WorldWideScience

Sample records for berry inhibits growth

  1. Antimicrobial properties of berries

    OpenAIRE

    Puupponen-Pimiä, Riitta

    2007-01-01

    Berries, especially their antimicrobial properties, have been studied intensively at VTT over the past ten years in several research projects. In these in vitro studies phenolic berry extracts of common Nordic berries selectively inhibited the growth of harmful bacteria and human intestinal pathogens, without affecting the growth of beneficial lactic acid bacteria.

  2. 4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    International Nuclear Information System (INIS)

    The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 μg/mL for 24 h. In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer

  3. 4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    OpenAIRE

    Guo Zong-Lun; Tsai Ming-Tz; Lee Alan; Yang Hsin-Ling; Hseu You-Cheng; Hwang Chi-Ching; Chen Jeff; Chang Fang-Rong; Chiu Chien-Chih; Yen Ching-Yu; Cheng Yu-Shan; Liu Yin-Chang; Lan Yu-Hsuan; Chang Yu-Ching; Ko Ying-Chin

    2010-01-01

    Abstract Background The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Methods Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkalin...

  4. Evaluation of berries of Phytolacca dodecandra for growth inhibition of Histoplasma capsulatum var. farciminosum and treatment of cases of epizootic lymphangitis in Ethiopia

    Institute of Scientific and Technical Information of China (English)

    Negesse Mekonnen; Eyasu Makonnen; Nigatu Aklilu; Gobena Ameni

    2012-01-01

    Objective:To evaluate the berries of Phytolacca dodecandra (P. dodecandra) for its effect on Histoplasma capsulatum var. farciminosum (HCF) and for the treatment of cases of epizootic lymphangitis (EL). Methods:Samples were collected from un-ruptured nodules of cases of EL at Debre Zeit and Akaki (central Ethiopia). Mycological culture and isolation of HCF were performed at the Aklilu Lemma Institute of Pathobiology. Phytochemical screening was done for n-butanol extract of P. dodecandra to detect alkaloids, saponins, phenolic compounds and flavonoids. The minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) of aqueous and n-butanol extracts of P. dodecandra against HCF were determined by agar dilution assay. For the in vivo trial, 5%simple ointment was prepared from n-butanol extract and applied topically to 24 (twelve early and twelve moderate) cases of EL. Results:Phytochemical screening showed that n-butanol extract of P. dodecandra was positive for alkaloids, saponins and phenolic compounds but negative for flavonoids. The MICs of n-butanol and aqueous extracts of P. dodecandra were (0.039%-0.078%) and (0.625%-1.250%), respectively. The MFCs of n-butanol and aqueous extracts of P. dodecandra were (0.078%-0.156%) and (1.250%-2.500%), respectively. The MIC and MFC of ketoconazole (positive control) was (1.200×10-5%-2.500×10-5%) and (5.000×10-5%-1.000×10-4%), respectively while growth was observed on free medium (negative control). From the total of 24 treated cases of EL, 14 (58.3%) responded to treatment;however, 10 (41.7%) did not respond to treatment. There was no significant difference in the degree of response to treatment between early and moderate cases (χ²=0.686;P=0.408). Conclusions:It can be concluded that n-butanol extract of P. dodecandra demonstrates antifungal effects while the aqueous extract shows no antifungal activity.

  5. 4β-Hydroxywithanolide E from Physalis peruviana (golden berry inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    Directory of Open Access Journals (Sweden)

    Guo Zong-Lun

    2010-02-01

    Full Text Available Abstract Background The crude extract of the fruit bearing plant, Physalis peruviana (golden berry, demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Methods Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299 using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE assay was used to evaluate the DNA damage due to the drug. Results It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p p 50 of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 μg/mL for 24 h. Conclusions In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.

  6. Inhibition of adhesion of Neisseria meningitidis to human epithelial cells by berry juice polyphenolic fractions

    OpenAIRE

    Toivanen, Marko; Huttunen, Sanna; Lapinjoki, Seppo; Tikkanen-Kaukanen, Carina

    2010-01-01

    Abstract Adhesion of pathogens to host tissues is the requirement for the initiation of the majority of infectious diseases. We recently showed that the binding of Neisseria meningitidis pili to immobilised human epithelial cells is inhibited by molecular size fractions (10?100 kDa) of berry juices. Additionally, the isolated meningococcal pili bound to polyphenolic fractions of berry juices. In the present study we investigated the antiadhesive effects of berry juice polyphenolics...

  7. Revegetation of oil sands tailings. Growth improvement of silver-berry and buffalo-berry by inoculation with mycorrhizal fungi and N/sub 2/-fixing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Visser, S.; Danielson, R.M.

    1988-01-01

    The ability of actinorhizal shrubs to tolerate inhospitable conditions while improving soil fertility and organic matter status has led to increased usage of these plants for land reclamation and amenity planting purposes. Silver-berry and buffalo-berry are two such shrubs being tested as potential candidates for the revegetation of the oil sands tailings in northeastern Alberta. Associated with the roots of silver-berry and buffalo-berry are two symbiants, the N/sub 2/-fixing actimomycete Frankia and the vesicular-arbuscular mycorrhizal (VAM) fungi. Numerous studies have demonstrated that, particularly in nutrient-limited conditions, mycorrhization and nodulation can result in significantly better plant performance as a consequence of improved N and P nutrition. It was found in this study that in Alberta, silver-berry and buffalo-berry are strictly VA mycorrhizal; that they are highly dependent on their symbiants for optimum growth; and that the VAM inoculum potential of both stockpiled and undisturbed muskeg peak is negligible, due to the absence of VAM hosts. Means to increase the inoculum potential of peat have been studied. The efficacy of inoculating seedlings grown in greenhouses with VAM and Frankia has been demonstrated. Overwinter mortality was higher for inoculated shrubs, but after one growing season, shoot-weights of silver-berry were 3 to 7 times greater than for uninoculated shrubs, and shoot weights of buffalo-berry were 3 to 5 times greater. 122 refs., 12 figs., 31 tabs.

  8. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles

    Directory of Open Access Journals (Sweden)

    Guo Cheng

    2014-09-01

    Full Text Available Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012. The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of

  9. Berry fruits for cancer prevention: current status and future prospects.

    Science.gov (United States)

    Seeram, Navindra P

    2008-02-13

    Overwhelming evidence suggests that edible small and soft-fleshed berry fruits may have beneficial effects against several types of human cancers. The anticancer potential of berries has been related, at least in part, to a multitude of bioactive phytochemicals that these colorful fruits contain, including polyphenols (flavonoids, proanthocyanidins, ellagitannins, gallotannins, phenolic acids), stilbenoids, lignans, and triterpenoids. Studies show that the anticancer effects of berry bioactives are partially mediated through their abilities to counteract, reduce, and also repair damage resulting from oxidative stress and inflammation. In addition, berry bioactives also regulate carcinogen and xenobiotic metabolizing enzymes, various transcription and growth factors, inflammatory cytokines, and subcellular signaling pathways of cancer cell proliferation, apoptosis, and tumor angiogenesis. Berry phytochemicals may also potentially sensitize tumor cells to chemotherapeutic agents by inhibiting pathways that lead to treatment resistance, and berry fruit consumption may provide protection from therapy-associated toxicities. Although a wide variety of berry fruits are consumed worldwide, this paper focuses on those commonly consumed in North America, namely, blackberries, black raspberries, blueberries, cranberries, red raspberries, and strawberries. In addition, a large body of studies on singly purified berry bioactives is available, but this paper focuses on studies of "whole berries" per se, that is, as berry extracts and purified fractions, juices, and freeze-dried powders. Potential mechanisms of anticancer action and bioavailability of berry phenolics, as well as gaps in knowledge and recommendations for future berry research, are also briefly discussed. PMID:18211019

  10. Partial root-zone drying and conventional deficit irrigation applied during the whole berry growth maintain yield and berry quality in 'Crimson Seedless' table grapes

    Science.gov (United States)

    Pérez-Pastor, Alejandro; Domingo, Rafael; De la Rosa, Jose M.°; Rosario Conesa Saura, M.°

    2016-04-01

    To compare the effects of partial root-zone drying and conventional deficit irrigation applied during post-veraison and the whole berry growth on water relations, yield and berry quality, one experiment was conducted in a commercial vineyard of 'Crimson Seedless' table grapes. Five irrigation treatments were imposed: (i) Control (CTL) irrigated to 110% of crop evapotranspiration (ETc), (ii) regulated deficit irrigation (RDI) irrigated at 50% of CTL during the non- critical period of post-verasion, (iii) continuous deficit irrigation (DIc), irrigated at 50% of CTL throughout the whole berry growing season, (iv) partial root-zone drying (PRD), irrigated similar to RDI, but alternating the irrigation applied in the dry side every 10-14 days; and (v) continuous partial root-zone drying (PRDc), irrigated as DIc but alternating the irrigation in the dry side every 10-14 days. RDI and PRD received 24% and 28% less water than CTL, respectively. These reductions were higher in DIc and PRDc (65% and 53%, respectively). Total yield was not affected by any DI strategy. Only significantly lower values were observed in the weight and height's berries in respect to CTL. However, the colour parameters evaluated increased in all DI treatments, being slightly higher in DIc and PRDc compared with RDI and PRD. In addition, total soluble solids (TSS) were significantly higher in DIc, compared to other irrigated counterparts. Our findings showed that the application of water deficit during the whole berry growth through the use of DIc and PRDc, can be considered for irrigation scheduling in 'Crimson Seedless' table grapes. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  11. Berry and Citrus Phenolic Compounds Inhibit Dipeptidyl Peptidase IV: Implications in Diabetes Management

    Directory of Open Access Journals (Sweden)

    Junfeng Fan

    2013-01-01

    Full Text Available Beneficial health effects of fruits and vegetables in the diet have been attributed to their high flavonoid content. Dipeptidyl peptidase IV (DPP-IV is a serine aminopeptidase that is a novel target for type 2 diabetes therapy due to its incretin hormone regulatory effects. In this study, well-characterized anthocyanins (ANC isolated from berry wine blends and twenty-seven other phenolic compounds commonly present in citrus, berry, grape, and soybean, were individually investigated for their inhibitory effects on DPP-IV by using a luminescence assay and computational modeling. ANC from blueberry-blackberry wine blends strongly inhibited DPP-IV activity (IC50, 0.07 ± 0.02 to >300 μM. Of the twenty-seven phenolics tested, the most potent DPP-IV inhibitors were resveratrol (IC50, 0.6 ± 0.4 nM, luteolin (0.12 ± 0.01 μM, apigenin (0.14 ± 0.02 μM, and flavone (0.17 ± 0.01 μM, with IC50 values lower than diprotin A (4.21 ± 2.01 μM, a reference standard inhibitory compound. Analyses of computational modeling showed that resveratrol and flavone were competitive inhibitors which could dock directly into all three active sites of DPP-IV, while luteolin and apigenin docked in a noncompetitive manner. Hydrogen bonding was the main binding mode of all tested phenolic compounds with DPP-IV. These results indicate that flavonoids, particularly luteolin, apigenin, and flavone, and the stilbenoid resveratrol can act as naturally occurring DPP-IV inhibitors.

  12. Berry and Citrus Phenolic Compounds Inhibit Dipeptidyl Peptidase IV: Implications in Diabetes Management

    OpenAIRE

    Junfeng Fan; Johnson, Michelle H.; Mary Ann Lila; Gad Yousef; Elvira Gonzalez de Mejia

    2013-01-01

    Beneficial health effects of fruits and vegetables in the diet have been attributed to their high flavonoid content. Dipeptidyl peptidase IV (DPP-IV) is a serine aminopeptidase that is a novel target for type 2 diabetes therapy due to its incretin hormone regulatory effects. In this study, well-characterized anthocyanins (ANC) isolated from berry wine blends and twenty-seven other phenolic compounds commonly present in citrus, berry, grape, and soybean, were individually investigated for thei...

  13. Inheritance of growth habit and berry colour in ashwagandha (Withania somnifera (L. Dunal – A medicinal plant

    Directory of Open Access Journals (Sweden)

    H.B. Deore* and P.Manivel

    2014-06-01

    Full Text Available Genetics studies were studied for the two qualitative character ivz., growth habit (Erect × Procumbent and for berry (fruit colour (Yellow × Red in ashwagandha. The inheritance of the growth habit was controlled by single gene and the procumbent was dominant over the erect type. The gene symbol P for procumbent and p for erect is proposed. Inheritance studies of yellow versus red berry colour indicated that the trait was in control of classical duplicate recessive epitasis and followed the ratio of 9:7 (yellow: red. The berry colour in this cross is controlled by two genes (Y1 and Y2 with complementary recessive epitasis and gene symbols are proposed.

  14. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries.

    Science.gov (United States)

    Hong, Young-Shick; Martinez, Agathe; Liger-Belair, Gérard; Jeandet, Philippe; Nuzillard, Jean-Marc; Cilindre, Clara

    2012-10-01

    Botrytis cinerea is a fungal plant pathogen of grape berries, leading to economic and quality losses in wine production. The global metabolite changes induced by B. cinerea infection in grape have not been established to date, even though B. cinerea infection is known to cause significant changes in chemicals or metabolites. In order to better understand metabolic mechanisms linked to the infection process and to identify the metabolites associated with B. cinerea infection, (1)H NMR spectroscopy was used in global metabolite profiling and multivariate statistical analysis of berries from healthy and botrytized bunches. Pattern recognition methods, such as principal component analysis, revealed clear metabolic discriminations between healthy and botrytized berries of botrytized bunches and healthy berries of healthy bunches. Significantly high levels of proline, glutamate, arginine, and alanine, which are accumulated upon plant stress, were found in healthy and botrytized berries of botrytized bunches. Moreover, largely degraded phenylpropanoids, flavonoid compounds, and sucrose together with markedly produced glycerol, gluconic acid, and succinate, all being directly associated with B. cinerea growth, were only found in botrytized berries of botrytized bunches. This study reports that B. cinerea infection causes significant metabolic changes in grape berry and highlights that both the metabolic perturbations associated with the plant defence system and those directly derived from fungal pathogen growth should be considered to better understand the interaction between metabolic variation and biotic pathogen stress in plants. PMID:22945941

  15. Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress.

    Science.gov (United States)

    Miranda-Rottmann, Soledad; Aspillaga, Augusto A; Pérez, Druso D; Vasquez, Luis; Martinez, Alvaro L F; Leighton, Federico

    2002-12-18

    Oxidative modification of low-density lipoprotein (LDL) particles is a key event in the development of atherosclerosis. Oxidized LDL induces oxidative stress and modifies gene expression in endothelial cells. Berries constitute a rich dietary source of phenolic antioxidants. We found that the endemic Chilean berry Aristotelia chilensis (ach) has higher phenol content and scores better for total radical-trapping potential and total antioxidant reactivity in in vitro antioxidant capacity tests, when compared to different commercial berries. The juice of ach is also effective in inhibiting copper-induced LDL oxidation. In human endothelial cell cultures, the addition of ach juice significantly protects from hydrogen peroxide-induced intracellular oxidative stress and is dose-dependent. The aqueous, anthocyanin-rich fraction of ach juice accounts for most of ach's antioxidant properties. These results show that ach is a rich source of phenolics with high antioxidant capacity and suggest that it may have antiatherogenic properties. PMID:12475268

  16. Maqui berry (Aristotelia chilensis) and the constituent delphinidin glycoside inhibit photoreceptor cell death induced by visible light.

    Science.gov (United States)

    Tanaka, Junji; Kadekaru, Takashi; Ogawa, Kenjirou; Hitoe, Shoketsu; Shimoda, Hiroshi; Hara, Hideaki

    2013-08-15

    The protective effects of maqui berry (Aristotelia chilensis) extract (MBE) and its major anthocyanins [delphinidin 3,5-O-diglucoside (D3G5G) and delphinidin 3-O-sambubioside-5-O-glucoside (D3S5G)] against light-induced murine photoreceptor cells (661W) death were evaluated. Viability of 661W after light treatment for 24 h, assessed by the tetrazolium salt (WST-8) assay and Hoechst 33342 nuclear staining, was improved by addition of MBE, D3G5G, and D3S5G. Intracellular radical activation in 661W, evaluated using the reactive oxygen species (ROS)-sensitive probe 5-(and-6)-chloromethyl-2,7-dichlorodihydro fluorescein diacetate acetyl ester (CM-H2DCFDA), was reduced by MBE and its anthocyanins. The anti-apoptosis mechanism of MBE was evaluated by light-induced phosphorylation of p38. MBE significantly suppressed the light-induced phosphorylation of p38. These findings indicate that MBE and its anthocyanidins suppress the light-induced photoreceptor cell death by inhibiting ROS production, suggesting that the inhibition of phosphorylated-p38 may be involved in the underlying mechanism. PMID:23561088

  17. Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor (PDGF/PDGFR) signaling.

    Science.gov (United States)

    Lamy, Sylvie; Beaulieu, Edith; Labbé, David; Bédard, Valérie; Moghrabi, Albert; Barrette, Stéphane; Gingras, Denis; Béliveau, Richard

    2008-05-01

    Most cancers are dependent on the growth of tumor blood vessels and inhibition of tumor angiogenesis may thus provide an efficient strategy to retard or block tumor growth. Recently, tumor vascular targeting has expanded to include not only endothelial cells (ECs) but also smooth muscle cells (SMCs), which contribute to a mature and functional vasculature. We have reported previously that delphinidin, a major biologically active constituent of berries, inhibits the vascular endothelial growth factor-induced phosphorylation of vascular endothelial growth factor receptor-2 and blocks angiogenesis in vitro and in vivo. In the present study, we show that delphinidin also inhibits activation of the platelet-derived growth factor (PDGF)-BB receptor-beta [platelet-derived growth factor receptor-beta (PDGFR-beta)] in SMC and that this inhibition may contribute to its antitumor effect. The inhibitory effect of delphinidin on PDGFR-beta was very rapid and led to the inhibition of PDGF-BB-induced activation of extracellular signal-regulated kinase (ERK)-1/2 signaling and of the chemotactic motility of SMC, as well as the differentiation and stabilization of EC and SMC into capillary-like tubular structures in a three-dimensional coculture system. Using an anthocyan-rich extract of berries, we show that berry extracts were able to suppress the synergistic induction of vessel formation by basic fibroblast growth factor-2 and PDGF-BB in the mouse Matrigel plug assay. Oral administration of the berry extract also significantly retarded tumor growth in a lung carcinoma xenograft model. Taken together, these results provide new insight into the molecular mechanisms underlying the antiangiogenic activity of delphinidin that will be helpful for the development of dietary-based chemopreventive strategies. PMID:18339683

  18. α-Amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits α-amylases from the coffee berry borer pest

    Directory of Open Access Journals (Sweden)

    Oliveira-Neto Osmundo B

    2010-06-01

    Full Text Available Abstract Background Coffee is an important crop and is crucial to the economy of many developing countries, generating around US$70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei, is responsible for worldwide annual losses of around US$500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an α-amylase inhibitor gene (α-AI1, which confers resistance against the coffee berry borer insect-pest, into C. arabica plants. Results We transformed C. arabica with the α-amylase inhibitor-1 gene (α-AI1 from the common bean, Phaseolus vulgaris, under control of the seed-specific phytohemagglutinin promoter (PHA-L. The presence of the α-AI1 gene in six regenerated transgenic T1 coffee plants was identified by PCR and Southern blotting. Immunoblotting and ELISA experiments using antibodies against α-AI1 inhibitor showed a maximum α-AI1 concentration of 0.29% in crude seed extracts. Inhibitory in vitro assays of the α-AI1 protein against H. hampei α-amylases in transgenic seed extracts showed up to 88% inhibition of enzyme activity. Conclusions This is the first report showing the production of transgenic coffee plants with the biotechnological potential to control the coffee berry borer, the most important insect-pest of crop coffee.

  19. Well having inhibited microbial growth

    Science.gov (United States)

    Lee, Brady D.; Dooley, Kirk J.

    2006-08-15

    The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.

  20. Melanin Biosynthesis Inhibition Effects of Ginsenoside Rb2 Isolated from Panax ginseng Berry.

    Science.gov (United States)

    Lee, Dae Young; Jeong, Yong Tae; Jeong, Sang Chul; Lee, Mi Kyoung; Min, Jin Woo; Lee, Jae Won; Kim, Geum Soog; Lee, Seung Eun; Ahn, Young Sup; Kang, Hee Cheol; Kim, Jin Hee

    2015-12-28

    Ginsenoside Rb2 (Gin-Rb2) was purified from the fruit extract of Panax ginseng. Its chemical structure was measured by spectroscopic analysis, including HR-FAB-MS, (1)H-NMR, and IR spectroscopy. Gin-Rb2 decreased potent melanogenesis in melan-a cells, with 23.4% at 80 μM without cytotoxicity. Gin-Rb2 also decreased tyrosinase and MITF protein expression in melan-a cells. Furthermore, Gin-Rb2 presented inhibition of the body pigmentation in the zebrafish in vivo system and reduced melanin contents and tyrosinase activity. These results show that Gin-Rb2 isolated from P. ginseng may be an effective skin-whitening agent via the in vitro and in vivo systems. PMID:26437949

  1. Classification of ginseng berry (Panax ginseng C.A. MEYER) extract using 1H NMR spectroscopy and its inhibition of lipid accumulation in 3 T3-L1 cells

    OpenAIRE

    Yang, Seung Ok; Park, Hae Ran; Sohn, Eun Suk; Lee, Sang Won; Kim, Hyung Don; Kim, Young Chang; Kim, Kee Hong; Na, Sae Won; Choi, Hyung-Kyoon; Arasu, Mariadhas Valan; Kim, Young Ock

    2014-01-01

    Background Panax ginseng is a famous traditional medicine in Korea for its beneficial effect on obesity, cardiac and liver associated diseases. The aim of this study was to investigate the metabolite in Panax ginseng (P. ginseng, Aralicaceae) berries depending on the ripen stages and evaluate its potential inhibition on adipocyte differentiation in 3 T3-L1 cells. Methods Different ripening stage samples of P. ginseng berry were analyzed through global metabolite profiling by NMR spectroscopy....

  2. Changes in vascular and transpiration flows affect the seasonal and daily growth of kiwifruit (Actinidia deliciosa) berry

    Science.gov (United States)

    Morandi, Brunella; Manfrini, Luigi; Losciale, Pasquale; Zibordi, Marco; Corelli Grappadelli, Luca

    2010-01-01

    Background and Aims The kiwifruit berry is characterized by an early stage of rapid growth, followed by a relatively long stage of slow increase in size. Vascular and transpiration flows are the main processes through which water and carbon enter/exit the fruit, determining the daily and seasonal changes in fruit size. This work investigates the biophysical mechanisms underpinning the change in fruit growth rate during the season. Methods The daily patterns of phloem, xylem and transpiration in/outflows have been determined at several stages of kiwifruit development, during two seasons. The different flows were quantified by comparing the diurnal patterns of diameter change of fruit, which were then girdled and subsequently detached while measurements continued. The diurnal courses of leaf and stem water potential and of fruit pressure potential were also monitored at different times during the season. Key Results Xylem and transpiration flows were high during the first period of rapid volume growth and sharply decreased with fruit development. Specific phloem import was lower and gradually decreased during the season, whereas it remained constant at whole-fruit level, in accordance with fruit dry matter gain. On a daily basis, transpiration always responded to vapour pressure deficit and contributed to the daily reduction of fruit hydrostatic pressure. Xylem flow was positively related to stem-to-fruit pressure potential gradient during the first but not the last part of the season, when xylem conductivity appeared to be reduced. Conclusions The fruit growth model adopted by this species changes during the season due to anatomical modifications in the fruit features. PMID:20382641

  3. Targeted inhibition of tumor growth and angiogenesis

    NARCIS (Netherlands)

    van der Meel, R.

    2013-01-01

    Two main strategies have been pursued for the development of an effective and targeted anti-cancer treatment. The first strategy comprised the generation of a targeted nanomedicine for the inhibition of tumor cell proliferation by blocking growth factor receptor pathways. The epidermal growth factor

  4. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    2015-01-01

    Recently, high-quality data were published on the algal growth inhibition caused by 50 non-polar narcotic compounds, of which 39 were liquid compounds with defined water solubility. In the present study, the toxicity data for these liquids were applied to challenge the chemical activity range for...

  5. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity with the...

  6. Ormeloxifene efficiently inhibits ovarian cancer growth

    Science.gov (United States)

    Maher, Diane M.; Khan, Sheema; Nordquist, Jordan; Ebeling, Mara C.; Bauer, Nichole A.; Kopel, Lucas; Singh, Man Mohan; Halaweish, Fathi; Bell, Maria C.; Jaggi, Meena; Chauhan, Subhash C.

    2014-01-01

    Ovarian cancer continues to be a leading cause of cancer related deaths for women. Anticancer agents effective against chemo-resistant cells are greatly needed for ovarian cancer treatment. Repurposing drugs currently in human use is an attractive strategy for developing novel cancer treatments with expedited translation into clinical trials. Therefore, we examined whether ormeloxifene (ORM), a non-steroidal Selective Estrogen Receptor Modulator (SERM) currently used for contraception, is therapeutically effective at inhibiting ovarian cancer growth. We report that ORM treatment inhibits cell growth and induces apoptosis in ovarian cancer cell lines, including cell lines resistant to cisplatin. Furthermore, ORM treatment decreases Akt phosphorylation, increases p53 phosphorylation, and modulates the expression and localization patterns of p27, cyclin E, cyclin D1, and CDK2. In a pre-clinical xenograft mouse ORM treatment significantly reduces tumorigenesis and metastasis. These results indicate that ORM effectively inhibits the growth of cisplatin resistant ovarian cancer cells. ORM is currently in human use and has an established record of patient safety. Our encouraging in vitro and pre-clinical in vivo findings indicate that ORM is a promising candidate for the treatment of ovarian cancer. PMID:25306892

  7. [Effects of rootstocks on the growth and berry quality of Vitis vinifera cv. Cabernet Sauvignon grapevine in Changli zone, Hebei Province, China].

    Science.gov (United States)

    Li, Min-min; Yuan, Jun-wei; Liu, Chang-jiang; Han, Bin; Huang, Jia-zhen; Guo, Zi-juan; Zhao, Sheng-iian

    2016-01-01

    Cabernet Sauvignon grafted onto seven rootstocks 188-08, 5BB, SO4, 3309C, 110R, 5C and 101-14M, with the own-rooted vines as control, were investigated to study the effects of different rootstocks on the growth, fruit quality and yield of Cabernet Sauvignon in Changli zone, Hebei Province, China. The results showed that Cabernet Sauvignon grafted on 5BB and 5C significantly increased the trunk diameter, and 5C significantly increased one-year-old shoot diameter. 188-08, 5BB and 5C as rootstock obviously improved berry soluble solid content, in addition 188- 08 and 5BB significantly increased berry reducing sugar content. The vines on 101-14M and 3309C significantly decreased berry titratable acid content. The rootstock 5C and 101-14M significantly raised grape skin phenol and anthocyanin contents, and rootstock 101-14M significantly increased tannin content in grape skin. Cabernet Sauvignon grafted onto 3309C, 110R, 5C and 101-14M obviously got higher yield per vine than own-rooted vines. Growing parameter, grape quality index and yield per vine grafted on seven rootstocks and own-rooted vine were synthetically evaluated by fuzzy evaluation method, and the synthetical effects of vine grafted on seven rootstocks were better than own-rooted vine, with the order of scores from high to low as 5C, 101-14M, 3309C, 5BB, 188-08, 110R and SO4 under Changli unique climate and environment conditions. PMID:27228593

  8. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  9. Inhibition activity of wild berry juice fractions against Streptococcus pneumoniae binding to human bronchial cells

    OpenAIRE

    Huttunen, Sanna; Toivanen, Marko; Arkko, Satu; Ruponen, Marika; Tikkanen-Kaukanen, Carina

    2010-01-01

    Abstract Bacterial adhesion to the cell surface is a crucial step before infection can take place. Inhibition of bacterial binding offers a novel preventive approach against infections. Cranberry (Vaccinium macrocarpon Ait.) juice has been found to have anti-adhesive activity against different bacteria. Streptococcus pneumoniae is an important pathogen and the most common cause for pneumonia, meningitis, and otitis media. In this study the inhibitory activity of cranberry (Vacciniu...

  10. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  11. Bioactive berry phenolics

    OpenAIRE

    Heinonen, Marina

    2007-01-01

    Compositional data on phenolic compounds in berries has been rapidly accumulating and readily included in the national food composition data base. Among the different bioactive substances in berries, phenolic compounds including flavonoids, tannins, and phenolic acids have received considerable interest due to their effects in food and health.

  12. The Berry's connection

    International Nuclear Information System (INIS)

    A course on the Berry's connection is presented. The main steps leading to the Berry's discovery are reviewed and the obtained equations are examined. Some applications of Berry's formulation are presented. They include diatomic molecules, dipole-quadrupole interaction in spherical mucleus and diabolic pair transfer. The experimental results presented are the spectrum of the Na3 molecule, the propagation of photons in an helical optical fiber and the neutron spin rotation. Non-abelian problems and the Aharonow-Anandan phase are discussed

  13. Supersymmetric Berry index

    CERN Document Server

    Ilinskii, K N; Melezhik, V S; Ilinski, K N; Kalinin, G V; Melezhik, V V

    1994-01-01

    We revise the sequences of SUSY for a cyclic adiabatic evolution governed by the supersymmetric quantum mechanical Hamiltonian. The condition (supersymmetric adiabatic evolution) under which the supersymmetric reductions of Berry (nondegenerated case) or Wilczek-Zee (degenerated case) phases of superpartners are taking place is pointed out. The analogue of Witten index (supersymmetric Berry index) is determined. As the examples of suggested concept of supersymmetric adiabatic evolution the Holomorphic quantum mechanics on complex plane and Meromorphic quantum mechanics on Riemann surface are considered. The supersymmetric Berry indexes for the models are calculated.

  14. Inhibition of growth and alteration of host cell interactions of Pasteurella multocida with natural byproducts.

    Science.gov (United States)

    Salaheen, S; Almario, J A; Biswas, D

    2014-06-01

    Pasteurella multocida is a leading cause of fowl cholera in both free-range pasture and conventional/commercially raised poultry. Its infection is a serious threat to poultry health and overall flock viability. Organic poultry is comparatively more vulnerable to this pathogen. It is a significant cause of production loss and price increase of poultry products, specifically organic poultry products. Some plant products are well documented as sources of natural antimicrobials such as polyphenols found in different berry pomaces and citrus oil. Pomace, a byproduct (primarily of seeds and skins) of fruits used for juice and wine production, and citrus oil, the byproduct of citrus juice production, show promising antimicrobial activity against various pathogens. Here, we showed for the first time that blackberry and blueberry pomace extracts and citrus oil inhibited P. multocida growth. Minimum bactericidal concentrations were determined as 0.3 and 0.4 mg/mL gallic acid equivalent for blackberry and blueberry pomace extracts, respectively. Similarly, only 0.05% citrus oil (vol/vol) completely inhibited P. multocida growth. Under shaking conditions, the antimicrobial activity of both pomace extracts and citrus oil was more intensive. Even citrus oil vapor also significantly reduced the growth of P. multocida. In addition, cell surface hydrophobicity of P. multocida was increased by 2- to 3-fold and its adherence to chicken fibroblast (DF1) and bovine mammary gland (MacT) cells was reduced significantly in the presence of pomace extracts only. This study indicates that these natural products might be good alternatives to conventional antimicrobial agents, and hence, may be used as feed or water supplements to control fowl cholera and reduce production loss caused by P. multocida. PMID:24879687

  15. Effects of ABA Content on the Development of Abscission Zone and Berry Falling After Harvesting of Grapes

    Institute of Scientific and Technical Information of China (English)

    ZHANG You-lin; ZHANG Run-guang

    2009-01-01

    The commodity price of grape reduces as berry falling after harvest. It is crucial to prevent grape from berry falling during storage. In this article, the structure change of grape cells in the abscission zone was observed, the ABA content and the activities of cellulase and polygalacturonase (PG) were measured, and the relationship of ABA and berry falling was investigated. The results suggest that cells in the abscission zone grow into a separation layer soon after the grapes are cut off. According to the level of development, we designed 6 grades to sort the different development stages. The grade 3 plays an important role in berry falling. ABA enhances the activities of cellulase and polygalacturonase, and accelerates the decomposition of cellulose and pectin, which determines the level of development of abscission zone and berry falling. If ABA ratio is less than 20 ng g-1 fresh weight (FW), the abscission zone is not developed to the grade 3, and the berry falling is effectively stopped. We treated grape bunches with nine plant growth regulators and two chemicals. The results indicated that 2,3,5-triiodobenzoic acid (TIBA) can (a) inhibit the generation of ABA significantly, (b) inactivate the activities of cellulase and PG, (c) delay the development of the grade 3 of abscission zone, and (d) stop berry falling. Indole acetic acid (IAA), gibberellic acid (GA3), naphthalene acetic acid (NAA), 6-benzylaminopurine (6-BA), calcium chloride (CaCl2), and potassium permanganate (KMnO4) caused similar results as TIBA. Chlorocholine chloride (CCC), dimethyl amino succinamic acid (B9), chloroethylphosphonic acid (CEPA) and exogenous ABA showed opposite effects.

