacco mosaic virus- and Potato virus X-based vectors encoding, respectively, the heavy and light chains of trastuzumab. Full-size antibodies extracted and purified from plant tissues were tested for functionality and specificity by (i binding to HER2/neu on the surface of a human mammary gland adenocarcinoma cell line, SK-BR-3, in fluorescence-activated cell sorting assay and (ii testing the in vitro and in vivo inhibition of HER-2-expressing cancer cell proliferation. We show that plant-made trastuzumab (PMT bound to the Her2/neu oncoprotein of SK-BR-3 cells and efficiently inhibited SK-BR-3 cell proliferation. Furthermore, mouse intraperitoneal PMT administration retarded the growth of xenografted tumors derived from human ovarian cancer SKOV3 Her2+ cells. CONCLUSIONS/SIGNIFICANCE: We conclude that PMT is active in suppression of cell proliferation and tumor growth.

  1. [A novel HIF-1 inhibitor--manassantin A derivative LXY6099 inhibits tumor growth].

    Science.gov (United States)

    Lai, Fang-Fang; Liu, Xiao-Yu; Niu, Fei; Lang, Li-Wei; Xie, Ping; Chen, Xiao-Guang

    2014-05-01

    Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor on hypoxia responses in mammalian tissues. HIF-1 plays as a positive factor in solid tumor and leads to hypoxia-driven responses that enhance its downstream gene expression for tumor growth and survival. LXY6099 was obtained by the structural modification and optimization of manassantin A (MA) as a high potent HIF-1 inhibitor. Antitumor activity of LXY6099 was observed in this study. LXY6099 with an IC50 value of 2.46 x 10(-10) mol x L(-1) showed more sensitive inhibition activity to HIF-1 than that of MA detected by reporter gene assay (> 100 folds). It showed strong inhibition on the growth of human solid tumor cell lines. Furthermore, LXY6099 exhibited significant antitumor activity against established human tumor xenografts in nu/nu mice with treatment of MX-1 breast cancer. Thus, LXY6099 as a novel HIF-1 inhibitor could be further developed into anti-cancer agents.

  2. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi.

    Science.gov (United States)

    Velho, R V; Medina, L F C; Segalin, J; Brandelli, A

    2011-07-01

    The biological activity and the presence of genes sfp and ituD (surfactin and iturin A) among Bacillus strains isolated from the Amazon basin were determined. Bacillus spp. were tested for hemolytic activity and inhibition of fungal growth by agar plate assays in parallel with PCR for identification of sfp and ituD genes. All strains tested produced surface-active compounds, giving evidence by lysis of erythrocytes and emulsifying activity on mineral oil and soybean oil. These strains of Bacillus caused growth inhibition of several phytopathogenic fungi, including Fusarium spp., Aspergillus spp., and Bipolaris sorokiniana. The presence of genes ituD and sfp was confirmed by PCR and sequence analysis. The only exception was Bacillus sp. P34 that lacks sfp gene. Lipopeptides were isolated from culture supernatants and analyzed by mass spectrometry. Characteristic m/z peaks for surfactin and iturin were observed, and some strains also produced fengycin and bacillomycin. The remarkable antifungal activity showed by the strains could be associated with the co-production of three or more lipopeptide antibiotics. Screening for novel bacteria producing useful biosurfactants or biocontrol agents for agriculture is a topic of greatest importance to eliminate chemical pollutants.

  3. Noscapine inhibits human hepatocellular carcinoma growth through inducing apoptosis in vitro and in vivo.

    Science.gov (United States)

    Xu, G; Niu, Z; Dong, J; Zhao, Y; Zhang, Y; Li, X

    2016-01-01

    Noscapine, a phthalideisoquinoline alkaloid derived from opium, has been demonstrated as a promising anti-tumor compound against various cancers. However, the anti-cancer activity of noscapine in hepatocellular carcinoma has not been defined. In this study, we investigate the inhibitive effects of noscapine on human hepatocellular carcinoma (HCC) using both in vitro and in vivo models. In vitro proliferation assay showed that noscapine suppressed HepG2 and Huh7 cells in dose- and time-dependent manners. With a mouse xenograft model, noscapine showed notable inhibition on HCC tumor growth in vivo without suppression of body weight. Moreover, apoptotic induction and regulation of related signalings by noscapine were examined by nuclear DNA staining, TUNEL, and western blotting assays. Results showed that noscapine induced apoptosis in HCC cells both in vitro and in vivo. Further studies indicated that noscapine induced antive-capsase-3, cleavage PARP, and decreased the ratio of Bcl-2/Bax. Hence, these data indicates that noscapine selectively suppresses HCC cell growth through apoptosis induction, providing evidence for application of noscapine as a novel agent against human hepatocellular carcinoma.

  4. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue

    Indian Academy of Sciences (India)

    Lílian S Peloi; Rafael R S Soares; Carlos E G Biondo; Vagner R Souza; Noboru Hioka; Elza Kimura

    2008-06-01

    The aim of this study was to propose the use of red light-emitting diode (LED) as an alternative light source for methylene blue (MB) photosensitizing effect in photodynamic therapy (PDT). Its effectiveness was tested against Staphylococcus aureus (ATCC 26923), Escherichia coli (ATCC 26922), Candida albicans (ATCC 90028) and Artemia salina. The maximum absorption of the LED lamps was at a wavelength of 663 nm, at intensities of 2, 4, 6 and 12 J.cm–2 for 10, 20, 30 and 60 min of exposure, respectively. Assays with and without LED exposure were carried out in plates containing MB at concentrations of 7 to 140.8 M for microorganisms and 13.35 to 668.5 M for microorganisms or microcrustaceans. The LED exposure induced more than 93.05%, 93.7% and 93.33% of growth inhibition for concentrations of 42.2 M for S. aureus (D-value=12.05 min) and 35.2 M for E. coli (D-value=11.51 min) and C. albicans (D-value=12.18 min), respectively after 20 min of exposure. LED exposure for 1 h increased the cytotoxic effect of MB against A. salina from 27% to 75%. Red LED is a promising light device for PDT that can effectively inhibit bacteria, yeast and microcrustacean growth.

  5. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  6. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  7. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype

    Science.gov (United States)

    Xue, Nina; Zhou, Qin; Ji, Ming; Jin, Jing; Lai, Fangfang; Chen, Ju; Zhang, Mengtian; Jia, Jing; Yang, Huarong; Zhang, Jie; Li, Wenbin; Jiang, Jiandong; Chen, Xiaoguang

    2017-01-01

    Glioblastoma is an aggressive tumor that is associated with distinctive infiltrating microglia/macrophages populations. Previous studies demonstrated that chlorogenic acid (5-caffeoylquinic acid, CHA), a phenolic compound with low molecular weight, has an anti-tumor effect in multiple malignant tumors. In the present study, we focused on the macrophage polarization to investigate the molecular mechanisms behind the anti-glioma response of CHA in vitro and in vivo. We found that CHA treatment increased the expression of M1 markers induced by LPS/IFNγ, including iNOS, MHC II (I-A/I-E subregions) and CD11c, and reduced the expression of M2 markers Arg and CD206 induced by IL-4, resulting in promoting the production of apoptotic-like cancer cells and inhibiting the growth of tumor cells by co-culture experiments. The activations of STAT1 and STAT6, which are two crucial signaling events in M1 and M2-polarization, were significantly promoted and suppressed by CHA in macrophages, respectively. Furthermore, In G422 xenograft mice, CHA increased the proportion of CD11c-positive M1 macrophages and decreased the distribution of CD206-positive M2 macrophages in tumor tissue, consistent with the reduction of tumor weight observed in CHA-treated mice. Overall these findings indicated CHA as a potential therapeutic approach to reduce glioma growth through promoting M1-polarized macrophage and inhibiting M2 phenotypic macrophage. PMID:28045028

  8. Retroviral endostatin gene transfer inhibits human colon cancer cell growth in vivo

    Institute of Scientific and Technical Information of China (English)

    陈卫昌; 傅建新; 刘强; 阮长耿; 萧树东

    2003-01-01

    Objective To investigate the therapeutic effect of retroviral endostatin gene transfer on the human colon cancer cell line, LoVo.Methods A retroviral vector pLESSN expressing secretable endostatin was constructed and packaged with a titer of 8.2×105 CFU/ml. A LoVo cell line was subjected to retrovirus-mediated endostatin gene transfer. The proviral integration of endostatin was analyzed with PCR. The function of endostatin was tested by MTT assay in vitro and a mouse xenograft model in vivo.Results After transfection and superinfection, amphotropic retrovirus was collected, and transduction with amphotropic retroviruses resulted in endostatin proviral integration. The endostatin secreted by transduced LoVo cells markedly inhibited endothelial cell growth up to 67% (P<0.001), compared with the control cells. The gene expression of endostatin in LoVo colon tumor cells significantly inhibited tumor growth in vivo. There was an 86% reduction in tumor size in the endostatin-transduced group, accompanied by a reduction in vessels, compared with the control group (P<0.01). Conclusion Retroviruses can allow functional expression of the endostatin gene in human colon tumors, showing promise for an antitumor strategy using antiangiogenesis.

  9. Inhibition of human lung adenocarcinoma growth using survivint34a by low-dose systematic administration

    Indian Academy of Sciences (India)

    Yan Shan; Chunting Wang; Li Yang; Li Juan Chen; Hong Xin Deng; Han Shuo Yang; Zhimian Li; Zhiyong Li; Li Pan; Fei Leng; Yuquan Wei

    2010-06-01

    Anti-apoptosis plays an important role in tumour formation and development. Survivin is a member of the inhibitor of apoptosis (IAP) family, which is a target for anti-cancer drug exploitation was replaced as development. We investigated the role of the homo dominant-negative mutant Survivin-T34A in suppressing human lung adenocarcinomas (A549). The anti-tumour activity of HSurvivinT34A plasmid was evaluated in the A549 cell line and nude mice bearing A549 subcutaneous tumours. Low-dose systemic administration was continuously used. The HSurvivinT34A plasmid (5 g/one) complexed with a cationic liposome (DOTAP/Chol) significantly inhibited tumour growth in our model. We observed microvessel density degradation by CD31 immunohistochemistry and apoptotic cell increase by TUNEL assay, PI staining and flow cytometric analysis in the treated group. The present findings suggest that the HSurvivinT34A plasmid complexed with a cationic liposome may provide an effective approach to inhibit the growth of human lung adenocarcinomas in vitro and in vivo.

  10. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy.

    Science.gov (United States)

    Cheng, Yuhao; Cheng, Hao; Jiang, Chenxiao; Qiu, Xuefeng; Wang, Kaikai; Huan, Wei; Yuan, Ahu; Wu, Jinhui; Hu, Yiqiao

    2015-11-03

    Photodynamic therapy (PDT) kills cancer cells by converting tumour oxygen into reactive singlet oxygen ((1)O2) using a photosensitizer. However, pre-existing hypoxia in tumours and oxygen consumption during PDT can result in an inadequate oxygen supply, which in turn hampers photodynamic efficacy. Here to overcome this problem, we create oxygen self-enriching photodynamic therapy (Oxy-PDT) by loading a photosensitizer into perfluorocarbon nanodroplets. Because of the higher oxygen capacity and longer (1)O2 lifetime of perfluorocarbon, the photodynamic effect of the loaded photosensitizer is significantly enhanced, as demonstrated by the accelerated generation of (1)O2 and elevated cytotoxicity. Following direct injection into tumours, in vivo studies reveal tumour growth inhibition in the Oxy-PDT-treated mice. In addition, a single-dose intravenous injection of Oxy-PDT into tumour-bearing mice significantly inhibits tumour growth, whereas traditional PDT has no effect. Oxy-PDT may enable the enhancement of existing clinical PDT and future PDT design.

  11. HELICOBACTER PYLORI GROWTH INHIBITION BY SUBSTANCE PRODUCED PSEUDOMONAS BY AEROGINOSA: IN VTRO STUDY

    Directory of Open Access Journals (Sweden)

    A FAZELI

    2003-03-01

    Full Text Available Resistance of H.pylori against metronidazole is increasingly appeared in reports of investigators of gastric infections. So that, seeking to find more effective anti-helicobacter drugs is a necessity. In this study, inhibitory effect of the P. aeroginosa-produced substance on H. pylori growth was determined using two methods, Cross-streak and Well-diffusion Only two out of 37 P. aeroginosa isalates were able to inhibit H. pylori growth which one of them was chosen for further investigation. Its antibacterial activity was tested on 31 isolates of H. pylori consisting 27 metrondazole-sensitive and 4 metronidazole-resistant isolates. The inhibitory substance was enable to kill both metrondazole-sensitive and resistant isolates of H. pylori. The substance could also inhibit the of several other bacteria including E.coli, Salmonella sp., Klebsiella sp., S. aureus and a gram positive bacilli. While the inhibitory effect of the substance had no change at 40c for 30 days, its effect substantially reduced by treating at 600c for 15 minutes. Treatment of substance at 600c (30 min. 80?c and 100?c (15 & 30min, and freezing (-20?c and melting (37?c inactivated its inhibitory effect completely. Treatment with trips in also could inactivate it. Thus P. aeroginosa-produced substance, probably is a protein and may be classified in bacteriocin group.

  12. Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo

    Directory of Open Access Journals (Sweden)

    Deckard Lindsey A

    2011-04-01

    Full Text Available Abstract Background Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery, whole brain and spine irradiation, and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Methods To test the importance of NFκB to medulloblastoma cell growth, the effects of multiple drugs that inhibit NFκB, pyrrolidine dithiocarbamate, diethyldithiocarbamate, sulfasalazine, curcumin and bortezomib, were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells, xenograft flank tumors, and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB, IκB, was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. Results We report high constitutive activity of the canonical NFκB pathway, as seen by Western analysis of the NFκB subunit p65, in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though, conversely, the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally, expression of a dominant negative form of the endogenous inhibitor of NFκB, dnIκB, resulted in poor xenograft tumor growth, with average tumor volumes

  13. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study.

    Science.gov (United States)

    Song, Haibin; Bao, Junjie; Wei, Yuzhe; Chen, Yang; Mao, Xiaoguang; Li, Jianguo; Yang, Zhiwei; Xue, Yingwei

    2015-02-01

    Kaempferol, which is one of the general flavonoids, has recently been reported to suppress proliferation, induce cell cycle arrest and promote apoptosis in various human cancer cell lines. In the present study, the effect and mechanism of kaempferol on gastric cancer (GC) was examined. The results showed that kaempferol significantly inhibited the proliferation of MKN28 and SGC7901 cell lines. However, no significant inhibition in the GSE-1 normal gastric epithelial cell line in our experimental dose was detected. Additionally, significant apoptosis and G2/M phase cell cycle arrest were identified following the treatment of kaempferol. More importantly, we observed that kaempferol inhibited the growth of the tumor xenografts although no marked effects on liver, spleen or body weight were induced. The expression levels of G2/M cell cycle‑regulating factors, cyclin B1, Cdk1 and Cdc25C, were significantly reduced. In addition, kaempferol treatment markedly decreased the level of Bcl-2 concomitant with an increase in Bax expression, resulting in the upregulation of cleaved caspase-3 and -9, which promoted PARP cleavage. Kaempferol-treated cells also led to a decrease in p-Akt, p-ERK and COX-2 expression levels. The present study therefore provided evidence that kaempferol may be a therapeutic agent for GC.

  14. Salinomycin inhibits the growth of colorectal carcinoma by targeting tumor stem cells.

    Science.gov (United States)

    Zhang, Chen; Tian, Yaping; Song, Feiyu; Fu, Changhao; Han, Bo; Wang, Yi

    2015-11-01

    Salinomycin is a monocarboxylic polyether antibiotic that has been reported to induce apoptosis in various types of cancer cells with specificity for cancer stem cells. However, its anticancer effect in colorectal cancer stem cells has never been reported. In the present study, we examined the ability of salinomycin to induce cell death in the colorectal cancer stem cell line CD44+EpCAM+ HCT-116, and we measured its in vivo tumor inhibition capacity. Salinomycin dose-dependently induced cytotoxicity in the CD44+EpCAM+ HCT-116 cells and inhibited colony formation. Salinomycin treatment was shown to induce apoptosis, as evidenced by nuclear fragmentation, an increase in the proportion of acridine orange/ethidium bromide-positive cells and an increase in the percentage of Annexin V-positive cells. Apoptosis was induced in colorectal cancer stem cells in a caspase-dependent manner, as shown by an increase in the levels of cleaved caspase-3, -8 and -9. JC-1 staining further revealed that salinomycin induced colorectal cancer cell apoptosis via the mitochondrial pathway. In addition, salinomycin treatment of xenograft mice inhibited the growth of tumors derived from the CD44+EpCAM+ HCT-116 cells. The present study demonstrated that the antibiotic salinomycin exerts an anti-colorectal cancer effect in vitro and in vivo, suggesting salinomycin as a potential drug for colorectal cancer therapy.

  15. SNS-032 Prevents Tumor Cell-Induced Angiogenesis By Inhibiting Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    M. Aktar Ali

    2007-05-01

    Full Text Available Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs and human glioblastoma cells (U87MG. SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.