  16. Calcite crystal growth rate inhibition by polycarboxylic acids

    Science.gov (United States)

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  17. Endocannabinoids Inhibit the Growth of Free-Living Amoebae▿

    OpenAIRE

    Dey, Rafik; Pernin, Pierre; Bodennec, Jacques

    2010-01-01

    The cannabinoid Δ9-tetrahydrocannabinol inhibits the growth of some pathogenic amoebae in vitro and exacerbates amoebic encephalitis in animal models. However, the effects of endogenous cannabinoids on amoebae remain unknown. Therefore, we tested several endocannabinoids (N-acyl ethanolamines and 2-O-acyl glycerol) on different genera of amoebae. The results showed that all of the endocannabinoids tested inhibit amoebic growth at subpharmacological doses, with 50% inhibitory concentrations ra...

  18. Epidermal growth factor inhibits cysteamine-induced duodenal ulcers

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1983-01-01

    The effect of the duodenal ulcerogen cysteamine on secretion of epidermal growth factor from Brunner's gland pouches was studied in the rat. Total output of immunoreactive epidermal growth factor was reduced to approximately 55%, compared with controls, 5 h after administration of cysteamine (300...... was studied. Luminal epidermal growth factor significantly inhibited the formation of cysteamine-induced duodenal ulcer, compared with controls receiving saline. The effect was not due to inhibition of gastric acid secretion or stimulation of duodenal bicarbonate secretion since the dose of epidermal...... growth factor used, when tested on chronic fistula rats, had no effect on acid secretion and did not influence bicarbonate secretion from Brunner's gland pouches. These results demonstrate that epidermal growth factor has a cytoprotective effect on the duodenal mucosa, and it is suggested that inhibition...

  19. Endocannabinoids inhibit the growth of free-living amoebae.

    Science.gov (United States)

    Dey, Rafik; Pernin, Pierre; Bodennec, Jacques

    2010-07-01

    The cannabinoid Delta(9)-tetrahydrocannabinol inhibits the growth of some pathogenic amoebae in vitro and exacerbates amoebic encephalitis in animal models. However, the effects of endogenous cannabinoids on amoebae remain unknown. Therefore, we tested several endocannabinoids (N-acyl ethanolamines and 2-O-acyl glycerol) on different genera of amoebae. The results showed that all of the endocannabinoids tested inhibit amoebic growth at subpharmacological doses, with 50% inhibitory concentrations ranging from 15 to 20 microM. A nonhydrolyzable endocannabinoid had similar effects, showing that the inhibition seen results from endocannabinoids per se rather than from a catabolic product. PMID:20479202

  20. Endocannabinoids Inhibit the Growth of Free-Living Amoebae▿

    Science.gov (United States)

    Dey, Rafik; Pernin, Pierre; Bodennec, Jacques

    2010-01-01

    The cannabinoid Δ9-tetrahydrocannabinol inhibits the growth of some pathogenic amoebae in vitro and exacerbates amoebic encephalitis in animal models. However, the effects of endogenous cannabinoids on amoebae remain unknown. Therefore, we tested several endocannabinoids (N-acyl ethanolamines and 2-O-acyl glycerol) on different genera of amoebae. The results showed that all of the endocannabinoids tested inhibit amoebic growth at subpharmacological doses, with 50% inhibitory concentrations ranging from 15 to 20 μM. A nonhydrolyzable endocannabinoid had similar effects, showing that the inhibition seen results from endocannabinoids per se rather than from a catabolic product. PMID:20479202

  1. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    OpenAIRE

    Victor Hugo Salvador; Rogério Barbosa Lima; Wanderley Dantas dos Santos; Anderson Ricardo Soares; Paulo Alfredo Feitoza Böhm; Rogério Marchiosi; Maria de Lourdes Lucio Ferrarese; Osvaldo Ferrarese-Filho

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean ( Glycine max ) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical in...

  2. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis

    OpenAIRE

    XIAN, SHU-LIN; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2014-01-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro. However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It wa...

  3. BlackBerry For Dummies

    CERN Document Server

    Kao, Robert

    2010-01-01

    Get the most juice out of your BlackBerry handheld!. Feature-rich and complex, the BlackBerry is the number one smartphone in the corporate world is among the most popular handhelds for business users. This new and updated edition includes all the latest and greatest information on new and current BlackBerry mobile devices. Covering a range of valuable how-to topics, this helpful guide explores the BlackBerry's most useful features, techniques for getting the most out of your BlackBerry, and practical information about power usage.: Covers all aspects of the number one smartphone in the corpor

  4. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  5. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  6. Inhibition of estrogen biosynthesis enhances lymphoma growth in mice

    Science.gov (United States)

    Talaber, Gergely; Yakimchuk, Konstantin; Guan, Jiyu; Inzunza, Jose; Okret, Sam

    2016-01-01

    Most lymphomas show higher incidence and poorer prognosis in males compared to females. However, the endocrine contribution to this gender difference is not entirely known. Here we show that castration accelerates lymphoma growth in C57BL6 male mice grafted with murine EG7 T cell lymphoma cells. However, the androgen receptor antagonist Bicalutamide did not affect lymphoma growth, suggesting no impact of androgen receptor signaling on lymphoma progression. In contrast, inhibition of androgen-to-estrogen conversion by the aromatase inhibitor (AI) Letrozole induced faster lymphoma growth in mice, suggesting that androgens impact lymphoma growth through its conversion to estrogens. This was supported by the inability of dihydrotestosterone, which is not converted to estrogens by aromatase, to influence lymphoma growth in castrated male mice. Lymphoma growth was also stimulated in immunocompromised mice grafted with human B cell lymphoma (Granta-519) and treated with either reversible or irreversible AIs, showing that the blockage of estrogen synthesis caused enhanced growth of both murine T and human B cell lymphomas and with different AIs. Additionally, AI-treated EG7 lymphomas showed accelerated growth not only in male but also in intact female mice. Altogether, our results demonstrate that aromatase inhibition accelerates lymphoma growth but not androgens per se, highlighting a protective role of estrogens in lymphoma pathogenesis. These results also raise concern that the use of AIs in women with breast cancer might enhance lymphoma progression. PMID:26943574

  7. GROWTH INHIBITION OF FUSARIUM SP. IN LIVESTOCK FEED

    Directory of Open Access Journals (Sweden)

    Gabriella Kanižai Šarić

    2011-12-01

    Full Text Available Contamination with phytopathogenic forms of Fusarium, besides field crops, may also occur in stored products. Addition of antifungal substances to stored livestock feed is therefore common. This paper examined the effectiveness of a mixture of synthetic and natural antioxidants against the growth of Fusarium graminearum and F. verticillioides in a concentrate mixture. The most effective inhibition of growth was achieved with a mixture of butylated hydroxyanisole, propyl paraben and thymol

  8. GROWTH INHIBITION OF FUSARIUM SP. IN LIVESTOCK FEED

    Directory of Open Access Journals (Sweden)

    Gabriella Kanižai Šarić

    2011-12-01

    Full Text Available Contamination with phytopathogenic forms of Fusarium, besides field crops, may also occur in stored products. Addition of antifungal substances to stored livestock feed is therefore common. This paper examined the effectiveness of a mixture of synthetic and natural antioxidants against the growth of Fusarium graminearum and F. verticillioides in a concentrate mixture. The most effective inhibition of growth was achieved with a mixture of butylated hydroxyanisole, propyl paraben and thymol.

  9. Recovery of Saccharomyces cerevisiae from ethanol-induced growth inhibition.

    OpenAIRE

    Walker-Caprioglio, H M; Rodriguez, R J; Parks, L. W.

    1985-01-01

    Ethanol caused altered mobility of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene in plasma membrane preparations of Saccharomyces cerevisiae. Because lipids had been shown to protect yeast cells against ethanol toxicity, sterols, fatty acids, proteins, and combinations of these were tested; however, protection from growth inhibition was not seen. Ethanol-induced, prolonged lag periods and diminished growth rates in S. cerevisiae were reduced by an autoconditioning of the medium by the in...

  10. Apicoplast-Targeting Antibacterials Inhibit the Growth of Babesia Parasites

    OpenAIRE

    AbouLaila, Mahmoud; Munkhjargal, Tserendorj; SIVAKUMAR, Thillaiampalam; Ueno, Akio; Nakano, Yuki; Yokoyama, Miki; Yoshinari, Takeshi; NAGANO, Daisuke; Katayama, Koji; El-Bahy, Nasr; Yokoyama, Naoaki; Igarashi, Ikuo

    2012-01-01

    The apicoplast housekeeping machinery, specifically apicoplast DNA replication, transcription, and translation, was targeted by ciprofloxacin, thiostrepton, and rifampin, respectively, in the in vitro cultures of four Babesia species. Furthermore, the in vivo effect of thiostrepton on the growth cycle of Babesia microti in BALB/c mice was evaluated. The drugs caused significant inhibition of growth from an initial parasitemia of 1% for Babesia bovis, with 50% inhibitory concentrations (IC50s)...

  11. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  12. Inhibition of placenta growth factor with TB-403

    DEFF Research Database (Denmark)

    Nielsen, Dorte Lisbet; Sengeløv, Lisa

    2012-01-01

    targeting angiogenesis. AREAS COVERED: The data are obtained by searching in the PubMed database. The search terms used included antiangiogenic therapy, TB-403 (RO5323441), placenta growth factor (PlGF) and VEGFR-1 (Flt-1). We review preclinical data concerning the function and inhibition of PlGF and...... summarize data on expression of PlGF in cancer patients. Data from early-phase clinical trials of TB-403 (RO5323441), a monoclonal antibody inhibiting PlGF, are discussed. Future development strategies, therapeutic potentials and limitations of TB-403 are further evaluated. EXPERT OPINION: There are some...... conflicting data on the function of PlGF and the importance of its role in primary tumor growth. Data from some preclinical models of PlGF inhibition and early-phase clinical trials with TB-403 are, however, promising, although the true potential of the drug is yet to be determined. Further clinical...

  13. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    Science.gov (United States)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  14. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth

    International Nuclear Information System (INIS)

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. - Engineered nanoparticles can inhibit the seed germination and root growth

  15. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth

    Energy Technology Data Exchange (ETDEWEB)

    Lin Daohui [Department of Environmental Science, Zhejiang University, Hangzhou 310028 (China); Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2007-11-15

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC{sub 50}) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. - Engineered nanoparticles can inhibit the seed germination and root growth.

  16. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    Science.gov (United States)

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d'Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201

  17. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development

    Directory of Open Access Journals (Sweden)

    Schlauch Karen A

    2007-11-01

    Full Text Available Abstract Background Grape berry development is a dynamic process that involves a complex series of molecular genetic and biochemical changes divided into three major phases. During initial berry growth (Phase I, berry size increases along a sigmoidal growth curve due to cell division and subsequent cell expansion, and organic acids (mainly malate and tartrate, tannins, and hydroxycinnamates accumulate to peak levels. The second major phase (Phase II is defined as a lag phase in which cell expansion ceases and sugars begin to accumulate. Véraison (the onset of ripening marks the beginning of the third major phase (Phase III in which berries undergo a second period of sigmoidal growth due to additional mesocarp cell expansion, accumulation of anthocyanin pigments for berry color, accumulation of volatile compounds for aroma, softening, peak accumulation of sugars (mainly glucose and fructose, and a decline in organic acid accumulation. In order to understand the transcriptional network responsible for controlling berry development, mRNA expression profiling was conducted on berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0 spanning seven stages of berry development from small pea size berries (E-L stages 31 to 33 as defined by the modified E-L system, through véraison (E-L stages 34 and 35, to mature berries (E-L stages 36 and 38. Selected metabolites were profiled in parallel with mRNA expression profiling to understand the effect of transcriptional regulatory processes on specific metabolite production that ultimately influence the organoleptic properties of wine. Results Over the course of berry development whole fruit tissues were found to express an average of 74.5% of probes represented on the Vitis microarray, which has 14,470 Unigenes. Approximately 60% of the expressed transcripts were differentially expressed between at least two out of the seven stages of berry

  18. Berry phase in lattice QCD

    CERN Document Server

    Yamamoto, Arata

    2016-01-01

    We propose the lattice QCD calculation of the Berry phase which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.

  19. Bioactive constituents in aronia berries

    OpenAIRE

    2014-01-01

    The aim of this thesis was to investigate some of the potential health benefits of aronia berries with main focus on the phenolic substances. Extractions and fractionations of aronia berries were performed to obtain several crude extracts and subfractions. In addition, well known constituents of aronia berries (anthocyanins, procyanidins and phenolic acids) were isolated. The different samples obtained were then tested in various in vitro bioassays to determine their biological activities as ...

  20. Crescimento de bagas de cultivares de uvas apirênicas tratadas com CPPU e GA3 Increase of the cultivars berry apirenic growth of seedless grapes treated with CPPU and GA3

    Directory of Open Access Journals (Sweden)

    Valtemir Gonçalves Ribeiro

    2003-12-01

    Full Text Available As cultivares de uvas apirênicas (Vitis vinifera L., via de regra, possuem bagas de tamanhos reduzidos, necessitando de ajustes no manejo para a melhoria da qualidade dos cachos, sendo a aplicação de reguladores de crescimento um dos tratamentos mais eficazes. Objetivou-se com o presente trabalho avaliar os efeitos do forchlorfenuron (CPPU: 0 e 10 mgL-1 combinado ao ácido giberélico (GA3: 0, 25, 50, 75 e 100 mgL-1 durante o primeiro ciclo de produção das cultivares Centennial Seedless, Flame Seedless e Thompson Seedless. As características avaliadas foram o comprimento, diâmetro e peso de bagas. Para a 'Centennial Seedless', maiores comprimentos, diâmetro e peso de bagas foram obtidos com 100 mgL-1 de GA3; e a concentração de 100 mgL-1 de GA3 adicionada a 10 mgL-1 de CPPU foi a mais responsiva para a 'Flame Seedless' e 'Thompson Seedless', observando-se atrasos na maturação, em termos de sólidos solúveis totais, para todas as cultivares.The Seedless grapes (Vitis vinifera L., have always decrease in berry size, requiring managements to increase cluster quality. The spray with growth regulators is one of most effective the treatment to enlarge berry size. The objective of this work was to determine the effects of Forchlorfenuron (CPPU: 0 e 10mgL-1 associated with Giberelic acid (GA3: 0, 25, 50, 75 e 100 mgL-1 during the first cycle of production of the cultivars Centennial Seedless, Flame Seedless and Thompson Seedless. The appraised characteristics were length, diameter and weight of berries. For Centennial Seedless, larger lengths, diameter and weight of berries were obtained with 100 mL-1 of GA3; and the concentration of 100 mL-1 of GA3 added to 10 mL-1 of CPPU was the most responsive for Flame and Thompson Seedless, being observed delays in maturation, in terms of total soluble solids, for all cultivars.

  1. Growth inhibition of Listeria monocytogenes by a nonbacteriocinogenic Carnobacterium piscicola

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Bech Hansen, T.; Garrido, P.;

    2005-01-01

    Aims: This study elucidates the mechanisms by which a nonbacteriocinogenic Carnobacterium piscicola inhibits growth of Listeria monocytogenes. Methods and Results: Listeria monocytogenes was exposed to live cultures of a bacteriocin-negative variant of C. piscicola A9b in co-culture, in a diffusion...... chamber system, and to a cell-free supernatant. Suppression of maximum cell density (0-3.5 log units) of L. monocytogenes was proportional to initial levels of C. pisciola (10(3)-10(7) CFU ml(-1)). Cell-to-cell contact was not required to cause inhibition. The cell-free C. piscicola supernatant caused a...... decrease in L. monocytogenes maximum cell density, which was abolished by glucose addition but not by amino acid, vitamin or mineral addition. The fermentate also gave rise to a longer lag phase and a reduction in growth rate. These effects were independent of glucose and may have been caused by acetate...

  2. Green tea inhibits Helicobacter growth in vivo and in vitro

    OpenAIRE

    Stoicov, Calin; Saffari, Reza; Houghton, JeanMarie

    2009-01-01

    Helicobacter infection, one of the most common bacterial infections in man worldwide, is a type 1 carcinogen and the most important risk factor for gastric cancer. Helicobacter pylori bacterial factors, components of the host genetics and immune response, dietary cofactors and decreased acid secretion resulting in bacterial overgrowth are all considered important factors for induction of gastric cancer. Components found in green tea have been shown to inhibit bacterial growth, including the g...

  3. Growth of Streptococcus mutans protoplasts is not inhibited by penicillin.

    Science.gov (United States)

    Parks, L C; Shockman, G D; Higgins, M L

    1980-01-01

    A method is described in which cells of Streptococcus mutans BHT can be converted to spherical, osmotically fragile protoplasts. Exponential-phase cells were suspended in a solution containing 0.5 M melezitose, and their cell walls were hydrolyzed with mutanolysin (M-1 enzyme). When the resultant protoplasts were incubated in a chemically defined growth medium containing 0.5 M NH4Cl, the protoplast suspensions increased in turbidity, protein, ribonucleic acid, and deoxyribonucleic acid in a balanced fashion. In the presence of benzylpenicillin (5 microgram/ml), balanced growth of protoplasts was indistinguishable from untreated controls. This absence of inhibition of protoplast growth in the presence of benzylpenicillin was apparently not due to inactivation of the antibiotic. When exponential-phase cells of S. mutans BHT were first exposed to 5 microgram of benzyl-penicillin per ml for 1 h and then converted to protoplasts, these protoplasts were also able to grow in chemically defined, osmotically stabilized medium. The ability of wall-free protoplasts to grow and to synthesize ribonucleic acid and protein in the presence of a relatively high concentration of benzylpenicillin contrasts with the previously reported rapid inhibition of ribonucleic acid and protein synthesis in intact streptococci. These data suggest that this secondary inhibition of ribonucleic acid and protein synthesis in whole cells is due to factors involved with the continued assembly of an intact, insoluble cell wall rather than with earlier stages of peptidoglycan synthesis. Images PMID:6997274

  4. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro.

    Science.gov (United States)

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A

    2016-03-15

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. PMID:26876617

  5. Berry Fermi Liquid Theory

    CERN Document Server

    Chen, Jing-Yuan

    2016-01-01

    We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current-current correlator exactly matches with the result obtained from the kinetic theory.

  6. FH535 inhibited metastasis and growth of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wu MY

    2015-07-01

    Full Text Available Meng-Yao Wu,1,* Rong-Rui Liang,1,* Kai Chen,1 Meng Shen,1 Ya-Li Tian,1,2 Dao-Ming Li,1 Wei-Ming Duan,1 Qi Gui,1 Fei-Ran Gong,3 Lian Lian,1,2 Wei Li,1,6 Min Tao1,4–61Department of Oncology, The First Affiliated Hospital of Soochow University, 2Department of Oncology, Suzhou Xiangcheng People’s Hospital, 3Department of Hematology, The First Affiliated Hospital of Soochow University, 4Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 5Institute of Medical Biotechnology, Soochow University, Suzhou, 6PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, People’s Republic of China*These authors contributed equally to this workAbstract: FH535 is a small-molecule inhibitor of the Wnt/β-catenin signaling pathway, which a substantial body of evidence has proven is activated in various cancers, including pancreatic cancer. Activation of the Wnt/β-catenin pathway plays an important role in tumor progression and metastasis. We investigated the inhibitory effect of FH535 on the metastasis and growth of pancreatic cancer cells. Western blotting and luciferase reporter gene assay indicated that FH535 markedly inhibited Wnt/β-catenin pathway viability in pancreatic cancer cells. In vitro wound healing, invasion, and adhesion assays revealed that FH535 significantly inhibited pancreatic cancer cell metastasis. We also observed the inhibitory effect of FH535 on pancreatic cancer cell growth via the tetrazolium and plate clone formation assays. Microarray analyses suggested that changes in the expression of multiple genes could be involved in the anti-cancer effect of FH535 on pancreatic cancer cells. Our results indicate for the first time that FH535 inhibits pancreatic cancer cell metastasis and growth, providing new insight into therapy of pancreatic cancer.Keywords: pancreatic cancer, FH535, β-catenin, metastasis, growth

  7. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    Science.gov (United States)

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  8. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth.

    Science.gov (United States)

    Harel, Sivan; Higgins, Claire A; Cerise, Jane E; Dai, Zhenpeng; Chen, James C; Clynes, Raphael; Christiano, Angela M

    2015-10-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells. PMID:26601320

  9. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth

    Science.gov (United States)

    Wang, Jin Dao; Chen, Xiao Ying; Ji, Ke Wei; Tao, Feng

    2016-01-01

    Bruton’s tyrosine kinase (Btk) is a member of the Tec-family non-receptor tyrosine kinases family. It has previously been reported to be expressed in B cells and has an important role in B-cell malignancies. While the roles of Btk in the pathogenesis of certain B-cell malignancies are well established, the functions of Btk in gastric carcinoma have never been investigated. Herein, we found that Btk is over-expressed in gastric carcinoma tissues and gastric cancer cells. Knockdown of Btk expression selectively inhibits the growth of gastric cancer cells, but not that of the normal gastric mucosa epithelial cell, which express very little Btk. Inhibition of Btk by its inhibitor ibrutinib has an additive inhibitory effect on gastric cancer cell growth. Treatment of gastric cancer cells, but not immortalized breast epithelial cells with ibrutinib results in effective cell killing, accompanied by the attenuation of Btk signals. Ibrutinib also induces apoptosis in gastric carcinoma cells as well as is a chemo-sensitizer for docetaxel (DTX), a standard of care for gastric carcinoma patients. Finally, ibrutinib markedly reduces tumor growth and increases tumor cell apoptosis in the tumors formed in mice inoculated with the gastric carcinoma cells. Given these promising preclinical results for ibrutinib in gastric carcinoma, a strategy combining Btk inhibitor warrants attention in gastric cancer. PMID:27508020

  10. Prolonged cyclic strain inhibits human endothelial cell growth.

    Science.gov (United States)

    Peyton, Kelly J; Liu, Xiao-ming; Durante, William

    2016-01-01

    The vascular endothelium is continuously exposed to cyclic mechanical strain due to the periodic change in vessel diameter as a result of pulsatile blood flow. Since emerging evidence indicates the cyclic strain plays an integral role in regulating endothelial cell function, the present study determined whether application of a physiologic regimen of cyclic strain (6% at 1 hertz) influences the proliferation of human arterial endothelial cells. Prolonged exposure of human dermal microvascular or human aortic endothelial cells to cyclic strain for up to 7 days resulted in a marked decrease in cell growth. The strain-mediated anti-proliferative effect was associated with the arrest of endothelial cells in the G2/M phase of the cell cycle, did not involve cell detachment or cytotoxicity, and was due to the induction of p21. Interestingly, the inhibition in endothelial cell growth was independent of the strain regimen since prolonged application of constant or intermittent 6% strain was also able to block endothelial cell proliferation. The ability of chronic physiologic cyclic strain to inhibit endothelial cell growth represents a previously unrecognized mechanism by which hemodynamic forces maintain these cells in a quiescent, non-proliferative state. PMID:26709656

  11. Meloxicam inhibits the growth of colorectal cancer cells.

    Science.gov (United States)

    Goldman, A P; Williams, C S; Sheng, H; Lamps, L W; Williams, V P; Pairet, M; Morrow, J D; DuBois, R N

    1998-12-01

    Cyclooxygenase-2 has been reported to play an important role in colorectal carcinogenesis. The effects of meloxicam (a COX-2 inhibitor) on the growth of two colon cancer cell lines that express COX-2 (HCA-7 and Moser-S) and a COX-2 negative cell line (HCT-116) were evaluated. The growth rate of these cells was measured following treatment with meloxicam. HCA-7 and Moser-S colony size were significantly reduced following treatment with meloxicam; however, there was no significant change in HCT-116 colony size with treatment. In vivo studies were performed to evaluate the effect of meloxicam on the growth of HCA-7 cells when xenografted into nude mice. We observed a 51% reduction in tumor size after 4 weeks of treatment. Analysis of COX-1 and COX-2 protein levels in HCA-7 tumor lysates revealed a slight decrease in COX-2 expression levels in tumors taken from mice treated with meloxicam and no detectable COX-1 expression. Here we report that meloxicam significantly inhibited HCA-7 colony and tumor growth but had no effect on the growth of the COX-2 negative HCT-116 cells. PMID:9886578

  12. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    Science.gov (United States)

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production. PMID:27053756

  13. Inhibition of somatotroph growth and growth hormone biosynthesis by activin in vitro

    DEFF Research Database (Denmark)

    Billestrup, Nils; González-Manchón, C; Potter, E; Vale, W

    1990-01-01

    effect of activin on FSH secretion, did not reverse the effect of activin on GH biosynthesis. Treatment of somatotrophs with activin for 3 days completely inhibited the growth-promoting effect of GRF on somatotrophs. However, no effect of activin on GRF-stimulated expression of the c-fos protooncogene...

  14. Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway.

    Science.gov (United States)

    Zheng, Jie; Son, Dong Ju; Gu, Sun Mi; Woo, Ju Rang; Ham, Young Wan; Lee, Hee Pom; Kim, Wun Jae; Jung, Jae Kyung; Hong, Jin Tae

    2016-01-01

    Piperlongumine has anti-cancer activity in numerous cancer cell lines via various signaling pathways. But there has been no study regarding the mechanisms of PL on the lung cancer yet. Thus, we evaluated the anti-cancer effects and possible mechanisms of PL on non-small cell lung cancer (NSCLC) cells in vivo and in vitro. Our findings showed that PL induced apoptotic cell death and suppressed the DNA binding activity of NF-κB in a concentration dependent manner (0-15 μM) in NSCLC cells. Docking model and pull down assay showed that PL directly binds to the DNA binding site of nuclear factor-κB (NF-κB) p50 subunit, and surface plasmon resonance (SPR) analysis showed that PL binds to p50 concentration-dependently. Moreover, co-treatment of PL with NF-κB inhibitor phenylarsine oxide (0.1 μM) or p50 siRNA (100 nM) augmented PL-induced inhibitory effect on cell growth and activation of Fas and DR4. Notably, co-treatment of PL with p50 mutant plasmid (C62S) partially abolished PL-induced cell growth inhibition and decreased the enhanced expression of Fas and DR4. In xenograft mice model, PL (2.5-5 mg/kg) suppressed tumor growth of NSCLC dose-dependently. Therefore, these results indicated that PL could inhibit lung cancer cell growth via inhibition of NF-κB signaling pathway in vitro and in vivo. PMID:27198178

  15. Qubit rotation and Berry phase

    International Nuclear Information System (INIS)

    A quantized fermion is represented by a scalar particle encircling a magnetic flux line. It has the spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubits inserting spin-echo to one of them results the trapped Berry phase to measure entanglement. Some effort is given to study the effect of noise on the Berry phase of spinors and their entangled states. (author)

  16. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    International Nuclear Information System (INIS)

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies. (paper)

  17. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    Science.gov (United States)

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  18. Hypernegative Supercoiling Inhibits Growth by Causing RNA Degradation▿

    Science.gov (United States)

    Baaklini, Imad; Usongo, Valentine; Nolent, Flora; Sanscartier, Patrick; Hraiky, Chadi; Drlica, Karl; Drolet, Marc

    2008-01-01

    Transcription-induced hypernegative supercoiling is a hallmark of Escherichia coli topoisomerase I (topA) mutants. However, its physiological significance has remained unclear. Temperature downshift of a mutant yielded transient growth arrest and a parallel increase in hypernegative supercoiling that was more severe with lower temperature. Both properties were alleviated by overexpression of RNase HI. While ribosomes in extracts showed normal activity when obtained during growth arrest, mRNA on ribosomes was reduced for fis and shorter for crp, polysomes were much less abundant relative to monosomes, and protein synthesis rate dropped, as did the ratio of large to small proteins. Altered processing and degradation of lacA and fis mRNA was also observed. These data are consistent with truncation of mRNA during growth arrest. These effects were not affected by a mutation in the gene encoding RNase E, indicating that this endonuclease is not involved in the abnormal mRNA processing. They were also unaffected by spectinomycin, an inhibitor of protein synthesis, which argued against induction of RNase activity. In vitro transcription revealed that R-loop formation is more extensive on hypernegatively supercoiled templates. These results allow us, for the first time, to present a model by which hypernegative supercoiling inhibits growth. In this model, the introduction of hypernegative supercoiling by gyrase facilitates degradation of nascent RNA; overproduction of RNase HI limits the accumulation of hypernegative supercoiling, thereby preventing extensive RNA degradation. PMID:18790862

  19. Hypernegative supercoiling inhibits growth by causing RNA degradation.

    Science.gov (United States)

    Baaklini, Imad; Usongo, Valentine; Nolent, Flora; Sanscartier, Patrick; Hraiky, Chadi; Drlica, Karl; Drolet, Marc

    2008-11-01

    Transcription-induced hypernegative supercoiling is a hallmark of Escherichia coli topoisomerase I (topA) mutants. However, its physiological significance has remained unclear. Temperature downshift of a mutant yielded transient growth arrest and a parallel increase in hypernegative supercoiling that was more severe with lower temperature. Both properties were alleviated by overexpression of RNase HI. While ribosomes in extracts showed normal activity when obtained during growth arrest, mRNA on ribosomes was reduced for fis and shorter for crp, polysomes were much less abundant relative to monosomes, and protein synthesis rate dropped, as did the ratio of large to small proteins. Altered processing and degradation of lacA and fis mRNA was also observed. These data are consistent with truncation of mRNA during growth arrest. These effects were not affected by a mutation in the gene encoding RNase E, indicating that this endonuclease is not involved in the abnormal mRNA processing. They were also unaffected by spectinomycin, an inhibitor of protein synthesis, which argued against induction of RNase activity. In vitro transcription revealed that R-loop formation is more extensive on hypernegatively supercoiled templates. These results allow us, for the first time, to present a model by which hypernegative supercoiling inhibits growth. In this model, the introduction of hypernegative supercoiling by gyrase facilitates degradation of nascent RNA; overproduction of RNase HI limits the accumulation of hypernegative supercoiling, thereby preventing extensive RNA degradation. PMID:18790862

  20. Cinnamic acid increases lignin production and inhibits soybean root growth.

    Directory of Open Access Journals (Sweden)

    Victor Hugo Salvador

    Full Text Available Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA oxidase and cinnamate 4-hydroxylase (C4H activities and lignin monomer composition in soybean (Glycine max roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H, guaiacyl (G, and syringyl (S lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  1. Effect of pullulan coating on inhibition of chosen microorganisms’ growth

    Directory of Open Access Journals (Sweden)

    Anna Chlebowska-Śmigiel

    2009-09-01

    Full Text Available Background. Pullulan is a water-soluble polysaccharide produced by fungi Aureobasidium pullulans. This glucan was applied for coating of food products. The aim of this study was obtaining of a pullulan coating and checking its effect on growth of microorganisms responsible for spoilage of food. Materials and methods. Pullulan produced by the white mutant A. pullulans B-1 was applied. Permeability of oxygen and carbon dioxide through film produced from 10% water solution of pullulan was checked as well as degree of inhibition of chosen microorganisms through pullulan coating formed on surface of growth’s media. Results. Low permeability of gases through pullulan film and a considerable growth’s limitation of all tested microorganisms were found. A total growth’s inhibition of 21 from 36 tested strains and a partial growth’s limitation of the remaining 15 strains was observed. The inhibitory effect was diverse and it was from 63 to 100%. Conclusions. These results proved that pullulan coating applied in these tests revealed big barrier characteristics in relation to oxygen and carbon dioxide, which had effect upon growth’s inhibition of most of the tested microorganisms, responsible for spoilage of food.

  2. Inhibition of fungal growth with extreme low oxygen levels

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Haasum, Iben

    1998-01-01

    Fungal spoilage of foods is effectively controlled by removal of oxygen from the package, especially if this is combined with elevated carbon dioxide (CO2) levels. However, great uncertainty exist on just how low the residual oxygen levels in the package must be especially when carbon dioxide...... contaminants of a wide range of products, and to determine the limit of growthFungi isolated from a wide range of products were incubated for up to three weeks at 25oC , 90% relative humidity at 1.0, 0.5, 0.25, 0.1, and 0.05% oxygen respectively in a custom made incubator with an interlock system for...... Penicillia and Aspergilli were also inhibited by oxygen levels less than 0.5%, but less than 0.01% was required to efficiently inhibit these fungi. Most resistant to very low oxygen levels was the Fusarium species.These results shows that very low oxygen levels are required to avoid fungal growth in package...

  3. Mirtazapine inhibits tumor growth via immune response and serotonergic system.

    Directory of Open Access Journals (Sweden)

    Chun-Kai Fang

    Full Text Available To study the tumor inhibition effect of mirtazapine, a drug for patients with depression, CT26/luc colon carcinoma-bearing animal model was used. BALB/c mice were randomly divided into six groups: two groups without tumors, i.e. wild-type (no drug and drug (mirtazapine, and four groups with tumors, i.e. never (no drug, always (pre-drug, i.e. drug treatment before tumor inoculation and throughout the experiment, concurrent (simultaneously tumor inoculation and drug treatment throughout the experiment, and after (post-drug, i.e. drug treatment after tumor inoculation and throughout the experiment. The "psychiatric" conditions of mice were observed from the immobility time with tail suspension and spontaneous motor activity post tumor inoculation. Significant increase of serum interleukin-12 (sIL-12 and the inhibition of tumor growth were found in mirtazapine-treated mice (always, concurrent, and after as compared with that of never. In addition, interferon-γ level and immunocompetent infiltrating CD4+/CD8+ T cells in the tumors of mirtazapine-treated, tumor-bearing mice were significantly higher as compared with that of never. Tumor necrosis factor-α (TNF-α expressions, on the contrary, are decreased in the mirtazapine-treated, tumor-bearing mice as compared with that of never. Ex vivo autoradiography with [(123I]ADAM, a radiopharmaceutical for serotonin transporter, also confirms the similar results. Notably, better survival rates and intervals were also found in mirtazapine-treated mice. These findings, however, were not observed in the immunodeficient mice. Our results suggest that tumor growth inhibition by mirtazapine in CT26/luc colon carcinoma-bearing mice may be due to the alteration of the tumor microenvironment, which involves the activation of the immune response and the recovery of serotonin level.

  4. Specificity of growth inhibition of melanoma by 4-hydroxyanisole

    International Nuclear Information System (INIS)

    An experimental study using human melanoma (NEL-MI), rat hepatoma (Fu5-5), and human kidney (293-31) cell lines was undertaken in order to evaluate the antitumor activity of 4-hydroxyanisole (4-OHA) in vitro. Prior reports have indicated highly specific antitumor activity of 4-OHA against melanoma cells in vitro. This specific antitumor activity has been proposed to be due to the oxidation of 4-OHA by tyrosinase to cytotoxic oxidation products. Dose-dependent cytotoxicity was observed when cells were cultured for 72 h in the presence of 4-OHA. At 100 microM, 4-OHA produced growth inhibition of 62%, 32%, and 55% in melanoma, hepatoma, and kidney cell lines, respectively. No effect was seen at 10 microM 4-OHA. 1,000 microM 4-OHA produced 100% kill. Tyrosinase activity was detected only in melanoma cells. The effect of 100 microM 4-OHA on the incorporation of 3H DNA precursors in melanoma, hepatoma, and kidney cells was also studied. Thymidine incorporation was inhibited in all three cell lines at the lowest cell density tested, with the greatest inhibition seen on melanoma cells. As cell density increased, the effect of 4-OHA on thymidine incorporation decreased. With respect to RNA synthesis, 4-OHA significantly reduced the incorporation of uridine in all three cell lines, with the greatest effect in melanoma cells. Cell density also affected the inhibition of uridine incorporation, but to a lesser extent than that observed on thymidine incorporation. The effect of 4-OHA on leucine incorporation was modest and uninfluenced by cell density. Thus, cytotoxicity of 4-OHA may involve two different mechanisms

  5. Berry's Phase in Noncommutative Spaces

    Institute of Scientific and Technical Information of China (English)

    S. A. Alavi

    2003-01-01

    We discuss the perturbative aspects of noncommutative quantum mechanics. Then we study Berry's phase within the framework of noncommutative quantum mechanics. The results show deviations from the usual quantum mechanics, which depend on the parameter of space/space noncommutativity.

  6. Roy Fuentes: Fuentes Berry Farms

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    As president of Fuentes Berry Farms, Rogelio (Roy) Fuentes is one of many independent growers producing organic berries for Driscoll’s—a company that was initiated more than a century ago by two strawberry farmers on California’s Central Coast, and has since evolved into an international concern devoted to research, breeding, production, sales and distribution of conventionally and organically farmed strawberries, raspberries, blackberries and blueberries. Driscoll’s CEO Miles Reiter and his ...

  7. Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of STAT3 signaling pathway.

    Science.gov (United States)

    Cai, Qiaoyan; Lin, Jiumao; Wei, Lihui; Zhang, Ling; Wang, Lili; Zhan, Youzhi; Zeng, Jianwei; Xu, Wei; Shen, Aling; Hong, Zhenfeng; Peng, Jun

    2012-01-01

    Signal Transducer and Activator of Transcription 3 (STAT3), a common oncogenic mediator, is constitutively activated in many types of human cancers; therefore it is a major focus in the development of novel anti-cancer agents. Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC). However, the precise mechanism of its anti-tumor activity remains largely unclear. Using a CRC mouse xenograft model, in the present study we evaluated the effect of the ethanol extract of Hedyotis diffusa Willd (EEHDW) on tumor growth in vivo and investigated the underlying molecular mechanisms. We found that EEHDW reduced tumor volume and tumor weight, but had no effect on body weight gain in CRC mice, demonstrating that EEHDW can inhibit CRC growth in vivo without apparent adverse effect. In addition, EEHDW treatment suppressed STAT3 phosphorylation in tumor tissues, which in turn resulted in the promotion of cancer cell apoptosis and inhibition of proliferation. Moreover, EEHDW treatment altered the expression pattern of several important target genes of the STAT3 signaling pathway, i.e., decreased expression of Cyclin D1, CDK4 and Bcl-2 as well as up-regulated p21 and Bax. These results suggest that suppression of the STAT3 pathway might be one of the mechanisms by which EEHDW treats colorectal cancer. PMID:22754353

  8. Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth.

    Science.gov (United States)

    Carletto, Bruna; Berton, Juliana; Ferreira, Tamara Nascimento; Dalmolin, Luciana Facco; Paludo, Katia Sabrina; Mainardes, Rubiana Mara; Farago, Paulo Vitor; Favero, Giovani Marino

    2016-08-01

    In this study, resveratrol-loaded nanocapsules were developed and its antitumor activity tested on a melanoma mice model. These nanocapsules were spherically-shaped and presented suitable size, negative charge and high encapsulation efficiency for their use as a modified-release system of resveratrol. Nanoencapsulation leads to the drug amorphization. Resveratrol-loaded nanoparticles reduced cell viability of murine melanoma cells. There was a decrease in tumor volume, an increase in the necrotic area and inflammatory infiltrate of melanoma when resveratrol-loaded nanocapsules were compared to free resveratrol in treated mice. Nanoencapsulation of resveratrol also prevented metastasis and pulmonary hemorrhage. This modified-release technology containing resveratrol can be used as a feasible approach in order to inhibit murine melanoma tumor growth. PMID:27070053

  9. Inhibition of microbial growth on chitosan membranes by plasma treatment.

    Science.gov (United States)

    de Oliveira Cardoso Macêdo, Marina; de Macêdo, Haroldo Reis Alves; Gomes, Dayanne Lopes; de Freitas Daudt, Natália; Rocha, Hugo Alexandre Oliveira; Alves, Clodomiro

    2013-11-01

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site, and it also affects the bulk properties of the polymers. The use of gas plasma is an elegant alternative sterilization technique. The plasma promotes efficient inactivation of the microorganisms, minimizes damage to the materials, and presents very little danger for personnel and the environment. In this study we used plasma for microbial inhibition of chitosan membranes. The membranes were treated with oxygen, methane, or argon plasma for different time periods (15, 30, 45, or 60 min). For inhibition of microbial growth with oxygen plasma, the time needed was 60 min. For the methane plasma, samples were successfully treated after 30, 45, and 60 min. For argon plasma, all treatment periods were effective. PMID:24251774

  10. Mullerian Inhibiting Substance inhibits cervical cancer cell growth via a pathway involving p130 and p107

    OpenAIRE

    Barbie, Thanh U.; Barbie, David A; MacLaughlin, David T.; Maheswaran, Shyamala; Donahoe, Patricia K.

    2003-01-01

    In addition to causing regression of the Mullerian duct in the male embryo, Mullerian Inhibiting Substance (MIS) inhibits the growth of epithelial ovarian cancer cells, which are known to be of Mullerian origin. Because the uterine cervix is derived from the same Mullerian duct precursor as the epithelium of the ovary, we tested the hypothesis that cervical cancer cells might also respond to MIS. A number of cervical cancer cell lines express the MIS type II receptor, and MIS inhibits the gro...

  11. Positional Isomers of Aspirin Are Equally Potent in Inhibiting Colon Cancer Cell Growth: Differences in Mode of Cyclooxygenase Inhibition

    OpenAIRE

    Kodela, Ravinder; Chattopadhyay, Mitali; Goswami, Satindra; Gan, Zong Yuan; Rao, Praveen P.N.; Nia, Kamran V.; Velázquez-Martínez, Carlos A.; Kashfi, Khosrow

    2013-01-01

    We compared the differential effects of positional isomers of acetylsalicylic acid (o-ASA, m-ASA, and p-ASA) on cyclooxygenase (COX) inhibition, gastric prostaglandin E2 (PGE2), malondialdehyde, tumor necrosis factor-alpha (TNF-α) levels, superoxide dismutase (SOD) activity, human adenocarcinoma colon cancer cell growth inhibition, cell proliferation, apoptosis, and cell-cycle progression. We also evaluated the gastric toxicity exerted by ASA isomers. All ASA isomers inhibit COX enzymes, but ...

  12. Substrate inhibition in Pseudomonas oxalaticus OX1 : a kinetic study of growth inhibition by oxalate and formate using extended cultures

    NARCIS (Netherlands)

    Dijkhuizen, L.; Harder, W.

    1975-01-01

    Pseudomonas oxalaticus OX1 has been grown in a mineral salts medium with oxalate or formate as the sole source of carbon and energy. At concentrations of these substrates above 50 mM inhibition of growth was indicated by a long and variable lag phase in batch culture. This inhibition was further stu

  13. Use of diffusion magnetic resonance imaging to correlate the developmental changes in grape berry tissue structure with water diffusion patterns

    OpenAIRE

    Dean, Ryan J.; Stait-Gardner, Timothy; Clarke, Simon J.; Rogiers, Suzy Y.; Bobek, Gabriele; Price, William S

    2014-01-01

    Background Over the course of grape berry development, the tissues of the berry undergo numerous morphological transformations in response to processes such as water and solute accumulation and cell division, growth and senescence. These transformations are expected to produce changes to the diffusion of water through these tissues detectable using diffusion magnetic resonance imaging (MRI). To assess this non-invasive technique diffusion was examined over the course of grape berry developmen...

  14. Growth inhibition of Streptococcus mutans by cellular extracts of human intestinal lactic acid bacteria.

    OpenAIRE

    Ishihara, K; Miyakawa, H; Hasegawa, A.; Takazoe, I; Kawai, Y.

    1985-01-01

    The in vitro growth of Streptococcus mutans was completely inhibited by water-soluble extracts from cells of various intestinal lactic acid bacteria identified as Streptococcus faecium, Streptococcus equinus, Lactobacillus fermentum, and Lactobacillus salivarius. The growth inhibition was dependent on the concentrations of the extracts. In contrast, the extracts did not inhibit the growth of the major indigenous intestinal lactic acid bacteria isolated from humans. These lactic acid bacteria ...

  15. Aplicação de bioestimulante nas características ampelométricas da infrutescência da videira 'Tieta' Effect of plant growth regulators application on the cluster and berry morphological characteristics of 'Tieta' grapes

    Directory of Open Access Journals (Sweden)

    Marco Antonio Tecchio

    2005-08-01

    Full Text Available O ensaio foi conduzido em 2003, em vinhedo de 'Tieta'. O objetivo foi avaliar o efeito de bioestimulante nas características dos cachos de uva. Foi aplicado o produto Stimulate® que contém em sua fórmula 0,09g L-1 de cinetina (citocinina, 0,05g L-1 de ácido giberélico (giberelina e 0,05mg L-1 de ácido indolbutírico (auxina. Os tratamentos consistiram na imersão dos cachos, 15 dias após o florescimento, em solução aquosa de 0,5% do adjuvante Natura'l Óleo, acrescidos de 5 doses de Stimulate®: 0; 28; 56; 84 e 112 ml L-1. Analisaram-se o comprimento, a largura e o peso dos cachos, bagos e engaço e o diâmetro do pedicelo. O delineamento estatístico foi em blocos ao acaso, com cinco repetições. Concluiu-se que a maior massa fresca dos cachos foi obtida em função do aumento do número de bagos fixados na ráquis e da massa do engaço. O Stimulate® associado ao Natura'l Óleo provocou o aparecimento de manchas marrons nos bagos e depreciando na qualidade, diminuiu o tamanho dos bagos e atrasou a maturação dos frutos.The trial was carried out in 2003 in a vineyard of 'Tieta'. The objective was to evaluat the effects of plant growth regulator application on the cluster characteristics. The growth regulator used was the Stimulate witch consists in a mix of 0.09g L-1 of kinetin (cytokinin, 0.05g L-1 gibberellic acid (gibberellin e 0.05mg L-1 of indolbutiric acid (auxin. The treatments consisted of the cluster dipping, fifteen days after bloom, in an aqueous solution containing 0.5% of the surfactant Natura'l Óleo, added five dosis of Stimulate®: 0, 28, 56, 84 e 112ml L-1. The width, length and mass of clusters, berries and rachis, and pedicel diameter were evaluated. The experimental design used was completely randomized blocks. The results showed that the mass of the cluster occurred by the increased of the number of berries per cluster and the mass of the rachis. The Stimulate® associated to the Natura'l Oil produced brown

  16. Combined MET inhibition and topoisomerase I inhibition block cell growth of small cell lung cancer.

    Science.gov (United States)

    Rolle, Cleo E; Kanteti, Rajani; Surati, Mosmi; Nandi, Suvobroto; Dhanasingh, Immanuel; Yala, Soheil; Tretiakova, Maria; Arif, Qudsia; Hembrough, Todd; Brand, Toni M; Wheeler, Deric L; Husain, Aliya N; Vokes, Everett E; Bharti, Ajit; Salgia, Ravi

    2014-03-01

    Small cell lung cancer (SCLC) is a devastating disease, and current therapies have not greatly improved the 5-year survival rates. Topoisomerase (Top) inhibition is a treatment modality for SCLC; however, the response is short lived. Consequently, our research has focused on improving SCLC therapeutics through the identification of novel targets. Previously, we identified MNNG HOS transforming gene (MET) to be overexpressed and functional in SCLC. Herein, we investigated the therapeutic potential of combinatorial targeting of MET using SU11274 and Top1 using 7-ethyl-10-hydroxycamptothecin (SN-38). MET and TOP1 gene copy numbers and protein expression were determined in 29 patients with limited (n = 11) and extensive (n = 18) disease. MET gene copy number was significantly increased (>6 copies) in extensive disease compared with limited disease (P = 0.015). Similar TOP1 gene copy numbers were detected in limited and extensive disease. Immunohistochemical staining revealed a significantly higher Top1 nuclear expression in extensive (0.93) versus limited (0.15) disease (P = 0.04). Interestingly, a significant positive correlation was detected between MET gene copy number and Top1 nuclear expression (r = 0.5). In vitro stimulation of H82 cells revealed hepatocyte growth factor (HGF)-induced nuclear colocalization of p-MET and Top1. Furthermore, activation of the HGF/MET axis enhanced Top1 activity, which was abrogated by SU11274. Combination of SN-38 with SU11274 dramatically decreased SCLC growth as compared with either drug alone. Collectively, these findings suggest that the combinatorial inhibition of MET and Top1 is a potentially efficacious treatment strategy for SCLC. PMID:24327519

  17. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    Science.gov (United States)

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  18. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    Science.gov (United States)

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  19. Dll4 Inhibition plus Aflibercept Markedly Reduces Ovarian Tumor Growth.

    Science.gov (United States)

    Huang, Jie; Hu, Wei; Hu, Limin; Previs, Rebecca A; Dalton, Heather J; Yang, Xiao-Yun; Sun, Yunjie; McGuire, Michael; Rupaimoole, Rajesha; Nagaraja, Archana S; Kang, Yu; Liu, Tao; Nick, Alpa M; Jennings, Nicholas B; Coleman, Robert L; Jaffe, Robert B; Sood, Anil K

    2016-06-01

    Delta-like ligand 4 (Dll4), one of the Notch ligands, is overexpressed in ovarian cancer, especially in tumors resistant to anti-VEGF therapy. Here, we examined the biologic effects of dual anti-Dll4 and anti-VEGF therapy in ovarian cancer models. Using Dll4-Fc blockade and anti-Dll4 antibodies (murine REGN1035 and human REGN421), we evaluated the biologic effects of Dll4 inhibition combined with aflibercept or chemotherapy in orthotopic mouse models of ovarian cancer. We also examined potential mechanisms by which dual Dll4 and VEGF targeting inhibit tumor growth using immunohistochemical staining for apoptosis and proliferation markers. Reverse-phase protein arrays were used to identify potential downstream targets of Dll4 blockade. Dual targeting of VEGF and Dll4 with murine REGN1035 showed superior antitumor effects in ovarian cancer models compared with either monotherapy. In the A2780 model, REGN1035 (targets murine Dll4) or REGN421 (targets human Dll4) reduced tumor weights by 62% and 82%, respectively; aflibercept alone reduced tumor weights by 90%. Greater therapeutic effects were observed for Dll4 blockade (REGN1035) combined with either aflibercept or docetaxel (P GATA3 expression was significantly increased in tumor stroma from the mice treated with REGN1035 combined with docetaxel or aflibercept, suggesting an indirect effect of these combination treatments on the tumor stroma. These findings identify that dual targeting of Dll4 and VEGF is an attractive therapeutic approach. Mol Cancer Ther; 15(6); 1344-52. ©2016 AACR. PMID:27009216

  20. Hematein, a casein kinase II inhibitor, inhibits lung cancer tumor growth in a murine xenograft model

    OpenAIRE

    Hung, Ming-Szu; Xu, Zhidong; Chen, Yu; Smith, Emmanuel; Mao, Jian-Hua; Hsieh, David; Lin, Yu-Ching; Yang, Cheng-Ta; Jablons, David M.; You, Liang

    2013-01-01

    Casein kinase II (CK2) inhibitors suppress cancer cell growth. In this study, we examined the inhibitory effects of a novel CK2 inhibitor, hematein, on tumor growth in a murine xenograft model. We found that in lung cancer cells, hematein inhibited cancer cell growth, Akt/PKB Ser129 phosphorylation, the Wnt/TCF pathway and increased apoptosis. In a murine xenograft model of lung cancer, hematein inhibited tumor growth without significant toxicity to the mice tested. Molecular docking showed t...

  1. ENDOGENAL COLONIZATION OF GRAPES BERRIES

    OpenAIRE

    Dana Tančinová; Ľubomír Rybárik; Zuzana Mašková; Soňa Felšöciová; Miroslava Císarová

    2015-01-01

    The aim of study was to detect the microscopic filamentous fungi from wine surface of sterilized grapes berries of Slovak origin. We analyzed 21 samples of grapes, harvested in the year 2012 of various wine-growing regions. For the isolation of species we used the method of direct plating surface-sterilized berries (using 0.4% freshly pre-pared chlorine) on DRBC (Dichloran Rose Bengal Chloramphenicol agar). The cultivation was carried at 25±1°C, for 5 to 7 days. A total number of 2541 fungal ...

  2. Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice.

    Science.gov (United States)

    Cordoba-Chacon, Jose; Majumdar, Neena; List, Edward O; Diaz-Ruiz, Alberto; Frank, Stuart J; Manzano, Anna; Bartrons, Ramon; Puchowicz, Michelle; Kopchick, John J; Kineman, Rhonda D

    2015-09-01

    Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have low growth hormone (GH) production and/or hepatic GH resistance. GH replacement can resolve the fatty liver condition in diet-induced obese rodents and in GH-deficient patients. However, it remains to be determined whether this inhibitory action of GH is due to direct regulation of hepatic lipid metabolism. Therefore, an adult-onset, hepatocyte-specific, GH receptor (GHR) knockdown (aLivGHRkd) mouse was developed to model hepatic GH resistance in humans that may occur after sexual maturation. Just 7 days after aLivGHRkd, hepatic de novo lipogenesis (DNL) was increased in male and female chow-fed mice, compared with GHR-intact littermate controls. However, hepatosteatosis developed only in male and ovariectomized female aLivGHRkd mice. The increase in DNL observed in aLivGHRkd mice was not associated with hyperactivation of the pathway by which insulin is classically considered to regulate DNL. However, glucokinase mRNA and protein levels as well as fructose-2,6-bisphosphate levels were increased in aLivGHRkd mice, suggesting that enhanced glycolysis drives DNL in the GH-resistant liver. These results demonstrate that hepatic GH actions normally serve to inhibit DNL, where loss of this inhibitory signal may explain, in part, the inappropriate increase in hepatic DNL observed in NAFLD patients. PMID:26015548

  3. Muricholic acids inhibit Clostridium difficile spore germination and growth.

    Directory of Open Access Journals (Sweden)

    Michael B Francis

    Full Text Available Infections caused by Clostridium difficile have increased steadily over the past several years. While studies on C. difficile virulence and physiology have been hindered, in the past, by lack of genetic approaches and suitable animal models, newly developed technologies and animal models allow these processes to be studied in detail. One such advance is the generation of a mouse-model of C. difficile infection. The development of this system is a major step forward in analyzing the genetic requirements for colonization and infection. While important, it is equally as important in understanding what differences exist between mice and humans. One of these differences is the natural bile acid composition. Bile acid-mediated spore germination is an important step in C. difficile colonization. Mice produce several different bile acids that are not found in humans. These muricholic acids have the potential to impact C. difficile spore germination. Here we find that the three muricholic acids (α-muricholic acid, β-muricholic acid and ω-muricholic acid inhibit C. difficile spore germination and can impact the growth of vegetative cells. These results highlight an important difference between humans and mice and may have an impact on C. difficile virulence in the mouse-model of C. difficile infection.

  4. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    Science.gov (United States)

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; Dewitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-10-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.

  5. Ginseng Berry Extract Promotes Maturation of Mouse Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Ginseng extract has been shown to possess certain anti-virus, anti-tumor and immune-activating effects. However, the immunostimulatory effect of ginseng berry extract (GB has been less well characterized. In this study, we investigated the effect of GB on the activation of mouse dendritic cells (DCs in vitro and in vivo. GB treatment induced up-regulation of co-stimulatory molecules in bone marrow-derived DCs (BMDCs. Interestingly, GB induced a higher degree of co-stimulatory molecule up-regulation than ginseng root extract (GR at the same concentrations. Moreover, in vivo administration of GB promoted up-regulation of CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen DCs. GB also promoted the generation of Th1 and Tc1 cells. Furthermore, Toll like receptor 4 (TLR4 and myeloid differentiation primary response 88 (MyD88 signaling pathway were essential for DC activation induced by GB. In addition, GB strongly prompted the proliferation of ovalbumin (OVA-specific CD4 and CD8 T cells. Finally, GB induced DC activation in tumor-bearing mice and the combination of OVA and GB treatment inhibited B16-OVA tumor cell growth in C57BL/6 mice. These results demonstrate that GB is a novel tumor therapeutic vaccine adjuvant by promoting DC and T cell activation.

  6. Amylase inhibits Neisseria gonorrhoeae by degrading starch in the growth medium.

    OpenAIRE

    Gregory, M R; Gregory, W W; Bruns, D.E.; Zakowski, J J

    1983-01-01

    Highly purified salivary alpha-amylase inhibited the growth of fresh isolates of Neisseria gonorrhoeae on GC agar base medium supplemented with 2% IsoVitaleX (BBL Microbiology Systems). Hydrolysis of starch in the medium by amylase resulted in a negative starch-iodine test. However, purified amylase did not inhibit gonococcal growth on agar plates that contained hemoglobin (chocolate agar). This effect was not caused by inhibition of amylase, since amylase activity was the same in the presenc...

  7. Caveolin-3 inhibits growth signal in cardiac myoblasts in a Ca2+-dependent manner

    OpenAIRE

    Fujita, Takayuki; Otsu, Kouji; Oshikawa, Jin; Hori, Hideaki; Kitamura, Hitoshi; Ito, Takaaki; Umemura, Satoshi; Minamisawa, Susumu; Ishikawa, Yoshihiro

    2007-01-01

    Caveolin, a major protein component of caveolae, directly interacts with multiple signaling molecules, such as Ras and growth factor receptors, and inhibits their function. However, the role of the second messenger system in mediating this inhibition by caveolin remains poorly understood. We examined the role of Ca2+ -dependent signal in caveloin-mediated growth inhibition using a rat cardiac myoblast cell line (H9C2), in which the expression of caveolin-3, the muscle specific subtype, can be...

  8. Berry's phase in noncommutative spaces

    CERN Document Server

    Alavi, S A

    2003-01-01

    We introduce the perturbative aspects of noncommutative quantum mechanics. Then we study the Berry's phase in the framework of noncommutative quantum mechanics. The results show deviations from the usual quantum mechanics which depend on the parameter of space/space noncommtativity.

  9. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    Energy Technology Data Exchange (ETDEWEB)

    Hannon, Patrick R., E-mail: phannon2@illinois.edu; Brannick, Katherine E., E-mail: kbran@illinois.edu; Wang, Wei, E-mail: Wei.Wang2@covance.com; Gupta, Rupesh K., E-mail: drrupesh@yahoo.com; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2015-04-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP

  10. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    International Nuclear Information System (INIS)

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP

  11. Ultrasonication processed Panax ginseng berry extract induces apoptosis through an intrinsic apoptosis pathway in HepG2 cells.

    Science.gov (United States)

    Jung, Hyunwoo; Bae, Jinhyung; Ko, Sung Kwon; Sohn, Uy Dong

    2016-06-01

    Ginseng's major active components, ginsenosides, have been known to show anti-cancer, neuroprotective, and anti-inflammatory activities. Ultrasonication processed Panax ginseng berry extract (UGB) contains various ginsenosides. The components are different from Panax ginseng berry extract (GBE). This study was aimed to investigate the cytotoxic mechanism of UGB in HepG2 cells, human hepatocellular carcinoma cell line. HepG2 cells were treated with UGB (0, 10, 20 μg/ml). Cell growth and cellular apoptosis were evaluated by MTT assay and Annexin V/Pi staining, respectively. Intracellular Reactive oxygen species (ROS) levels were also determined by 2', 7'-dichlorofluorescin diacetate (DCFDA) staining. The expressions of Bax, Bcl-2 and caspase-3, the apoptotic markers, were evaluated by Western Blot. UGB dose-dependently inhibited cell growth and induced apoptotic cell death. Intracellular ROS levels were increased. UGB increased the expression of the cleaved form of caspase-3. Furthermore, UGB induced apoptosis of HepG2 cells through Bax activation and Bcl-2 inhibition. In conclusion, UGB induced apoptosis through an intrinsic pathway in HepG2 cells suggesting that UGB might play a role as a novel substance for anti-cancer effect. PMID:27233905

  12. NMR-based metabolomics for identification of α-amylase inhibitors in rowan berries (Sorbus spp.)

    DEFF Research Database (Denmark)

    Broholm, Sofie L.; Gramsbergen, Simone; Nyberg, Nils;

    Type 2 diabetes is a metabolic disorder estimated to affect millions of people all over the world.1 One way of reducing diabetes-related complications is to control postprandial glucose.2 Inhibition of the carbohydrate digestive enzyme α-amylase is a therapeutic target for maintaining low blood...... glucose levels. A study from 2011 shows that berries from Sorbus spp (rowan berries) effectively inhibit α-amylase activity and suggests that the active compounds are proanthocyanidins.3 The aim of this project is to identify the rowan berry species with highest α-amylase inhibitory activity - and to find...

  13. In vitro cultures of grape tissues : new possibilities to study grape berry physiology

    OpenAIRE

    Breia, Richard; Serôdio, J.; Gerós, H.; Cunha, Ana

    2011-01-01

    Grape berries suffer important morphological, biochemical and physiological changes during its development and maturation. It is known that photoassimilates translocated from leaves serve as the major source of carbon and energy to support fruit needs, but recent findings revealed that, at least in the green phase, grape berries show high photosynthetic activity especially in the exocarp. The contribution of fruit photosynthesis for fruit growth and production of organic compounds is far from...

  14. Retinoic acid. Inhibition of the clonal growth of human myeloid leukemia cells.

    OpenAIRE

    Douer, D; Koeffler, H P

    1982-01-01

    Vitamin A and its analogues (retinoids) affect normal and malignant hematopoietic cells. We examined the effect of retinoids on the clonal growth in vitro of myeloid leukemia cells. Retinoic acid inhibited the clonal growth of the KG-1, acute myeloblastic leukemia, and the HL-60, acute promyelocytic leukemia, human cell lines. The KG-1 cells were extremely sensitive to retinoic acid, with 50% of the colonies inhibited by 2.4-nM concentrations of the drug. A 50% growth inhibition of HL-60 was ...

  15. Polymer film deposition on agar using a dielectric barrier discharge jet and its bacterial growth inhibition

    Science.gov (United States)

    Tsai, T.-C.; Cho, J.; Mcintyre, K.; Jo, Y.-K.; Staack, D.

    2012-08-01

    Polymer film deposition on agar in ambient air was achieved using the helium dielectric barrier discharge jet (DBD jet) fed with polymer precursors, and the bacterial growth inhibition due to the deposited film was observed. The DBD jet with precursor addition was more efficient at sterilization than a helium-only DBD jet. On the areas where polymer films cover the agar the bacterial growth was significantly inhibited. The inhibition efficacy showed dependence on the film thickness. The DBD jet without precursor also created a modified agar layer, which may slow the growth of some bacterial strains.

  16. Growth inhibition of fouling bacteria and diatoms by extract of terrestrial plant, Derris scandens (Dicotyledonae:Leguminocae)

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Sonak, S.; Garg, A.

    Methanol extract of terrestrial plant, Derris scandens Benth, was found to inhibit growth of four diatoms and 7 bacterial species of fouling community. The concentrations required to bring about 100% inhibition of growth of the diatoms ranged...