  16. Phellinus linteus extract induces autophagy and synergizes with 5-fluorouracil to inhibit breast cancer cell growth.

    Science.gov (United States)

    Lee, Wen-Ying; Hsu, Keng-Fu; Chiang, Tai-An; Chen, Chee-Jen

    2015-01-01

    Phellinus linteus (PL) is a medicinal mushroom due to its several biological properties, including anticancer activity. However, the mechanisms of its anticancer effect remain to be elucidated. We evaluated the inhibitory effects of the ethanolic extract from the PL combined with 5-FU on MDA-MB-231 breast cancer cell line and to determine the mechanism of cell death. Individually, PL extract and 5-FU significantly inhibited the proliferation of MDA-MB-231 cells in a dose-dependent manner. PL extract (30 mg/mL) in combination with 5-FU (10 μg/mL) synergistically inhibited MDA-MB-231 cells by 1.8-fold. PL did not induce apoptosis, as demonstrated by the DNA fragmentation assay, the sub-G1 population, and staining with annexin V-FITC and propidium iodide. The exposure of MDA-MB-231 cells to PL extracts resulted in several confirmed characteristics of autophagy, including the appearance of autophagic vacuoles revealed by monodansylcadaverine staining, the formation of acidic vesicular organelles, autophagosome membrane association of microtubule-associated protein light chain 3 (LC3) characterized by cleavage of LC3 and its punctuate redistribution, and ultrastructural observation of autophagic vacuoles by transmission electron microscopy. We concluded that PL extracts synergized with low doses of 5-FU to inhibit triple-negative breast cancer cell growth and demonstrated that PL extract can induce autophagy-related cell death.

  17. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine

    Directory of Open Access Journals (Sweden)

    Jorge Mansur Medina

    2015-02-01

    Full Text Available Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L., which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic, a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT, which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.

  18. Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells

    Institute of Scientific and Technical Information of China (English)

    MinZHANG; XinZHANG; Chun-xueBAI; JieCHEN; MinQWEI

    2004-01-01

    AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).

  19. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine

    Science.gov (United States)

    Medina, Jorge Mansur; Rodrigues, Juliany Cola Fernandes; Moreira, Otacilio C; Atella, Geórgia; de Souza, Wanderley; Barrabin, Hector

    2015-01-01

    Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens. PMID:25742263

  20. Nexrutine Inhibits Cancer Cell Growth as a Consequence of Mitochondrial Damage and Mitophagy

    Directory of Open Access Journals (Sweden)

    Xiang Wu

    2015-05-01

    Full Text Available Background/Aims: Nexrutine is an herbal extract of Phellodendron amurense and has been used as nutrient supplement in China as well as America. Potential protection effect of Nexrutine has been reported. Methods: To investigate the mechanism of Nexrutine, we used the HeLa, U2OS and HCT116 as a model. Based on the acidification of cell culture media, we examined the lactate, mitochondria damage as well as mitophagy status by corresponding assay. Results: Our data suggest that Nexrutine alters the cellular glucose metabolism to promote lactate production. This effect is caused by mitochondrial damage, not an alteration to lactate dehydrogenase activity. As a result of the mitochondrial damage, cell proliferation was inhibited and was associated with an elevation in p21/p27 proteins, which are both important cell cycle inhibitors. As another consequence of the mitochondrial damage, mitophagy was highly activated in Nexrutine-treated cells in a dose-dependent manner. When the autophagy pathway was blocked by siRNAs against BECN1 or ATG7, the growth inhibition caused by Nexrutine was reversed. Conclusion: Our study revealed that autophagy plays an important role in the inhibition of cancer cell proliferation by Nexrutine.

  1. Raman spectrum reveals Mesenchymal stem cells inhibiting HL60 cells growth

    Science.gov (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; Lu, Xiaoxu; Tian, Jindong; Fan, Jinping; LiyunZhong

    2017-04-01

    Though some research results reveals that Mesenchymal stem cells (MSCs) have the ability of inhibiting tumor cells proliferation, it remains controversial about the precise interaction mechanism during MSCs and tumor cells co-culture. In this study, combing Raman spectroscopic data and principle component analysis (PCA), the biochemical changes of MSCs or Human promyelocytic leukemia (HL60) cells during their co-culture were presented. The obtained results showed that some main Raman peaks of HL60 assigned to nucleic acids or proteins were greatly higher in intensity in the late stage of co-culture than those in the early stage of co-culture while they were still lower relative to the control group, implicating that the effect of MSCs inhibiting HL60 proliferation appeared in the early stage but gradually lost the inhibiting ability in the late stage of co-culture. Moreover, some other peaks of HL60 assigned to proteins were decreased in intensity in the early stage of co-culture relative to the control group but rebounded to the level similar to the control group in the late stage, showing that the content and structure changes of these proteins might be generated in the early stage but returned to the original state in the late stage of co-culture. As a result, in the early stage of MSCs-HL60 co-culture, along with the level of Akt phosphorylation of HL60 was lowered relative to its control group, the proliferation rate of HL60 cells was decreased. And in the late stage of co-culture, along with the level of Akt phosphorylation was rebounded, the reverse transfer of Raman peaks within 875-880 cm- 1 appeared, thus MSCs lost the ability to inhibit HL60 growth and HL60 proliferation was increased. In addition, it was observed that the peak at 811 cm- 1, which is a marker of RNA, was higher in intensity in the late stage than that in the control group, indicating that MSCs might be differentiated into myofibroblast-like MSCs. In addition, PCA results also exhibited

  2. Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes.

    Science.gov (United States)

    Ribalet, François; Berges, John A; Ianora, Adrianna; Casotti, Raffaella

    2007-12-15

    Several marine diatoms produce polyunsaturated aldehydes (PUAs) that have been shown to be toxic to a wide variety of model organisms, from bacteria to invertebrates. However, very little information is available on their effect on phytoplankton. Here, we expand previous studies to six species of marine phytoplankton, belonging to different taxonomic groups that are well represented in marine plankton. The effect of three PUAs, 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, was assessed on growth, cell membrane permeability, flow cytometric properties and morphology. A concentration-dependent reduction in the growth rate was observed for all cultures exposed to PUAs with longer-chained aldehydes having stronger effects on growth than shorter-chained aldehydes. Clear differences were observed among the different species. The prymnesiophyte Isochrysis galbana was the most sensitive species to PUA exposure with a lower threshold for an observed effect triggered by mean concentrations of 0.10 micromol L(-1) for 2E,4E-decadienal, 1.86 micromol L(-1) for 2E,4E-octadienal and 3.06 micromol L(-1) for 2E,4E-heptadienal, and a 50% growth inhibition (EC(50)) with respect to the control at 0.99, 2.25 and 5.90 micromol L(-1) for the three PUAs, respectively. Alternatively, the chlorophyte Tetraselmis suecica and the diatom Skeletonema marinoi (formerly S. costatum) were the most resistant species with 50% growth inhibition occurring at concentrations at least two to three times higher than I. galbana. In all species, the three PUAs caused changes in flow cytometric measures of cell size and cell granulosity and increased membrane permeability, assessed using the viability stain SYTOX Green. For example, after 48 h 51.6+/-2.6% of I. galbana cells and 15.0+/-1.8% of S. marinoi cells were not viable. Chromatin fragmentation was observed in the dinoflagellate Amphidinium carterae while clear DNA degradation was observed in the chlorophyte Dunaliella tertiolecta

  3. CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth.

    Science.gov (United States)

    Strock, Christopher J; Park, Jong-In; Rosen, Mark; Dionne, Craig; Ruggeri, Bruce; Jones-Bolin, Susan; Denmeade, Samuel R; Ball, Douglas W; Nelkin, Barry D

    2003-09-01

    All of the cases of medullary thyroid carcinoma (MTC) express the RET receptor tyrosine kinase. In essentially all of the hereditary cases and approximately 40% of the sporadic cases of MTC, the RET kinase is constitutively activated by mutation. This suggests that RET may be an effective therapeutic target for treatment of MTC. We show that the indolocarbazole derivatives, CEP-701 and CEP-751, inhibit RET in MTC cells. These compounds effectively inhibit RET phosphorylation in a dose-dependent manner at concentrations <100 nM in 0.5% serum and at somewhat higher concentrations in the presence of 16% serum. They also blocked the growth of these MTC cells in culture. CEP-751 and its prodrug, CEP-2563, also inhibited tumor growth in MTC cell xenografts. These results show that inhibiting RET can block the growth of MTC cells and may have a therapeutic benefit in MTC.

  4. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram

    Science.gov (United States)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Mao, Shirui; Li, Yaping

    2014-03-01

    Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.

  5. Potassium inhibits dietary salt-induced transforming growth factor-beta production.

    Science.gov (United States)

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W

    2009-11-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-beta, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-beta. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-beta demonstrated increased (35.2%) amounts of active TGF-beta in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-beta but did not affect production of TGF-beta by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the alpha subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-beta but did not alter TGF-beta production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-beta in animals receiving the high-salt diet but did not change urinary active TGF-beta in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake.

  6. Inhibition of Notch signaling in combination with paclitaxel reduces platinum-resistant ovarian tumor growth

    Directory of Open Access Journals (Sweden)

    Jolijn W Groeneweg

    2014-07-01

    Full Text Available Introduction: Ovarian cancer (OvCa is the most lethal gynecologic malignancy in the United States because of chemoresistant recurrent disease. Our objective was to investigate the efficacy of inhibiting the Notch pathway with a gamma-secretase inhibitor (GSI in an OvCa patient derived xenograft (PDX model as a single agent therapy and in combination with standard chemotherapy.Methods: Immunocompromised mice bearing xenografts derived from clinically platinum sensitive human ovarian serous carcinomas were treated with vehicle, GSI (MRK-003 alone, paclitaxel and carboplatin (P/C alone, or the combination of GSI and P/C. Mice bearing platinum resistant xenografts were given GSI with or without paclitaxel. Gene transcript levels of the Notch pathway target Hes1 were analyzed using RT-PCR. Notch1 and Notch3 protein levels were evaluated. The Wilcoxon rank-sum test was used to assess significance between the different treatment groups. Results: Expression of Notch1 and 3 was variable. GSI alone decreased tumor growth in two of three platinum sensitive ovarian tumors (p < 0.05, as well as in one of three platinum sensitive tumors (p = 0.04. The combination of GSI and paclitaxel was significantly more effective than GSI alone and paclitaxel alone in all platinum resistant ovarian tumors (all p <0.05. The addition of GSI did not alter the effect of P/C in platinum sensitive tumors. Interestingly, although the response of each tumor to chronic GSI exposure did not correlate with its endogenous level of Notch expression, GSI did negatively affect Notch signaling in an acute setting.Conclusions: Inhibiting the Notch signaling cascade with a GSI reduces primary human xenograft growth in vivo. GSI synergized with conventional cytotoxic chemotherapy only in the platinum resistant OvCa models with single agent paclitaxel. These findings suggest inhibition of the Notch pathway in concert with taxane therapy may hold promise for treatment of platinum resistant OvCa.

  7. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Isabel Hinsenkamp

    2016-08-01

    Full Text Available Gastric cancer (GC remains a malignant disease with high mortality. Patients are frequently diagnosed in advanced stages where survival prognosis is poor. Thus, there is high medical need to find novel drug targets and treatment strategies. Recently, the comprehensive molecular characterization of GC subtypes revealed mutations in the small GTPase RHOA as a hallmark of diffuse-type GC. RHOA activates RHO-associated protein kinases (ROCK1/2 which regulate cell contractility, migration and growth and thus may play a role in cancer. However, therapeutic benefit of RHO-pathway inhibition in GC has not been shown so far. The ROCK1/2 inhibitor 1-(5-isoquinoline sulfonyl-homopiperazine (HA-1077, fasudil is approved for cerebrovascular bleeding in patients. We therefore investigated whether fasudil (i.p., 10 mg/kg per day, 4 times per week, 4 weeks inhibits tumor growth in a preclinical model of GC. Fasudil evoked cell death in human GC cells and reduced the tumor size in the stomach of CEA424-SV40 TAg transgenic mice. Small animal PET/CT confirmed preclinical efficacy. Mass spectrometry imaging identified a translatable biomarker for mouse GC and suggested rapid but incomplete in situ distribution of the drug to gastric tumor tissue. RHOA expression was increased in the neoplastic murine stomach compared with normal non-malignant gastric tissue, and fasudil reduced (auto phosphorylation of ROCK2 at THR249 in vivo and in human GC cells in vitro. In sum, our data suggest that RHO-pathway inhibition may constitute a novel strategy for treatment of GC and that enhanced distribution of future ROCK inhibitors into tumor tissue may further improve efficacy.

  8. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing [Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107 (United States); Bosland, Maarten C.; Kajdacsy-Balla, Andre [Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Gnanasekar, Munirathinam, E-mail: mgnanas@uic.edu [Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107 (United States)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. Black-Right-Pointing-Pointer Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. Black-Right-Pointing-Pointer Knock down of RAGE abrogates prostate tumor growth in vivo. Black-Right-Pointing-Pointer Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  9. A chrysin derivative suppresses skin cancer growth by inhibiting cyclin-dependent kinases.

    Science.gov (United States)

    Liu, Haidan; Liu, Kangdong; Huang, Zunnan; Park, Chan-Mi; Thimmegowda, N R; Jang, Jae-Hyuk; Ryoo, In-Ja; He, Long; Kim, Sun-Ok; Oi, Naomi; Lee, Ki Won; Soung, Nak-Kyun; Bode, Ann M; Yang, Yifeng; Zhou, Xinmin; Erikson, Raymond L; Ahn, Jong-Seog; Hwang, Joonsung; Kim, Kyoon Eon; Dong, Zigang; Kim, Bo-Yeon

    2013-09-06

    Chrysin (5,7-dihydroxyflavone), a natural flavonoid widely distributed in plants, reportedly has chemopreventive properties against various cancers. However, the anticancer activity of chrysin observed in in vivo studies has been disappointing. Here, we report that a chrysin derivative, referred to as compound 69407, more strongly inhibited EGF-induced neoplastic transformation of JB6 P(+) cells compared with chrysin. It attenuated cell cycle progression of EGF-stimulated cells at the G1 phase and inhibited the G1/S transition. It caused loss of retinoblastoma phosphorylation at both Ser-795 and Ser-807/811, the preferred sites phosphorylated by Cdk4/6 and Cdk2, respectively. It also suppressed anchorage-dependent and -independent growth of A431 human epidermoid carcinoma cells. Compound 69407 reduced tumor growth in the A431 mouse xenograft model and retinoblastoma phosphorylation at Ser-795 and Ser-807/811. Immunoprecipitation kinase assay results showed that compound 69407 attenuated endogenous Cdk4 and Cdk2 kinase activities in EGF-stimulated JB6 P(+) cells. Pulldown and in vitro kinase assay results indicated that compound 69407 directly binds with Cdk2 and Cdk4 in an ATP-independent manner and inhibited their kinase activities. A binding model between compound 69407 and a crystal structure of Cdk2 predicted that compound 69407 was located inside the Cdk2 allosteric binding site. The binding was further verified by a point mutation binding assay. Overall results indicated that compound 69407 is an ATP-noncompetitive cyclin-dependent kinase inhibitor with anti-tumor effects, which acts by binding inside the Cdk2 allosteric pocket. This study provides new insights for creating a general pharmacophore model to design and develop novel ATP-noncompetitive agents with chemopreventive or chemotherapeutic potency.

  10. Methoxychlor inhibits growth and induces atresia through the aryl hydrocarbon receptor pathway in mouse ovarian antral follicles.

    Science.gov (United States)

    Basavarajappa, Mallikarjuna S; Hernández-Ochoa, Isabel; Wang, Wei; Flaws, Jodi A

    2012-08-01

    Methoxychlor (MXC) is an organochlorine pesticide used against pests that attack crops, vegetables, and livestock. MXC inhibits growth and induces atresia (death) of mouse ovarian antral follicles in vitro. Since several studies indicate that many chemicals act through the aryl hydrocarbon receptor (AHR) pathway, the current study tested the hypothesis that MXC binds to the AHR to inhibit growth and induce atresia of antral follicles. The data indicate that MXC binds to AHR. Further, a relatively high dose of MXC (100μg/ml) inhibits growth and induces atresia in both wild-type (WT) and AHR null (AHRKO) follicles, whereas a lower dose of MXC (10μg/ml) inhibits growth and induces atresia in WT, but not in AHRKO follicles. These data indicate that AHR deletion partially protects antral follicles from MXC induced slow growth and atresia. Collectively, these data show that MXC may act through the AHR pathway to inhibit follicle growth and induce atresia in antral follicles of the ovary.

  11. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens

    Science.gov (United States)

    Tenorio-Salgado, Silvia; Tinoco, Raunel; Vazquez-Duhalt, Rafael; Caballero-Mellado, Jesus; Perez-Rueda, Ernesto

    2013-01-01

    It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand our knowledge about Burkholderia tropica as a potential biological control agent, we analyzed 15 different strains of this bacterium to evaluate their capacities to inhibit the growth of four phytopathogenic fungi, Colletotrichum gloeosporioides, Fusarium culmorum, Fusarium oxysporum and Sclerotium rolffsi. Diverse analytical techniques, including plant root protection and dish plate growth assays and gas chromatography-mass spectroscopy showed that the fungal growth inhibition was intimately associated with the volatile compounds produced by B. tropica and, in particular, two bacterial strains (MTo293 and TTe203) exhibited the highest radial mycelial growth inhibition. Morphological changes associated with these compounds, such as disruption of fungal hyphae, were identified by using photomicrographic analysis. By using gas chromatography-mass spectroscopy technique, 18 volatile compounds involved in the growth inhibition mechanism were identified, including α-pinene and limonene. In addition, we found a high proportion of bacterial strains that produced siderophores during growth with different carbon sources, such as alanine and glutamic acid; however, their roles in the antagonism mechanism remain unclear. PMID:23680857

  12. Apoptotic cells activate AMP-activated protein kinase (AMPK) and inhibit epithelial cell growth without change in intracellular energy stores.