  17. Berries and anthocyanins: promising functional food ingredients with postprandial glycaemia-lowering effects.

    Science.gov (United States)

    Castro-Acosta, Monica L; Lenihan-Geels, Georgia N; Corpe, Christopher P; Hall, Wendy L

    2016-08-01

    The prevalence of type 2 diabetes (T2D) is predicted to reach unprecedented levels in the next few decades. In addition to excess body weight, there may be other overlapping dietary drivers of impaired glucose homeostasis that are associated with an obesogenic diet, such as regular exposure to postprandial spikes in blood glucose arising from diets dominated by highly refined starches and added sugars. Strategies to reduce postprandial hyperglycaemia by optimising the functionality of foods would strengthen efforts to reduce the risk of T2D. Berry bioactives, including anthocyanins, are recognised for their inhibitory effects on carbohydrate digestion and glucose absorption. Regular consumption of berries has been associated with a reduction in the risk of T2D. This review aims to examine the evidence from in vitro, animal and human studies, showing that berries and berry anthocyanins may act in the gut to modulate postprandial glycaemia. Specifically, berry extracts and anthocyanins inhibit the activities of pancreatic α-amylase and α-glucosidase in the gut lumen, and interact with intestinal sugar transporters, sodium-dependent glucose transporter 1 and GLUT2, to reduce the rate of glucose uptake into the circulation. Growing evidence from randomised controlled trials suggests that berry extracts, purées and nectars acutely inhibit postprandial glycaemia and insulinaemia following oral carbohydrate loads. Evidence to date presents a sound basis for exploring the potential for using berries/berry extracts as an additional stratagem to weight loss, adherence to dietary guidelines and increasing physical exercise, for the prevention of T2D. PMID:27170557

  18. Inhibition of human gastric carcinoma cell growth by atofluding derivative N3-o-toluyl-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Jian Liu; Wei Tang; Xian-Jun Qu; Wen-Fang Xu; Shu-Xiang Cui; Yong Zhou; Yun-Xia Yuan; Ming-Hui Chen; Ruo-Han Wang; Ruo-Yan Gai; Masatoshi Makuuchi

    2006-01-01

    AIM:To evaluate the growth inhibition efficacy of atofluding derivative N3-o-toluyl-fluorouracil (TFU)on human gastric carcinoma cell lines SGC-7901 and MKN-45.METHODS:Cell growth inhibition by TFU was measured by MTT and clonogenic assays without or with liver microsomal enzymes. Xenografts of cancer cells in nude mice were employed to study the anti-proliferative effects of TFU in vivo,RESULTS:TFU inhibited the growth of SGC-7901 and MKN-45 cells. However, the inhibitory effects of TFU on cell growth were not significant. The inhibition rates were enhanced in the presence of liver microsomal enzymes, ranging 4.73%-48.57% in SGC-7901 cells and 9.0%-62.02% in MKN-45 cells. In vivo, TFU delayed the growth of SGC-7901 and MKN-45 cells in nude mice. The inhibition rates were 40.49%, 63.24%, and 75.98% in SGC-7901 cells and 40.76%, 61.41%, and 82.07% in MKN-45 cells when the oral doses were 25, 50, and 100 mg/kg, respectively. TFU treatment was generally well tolerated by mice with less than 20% reduction in body weight.CONCLUSION:TFU inhibits the growth of human gastric carcinoma cells. The inhibition rates are increased in the presence of liver microsomal enzymes. The efficacy of TFU may be associated with the sustaining release of 5-fluorouracil (5-FU) mediated by the enzymes.

  19. Growth Inhibition of Breast Cancer in Rat by AAV Mediated Angiostatin Gene

    Institute of Scientific and Technical Information of China (English)

    LI Ran; CHEN Hong; REN Chang-shan

    2007-01-01

    Objective: To observe growth inhibition effect of adeno-associated viral vectors (AAV) mediated angiostatin (ANG) gene on implanted breast cancer in rat and its mechanism. Methods: Gene transfer technique was used to transfer AAV-ANG to the tumor. Growth curves were drawn to observe the growth of breast cancer implanted in rat, and immunohistochemical method was used to detect the effects of angiostatin on microvesel density (MVD) of breast cancer implanted in rat. Results: Angiostatin inhibited the growth of breast cancer implanted in rat and decreased the microvessel density of tumor. Conclusion: Expression of an angiostatin transgene can suppress the growth of breast cancer implanted in rat through the inhibition of the growth of microvessels, surggesting that angiostatin gene transfer technique may be effective against breast cancer.

  20. A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections

    Energy Technology Data Exchange (ETDEWEB)

    Vesper, M.J. (Univ. of Dayton, OH (USA)); Cross, J.W. (Sogetal, Inc., Hayward, CA (USA))

    1990-05-01

    Chemical inhibitors of pollen development having a phenylcinnoline carboxylate structure were found to inhibit IAA- and 1-NAA-induced growth in maize coleoptile sections. The inhibitor (100 {mu}M) used in these experiments caused approx. 35% reduction in auxin-induced growth over the auxin concentration range of 0.3 to 100 {mu}M. Growth inhibition was noted as a lengthening of the latent period and a decrease in the rate of an auxin-induced growth response. An acid growth response to pH 5 buffer in abraded sections was not impaired. The velocity of basipetal transport of ({sup 3}H)IAA through the coleoptile sections also was not inhibited by the compound, nor was uptake of ({sup 3}H)IAA. Similarly, the inhibitor does not appear to alter auxin-induced H{sup +} secretion. We suggest that the agent targets some other process necessary for auxin-dependent growth.

  1. Ants defend coffee from berry borer colonization

    OpenAIRE

    Gonthier, DJ; Ennis, KK; Philpott, SM; Vandermeer, J; Perfecto, I.

    2013-01-01

    Ants frequently prevent herbivores from damaging plants. In agroecosystems they may provide pest control services, although their contributions are not always appreciated. Here we compared the ability of eight ant species to prevent the coffee berry borer from colonizing coffee berries with a field exclusion experiment. We removed ants from one branch (exclusion) and left ants to forage on a second branch (control) before releasing 20 berry borers on each branch. After 24 h, six of eight spec...

  2. Mono-(2-Ethylhexyl) Phthalate Induces Oxidative Stress and Inhibits Growth of Mouse Ovarian Antral Follicles1

    OpenAIRE

    Wang, Wei; Craig, Zelieann R.; Basavarajappa, Mallikarjuna S.; Hafner, Katlyn S.; Flaws, Jodi A.

    2012-01-01

    Mono-(2-ethylhexyl) phthalate (MEHP) is the active metabolite of the most commonly used plasticizer, di-(2-ethylhexyl) phthalate, and is considered to be a reproductive toxicant. However, little is known about the effects of MEHP on ovarian antral follicles. Thus, the present study tested the hypothesis that MEHP inhibits follicle growth via oxidative stress pathways. The data indicate that MEHP increases reactive oxygen species (ROS) levels and inhibits follicle growth in antral follicles, w...

  3. Microbial Growth Inhibition by Alternating Electric Fields in Mice with Pseudomonas aeruginosa Lung Infection▿ †

    OpenAIRE

    Giladi, Moshe; Porat, Yaara; Blatt, Alexandra; Shmueli, Esther; Wasserman, Yoram; Kirson, Eilon D; Palti, Yoram

    2010-01-01

    High-frequency, low-intensity electric fields generated by insulated electrodes have previously been shown to inhibit bacterial growth in vitro. In the present study, we tested the effect of these antimicrobial fields (AMFields) on the development of lung infection caused by Pseudomonas aeruginosa in mice. We demonstrate that AMFields (10 MHz) significantly inhibit bacterial growth in vivo, both as a stand-alone treatment and in combination with ceftazidime. In addition, we show that peripher...

  4. Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation

    OpenAIRE

    Dai, Zhan Wu; Meddar, Messaoud; Renaud, Christel; Merlin, Isabelle; Hilbert, Ghislaine; Delrot, Serge; Gomès, Eric

    2014-01-01

    Grape berry development and ripening are under complex regulation by the nutrients, hormones, and environment cues sensed by the berry. However, the biochemical and molecular mechanisms underlying these types of regulation are poorly understood. A simplified but realistic model system that enables fruit growth conditions to be modulated easily will facilitate the deciphering of these mechanisms. Here, an in vitro culture system of intact detached grape berries was developed by coupling the pr...

  5. Achieving optimal growth through product feedback inhibition in metabolism.

    Directory of Open Access Journals (Sweden)

    Sidhartha Goyal

    2010-06-01

    Full Text Available Recent evidence suggests that the metabolism of some organisms, such as Escherichia coli, is remarkably efficient, producing close to the maximum amount of biomass per unit of nutrient consumed. This observation raises the question of what regulatory mechanisms enable such efficiency. Here, we propose that simple product-feedback inhibition by itself is capable of leading to such optimality. We analyze several representative metabolic modules--starting from a linear pathway and advancing to a bidirectional pathway and metabolic cycle, and finally to integration of two different nutrient inputs. In each case, our mathematical analysis shows that product-feedback inhibition is not only homeostatic but also, with appropriate feedback connections, can minimize futile cycling and optimize fluxes. However, the effectiveness of simple product-feedback inhibition comes at the cost of high levels of some metabolite pools, potentially associated with toxicity and osmotic imbalance. These large metabolite pool sizes can be restricted if feedback inhibition is ultrasensitive. Indeed, the multi-layer regulation of metabolism by control of enzyme expression, enzyme covalent modification, and allostery is expected to result in such ultrasensitive feedbacks. To experimentally test whether the qualitative predictions from our analysis of feedback inhibition apply to metabolic modules beyond linear pathways, we examine the case of nitrogen assimilation in E. coli, which involves both nutrient integration and a metabolic cycle. We find that the feedback regulation scheme suggested by our mathematical analysis closely aligns with the actual regulation of the network and is sufficient to explain much of the dynamical behavior of relevant metabolite pool sizes in nutrient-switching experiments.

  6. Hypernegative Supercoiling Inhibits Growth by Causing RNA Degradation▿

    OpenAIRE

    Baaklini, Imad; Usongo, Valentine; Nolent, Flora; Sanscartier, Patrick; Hraiky, Chadi; Drlica, Karl; Drolet, Marc

    2008-01-01

    Transcription-induced hypernegative supercoiling is a hallmark of Escherichia coli topoisomerase I (topA) mutants. However, its physiological significance has remained unclear. Temperature downshift of a mutant yielded transient growth arrest and a parallel increase in hypernegative supercoiling that was more severe with lower temperature. Both properties were alleviated by overexpression of RNase HI. While ribosomes in extracts showed normal activity when obtained during growth arrest, mRNA ...

  7. Inhibition of the growth of Alexandrium tamarense by algicidal substances in Chinese fir (Cunninghamia lanceolata).

    Science.gov (United States)

    Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye; Zhang, Xin-Lian; Qi, Yu-Zao

    2009-10-01

    The wood sawdust from Chinese fir (Cunninghamia lanceolata) exhibited stronger inhibition on the growth of Alexandrium tamarense than those from alder (Alnus cremastogyne), pine (Pinus massoniana), birch (Betula alnoides) and sapele (Entandrophragma cylindricum). The water extract, acetone-water extract and essential oil from fir sawdust were all shown to inhibit the growth of A. tamarense. The inhibition of fir essential oil was the strongest among all the above wood sources while the half effective concentration was only 0.65 mg/L. These results suggested that the fir essential oil may play an important role in the algicidal effect of Chinese fir. PMID:19634014

  8. BRD4 Inhibitor Inhibits Colorectal Cancer Growth and Metastasis

    Directory of Open Access Journals (Sweden)

    Yuan Hu

    2015-01-01

    Full Text Available Post-translational modifications have been identified to be of great importance in cancers and lysine acetylation, which can attract the multifunctional transcription factor BRD4, has been identified as a potential therapeutic target. In this paper, we identify that BRD4 has an important role in colorectal cancer; and that its inhibition substantially wipes out tumor cells. Treatment with inhibitor MS417 potently affects cancer cells, although such effects were not always outright necrosis or apoptosis. We report that BRD4 inhibition also limits distal metastasis by regulating several key proteins in the progression of epithelial-to-mesenchymal transition (EMT. This effect of BRD4 inhibitor is demonstrated via liver metastasis in animal model as well as migration and invasion experiments in vitro. Together, our results demonstrate a new application of BRD4 inhibitor that may be of clinical use by virtue of its ability to limit metastasis while also being tumorcidal.

  9. Ivermectin inhibits growth of Chlamydia trachomatis in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Matthew A Pettengill

    Full Text Available Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia.

  10. Ivermectin inhibits growth of Chlamydia trachomatis in epithelial cells.

    Science.gov (United States)

    Pettengill, Matthew A; Lam, Verissa W; Ollawa, Ikechukwu; Marques-da-Silva, Camila; Ojcius, David M

    2012-01-01

    Ivermectin is currently approved for treatment of both clinical and veterinary infections by nematodes, including Onchocerca cervicalis in horses and Onchocerca volvulus in humans. However, ivermectin has never been shown to be effective against bacterial pathogens. Here we show that ivermectin also inhibits infection of epithelial cells by the bacterial pathogen, Chlamydia trachomatis, at doses that could be envisioned clinically for sexually-transmitted or ocular infections by Chlamydia. PMID:23119027

  11. THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN

    Science.gov (United States)

    THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...

  12. Growth Inhibition Effect of DL-Lysine Acetylalicylate on sw480 Colon Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Shu; TIAN Xiao-feng; WANG Li-ming

    2007-01-01

    Objective: To investigate the effect of DL-lysine acetylsalicylate on proliferation of colon carcinoma cells line sw480. Methods: After treatment of DL-lysine acetylsalicylate, the study was performed by observing sw480 colorectal cancer cells with phase contrast microscope, making growth curve, and examining the inhibition rate of sw480 cells with MTT assay. Results: The morphology of sw480 cells showed characteristics of apoptosis, the cell growth curve showed inhibited proliferation of sw480 cells when treated with DL-lysine acetylsalicylate (P<0.05). The rate of inhibition was upward when the drug concentration increased. Conclusion: DL-lysine acetylsalicylate for injection can inhibit the growth of sw480 colorectal cancer cells obviously in a dose dependent manner.

  13. The Berry phase in frustrated spin glass

    International Nuclear Information System (INIS)

    In this letter we have pointed out that frustration in spin glass is realized through the Berry phase due to the conflict between the spin ordering in the course of parallel transport. We came to the point that the Berry phase depicting the chiral change of helicity of a quantized spinor is prominent only in the presence of frustration. (author)

  14. 7 CFR 51.904 - Shot berries.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Shot berries. 51.904 Section 51.904 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.904 Shot berries....

  15. Anatomy of Vitis Berries During Their Coloring

    Institute of Scientific and Technical Information of China (English)

    WAN Yi-zhen; HE Pu-chao

    2002-01-01

    During 1998-1999, the course of the berry coloring and the development of the pigment cells from veraison to ripeness were studied by freeze sectioning 43 accessions of 12 Vitis species (including 10 Chinese wild species). External observation showed that the berries of most species began coloring on the fruit top surface or on the sun-lit surface, and the berry surface color was evenly distributed when the berry was ripe.Internal observation revealed that the pigment cells in a few layers between cuticle and sub-cuticle colored first, the cuticle colored from inner layers to outer layers while the sub-cuticle from outer to inner, and the cuticle cells began coloring a little earlier than the sub-cuticle ones in most species. The pigment cells developed unevenly during the berry ripening. In the beginning of berry coloring, the cell pigment density among the layers or among the cells in the same layer was different. Both the numbers of the pigmented cells and the cell pigment density increased during the berry coloring, while the former lasted a short time; however, the latter kept increasing from veraison to ripeness, and they reached the deepest color when the berry was ripe.

  16. 21 CFR 145.120 - Canned berries.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Canned berries. 145.120 Section 145.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... percent, calculated as calcium, of the weight of the finished canned berries. (iii) Organic acids....

  17. A biophysical model of kiwifruit (Actinidia deliciosa) berry development.

    Science.gov (United States)

    Hall, Alistair J; Minchin, Peter E H; Clearwater, Michael J; Génard, Michel

    2013-12-01

    A model of kiwifruit berry development is presented, building on the model of Fishman and Génard used for peach fruit. That model has been extended to incorporate a number of important features of kiwifruit growth. First, the kiwifruit berry is attached to the stem through a pedicel/receptacle complex which contributes significantly to the hydraulic resistance between the stem and the fruit, and this resistance changes considerably during the season. Second, much of the carbohydrate in kiwifruit berries is stored as starch until the fruit matures late in the season, when the starch hydrolyses to soluble sugars. This starch storage has a major effect on the osmotic potential of the fruit, so an existing model of kiwifruit starch dynamics was included in the model. Using previously published approaches, we also included elasticity and extended the modelling period to cover both the cell division and cell expansion phases of growth. The resulting model showed close simulation of field observations of fresh weight, dry matter, starch, and soluble solids in kiwifruit. Comparison with continuous measurements of fruit diameter confirmed that elasticity was needed to adequately simulate observed diurnal variation in fruit size. Sensitivity analyses suggested that the model is particularly sensitive to variation in inputs relating to water (stem water potential and the humidity of the air), and to parameters controlling cell expansion (cell wall extensibility). Some limitations in the model structure were identified, suggesting that a revised model including current apoplastic/symplastic concepts needs to be developed. PMID:24123250

  18. Decision making by Berry's flux

    OpenAIRE

    Sung, Benjamin O.; Lawler, Michael J

    2015-01-01

    Order by disorder is a decision making process for frustrated systems but often leads to simple answers. We study order by disorder in the kagome Kondo model known for its complexity seeking rich decision making capabilities. At half filling and large Kondo coupling to hopping ratio $J_K/t$, the full manifold of 120$^o$ kagome ground states are degenerate at second order in $t/J_K$. We show this degeneracy lifts at sixth order when a fermion can hop around a hexagon and feel the Berry flux in...

  19. Progesterone Binding and Inhibition of Growth in Trichophyton mentagrophytes

    OpenAIRE

    1986-01-01

    Specific binding of [3H]progesterone to cytosol of Trichophyton mentagrophytes was demonstrated. Scatchard analysis of [3H]progesterone binding showed a single class of binding sites with a dissociation constant of 9.5 X 10(-8) [corrected] +/- 2.4 X 10(-8) M (standard deviation) and a maximal binding capacity of 4,979 +/- 3,489 fmol/mg of cytosol protein. Deoxycorticosterone and dihydrotestosterone competitively inhibited binding by 50% at molar ratios of 10:1 and 20:1, respectively. Other st...

  20. Verbascoside Inhibits Promastigote Growth and Arginase Activity of Leishmania amazonensis.

    Science.gov (United States)

    Maquiaveli, Claudia C; Lucon-Júnior, João F; Brogi, Simone; Campiani, Giuseppe; Gemma, Sandra; Vieira, Paulo C; Silva, Edson R

    2016-05-27

    Verbascoside (1) is a phenylethanoid glycoside that has antileishmanial activity against Leishmania infantum and Leishmania donovani. In this study, we verified the activity of 1 on Leishmania amazonensis and arginase inhibition. Compound 1 showed an EC50 of 19 μM against L. amazonensis promastigotes and is a competitive arginase inhibitor (Ki = 0.7 μM). Docking studies were performed to assess the interaction of 1 with arginase at the molecular level. Arginase is an enzyme of the polyamine biosynthesis pathway that is important to parasite infectivity, and the results of our study suggest that 1 could be useful to develop new approaches for treating leishmaniasis. PMID:27096224

  1. Inhibition of Human Breast Cancer Xenograft Growth by Cruciferous Vegetable Constituent Benzyl Isothiocyanate

    OpenAIRE

    Warin, Renaud; Xiao, Dong; Arlotti, Julie A.; Bommareddy, Ajay; Singh, Shivendra V

    2010-01-01

    Benzyl isothiocyanate (BITC), a constituent of cruciferous vegetables such as gardencress, inhibits growth of human breast cancer cell lines in culture. The present study was undertaken to determine in vivo efficacy of BITC against MDA-MB-231 human breast cancer xenografts. The BITC administration retarded growth of MDA-MB-231 cells subcutaneously implanted in female nude mice without causing weight loss or any other side effects. The BITC-mediated suppression of MDA-MB-231 xenograft growth c...

  2. Glucomannan hydrolysate (GMH) inhibition of Candida albicans growth in the presence of Lactobacillus and Lactococcus species

    OpenAIRE

    Sutherland, Alastair; Tester, Richard; Al-Ghazzewi, Farage; McCulloch, Elaine; Connolly, Michael

    2011-01-01

    Konjac glucomannan hydrolysate (GMH) was compared with inulin and glucose for its capacity to support the growth of probiotic bacteria but inhibit the growth of Candida albicans in vitro. The growth of lactic acid bacteria (LAB) was studied under aerobic, anaerobic and 5% CO2 conditions where the GMH progressively supported the growth of LAB as a function of concentration (0.1, 0.5, 1.0 and 2.0% w/v). In mixed cultures, GMH promoted the growth of LAB (even at concentrations as low as 0.1%) an...

  3. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth

    OpenAIRE

    Harel, Sivan; Claire A Higgins; Jane E. Cerise; Dai, Zhenpeng; James C. Chen; Clynes, Raphael; Christiano, Angela M.

    2015-01-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)–signal transducer and activator of transc...

  4. The growth inhibition of human pancreatic cancer cells by lipofectin mediated IGF-1R antisense oligonucleotides

    International Nuclear Information System (INIS)

    Objective: To study the enhancement of the growth inhibition by irradiation to human pancreatic cancer cells (PC-3) transfected by lipofectin-mediated insulin-like growth factor-1 receptor (IGF-1R) antisense oligonucleotides (ASON) and its tumorigenecity in nude mice. Methods: The curves of the survived PC-3 cells after 60Co γ radiation in varied dose were drawn and the optimal radiation dose was selected. Two transfection ways were utilized, transfected by IGF-1R lipo-ASON combined with or without ionizing radiation. Cells growth inhibition was shown by methyl thiazolium tetrazolium (MTT). The mRNA expression of IGF-1R was examined by reverse transcription-polymerase chain reaction (RT-PCR). Flow cytometry was used to demonstrate apoptotic changes in both groups. After the transplanted tumors have grown in nude mice, lipo-ASON was injected in both groups, then the effects of inhibition were compared. Results: The inhibitory effect of lipo-ASON was injected in both groups, then the effects of inhibition were compared. Results: The inhibitory effect of lipo-ASON (86.3%), the apoptotic rate (53.06%) and the decreasing of IGF-1R mRNA (79.2%) in irradiation group was higher than non-irradiation group. Also, the differences were significant in tumor volume in irradiation group comparing to the control group (P<0.01). Conclusion: The ASON of IGF-1R can effectively inhibit the growth of tumor, and its inhibition can be enhanced by irradiation. (authors)

  5. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    Science.gov (United States)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  6. VARIETY OF MICROORGANISMS GROUPS LIVING ON BERRIES OF GRAPES

    Directory of Open Access Journals (Sweden)

    Ageeva N. M.

    2015-09-01

    Full Text Available The wide variety of microorganisms has been identified in many wine-making countries on the berries of grapes. These are yeasts of different families, forms and kinds, bacterium, mold fungi. In the article, we present the results of investigating species composition of microflora of berries of white and red types of grape, which grows in different economies of the Krasnodar region and the republic of Abkhaziya. The sowings onto the elective media were conducted for the development of entire spectrum of yeast. The grown colonies after preliminary microscoping were separated into the cultures and subjected to testing according to the culturalmorphological signs, being guided by determinants and benefits. It was established the specific variety of microflora on the surface of the berries of grapes of all investigated types, without dependence on the place of their growth. Obtained data showed that the group of yeast, which constantly is present in the complex of the epiphytic microorganisms of grapes of Saccharomyces, Pichia, Hansenula, Hanseniaspora was characteristic for all types of grapes in all investigated regions. The heterogeneity of the taxonometric composition of microflora is shown. Prevailed yeasts were of family Saccharomycetaceae, form Saccharomyces vini. A quantity of yeast of Saccharomyces vini decreases in a number of Myskhako-Caucasus-Fanagoriya, that as a whole will be coordinated with the climatic conditions. Only the type of Pinot nuar grapes had yeasts of Brettanomyces Dekkera. On the berries of Cabernets and Karaburnu we have discovered yeasts of Schisosaccharomyces acidodevoratus, causing acid-reduction. On the berries of the grapes, which grew in joint stock company APF “Fanagoriya” we haven’t revealed the presence of lactic acid bacteria Lactobacillus brevis and yeasts of the form of Schisosaccharomyces acidodevoratus. In the same farm the smallest quantity of yeastswreckers is noted, which we the forms of Pichia and

  7. Neuronal growth inhibitory factor inhibits pheochromo-cytoma PC12 in vitro

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Neuronal growth inhibitory factor (GIF),named Metaliothioneins-Ⅲ (MT-Ⅲ), is the first protein validated to be capable of inhibiting the growth of neurons in nervous system. We have detected the effects of recombinant GIF on the growth of neuroblastoma SY5Y and pheochromocytoma PC12 by the MTT (Thiazolyl blue) reduction assay. Recombinant GIF inhibited PC12 in vitro; the inhibitory rate was about 25% when GIF was at 100 mg/L; and the inhibitory rate was about 50% when GIF was at 300 mg/L. It is shown that PC12 could serve as a proper model for detecting neuronal growth inhibitory activity of GIF. Recombinant GIF did not inhibit neuroblastoma SY5Y in vitro, a common model of neuroma; it is also shown that GIF could not inhibit neuromata extensively. The reason for GIF inhibiting PC12 may be that PC12 have some properties of cholinergic neuron. It must play an important role in discovering the mechanism of GIF's neuronal growth inhibitory activity.``

  8. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.

    Science.gov (United States)

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E

    2008-11-01

    Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  9. Specific Bifidobacterium strains isolated from elderly subjects inhibit growth of Staphylococcus aureus.

    Science.gov (United States)

    Lahtinen, Sampo J; Jalonen, Lotta; Ouwehand, Arthur C; Salminen, Seppo J

    2007-06-10

    Cell-free, pH-controlled supernatants of thirty-eight Bifidobacterium strains isolated from healthy elderly subjects were subjected to antimicrobial activity assay. Bioluminescent indicator strains Staphylococcus aureus RN4220, Escherichia coli K-12, and Salmonella enterica serovar Typhimurium ATCC 14028 were used as targets of antimicrobial activity. The effect of nutrient depletion on the inhibition was eliminated with spent-culture controls. Three out of thirty-eight Bifidobacterium strains were capable of inhibiting the growth of S. aureus. The inhibition was equal to 23.2+/-19.1% to 50.4+/-26.7% of the inhibition caused by 50 IU/ml nisin. Reuterin-producing positive strain Lactobacillus reuteri SD2112 was capable of 86.0+/-24.6% inhibition, but Bifidobacterium lactis Bb-12, a known probiotic strain, showed no inhibition. None of the strains was capable of inhibiting the growth of E. coli or S. enterica. The observed inhibition by bifidobacteria was related to hydrogen peroxide formation and possible production of heat-stable proteinaceous compounds. The results suggest that production of antimicrobial substances other than organic acids is not common among Bifidobacterium strains typical of elderly subjects. However, specific strains were identified which showed considerable inhibitory activity against S. aureus. PMID:17462772

  10. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kanayo [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Tanaka, Satoshi [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Yoshimoto, Tadashi [Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka 572-8508 (Japan); Takaoka, Masanori [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  11. Matrine inhibits proliferation of mouse skin fibroblasts induced by platelet-derived growth factor-BB

    Institute of Scientific and Technical Information of China (English)

    WU Yan-an; GAO Chun-fang; WANG Hao; HUANG Chao; KONG Xian-tao

    2001-01-01

    To study the effect of matrine on proliferation of mouse skin fibroblasts induced by platelet-derived growth factor-BB (PDGF-BB). Methods: Mouse skin fibroblasts were obtained from newborn ⅠCR mice and propagated in vitro. Proliferation of cell was analyzed by mitochondrial reduction of tetrazolium salt MTT and actual cell count. Results: Matrine (50 to 500 μg/ml) caused dose-dependent reduction of serum-stimulated cell growth. Growth inhibition was totally reversed after removal of the drug. Matrine also inhibited PDGF-BB induced cell growth dose-dependently. Conclusion: Matrine exhibits potent anti-proliferation effect on mouse skin fibroblast. This effect appears to be mediated by decrease of PDGF-induced growth. These results suggest that matrine might have preventive and therapeutic implication in skin fibrosis.

  12. Hydroxyapatite-binding peptides for bone growth and inhibition

    Science.gov (United States)

    Bertozzi, Carolyn R.; Song, Jie; Lee, Seung-Wuk

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  13. Multikinase inhibitor regorafenib inhibits the growth and metastasis of colon cancer with abundant stroma.

    Science.gov (United States)

    Takigawa, Hidehiko; Kitadai, Yasuhiko; Shinagawa, Kei; Yuge, Ryo; Higashi, Yukihito; Tanaka, Shinji; Yasui, Wataru; Chayama, Kazuaki

    2016-05-01

    Interaction between tumor cells and stromal cells plays an important role in the growth and metastasis of colon cancer. We previously found that carcinoma-associated fibroblasts (CAFs) expressed platelet-derived growth factor receptor-β (PDGFR-β) and that PDGFR targeted therapy using imatinib or nilotinib inhibited stromal reaction. Bone marrow-derived mesenchymal stem cells (MSCs) migrate to tumor stroma and differentiate into CAFs. A novel oral multikinase inhibitor regorafenib inhibits receptor tyrosine kinases expressed on stromal cells (vascular endothelial growth factor receptor 1-3, TIE2, PDGFR-β, and fibroblast growth factors) and tumor cells (c-KIT, RET, and BRAF). These molecules are involved in tumor growth, angiogenesis, lymphangiogenesis, and stromal activation. Therefore, we examined whether regorafenib impaired the tumor-promoting effect of CAFs/MSCs. KM12SM human colon cancer cells alone or KM12SM cells with MSCs were transplanted into the cecal wall of nude mice. Co-implantation of KM12SM cells with MSCs into the cecal wall of nude mice produced tumors with abundant stromal component and promoted tumor growth and lymph node metastasis. Single treatment with regorafenib inhibited tumor growth and metastasis by inhibiting both tumor cells and stromal reaction. This tumor-inhibitory effect of regorafenib was more obvious in tumors developed by co-implanting KM12SM cells with MSCs. Our data suggested that targeting of the tumor microenvironment with regorafenib affected tumor cell-MSC interaction, which in turn inhibited the growth and metastasis of colon cancer. PMID:26865419

  14. Growth rate inhibition of phytopathogenic fungi by characterized chitosans

    Directory of Open Access Journals (Sweden)

    Enio N. Oliveira Junior

    2012-06-01

    Full Text Available The inhibitory effects of fifteen chitosans with different degrees of polymerization (DP and different degrees of acetylation (F A on the growth rates (GR of four phytopathogenic fungi (Alternaria alternata, Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer were examined using a 96-well microtiter plate and a microplate reader. The minimum inhibitory concentrations (MICs of the chitosans ranged from 100 µg × mL-1 to 1,000 µg × mL-1 depending on the fungus tested and the DP and F A of the chitosan. The antifungal activity of the chitosans increased with decreasing F A. Chitosans with low F A and high DP showed the highest inhibitory activity against all four fungi. P. expansum and B. cinerea were relatively less susceptible while A. alternata and R. stolonifer were relatively more sensitive to the chitosan polymers. Scanning electron microscopy of fungi grown on culture media amended with chitosan revealed morphological changes.

  15. Study of coloration, microbe inhibition during the growth of L-arginine phosphate monohydrate single crystals

    Science.gov (United States)

    Li, Aidong; Xu, Chongquan; Li, Aibin; Ming, Naiben

    2000-12-01

    During the growth of L-arginine phosphate monohydrate (LAP) single crystals, the problems of coloration and microbial contamination of the solution were investigated. It was found that the solution coloration can be prevented by conducting crystal growth at temperatures lower than 40°C and by inhibiting microbial growth. Compared to the known microbe inhibitors H 2O 2 and n-hexane, liquid paraffin shows advantages of long durability and convenience of usage for the growth of high-quality LAP single crystals.

  16. ENDOGENAL COLONIZATION OF GRAPES BERRIES

    Directory of Open Access Journals (Sweden)

    Dana Tančinová

    2015-02-01

    Full Text Available The aim of study was to detect the microscopic filamentous fungi from wine surface of sterilized grapes berries of Slovak origin. We analyzed 21 samples of grapes, harvested in the year 2012 of various wine-growing regions. For the isolation of species we used the method of direct plating surface-sterilized berries (using 0.4% freshly pre-pared chlorine on DRBC (Dichloran Rose Bengal Chloramphenicol agar. The cultivation was carried at 25±1°C, for 5 to 7 days. A total number of 2541 fungal isolates pertaining to 18 genera including Mycelia sterilia were recovered. Isolates of genus Alternaria were found in all of tested samples with the highest relative density 56.4%. The second highest isolation frequency we detected for genus Fusarium (90.48% positive samples, but with low relative density (31 isolates and 2.99% RD. Another genera with higher isolation frequency were Cladosporium (Fr 85.71%, RD 14.6%, Mycelia sterilia (Fr 85.71%, RD 4.25%, Penicillium (Fr 80.95%, RD 13.42%, Botrytis (Fr 71.43%, RD 2.95% Rhizopus (Fr 66.66%, RD 1.34%, Aspergillus (Fr 57.14%, RD 0.87%, Epicoccum (Fr 47.62%, RD 1.22%, Trichoderma (Fr 42.86%, RD 1.26%. Isolation frequency of another eight genera (Arthrinium, Dichotomophtora, Geotrichum, Harzia, Chaetomium, Mucor, Nigrospora and Phoma was less than 10% and relative density less than 0.5%. Chosen isolates of potential producers of mycotoxin (species of Alternaria, Aspergillus, Fusarium and Penicillium were tested for the ability to produce relevant mycotoxins in in vitro conditions using TLC method. None isolate of Aspergillus niger aggregate (13 tested did not produce ochratoxin A – mycotoxin monitored in wine and another products from grapes berries. Isolates of potentially toxigenic species recovered from the samples were found to produce another mycotoxins: aflatoxin B1, altenuene, alternariol, alternariol monomethylether, citrinin, diacetoxyscirpenol, deoxynivalenol, HT-2 patulin, penitrem A and T-2 toxin

  17. The evolving fresh market berry industry in Santa Cruz and Monterey counties

    Directory of Open Access Journals (Sweden)

    Laura Tourte

    2016-08-01

    Full Text Available The fresh market berry industry in Santa Cruz and Monterey counties has contributed significantly to the agricultural vibrancy of the two counties and the state of California. Dramatic growth in strawberry, raspberry and blackberry production has been documented over the last 50 years, and most notably since the 1980s. Factors influencing this growth include innovations in agricultural practices and heightened consumer demand. Here, we review the historical context for the berry industry in Santa Cruz and Monterey counties. Organic production, production economics and challenges for the future are also discussed.

  18. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Mei [Department of Pharmacy, Shanghai Institute of Health Sciences and Health School Attached to SJTU-SM, 279 Zhouzhu Road, Shanghai 201318 (China); Liu, Ya-Rong; Liu, Hai-Jun [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Fang, Chao, E-mail: fangchao100@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Hong-Zhuan, E-mail: hongzhuan_chen@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China)

    2014-11-15

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC.

  19. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    International Nuclear Information System (INIS)

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC

  20. Berry Phases and Quantum Phase Transitions

    CERN Document Server

    Hamma, A

    2006-01-01

    We study the connection between Berry phases and quantum phase transitions of generic quantum many-body systems. Consider sequences of Berry phases associated to sequences of loops in the parameter space whose limit is a point. If the sequence of Berry phases does not converge to zero, then the limit point is a quantum critical point. Quantum critical points are associated to failures of adiabaticity. We discuss the remarkable example of the anisotropic XY spin chain in a transverse magnetic field and detect the XX region of criticality.

  1. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    Directory of Open Access Journals (Sweden)

    Yong Miao

    Full Text Available Ginger (Zingiber officinale has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  2. Growth of antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Quesada, A. [Universite Laval, Quebec (Canada)]|[Universidad Autonoma de Madrid (Spain); Mouget, J.L.; Vincent, W.F. [Universite Laval, Quebec (Canada)

    1995-04-01

    A mat-forming cyanobacterium (Phormidium murayi West and West) isolated from an ice-shelf pond in Antarctica was grown under white light combined with a range of UVA and UVB irradiance. The 4-day growth rate decreased under increasing ultraviolet (UV) radiation, with a ninefold greater response to UVB relative to UVA. In vivo absorbance spectra showed that UVA and to a greater extent UVB caused a decrease in phycocyanin/chlorophyll a and an increase in carotenoids/chlorophyll a. The phycocyanin/chlorophyll a ratio was closely and positively correlated to the UVB-inhibited growth rate. Under fixed spectral gradients of UV radiation, the growth inhibition effect was dominated by UVB. However, at specific UVB irradiances the inhibition of growth depended on the ratio of UVB to UVA, and growth rates increased linearly with increasing UVA. These results are consistent with the view that UVB inhibition represents the balance between damage and repair processes that are each controlled by separate wavebands. They also underscore the need to consider UV spectral balance in laboratory and field assays of UVB toxicity. 49 refs., 6 figs.

  3. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro.

    Science.gov (United States)

    Velázquez-Becerra, Crisanto; Macías-Rodríguez, Lourdes I; López-Bucio, José; Flores-Cortez, Idolina; Santoyo, Gustavo; Hernández-Soberano, Christian; Valencia-Cantero, Eduardo

    2013-12-01

    Plant diseases caused by fungal pathogens such as Botrytis cinerea and the oomycete Phytophthora cinnamomi affect agricultural production worldwide. Control of these pests can be done by the use of fungicides such as captan, which may have deleterious effects on human health. This study demonstrates that the rhizobacterium Arthrobacter agilis UMCV2 produces volatile organic compounds that inhibit the growth of B. cinerea in vitro. A single compound from the volatile blends, namely dimethylhexadecylamine (DMHDA), could inhibit the growth of both B. cinerea and P. cinnamomi when supplied to the growth medium in low concentrations. DMHDA also inhibited the growth of beneficial fungi Trichoderma virens and Trichoderma atroviride but at much higher concentrations. DMHDA-related aminolipids containing 4, 8, 10, 12, and 14 carbons in the alkyl chain were tested for their inhibitory effect on the growth of the pathogens. The results show that the most active compound from those tested was dimethyldodecylamine. This effect correlates with a decrease in the number of membrane lipids present in the mycelium of the pathogen including eicosanoic acid, (Z)-9-hexadecenoic acid, methyl ester, and (Z)-9-octadecenoic acid, methyl ester. Strawberry leaflets treated with DMHDA were not injured by the compound. These data indicate that DMHDA and related compounds, which can be produced by microorganisms may effectively inhibit the proliferation of certain plant pathogens. PMID:23674267

  4. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    Science.gov (United States)

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  5. Disrupting the oncogenic synergism between nucleolin and Ras results in cell growth inhibition and cell death.

    Directory of Open Access Journals (Sweden)

    Sari Schokoroy

    Full Text Available BACKGROUND: The ErbB receptors, Ras proteins and nucleolin are major contributors to malignant transformation. The pleiotropic protein nucleolin can bind to both Ras protein and ErbB receptors. Previously, we have demonstrated a crosstalk between Ras, nucleolin and the ErbB1 receptor. Activated Ras facilitates nucleolin interaction with ErbB1 and stabilizes ErbB1 levels. The three oncogenes synergistically facilitate anchorage independent growth and tumor growth in nude mice. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we used several cancer cell lines. The effect of Ras and nucleolin inhibition was determined using cell growth, cell death and cell motility assays. Protein expression was determined by immunohistochemistry. We found that inhibition of Ras and nucleolin reduces tumor cell growth, enhances cell death and inhibits anchorage independent growth. Our results reveal that the combined treatment affects Ras and nucleolin levels and localization. Our study also indicates that Salirasib (FTS, Ras inhibitor reduces cell motility, which is not affected by the nucleolin inhibitor. CONCLUSIONS/SIGNIFICANCE: These results suggest that targeting both nucleolin and Ras may represent an additional avenue for inhibiting cancers driven by these oncogenes.

  6. Growth of antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition

    International Nuclear Information System (INIS)

    A mat-forming cyanobacterium (Phormidium murayi West and West) isolated from an ice-shelf pond in Antarctica was grown under white light combined with a range of UVA and UVB irradiance. The 4-day growth rate decreased under increasing ultraviolet (UV) radiation, with a ninefold greater response to UVB relative to UVA. In vivo absorbance spectra showed that UVA and to a greater extent UVB caused a decrease in phycocyanin/chlorophyll a and an increase in carotenoids/chlorophyll a. The phycocyanin/chlorophyll a ratio was closely and positively correlated to the UVB-inhibited growth rate. Under fixed spectral gradients of UV radiation, the growth inhibition effect was dominated by UVB. However, at specific UVB irradiances the inhibition of growth depended on the ratio of UVB to UVA, and growth rates increased linearly with increasing UVA. These results are consistent with the view that UVB inhibition represents the balance between damage and repair processes that are each controlled by separate wavebands. They also underscore the need to consider UV spectral balance in laboratory and field assays of UVB toxicity. 49 refs., 6 figs

  7. Bee Venom Promotes Hair Growth in Association with Inhibiting 5α-Reductase Expression.

    Science.gov (United States)

    Park, Seeun; Erdogan, Sedef; Hwang, Dahyun; Hwang, Seonwook; Han, Eun Hye; Lim, Young-Hee

    2016-06-01

    Alopecia is an important issue that can occur in people of all ages. Recent studies show that bee venom can be used to treat certain diseases including rheumatoid arthritis, neuralgia, and multiple sclerosis. In this study, we investigated the preventive effect of bee venom on alopecia, which was measured by applying bee venom (0.001, 0.005, 0.01%) or minoxidil (2%) as a positive control to the dorsal skin of female C57BL/6 mice for 19 d. Growth factors responsible for hair growth were analyzed by quantitative real-time PCR and Western blot analysis using mice skins and human dermal papilla cells (hDPCs). Bee venom promoted hair growth and inhibited transition from the anagen to catagen phase. In both anagen phase mice and dexamethasone-induced catagen phase mice, hair growth was increased dose dependently compared with controls. Bee venom inhibited the expression of SRD5A2, which encodes a type II 5α-reductase that plays a major role in the conversion of testosterone into dihydrotestosterone. Moreover, bee venom stimulated proliferation of hDPCs and several growth factors (insulin-like growth factor 1 receptor (IGF-1R), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)2 and 7) in bee venom-treated hDPCs dose dependently compared with the control group. In conclusion, bee venom is a potentially potent 5α-reductase inhibitor and hair growth promoter. PMID:27040904

  8. Epidermal growth factor receptor inhibition in lung cancer: status 2012.

    Science.gov (United States)

    Hirsch, Fred R; Jänne, Pasi A; Eberhardt, Wilfried E; Cappuzzo, Federico; Thatcher, Nick; Pirker, Robert; Choy, Hak; Kim, Edward S; Paz-Ares, Luis; Gandara, David R; Wu, Yi-Long; Ahn, Myung-Ju; Mitsudomi, Tetsuya; Shepherd, Frances A; Mok, Tony S

    2013-03-01

    Lung cancer is the most common cause of cancer deaths. Most patients present with advanced-stage disease, and the prognosis is generally poor. However, with the understanding of lung cancer biology, and development of molecular targeted agents, there have been improvements in treatment outcomes for selected subsets of patients with non-small-cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have demonstrated significantly improved tumor responses and progression-free survival in subsets of patients with advanced NSCLC, particularly those with tumors harboring activating EGFR mutations. Testing for EGFR mutations is a standard procedure for identification of patients who will benefit from first-line EGFR TKIs. For patients with advanced NSCLC and no activating EGFR mutations (EGFR wild-type) or no other driving oncogenes such as ALK-gene rearrangement, chemotherapy is still the standard of care. A new generation of EGFR TKIs, targeting multiple receptors and with irreversible bindings to the receptors, are in clinical trials and have shown encouraging effects. Research on primary and acquired resistant mechanisms to EGFR TKIs are ongoing. Monoclonal antibodies (e.g. cetuximab), in combination with chemotherapy, have demonstrated improved outcomes, particularly for subsets of NSCLC patients, but further validations are needed. Novel monoclonal antibodies are combined with chemotherapy, and randomized comparative studies are ongoing. This review summarizes the current status of EGFR inhibitors in NSCLC in 2012 and some of the major challenges we are facing. PMID:23370315

  9. Hematein, a casein kinase II inhibitor, inhibits lung cancer tumor growth in a murine xenograft model.

    Science.gov (United States)

    Hung, Ming-Szu; Xu, Zhidong; Chen, Yu; Smith, Emmanuel; Mao, Jian-Hua; Hsieh, David; Lin, Yu-Ching; Yang, Cheng-Ta; Jablons, David M; You, Liang

    2013-11-01

    Casein kinase II (CK2) inhibitors suppress cancer cell growth. In this study, we examined the inhibitory effects of a novel CK2 inhibitor, hematein, on tumor growth in a murine xenograft model. We found that in lung cancer cells, hematein inhibited cancer cell growth, Akt/PKB Ser129 phosphorylation, the Wnt/TCF pathway and increased apoptosis. In a murine xenograft model of lung cancer, hematein inhibited tumor growth without significant toxicity to the mice tested. Molecular docking showed that hematein binds to CK2α in durable binding sites. Collectively, our results suggest that hematein is an allosteric inhibitor of protein kinase CK2 and has antitumor activity to lung cancer. PMID:24008396

  10. Tgf-Beta inhibition restores terminal osteoblast differentiation to suppress myeloma growth.

    Directory of Open Access Journals (Sweden)

    Kyoko Takeuchi

    Full Text Available BACKGROUND: Multiple myeloma (MM expands almost exclusively in the bone marrow and generates devastating bone lesions, in which bone formation is impaired and osteoclastic bone resorption is enhanced. TGF-beta, a potent inhibitor of terminal osteoblast (OB differentiation, is abundantly deposited in the bone matrix, and released and activated by the enhanced bone resorption in MM. The present study was therefore undertaken to clarify the role of TGF-beta and its inhibition in bone formation and tumor growth in MM. METHODOLOGY/PRINCIPAL FINDINGS: TGF-beta suppressed OB differentiation from bone marrow stromal cells and MC3T3-E1 preosteoblastic cells, and also inhibited adipogenesis from C3H10T1/2 immature mesenchymal cells, suggesting differentiation arrest by TGF-beta. Inhibitors for a TGF-beta type I receptor kinase, SB431542 and Ki26894, potently enhanced OB differentiation from bone marrow stromal cells as well as MC3T3-E1 cells. The TGF-beta inhibition was able to restore OB differentiation suppressed by MM cell conditioned medium as well as bone marrow plasma from MM patients. Interestingly, TGF-beta inhibition expedited OB differentiation in parallel with suppression of MM cell growth. The anti-MM activity was elaborated exclusively by terminally differentiated OBs, which potentiated the cytotoxic effects of melphalan and dexamethasone on MM cells. Furthermore, TGF-beta inhibition was able to suppress MM cell growth within the bone marrow while preventing bone destruction in MM-bearing animal models. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that TGF-beta inhibition releases stromal cells from their differentiation arrest by MM and facilitates the formation of terminally differentiated OBs, and that terminally differentiated OBs inhibit MM cell growth and survival and enhance the susceptibility of MM cells to anti-MM agents to overcome the drug resistance mediated by stromal cells. Therefore, TGF-beta appears to be an

  11. Development of a Murine Mycobacterial Growth Inhibition Assay for Evaluating Vaccines against Mycobacterium tuberculosis▿ †

    OpenAIRE

    Parra, Marcela; Yang, Amy L.; Lim, Jaehyun; Kolibab, Kristopher; Derrick, Steven; Cadieux, Nathalie; Perera, Liyanage P.; Jacobs, William R.; Brennan, Michael; Morris, Sheldon L.

    2009-01-01

    The development and characterization of new tuberculosis (TB) vaccines has been impeded by the lack of reproducible and reliable in vitro assays for measuring vaccine activity. In this study, we developed a murine in vitro mycobacterial growth inhibition assay for evaluating TB vaccines that directly assesses the capacity of immune splenocytes to control the growth of Mycobacterium tuberculosis within infected macrophages. Using this in vitro assay, protective immune responses induced by immu...

  12. Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells

    OpenAIRE

    Yafei Zhang; Bicheng Zhang; Anran Zhang; Yong Zhao; Jie Zhao; Jian Liu; Jianfei Gao; Dianchun Fang; Zhiguo Rao

    2012-01-01

    OBJECTIVE: Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in hepatocellular carcinoma, and there is a strong rationale for investigating its use in combination with other agents. Vitamin K2 is nearly non-toxic to humans and has been shown to inhibit the growth of hepatocellular carcinoma. In this study, we evaluated the effects of a combination of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. METHODS: Flow cytome...

  13. Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress

    OpenAIRE

    Ketola, K; Hilvo, M; Hyötyläinen, T.; Vuoristo, A; Ruskeepää, A-L; Orešič, M; Kallioniemi, O; Iljin, K

    2012-01-01

    Background: We have shown that a sodium ionophore monensin inhibits prostate cancer cell growth. A structurally related compound to monensin, salinomycin, was recently identified as a putative cancer stem cell inhibitor. Methods: The growth inhibitory potential of salinomycin was studied in a panel of prostate cells. To get insights into the mechanism of action, a variety of assays such as gene expression and steroid profiling were performed in salinomycin-exposed prostate cancer cells. Resul...

  14. Nanoelectroablation of Murine Tumors Triggers a CD8-Dependent Inhibition of Secondary Tumor Growth.

    Directory of Open Access Journals (Sweden)

    Richard Nuccitelli

    Full Text Available We have used both a rat orthotopic hepatocellular carcinoma model and a mouse allograft tumor model to study liver tumor ablation with nanosecond pulsed electric fields (nsPEF. We confirm that nsPEF treatment triggers apoptosis in rat liver tumor cells as indicated by the appearance of cleaved caspase 3 and 9 within two hours after treatment. Furthermore we provide evidence that nsPEF treatment leads to the translocation of calreticulin (CRT to the cell surface which is considered a damage-associated molecular pattern indicative of immunogenic cell death. We provide direct evidence that nanoelectroablation triggers a CD8-dependent inhibition of secondary tumor growth by comparing the growth rate of secondary orthotopic liver tumors in nsPEF-treated rats with that in nsPEF-treated rats depleted of CD8+ cytotoxic T-cells. The growth of these secondary tumors was severely inhibited as compared to tumor growth in CD8-depleated rats, with their average size only 3% of the primary tumor size after the same one-week growth period. In contrast, when we depleted CD8+ T-cells the second tumor grew more robustly, reaching 54% of the size of the first tumor. In addition, we demonstrate with immunohistochemistry that CD8+ T-cells are highly enriched in the secondary tumors exhibiting slow growth. We also showed that vaccinating mice with nsPEF-treated isogenic tumor cells stimulates an immune response that inhibits the growth of secondary tumors in a CD8+-dependent manner. We conclude that nanoelectroablation triggers the production of CD8+ cytotoxic T-cells resulting in the inhibition of secondary tumor growth.

  15. Growth Inhibition of Common Food Spoilage and Pathogenic Microorganisms in the Presence of Brown Seaweed Extracts

    OpenAIRE

    Gupta, Shilpi; Cox, Sabrina; Rajauria, Gaurav; Jaiswal, Amit; Abu-Ghannam, Nissreen

    2010-01-01

    The possibility of using extracts from brown seaweed, Himanthalia elongata, as a natural antimicrobial agent for food preservation is presented. The effect of different concentrations of seaweed extract on the growth kinetics of four common food spoilage (Pseudomonas aeruginosa and Enterococcus faecalis) and food pathogenic micro-organisms (Listeria monocytogenes and Salmonella abony) was examined. Seaweed extract at a concentration of 6% inhibited the growth of all four of the studied organi...

  16. Growth inhibition of Mycobacterium tuberculosis by polyoxyethylene stearate present in the BACTEC pyrazinamide susceptibility test.

    OpenAIRE

    Miller, M A; Thibert, L; Desjardins, F; Siddiqi, S H; Dascal, A

    1996-01-01

    We have previously found that approximately 3.5% of 428 clinical isolates of Mycobacterium tuberculosis yield uninterpretable results in the BACTEC pyrazinamide (PZA) susceptibility test system, because of inadequate growth. We tested the hypothesis that polyoxyethylene stearate (POES), the ingredient of the reconstituting fluid for the test, was the cause of this growth inhibition. A total of 15 isolates known for their previously uninterpretable results and 100 randomly chosen clinical isol...

  17. Di (2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: weiwang2@illinois.edu; Craig, Zelieann R., E-mail: zelieann@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbasava2@illinois.edu; Gupta, Rupesh K., E-mail: drrupesh@yahoo.com; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2012-01-15

    Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been shown to inhibit growth of mouse antral follicles, however, little is known about the mechanisms by which DEHP does so. Oxidative stress has been linked to follicle growth inhibition as well as phthalate-induced toxicity in non-ovarian tissues. Thus, we hypothesized that DEHP causes oxidative stress and that this leads to inhibition of the growth of antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice (age 31–35 days) were cultured with vehicle control (dimethylsulfoxide [DMSO]) or DEHP (1–100 μg/ml) ± N-acetyl cysteine (NAC, an antioxidant at 0.25–1 mM). During culture, follicles were measured daily. At the end of culture, follicles were collected and processed for in vitro reactive oxygen species (ROS) assays to measure the presence of free radicals or for measurement of the expression and activity of various key antioxidant enzymes: Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX) and catalase (CAT). The results indicate that DEHP inhibits the growth of follicles compared to DMSO control and that NAC (0.25–1 mM) blocks the ability of DEHP to inhibit follicle growth. Furthermore, DEHP (10 μg/ml) significantly increases ROS levels and reduces the expression and activity of SOD1 compared to DMSO controls, whereas NAC (0.5 mM) rescues the effects of DEHP on ROS levels and SOD1. However, the expression and activity of GPX and CAT were not affected by DEHP treatment. Collectively, these data suggest that DEHP inhibits follicle growth by inducing production of ROS and by decreasing the expression and activity of SOD1. -- Highlights: ► DEHP inhibits growth and increases reactive oxygen species in ovarian antral follicles in vitro. ► NAC rescues the effects of DEHP on the growth and reactive oxygen species levels in follicles. ► DEHP decreases the expression and activity of Cu/Zn superoxide dismutase, which can be rescued by NAC, in antral

  18. Di (2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway

    International Nuclear Information System (INIS)

    Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been shown to inhibit growth of mouse antral follicles, however, little is known about the mechanisms by which DEHP does so. Oxidative stress has been linked to follicle growth inhibition as well as phthalate-induced toxicity in non-ovarian tissues. Thus, we hypothesized that DEHP causes oxidative stress and that this leads to inhibition of the growth of antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice (age 31–35 days) were cultured with vehicle control (dimethylsulfoxide [DMSO]) or DEHP (1–100 μg/ml) ± N-acetyl cysteine (NAC, an antioxidant at 0.25–1 mM). During culture, follicles were measured daily. At the end of culture, follicles were collected and processed for in vitro reactive oxygen species (ROS) assays to measure the presence of free radicals or for measurement of the expression and activity of various key antioxidant enzymes: Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX) and catalase (CAT). The results indicate that DEHP inhibits the growth of follicles compared to DMSO control and that NAC (0.25–1 mM) blocks the ability of DEHP to inhibit follicle growth. Furthermore, DEHP (10 μg/ml) significantly increases ROS levels and reduces the expression and activity of SOD1 compared to DMSO controls, whereas NAC (0.5 mM) rescues the effects of DEHP on ROS levels and SOD1. However, the expression and activity of GPX and CAT were not affected by DEHP treatment. Collectively, these data suggest that DEHP inhibits follicle growth by inducing production of ROS and by decreasing the expression and activity of SOD1. -- Highlights: ► DEHP inhibits growth and increases reactive oxygen species in ovarian antral follicles in vitro. ► NAC rescues the effects of DEHP on the growth and reactive oxygen species levels in follicles. ► DEHP decreases the expression and activity of Cu/Zn superoxide dismutase, which can be rescued by NAC, in antral

  19. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    Science.gov (United States)

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  20. Effect of nerve growth factor and fibroblast growth factor on PC12 cells: inhibition by orthovanadate

    OpenAIRE

    1993-01-01

    Sodium orthovanadate, an inhibitor of protein tyrosine phosphatases, causes increased levels of tyrosine phosphorylation and blocks, at noncytotoxic concentrations, the differentiative response of rat pheochromocytoma (PC12) cells to beta-nerve growth factor (beta NGF) and basic fibroblast growth factor (bFGF) in a reversible manner. It also prevents growth factor-induced neurite proliferation in primed cells and causes the retraction of previously formed neurites, even in the presence of bet...

  1. Assessment of Shape Changes of Mistletoe Berries: A New Software Approach to Automatize the Parameterization of Path Curve Shaped Contours

    OpenAIRE

    Renatus Derbidge; Linus Feiten; Oliver Conradt; Peter Heusser; Stephan Baumgartner

    2013-01-01

    Photographs of mistletoe (Viscum album L.) berries taken by a permanently fixed camera during their development in autumn were subjected to an outline shape analysis by fitting path curves using a mathematical algorithm from projective geometry. During growth and maturation processes the shape of mistletoe berries can be described by a set of such path curves, making it possible to extract changes of shape using one parameter called Lambda. Lambda describes the outline shape of a path curve. ...

  2. Capsaicin Inhibits Preferentially the NADH Oxidase and Growth of Transformed Cells in Culture

    Science.gov (United States)

    Morre, D. James; Chueh, Pin-Ju; Morre, Dorothy M.

    1995-03-01

    A hormone- and growth factor-stimulated NADH oxidase of the mammalian plasma membrane, constitutively activated in transformed cells, was inhibited preferentially in HeLa, ovarian carcinoma, mammary adenocarcinoma, and HL-60 cells, all of human origin, by the naturally occurring quinone analog capsaicin (8-methyl-N-vanillyl-6-noneamide), compared with plasma membranes from human mammary epithelial, rat liver, normal rat kidney cells, or HL-60 cells induced to differentiate with dimethyl sulfoxide. With cells in culture, capsaicin preferentially inhibited growth of HeLa, ovarian carcinoma, mammary adenocarcinoma, and HL-60 cells but was largely without effect on the mammary epithelial cells, rat kidney cells, or HL-60 cells induced to differentiate with dimethyl sulfoxide. Inhibited cells became smaller and cell death was accompanied by a condensed and fragmented appearance of the nuclear DNA, as revealed by fluorescence microscopy with 4',6-diamidino-2-phenylindole, suggestive of apoptosis. The findings correlate capsaicin inhibition of cell surface NADH oxidase activity and inhibition of growth that correlate with capsaicin-induced apoptosis.

  3. Interview with Jo Berry, 6 May 2014

    Directory of Open Access Journals (Sweden)

    2014-09-01

    Full Text Available In the following interview, Jo Berry remembers and reflects on the Brighton bombing which killed her father, Sir Anthony Berry thirty years ago in 1984. She describes her first meeting with one of the bombers, Pat Magee, her growing and unexpected friendship with him and her journey into healing and forgiveness. She elaborates how her understanding of forgiveness has changed and become more nuanced over the years. She also offers reflections on what justice means for her.

  4. Survivin gene silencing sensitizes prostate cancer cells to selenium growth inhibition

    International Nuclear Information System (INIS)

    Prostate cancer is a leading cause of cancer-related death in men worldwide. Survivin is a member of the inhibitor of apoptosis (IAP) protein family that is expressed in the majority of human tumors including prostate cancer, but is barely detectable in terminally differentiated normal cells. Downregulation of survivin could sensitize prostate cancer cells to chemotherapeutic agents in vitro and in vivo. Selenium is an essential trace element. Several studies have shown that selenium compounds inhibit the growth of prostate cancer cells. The objective of this study is to investigate whether survivin gene silencing in conjunction with selenium treatment could enhance the therapeutic efficacy for prostate cancer and to elucidate the underlying mechanisms. Expression of survivin was analyzed in a collection of normal and malignant prostatic tissues by immunohistochemical staining. In vitro studies were conducted in PC-3M, C4-2B, and 22Rv1 prostate cancer cells. The effect of selenium on survivin expression was analyzed by Western blotting and semi-quantitative RT-PCR. Survivin gene knockdown was carried out by transfecting cells with a short hairpin RNA (shRNA) designed against survivin. Cell proliferation was quantitated by the 3-(4,5-Dimethylthiazol-2-yl)- 2,5-Diphenyltetrazolium Bromide (MTT) assay and apoptosis by propidium iodide staining followed by flow cytometry analysis. Finally, in vivo tumor growth assay was performed by establishing PC-3M xenograft in nude mice and monitoring tumor growth following transfection and treatment. We found that survivin was undetectable in normal prostatic tissues but was highly expressed in prostate cancers. Survivin knockdown or selenium treatment inhibited the growth of prostate cancer cells, but the selenium effect was modest. In contrast to what have been observed in other cell lines, selenium treatment had little or no effect on survivin expression in several androgen-independent prostate cancer cell lines. Survivin

  5. Growth inhibition of shrimp pathogens by isolated gastrointestinal microflora of Macrobrachium rosenbergii de Man

    Directory of Open Access Journals (Sweden)

    Seehanat, S.

    2005-02-01

    Full Text Available The useful bacteria which were isolated from the gastrointestinal tract of freshwater prawn (Macrobrachium rosenbergii de Man, cultivated in earthen pond at Maha Sarakham province, Thailand, consisted of 14 isolates of Bacillus (B1 – B14 and 18 isolates of Lactic acid bacteria (LA1 – LA18. The abilities of all isolated bacteria on growth inhibition of pathogenic bacteria (Escherichia coli, Bacillus cereus, Aeromonas hydrophila and Pseudomonas aeruginosa were studied by paperdisc plate method. The results showed that the Bacillus B2 and B5 were unable to inhibit the growth of all of the tested pathogens. Bacillus B1, B10 and B12 were capable of inhibiting the growth of 3 of 4 tested pathogen strains. Although all of the isolated lactic acid bacteria (LA1 –LA18 could not inhibit the E. coli growth, all of them could inhibit the growth of B. cereus. The isolated lactic acid bacteria which were capable of inhibiting the growth of 3 tested pathogen strains (excluded E. coli were LA12 , LA13 , LA14 , LA15 , LA16 , LA17 and LA18. In order to select the high potential strain of bacteria for using as probiotics, Bacillus B1 , B3 , B4 , B10 and B12 and lactic acid bacteria LA12 , LA13 , LA14 , LA15 , LA16 , LA17 and LA18 were tested for their growth abilities in various growth conditions. The tested growth conditions included various concentrations of the bile salt and salt (NaCl and various pH and temperatures. The results revealed that Bacillus B1 and B10 and lactic acid bacteria LA13 , LA16 and LA18 exhibited high potential for using as probiotics. The results of biochemical test for identification of these high potential strains showed that Bacillus B1 and B10 were possibly B. licheniformis and B. thuringiensis respectively. The lactic acid bacteria LA13 , LA16 and LA18 were possibly the same strain and belonged to the genus Pediococcus.

  6. A new diatom growth inhibition assay using the XTT colorimetric method.

    Science.gov (United States)

    Jiang, Weina; Akagi, Takuya; Suzuki, Hidekazu; Takimoto, Ayaka; Nagai, Hiroshi

    2016-01-01

    Marine biofouling, which leads to significant operational stress and economic damage on marine infrastructures, is a major problem in marine related industries. Currently, the most common way to avoid marine biofouling involves the use of biocidal products in surface coatings. However, the need for environmentally friendly antibiofouling compounds has increased rapidly with the recent global prohibition of harmful antifoulants, such as tributyltin (TBT). In particular, periphytic diatoms have been shown to contribute significantly to biofilms, which play an important role in biofouling. Therefore, inhibiting the proliferation of fouling diatoms is a very important step in the prevention of marine biofouling. In this study, we developed a new, rapid, accurate, and convenient growth inhibition assay using the XTT colorimetric method to prevent the growth of the fouling periphytic diatom, Nitzschia amabilis Hidek. Suzuki (replaced synonym, Nitzschia laevis Hustedt). The feasibility of this method was verified by determining the growth inhibition activities of two standard photosynthetic inhibitors, DCMU and CuSO4. However, neither inhibitor had any cytotoxic activities at the range of concentrations tested. Moreover, this method was applied by screening and purification of herbicidic but non-cytotoxic compounds from cyanobacteria extracts. Our results demonstrate the utility of this newly established growth inhibition assay for the identification of marine anti-biofouling compounds. PMID:26945522

  7. Metformin enhances tamoxifen-mediated tumor growth inhibition in ER-positive breast carcinoma

    International Nuclear Information System (INIS)

    Tamoxifen, an endocrine therapy drug used to treat breast cancer, is designed to interrupt estrogen signaling by blocking the estrogen receptor (ER). However, many ER-positive patients are low reactive or resistant to tamoxifen. Metformin is a widely used anti-diabetic drug with noteworthy anti-cancer effects. We investigated whether metformin has the additive effects with tamoxifen in ER-positive breast cancer therapy. The efficacy of metformin alone and in combination with tamoxifen against ER-positive breast cancer was analyzed by cell survival, DNA replication activity, plate colony formation, soft-agar, flow cytometry, immunohistochemistry, and nude mice model assays. The involved signaling pathways were detected by western blot assay. When metformin was combined with tamoxifen, the concentration of tamoxifen required for growth inhibition was substantially reduced. Moreover, metformin enhanced tamoxifen-mediated inhibition of proliferation, DNA replication activity, colony formation, soft-agar colony formation, and induction of apoptosis in ER-positive breast cancer cells. In addition, these tamoxifen-induced effects that were enhanced by metformin may be involved in the bax/bcl-2 apoptotic pathway and the AMPK/mTOR/p70S6 growth pathway. Finally, two-drug combination therapy significantly inhibited tumor growth in vivo. The present work shows that metformin and tamoxifen additively inhibited the growth and augmented the apoptosis of ER-positive breast cancer cells. It provides leads for future research on this drug combination for the treatment of ER-positive breast cancer

  8. Metabolism of stem tissue during growth and its inhibition. II. Respiration and ether-soluble material

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, G.S.; Thimann, K.V.