    Science.gov (United States)

    Patel, Vimal A; Massenburg, Donald; Vujicic, Snezana; Feng, Lanfei; Tang, Meiyi; Litbarg, Natalia; Antoni, Angelika; Rauch, Joyce; Lieberthal, Wilfred; Levine, Jerrold S

    2015-09-11

    Apoptosis plays an indispensable role in the maintenance and development of tissues. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits the proliferation and survival of PTECs. Here, we examined the effect of apoptotic targets on PTEC cell growth (cell size during G1 phase of the cell cycle). Using a cell culture model, we show that apoptotic cells potently activate AMP-activated protein kinase (AMPK), a highly sensitive sensor of intracellular energy stores. AMPK activation leads to decreased activity of its downstream target, ribosomal protein p70 S6 kinase (p70S6K), and concomitant inhibition of cell growth. Importantly, these events occur without detectable change in intracellular levels of AMP, ADP, or ATP. Inhibition of AMPK, either pharmacologically by compound C or molecularly by shRNA, diminishes the effects of apoptotic targets and largely restores p70S6K activity and cell size to normal levels. Apoptotic targets also inhibit Akt, a second signaling pathway regulating cell growth. Expression of a constitutively active Akt construct partially relieved cell growth inhibition but was less effective than inhibition of AMPK. Inhibition of cell growth by apoptotic targets is dependent on physical interaction between apoptotic targets and PTECs but independent of phagocytosis. We conclude that receptor-mediated recognition of apoptotic targets mimics the effects of intracellular energy depletion, activating AMPK and inhibiting cell growth. By acting as sentinels of environmental change, apoptotic death may enable nearby viable cells, especially nonmigratory epithelial cells, to monitor and adapt to local stresses.

  13. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Sylvie, E-mail: lamy.sylvie@uqam.ca; Ouanouki, Amira; Béliveau, Richard; Desrosiers, Richard R.

    2014-03-10

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  14. The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth

    Directory of Open Access Journals (Sweden)

    Bellou Sofia

    2012-05-01

    Full Text Available Abstract Background Increased consumption of plant-based diets has been linked to the presence of certain phytochemicals, including polyphenols such as flavonoids. Several of these compounds exert their protective effect via inhibition of tumor angiogenesis. Identification of additional phytochemicals with potential antiangiogenic activity is important not only for understanding the mechanism of the preventive effect, but also for developing novel therapeutic interventions. Results In an attempt to identify phytochemicals contributing to the well-documented preventive effect of plant-based diets on cancer incidence and mortality, we have screened a set of hitherto untested phytoestrogen metabolites concerning their anti-angiogenic effect, using endothelial cell proliferation as an end point. Here, we show that a novel phytoestrogen, 6-methoxyequol (6-ME, inhibited VEGF-induced proliferation of human umbilical vein endothelial cells (HUVE cells, whereas VEGF-induced migration and survival of HUVE cells remained unaffected. In addition, 6-ME inhibited FGF-2-induced proliferation of bovine brain capillary endothelial (BBCE cells. In line with its role in cell proliferation, 6-ME inhibited VEGF-induced phosphorylation of ERK1/2 MAPK, the key cascade responsible for VEGF-induced proliferation of endothelial cells. In this context, 6-ME inhibited in a dose dependent manner the phosphorylation of MEK1/2, the only known upstream activator of ERK1/2. 6-ME did not alter VEGF-induced phosphorylation of p38 MAPK or AKT, compatible with the lack of effect on VEGF-induced migration and survival of endothelial cells. Peri-tumor injection of 6-ME in A-431 xenograft tumors resulted in reduced tumor growth with suppressed neovasularization compared to vehicle controls (P  Conclusions 6-ME inhibits VEGF- and FGF2-induced proliferation of ECs by targeting the phosphorylation of MEK1/2 and it downstream substrate ERK1/2, both key components of the mitogenic MAPK

  15. Growth inhibition and apoptosis induced by osthole, a natural coumarin, in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Lurong Zhang

    Full Text Available BACKGROUND: Hepatocellular carcinoma (HCC is one of the most commonly diagnosed tumors worldwide and is known to be resistant to conventional chemotherapy. New therapeutic strategies are urgently needed for treating HCC. Osthole, a natural coumarin derivative, has been shown to have anti-tumor activity. However, the effects of osthole on HCC have not yet been reported. METHODS AND FINDINGS: HCC cell lines were treated with osthole at various concentrations for 24, 48 and 72 hours. The proliferations of the HCC cells were measured by MTT assays. Cell cycle distribution and apoptosis were determined by flow cytometry. HCC tumor models were established in mice by subcutaneously injection of SMMC-7721 or Hepa1-6 cells and the effect of osthole on tumor growths in vivo and the drug toxicity were studied. NF-κB activity after osthole treatment was determined by electrophoretic mobility shift assays and the expression of caspase-3 was measured by western blotting. The expression levels of other apoptosis-related genes were also determined by real-time PCR (PCR array assays. Osthole displayed a dose- and time-dependent inhibition of the HCC cell proliferations in vitro. It also induced apoptosis and caused cell accumulation in G2 phase. Osthole could significantly suppress HCC tumor growth in vivo with no toxicity at the dose we used. NF-κB activity was significantly suppressed by osthole at the dose- and time-dependent manner. The cleaved caspase-3 was also increased by osthole treatment. The expression levels of some apoptosis-related genes that belong to TNF ligand family, TNF receptor family, Bcl-2 family, caspase family, TRAF family, death domain family, CIDE domain and death effector domain family and CARD family were all increased with osthole treatment. CONCLUSION: Osthole could significantly inhibit HCC growth in vitro and in vivo through cell cycle arrest and inducing apoptosis by suppressing NF-κB activity and promoting the expressions of

  16. Growth Inhibition and Apoptosis Induced by Osthole, A Natural Coumarin, in Hepatocellular Carcinoma

    Science.gov (United States)

    Zhang, Lurong; Jiang, Guorong; Yao, Fei; He, Yan; Liang, Guoqiang; Zhang, Yinsheng; Hu, Bo; Wu, Yan; Li, Yunsen; Liu, Haiyan

    2012-01-01

    Background Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed tumors worldwide and is known to be resistant to conventional chemotherapy. New therapeutic strategies are urgently needed for treating HCC. Osthole, a natural coumarin derivative, has been shown to have anti-tumor activity. However, the effects of osthole on HCC have not yet been reported. Methods and Findings HCC cell lines were treated with osthole at various concentrations for 24, 48 and 72 hours. The proliferations of the HCC cells were measured by MTT assays. Cell cycle distribution and apoptosis were determined by flow cytometry. HCC tumor models were established in mice by subcutaneously injection of SMMC-7721 or Hepa1-6 cells and the effect of osthole on tumor growths in vivo and the drug toxicity were studied. NF-κB activity after osthole treatment was determined by electrophoretic mobility shift assays and the expression of caspase-3 was measured by western blotting. The expression levels of other apoptosis-related genes were also determined by real-time PCR (PCR array) assays. Osthole displayed a dose- and time-dependent inhibition of the HCC cell proliferations in vitro. It also induced apoptosis and caused cell accumulation in G2 phase. Osthole could significantly suppress HCC tumor growth in vivo with no toxicity at the dose we used. NF-κB activity was significantly suppressed by osthole at the dose- and time-dependent manner. The cleaved caspase-3 was also increased by osthole treatment. The expression levels of some apoptosis-related genes that belong to TNF ligand family, TNF receptor family, Bcl-2 family, caspase family, TRAF family, death domain family, CIDE domain and death effector domain family and CARD family were all increased with osthole treatment. Conclusion Osthole could significantly inhibit HCC growth in vitro and in vivo through cell cycle arrest and inducing apoptosis by suppressing NF-κB activity and promoting the expressions of apoptosis

  17. Slit2 Inhibits Growth and Metastasis of Fibrosarcoma and Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Hee Kyung Kim

    2008-12-01

    Full Text Available Slits are a group of secreted glycoproteins that play a role in the regulation of cell migration. Previous studies suggested that Slit2 might be a tumor-suppressor gene. However, it remained to be determined whether Slit2 suppressed tumor growth and metastasis in animal models. We showed that Slit2 expression was decreased or abolished in human esophageal squamous cell carcinomas (SCCs compared to normal tissues by in situ hybridization. Stable transfection of human SCC A431 and fibrosarcoma HT1080 cells with Slit2 gene suppressed tumor growth in athymic nude mice. Apoptosis in Slit2-transfected tumors was increased, whereas proliferating cells were decreased, suggesting a mechanism for Slit2-mediated tumor suppression. This was supported by further analysis indicating that antiapoptotic molecules Bcl-2 and Bcl-xl and cell cycle molecules Cdk6 and Cyclin D1 were down-regulated in Slit2-transfected tumors. Furthermore, wound healing and Matrigel invasion assays showed that the transfection with Slit2 inhibited tumor cell migration and invasion. Slit2-transfected tumors showed a high level of keratin 8/18 and a low level of N-cadherin expression compared to empty vector-transfected tumors. More importantly, Slit2 transfection suppressed the metastasis of HT1080 tumor cells in lungs after intravenous inoculation. Collectively, our study has demonstrated that Slit2 inhibits tumor growth and metastasis of fibrosarcoma and SCC and that its effect on cell cycle and apoptosis signal pathways is an important mechanism for Slit2-mediated tumor suppression.

  18. Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma.

    Science.gov (United States)

    Kim, Hee Kyung; Zhang, Hong; Li, Hui; Wu, Tsung-Teh; Swisher, Stephen; He, Donggou; Wu, Lizhi; Xu, Jianmin; Elmets, Craig A; Athar, Mohammad; Xu, Xìao-chun; Xu, Hui

    2008-12-01

    Slits are a group of secreted glycoproteins that play a role in the regulation of cell migration. Previous studies suggested that Slit2 might be a tumor-suppressor gene. However, it remained to be determined whether Slit2 suppressed tumor growth and metastasis in animal models. We showed that Slit2 expression was decreased or abolished in human esophageal squamous cell carcinomas (SCCs) compared to normal tissues by in situ hybridization. Stable transfection of human SCC A431 and fibrosarcoma HT1080 cells with Slit2 gene suppressed tumor growth in athymic nude mice. Apoptosis in Slit2-transfected tumors was increased, whereas proliferating cells were decreased, suggesting a mechanism for Slit2-mediated tumor suppression. This was supported by further analysis indicating that antiapoptotic molecules Bcl-2 and Bcl-xl and cell cycle molecules Cdk6 and Cyclin D1 were down-regulated in Slit2-transfected tumors. Furthermore, wound healing and Matrigel invasion assays showed that the transfection with Slit2 inhibited tumor cell migration and invasion. Slit2-transfected tumors showed a high level of keratin 8/18 and a low level of N-cadherin expression compared to empty vector-transfected tumors. More importantly, Slit2 transfection suppressed the metastasis of HT1080 tumor cells in lungs after intravenous inoculation. Collectively, our study has demonstrated that Slit2 inhibits tumor growth and metastasis of fibrosarcoma and SCC and that its effect on cell cycle and apoptosis signal pathways is an important mechanism for Slit2-mediated tumor suppression.

  19. Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland.

    Science.gov (United States)

    Seeram, Navindra P; Aronson, William J; Zhang, Yanjun; Henning, Susanne M; Moro, Aune; Lee, Ru-Po; Sartippour, Maryam; Harris, Diane M; Rettig, Matthew; Suchard, Marc A; Pantuck, Allan J; Belldegrun, Arie; Heber, David

    2007-09-19

    Our group has shown in a phase II clinical trial that pomegranate juice (PJ) increases prostate specific antigen (PSA) doubling time in prostate cancer (CaP) patients with a rising PSA. Ellagitannins (ETs) are the most abundant polyphenols present in PJ and contribute greatly towards its reported biological properties. On consumption, ETs hydrolyze to release ellagic acid (EA), which is then converted by gut microflora to 3,8-dihydroxy-6H-dibenzo[b, d]pyran-6-one (urolithin A, UA) derivatives. Despite the accumulating knowledge of ET metabolism in animals and humans, there is no available data on the pharmacokinetics and tissue disposition of urolithins. Using a standardized ET-enriched pomegranate extract (PE), we sought to further define the metabolism and tissue distribution of ET metabolites. PE and UA (synthesized in our laboratory) were administered to C57BL/6 wild-type male mice, and metabolite levels in plasma and tissues were determined over 24 h. ET metabolites were concentrated at higher levels in mouse prostate, colon, and intestinal tissues as compared to other tissues after administration of PE or UA. We also evaluated the effects of PE on CaP growth in severe combined immunodeficient (SCID) mice injected subcutaneously with human CaP cells (LAPC-4). PE significantly inhibited LAPC-4 xenograft growth in SCID mice as compared to vehicle control. Finally, EA and several synthesized urolithins were shown to inhibit the growth of human CaP cells in vitro. The chemopreventive potential of pomegranate ETs and localization of their bioactive metabolites in mouse prostate tissue suggest that pomegranate may play a role in CaP treatment and chemoprevention. This warrants future human tissue bioavailability studies and further clinical studies in men with CaP.

  20. Inhibition of peripubertal sheep mammary gland development by cysteamine through reducing progesterone and growth factor production.

    Science.gov (United States)

    Zhao, Yong; Feng, Yanni; Zhang, Hongfu; Kou, Xin; Li, Lan; Liu, Xinqi; Zhang, Pengfei; Cui, Liantao; Chu, Meiqiang; Shen, Wei; Min, Lingjiang

    2017-02-01

    Cysteamine has been used for treating cystinosis for many years, and furthermore it has also been used as a therapeutic agent for different diseases including Huntington's disease, Parkinson's disease (PD), nonalcoholic fatty liver disease, malaria, cancer, and others. Although cysteamine has many potential applications, its use may also be problematic. The effects of low doses of cysteamine on the reproductive system, especially the mammary glands are currently unknown. In the current investigation, low dose (10 mg/kg BW/day) of cysteamine did not affect sheep body weight gain or organ index of the liver, spleen, or heart; it did, however, increase the levels of blood lymphocytes, monocytes, and platelets. Most interestingly, it inhibited mammary gland development after 2 or 5 months of treatment by reducing the organ index and the number of mammary gland ducts. Plasma growth hormone and estradiol remained unchanged; however, plasma progesterone levels and the protein level of HSD3β1 in sheep ovaries were decreased by cysteamine. In addition to steroid hormones, growth factors produced in the mammary glands also play crucial roles in mammary gland development. Results showed that protein levels of HGF, GHR, and IGF1R were decreased after 5 months of cysteamine treatment. These findings together suggest that progesterone and local growth factors in mammary glands might be involved in cysteamine initiated inhibition of pubertal ovine mammary gland development. Furthermore, it may lead to a reduction in fertility. Therefore, cysteamine should be used with great caution until its actions have been further investigated and its limitations overcome.

  1. Tumstatin transfected into human glioma cell line U251 represses tumor growth by inhibiting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    YE Hong-xing; YAO Yu; JIANG Xin-jun; YUAN Xian-rui

    2013-01-01

    Background Angiogenesis is a prerequisite for tumor growth and plays an important role in rapidly growing tumors,such as malignant gliomas.A variety of factors controlling the angiogenic balance have been described,and among these,the endogenous inhibitor of angiogenesis,tumstatin,has drawn considerable attention.The current study investigated whether expression of tumstatin by glioma cells could alter this balance and prevent tumor formation.Methods We engineered stable transfectants from human glioma cell line U251 to constitutively secrete a human tumstatin protein with c-myc and polyhistidine tags.Production and secretion of the tumstatin-c-myc-His fusion protein by tumstatin-transfected cells were confirmed by Western blotting analysis.In the present study,we identify the anti-angiogenic capacity of tumstatin using several in vitro and in vivo assays.Student's t-test and one-way analysis of variance (ANOVA) test were used to determine the statistical significance in this study.Results The tumstatin transfectants and control transfectants (stably transfected with a control plasmid) had similar in vitro growth rates compared to their parental cell lines.However,the conditioned medium from the tumstatin transfected tumor cells significantly inhibits proliferation and causes apoptosis of endothelial cells.It also inhibits tube formation of endothelial cells on Matrigel.Examination of armpit tumors arising from cells overexpressing tumstatin repress the growth of tumor,accompanying the decreased density of CD31 positive vessels in tumors ((5.62±1.32)/HP),compared to the control-transfectants group ((23.84+1.71)/HP) and wild type U251 glioma cells group ((29.33+4.45)/HP).Conclusion Anti-angiogenic gene therapy using human tumstatin gene may be an effective strategy for the treatment of glioma.

  2. Inhibition of growth of Enterobacter sakazakii in reconstituted infant formula by the lactoperoxidase system.

    Science.gov (United States)

    Gurtler, Joshua B; Beuchat, Larry R

    2007-09-01

    Neonatal bacteremia and meningitis caused by the opportunistic pathogen Enterobacter sakazakii have been associated with the consumption of reconstituted powdered infant formula. Lactoperoxidase (LPO), present in mammalian milk, is known to inhibit the growth of enteric pathogens. We undertook a study to determine if the lactoperoxidase system (LPOS) will inhibit the growth of E. sakazakii in a milk-based powdered infant formula reconstituted with water. Initially at 0.04 CFU/ml, E. sakazakii grew to 2.40 to 2.74 log CFU/ml in reconstituted infant formula held at 30 or 37 degrees C for 8 h and to 0.6 log CFU/ ml in formula held for 12 h at 21 degrees C. The pathogen was not detected (less than 1 CFU/227 ml) by enrichment of formula treated with 10 to 30 microg/ml LPO and stored for 24 h at 37 degrees C or 30 microg/ml LPO and stored for 24 h at 30 degrees C. Populations of E. sakazakii, initially at 4.40 log CFU/ml of reconstituted infant formula containing 5 microg/ml LPO, did not increase significantly (P > 0.05) for up to 12 h at 21 and 30 degrees C. Populations either decreased significantly or were unchanged in formula supplemented with 10 microg/ml LPO and stored at 21, 30, or 37 degrees C for up to 24, 8, and 8 h, respectively. Results indicate that LPOS can be used to control the growth of E. sakazakii in reconstituted infant formula, thereby potentially reducing the risk of neonatal infections resulting from consumption of formula that may be contaminated with the pathogen.