    1950-01-01

    Measurements of respiration and ether soluble metabolites were made on etiolated pea steams grown in auxin solution to which iodoacetate, arsenite, or fluoride had been added. The role of respiration and metabolism in the increased sugar consumption of growth inhibited tissues is discussed in terms of the results from the experiment.

  9. The biofilm inhibitor Carolacton inhibits planktonic growth of virulent pneumococci via a conserved target

    OpenAIRE

    Jannik Donner; Michael Reck; Simone Bergmann; Andreas Kirschning; Rolf Müller; Irene Wagner-Döbler

    2016-01-01

    New antibacterial compounds, preferentially exploiting novel cellular targets, are urgently needed to fight the increasing resistance of pathogens against conventional antibiotics. Here we demonstrate that Carolacton, a myxobacterial secondary metabolite previously shown to damage Streptococcus mutans biofilms, inhibits planktonic growth of Streptococcus pneumoniae TIGR4 and multidrug-resistant clinical isolates of serotype 19A at nanomolar concentrations. A Carolacton diastereomer is inactiv...

  10. RNA interference inhibits expression of vascular endothelial growth factor (VEGF) in human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    CAI Chun-mei; SUN Bao-chen; LIU Xu-yang; WANG Jin-jin; LI Jun-fa; HAN Song; WANG Ning-li; LU Qing-jun

    2005-01-01

    @@ Choroidal neovascularization (CNV), a major cause of vision loss, is the result of the increased vascular endothelial growth factor (VEGF) expression in human retinal pigment epithelial (RPE) cells. It is important to inhibit the expression of VEGF protein in RPE cells.

  11. Measuring Berry curvature with quantum Monte Carlo

    CERN Document Server

    Kolodrubetz, Michael

    2014-01-01

    The Berry curvature and its descendant, the Berry phase, play an important role in quantum mechanics. They can be used to understand the Aharonov-Bohm effect, define topological Chern numbers, and generally to investigate the geometric properties of a quantum ground state manifold. While Berry curvature has been well-studied in the regimes of few-body physics and non-interacting particles, its use in the regime of strong interactions is hindered by the lack of numerical methods to solve it. In this paper we fill this gap by implementing a quantum Monte Carlo method to solve for the Berry curvature, based on interpreting Berry curvature as a leading correction to imaginary time ramps. We demonstrate our algorithm using the transverse-field Ising model in one and two dimensions, the latter of which is non-integrable. Despite the fact that the Berry curvature gives information about the phase of the wave function, we show that our algorithm has no sign or phase problem for standard sign-problem-free Hamiltonians...

  12. Inhibition of Tumor Growth in Mice by Endostatin Derived from Abdominal Transplanted Encapsulated Cells

    Institute of Scientific and Technical Information of China (English)

    Huaining TENG; Ying ZHANG; Wei WANG; Xiaojun MA; Jian FEI

    2007-01-01

    Endostatin, a C-terminal fragment of collagen 18a, inhibits the growth of established tumors and metastases in vivo by inhibiting angiogenesis. However, the purification procedures required for largescale production and the attendant cost of these processes, together with the low effectiveness in clinical tests, suggest that alternative delivery methods might be required for efficient therapeutic use of endostatin.In the present study, we transfected Chinese hamster ovary (CHO) cells with a human endostatin gene expression vector and encapsulated the CHO cells in alginate-poly-L-lysine microcapsules. The release of biologically active endostatin was confirmed using the chicken chorioallantoic membrane assay. The encapsulated endostatin-expressing CHO cells can inhibit the growth of primary tumors in a subcutaneous B16 tumor model when injected into the abdominal cavity of mouse. These results widen the clinical application of the microencapsulated cell endostatin delivery system in cancer treatment.

  13. Inheritance and gene expression of a root-growth inhibiting mutant in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Full text: A root-growth inhibiting mutant was induced in the dwarf mutant line, 'Fukei 71', through ethylene-imine. The mutant is characterised by the excessive inhibition of both seminal and crown roots elongation just after germination, although its shoots grow nearly normal. To study the genetics, the mutant was crossed with its original line 'Fukei 71' and some other normal cultivars. Results show that the root-growth inhibition is controlled by a recessive gene (rt), independent of the dwarf gene, d-50(t) locus in Fukei 71. For elucidating the gene action on root morphogenesis, histological and cytological experiments were carried out using a longitudinal and transverse thin section of seminal and/or crown root tips. Observations suggest that the rt gene affects the normal formation of the epidermal system which is differentiated from the protoderm of the root apical meristem. (author)

  14. NK4, an antagonist of hepatocyte growth factor (HGF), inhibits growth of multiple myeloma cells: molecular targeting of angiogenic growth factor.

    Science.gov (United States)

    Du, Wenlin; Hattori, Yutaka; Yamada, Taketo; Matsumoto, Kunio; Nakamura, Toshikazu; Sagawa, Morihiko; Otsuki, Takemi; Niikura, Takako; Nukiwa, Toshihiro; Ikeda, Yasuo

    2007-04-01

    Hepatocyte growth factor (HGF) promotes cell growth and motility and also increases neovascularization. Multiple myeloma (MM) cells produce HGF, and the plasma concentration of HGF is significantly elevated in patients with clinically active MM, suggesting that HGF might play a role in the pathogenesis of MM. NK4, an antagonist of HGF, is structurally homologous to angiostatin, and our previous report showed that NK4 inhibited the proliferation of vascular endothelial cells induced by HGF stimulation. The purposes of this study were to elucidate the contribution of HGF to the growth of MM cells as well as to investigate the possibility of the therapeutic use of NK4. In vitro study showed that NK4 protein stabilized the growth of MM cell lines and regulated the activation of c-MET, ERK1/2, STAT3, and AKT-1. Recombinant adenovirus containing NK4 cDNA (AdCMV.NK4) was injected intramuscularly into Icr/scid mice bearing tumors derived from HGF-producing MM cells. AdCMV.NK4 significantly inhibited the growth of these tumors in vivo. Histologic examination revealed that AdCMV.NK4 induced apoptosis of MM cells, accompanied by a reduction in neovascularization in the tumors. Thus, NK4 inhibited the growth of MM cells via antiangiogenic as well as direct antitumor mechanisms. The molecular targeting of HGF by NK4 could be applied as a novel therapeutic approach to MM. PMID:17179234

  15. Inhibition of the Anaerobic Growth of Brochothrix thermosphacta by Lactic Acid

    OpenAIRE

    Grau, Frederick H.

    1980-01-01

    Brochothrix thermosphacta can grow aerobically in the presence of 210 mM l-lactate and anaerobically in its absence at pH values down to at least 5.5. Anaerobic growth is, however, inhibited by l-lactate, the concentration of undissociated lactic acid being the governing factor. Postrigor meat usually contains sufficient lactic acid to select against the anaerobic growth of B. thermosphacta. At least some Lactobacillaceae strains are more resistant to lactic acid and so their growth is favore...

  16. Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Debora Faraone

    2009-08-01

    Full Text Available Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Rα may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Rα respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Rα. Proliferation was rescued by PDGF-Rα inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Rα mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Rα was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Rα show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Bα and a marked increase of p38γ, mitogen-activated protein kinase kinase 3, and signal regulatory protein α1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Rα reached a significant 70% inhibition of primary melanoma growth (P < .001 and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Rα strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.

  17. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. PMID:26976217

  18. The role of acidification in the inhibition of Neisseria gonorrhoeae by vaginal lactobacilli during anaerobic growth

    Directory of Open Access Journals (Sweden)

    Wade Jeremy J

    2011-02-01

    Full Text Available Abstract Background Vaginal lactobacilli protect the female genital tract by producing lactic acid, bacteriocins, hydrogen peroxide or a local immune response. In bacterial vaginosis, normal lactobacilli are replaced by an anaerobic flora and this may increase susceptibility to Neisseria gonorrhoeae, a facultative anaerobe. Bacterial interference between vaginal lactobacilli and N. gonorrhoeae has not been studied in liquid medium under anaerobic conditions. By co-cultivating N. gonorrhoeae in the presence of lactobacilli we sought to identify the relative contributions of acidification and hydrogen peroxide production to any growth inhibition of N. gonorrhoeae. Methods Three strains of N. gonorrhoeae distinguishable by auxotyping were grown in the presence of high concentrations (107-108 cfu/mL of three vaginal lactobacilli (L. crispatus, L. gasseri and L. jensenii in an anerobic liquid medium with and without 2-(N-morpholino-ethanesulfonic (MES buffer. Fusobacterium nucleatum was used as an indicator of anaerobiosis. Bacterial counts were performed at 15, 20 and 25 h; at 25 h pH and hydrogen peroxide concentrations were measured. Results Growth of F. nucleatum to >108 cfu/mL at 25 h confirmed anaerobiosis. All bacteria grew in the anaerobic liquid medium and the addition of MES buffer had negligible effect on growth. L. crispatus and L. gasseri produced significant acidification and a corresponding reduction in growth of N. gonorrhoeae. This inhibition was abrogated by the addition of MES. L. jensenii produced less acidification and did not inhibit N. gonorrhoeae. Hydrogen peroxide was not detected in any experiment. Conclusions During anaerobic growth, inhibition of N. gonorrhoeae by the vaginal lactobacilli tested was primarily due to acidification and abrogated by the presence of a buffer. There was no evidence of a specific mechanism of inhibition other than acid production under these conditions and, in particular, hydrogen peroxide was

  19. Synergistic growth inhibition by acyclic retinoid and phosphatidylinositol 3-kinase inhibitor in human hepatoma cells

    International Nuclear Information System (INIS)

    A malfunction of RXRα due to phosphorylation is associated with liver carcinogenesis, and acyclic retinoid (ACR), which targets RXRα, can prevent the development of hepatocellular carcinoma (HCC). Activation of PI3K/Akt signaling plays a critical role in the proliferation and survival of HCC cells. The present study examined the possible combined effects of ACR and LY294002, a PI3K inhibitor, on the growth of human HCC cells. This study examined the effects of the combination of ACR plus LY294002 on the growth of HLF human HCC cells. ACR and LY294002 preferentially inhibited the growth of HLF cells in comparison with Hc normal hepatocytes. The combination of 1 μM ACR and 5 μM LY294002, in which the concentrations used are less than the IC50 values of these agents, synergistically inhibited the growth of HLF, Hep3B, and Huh7 human HCC cells. These agents when administered in combination acted cooperatively to induce apoptosis in HLF cells. The phosphorylation of RXRα, Akt, and ERK proteins in HLF cells were markedly inhibited by treatment with ACR plus LY294002. Moreover, this combination also increased RXRE promoter activity and the cellular levels of RARβ and p21CIP1, while decreasing the levels of cyclin D1. ACR and LY294002 cooperatively increase the expression of RARβ, while inhibiting the phosphorylation of RXRα, and that these effects are associated with the induction of apoptosis and the inhibition of cell growth in human HCC cells. This combination might therefore be effective for the chemoprevention and chemotherapy of HCC

  20. Growth inhibition to three red tide microalgae by extracts of Ulva pertusa

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Growth inhibition effect of different concentration of distilled water extract and four polar organic solvent (methanol, acetone, ether and chloroform) extracts of Ulva pertusa on three typical red tide microalgae (Heterosigma akashiwo, Alexandrium tamarense and Prorocentrum micans) were investigated. Liquid-liquid fractionation and HPLC analysis for methanol extract of U. pertusa were carried out.Growth of the three microalgae was significantly inhibited by the distilled water extract of U. pertusa at relatively higher concentration. However, the cells of the three microalgae did not die completely even at high concentration. Methanol extract of U. pertusa showed the highest growth inhibition on the three microalgae, and all the cells of the three microalgae were killed at relatively high concentration. The other three organic solvent extracts of U. pertusa had no apparent effect on the three microalgae. The results of bioassays and HPLC analysis suggested that the inhibitory substances in U. pertusa to the microalgal growth had relatively high polarities. H. akashiwo was the most sensitive one while A. tamarense was the most tolerant one to the growth inhibitory substances.

  1. Cellular Adhesion Tripeptide RGD Inhibits Growth of Human Ileocecal Adenocarcinoma Cells HCT-8 and Induces Apoptosis

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; ZENG Hong-bin; YANG Shao-juan; GAO Shen; HUANG Yi-bing; HOU Rui-zhen; ZHAO Mi-feng; XU Li; ZHANG Xue-zhong

    2007-01-01

    The tripeptide, Arg-Gly-Asp(RGD) motif is an integrin-recognition site found in adhesive proteins present in extracellular matrices(ECM) and in the blood. HCT-8 cells were treated with cellular adhesion tripeptide RGD at various concentrations. MTT assay was performed to examine the growth and proliferation of HCT-8 cells after treatment with RGD for 48 h. Haematoxylin and Eosin(HE) staining and electromicroscope were used to observe the morphology of apoptotic cells. Survivin and flow cytometry were also used to analyze the HCT-8 apoptosis. Cellular adhesion tripeptide RGD significantly inhibits the growth and proliferation of HCT-8 cells in a dose-dependent manner and induces apoptosis of HCT-8. These results indicate that cellular adhesion tripeptide RGD inhibits the growth and proliferation of tumor HCT-8 cell, probably by the aid of inducing apoptosis of HCT-8 cell.

  2. NEWEST PINK BERRY AROMATIC VINE GRAPE VARIETY – RADOST LEONIDOV

    OpenAIRE

    Zamanidi P. C.; Troshin L. P.; Radchevskiy P. P.

    2014-01-01

    New wine grape flavored pink berry grape variety named “Radost Leonidov” breed at Athens Institute of Viticulture by P.Zamanidi, L.Troshin and P.Radchevskii in 2009 by crossing the new Moskhoragos Greek muscat variety with old European variety Traminer pink. According to morphological and biological characteristics, it can be assigned to Western European eco-geographical group of varieties. Strong growth of shoots (2,1-3,0 m). The extent of maturation of vines is very high (over the entire le...

  3. Cystone, a well-known herbal formulation, inhibits struvite crystal growth formation in single diffusion gel growth technique

    Directory of Open Access Journals (Sweden)

    Pralhad S. Patki

    2013-02-01

    Full Text Available Objective: The present study was aimed to evaluate the beneficial effect of Cystone® against struvite crystal growth in in vitro conditions. Methods: Various concentrations of Cystone® was prepared in 1 M magnesium acetate solution and evaluated for crystal growth inhibition assay by a well-known method called single diffusion gel growth technique in vitro. Results: Cystone®, a well-known polyherbal formulation, at 0.5, 1 and 2% concentrations showed significant and dose-dependent inhibition of struvite crystal growth formation in in vitro by reducing number, total mass and total volume of the struvite crystals formed and also caused fragmentation of grown struvite crystals in the gel matrix. Conclusion: The results of the present study indicate, Cystone® significantly retards the formation of struvite stones and also brings about its fragmentation. This could be one of the probable mechanisms behind the beneficial effect offered by Cystone® in the clinical management of urolithiasis and urinary tract infections. [J Exp Integr Med 2013; 3(1: 51-55

  4. Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Yafei Zhang

    2012-09-01

    Full Text Available OBJECTIVE: Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in hepatocellular carcinoma, and there is a strong rationale for investigating its use in combination with other agents. Vitamin K2 is nearly non-toxic to humans and has been shown to inhibit the growth of hepatocellular carcinoma. In this study, we evaluated the effects of a combination of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. METHODS: Flow cytometry, 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide and nude mouse xenograft assays were used to examine the effects of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Western blotting was used to elucidate the possible mechanisms underlying these effects. RESULTS: Assays for 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide revealed a strong synergistic growth-inhibitory effect between sorafenib and vitamin K2. Flow cytometry showed an increase in cell cycle arrest and apoptosis after treatment with a combination of these two drugs at low concentrations. Sorafenib-mediated inhibition of extracellular signal-regulated kinase phosphorylation was promoted by vitamin K2, and downregulation of Mcl-1, which is required for sorafenib-induced apoptosis, was observed after combined treatment. Vitamin K2 also attenuated the downregulation of p21 expression induced by sorafenib, which may represent the mechanism by which vitamin K2 promotes the inhibitory effects of sorafenib on cell proliferation. Moreover, the combination of sorafenib and vitamin K2 significantly inhibited the growth of hepatocellular carcinoma xenografts in nude mice. CONCLUSIONS: Our results determined that combined treatment with sorafenib and vitamin K2 can work synergistically to inhibit the growth of hepatocellular carcinoma cells. This finding raises the possibility that this combined treatment strategy might be promising as a new

  5. Direct inhibition of Retinoblastoma phosphorylation by Nimbolide causes cell cycle arrest and suppresses glioblastoma growth

    Science.gov (United States)

    Anderson, Jane; Liu, Xiaona; Henry, Heather; Gasilina, Anjelika; Nassar, Nicholas; Ghosh, Jayeeta; Clark, Jason P; Kumar, Ashish; Pauletti, Giovanni M.; Ghosh, Pradip K; Dasgupta, Biplab

    2013-01-01

    Purpose Classical pharmacology allows the use and development of conventional phytomedicine faster and more economically than conventional drugs. This approach should be tested for their efficacy in terms of complementarity and disease control. The purpose of this study was to determine the molecular mechanisms by which nimbolide, a triterpenoid found in the well-known medicinal plant Azadirachta indica controls glioblastoma (GBM) growth. Experimental Design Using in vitro signaling, anchorage-independent growth, kinase assays, and xenograft models, we investigated the mechanisms of its growth inhibition in glioblastoma. Results We show that nimbolide or an ethanol soluble fraction of A. indica leaves (Azt) that contains nimbolide as the principal cytotoxic agent is highly cytotoxic against GBM in vitro and in vivo. Azt caused cell cycle arrest, most prominently at the G1-S stage in GBM cells expressing EGFRvIII, an oncogene present in about 20-25% of GBMs. Azt/nimbolide directly inhibited CDK4/CDK6 kinase activity leading to hypophosphorylation of the retinoblastoma (RB) protein, cell cycle arrest at G1-S and cell death. Independent of RB hypophosphorylation, Azt also significantly reduced proliferative and survival advantage of GBM cells in vitro and in tumor xenografts by downregulating Bcl2 and blocking growth factor induced phosphorylation of Akt, Erk1/2 and STAT3. These effects were specific since Azt did not affect mTOR or other cell cycle regulators. In vivo, Azt completely prevented initiation and inhibited progression of GBM growth. Conclusions Our preclinical findings demonstrate Nimbolide as a potent anti-glioma agent that blocks cell cycle and inhibits glioma growth in vitro and in vivo. PMID:24170547

  6. Angiostatin inhibits pancreatic cancer cell proliferation and growth in nude mice

    Institute of Scientific and Technical Information of China (English)

    Ding-Zhong Yang; Jing He; Ji-Cheng Zhang; Zhuo-Ren Wang

    2005-01-01

    AIM: To observe the biologic behavior of pancreatic cancer cells in vitro and in vivo, and to explore the potential value of angiostatin gene therapy for pancreatic cancer.METHODS: The recombinant vector pcDNA3.1(+)-angiostatin was transfected into human pancreatic cancer cells PC-3 with Lipofectamine 2000, and paralleled with the vector and mock control. Angiostatin transcription and protein expression were determined by immunofluorescence and Western blot. The stable cell line was selected by G418. The supernatant was collected to treat endothelial cells. Cell proliferation and growth in vitro were observed under microscope. Cell growth curves were plotted.The troms-fected or untroms-fected cells overexpressing angiostatin vector were implanted subcutaneously into nude mice. The size of tumors was measured, and microvessel density count (MVD) in tumor tissues was assessed by immunohistochemistry with primary anti-CD34antibody.RESULTS: After transfected into PC-3 with Lipofectamine 2000 and selected by G418, macroscopic resistant cell clones were formed in the experimental group transfected with pcDNA 3.1(+)-angiostatin and vector control. But untreated cells died in the mock control. Angiostatin protein expression was detected in the experimental group by immunofluorescence and Western-blot. Cell proliferation and growth in vitro in the three groups were observed respectively under microscope. After treatment with supernatant, significant differences were observed in endothelial cell (ECV-304) growth in vitro. The cell proliferation and growth were inhibited. In nude mice model, markedly inhibited tumorigenesis and slowed tumor expansion were observed in the experimental group as compared to controls, which was parallel to the decreased microvessel density in and around tumor tissue.CONCLUSION: Angiostatin does not directly inhibit human pancreatic cancer cell proliferation and growth in vitro,but it inhibits endothelial cell growthin vitro. It exerts the anti

  7. Methoxychlor inhibits growth of antral follicles by altering cell cycle regulators

    International Nuclear Information System (INIS)

    Methoxychlor (MXC) reduces fertility in female rodents, decreases antral follicle numbers, and increases atresia through oxidative stress pathways. MXC also inhibits antral follicle growth in vitro. The mechanism by which MXC inhibits growth of follicles is unknown. The growth of follicles is controlled, in part, by cell cycle regulators. Thus, we tested the hypothesis that MXC inhibits follicle growth by reducing the levels of selected cell cycle regulators. Further, we tested whether co-treatment with an antioxidant, N-acetyl cysteine (NAC), prevents the MXC-induced reduction in cell cycle regulators. For in vivo studies, adult cycling CD-1 mice were dosed with MXC or vehicle for 20 days. Treated ovaries were subjected to immunohistochemistry for proliferating cell nuclear antigen (PCNA) staining. For in vitro studies, antral follicles isolated from adult cycling CD-1 mouse ovaries were cultured with vehicle, MXC, and/or NAC for 48, 72 and 96 h. Levels of cyclin D2 (Ccnd2) and cyclin dependent kinase 4 (Cdk4) were measured using in vivo and in vitro samples. The results indicate that MXC decreased PCNA staining, and Ccnd2 and Cdk4 levels compared to controls. NAC co-treatment restored follicle growth and expression of Ccnd2 and Cdk4. Collectively, these data indicate that MXC exposure reduces the levels of Ccnd2 and Cdk4 in follicles, and that protection from oxidative stress restores Ccnd2 and Cdk4 levels. Therefore, MXC-induced oxidative stress may decrease the levels of cell cycle regulators, which in turn, results in inhibition of the growth of antral follicles.

  8. BlackBerry All-in-One for Dummies

    CERN Document Server

    Sarigumba, Dante; Petz, William

    2010-01-01

    Go beyond BlackBerry basics and get everything your BlackBerry can deliver. BlackBerry is the leading smartphone for business users, and its popularity continues to explode. When you discover the amazing array of BlackBerry possibilities in this fun and friendly guide, you'll be even happier with your choice of smartphones. BlackBerry All-in-One For Dummies explores every feature and application common to all BlackBerry devices. It explains the topics in depth, with tips, tricks, workarounds, and includes detailed information about cool new third-party applications, accessories, and downloads

  9. Maqui berry vs Sloe berry--liquor-based beverage for new development.

    Science.gov (United States)

    Gironés-Vilaplana, Amadeo; Moreno, Diego A; García-Viguera, Cristina

    2015-01-01

    "Pacharin" is an aniseed liquor-based beverage made with sloe berry (Prunus spinosa L.) that has been produced in northern Spain. On the other hand, maqui berry (Aristotelia chilensis) is a common edible berry from Chile, and currently under study because of its multiple beneficial effects on health. The aim of this work was to design a new aniseed liquor-based beverage with maqui berry, as an industrial alternative to a traditional alcoholic product with bioactive berries. The characterization of its composition, compared with the traditional "Pacharin", and its evolution during maceration (6 and 12 months) showed that the new maqui liquor had significantly-higher anthocyanin retention over time. More studies on the organoleptic properties and bioactivity are underway. PMID:25920225

  10. CrackBerry The Tales of BlackBerry Use and Abuse

    CERN Document Server

    Michaluk, Kevin J; Trautschold, Martin

    2011-01-01

    A delayed train, a dip in the conversation, an early morning hour with no sleep - during these moments, do you feel an overwhelming urge to grab your BlackBerry? Do you know someone else who does? If the answer is yes, then look no further than this one-of-a-kind book...CrackBerry: True Tales of Blackberry Use and Abuse covers the phenomenon of "BlackBerry Addiction," offering true-life accounts of BlackBerry dependence and mishaps. You'll find comfort and humor in the unbelievable tales of BlackBerry abuse and also learn some valuable tips along the way. * The definitive guide to respons

  11. Caveolin-3 inhibits growth signal in cardiac myoblasts in a Ca2+-dependent manner

    Science.gov (United States)

    Fujita, Takayuki; Otsu, Kouji; Oshikawa, Jin; Hori, Hideaki; Kitamura, Hitoshi; Ito, Takaaki; Umemura, Satoshi; Minamisawa, Susumu; Ishikawa, Yoshihiro

    2006-01-01

    Caveolin, a major protein component of caveolae, directly interacts with multiple signaling molecules, such as Ras and growth factor receptors, and inhibits their function. However, the role of the second messenger system in mediating this inhibition by caveolin remains poorly understood. We examined the role of Ca2+ -dependent signal in caveloin-mediated growth inhibition using a rat cardiac myoblast cell line (H9C2), in which the expression of caveolin-3, the muscle specific subtype, can be induced using the LacSwitch system. Upon induction with IPTG and serum-starvation, the expression of caveolin-3 was increased by 3.3-fold relative to that of mock-induced cells. The recombinant caveolin-3 was localized to the same subcellular fraction as endogenous caveolin-3 after sucrose gradient purification. Angiotensin II enhanced ERK phosphorylation, but this enhancement was significantly decreased in caveolin-3-induced cells in comparison to that in mock-induced cells. Similarly, when cells were stimulated with fetal calf serum, DNA synthesis, as determined by [3H]-thymidine incorporation, was significantly decreased in caveolin-3-induced cells. When cells were treated with Ca2+ chelator (BAPTA and EGTA), however, this attenuation was blunted. Calphostin (PKC inhibitor), but not cyclosporine A treatment (calcineurin inhibitor), blunted this attenuation in caveolin-3 induced cells. Our findings suggest that caveolin exhibits growth inhibition in a Ca2+-dependent manner, most likely through PKC, in cardiac myoblasts. PMID:16563233

  12. SOX7 is involved in aspirin-mediated growth inhibition of human colorectal cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Shu-Yan Huang; Jing-Xin Feng; Yan-Yan Gao; Li Zhao; Jun Lu; Bai-Qu Huang; Yu Zhang

    2011-01-01

    AIM: To confirm the role of sex-determining region Y-box 7 (Sox7) in aspirin-mediated growth inhibition of COX-independent human colorectal cancer cells.METHODS: The cell survival percentage was examined by MTT (Moto-nuclear cell direc cytotoxicity) assay.SOX7 expression was assessed by using reverse transcription-polymerase chain reaction and Western blotting. SB203580 was used to inhibit the p38MAPK signal pathway. SOX7 promoter activity was detected by Luciferase reporter assay.RESULTS: SOX7 was upregulated by aspirin and was involved in aspirin-mediated growth inhibition of SW480 human colorectal cancer cells. The p38MAPK pathway played a role in aspirin-induced SOX7 expression, during which the AP1 transcription factors c-Jun and c-Fos upregulated SOX7 promoter activities.RESULTS: SOX7 is upregulated by aspirin and is involved in aspirin-mediated growth inhibition of human colorectal cancer SW480 cells.

  13. Simultaneous Assessment of Acidogenesis-Mitigation and Specific Bacterial Growth-Inhibition by Dentifrices.

    Directory of Open Access Journals (Sweden)

    Sarah Forbes

    Full Text Available Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD; sodium fluoride (FD; stannous fluoride and zinc lactate (SFD1; or stannous fluoride, zinc lactate and stannous chloride (SFD2. Minimum inhibitory concentrations (MIC were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC, a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices.

  14. Inhibition of Escherichia coli growth and diaminopimelic acid epimerase by 3-chlorodiaminopimelic acid.

    OpenAIRE

    Baumann, R J; Bohme, E H; Wiseman, J. S.; Vaal, M; Nichols, J.S.

    1988-01-01

    The diaminopimelic acid (DAP) analog, 3-chloro-DAP, was synthesized and tested as the racemic acid for antibacterial activity and for inhibition of DAP epimerase. 3-Chloro-DAP was a potent inhibitor of DAP epimerase purified from Escherichia coli (Ki = 200 nM), and it is argued that 3-chloro-DAP is converted to a tight-binding transition state analog at the active site of this enzyme. Furthermore, 3-chloro-DAP inhibited growth of two E. coli mutants. In one of the mutants known for supersusce...

  15. STAT6 Mediates Interleukin-4 Growth Inhibition in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer L. Gooch

    2002-01-01

    Full Text Available In addition to acting as a hematopoietic growth factor, interleukin-4 (IL-4 inhibits growth of some transformed cells in vitro and in vivo. In this study, we show that insulin receptor substrate (IRS-1, IRS-2, and signal transducer and activator of transcription 6 (STAT6 are phosphorylated following IL-4 treatment in MCF-7 breast cancer cells. STAT6 DNA binding is enhanced by IL-4 treatment. STAT6 activation occurs even after IRS-1 depletion, suggesting the two pathways are independent. To examine the role of STAT6 in IL-4-mediated growth inhibition and apoptosis, a fulllength STAT6 cDNA was transfected into MCF-7 cells. Transient overexpression of STAT6 resulted in both cytoplasmic and nuclear expression of the protein, increased DNA binding in response to IL-4, and increased transactivation of an IL-4 responsive promoter. In STAT6-transfected cells, basal proliferation was reduced whereas apoptosis was increased. Finally, stable expression of STAT6 resulted in reduced foci formation compared to vector-transfected cells alone. These results suggest STAT6 is required for IL-4mediated growth inhibition and induction of apoptosis in human breast cancer cells.

  16. Growth Inhibition and Apoptosis Inducing Mechanisms of Curcumin on Human Ovarian Cancer Cell Line A2780

    Institute of Scientific and Technical Information of China (English)

    ZHENG Li-duan; TONG Qiang-song; WU Cui-huan

    2006-01-01

    Objective: To explore the growth inhibition effects and apoptosis inducing mechanisms of curcumin on human ovarian cancer cell line A2780. Methods: After treatment with 10-50 μmol/L curcumin for 6-24 h, the growth activity of A2780 cancer cells were studied by [ 4, 5-dimethylthiazol-2-yl]-2, 5-diphenyItetrazolium bromide (MTT) colorimetry. Cellular apoptosis was inspected by flow cytometery and acridine orange-ethidium bromide fluorescent staining methods. The fragmentation of cellular chromosome DNA was detected by DNA ladder, the ultrastructural change was observed under a transmission electron microscope,and the protein levels of nuclear factor-kappa B (NF-κB, P65) and cysteinyl aspartate specific protease-3 (Caspase-3) in ovarian cancer cells were measured by immunohistochemistry. Results: After treatment with various concentrations of curcumin, the growth inhibition rates of cancer cells reached 62.05%- 89.24%,with sub-G1 peaks appearing on histogram. Part of the cancer cells showed characteristic morphological changes of apoptosis under fluorescence and electron microscopes, and the rate of apoptosis was 21.5 % -33.5%. The protein expression of NF-κB was decreased, while that of Caspase-3 was increased in a timedependent manner. Conclusion: Curcumin could significantly inhibit the growth of human ovarian cancer cells;inducing apoptosis through up-regulating Caspase-3 and down-regulating gene expression of NF-κB is probably one of its molecular mechanisms.