  3. Small interference RNA targeting tissue factor inhibits human lung adenocarcinoma growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Wang Jianing

    2011-05-01

    Full Text Available Abstract Background The human coagulation trigger tissue factor (TF is overexpressed in several types of cancer and involved in tumor growth, vascularization, and metastasis. To explore the role of TF in biological processes of lung adenocarcinoma, we used RNA interference (RNAi technology to silence TF in a lung adenocarcinoma cell line A549 with high-level expression of TF and evaluate its antitumor effects in vitro and in vivo. Methods The specific small interfering RNA (siRNA designed for targeting human TF was transfected into A549 cells. The expression of TF was detected by reverse transcription-PCR and Western blot. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The metastatic potential of A549 cells was determined by wound healing, the mobility and Matrigel invasion assays. Expressions of PI3K/Akt, Erk1/2, VEGF and MMP-2/-9 in transfected cells were detected by Western blot. In vivo, the effect of TF-siRNA on the growth of A549 lung adenocarcinoma xenografts in nude mice was investigated. Results TF -siRNA significantly reduced the expression of TF in the mRNA and protein levels. The down-regulation of TF in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis in dose-dependent manner. Erk MAPK, PI3K/Akt pathways as well as VEGF and MMP-2/-9 expressions were inhibited in TF-siRNA transfected cells. Moreover, intratumoral injection of siRNA targeting TF suppressed the tumor growth of A549 cells in vivo model of lung adenocarcinoma. Conclusions Down-regulation of TF using siRNA could provide a potential approach for gene therapy against lung adenocarcinoma, and the antitumor effects may be associated with inhibition of Erk MAPK, PI3K/Akt pathways.

  4. Adenovirus-mediated expression of SSAT inhibits colorectal cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui SUN; Bin LIU; Ya-pei YANG; Chun-xiao XU; Yun-fei YAN; Wei WANG; Xian-xi LIU

    2008-01-01

    Aim: To construct a recombinant adenovirus that can express human spermidine/ spermine N1-acetyltransferase (SSAT) and detect its inhibitory effect on colorectal cancer cell growth in vitro. Methods: A 516 bp eDNA of SSAT was amplified and cloned into a pGL3-hTERT plasmid. The pGL3-hTERT-SSAT recombinant was digested, and the small fragment was cloned into the shuttle vector pAdTrack. The pAdTrack-hTERT-SSAT plasmids were recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the HEK293 packaging cells (transformed human embryonic kidney cells) after they were lin-earized by PacI. The process of adenovirus packaging and amplification was monitored by green fluorescent protein (GFP) expression. The SSAT protein levels were determined by Western blotting, and the intracellular polyamine con-tent was detected by reverse-phase high performance liquid chromatography. The MTS (3-(4, 5-dimethylthiaol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(-4-sulfophenyl)-2H-tetrazolium, inner salt) and colony-forming assays were used to analyze the gene transduction efficiency and effect on the growth of HT-29 and LoVo cells. A viable cell count was used to determine the cell growth with or without exogenous polyamines. Results: The GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting results demonstrated that Ad-hTERT-SSAT could increase the expres-sion of SSAT, and consequently, spermidine and spermine were reduced to low levels. The MTS and colony-forming assay results showed that HT-29 and LoVo cell growth were significantly inhibited, and the inhibitory effect could be partially reversed by exogenous spermidine and spermine. Conclusion: The successfully constructed recombinant adenovirus Ad-hTERT-SSAT could accelerate polyamine catabolism and inhibit the colorectal cell growth in vitro. It also has therapeutic potential in the treatment of colorectal cancer.

  5. Growth inhibition of the filamentous fungus Aspergillus nidulans by cadmium: an antioxidant enzyme approach.

    Science.gov (United States)

    Guelfi, Andrea; Azevedo, Ricardo A; Lea, Peter J; Molina, Silvia M G

    2003-04-01

    The heavy metal cadmium is very toxic to biological systems. Although its effect on the growth of microorganisms and plants has been investigated, the response of antioxidant enzymes of Aspergillus nidulans to cadmium is not well documented. We have studied the effect of cadmium (supplied as CdCl(2)) on catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR). 0.005 mM CdCl(2) had a very slight stimulatory effect on the growth rate of A. nidulans, but at concentrations above 0.025 mM, growth was totally inhibited. The accumulation of Cd within the mycelium was directly correlated with the increase in the concentration of CdC(2) used in the treatments. Although a cadmium-stimulated increase in SOD activity was observed, there was no change in the relative proportions of the individual Mn-SOD isoenzymes. Higher concentrations of CdCl(2) induced a small increase in total CAT activity, but there was a major increase in one isoenzymic form, that could be separated by gel electrophoresis. GR activity increased significantly following treatment with the highest concentration (0.05 mM) of CdCl(2). The increases in SOD, CAT, and GR activities suggest that CdCl(2) induces the formation of reactive oxygen species inside the mycelia of A. nidulans.

  6. Milk fat conjugated linoleic acid (CLA) inhibits growth of human mammary MCF-7 cancer cells.

    Science.gov (United States)

    O'Shea, M; Devery, R; Lawless, F; Murphy, J; Stanton, C

    The relationship between growth and the antioxidant enzyme defence system in human MCF-7 (breast) cancer cells treated with bovine milk fat enriched with conjugated linoleic acid (CLA) was studied. Milk enriched in CLA was obtained from cows on pasture supplemented with full fat rapeseeds and full fat soyabeans (1). Cell number decreased up to 90% (p milk fat yielding CLA concentrations between 16.9 and 22.6 ppm. Growth suppression and prooxidant effects of milk fat CLA were independent of the variable composition of the milk fat samples, suggesting that CLA was the active ingredient in milk fat responsible for the cytotoxic effect. Mixtures containing isomers of CLA (c9, t11-, t10, c12-, c11, t13- and minor amounts of other isomers) and linoleic acid (LA) at similar concentrations to the milk fat samples were as effective at inhibiting growth and stimulating peroxidation of MCF-7 cells as the milk fatty acids. Incubation of the cells with the c9, t11 CLA isomer (20 ppm) or the mixture of CLA isomers (20 ppm) for 8 days resulted in a 60% decrease (p milk fat than the c9, t11 synthetic CLA isomer. Superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities were induced in MCF-7 cells exposed to milk fat (containing 16.9-22.6 ppm CLA) over 8 days. The data indicate that milk fat triglyceride-bound CLA, consisting primarily of the c9, t11 isomer, was cytotoxic towards MCF-7 cells.

  7. Growth inhibition of struvite crystals by the aqueous root extract of Rotula aquatica.

    Science.gov (United States)

    Chauhan, C K; Joshi, M J; Vaidya, A D B

    2011-06-01

    Formation of urinary stone is a serious and debilitating problem throughout the world. In the present study, the inhibitory effect of aqueous extract of root of Rotula aquatica was investigated against struvite crystals (one of the components of urinary stone) grown in vitro using single diffusion gel growth technique. For setting the gel, sodium metasilicate solution (specific gravity 1.05) and 0.5 M aqueous solution of ammonium dihydrogen phosphate were mixed, so that the pH of the mixture could be set at 7.0. Equal amounts of supernatant solution of magnesium acetate (1.0 M) prepared with 0.0%, 0.5% and 1% concentrations of the extract were gently poured on the set gels. It was observed that the number, dimension, total mass, total volume, growth rate and depth of growth of struvite crystals decreased with the increasing extract concentrations in the supernatant solutions. The enhancement of dissolution rate and fragmentation of struvite crystals suggested potential application of the extract for inhibition of struvite type urinary stone.

  8. Shikonin inhibits TNF-α-induced growth and invasion of rat aortic vascular smooth muscle cells.

    Science.gov (United States)

    Zhang, Xuemin; Hu, Wenyu; Wu, Fang; Yuan, Xue; Hu, Jian

    2015-08-01

    Shikonin is a naphthoquinone compound extracted from the Chinese herb purple gromwell. Shikonin has broad antibacterial, anti-inflammatory, and antitumor activities. The tumor necrosis factor-α (TNF-α)-induced proliferation and invasion of vascular smooth muscle cells (VSMCs) is an important factor that contributes to atherosclerosis. The effects of shikonin on the proliferation and apoptosis of VSMCs have been reported; however, the function of shikonin on TNF-α-mediated growth and invasion of VSMCs during atherosclerosis remains unclear. In this study, we used Western blot, flow cytometry, real-time quantitative PCR, and enzyme-linked immunosorbent assay to investigate the effect of shikonin on the TNF-α-induced growth and invasion of VSMCs and to determine the underlying mechanism. Our results showed that shikonin inhibits the TNF-α-mediated growth and invasion. Further study revealed that shikonin regulates the activation of nuclear factor kappa B and phosphatidyl inositol 3-kinase signaling pathways; modulates the expression of cyclin D1, cyclin E, B-cell lymphoma 2, and Bax; activates caspase-3 and caspase-9; induces cell cycle arrest; and promotes the apoptosis of VSMCs. Together, our results indicate that shikonin may become a promising agent for the treatment of atherosclerosis and they also establish foundation for the development of anti-atherosclerosis drugs.

  9. In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals

    Science.gov (United States)

    Chauhan, Chetan K.; Joshi, Mihir J.

    2013-01-01

    The formation of urinary stones, known as nephrolithiasis or urolithiasis, is a serious, debilitating problem throughout the world. Struvite—NH4MgPO4·6H2O, ammonium magnesium phosphate hexahydrate, is one of the components of urinary stones (calculi). Struvite crystals with different morphologies were grown by in vitro single diffusion gel growth technique with different growth parameters. The crystals were characterized by powder XRD, FT-IR, thermal analysis and dielectric study. The powder XRD results of struvite confirmed the orthorhombic crystal structure. The FT-IR spectrum proved the presence of water of hydration, metal-oxygen bond, N-H bond and P-O bond. For thermal analysis TGA, DTA and DSC were carried out simultaneously. The kinetic and thermodynamic parameters of dehydration/decomposition process were calculated. Vickers micro-hardness and related mechanical parameters were also calculated. The in vitro growth inhibition studies of struvite by the juice of Citrus medica Linn as well as the herbal extracts of Commiphora wightii, Boerhaavia diffusa Linn and Rotula aquatica Lour were carried out and found potent inhibitors of struvite.

  10. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid.

    Science.gov (United States)

    Meinelt, Thomas; Phan, Thy-My; Behrens, Sascha; Wienke, Andreas; Pedersen, Lars-Flemming; Liu, Dibo; Straus, David L

    2015-04-08

    Peracetic acid (PAA) is a therapeutic agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harming the fish. Successful disinfectants (like PAA) should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. The aim of our study was to compare the effectiveness of 6 commercial PAA products with different molecular PAA:H2O2 ratios to reduce bacterial growth of Aeromonas salmonicida and Yersinia ruckeri and to determine effective concentrations and exposure times. All products reduced colony-forming units (CFUs) of A. salmonicida and Y. ruckeri. Products with higher molecular PAA:H2O2 ratios inhibited growth better than products with lower molecular PAA:H2O2 ratios at the same PAA concentration; this indicates that H2O2 is not the driving force in the reduction of A. salmonicida and Y. ruckeri growth by PAA in vitro. The practical application of the products with high molecular PAA:H2O2 ratios should be prioritized if these pathogens are diagnosed.

  11. Fermented wheat aleurone inhibits growth and induces apoptosis in human HT29 colon adenocarcinoma cells.

    Science.gov (United States)

    Borowicki, Anke; Stein, Katrin; Scharlau, Daniel; Scheu, Kerstin; Brenner-Weiss, Gerald; Obst, Ursula; Hollmann, Jürgen; Lindhauer, Meinolf; Wachter, Norbert; Glei, Michael

    2010-02-01

    Fermentation of dietary fibre by the gut microflora may enhance levels of SCFA, which are potentially chemoprotective against colon cancer. Functional food containing wheat aleurone may prevent cancer by influencing cell cycle and cell death. We investigated effects of fermented wheat aleurone on growth and apoptosis of HT29 cells. Wheat aleurone, flour and bran were digested and fermented in vitro. The resulting fermentation supernatants (fs) were analysed for their major metabolites (SCFA, bile acids and ammonia). HT29 cells were treated for 24-72 h with the fs or synthetic mixtures mimicking the fs in SCFA, butyrate or deoxycholic acid (DCA) contents, and the influence on cell growth was determined. Fs aleurone was used to investigate the modulation of apoptosis and cell cycle. The fermented wheat samples contained two- to threefold higher amounts of SCFA than the faeces control (blank), but reduced levels of bile acids and increased concentrations of ammonia. Fs aleurone and flour equally reduced cell growth of HT29 more effectively than the corresponding blank and the SCFA mixtures. The EC(50) (48 h) ranged from 10 % (flour) to 19 % (blank). Markedly after 48 h, fs aleurone (10 %) significantly induced apoptosis and inhibited cell proliferation by arresting the cell cycle in the G0/G1 phase. In conclusion, fermentation of wheat aleurone results in a reduced level of tumour-promoting DCA, but higher levels of potentially chemopreventive SCFA. Fermented wheat aleurone is able to induce apoptosis and to block cell cycle - two essential markers of secondary chemoprevention.

  12. Lactobacillus plantarum B7 inhibits Helicobacter pylori growth and attenuates gastric inflammation

    Institute of Scientific and Technical Information of China (English)

    Chompoonut Sunanliganon; Duangporn Thong-Ngam; Somying Tumwasorn; Naruemon Klaikeaw

    2012-01-01

    AIM:To determine the anti-Helicobacter property of Lactobacillus plantarum B7 (L.plantarum) B7 supernatants in vitro and the protective effects of L.plantarum B7 on serum tumor necrosis factor-alpha (TNF-α),gastric malondialdehyde (MDA) level,apoptosis,and histopathology in Helicobacter pylori (H.pylorl)-induced gastric inflammation in rats.METHODS:In vitro,the inhibition of H,pylori growth was examined using L.plantarum B7 supernatants at pH 4 and pH 7 and at the concentration of 1×,5× and 10× on plates inoculated with H.pylori.The inhibitory effect of H.pylori was interpreted by the size of the inhibition zone.In vitro,male Sprague-Dawley rats were randomly divided into four groups including group 1 (control group),group 2 (H.pylori infected group),group 3 (H.pylori infected with L.plantarum B7 10é CFUs/mL treated group) and group 4 (H.pylori infected with L.plantarum B7 1010 CFUs/mL treated group).One week after H.pylori inoculation,L.plantarum B7 106 CFUs/mL or 1010 CFUs/mL were fed once daily to group 3 and group 4,respectively,for one week.Blood and gastric samples were collected at the end of the study.RESULTS:In vitro,at intact pH 4,mean inhibitory zone diameters of 8.5 mm and 13 mm were noted at concentrations of 5× and 10× of L.plantarum B7supernatant disks,respectively.At adjusted pH 7,L.plantarum B7 supernatants at concentrations of 5 × and 10× yielded mean inhibitory zone diameters of 6.5 mm and 11 mm,respectively.In the in vitro study,in group 2,stomach histopathology revealed mild to moderate H.pylori colonization and inflammation.The level of gastric MDA and epithelial cell apoptosis were significantly increased compared with group 1.The serum TNF-α level was significant decreased in group 3compared with group 2 (P < 0.05).In addition,L.plantarum B7 treatments resulted in a significant improvement in stomach pathology,and decreased gastric MDA level and apoptotic epithelial cells.CONCLUSION:L.plantarum B7 supernatant inhibits H

  13. Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling.

    Science.gov (United States)

    Sliva, D; Jedinak, A; Kawasaki, J; Harvey, K; Slivova, V

    2008-04-22

    The antitumour activity of a medicinal mushroom Phellinus linteus (PL), through the stimulation of immune system or the induction of apoptosis, has been recently described. However, the molecular mechanisms responsible for the inhibition of invasive behaviour of cancer cells remain to be addressed. In the present study, we demonstrate that PL inhibits proliferation (anchorage-dependent growth) as well as colony formation (anchorage-independent growth) of highly invasive human breast cancer cells. The growth inhibition of MDA-MB-231 cells is mediated by the cell cycle arrest at S phase through the upregulation of p27(Kip1) expression. Phellinus linteus also suppressed invasive behaviour of MDA-MB-231 cells by the inhibition of cell adhesion, cell migration and cell invasion through the suppression of secretion of urokinase-plasminogen activator from breast cancer cells. In addition, PL markedly inhibited the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells, through the downregulation of secretion of vascular endothelial growth factor from MDA-MB-231 cells. These effects are mediated by the inhibition of serine-threonine kinase AKT signalling, because PL suppressed phosphorylation of AKT at Thr(308) and Ser(473) in breast cancer cells. Taken together, our study suggests potential therapeutic effect of PL against invasive breast cancer.

  14. IL-18 inhibits growth of murine orthotopic prostate carcinomas via both adaptive and innate immune mechanisms.

    Directory of Open Access Journals (Sweden)

    Brian Wan-Chi Tse

    Full Text Available Interleukin(IL-18 is a pleiotrophic cytokine with functions in immune modulation, angiogenesis and bone metabolism. In this study, the potential of IL-18 as an immunotherapy for prostate cancer (PCa was examined using the murine model of prostate carcinoma, RM1 and a bone metastatic variant RM1(BM/B4H7-luc. RM1 and RM1(BM/B4H7-luc cells were stably transfected to express bioactive IL-18. These cells were implanted into syngeneic immunocompetent mice, with or without an IL-18-neutralising antibody (αIL-18, SK113AE4. IL-18 significantly inhibited the growth of both subcutaneous and orthotopic RM1 tumors and the IL-18 neutralizing antibody abrogated the tumor growth-inhibition. In vivo neutralization of interferon-gamma (IFN-γ completely eliminated the anti-tumor effects of IL-18 confirming an essential role of IFN-γ as a down-stream mediator of the anti-tumor activity of IL-18. Tumors from mice in which IL-18 and/or IFN-γ was neutralized contained significantly fewer CD4(+ and CD8(+ T cells than those with functional IL-18. The essential role of adaptive immunity was demonstrated as tumors grew more rapidly in RAG1(-/- mice or in mice depleted of CD4(+ and/or CD8(+ cells than in normal mice. The tumors in RAG1(-/- mice were also significantly smaller when IL-18 was present, indicating that innate immune mechanisms are involved. IL-18 also induced an increase in tumor infiltration of macrophages and neutrophils but not NK cells. In other experiments, direct injection of recombinant IL-18 into established tumors also inhibited tumor growth, which was associated with an increase in intratumoral macrophages, but not T cells. These results suggest that local IL-18 in the tumor environment can significantly potentiate anti-tumor immunity in the prostate and clearly demonstrate that this effect is mediated by innate and adaptive immune mechanisms.

  15. Mechanisms of Neuroblastoma Cell Growth Inhibition by CARP-1 Functional Mimetics

    Science.gov (United States)

    Muthu, Magesh; Cheriyan, Vino T.; Munie, Sara; Levi, Edi; Frank, John; Ashour, Abdelkader E.; Singh, Mandip; Rishi, Arun K.

    2014-01-01

    Neuroblastomas (NBs) are a clinically heterogeneous group of extra cranial pediatric tumors. Patients with high-risk, metastatic NBs have a long-term survival rate of below 40%, and are often resistant to current therapeutic modalities. Due to toxic side effects associated with radiation and chemotherapies, development of new agents is warranted to overcome resistance and effectively treat this disease in clinic. CARP-1 functional mimetics (CFMs) are an emerging class of small molecule compounds that inhibit growth of diverse cancer cell types. Here we investigated NB inhibitory potential of CFMs and the molecular mechanisms involved. CFM-1, -4, and -5 inhibited NB cell growth, in vitro, independent of their p53 and MYCN status. CFM-4 and -5 induced apoptosis in NB cells in part by activating pro-apoptotic stress-activated kinases (SAPKs) p38 and JNK, stimulating CARP-1 expression and cleavage of PARP1, while promoting loss of the oncogenes C and N-myc as well as mitotic cyclin B1. Treatments of NB cells with CFM-4 or -5 also resulted in loss of Inhibitory κB (IκB) α and β proteins. Micro-RNA profiling revealed upregulation of XIAP-targeting miR513a-3p in CFM-4-treated NB, mesothelioma, and breast cancer cells. Moreover, exposure of NB and breast cancer cells to CFM-4 or -5 resulted in diminished expression of anti-apoptotic XIAP1, cIAP1, and Survivin proteins. Expression of anti-miR513a-5p or miR513a-5p mimic, however, interfered with or enhanced, respectively, the breast cancer cell growth inhibition by CFM-4. CFMs also impacted biological properties of the NB cells by blocking their abilities to migrate, form colonies in suspension, and invade through the matrix-coated membranes. Our studies indicate anti-NB properties of CFM-4 and 5, and suggest that these CFMs and/or their future analogs have potential as anti-NB agents. PMID:25033461

  16. Dietary fiber enhances TGF-β signaling and growth inhibition in the gut.

    Science.gov (United States)

    Cao, Yanna; Gao, Xuxia; Zhang, Weili; Zhang, Guohua; Nguyen, Anthony K; Liu, Xianghua; Jimenez, Fernando; Cox, Charles S; Townsend, Courtney M; Ko, Tien C

    2011-07-01

    Dietary fiber intake links to decreased risk of colorectal cancers. The underlying mechanisms remain unclear. Recently, we found that butyrate, a short-chain fatty acid produced in gut by bacterial fermentation of dietary fiber, enhances TGF-β signaling in rat intestinal epithelial cells (RIE-1). Furthermore, TGF-β represses inhibitors of differentiation (Ids), leading to apoptosis. We hypothesized that dietary fiber enhances TGF-β's growth inhibitory effects on gut epithelium via inhibition of Id2. In this study, Balb/c and DBA/2N mice were fed with a regular rodent chow or supplemented with a dietary fiber (20% pectin) and Smad3 level in gut epithelium was measured. In vitro, RIE-1 cells were treated with butyrate and TGF-β(1), and cell functions were evaluated. Furthermore, the role of Ids in butyrate- and TGF-β-induced growth inhibition was investigated. We found that pectin feeding increased Smad3 protein levels in the jejunum (1.47 ± 0.26-fold, P = 0.045, in Balb/c mice; 1.49 ± 0.19-fold, P = 0.016, in DBA/2N mice), and phospho-Smad3 levels (1.92 ± 0.27-fold, P = 0.009, in Balb/c mice; 1.83 ± 0.28-fold, P = 0.022, in DBA/2N mice). Butyrate or TGF-β alone inhibited cell growth and induced cell cycle arrest. The combined treatment of butyrate and TGF-β synergistically induced cell cycle arrest and apoptosis in RIE-1 cells and repressed Id2 and Id3 levels. Furthermore, knockdown of Id2 gene expression by use of small interfering RNA caused cell cycle arrest and apoptosis. We conclude that dietary fiber pectin enhanced Smad3 expression and activation in the gut. Butyrate and TGF-β induced cell cycle arrest and apoptosis, which may be mediated by repression of Id2. Our results implicate a novel mechanism of dietary fiber in reducing the risk of colorectal cancer development.

  17. Neutral pH hydrogen-enriched electrolyzed water achieves tumor-preferential clonal growth inhibition over normal cells and tumor invasion inhibition concurrently with intracellular oxidant repression.

    Science.gov (United States)

    Saitoh, Yasukazu; Okayasu, Hajime; Xiao, Li; Harata, Yoshikazu; Miwa, Nobuhiko

    2008-01-01

    The properties and effects of neutral pH hydrogen-enriched electrolyzed water (NHE water) on tumor cells were examined. NHE water diminished hydroxyl radicals as demonstrated by ESR in a cell-free system. Human tongue carcinoma cells HSC-4 were inhibited for either colony formation efficiencies or colony sizes by NHE water without significant inhibition to normal human tongue epithelial-like cells DOK. Furthermore, NHE water caused growth inhibition, cell degeneration, and inhibition of invasion through the reconstituted basement membrane to human fibrosarcoma cells HT-1080. Intracellular oxidants such as hydroperoxides and hydrogen peroxides were scavenged in HSC-4 or HT-1080 cells by NHE water. In the human oral cavity, a dissolved hydrogen concentrations (DH) of NHE water was drastically declined from 1.1 to 0.5 ppm, but settled to 0.3-0.4 ppm until 180 s, upon static holding without gargling. Thus, NHE water was shown to achieve tumor-preferential growth inhibition and tumor invasion together with scavenging of intracellular oxidants, and is expected as a preventive material against tumor progression and invasion.

  18. Inertial Effects on Berry's Phase of Neutrino Oscillations

    CERN Document Server

    Capozziello, S

    2000-01-01

    The Berry phase of mixed states, as neutrino oscillations, is calculated in a accelerating and rotating reference frame. It turns out to be depending on the vacuum mixing angle, the mass--squared difference and on the coupling between the momentum of the neutrino and the spinorial connection. Berry's phase for solar neutrinos and its geometrical aspects are also discussed.

  19. Berry phase transition in twisted bilayer graphene

    Science.gov (United States)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  20. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression.

    Directory of Open Access Journals (Sweden)

    Kyla Walworth

    -DDN. Moreover, we confirmed by clonogenic-assay that DDNDBeQ treatment significantly (p<0.001 inhibits H1299 colony-formation as compared to control/DDN. Overall, encapsulation of potent VCP-inhibitor DBeQ into a dendrimer allows selective VCP-mediated proteostasis-inhibition for controlling NSCLC-tumor growth and progression to allow tumor-targeted sustained drug delivery.

  1. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression

    Science.gov (United States)

    Walworth, Kyla; Bodas, Manish; Campbell, Ryan John; Swanson, Doug; Sharma, Ajit; Vij, Neeraj

    2016-01-01

    , we confirmed by clonogenic-assay that DDNDBeQ treatment significantly (p<0.001) inhibits H1299 colony-formation as compared to control/DDN. Overall, encapsulation of potent VCP-inhibitor DBeQ into a dendrimer allows selective VCP-mediated proteostasis-inhibition for controlling NSCLC-tumor growth and progression to allow tumor-targeted sustained drug delivery. PMID:27434122

  2. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  3. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  4. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis.

    Science.gov (United States)

    Cook, Rebecca S; Jacobsen, Kristen M; Wofford, Anne M; DeRyckere, Deborah; Stanford, Jamie; Prieto, Anne L; Redente, Elizabeth; Sandahl, Melissa; Hunter, Debra M; Strunk, Karen E; Graham, Douglas K; Earp, H Shelton

    2013-08-01

    MerTK, a receptor tyrosine kinase (RTK) of the TYRO3/AXL/MerTK family, is expressed in myeloid lineage cells in which it acts to suppress proinflammatory cytokines following ingestion of apoptotic material. Using syngeneic mouse models of breast cancer, melanoma, and colon cancer, we found that tumors grew slowly and were poorly metastatic in MerTK-/- mice. Transplantation of MerTK-/- bone marrow, but not wild-type bone marrow, into lethally irradiated MMTV-PyVmT mice (a model of metastatic breast cancer) decreased tumor growth and altered cytokine production by tumor CD11b+ cells. Although MerTK expression was not required for tumor infiltration by leukocytes, MerTK-/- leukocytes exhibited lower tumor cell-induced expression of wound healing cytokines, e.g., IL-10 and growth arrest-specific 6 (GAS6), and enhanced expression of acute inflammatory cytokines, e.g., IL-12 and IL-6. Intratumoral CD8+ T lymphocyte numbers were higher and lymphocyte proliferation was increased in tumor-bearing MerTK-/- mice compared with tumor-bearing wild-type mice. Antibody-mediated CD8+ T lymphocyte depletion restored tumor growth in MerTK-/- mice. These data demonstrate that MerTK signaling in tumor-associated CD11b+ leukocytes promotes tumor growth by dampening acute inflammatory cytokines while inducing wound healing cytokines. These results suggest that inhibition of MerTK in the tumor microenvironment may have clinical benefit, stimulating antitumor immune responses or enhancing immunotherapeutic strategies.

  5. Toxicity of nightshade berries (Solanum dulcamara) in mice.

    Science.gov (United States)

    Hornfeldt, C S; Collins, J E

    1990-01-01

    Ripened nightshade berries (Solanum dulcamara) are among the most commonly reported plant ingestions in Minnesota. Because of the lack of adequate information regarding the toxic qualities of S. dulcamara berries, the ingestion of even small quantities by children is usually treated conservatively with syrup of ipecac. The toxicity of S. dulcamara berries was studied by gavaging mice with a preparation of lyophilized berries, ripened and unripened, collected at various times of the year. Mice receiving unripened fruit from early in the season had gastrointestinal tissue changes consistent with solanine toxicity. Animals dosed with unripened fruit from the latter part of the year showed behavioral signs suggestive of solanine toxicity, however gastrointestinal lesions were not observed. In no case did the ripened fruit produce behavioral or histologic toxicity. Aggressive treatment of children ingesting limited amounts of ripened S. dulcamara berries appears to be unnecessary.

  6. Indomethacin suppresses growth of colon cancer via inhibition of angiogenesis in vivo

    Institute of Scientific and Technical Information of China (English)

    Hong-Mei Wang; Gui-Ying Zhang

    2005-01-01

    AIM: It has been reported that regular consumption of nonsteroidal anti-inflammatory drugs like indomethacin decreases the incidence and mortality rate of a number of gastrointestinal cancers. We aimed to explore the efficacy and possible mechanisms of indomethacin on tumor growth and tumor angiogenesis of human colon cancer xenografts in nude mice,METHODS: MTT (thiazolyl blue) assay was used to assess the effect of indomethacin on cultured human colorectal cancer cell line HCT116. HCT116 cells were inoculated subcutaneously into BALB/c-nu/nu mice. After oral administration of indomethacin, 3 mg/kg·d for 4 wk, animals were sacrificed by cervical dislocation. Immunohistochemical staining was employed to determine the microvessel density (MVD) and vascular endothelial growth factor (VEGF)expression in tumor tissues.RESULTS: Indomethacin, a non-selective COX inhibitor,significantly decreased the viability of HCT116 cells in a dose-dependent manner (P<0.05) with 50% inhibition at approximately 318.2±12.7 μmol/L. Growth of HCT116 cell tumor was significantly suppressed by indomethacin. The tumor volume was significantly decreased in the treated group (458.89±32.07 mm3) compared to the control group (828.21±31.59 mm3) (P<0.05). The MVD of the treated group (19.50±5.32) was markedly decreased compared to the control group (37.40±4.93) (P<0.001). The VEGF expression of the treated group (1.19±0.17) was obviously reduced as compared to the control group (1.90±0.48)(P<0.01). The decrease in MVD was positively correlated with the decrease of VEGF expression (rs = 0.714, P<0.05).We did not see gastrointestinal complications in the treated group and no differences were noted in the body weight of the mice between the two groups throughout the study (P>0.05).CONCLUSION: Indomethacin can significantly decrease the viability of cultured HCT116 cells and retard human colorectal HCT116 cell tumor growth via inhibiting tumor angiogenesis, which might be through

  7. Pseudomonas aeruginosa biofilm growth inhibition on medical plastic materials by immobilized esterases and acylase.

    Science.gov (United States)

    Kisch, Johannes Martin; Utpatel, Christian; Hilterhaus, Lutz; Streit, Wolfgang R; Liese, Andreas

    2014-09-01

    Biofilms are matrix-encapsulated cell aggregates that cause problems in technical and health-related areas; for example, 65 % of all human infections are biofilm associated. This is mainly due to their ameliorated resistance against antimicrobials and immune systems. Pseudomonas aeruginosa, a biofilm-forming organism, is commonly responsible for nosocomial infections. Biofilm development is partly mediated by signal molecules, such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria. We applied horse liver esterase, porcine kidney acylase, and porcine liver esterase; these can hydrolyze AHLs, thereby inhibiting biofilm formation. As biofilm infections are often related to foreign material introduced into the human body, we immobilized the enzymes on medical plastic materials. Biofilm formation was quantified by Crystal Violet staining and confocal laser scanning microscopy, revealing up to 97 % (on silicone), 54 % (on polyvinyl chloride), and 77 % (on polyurethane) reduced biomass after 68 h growth.

  8. The combinational effect of vincristine and berberine on growth inhibition and apoptosis induction in hepatoma cells.

    Science.gov (United States)

    Wang, Ling; Wei, Dandan; Han, Xiaojuan; Zhang, Wei; Fan, Chengzhong; Zhang, Jie; Mo, Chunfen; Yang, Ming; Li, Junhong; Wang, Zhe; Zhou, Qin; Xiao, Hengyi

    2014-04-01

    The use of vincristine, a known antitumor agent, in hepatoma therapy is limited particularly because of its toxic effect. Meanwhile, berberine has drawn increasing attention to its antineoplastic effect in recent years. In view of the advantages of combinational drug treatment reported in anti-cancer chemotherapy, we evaluated the effects of co-treatment of vincristine and berberine on hepatic carcinoma cell lines in this study. We find that combinational usage of these two drugs can significantly induce cell growth inhibition and apoptosis even under a concentration of vincristine barely showing cytotoxicity in the same cells when used alone. The underlying mechanism about this combinational effect was addressed in this study by monitoring the signals related to mitochondrial function, apoptotic pathway and endoplasmic reticulum stress. Our results suggest a new value of berberine as a potential adjuvant agent in cancer chemotherapy and provide a hopeful approach for developing hepatoma therapy by utilizing the combinational effect of vincristine and berberine.

  9. Inhibition of the in-vitro growth of Mycobacterium tuberculosis by a phytosiderophore.

    Science.gov (United States)

    Rajiv, J; Dam, T; Kumar, S; Bose, M; Aggarwal, K K; Babu, C R

    2001-10-01

    Non-compliance by patients and poor clinical management due to the use of incorrect regimens are the main reasons for the development of drug resistance by mycobacterial strains. New strategies for the control of multi-drug-resistant mycobacterial strains have become a necessity for proper management of tuberculosis, which, according to the WHO report (1997), is estimated to remain among the top 10 mortality-causing diseases of the twenty-first century. One of the strategies is the use of iron-sequestering agents like siderophores as active therapeutic agents in the treatment of tuberculosis. This report describes for the first time the inhibition of the growth of Mycobacterium tuberculosis H37Ra in vitro by a phytosiderophore isolated from the root washings of Tephrosia purpurea. This finding may help in the establishment of a new drug regimen which will be more effective in the treatment of tuberculosis.

  10. Effects of biocidal treatments to inhibit the growth of legionellae and other microorganisms in cooling towers.

    Science.gov (United States)

    Yamamoto, H; Ezaki, T; Ikedo, M; Yabuuchi, E

    1991-01-01

    The effects of biocidal treatments for cooling towers were examined through the use of chemicals and ultraviolet irradiation to inhibit the growth of legionellae and other microorganisms. In the water of cooling towers without continuous biocidal treatments, heterotrophic bacteria and bacterivorous protozoan first appeared, and then legionellae increased up to 10(4) CFU/100 ml. When a UV sterilizer was connected to the cooling tower, the legionellae count was 1/10 or 1/100 of that in the nontreated tower water. In the water of towers supplemented continuously with the biocidal chemicals, legionellae were not found during a 4-month period. The biocidal treatments tested were proved to suppress the increase of legionellae in cooling-tower water, and thus are useful in preventing the outbreak of legionellosis due to inhalation of contaminated aerosol from the cooling tower system.