  17. Methyl anthranilate and γ-decalactone inhibit strawberry pathogen growth and achene Germination.

    Science.gov (United States)

    Chambers, Alan H; Evans, Shane Alan; Folta, Kevin M

    2013-12-26

    Plant volatile compounds have been shown to affect microbial growth and seed germination. Here two fruity volatiles found in strawberry ( Fragaria × ananassa ), γ-decalactone ("peachlike" aroma) and methyl anthranilate ("grapelike" aroma), were tested for effects on relevant pathogens and seedling emergence. Significant growth reduction was observed for Botrytis cinerea , Colletotrichum gloeosporioides , Colletotrichum acutatum , Phomopsis obscurans , and Gnomonia fragariae at 1 mM γ-decalactone or methyl anthranilate, and 5 mM γ-decalactone or methyl anthranilate supplemented medium resulted in complete cessation of fungal growth. Phytophthora cactorum was especially sensitive to 1 mM γ-decalactone, showing complete growth inhibition. Bacteriostatic effects were observed in Xanthamonas cultures. Postharvest infestations on store-bought strawberries were inhibited with volatile treatment. The γ-decalactone volatile inhibited strawberry and Arabidopsis thaliana germination. These findings show that two compounds contributing to strawberry flavor may also contribute to shelf life and suggest that γ-decalactone may play an ecological role by preventing premature germination. PMID:24328200

  18. Glyphosate impacts on polyphenolic composition in grapevine (Vitis vinifera L.) berries and wine.

    Science.gov (United States)

    Donnini, Silvia; Tessarin, Paola; Ribera-Fonseca, Alejandra; Di Foggia, Michele; Parpinello, Giuseppina Paola; Rombolà, Adamo Domenico

    2016-12-15

    Glyphosate is the most widespread herbicide for weed management, being extensively used in viticulture. In this study we tested, under field conditions, the effects of glyphosate applications on the quality of berry and wine, from cv. Ancellotta (Vitis vinifera L.), with particular regard to anthocyanin concentration and composition. Ripening and growth were monitored by analyzing berry technological parameters and weight. Additionally, microvinifications were performed, in order to analyze the concentration of anthocyanins, other flavonoids and phenolic acids in wine. Our findings indicated that, at harvest, both pH and anthocyanin concentration were significantly lower and titratable acidity higher in berries collected from vines of plots under glyphosate-treatment compared with those of non-treated parcels. Data suggest that treatment with glyphosate did not change the concentration of anthocyanins, other flavonoids and phenolic acids in the wine. Our results indicate that treatment with glyphosate may affect fruit metabolism and nutritional value in non-target plants. PMID:27451151

  19. Feeding inhibition explains effects of imidacloprid on the growth, maturation, reproduction, and survival of Daphnia magna.

    Science.gov (United States)

    Agatz, Annika; Cole, Tabatha A; Preuss, Thomas G; Zimmer, Elke; Brown, Colin D

    2013-03-19

    Effects of some xenobiotics on aquatic organisms might not be caused directly by the compound but rather arise from acclimation of the organism to stress invoked by feeding inhibition during exposure. Experiments were conducted to identify effects of imidacloprid on individual performance (feeding, growth, maturation, reproduction, and survival) of Daphnia magna under surplus and reduced food availability. Concentrations inhibiting feeding by 5, 50, and 95% after one day of exposure were 0.19, 1.83, and 8.70 mg/L, respectively. Exposure with imidacloprid at ≥ 3.7 mg/L reduced growth by up to 53 ± 11% within one week. Surplus food availability after inhibition allowed recovery from this growth inhibition, whereas limited food supply eliminated the potential for recovery in growth even for exposure at 0.15 mg/L. A shift in the distribution of individual energy reserves toward reproduction rather than growth resulted in increased reproduction after exposure to concentrations ≤ 0.4 mg/L. Exposure to imidacloprid at ≥ 4.0 mg/L overwhelmed this adaptive response and reduced reproduction by up to 57%. We used the individual based Daphnia magna population model IDamP as a virtual laboratory to demonstrate that only feeding was affected by imidacloprid, and that in turn this caused the other impacts on individual performance. Consideration of end points individually would have led to a different interpretation of the effects. Thus, we demonstrate how multiple lines of evidence linked by understanding the ecology of the organism are necessary to elucidate xenobiotic impacts along the effect cascade. PMID:23425205

  20. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA

    International Nuclear Information System (INIS)

    Highlights: • miR-375 is downregulated in colorectal cancer cell lines and tissues. • miR-375 inhibits colorectal cancer cell growth by targeting PIK3CA. • miR-375 inhibits colorectal cancer cell growth in xenograft nude mice model. - Abstract: Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normal human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway

  1. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles.

    Science.gov (United States)

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G; Flaws, Jodi A

    2016-02-15

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36μM) for 18-96h. Every 24h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96h, and the expression of cell cycle regulators at 18h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. PMID:26792615

  2. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yihui [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Tang, Qingchao [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China); Li, Mingqi; Jiang, Shixiong [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Wang, Xishan, E-mail: wxshan12081@163.com [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China)

    2014-02-07

    Highlights: • miR-375 is downregulated in colorectal cancer cell lines and tissues. • miR-375 inhibits colorectal cancer cell growth by targeting PIK3CA. • miR-375 inhibits colorectal cancer cell growth in xenograft nude mice model. - Abstract: Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normal human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway.

  3. Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis.

    Science.gov (United States)

    Liu, B; Lee, K-W; Anzo, M; Zhang, B; Zi, X; Tao, Y; Shiry, L; Pollak, M; Lin, S; Cohen, P

    2007-03-15

    Insulin-like growth factor-binding protein-3 (IGFBP-3) is a multifunctional protein that induces apoptosis utilizing both insulin-like growth factor receptor (IGF)-dependent and -independent mechanisms. We investigated the effects of IGFBP-3 on tumor growth and angiogenesis utilizing a human CaP xenograft model in severe-combined immunodeficiency mice. A 16-day course of IGFBP-3 injections reduced tumor size and increased apoptosis and also led to a reduction in the number of vessels stained with CD31. In vitro, IGFBP-3 inhibited both vascular endothelial growth factor- and IGF-stimulated human umbilical vein endothelial cells vascular network formation in a matrigel assay. This action is primarily IGF independent as shown by studies utilizing the non-IGFBP-binding IGF-1 analog Long-R3. Additionally, we used a fibroblast growth factor-enriched matrigel-plug assay and chick allantoic membrane assays to show that IGFBP-3 has potent antiangiogenic actions in vivo. Finally, overexpression of IGFBP-3 or the non-IGF-binding GGG-IGFBP-3 mutant in Zebrafish embryos confirmed that both IGFBP-3 and the non-IGF-binding mutant inhibited vessel formation in vivo, indicating that the antiangiogenic effect of IGFBP-3 is an IGF-independent phenomenon. Together, these studies provide the first evidence that IGFBP-3 has direct, IGF-independent inhibitory effects on angiogenesis providing an additional mechanism by which it exerts its tumor suppressive effects and further supporting its development for clinical use in the therapy of patients with prostate cancer. PMID:16983336

  4. Inhibition of 125I-epidermal growth factor binding to cultured keratinocytes by antiproliferative molecules gamma interferon, cyclosporin A, and transforming growth factor-beta

    International Nuclear Information System (INIS)

    The growth of cultured human keratinocytes (KC) is inhibited by gamma interferon (IFN-gamma), cyclosporin A and transforming growth factor-beta, but not by tumor necrosis factor. When these antiproliferative molecules were added to KC they induced a concentration and time-dependent inhibition of 125I-epidermal growth factor (I-EGF) binding. These anti-proliferative molecules primarily reduced the number of binding sites by approximately 25%-50% without affecting the binding affinity. Tumor necrosis factor did not influence the ligand binding by I-EGF. In parallel with the ability of the antiproliferative molecules to inhibit I-EGF binding, there was an increase in transforming growth factor-alpha production. These results suggest that several different antiproliferative molecules may share a common mechanism to inhibit cell growth by reducing I-EGF binding to KC

  5. Cathepsin L knockdown enhances curcumin-mediated inhibition of growth, migration, and invasion of glioma cells.

    Science.gov (United States)

    Fei, Yao; Xiong, Yajie; Zhao, Yifan; Wang, Wenjuan; Han, Meilin; Wang, Long; Tan, Caihong; Liang, Zhongqin

    2016-09-01

    Curcumin can be used to prevent and treat cancer. However, its exact underlying molecular mechanisms remain poorly understood. Cathepsin L, a lysosomal cysteine protease, is overexpressed in several cancer types. This study aimed to determine the role of cathepsin L in curcumin-mediated inhibition of growth, migration, and invasion of glioma cells. Results revealed that the activity of cathepsin L was enhanced in curcumin-treated glioma cells. Cathepsin L knockdown induced by RNA interference significantly promoted curcumin-induced cytotoxicity, apoptosis, and cell cycle arrest. The knockdown also inhibited the migration and invasion of glioma cells. Our results suggested that the inhibition of cathepsin L can enhance the sensitivity of glioma cells to curcumin. Therefore, cathepsin L may be a new target to enhance the efficacy of curcumin against cancers. PMID:27373979

  6. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    International Nuclear Information System (INIS)

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with 125I and thyroxine; the subsequent release of 125I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse

  7. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  8. A novel antiangiogenic peptide derived from hepatocyte growth factor inhibits neovascularization in vitro and in vivo

    OpenAIRE

    Xu, Yi; Zhao, Hui; Zheng, Ying; Gu, Qing; Ma, Jianxing; Xu, Xun

    2010-01-01

    Purpose To study the antiangiogenic activity of two small peptides (H-RN and H-FT) derived from the hepatocyte growth factor kringle 1 domain (HGF K1) using in vitro and in vivo assays. Methods RF/6A rhesus macaque choroid-retina endothelial cells were used for in vitro studies. The inhibiting effect of two peptides on a vascular endothelial growth factor (VEGF)-stimulated cell proliferation, cell migration, and endothelial cell tube formation were investigated. For in vivo assays, the antian...

  9. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David; Sapra, Puja; Westergaard, Majken; Frydenlund, Henrik F; Albaek, Charlotte; Schrøder, Henrik; Ørum, Henrik

    2008-01-01

    pathways, is associated with poor prognosis in many types of cancer. Therefore, down-regulation of HIF-1alpha protein by RNA antagonists may control cancer growth. EZN-2968 is a RNA antagonist composed of third-generation oligonucleotide, locked nucleic acid, technology that specifically binds and inhibits......-regulation of endogenous HIF-1alpha and vascular endothelial growth factor in the liver. The effect can last for days after administration of single dose of EZN-2968 and is associated with long residence time of locked nucleic acid in certain tissues. In efficacy studies, tumor reduction was found in nude mice...

  10. Effect of mineral nutrients on the growth inhibition of rice seedlings by technetium-99

    International Nuclear Information System (INIS)

    This paper concerns to the characteristic behaviors of technetium-99 (99Tc) for the plant growth under different nutritional conditions. Under a rich condition 2.0 ppm of element technetium inhibits hardly the growth of rice seedlings. However, its absorption by plant increased steadily with the increase of technetium concentration and contact time with technetium. As the element technetium is selectively retained by the thyroid glands, salivary gland, and stomach, from the viewpoint of health physics the release of this nuclide to the environment must be controlled. (author)

  11. Growth inhibiting effects of terazosin on androgen-independent prostate cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    许克新; 王向红; 凌明达; 王云川

    2003-01-01

    Objective To study the effects of an α1-adrenoceptor antagonist, terazosin on the androgen-independent prostate cancer cell lines PC-3 and DU145.Methods Two androgen independent cell lines, PC-3 and DU145, were used to determine cell viability, colony-forming ability, as well as cell cycle distribution, after exposure to terazosin. Western blot analysis was used to determine the expression of p21WAF1 and p27KIP1.Results This study shows that terazosin inhibits not only prostate cancer cell growth but also its colony forming ability, both of which are main targets of clinical treatment. In addition, terazosin is shown to inhibit cell growth through G1 phase cell cycle arrest and the up-regulation of p27KIP1.Conclusion This study provides evidence that the α1-adrenoceptor antagonist terazosin may have therapeutic potential in the treatment of advanced hormone refractory prostate cancer.

  12. Constitutive SOCS-3 expression protects T-cell lymphoma against growth inhibition by IFNalpha

    DEFF Research Database (Denmark)

    Brender, C; Lovato, P; Sommer, V H;

    2005-01-01

    Signal transducer and activator of transcription (Stat)3 is constitutively activated in cutaneous T-cell lymphoma (CTCL), where it protects tumour cells against apoptosis. The constitutive activation of Stat3 leads to a constitutive expression of suppressor of cytokine signalling (SOCS)-3. In...... healthy cells, SOCS-3 is transiently expressed following cytokine stimulation and functions as a negative feedback inhibitor of the Stat3-activating kinases. Here, we attempt to resolve the apparent paradox of a simultaneous SOCS-3 expression and Stat3 activation in the same cells. We show that (i) SOCS-3...... expression in tumour cells is equal to or higher than in cytokine-stimulated nonmalignant T cells, (ii) SOCS-3 is not mutated in CTCL, (iii) overexpression of SOCS-3 blocks IFNalpha-mediated growth inhibition without affecting Stat3 activation, growth, and apoptosis, and (iv) inhibition of SOCS-3 by a...

  13. The effects of dyadic combinations of endodontic medicaments on microbial growth inhibition.

    Science.gov (United States)

    Seow, W K

    1990-01-01

    In recent years dyadic combinations of endodontic medicaments have been used increasingly in clinical pediatric dentistry with little regard to the possibility of pharmacological antagonism of the components. In this investigation, a microbial growth inhibition assay was used to determine changes in antimicrobial activity in dyadic mixtures of endodontic medicaments. The combinations assayed were Ledermix (corticosteroid-antibiotic) and Calyxl (calcium hydroxide), Ledermix and Kri (iodoform), Kri and Calyxl, and formocresol and eugenol. All these compounds have antibacterial activity when used individually. In the dyadic combinations assayed, results showed that adding calcium hydroxide to another antibiotic preparation has deleterious effects on growth inhibition, and combining any two antimicrobial medicaments produces no additive or synergistic effects. It is concluded that it may be clinically advantageous to use endodontic medicaments in the dyadic combinations shown in this investigation. PMID:2128893

  14. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    International Nuclear Information System (INIS)

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2−/− mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC

  15. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Song; Thapa, Ruby; Chi, Zhexu [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Xiu Jun [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Tang, Xiuwen, E-mail: xiuwentang@zju.edu.cn [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China)

    2014-05-16

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2{sup −/−} mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.

  16. Downregulation of survivin by RNAi inhibits growth of human gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Guo-Ying Miao; Qi-Ming Lu; Xiu-Lan Zhang

    2007-01-01

    AIM: To investigate the inhibitory effect of a specific small survivin interfering RNA (siRNA) on cell proliferation and the expression of survivin in human gastric carcinoma cell line SGC-7901.METHODS: To knockdown survivin expression, a small interfering RNA targeting against survivin was synthesized and transfected into SGC-7901 cells with lipofectamineTM2000. The downregulation of survivin expression at both mRNA and protein levels were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Cell proliferation inhibition rates were determined by methyl thiazolyl tetrazolium (MTT) assay. The effect of survivin siRNA on cell cycle distribution and cell apoptosis was determined by flow cytometry (FCM).RESULTS: RNA interference could efficiently suppress the survivin expression in SGC-7901 cells. At 48 h after transfection, the expression inhibition rate was 44.52% at mRNA level detected by RT-PCR and 40.17% at protein level by Western blot analysis. Downregulation of survivin resulted in significant inhibition of tumor cell growth in vitro. The cell proliferation inhibition rates at 24, 48 and 72 h after survivin siRNA and non-siliencing siRNA transfection, were 34.06%, 47.61% and 40.36%,respectively. The apoptosis rate was 3.56% and the number of cells was increased in G0/G1 phase from 38.2% to 88.6%, and decreased in S and G2/M phase at 48 h after transfection.CONCLUSION: Downregulation of survivin results in significant inhibition of tumor growth in vitro. The inhibition of survivin expression can induce apoptosis of SGC-7901 cells. The use of survivin siRNA deserves further investigation as a novel approach to cancer therapy.

  17. Northern berries are superfruits - how to increase consumption and appreciation?

    OpenAIRE

    Tahvonen, Raija

    2010-01-01

    Health effects of Northern berries have been studied intensively already for years. Different berries show different health effects. Beneficial effects have been found in weight management, glucose metabolism, liver and eye health, immune function, oxidative metabolism (cancer prevention) and lipid metabolism. However, results of different studies are unanimous due to differences in test materials (whole berries / different berry fractions) and methods (in vitro studies, cell s...

  18. Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma

    OpenAIRE

    J. Hu; Dong, A.; Fernandez-Ruiz, V. (Verónica); Shan, J.; Kawa, M. (Milosz); Martinez-Anso, E. (Eduardo); J. Prieto; Qian, C

    2009-01-01

    Aberrant activation of Wnt signaling plays an important role in hepatocarcinogenesis. In addition to direct effects on tumor cells, Wnt signaling might be involved in the organization of tumor microenvironment. In this study, we have explored whether Wnt signaling blockade by exogenous expression of Wnt antagonists could inhibit tumor angiogenesis and control tumor growth. Human Wnt inhibitory factor 1 (WIF1) and secreted frizzled-related protein 1 (sFRP1) were each fused with Fc fragment of ...

  19. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    OpenAIRE

    Jiang, Wen-guo; Lu, Xin-an; Shang, Bo-yang; Fu, Yan; ZHANG, SHENG-HUA; Zhou, Daifu; Liang LI; Li, Yi; Luo, Yongzhang; ZHEN, YONG-SU

    2013-01-01

    Background Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. The...

  20. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine

    OpenAIRE

    Jorge Mansur Medina; Juliany Cola Fernandes Rodrigues; Moreira, Otacilio C.; Geórgia Atella; Wanderley de Souza; Hector Barrabin

    2015-01-01

    Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabi...

  1. Furfural Inhibits Growth by Limiting Sulfur Assimilation in Ethanologenic Escherichia coli Strain LY180▿

    OpenAIRE

    Miller, Elliot N.; Jarboe, Laura R.; Turner, Peter C.; Pharkya, Priti; Yomano, Lorraine P.; York, Sean W.; Nunn, David; Shanmugam, K. T.; Lonnie O. Ingram

    2009-01-01

    A wide variety of commercial products can be potentially made from monomeric sugars produced by the dilute acid hydrolysis of lignocellulosic biomass. However, this process is accompanied by side products such as furfural that hinder microbial growth and fermentation. To investigate the mechanism of furfural inhibition, mRNA microarrays of an ethanologenic strain of Escherichia coli (LY180) were compared immediately prior to and 15 min after a moderate furfural challenge. Expression of genes ...

  2. Lentivirus-mediated LIGHT overexpression inhibits human colorectal carcinoma cell growth in vitro and in vivo

    OpenAIRE

    Wang, Haibo; Yu, Zhuang; LIU, SHIHAI; Liu, Xiangping; Sui, Aihua; YAO, RUYONG; Luo, Zheng; LI, CHUANZHI

    2013-01-01

    Human LIGHT (lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells) is the 14th member of the tumor necrosis factor (TNF) superfamily and is therefore also known as TNFSF14. LIGHT has been proven to be a multifunctional molecule affecting cell proliferation, differentiation and a number of other biological processes, in particular, cell growth inhibition. However, the expression and molecular mechanisms of the LIGHT gene in huma...

  3. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo

    OpenAIRE

    Olson James M; Fawcett Paul T; Maduskuie Victoria; Krauthauser Candice; Lee Seung; Rajasekaran Sigrid A

    2011-01-01

    Abstract Background Medulloblastoma is the most common brain tumor in children, and its prognosis is worse than for many other common pediatric cancers. Survivors undergoing treatment suffer from serious therapy-related side effects. Thus, it is imperative to identify safer, effective treatments for medulloblastoma. In this study we evaluated the anti-cancer potential of curcumin in medulloblastoma by testing its ability to induce apoptosis and inhibit tumor growth in vitro and in vivo using ...

  4. Growth Inhibition and Membrane Permeabilization of Candida lusitaniae Using Varied Pulse Shape Electroporation

    OpenAIRE

    Novickij, V; Grainys, A.; E. Lastauskienė; R. Kananavičiūtė; Pamedytytė, D.; Zinkevičienė, A.; L. Kalėdienė; Novickij, J.; Paškevičius, A.; Švedienė, J.

    2015-01-01

    Candida lusitaniae is an opportunistic yeast pathogen, which can readily develop resistance to antifungal compounds and result in a complex long-term treatment. The efficient treatment is difficult since structure and metabolic properties of the fungal cells are similar to those of eukaryotic host. One of the potential methods to improve the inhibition rate or the cell permeability to inhibitors is the application of electroporation. In this work we investigated the dynamics of the growth inh...

  5. INHIBITION OF ANGIOSTATIN TO THE GROWTH AND METASTASIS OF GASTRIC CANCER IN NUDE MICE

    Institute of Scientific and Technical Information of China (English)

    刘炳亚; 陈雪华; 朱正纲; 林言箴; 卢伟新; 郭礼和; 朱丽华

    2002-01-01

    Objective To study the inhibition effect on tumor angiogenesis and metastasis of angiostatin, which generated from human plasminogen. Methods Plasminogen was isolated from human plasma by Sepharose chromatography and then catalyzed by elastase. Angiostatin was isolated by Sepharose 4B-Lysine chromatography. Nude mice model of metastatic gastric cancer was set up by intact tumor tissue implantation orthotopically. From the day of operation, mice received daily intraperitoneal injections of human angiostatin ,intact plasminogen, or saline, respectively. 24μg(1.2mg/kg) of angiostatin or plasminogen was given on the day of operation, followed by a daily dose of 12μg (O. 6mg/kg) via intraperitoneal injection for three weeks.Ten weeks after implantation, mice were sacrificed and autopsied. Microvascular density was measured by immunohistochemistry. Results Molecular weight of plasminogen isolated from plasma was 94KD. Plasminogen was catalyzed into two fragment peptides by elastase, which were 41 ~ 43KD and 51 ~ 53KD in molecular weight. Growth of the orthotopieally implanted tumor was significantly reduced in size in the mice treated with angiostastin with an inhibition rate of 54.0%. Tumor metastasis to the liver and peritoneum was also significantly inhibited by angiostatin with inhibition rate of 61.9% and 55.6% respectively. The microvaseular density was also decreased significantly in the angiostatin treated mice. Conclusion Angiostatin may be generated from plasma, and has inhibitory effect both on tumor growth and metastasis in nude mice model of human gastric cancer.

  6. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53-/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53-/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  7. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  8. Methylthioadenosine (MTA) inhibits melanoma cell proliferation and in vivo tumor growth

    International Nuclear Information System (INIS)

    Melanoma is the most deadly form of skin cancer without effective treatment. Methylthioadenosine (MTA) is a naturally occurring nucleoside with differential effects on normal and transformed cells. MTA has been widely demonstrated to promote anti-proliferative and pro-apoptotic responses in different cell types. In this study we have assessed the therapeutic potential of MTA in melanoma treatment. To investigate the therapeutic potential of MTA we performed in vitro proliferation and viability assays using six different mouse and human melanoma cell lines wild type for RAS and BRAF or harboring different mutations in RAS pathway. We also have tested its therapeutic capabilities in vivo in a xenograft mouse melanoma model and using variety of molecular techniques and tissue culture we investigated its anti-proliferative and pro-apoptotic properties. In vitro experiments showed that MTA treatment inhibited melanoma cell proliferation and viability in a dose dependent manner, where BRAF mutant melanoma cell lines appear to be more sensitive. Importantly, MTA was effective inhibiting in vivo tumor growth. The molecular analysis of tumor samples and in vitro experiments indicated that MTA induces cytostatic rather than pro-apoptotic effects inhibiting the phosphorylation of Akt and S6 ribosomal protein and inducing the down-regulation of cyclin D1. MTA inhibits melanoma cell proliferation and in vivo tumor growth particularly in BRAF mutant melanoma cells. These data reveal a naturally occurring drug potentially useful for melanoma treatment

  9. Inhibition of hydroxyapatite growth by casein, a potential salivary phosphoprotein homologue.

    Science.gov (United States)

    Romero, Maria J R H; Nakashima, Syozi; Nikaido, Toru; Ichinose, Shizuko; Sadr, Alireza; Tagami, Junji

    2015-08-01

    Salivary phosphoproteins are essential in tooth mineral regulation but are often overlooked in vitro. This study aimed to evaluate the effect of casein, as a salivary phosphoprotein homologue, on the deposition and growth of hydroxyapatite (HA) on tooth surfaces. Hydroxyapatite growth was quantified using seeded crystal systems. Artificial saliva (AS) containing HA powder and 0, 10, 20, 50, or 100 μg ml(-1) of casein, or 100 μg ml(-1) of dephosphorylated casein (Dcasein), was incubated for 0-8 h at 37°C, pH 7.2. Calcium concentrations were measured using atomic absorption spectroscopy (AAS). Surface precipitation of HA on bovine enamel and dentine blocks, incubated in similar conditions for 7 d, was examined using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) with selected area electron diffraction (SAED). Casein adsorption was assessed using modified Lowry assays and zeta-potential measurements. The AAS results revealed a concentration-dependent inhibition of calcium consumption. Hydroxyapatite precipitation occurred when no casein was present, whereas precipitation of HA was apparently completely inhibited in casein-containing groups. Adsorption data demonstrated increasingly negative zeta-potential with increased casein concentration and an affinity constant similar to proline-rich proteins with Langmuir modelling. Casein inhibited the deposition and growth of HA primarily through the binding of esterized phosphate to HA active sites, indicating its potential as a mineral-regulating salivary phosphoprotein homologue in vitro. PMID:26083784

  10. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    International Nuclear Information System (INIS)

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI50) concentration of 2.35 μM. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.

  11. Ultrasound-mediated interferon β gene transfection inhibits growth of malignant melanoma

    International Nuclear Information System (INIS)

    Highlights: → Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-β genes both in vitro and in vivo. → Ultrasound-mediated IFN-β transfection inhibited proliferation of melanoma cells in vitro. → Ultrasound-mediated IFN-β transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  12. Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth

    Science.gov (United States)

    Polet, Florence; Corbet, Cyril; Pinto, Adan; Rubio, Laila Illan; Martherus, Ruben; Bol, Vanesa; Drozak, Xavier; Grégoire, Vincent; Riant, Olivier; Feron, Olivier

    2016-01-01

    Leukemia cells are described as a prototype of glucose-consuming cells with a high turnover rate. The role of glutamine in fueling the tricarboxylic acid cycle of leukemia cells was however recently identified confirming its status of major anaplerotic precursor in solid tumors. Here we examined whether glutamine metabolism could represent a therapeutic target in leukemia cells and whether resistance to this strategy could arise. We found that glutamine deprivation inhibited leukemia cell growth but also led to a glucose-independent adaptation maintaining cell survival. A proteomic study revealed that glutamine withdrawal induced the upregulation of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT), two enzymes of the serine pathway. We further documented that both exogenous and endogenous serine were critical for leukemia cell growth and contributed to cell regrowth following glutamine deprivation. Increase in oxidative stress upon inhibition of glutamine metabolism was identified as the trigger of the upregulation of PHGDH. Finally, we showed that PHGDH silencing in vitro and the use of serine-free diet in vivo inhibited leukemia cell growth, an effect further increased when glutamine metabolism was blocked. In conclusion, this study identified serine as a key pro-survival actor that needs to be handled to sensitize leukemia cells to glutamine-targeting modalities. PMID:26625201

  13. SL-01, an oral derivative of gemcitabine, inhibited human breast cancer growth through induction of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Qin, Yi-Zhuo; Wang, Rui-Qi [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China); Li, Wen-Bao, E-mail: wbli92128@yahoo.com [Sanlugen PharmaTech, Rm 506, No. 2766 Yingxiu Road, Jinan 250101 (China); Qu, Xian-Jun, E-mail: qxj@sdu.edu.cn [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China)

    2013-08-23

    Highlights: •SL-01 is an oral derivative of gemcitabine. •SL-01 possessed activity against human breast cancer growth via apoptotic induction. •SL-01’s activity was more potently than that of gemcitabine. •SL-01 inhibited cancer growth without toxicity to mice. -- Abstract: SL-01 is an oral derivative of gemcitabine that was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl) pyrazine-2-carbonyl at N4-position on cytidine ring of gemcitabine. We aimed to evaluate the efficacy of SL-01 on human breast cancer growth. SL-01 significantly inhibited MCF-7 proliferation as estimated by colorimetric assay. Flow cytometry assay indicated the apoptotic induction and cell cycle arrest in G1 phase. SL-01 modulated the expressions of p-ATM, p53 and p21 and decrease of cyclin D1 in MCF-7 cells. Further experiments were performed in a MCF-7 xenografts mouse model. SL-01 by oral administration strongly inhibited MCF-7 xenografts growth. This effect of SL-01 might arise from its roles in the induction of apoptosis. Immunohistochemistry assay showed the increase of TUNEL staining cells. Western blotting indicated the modulation of apoptotic proteins in SL-01-treated xenografts. During the course of study, there was no evidence of toxicity to mice. In contrast, the decrease of neutrophil cells in peripheral and increase of AST and ALT levels in serum were observed in the gemcitabine-treated mice. Conclusion: SL-01 possessed similar activity against human breast cancer growth with gemcitabine, whereas, with lower toxicity to gemcitabine. SL-01 is a potent oral agent that may supplant the use of gemcitabine.

  14. Human keloid cell characterization and inhibition of growth with human Wharton's jelly stem cell extracts.

    Science.gov (United States)

    Fong, Chui-Yee; Biswas, Arijit; Subramanian, Arjunan; Srinivasan, Akshaya; Choolani, Mahesh; Bongso, Ariff

    2014-05-01

    Keloids are firm rubbery growths that grow beyond the boundaries of human wounds and their treatment has met with limited success. Their properties and growth behavior have not been properly characterized and it has been suggested that a benign neoplastic stem cell-like phenotype in an altered cytokine microenvironment drives their uncontrolled cell proliferation. Modification of the stem cell niche may be an attractive approach to its prevention. We studied the growth behavior, stemness, and tumorigenic characteristics of keloid cells in prolonged culture. Since human Wharton's jelly stem cells (hWJSCs) secrete high levels of cytokines and have anti-tumorigenic properties we explored its role on the inhibition of keloid growth in vitro. Keloid cells grew readily in both adherent and sphere culture and expressed high levels of mesenchymal CD and tumor-associated fibroblast (TAF) markers up to passage 10. When they were exposed to repeat doses of hWJSC conditioned medium (hWJSC-CM) and lysate (hWJSC-CL) every 72 h up to 9 days their growth was inhibited with a reduction in CD and TAF marker expression. On Days 3, 6, and 9 treated keloid cells showed linear decreases in cell proliferation (BrdU), increases in Annexin V-FITC and TUNEL-positive cells, interruptions of the cell cycle and inhibition of migration in scratch-wound assays. Immunocytochemistry and qRT-PCR confirmed a significant downregulation of TAF and anti-apoptotic-related gene (SURVIVIN) expression and upregulation of autophagy-related (BAX, ATG5, ATG7, BECLIN-1) gene expression. The results suggest that hWJSCs or molecules secreted by them may be of therapeutic value in the treatment of keloids. PMID:24265231

  15. SL-01, an oral derivative of gemcitabine, inhibited human breast cancer growth through induction of apoptosis

    International Nuclear Information System (INIS)

    Highlights: •SL-01 is an oral derivative of gemcitabine. •SL-01 possessed activity against human breast cancer growth via apoptotic induction. •SL-01’s activity was more potently than that of gemcitabine. •SL-01 inhibited cancer growth without toxicity to mice. -- Abstract: SL-01 is an oral derivative of gemcitabine that was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl) pyrazine-2-carbonyl at N4-position on cytidine ring of gemcitabine. We aimed to evaluate the efficacy of SL-01 on human breast cancer growth. SL-01 significantly inhibited MCF-7 proliferation as estimated by colorimetric assay. Flow cytometry assay indicated the apoptotic induction and cell cycle arrest in G1 phase. SL-01 modulated the expressions of p-ATM, p53 and p21 and decrease of cyclin D1 in MCF-7 cells. Further experiments were performed in a MCF-7 xenografts mouse model. SL-01 by oral administration strongly inhibited MCF-7 xenografts growth. This effect of SL-01 might arise from its roles in the induction of apoptosis. Immunohistochemistry assay showed the increase of TUNEL staining cells. Western blotting indicated the modulation of apoptotic proteins in SL-01-treated xenografts. During the course of study, there was no evidence of toxicity to mice. In contrast, the decrease of neutrophil cells in peripheral and increase of AST and ALT levels in serum were observed in the gemcitabine-treated mice. Conclusion: SL-01 possessed similar activity against human breast cancer growth with gemcitabine, whereas, with lower toxicity to gemcitabine. SL-01 is a potent oral agent that may supplant the use of gemcitabine

  16. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    International Nuclear Information System (INIS)

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE-/-) versus wild type (AChE+/+) mice indicated that while these OPs inhibited axonal growth in AChE+/+ DRG neurons, they had no effect on axonal growth in AChE-/- DRG neurons. However, transfection of AChE-/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs

  17. Tracing and inhibiting growth of Staphylococcus aureus in barbecue cheese production after product recall.

    Science.gov (United States)

    Johler, S; Zurfluh, K; Stephan, R

    2016-05-01

    Staphylococcal food poisoning is one of the most prevalent causes of foodborne intoxication worldwide. It is caused by ingestion of enterotoxins formed by Staphylococcus aureus during growth in the food matrix. Following a recall of barbecue cheese due to the detection of staphylococcal enterotoxins in Switzerland in July 2015, we analyzed the production process of the respective dairy. Although most cheese-making processes involve acidification to inhibit the growth of pathogenic bacteria, barbecue cheese has to maintain a pH >6.0 to prevent undesired melting of the cheese. In addition, the dairy decided to retain the traditional manual production process of the barbecue cheese. In this study, therefore, we aimed to (1) trace Staph. aureus along the barbecue cheese production process, and (2) develop a sustainable strategy to inhibit growth of Staph. aureus and decrease the risk of staphylococcal food poisoning without changing the traditional production process. To this end, we traced Staph. aureus in a step-wise blinded process analysis on 4 different production days using spa (Staphylococcus protein A gene) typing, DNA microarray profiling, and pulsed-field gel electrophoresis analysis. We subsequently selected a new starter culture and used a model cheese production including a challenge test assay to assess its antagonistic effect on Staph. aureus growth, as well as its sensory and technological implications. We detected Staph. aureus in 30% (37/124) of the collected samples taken from the barbecue cheese production at the dairy. This included detection of Staph. aureus in the final product on all 4 production days, either after enrichment or using quantitative detection. We traced 2 enterotoxigenic Staph. aureus strains (t073/CC45 and t282/CC45) colonizing the nasal cavity and the forearms of the cheesemakers to the final product. In the challenge test assay, we were able to show that the new starter culture inhibited growth of Staph. aureus while meeting

  18. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth.