  11. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    Science.gov (United States)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  12. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, Friedhelm, E-mail: Friedhelm.Bladt@merckgroup.com; Friese-Hamim, Manja; Ihling, Christian; Wilm, Claudia; Blaukat, Andree [EMD Serono, and Merck Serono Research and Development, Merck KGaA, Darmstadt 64293 (Germany)

    2014-08-19

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling.

  13. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    Science.gov (United States)

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole.

  14. Retinoic acid inhibits endometrial cancer cell growth via multiple genomic mechanisms.

    Science.gov (United States)

    Cheng, You-Hong; Utsunomiya, Hiroki; Pavone, Mary Ellen; Yin, Ping; Bulun, Serdar E

    2011-04-01

    Previous studies have indicated that retinoic acid (RA) may be therapeutic for endometrial cancer. However, the downstream target genes and pathways triggered by ligand-activated RA receptor α (RARα) in endometrial cancer cells are largely unknown. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and immunoblotting assays were used to assess the roles of RA and the RA agonist (AM580) in the growth of endometrial cancer cells. Illumina-based microarray expression profiling of endometrial Ishikawa cells incubated with and without AM580 for 1, 3, and 6 h was performed. We found that both RA and AM580 markedly inhibited endometrial cancer cell proliferation, while knockdown of RARα could block AM580 inhibition. Knockdown of RARα significantly increased proliferating cell nuclear antigen and BCL2 protein levels. Incubation of Ishikawa cells with or without AM580 followed by microarray expression profiling showed that 12 768 genes out of 47 296 gene probes were differentially expressed with significant P values. We found that 90 genes were the most regulated genes with the most significant P value (PAM580 highly regulated these genes, whereas chromatin immunoprecipitation-PCR assay demonstrated that ligand-activated RARα interacted with the promoter of these genes in intact endometrial cancer cells. AM580 also significantly altered 18 pathways including those related to cell growth, differentiation, and apoptosis. In conclusion, AM580 treatment of Ishikawa cells causes the differential expression of a number of RARα target genes and activation of signaling pathways. These pathways could, therefore, mediate the carcinogenesis of human endometrial cancer.

  15. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  16. Efficacy of eight commercial formulations of lime sulphur on in vitro growth inhibition of Microsporum canis.

    Science.gov (United States)

    Diesel, Alison; Verbrugge, Maria; Moriello, Karen A

    2011-04-01

    Lime sulphur is a common topical treatment for dermatophytosis in animals. Until recently, a single veterinary lime sulphur formulation was available. The purpose of this study was to compare the efficacy of eight lime sulphur products for in vitro growth inhibition of Microsporum canis using the isolated infected spore model. Infective M. canis spores were isolated from hairs collected from untreated cats. Hairs were macerated in Triton-X solution and isolated according to a previously published protocol. Equal volumes of spore suspension and lime sulphur solutions were incubated for 5 min and plated onto modified BBL™ Mycosel™ agar (Becton, Dickinson and Company; Sparks, MD, USA) plates. Five plates were inoculated for each sample solution. Distilled water and bleach were used as controls. Colony forming units were counted daily for 21 days; positive control plates contained >300 colony forming units/plate. Seven of the products were supplied as concentrates and they were tested at the manufacturer's recommended dilution, twice label concentration and half label concentration. A prediluted product SulfaDip(®) (Trask Research, Inc.; Daluca, GA, USA) was tested at the label and half label concentration. All veterinary products formed recommended treatment dilutions of 3% sulphurated lime solution except one (LymDyp(®), IVX Animal Health Inc.; St Joseph, MO, USA), which formed a 2.4% sulphurated lime solution. Results of the study showed complete growth inhibition of M. canis spores by all products at all dilutions tested. These results indicate that all tested lime sulphur-containing products were equivalent. Field studies are needed to test product equivalency in vivo.

  17. Growth Inhibition of Colletotrichum gloeosporioides by Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis and Pseudomonas fluorescens

    Directory of Open Access Journals (Sweden)

    Febrilia Nur ‘Aini

    2015-11-01

    Full Text Available Colletotrichum  gloeosporioides is  a  disease  which  can  cause  significant yield  loss  of  cocoa.  The  objective  of  this  research  is  to  investigate  the  abilityof  antagonist  microbes,  Trichoderma  harzianum,  Trichoderma  koningii,  Bacillus subtilis  and Pseudomonas  fluorescens  in  controlling  gloeosporioides  biologically  in  laboratorium  condition.  The  experiment  was  carried  out  in  Crop  Protection  Laboratory,  Indonesian  Coffee  and  Cocoa  Research  Institute.  Results of  this  research  showed  that  antagonist  fungi,  T.  harzianum,  T.  koningii,  had  a stronger  ability  in  inhibiting  growth  of  C.  gloeosporioides about  83%  compared  to  the  ability  of  antagonist  bacteria,  B.  subtilis  and P.  fluorescens,  only about  49%. Key words: Growth  inhibition,  Colletotrichum  gloeosporioides,  Trichoderma  harzianum, Trichoderma koningii,  Bacillus subtilis, Pseudomonas fluorescens.

  18. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    Science.gov (United States)

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (Pcolon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  19. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    Directory of Open Access Journals (Sweden)

    Chen Jie

    2012-10-01

    Full Text Available Abstract Background Secreted protein acidic and rich in cysteine (SPARC, a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. Methods In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. Results SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. Conclusion SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.

  20. Andrographolide inhibits hepatoma cells growth and affects the expression of cell cycle related proteins.

    Science.gov (United States)

    Shen, Kai-Kai; Liu, Tian-Yu; Xu, Chong; Ji, Li-Li; Wang, Zheng-Tao

    2009-09-01

    The present study is aimed to investigate the toxic effects of andrographolide (Andro) on hepatoma cells and elucidate its preliminary mechanisms. After cells were treated with different concentrations of Andro (0-50 micromol x L(-1)) for 24 h, cell viability was evaluated with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, after hepatoma cells (Hep3B and HepG2) were treated with different concentrations of Andro (0-30 micromol x L(-1)) for 14 d, the number of colony formation was accounted under microscope. Cell cycle related proteins such as Cdc-2, phosphorylated-Cdc-2, Cyclin B and Cyclin D1 were detected with Western blotting assay and the cell cycle was analyzed by flow cytometry using propidium iodide staining. MTT results showed that Andro induced growth inhibition of hepatoma cells in a concentration-dependent manner but had no significant effects on human normal liver L-02 cells. Andro dramatically decreased the colony formation of hepatoma cells in the concentration-dependent manner. Moreover, Andro induced a decrease of Hep3B cells at the G0-G1 phase and a concomitant accumulation of cells at G2-M phase. At the molecular level, Western blotting results showed that Andro decreased the expression of Cdc-2, phosphorylated-Cdc-2, Cyclin D1 and Cyclin B proteins in a time-dependent manner, which are all cell cycle related proteins. Taken together, the results demonstrated that Andro specifically inhibited the growth of hepatoma cells and cellular cell cycle related proteins were possibly involved in this process.

  1. Growth-arrest-specific protein 2 inhibits cell division in Xenopus embryos.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available BACKGROUND: Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported. METHODOLOGY AND PRINCIPAL FINDINGS: To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures. CONCLUSION AND SIGNIFICANCE: Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest.

  2. Fibroblast growth factor 7 inhibits cholesterol 7{alpha}-hydroxylase gene expression in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhichao [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Yu, Xuemei [Department of Endocrinology, Fengxian Central Hospital, Shanghai (China); Wu, Weibin; Jia, Dongwei; Chen, Yinle; Ji, Lingling; Liu, Xijun; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Yintao [Institute of Endocrinology and Diabetology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai (China); Yang, Lili [Department of Endocrinology, Fengxian Central Hospital, Shanghai (China); Ruan, Yuanyuan; Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Ren, Shifang, E-mail: renshifang@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Songwen, E-mail: songwenzhang@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer FGF7 strongly and rapidly down-regulates the expression of CYP7A1 in hepatocytes. Black-Right-Pointing-Pointer FGF7 suppresses the expression of CYP7A1 via FGFR2 and downstream JNK activation. Black-Right-Pointing-Pointer Blocking FGF7 abrogates HSC-induced inhibition of CYP7A1 expression in hepatocytes. -- Abstract: Cholesterol 7{alpha}-hydroxylase (CYP7A1) is the initial and rate-limiting enzyme for bile acid synthesis. Transcription of the CYP7A1 gene is regulated by bile acids, nuclear receptors and cytokines. Fibroblast growth factor 7 (FGF7) secreted from activated hepatic stellate cells (HSC) during chronic liver fibrosis regulates hepatocyte survival and liver regeneration. In the carbon tetrachloride (CCl{sub 4})-induced fibrotic mouse liver, we demonstrated that the expression of CYP7A1 was largely decreased while the expression of FGF7 was significantly increased. We further demonstrated that FGF7 inhibited CYP7A1 gene expression in hepatocytes. Knockdown study by short interfering RNA, kinase inhibition and phosphorylation assays revealed that the suppression of CYP7A1 expression by FGF7 was mediated by FGFR2 and its downstream JNK signaling cascade. The FGF7 neutralizing antibody restored CYP7A1 expression in Hep3B cells treated with conditioned medium from HSC. In summary, the data suggest that FGF7 is a novel regulator of CYP7A1 expression in hepatocytes and may prevent hepatocytes from accumulating toxic bile acids during liver injury and fibrosis.

  3. Impact of APE1/Ref-1 redox inhibition on pancreatic tumor growth.

    Science.gov (United States)

    Fishel, Melissa L; Jiang, Yanlin; Rajeshkumar, N V; Scandura, Glenda; Sinn, Anthony L; He, Ying; Shen, Changyu; Jones, David R; Pollok, Karen E; Ivan, Mircea; Maitra, Anirban; Kelley, Mark R

    2011-09-01

    Pancreatic cancer is especially a deadly form of cancer with a survival rate less than 2%. Pancreatic cancers respond poorly to existing chemotherapeutic agents and radiation, and progress for the treatment of pancreatic cancer remains elusive. To address this unmet medical need, a better understanding of critical pathways and molecular mechanisms involved in pancreatic tumor development, progression, and resistance to traditional therapy is therefore critical. Reduction-oxidation (redox) signaling systems are emerging as important targets in pancreatic cancer. AP endonuclease1/Redox effector factor 1 (APE1/Ref-1) is upregulated in human pancreatic cancer cells and modulation of its redox activity blocks the proliferation and migration of pancreatic cancer cells and pancreatic cancer-associated endothelial cells in vitro. Modulation of APE1/Ref-1 using a specific inhibitor of APE1/Ref-1's redox function, E3330, leads to a decrease in transcription factor activity for NFκB, AP-1, and HIF1α in vitro. This study aims to further establish the redox signaling protein APE1/Ref-1 as a molecular target in pancreatic cancer. Here, we show that inhibition of APE1/Ref-1 via E3330 results in tumor growth inhibition in cell lines and pancreatic cancer xenograft models in mice. Pharmacokinetic studies also show that E3330 attains more than10 μmol/L blood concentrations and is detectable in tumor xenografts. Through inhibition of APE1/Ref-1, the activity of NFκB, AP-1, and HIF1α that are key transcriptional regulators involved in survival, invasion, and metastasis is blocked. These data indicate that E3330, inhibitor of APE1/Ref-1, has potential in pancreatic cancer and clinical investigation of APE1/Ref-1 molecular target is warranted.

  4. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    Science.gov (United States)

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer. PMID:28225893

  5. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Anna Murzyn

    Full Text Available Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and

  6. IL-35 promotes pancreas cancer growth through enhancement of proliferation and inhibition of apoptosis: evidence for a role as an autocrine growth factor.

    Science.gov (United States)

    Nicholl, Michael B; Ledgewood, Chelsea L; Chen, Xuhui; Bai, Qian; Qin, Chenglu; Cook, Kathryn M; Herrick, Elizabeth J; Diaz-Arias, Alberto; Moore, Bradley J; Fang, Yujiang

    2014-12-01

    Interleukin-35 (IL-35), an IL-12 cytokine family member, mediates the immune inhibitory function of regulatory T cells (Treg). We assayed the presence of IL-35 in paraffin-embedded human pancreas cancer (PCAN) and unexpectedly found IL-35 was expressed mainly by epithelial derived PCAN cells, but not by Treg. We further examined the expression and effect of exogenous IL-35 in human PCAN cell lines and found IL-35 promoted growth and inhibited apoptosis in PCAN cell lines. IL-35 induced proliferation correlated with an increase in cyclin B, cyclin D, cdk2, and cdk4 and a decrease in p27 expression, while inhibition of apoptosis was associated with an increase in Bcl-2 and a decrease in TRAILR1. We conclude IL-35 is produced by PCAN in vivo and promotes PCAN cell line growth in vitro. These results might indicate an important new role for IL-35 as an autocrine growth factor in PCAN growth.

  7. Macelignan inhibits bee pathogenic fungi Ascophaera apis growth through HOG1 pathway

    Directory of Open Access Journals (Sweden)

    Y.K. Shin

    2016-01-01

    Full Text Available Ascosphaera apis is a bee pathogen that causes bee larvae infection disease, to which treatment is not yet well investigated. The aim of this study was to investigate antifungal susceptibility in vitro against A. apis and to identify a new antifungal agent for this pathogen through minimal inhibitory concentration (MIC assay and western blot analysis. Macelignan had 1.56 and 3.125 μg/mL MIC against A. apis after 24 and 48 h, respectively, exhibiting the strongest growth inhibition against A. apis among the tested compounds (corosolic acid, dehydrocostus lactone, loganic acid, tracheloside, fangchinoline and emodin-8-O-β-D-glucopyranoside. Furthermore, macelignan showed a narrow-ranged spectrum against various fungal strains without any mammalian cell cytotoxicity. In spite of miconazole having powerful broad-ranged anti-fungal activity including A. apis, it demonstrated strong cytotoxicity. Therefore, even if macelignan alone was effective as an antifungal agent to treat A. apis, combined treatment with miconazole was more useful to overcome toxicity, drug resistance occurrence and cost effectiveness. Finally, HOG1 was revealed as a target molecule of macelignan in the anti-A. apis activity by inhibiting phosphorylation using S. cerevisiae as a model system. Based on our results, macelignan, a food-grade antimicrobial compound, would be an effective antifungal agent against A. apis infection in bees.

  8. Trypanosoma congolense Infections: Induced Nitric Oxide Inhibits Parasite Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Wenfa Lu

    2011-01-01

    Full Text Available Wild-type (WT C57BL/6 mice infected intraperitoneally with 5×106 Trypanosoma congolense survive for more than 30 days. C57BL/6 mice deficient in inducible nitric oxide synthase (iNOS−/− and infected with 103 or 5×106 parasites do not control the parasitemia and survive for only 14±7 or 6.8±0.1 days, respectively. Bloodstream trypanosomes of iNOS−/− mice infected with 5×106  T. congolense had a significantly higher ratio of organisms in the S+G2+M phases of the cell cycle than trypanosomes in WT mice. We have reported that IgM anti-VSG-mediated phagocytosis of T. congolense by macrophages inhibits nitric oxide (NO synthesis via CR3 (CD11b/CD18. Here, we show that during the first parasitemia, but not at later stages of infection, T. congolense-infected CD11b−/− mice produce more NO and have a significantly lower parasitemia than infected WT mice. We conclude that induced NO contributes to the control of parasitemia by inhibiting the growth of the trypanosomes.

  9. Growth inhibition and microcystin degradation effects of Acinetobacter guillouiae A2 on Microcystis aeruginosa.

    Science.gov (United States)

    Yi, Yang-Lei; Yu, Xiao-Bo; Zhang, Chao; Wang, Gao-Xue

    2015-01-01

    Strain A2 with algicidal activity against Microcystis aeruginosa was isolated and identified with the genus Acinetobacter on the basis of phenotypic tests and 16S rRNA gene analysis. It was identified with the species Acinetobactor guillouiae by partial rpoB sequence analysis. When 10% (v/v) of the bacterial culture was co-incubated with M. aeruginosa culture, algicidal efficiency reached 91.6% after 7 days. Supernatant of A2 culture showed similar algicidal activity, while the cell pellet had little activity, suggesting that Acinetobacter guillouiae A2 indirectly attacked M. aeruginosa cells by secreting an extracellular algicidal compound, which was characterized as heat-stable. A significant decrease in the microcystin (microcystin-LR) concentration was observed after 10% (v/v) addition of A2 culture. Transcription of three microcystin-related genes (mcyA, mcyD and mcyH) was also found to be inhibited. The algicidal compound 4-hydroxyphenethylamine was obtained by further isolation and purification using various chromatographic techniques. The EC50, 3d and EC50, 7d values of 4-hydroxyphenethylamine against M. aeruginosa were 22.5 and 10.3 mgL(-1), respectively. These results indicate that A. guillouiae strain A2 inhibits growth of M. aeruginosa and degrades microcystin production. The identified compound, 4-hydroxyphenethylamine, has potential for development as a new algicidal formulation or product.

  10. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  11. Efficacy of antimicrobials extracted from organic pecan shell for inhibiting the growth of Listeria spp.

    Science.gov (United States)

    Babu, Dinesh; Crandall, Philip G; Johnson, Casey L; O'Bryan, Corliss A; Ricke, Steven C

    2013-12-01

    Growers and processors of USDA certified organic foods are in need of suitable organic antimicrobials. The purpose of the research reported here was to develop and test natural antimicrobials derived from an all-natural by-product, organic pecan shells. Unroasted and roasted organic pecan shells were subjected to solvent free extraction to produce antimicrobials that were tested against Listeria spp. and L. monocytogenes serotypes to determine the minimum inhibitory concentrations (MIC) of antimicrobials. The effectiveness of pecan shell extracts were further tested using a poultry skin model system and the growth inhibition of the Listeria cells adhered onto the skin model were quantified. The solvent free extracts of pecan shells inhibited Listeria strains at MICs as low as 0.38%. The antimicrobial effectiveness tests on a poultry skin model exhibited nearly a 2 log reduction of the inoculated cocktail mix of Listeria strains when extracts of pecan shell powder were used. The extracts also produced greater than a 4 log reduction of the indigenous spoilage bacteria on the chicken skin. Thus, the pecan shell extracts may prove to be very effective alternative antimicrobials against food pathogens and supplement the demand for effective natural antimicrobials for use in organic meat processing.

  12. Influence of some growth regulators and cations on inhibition of chlorophyll biosynthesis by lead in maize

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S.K. (Council of Science Technology, Lucknow (India)); Srivastava, H.S. (Rohilkhand Univ., Bareilly (India)); Tripathi, R.D. (National Botanical Research Institute, Lucknow (India))

    1993-08-01

    Phytotoxic effects of Pb pollution are well established. In order to analyse the physiological basis of toxic symptoms and of reduced plant productivity, its effect on chlorophyll content has been examined in some plants. Thus, a decrease in total chlorophyll content during Pb supply has been observed in oats, mung beam, pea, etc. The activity of delta aminolevulinic acid dehydratase, an important enzyme in the biosynthesis of heme pigments, is inhibited by Pb in mung bean and several other species. This observation may perhaps indicate that a reduction in chlorophyll content in the presence of lead is due to an inhibition of pigment synthesis. The effect of Pb on greening maize leaf segments in the presence of various precursors of chlorophyll has been studied in the present investigation to evaluate this hypothesis. The effect of some growth regulators and cations, which could otherwise modify chlorophyll biosynthesis, has been examined to see whether the toxic effects of Pb on photosynthetic pigments could also be modified by these effectors. 16 refs., 4 tabs.

  13. Andrographolide suppress tumor growth by inhibiting TLR4/NF-κB signaling activation in insulinoma.

    Science.gov (United States)

    Zhang, Qian-Qian; Ding, Yi; Lei, Yan; Qi, Cui-Ling; He, Xiao-Dong; Lan, Tian; Li, Jiang-Chao; Gong, Ping; Yang, Xuesong; Geng, Jian-Guo; Wang, Li-Jing

    2014-01-01

    Insulinomas are rare tumors, and approximately 10% of insulinomas are malignant. Accumulating evidence has implicated that we still lack effective therapy to treat the patients who are diagnosed with rare malignant insulinoma. Previous studies have reported that Andrographolide (Andro) could inhibit cell cycle progression, reduce cell invasion and induce cell apoptosis in many common cancer cells. However, the effects of andro are cell type-dependent. So we emplored the β-TC-6 cells and the RIP1-Tag2 transgenic mouse model of endogenously growing insulinoma model to elucidate the possible anti-cancer effect of Andro on insulinoma, an uncommon type of malignant cancers in this study. Our experiments revealed that Andro significantly inhibited tumor growth at both the early-stage and the advanced-stage of insulinoma through targeting the TLR4/NF-κB signaling pathway. This work initially provides the evidence that the TLR4/NF-κB signaling pathway might be vital as a potential therapeutic target, and also indispensable in Andro-mediated anti-cancer effect in insulinoma.

  14. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Directory of Open Access Journals (Sweden)

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  15. Melatonin inhibits the expression of vascular endothelial growth factor in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Dong Lv; Pei-Lin Cui; Shi-Wei Yao; You-Qing Xu; Zhao-Xu Yang

    2012-01-01

    Objective:To investigate the effects of melatonin on cellular proliferation and endogenous vascular endothelial growth factor (VEGF) expression in pancreatic carcinoma cells (PANC-1).Methods:PANC-1 cells were cultured for this study.The secreted VEGF concentration in the culture medium was determined using ELISA method,VEGF production in the tumor cells was detected by immunocytochemistry,and VEGF mRNA expression was determined by RT-PCR.Results:Higher melatonin concentrations significantly inhibited cellular proliferation,with 1 mmol/L concentration exhibiting the highest inhibitory effect (P<0.01).VEGF concentrations in the cell culture supernatants and intra-cellules were all significantly reduced after melatonin (1 mmol/L) incubation (P<0.05).VEGF mRNA expression decreased markedly in a time-dependent manner during the observation period (P<0.05).Conclusions:High melatonin concentrations markedly inhibited the proliferation of pancreatic carcinoma cells.The endogenous VEGF expression was also suppressed by melatonin incubation.

  16. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings : Analysis of Growth, Sugar Accumulation, and Gene Expression.

    Science.gov (United States)

    Creelman, R A; Mason, H S; Bensen, R J; Boyer, J S; Mullet, J E

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.

  17. Growth inhibiting activity of lipophilic extracts from Dipsacus sylvestris Huds. roots against Borrelia burgdorferi s. s. in vitro.

    Science.gov (United States)

    Liebold, T; Straubinger, R K; Rauwald, H W

    2011-08-01

    Fresh first year roots from Dipsacus sylvestris HUDS. were extracted with 70% ethanol, ethyl acetate as well as dichloromethane. Extracts were solubilized in water (lipophilic extracts with addition of polysorbate 80) and tested for their activity against Borrelia burgdorferi sensu stricto in vitro during an eight-day period using amoxicillin as standard. The hydroethanolic extract showed no growth inhibition whereas significant growth inhibiting activity could be shown in the two less polar fractions for the first time. Strongest inhibition was found in the ethyl acetate extract. The effect of polysorbate 80 on bacterial growth was examined and found to be negligible. As the nature of bioactive constituents has not been clarified yet, a micellar electrokinetic capillary chromatography fingerprint analysis for a methanolic extract was applied including loganin, chlorogenic acid, cantleyoside and caffeic acid as marker substances.

  18. Image Analysis of Geo-Induced Inhibition, Compression, and Promotion of Growth in an Inverted Helianthus annuus L. Seedling.

    Science.gov (United States)

    Gordon, D C; Macdonald, I R; Hart, J W; Berg, A

    1984-11-01

    The growth responses of a sunflower seedling (Helianthus annuus L.), subjected to repeated inversion, were characterized by time-lapse recording in conjunction with video image analysis. The investigation revealed a characteristic response pattern and established that the directional movement of the seedling is achieved by both inhibition and stimulation of growth in the normal growing regions. The complex growth changes in contiguous regions of the hypocotyl are such as seem to be inexplicable in terms of an environmentally imposed gradient of a single growth substance.

  19. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhuang

    Full Text Available Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  20. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF - opioid growth factor receptor (OGFr axis

    Directory of Open Access Journals (Sweden)

    Donahue Renee N

    2009-10-01

    Full Text Available Abstract Background Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC is considered more malignant than papillary thyroid carcinoma (PTC, and anaplastic thyroid cancer (ATC is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met5]-enkephalin and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Methods Utilizing human ATC (KAT-18, PTC (KTC-1, and FTC (WRO 82-1 cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX, and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC and WRO 82-1 (FTC tumor cells. Results OGF and OGFr were present in KAT-18 cells. Concentrations of 10-6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival

  1. Berry curvature and various thermal Hall effects

    Science.gov (United States)

    Zhang, Lifa

    2016-10-01

    Applying the approach of semiclassical wave packet dynamics, we study various thermal Hall effects where carriers can be electron, phonon, magnon, etc. A general formula of thermal Hall conductivity is obtained to provide an essential physics for various thermal Hall effects, where the Berry phase effect manifests naturally. All the formulas of electron thermal Hall effect, phonon Hall effect, and magnon Hall effect can be directly reproduced from the general formula. It is also found that the Strěda formula can not be directly applied to the thermal Hall effects, where only the edge magnetization contributes to the Hall effects. Furthermore, we obtain a combined formula for anomalous Hall conductivity, thermal Hall electronic conductivity and thermal Hall conductivity for electron systems, where the Berry curvature is weighted by a different function. Finally, we discuss particle magnetization and its relation to angular momentum of the carrier, change of which could induce a mechanical rotation; and possible experiments for thermal Hall effect associated with a mechanical rotation are also proposed.

  2. Antioxidant-rich phytochemicals in miracle berry (Synsepalum dulcificum) and antioxidant activity of its extracts.

    Science.gov (United States)

    Du, Liqing; Shen, Yixiao; Zhang, Xiumei; Prinyawiwatkul, Witoon; Xu, Zhimin

    2014-06-15

    Miracle berry is known for its unique characteristic of modifying sour flavours to sweet. Twelve phenolics were identified and quantified in the miracle berry flesh at a level from 0.3 for kaempferol to 17.8 mg/100g FW for epicatechin. Lutein and α-tocopherol were also quantified at a level of 0.4 and 5.8 mg/100g FW, respectively. The TP and TF contents were 1448.3 GA and 9.9 QR mg Equiv/100g FW for the flesh, respectively, compared with 306.7 GA and 3.8 mg QR mg Equiv/100g FW of the seeds. The free radical scavenging and reducing percentage of the flesh extract was 96.3% and 32.5% in DPPH and ABTS assays, respectively. Additionally, the flesh extract had a high FRAP of 22.9 mmol/100g. It significantly inhibited the oxidation of PUFA in fish oil as well. Thus, miracle berry could also serve as an antioxidant-rich fruit to provide health promoting function.

  3. 干旱对葡萄果实发育过程中黄烷醇类多酚积累及LAR表达的影响%The Effect of Drought on Flavanols Accumulation and LAR Expression During the Development of Grape Berry

    Institute of Scientific and Technical Information of China (English)

    温鹏飞; 杨运良; 高美英; 牛铁泉; 邢延富; 牛兴艳

    2012-01-01

    以酿酒葡萄‘赤霞珠’(Vtis vinifera L.‘Cabemet Sauvignon’)为试材,采用避雨棚和断根沟措施,模拟土壤干旱,探讨了葡萄果实发育过程中干旱对果实中黄烷醇类多酚积累及其合成关键酶隐色花色素还原酶(1eucoanthocyanidin reductase,LAR)基因表达的影响。结果表明:土壤干旱导致葡萄单粒质量降低,纵、横径减小,促进黄烷醇类多酚积累,特别是在幼果期,土壤干旱明显促进黄烷醇类多酚的积累。Real.timePCR、Westernblot结果证实,土壤干旱促进VvLARl和VvLAR2转录,诱导果实中LARl、LAR2新蛋白合成,进而导致LAR酶活性增强,黄烷醇类多酚积累。%In order to understand the effects of soil drought on the accumulation of flavanols and the expression of leucoanthocyanidin reductase (LAR), the key enzyme of the flavanols biosynthesis in flavonoid biosynthesis pathway, 5 years old grapevines ( Htis vinifera L.‘Cabemet Sauvignon' )were used as materials, and the soil drought was simulated during grape berry development by the controlling irrigation through the prevent-rain shelter and root-cutting groove. The results showed that the single berry weight, longitudinal and horizontal diameter were decrease, and the growth of grape berry was significantly inhibited by soil drought, which indicated that the prevent-rain shelter and root cutting groove were the effective measures to simulate soil drought. In addition, the accumulation of flavanols in grape berry during its development was induced by soil drought was also observed, especially in the young berry. Real-time PCR and Western blot results showed that the soil drought could induce the expression of VvLAR1, VvLAR2, the synthesis of LAR new protein, and increased the LAR enzyme activity, which resulted in the accumulation of flavanols in grape berry.

  4. Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles.

    Science.gov (United States)

    Sankar, Renu; Prasath, Barathan Balaji; Nandakumar, Ravichandran; Santhanam, Perumal; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-12-01

    The cyanobacterium Microcystis aeruginosa can potentially proliferate in a wide range of freshwater bionetworks and create extensive secondary metabolites which are harmful to human and animal health. The M. aeruginosa release toxic microcystins that can create a wide range of health-related issues to aquatic animals and humans. It is essential to eliminate them from the ecosystem with convenient method. It has been reported that engineered metal nanoparticles are potentially toxic to pathogenic organisms. In the present study, we examined the growth inhibition effect of green synthesized copper oxide nanoparticles against M. aeruginosa. The green synthesized copper oxide nanoparticles exhibit an excitation of surface plasmon resonance (SPR) at 270 nm confirmed using UV-visible spectrophotometer. The dynamic light scattering (DLS) analysis revealed that synthesized nanoparticles are colloidal in nature and having a particle size of 551 nm with high stability at -26.6 mV. The scanning electron microscopy (SEM) analysis shows that copper oxide nanoparticles are spherical, rod and irregular in shape, and consistently distributed throughout the solution. The elemental copper and oxide peak were confirmed using energy dispersive x-ray analysis (EDAX). Fourier-transform infrared (FT-IR) spectroscopy indicates the presence of functional groups which is mandatory for the reduction of copper ions. Besides, green synthesized copper oxide nanoparticles shows growth inhibition against M. aeruginosa. The inhibition efficiency was 31.8 % at lower concentration and 89.7 % at higher concentration of copper oxide nanoparticles, respectively. The chlorophyll (a and b) and carotenoid content of M. aeruginosa declined in dose-dependent manner with respect to induction of copper oxide nanoparticles. Furthermore, we analyzed the mechanism behind the cytotoxicity of M. aeruginosa induced by copper oxide nanoparticles through evaluating membrane integrity, reactive oxygen species (ROS

  5. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Olson James M

    2011-04-01

    Full Text Available Abstract Background Medulloblastoma is the most common brain tumor in children, and its prognosis is worse than for many other common pediatric cancers. Survivors undergoing treatment suffer from serious therapy-related side effects. Thus, it is imperative to identify safer, effective treatments for medulloblastoma. In this study we evaluated the anti-cancer potential of curcumin in medulloblastoma by testing its ability to induce apoptosis and inhibit tumor growth in vitro and in vivo using established medulloblastoma models. Methods Using cultured medulloblastoma cells, tumor xenografts, and the Smo/Smo transgenic medulloblastoma mouse model, the antitumor effects of curcumin were tested in vitro and in vivo. Results Curcumin induced apoptosis and cell cycle arrest at the G2/M phase in medulloblastoma cells. These effects were accompanied by reduced histone deacetylase (HDAC 4 expression and activity and increased tubulin acetylation, ultimately leading to mitotic catastrophe. In in vivo medulloblastoma xenografts, curcumin reduced tumor growth and significantly increased survival in the Smo/Smo transgenic medulloblastoma mouse model. Conclusions The in vitro and in vivo data suggest that curcumin has the potential to be developed as a therapeutic agent for medulloblastoma.

  6. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium.

    Science.gov (United States)

    Paganelli, Fernanda L; van de Kamer, Tim; Brouwer, Ellen C; Leavis, Helen L; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    2017-03-01

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA) (1,3-polyglycerol-phosphate linked to glycolipid) in its cell wall. The small-molecule inhibitor 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] specifically blocks the activity of Staphylococcus aureus LtaS synthase, which polymerises 1,3-glycerolphosphate into LTA polymers. Here we characterised the effects of the small-molecule inhibitor 1771 on the growth of E. faecium isolates, alone (28 strains) or in combination with the antibiotics vancomycin, daptomycin, ampicillin, gentamicin or linezolid (15 strains), and on biofilm formation (16 strains). Inhibition of LTA synthesis at the surface of the cell by compound 1771 in combination with current antibiotic therapy abrogates enterococcal growth in vitro but does not affect mature E. faecium biofilms. Targeting LTA synthesis may provide new possibilities to treat MDR E. faecium infections.

  7. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Science.gov (United States)

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Diaz, David; Arevalo-Niño, Katiushka; Garza-Enriquez, Marianela; De la Garza-Ramos, Myriam A; Cabral-Romero, Claudio

    2012-01-01

    Background and methods Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities. Results Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM. Conclusion These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation. PMID:22619547

  8. Pentoxifylline inhibits the fibrogenic activity of pleural effusions and transforming growth factor-β

    Directory of Open Access Journals (Sweden)

    P. Entzian

    1997-01-01

    Full Text Available Physiopathology of organ fibrosis is far from being completely understood, and the efficacy of the available therapeutic strategies is disappointing. We chose pleural disease for further studies and addressed the questions of which cytokines are relevant in pleural fibrosis and which drugs might interrupt its development. We screened pleural effusions for mediators thought to interfere with fibrogenesis (transforming growth factor-β (TGF-β, tumour necrosis factor α (TNFα, soluble TNF-receptor p55 (sTNF-R and correlated the results with patient clinical outcome in terms of extent of pleural thickenings. We found pleural thickenings correlated with TGF-β (p<0.005 whereas no correlations could be observed with TNFα and sTNF-R. Further, we were interested in finding out how TGF-β effects on fibroblast growth could be modulated. We found that pentoxifylline is able to inhibit both fibroblast proliferation and collagen synthesis independently of the stimulus. We conclude that, judging from in vitro studies, pentoxifylline might offer a new approach in the therapy of pleural as well as pulmonary fibrosis.

  9. Cerium relieving the inhibition of photosynthesis and growth of spinach caused by lead

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Min

    2009-01-01

    Chloroplasts were isolated from spinach cultured in lead chloride-present, Ce3+-administered, cerium chloride-administered lead chloride-present Hoagland's media or that of Hoagland's media. The experimental study demonstrated the effects of cerium (Ce) on distribu-tion of light energy and photochemical activities of spinach chloroplast grown in lead (Pb)-present media. It was observed that Pb2+ signifi-cantly inhibited photosynthesis in spinach, including light absorption, energy transfer from LHCII to photosystem II, excitation energy dis-tribution from photosystem I to photosystem II, and transformation from light energy to electron energy and oxygen evolution of chloroplasts,and decreased spinach growth. However, Ce3+ treatment to pb2+-present chloroplasts could obviously improve light absorption and excitation energy distribution in both photosystems and increase activity of photochemical reaction and oxygen evolution of chloroplasts. The results suggested that Ce3+ under Pb2+ stress could maintain the stability of chloroplast membrane, and improve photosynthesis of spinach chloro-plast, thus promote spinach growth.

  10. Cerium relieving the inhibition of photosynthesis and growth of spinach caused by lead

    Institute of Scientific and Technical Information of China (English)

    ZHOU Min; ZE Yuguan; LI Na; DUAN Yanmei; CHEN Ting; LIU Chao; HONG Fashui

    2009-01-01

    Chloroplasts were isolated from spinach cultured in lead chloride-present, Ce~(3+)-administered, cerium chloride-administered lead chloride-present Hoagland's media or that of Hoagland's media. The experimental study demonstrated the effects of cerium (Ce) on distribu-tion of light energy and photochemical activities of spinach chloroplast grown in lead (Pb)-present media. It was observed that Pb~(2+) signifi-cantly inhibited photosynthesis in spinach, including light absorption, energy transfer from LHCII to photosystem II, excitation energy dis-tribution from photosystem I to photosystem II, and transformation from light energy to electron energy and oxygen evolution of chloroplasts,and decreased spinach growth. However, Ce~(3+) treatment to pb~(2+)-present chloroplasts could obviously improve light absorption and excitation energy distribution in both photosystems and increase activity of photochemical reaction and oxygen evolution of chloroplasts. The results suggested that Ce~(3+) under Pb~(2+) stress could maintain the stability of chloroplast membrane, and improve photosynthesis of spinach chloro-plast, thus promote spinach growth.

  11. Experimental study on He- Ne laser irradiation to inhibit scar fibroblast growth in culture

    Institute of Scientific and Technical Information of China (English)

    舒彬; 吴宗耀; 郝林林; 曾登芬; 冯光锐; 林永辉

    2002-01-01

    To explore the inhibitory effect of He-Ne laser irradiation on fibroblast growth of hypertrophic scars in culture. Methods: He-Ne laser with wavelength of 632.8 nm,power density of 50 mW/cm2 and doses of 3 J/cm2,30 J/cm2, 90 J/cm2 and 180 J/cm2 was used to irradiate human scar fibroblasts in culture 1, 3 and 5 times respectively, and then the cell count and cell cycle analysis were done. Results: Repeated irradiation with He-Ne laser at dose of 180 J/cm2 three and five times led to an evident decrease in total cell number compared with that of the control group and there was a significant difference ( P <0.05). The cell cycle analysis showed after three and five times of irradiation with 180 J/cm2 He-Ne laser the cell number in S-phase decreased from 51% to 20% and 14% respectively, the cell number in G0/G1 phase increased from 28% to 55% and 60% respectively, and the cell percentage in Sub-G1 phase was 6.7% and 9.8% respectively. Conclusions: Repeated irradiation with 180 J/cm2 He-Ne laser can inhibit scar fibroblasts growth in culture.It may be that He-Ne laser irradiation causes cell stagnation in G0/G1 phase and apoptosis.

  12. Hypoestoxide inhibits tumor growth in the mouse CT26 colon tumor model

    Institute of Scientific and Technical Information of China (English)

    Emmanuel A Ojo-Amaize; Howard B Cottam; Olusola A Oyemade; Joseph I Okogun; Emeka J Nchekwube

    2007-01-01

    AIM: To evaluate the effect of the natural diterpenoid,hypoestoxide (HE) on the growth of established colon cancer in mice.METHODS: The CT26.WT mouse colon carcinoma cell line was grown and expanded in vitro. Following the expansion, BALB/c mice were inoculated s.c. with viable tumor cells. After the tumors had established and developed to about 80-90 mm3, the mice were started on chemotherapy by oral administration of HE, 5-fluorouracil (5-FU) or combination.RESULTS: The antiangiogenic HE has previously been shown to inhibit the growth of melanoma in the B16F1tumor model in C57BL/6 mice. Our results demonstrate that mean volume of tumors in mice treated with oral HE as a single agent or in combination with 5-FU, were significantly smaller (> 60%) than those in vehicle control mice (471.2 mm3 vs 1542.8 mm3, P < 0.01).The significant reductions in tumor burden resulted in pronounced mean survival times (MST) and increased life spans (ILS) in the treated mice.CONCLUSION: These results indicate that HE is an effective chemotherapeutic agent for colorectal cancer in mice and that HE may be used alone or in combination with 5-FU.

  13. Corn-derived carbohydrate inositol hexaphosphate inhibits Barrett's adenocarcinoma growth by pro-apoptotic mechanisms.

    Science.gov (United States)

    McFadden, David W; Riggs, Dale R; Jackson, Barbara J; Cunningham, Cynthia

    2008-02-01

    Inositol hexaphosphate (IP6) is a naturally occurring polyphosphorylated carbohydrate that is found in food sources high in fiber content. IP6 has been reported to have significant inhibitory effects against a variety of primary tumors. We hypothesized that IP6 would inhibit the cell growth rate of Barrett's adenocarcinoma in vitro. Two Barrett's-associated adenocarcinoma cell lines, SEG-1 and BIC-1, were treated with IP6 at 0.5, 1.0 and 5.0 mM concentrations. Cell viability was measured by MTT assay. Apoptosis and necrosis were evaluated by the Annexin V FITC assay. Reductions (PIP6 decreased late apoptosis and necrosis in BIC cells, whereas in SEG-1 cells, early apoptosis, late apoptosis and necrosis were all increased by IP6. IP6 decreases cellular growth by pro-apoptotic mechanisms. Our findings suggest that IP6 has the potential to become an effective adjunct for Barrett's adenocarcinoma. Further studies are needed to evaluate safety and clinical utility of this agent in patients with Barrett's adenocarcinoma.

  14. Inhibition of bacterial growth by different mixtures of propofol and thiopentone

    Directory of Open Access Journals (Sweden)

    K.E. Joubert

    2005-06-01

    Full Text Available Propofol is, as a result of its formulation, an ideal bacterial and yeast culture medium. An outbreak of sepsis in humans and an increase in wound infections in dogs has been ascribed to the use of propofol. It has been previously reported that a 1:1 mixture of propofol and thiopentone has bactericidal properties. This study was undertaken to determine if further serial mixtures of propofol and thiopentone maintained the bactericidal properties. Mixtures of 1:1 (solution A, 5:1 (solution B, 10:1 (solution C, 50:1 (solution D and 100:1 (solution E of 1 % propofol to 2.5 % thiopentone, 2.5 % thiopentone (solution T, 1 % propofol (solution P and saline (solution S were prepared and inoculated with between 105 and 106 colony-forming units of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. A sample was withdrawn from each solution at 0, 1, 6, 12, 48 and 120 hours after inoculation and a bacterial count was performed. This study showed that thiopentone and solution A behaved in similar fashion by inhibiting bacterial growth and was bactericidal after 48 hours. Solution B was not bactericidal against S. aureus and C. albicans. Propofol and solutions D and E all supported growth of all the organisms tested. These data indicate that mixtures of propofol and thiopentone at a ratio less than 1:1 do not maintain the bactericidal properties.

  15. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Huarong Huang

    Full Text Available α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer.

  16. Transforming growth factor-β1 short hairpin RNA inhibits renal allograft fibrosis

    Institute of Scientific and Technical Information of China (English)

    YIN Zhi-kang; WU Xiao-hou; XIA Yu-guo; LUO Chun-li

    2011-01-01

    Background Transforming growth factor-β1 (TGF-β1) is known to be a key fibrogenic cytokine in a number of chronic fibrotic diseases, including chronic allograft nephropathy. We examined the effects of inhibition of TGF-β1 expression by RNA interference on renal allograft fibrosis, and explored the mechanisms responsible for these effects.Methods A Sprague-Dawley-to-Wistar rat model of accelerated kidney transplant fibrosis was used. Sixty recipient adult Wistar rats were randomly divided into four groups: group T (sham-operated group), group T (plasmid-transfected group), group H (control plasmid group), and group Y (transplant only group). Rats in group T were transfected with 200μg of TGF-β1 short hairpin RNA (shRNA). Reverse transcription-polymerase chain reaction and Western blotting were used to examine the expression of TGF-β1, Smad3/7, E-cadherin, and type I collagen. The distribution of type I collagen was measured by immunohistochemistry. The pathologic changes and extent of fibrosis were assessed by hematoxylin and eosin and Masson staining. E-cadherin and α-smooth muscle actin immunohistochemical staining were used to label tubular epithelial cells and fibroblasts, respectively.Results Plasmid transfection significantly inhibited the expression of TGF-β1, as well as that of its target gene, type I collagen (P <0.05 and P <0.01, respectively). In addition, the degree of fibrosis was mild, and its development was delayed in plasmid-transfected rats. In contrast, TGF-β1-shRNA transfection maintained the expression of E-cadherin in tubular epithelial cells while it inhibited the transformation from epithelial cells to fibroblasts. Blood urea nitrogen and serum creatinine were lower in the plasmid group than in the control groups (P <0.05 and P<0.01, respectively).Conclusions This study suggests that transfection of a TGF-β1-shRNA plasmid could inhibit the fibrosis of renal allografts. The mechanism may be associated with the downregulation

  17. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro.

    Science.gov (United States)

    He, Jun-Min; Bai, Xiao-Ling; Wang, Rui-Bin; Cao, Bing; She, Xiao-Ping

    2007-10-01

    The role of nitric oxide (NO) in the ultraviolet-B radiation (UV-B)-induced reduction of in vitro pollen germination and tube growth of Paulownia tomentosa Steud. was studied. Results showed that exposure of the pollen to 0.4 and 0.8 W m(-2) UV-B radiation for 2 h resulted in not only the reduction of pollen germination and tube growth but also the enhancement of NO synthase (NOS, EC 1.14.13.39) activity and NO production in pollen grain and tube. Also, exogenous NO donors sodium nitroprusside and S-nitrosoglutathione inhibited both pollen germination and tube growth in a dose-dependence manner. NOS inhibitor N(G)-nitro-l-Arg-methyl eater (l-NAME) and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) not only largely prevented the NO generation but also partly reversed the UV-B-inhibited pollen germination and tube growth. These results indicate that UV-B radiation inhibits pollen germination and tube growth partly via promoting NO production in pollen grain and tube by a NOS-like enzyme. Additionally, a guanylyl cyclase inhibitor 6-anilino-5,8-quinolinequinone (LY-83583) prevented both the UV-B- and NO donors-inhibited pollen germination and tube growth, suggesting that the NO function is mediated by cyclic guanosine 5'-monophosphate. However, the effects of c-PTIO, l-NAME and LY-83583 on the UV-B-inhibited pollen germination and tube growth were only partial, suggesting that there are NO-independent pathways in UV-B signal networks.

  18. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Jun-Min He; Xiao-Ling Bai; Rui-Bin Wang; Bing Cao; Xiao-Ping She [School of Life Sciences, Shaanxi Normal Univ., Xi' an (China)

    2007-10-15

    The role of nitric oxide (NO) in the ultraviolet-B radiation (UV-B)-induced reduction of in vitro pollen germination and tube growth of Paulownia tomentosa Steud. was studied. Results showed that exposure of the pollen to 0.4 and 0.8 W m{sup -2} UV-B radiation for 2 h resulted in not only the reduction of pollen germination and tube growth but also the enhancement of NO synthase (NOS, EC 1.14.13.39) activity and NO production in pollen grain and tube. Also, exogenous NO donors sodium nitroprusside and S-nitrosoglutathione inhibited both pollen germination and tube growth in a dose-dependence manner. NOS inhibitor NG-nitro-L-Arg-methyl eater (L-NAME) and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) not only largely prevented the NO generation but also partly reversed the UV-B-inhibited pollen germination and tube growth. These results indicate that UV-B radiation inhibits pollen germination and tube growth partly via promoting NO production in pollen grain and tube by a NOS-like enzyme. Additionally, a guanylyl cyclase inhibitor 6-anilino-5, 8-quinolinequinone (LY-83583) prevented both the UV-B- and NO donors-inhibited pollen germination and tube growth, suggesting that the NO function is mediated by cyclic guanosine 5'-monophosphate. However, the effects of c-PTIO, L-NAME and LY-83583 on the UV-B-inhibited pollen germination and tube growth were only partial, suggesting that there are NO-independent pathways in UV-B signal networks. (au)

  19. Porphyrin analogues as novel antagonists of fibroblast growth factor and vascular endothelial growth factor receptor binding that inhibit endothelial cell proliferation, tumor progression, and metastasis.

    Science.gov (United States)

    Aviezer, D; Cotton, S; David, M; Segev, A; Khaselev, N; Galili, N; Gross, Z; Yayon, A

    2000-06-01

    Fibroblast growth factors (FGFs) and vascular endothelial growth factor (VEGF) play a pivotal role in the multistep pathway of tumor progression, metastasis, and angiogenesis. We have identified a porphyrin analogue, 5,10,15,20-tetrakis(methyl-4-pyridyl)-21H,23H-porphine-tetra -p-tosylate salt (TMPP), as a potent inhibitor of FGF2 and VEGF receptor binding and activation. TMPP demonstrated potent inhibition of binding of soluble FGF receptor 1 (FGFR1) to FGF2 immobilized on heparin at submicromolar concentrations. TMPP inhibits binding of radiolabeled FGF2 to FGFR in a cell-free system as well as to cells genetically engineered to express FGFR1. Furthermore, TMPP also inhibits the binding of VEGF to its tyrosine kinase receptor in a dose-dependent manner. In an in vitro angiogenic assay measuring the extent of endothelial cell growth, tube formation, and sprouting, TMPP dramatically reduced the extent of the FGF2-induced endothelial cell outgrowth and differentiation. In a Lewis lung carcinoma model, mice receiving TMPP showed a marked inhibition of both primary tumor progression and lung metastases development, with nearly total inhibition of the metastatic phenotype upon alternate daily injections of TMPP at 25 microg/g of body mass. Finally, novel meso-pyridylium-substituted, nonsymmetric porphyrins, as well as a novel corrole-based derivative, with >50-fold increase in activity in vitro, had a significantly improved efficacy in blocking tumor progression and metastasis in vivo.

  20. Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer.

    Science.gov (United States)

    Brown, Wells S; Tan, Li; Smith, Andrew; Gray, Nathanael S; Wendt, Michael K

    2016-09-01

    Therapeutic targeting of late-stage breast cancer is limited by an inadequate understanding of how tumor cell signaling evolves during metastatic progression and by the currently available small molecule inhibitors capable of targeting these processes. Herein, we demonstrate that both β3 integrin and fibroblast growth factor receptor-1 (FGFR1) are part of an epithelial-mesenchymal transition (EMT) program that is required to facilitate metastatic outgrowth in response to fibroblast growth factor-2 (FGF2). Mechanistically, β3 integrin physically disrupts an interaction between FGFR1 and E-cadherin, leading to a dramatic redistribution of FGFR1 subcellular localization, enhanced FGF2 signaling and increased three-dimensional (3D) outgrowth of metastatic breast cancer cells. This ability of β3 integrin to drive FGFR signaling requires the enzymatic activity of focal adhesion kinase (FAK). Consistent with these mechanistic data, we demonstrate that FGFR, β3 integrin, and FAK constitute a molecular signature capable of predicting decreased survival of patients with the basal-like subtype of breast cancer. Importantly, covalent targeting of a conserved cysteine in the P-loop of FGFR1-4 with our newly developed small molecule, FIIN-4, more effectively blocks 3D metastatic outgrowth as compared with currently available FGFR inhibitors. In vivo application of FIIN-4 potently inhibited the growth of metastatic, patient-derived breast cancer xenografts and murine-derived metastases growing within the pulmonary microenvironment. Overall, the current studies demonstrate that FGFR1 works in concert with other EMT effector molecules to drive aberrant downstream signaling, and that these events can be effectively targeted using our novel therapeutics for the treatment of the most aggressive forms of breast cancer. Mol Cancer Ther; 15(9); 2096-106. ©2016 AACR.

  1. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Directory of Open Access Journals (Sweden)

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  2. AKT signaling is involved in fucoidan-induced inhibition of growth and migration of human bladder cancer cells.

    Science.gov (United States)

    Cho, Tae-Min; Kim, Wun-Jae; Moon, Sung-Kwon

    2014-02-01

    We identified a novel mechanism of AKT signaling in the fucoidan-induced proliferation and migration of human urinary 5637 cancer cells. Fucoidan treatment showed a significant growth inhibition followed by G1-phase-associated up-regulation of p21WAF1 expression and suppression of cyclins and CDK expression in 5637 cells. Also, fucoidan treatment induced the activation of AKT signaling, which was inhibited by treatment with wortmannin, a PI3K-specific inhibitor. Blockade of the AKT function reversed the fucoidan-mediated inhibition of cell proliferation, the increased G1-phase-associated p21WAF1 expression, and the reduction of cell-cycle proteins. Moreover, treatment with fucoidan blocked migration and invasion of 5637 cells. This inhibition was attributed to decreased expression of MMP-9, which was mediated by down-regulation of AP-1 and NF-κB binding activity. Furthermore, wortmannin treatment abolished the decreased cell migration and invasion and the inhibition of MMP-9 expression via the suppression of NF-κB and AP-1 in fucoidan-treated cells. Similar results were observed in another bladder cancer T-24 cells treated with fucoidan. Finally, overexpression of the AKT gene inhibited the proliferation, migration and invasion of bladder cancer cells. These data suggest that the activation of AKT signaling is involved in growth inhibition and suppression of the migration and invasion of bladder cancer cells treated with fucoidan.

  3. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    Energy Technology Data Exchange (ETDEWEB)

    Djeu, J.Y.; Parapanios, A.; Halkias, D.; Friedman, H.

    1986-03-05

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr at 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10..mu..g/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4..mu..g/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated.

  4. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.

    Science.gov (United States)

    Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa

    2015-10-15

    The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs.

  5. Griseofulvin impairs intraerythrocytic growth of Plasmodium falciparum through ferrochelatase