    Science.gov (United States)

    McGuffie, Matthew J; Hong, Jin; Bahng, Joong Hwan; Glynos, Emmanouil; Green, Peter F; Kotov, Nicholas A; Younger, John G; VanEpps, J Scott

    2016-01-01

    Despite a decade of engineering and process improvements, bacterial infection remains the primary threat to implanted medical devices. Zinc oxide nanoparticles (ZnO-NPs) have demonstrated antimicrobial properties. Their microbial selectivity, stability, ease of production, and low cost make them attractive alternatives to silver NPs or antimicrobial peptides. Here we sought to (1) determine the relative efficacy of ZnO-NPs on planktonic growth of medically relevant pathogens; (2) establish the role of bacterial surface chemistry on ZnO-NP effectiveness; (3) evaluate NP shape as a factor in the dose-response; and (4) evaluate layer-by-layer (LBL) ZnO-NP surface coatings on biofilm growth. ZnO-NPs inhibited bacterial growth in a shape-dependent manner not previously seen or predicted. Pyramid shaped particles were the most effective and contrary to previous work, larger particles were more effective than smaller particles. Differential susceptibility of pathogens may be related to their surface hydrophobicity. LBL ZnO-NO coatings reduced staphylococcal biofilm burden by >95%. From the Clinical Editor: The use of medical implants is widespread. However, bacterial colonization remains a major concern. In this article, the authors investigated the use of zinc oxide nanoparticles (ZnO-NPs) to prevent bacterial infection. They showed in their experiments that ZnO-NPs significantly inhibited bacterial growth. This work may present a new alternative in using ZnO-NPs in medical devices. PMID:26515755

  19. Plasmid-encoding vasostatin inhibited the growth and metastasis of human hepatocellular carcinoma cells.

    Science.gov (United States)

    Peng, Xing-Chen; Wang, Ming; Chen, Xu-Xia; Liu, Jing; Xiao, Gui-Hua; Liao, Hong-Li

    2014-10-01

    The growth and metastasis of solid tumors depends on angiogenesis. Anti-angiogenesis therapy may represent a promising therapeutic option. Vasostatin, the N-terminal domain of calreticulin, is a very potent endogenous inhibitor of angiogenesis and tumor growth. In this study, we attempted to investigate whether plasmid-encoding vasostatin complexed with cationic liposome could suppress the growth and metastasis of hepatocellular carcinoma in vivo and discover its possible mechanism of action. Apoptosis induction of pSecTag2B-vasostatin plasmid on murine endothelial cells (MS1) was examined by flow cytometric analysis in vitro. Nude mice bearing HCCLM3 tumor received pSecTag2B-vasostatin, pSecTag2B-Null, and 0.9 % NaCl solution, respectively. Tumor net weight was measured and survival time was observed. Microvessel density within tumor tissues was determined by CD31 immunohistochemistry. H&E staining of lungs and TUNEL assay of primary tumor tissues were also conducted. The results displayed that pSecTag2B-vasostatin could inhibit the growth and metastasis of hepatocellular carcinoma xenografts and prolong survival time compared with the controls in vivo. Moreover, histologic analysis revealed that pSecTag2B-vasostatin treatment increased apoptosis and inhibited angiogenesis. The present data may be of importance to the further exploration of this new anti-angiogenesis approach in the treatment of hepatocellular cancer. PMID:24997628

  20. Dynamic light scattering study of inhibition of nucleation and growth of hydroxyapatite crystals by osteopontin.

    Directory of Open Access Journals (Sweden)

    John R de Bruyn

    Full Text Available We study the effect of isoforms of osteopontin (OPN on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN, which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN's ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation.

  1. In vitro antiviral activity of a series of wild berry fruit extracts against representatives of Picorna-, Orthomyxo- and Paramyxoviridae.

    Science.gov (United States)

    Nikolaeva-Glomb, Lubomira; Mukova, Luchia; Nikolova, Nadya; Badjakov, Ilian; Dincheva, Ivayla; Kondakova, Violeta; Doumanova, Lyuba; Galabov, Angel S

    2014-01-01

    Wild berry species are known to exhibit a wide range of pharmacological activities. They have long been traditionally applied for their antiseptic, antimicrobial, cardioprotective and antioxidant properties. The aim of the present study is to reveal the potential for selective antiviral activity of total methanol extracts, as well as that of the anthocyanins and the non-anthocyanins from the following wild berries picked in Bulgaria: strawberry (Fragaria vesca L.) and raspberry (Rubus idaeus L.) of the Rosaceae plant family, and bilberry (Vaccinium myrtillis L.) and lingonberry (Vaccinium vitis-idaea L) of the Ericaceae. The antiviral effect has been tested against viruses that are important human pathogens and for which chemotherapy and/or chemoprophylaxis is indicated, namely poliovirus type 1 (PV-1) and coxsackievirus B1 (CV-B1) from the Picornaviridae virus family, human respiratory syncytial virus A2 (HRSV-A2) from the Paramyxoviridae and influenza virus A/H3N2 of Orthomyxoviridae. Wild berry fruits are freeze-dried and ground, then total methanol extracts are prepared. Further the extracts are fractioned by solid phase extraction and the non-anthocyanin and anthocyanin fractions are eluted. The in vitro antiviral effect is examined by the virus cytopathic effect (CPE) inhibition test. The results reveal that the total extracts of all tested berry fruits inhibit the replication of CV-B1 and influenza A virus. CV-B1 is inhibited to the highest degree by both bilberry and strawberry, as well as by lingonberry total extracts, and influenza A by bilberry and strawberry extracts. Anthocyanin fractions of all wild berries strongly inhibit the replication of influenza virus A/H3N2. Given the obtained results it is concluded that wild berry species are a valuable resource of antiviral substances and the present study should serve as a basis for further detailed research on the matter. PMID:24660461

  2. Dopamine receptor antagonist thioridazine inhibits tumor growth in a murine breast cancer model.

    Science.gov (United States)

    Yin, Tao; He, Sisi; Shen, Guobo; Ye, Tinghong; Guo, Fuchun; Wang, Yongsheng

    2015-09-01

    Neuropsychological factors have been shown to influence tumor progression and therapeutic response. The present study investigated the effect of the dopamine receptor antagonist thioridazine on murine breast cancer. The anti‑tumor efficacy of thioridazine was assessed using a murine breast cancer model. Cell apoptosis and proliferation were analyzed in vitro using flow cytometry (FCM) and the MTT assay, respectively. Western blot analysis was performed to assess Akt, phosphorylated (p)‑Akt, signal transducer and activator of transcription (STAT) 3, p‑STAT3 and p‑p65 in tumor cells following treatment with thioridazine. The Ki67 index and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)‑positive apoptotic cells were assessed in the tumor sections. Thioridazine was found to reduce tumor growth, inhibit tumor cell proliferation and induce apoptosis in a dose‑ and time‑dependent manner in vitro. Thioridazine was also found to markedly inhibit tumor proliferation and induce tumor cell apoptosis in vivo as shown by the lower Ki67 index and increase in TUNEL‑positive cells. In addition, thioridazine was observed to inhibit the activation of the canonical nuclear factor κ‑light‑chain‑enhancer of activated B cells pathway and exert anti‑tumor effects by remodeling the tumor stroma, as well as inhibit angiogenesis in the tumor microenvironment. In conclusion, thioridazine was found to significantly inhibit breast tumor growth and the potential for thioridazine to be used in cancer therapy may be re‑evaluated and investigated in clinical settings. PMID:26095429

  3. Exogenous growth hormone inhibits growth hormone-releasing factor-induced growth hormone secretion in normal men.

    OpenAIRE

    Rosenthal, S M; Hulse, J A; Kaplan, S L; Grumbach, M. M.

    1986-01-01

    Previous studies from this laboratory and by others in rats, monkeys, and humans support the concept that growth hormone (GH) can regulate its own secretion through an autofeedback mechanism. With the availability of human growth hormone-releasing factor (GRF), the possible existence of such a mechanism was reexplored by examining the effect of exogenous GH on the GH response induced by GRF-44-NH2 in six normal men (mean age, 32.4 yr). In all subjects the plasma GH response evoked by GRF-44-N...

  4. Growth Inhibition of Struvite Crystals in the Presence of Herbal Extract Boerhaavia diffusa Linn

    Directory of Open Access Journals (Sweden)

    C. K. Chauhan

    2009-01-01

    Full Text Available Problem statement: The formation of a urinary stone, known as nephrolithiasis, urolithiasis, renal calculi or kidney stone is a serious, debilitating problem in all societies throughout the world. Struvite or Ammonium Magnesium Phosphate Hexahydrate (AMPH is one of the components of urinary stone (calculi. Struvite stones are commonly found in women. Struvites form in humans as a result of urinary tract infection with ureolithic urea splitting micro organisms. These stones can grow rapidly forming "staghorn-calculi", which is more painful urological disorder. Therefore, it is of prime importance to study the growth and inhibition of Struvite crystals. Approach: This in vitro study had been carried out in the presence of herbal extract of Boerhaavia diffusa Linn. by using single diffusion gel growth technique. Sodium metasilicate solution of specific gravity 1.05 and an aqueous solution of ammonium dihydrogen phosphate of 0.5 M concentration were mixed so that the pH value 7.0 could be set. After the gelation, equal amount of supernatant solution of 1.0 M magnesium acetate prepared with 0.5 and 1% concentrations of the herbal extract of B. diffusa Linn. were gently poured on the set gels in the respective test tubes in the aseptic medium. Results: The growth of crystals without and with herbal extracts was monitored at regular time intervals. As the concentration of B. diffusa Linn. increased, the inhibition of crystals also increased in the gel media as well as the dissolution of crystals at the gel-liquid interface increases. The de-fragmentation of some grown crystals was also noticed. Conclusion: The herbal extract of B. diffusa Linn. inhibited the growth of struvite crystals in vitro. This study incorporated multidisciplinary interests and may be used for formulating the strategy for prevention or dissolution of urinary stones.

  5. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shu-Cheng [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Tao, Ze-Zhang, E-mail: zezhangtao@gmail.com [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China)

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  6. Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.

    Science.gov (United States)

    Fiebig, Antje; Dodd, Ian C

    2016-01-01

    Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. PMID:25950248

  7. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress

    International Nuclear Information System (INIS)

    During the last couple of decades, there has been a tremendous increase in the use of cell phones. It has significantly added to the rapidly increasing EMF smog, an unprecedented type of pollution consisting of radiation in the environment, thereby prompting the scientists to study the effects on humans. However, not many studies have been conducted to explore the effects of cell phone EMFr on growth and biochemical changes in plants. We investigated whether EMFr from cell phones inhibit growth of Vigna radiata (mung bean) through induction of conventional stress responses. Effects of cell phone EMFr (power density: 8.55 μW cm-2; 900 MHz band width; for 1/2, 1, 2, and 4 h) were determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H2O2) content, root oxidizability and changes in levels of antioxidant enzymes. Our results showed that cell phone EMFr significantly inhibited the germination (at ≥2 h), and radicle and plumule growths (≥1 h) in mung bean in a time-dependent manner. Further, cell phone EMFr enhanced MDA content (indicating lipid peroxidation), and increased H2O2 accumulation and root oxidizability in mung bean roots, thereby inducing oxidative stress and cellular damage. In response to EMFr, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases, catalases and glutathione reductases, in mung bean roots. The study concluded that cell phone EMFr inhibit root growth of mung bean by inducing ROS-generated oxidative stress despite increased activities of antioxidant enzymes.

  8. Inhibition of melanocortin 1 receptor slows melanoma growth, reduces tumor heterogeneity and increases survival.

    Science.gov (United States)

    Kansal, Rita G; McCravy, Matthew S; Basham, Jacob H; Earl, Joshua A; McMurray, Stacy L; Starner, Chelsey J; Whitt, Michael A; Albritton, Lorraine M

    2016-05-01

    Melanoma risk is increased in patients with mutations of melanocortin 1 receptor (MC1R) yet the basis for the increased risk remains unknown. Here we report in vivo evidence supporting a critical role for MC1R in regulating melanoma tumor growth and determining overall survival time. Inhibition of MC1R by its physiologically relevant competitive inhibitor, agouti signaling protein (ASIP), reduced melanin synthesis and morphological heterogeneity in murine B16-F10 melanoma cells. In the lungs of syngeneic C57BL/6 mice, mCherry-marked, ASIP-secreting lung tumors inhibited MC1R on neighboring tumors lacking ASIP in a dose dependent manner as evidenced by a proportional loss of pigment in tumors from mice injected with 1:1, 3:1 and 4:1 mixtures of parental B16-F10 to ASIP-expressing tumor cells. ASIP-expressing B16-F10 cells formed poorly pigmented tumors in vivo that correlated with a 20% longer median survival than those bearing parental B16-F10 tumors (p=0.0005). Mice injected with 1:1 mixtures also showed survival benefit (p=0.0054), whereas injection of a 4:1 mixture showed no significant difference in survival. The longer survival time of mice bearing ASIP-expressing tumors correlated with a significantly slower growth rate than parental B16-F10 tumors as judged by quantification of numbers of tumors and total tumor load (p=0.0325), as well as a more homogeneous size and morphology of ASIP-expressing lung tumors. We conclude that MC1R plays an important role in regulating melanoma growth and morphology. Persistent inhibition of MC1R provided a significant survival advantage resulting in part from slower tumor growth, establishing MC1R as a compelling new molecular target for metastatic melanoma. PMID:27028866

  9. Inhibition of C. difficile and C. perfringens by commercial and potential probiotic strains and their in-vitro growth characteristics

    DEFF Research Database (Denmark)

    Schoster, A.; Kokotovic, Branko; Permin, A.;

    2012-01-01

    growth characteristics. The objective of this study was to determine the inhibitory effect of commercial and potential probiotic on C. difficile and C. perfringens and assess their growth characteristics in-vitro. The inhibitory effect of a cell free probiotic supernatant of 17 commercial bacterial...... strains (Lactobacilli n=16, Bifidobacteria n=1) on growth of clostridia spp was assessed in an agar well diffusion assay and broth co-culture experiment, using supernatant harvested at different growth phases and with and without pH adjustment. To study growth characteristics MRS broth was adjusted to pH2...... harvested. 10/17 probiotic supernatants inhibited C. difficile in a pH dependant manner when harvested in the stationary growth phase. In the broth co-culture 5/17 probiotics inhibited C. perfringens and 10/17 inhibited C. difficile both in a pH dependant manner. All probiotic strains were able to grow at p...

  10. Inhibition of nuclear factor-kappa B differentially affects thyroid cancer cell growth, apoptosis, and invasion

    Directory of Open Access Journals (Sweden)

    Schweppe Rebecca E

    2010-05-01

    Full Text Available Abstract Background Nuclear factor-κB (NF-κB is constitutively activated in many cancers and plays a key role in promoting cell proliferation, survival, and invasion. Our understanding of NF-κB signaling in thyroid cancer, however, is limited. In this study, we have investigated the role of NF-κB signaling in thyroid cancer cell proliferation, invasion, and apoptosis using selective genetic inhibition of NF-κB in advanced thyroid cancer cell lines. Results Three pharmacologic inhibitors of NF-κB differentially inhibited growth in a panel of advanced thyroid cancer cell lines, suggesting that these NF-κB inhibitors may have off-target effects. We therefore used a selective genetic approach to inhibit NF-κB signaling by overexpression of a dominant-negative IκBα (mIκBα. These studies revealed decreased cell growth in only one of five thyroid cancer cell lines (8505C, which occurred through a block in the S-G2/M transition. Resistance to TNFα-induced apoptosis was observed in all cell lines, likely through an NF-κB-dependent mechanism. Inhibition of NF-κB by mIκBα sensitized a subset of cell lines to TNFα-induced apoptosis. Sensitive cell lines displayed sustained activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK pathway, defining a potential mechanism of response. Finally, NF-κB inhibition by mIκBα expression differentially reduced thyroid cancer cell invasion in these thyroid cancer cell lines. Sensitive cell lines demonstrated approximately a two-fold decrease in invasion, which was associated with differential expression of MMP-13. MMP-9 was reduced by mIκBα expression in all cell lines tested. Conclusions These data indicate that selective inhibition of NF-κB represents an attractive therapeutic target for the treatment of advanced thyroid. However, it is apparent that global regulation of thyroid cancer cell growth and invasion is not achieved by NF-κB signaling alone. Instead, our

  11. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway.

    Science.gov (United States)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin; Zhao, Mei; Liu, Ya-Rong; Liu, Hai-Jun; Fang, Chao; Chen, Hong-Zhuan

    2014-09-22

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. PMID:25250884

  12. Trophosome of the Deep-Sea Tubeworm Riftia pachyptila Inhibits Bacterial Growth

    Science.gov (United States)

    Klose, Julia; Aistleitner, Karin; Horn, Matthias; Krenn, Liselotte; Dirsch, Verena; Zehl, Martin; Bright, Monika

    2016-01-01

    The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm’s trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains. PMID:26730960

  13. Growth Inhibition Occurs Independently of Cell Mortality in Tomato (Solanum lycopersicum) Exposed to High Cadmium Concentrations

    Institute of Scientific and Technical Information of China (English)

    Christine Delpérée; Stanley Lutts

    2008-01-01

    In order to analyze the adaptation potential of tomato shoots to a sudden increase in Cd concentration, tomato plants (Solanum lycopersicum L. var. Ailsa Craig) were exposed under controlled environmental conditions to a high dose of this heavy metal (250 μM CdCl2>) in nutrient solution for 7 and 14 d. Both root and shoot growth was completely inhibited but all plants remained alive until the end of the treatment. Cell viability remained unaffected but the activity of the mitochondrial alternative pathway was stimulated by Cd stress at the expense of the cytochrome pathway. Cadmium concentration was higher in roots than in shoots and a decrease In the rate of net Cd translocation was noticed during the second week of stress. Cadmium decreased both leaf conductance (g1>) and chlorophyll concentration. However, the effect on net CO2 assimilation remained limited and soluble sugars accumulated in leaves. Photochemical efficiency of PSll (FvlFm) was not affected despite a decrease in the number of reaction centers and an inhibition of electron transfer to acceptors of PSII. It is concluded that tomato shoot may sustain short term exposure to high doses of cadmium despite growth inhibition. This property implies several physiological strategies linked to both avoidance and tolerance mechanisms.

  14. miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF).

    Science.gov (United States)

    Zhang, Jinqiang; Han, Chang; Zhu, Hanqing; Song, Kyoungsub; Wu, Tong

    2013-05-01

    Recent evidence has suggested an important role of miRNAs in liver biology and diseases, although the implication of miRNAs in cholangiocarcinoma remains to be defined further. This study was designed to examine the biological function and molecular mechanism of miR-101 in cholangiocarcinogenesis and tumor progression. In situ hybridization and quantitative RT-PCR were performed to determine the expression of miR-101 in human cholangiocarcinoma tissues and cell lines. Compared with noncancerous biliary epithelial cells, the expression of miR-101 is decreased in 43.5% of human cholangiocarcinoma specimens and in all three cholangiocarcinoma cell lines used in this study. Forced overexpression of miR-101 significantly inhibited cholangiocarcinoma growth in severe combined immunodeficiency mice. miR-101-overexpressed xenograft tumor tissues showed decreased capillary densities and decreased levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). The VEGF and COX-2 mRNAs were identified as the bona fide targets of miR-101 in cholangiocarcinoma cells by both computational analysis and experimental assays. miR-101 inhibits cholangiocarcinoma angiogenesis by direct targeting of VEGF mRNA 3'untranslated region and by repression of VEGF gene transcription through inhibition of COX-2. This study established a novel tumor-suppressor role of miR-101 in cholangiocarcinoma and it suggests the possibility of targeting miR-101 and related signaling pathways for future therapy. PMID:23608225

  15. Growth Inhibition of Cronobacter sakazakii in Experimentally Contaminated Powdered Infant Formula by Kefir Supernatant.

    Science.gov (United States)

    Kim, Dong-Hyeon; Chon, Jung-Whan; Kang, Il-Byeong; Kim, Hyunsook; Kim, Hong-Seok; Song, Kwang-Young; Seo, Kun-Ho

    2015-09-01

    Kefir is a type of fermented milk containing lactic and acetic acid bacteria and yeast. In this study, we evaluated the antimicrobial activity of kefir supernatant against Cronobacter sakazakii in powdered infant formula (PIF). In a spot-on-lawn test, the growth of 20 C. sakazakii strains, including 10 clinical and 10 food isolates, was completely inhibited in the presence of kefir supernatant. Significant differences in the diameters of inhibition zones were observed upon treatment with kefir compared with the results for Lactobacillus kefiri and Candida kefyr culture supernatants or solutions of lactic and acetic acid and ethyl alcohol in the agar well diffusion test (P < 0.05). The addition of 100 μl of kefir supernatant to 1 ml of nutrient broth completely inhibited the growth of C. sakazakii, as evaluated by spectrophotometry. The antimicrobial activity of kefir supernatant in experimentally contaminated PIF was also tested; we found no viable C. sakazakii cells remaining in PIF rehydrated with 30% kefir supernatant solution for 1 h, demonstrating that the antimicrobial activity of kefir supernatant against C. sakazakii could be applied in real food samples. PMID:26319718

  16. Suppression of pancreatic carcinoma growth by activating peroxisome proliferator-activated receptor γ involves angiogenesis inhibition

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Dong; Xing-Peng Wang; Kai Wu

    2009-01-01

    AIM: To study the possible actions and mechanisms of peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor, in pancreatic carcinogenesis,especially in angiogenesis.METHODS: Expressions of PPARγ and retinoid acid receptor (RXRα) were examined by reverse-transcription polymerase chain reaction (RT-PCR) with immunocytochemical staining. Pancreatic carcinoma cells, PANC-1,were treated either with 9-cis-RA, a ligand of RXRα,or with 15-deoxy-Δ12,14 prostaglandin J2(15d-PGJ2), a ligand of PPARγ, or both. Antiproliferative effect was evaluated by cell viability using methyltetrazolium (MTT) assay. A pancreatic carcinoma xenograft tumor model of nude mice was established by inoculating PANC-1 cells subcutaneously. Rosiglitazone, a specific ligand of PPARγ, was administered via water drinking in experimental group of nude mice. After 75 d, all mice were sacrificed. Expression of proliferating cell nuclear antigen (PCNA) in tumor tissue was examined with immunohistochemical staining. Expression of vascular endothelial growth factor (VEGF) mRNA in PANC-1 cells, which were treated with 15d-PGJ2 or 9-cis-RA at variousconcentrations or different duration, was detected by semi-quantitative RT-PCR. Effects of Rosiglitazone on changes of microvascular density (MVD) and VEGF expression were investigated in xenograft tumor tissue. Neovasculature was detected with immunohistochemistry staining labeled with anti-Ⅳ collagen antibody, and indicated by MVD.RESULTS: RT-PCR and immunocytochemical staining showed that PPARγ and RXRα were expressed in PANC-1 cells at both transcription level and translation level. MTT assay demonstrated that 15d-PGJ2, 9-cis-RA and their combination inhibited the growth of PANC-1 cells in a dose-dependent manner. 9-cis-RA had a combined inhibiting action with 15d-PGJ2 on the growth of pancreatic carcinoma. In vivo studies revealed that Rosiglitazone significantly suppressed the growth of pancreatic carcinoma

  17. Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition.

    Science.gov (United States)

    Karagiannidis, N; Nikolaou, N; Ipsilantis, I; Zioziou, E

    2007-12-01

    Grapevine N fertilization may affect and be affected by arbuscular mycorrhizal (AM) fungal colonization and change berry composition. We studied the effects of different N fertilizers on AM fungal grapevine root colonization and sporulation, and on grapevine growth, nutrition, and berry composition, by conducting a 3.5-year pot study supplying grapevine plants with either urea, calcium nitrate, ammonium sulfate, or ammonium nitrate. We measured the percentage of AM fungal root colonization, AM fungal sporulation, grapevine shoot dry weight and number of leaves, nutrient composition (macro- and micronutrients), and grapevine berry soluble solids (total sugars or degrees Brix) and total acidity. Urea suppressed AM fungal root colonization and sporulation. Mycorrhizal grapevine plants had higher shoot dry weight and number of leaves than non-mycorrhizal and with a higher growth response with calcium nitrate as the N source. For the macronutrients P and K, and for the micronutrient B, leaf concentration was higher in mycorrhizal plants. Non-mycorrhizal plants had higher concentration of microelements Zn, Mn, Fe, and Cu than mycorrhizal. There were no differences in soluble solids ( degrees Brix) in grapevine berries among mycorrhizal and non-mycorrhizal plants. However, non-mycorrhizal grapevine berries had higher acid content with ammonium nitrate, although they did not have better N nutrition and vegetative growth. PMID:17987325

  18. Photon Drag Effect due to Berry Curvature

    Science.gov (United States)

    Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo

    2016-08-01

    A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results.

  19. Berry Phenolics of Grapevine under Challenging Environments

    Directory of Open Access Journals (Sweden)

    Hernâni Gerós

    2013-09-01

    Full Text Available Plant phenolics have been for many years a theme of major scientific and applied interest. Grape berry phenolics contribute to organoleptic properties, color and protection against environmental challenges. Climate change has already caused significant warming in most grape-growing areas of the world, and the climatic conditions determine, to a large degree, the grape varieties that can be cultivated as well as wine quality. In particular, heat, drought and light/UV intensity severely affect phenolic metabolism and, thus, grape composition and development. In the variety Chardonnay, water stress increases the content of flavonols and decreases the expression of genes involved in biosynthesis of stilbene precursors. Also, polyphenolic profile is greatly dependent on genotype and environmental interactions. This review deals with the diversity and biosynthesis of phenolic compounds in the grape berry, from a general overview to a more detailed level, where the influence of environmental challenges on key phenolic metabolism pathways is approached. The full understanding of how and when specific phenolic compounds accumulate in the berry, and how the varietal grape berry metabolism responds to the environment is of utmost importance to adjust agricultural practices and thus, modify wine profile.

  20. CytoregR inhibits growth and proliferation of human adenocarcinoma cells via induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Hassanhi M

    2006-01-01

    Full Text Available Abstract Background Cancer is one of the devastating neovascular diseases that incapacitate so many people the world over. Recent reports from the National Cancer Institute indicate some significant gain therapy and cancer management as seen in the increase in the 5-year survival rate over the past two decades. Although near-perfect cure rate have been reported in the early-stage disease, these data reveal high recurrence rate and serious side effects including second malignancies and fatalities. Most of the currently used anticancer agents are only effective against proliferating cancer cells. Thus attention has been focused on potential anti-cancer agents capable of killing cancer cells independent of the cell cycle state, to ensure effective elimination of most cancer cells. The objective of this study was to test the chemosensitivity and potential mechanism of action of a novel cancer drug, CytoregR, in a panel of human cancer cells. Methods the study was performed using a series of bioassays including Trypan blue exclusion, MTS Growth inhibition, LDH-cytotoxicity, TUNEL-Terminal DNA fragmentation Apoptosis Assay, and the Caspase protease CPP32 activity assays. Results CytoregR induced significant dose- and time-dependent inhibition of growth in all the cells; with significant differences in chemosensitivity (P < 0.05 between the target cells becoming more apparent at 48 hr exposure. CytoregR showed no significant effect on normal cells relative to the tumor cells. Growth inhibition in all the cells was due to induction of apoptosis at lower concentrations of cytoregR (> 1:300. CytoregR-induced caspase protease-3 (CPP32 activation significantly and positively correlated with apoptosis induction and growth inhibition; thus implicating CPP32 as the principal death pathway in cytoregR-induced apoptosis. Conclusion CytoregR exerted a dose-and time-dependent growth inhibitory effect in all the target cells through induction of apoptosis via the

  1. Polar Constituents and Biological Activity of the Berry-Like Fruits from Hypericum androsaemum L.

    Science.gov (United States)

    Caprioli, Giovanni; Alunno, Alessia; Beghelli, Daniela; Bianco, Armandodoriano; Bramucci, Massimo; Frezza, Claudio; Iannarelli, Romilde; Papa, Fabrizio; Quassinti, Luana; Sagratini, Gianni; Tirillini, Bruno; Venditti, Alessandro; Vittori, Sauro; Maggi, Filippo

    2016-01-01

    Hypericum androsaemum, also known as Tutsan, is a small evergreen shrub common in the Mediterranean basin where it is traditionally used as diuretic and hepatoprotective herbal drug. This plant possesses the peculiarity to produce fleshy and berry-like fruits that ripen from red to shiny black. In the present work, the chemical constituents of methanolic extracts and infusions of red and black fruits were analyzed by HPLC, and correlated with their antioxidant properties which were evaluated by the DPPH, β-Carotene/linoleic acid, and hypochlorous acid tests. In addition, the red pigment of the fruit was isolated by column chromatography and structurally elucidated by NMR. Results showed that H. androsaemum fruits contain high amounts of shikimic and chlorogenic acids, while their color was given by a tetraoxygenated-type xanthone, reported for the first time in Hypericum species. The red berries infusion gave the highest content of total phenolic compounds, DPPH, and hypochlorous acid scavenging activity, and β-carotene bleaching. Cytotoxicity of the berries extracts on three human tumor cell lines (malignant melanoma, breast adenocarcinoma, and colon carcinoma) was evaluated by MTT assay, and relevant inhibition on colon carcinoma cells (IC50 value of 8.4 μg/mL) was found. Finally, the effects of red berries extract on the immune system were evaluated by peripheral blood mononuclear cell (PBMC) proliferation assay that revealed a strong stimulation on lymphocytes at low doses (0.4–6 μg/mL). PMID:26973675

  2. NEWEST PINK BERRY AROMATIC VINE GRAPE VARIETY – RADOST LEONIDOV

    Directory of Open Access Journals (Sweden)

    Zamanidi P. C.

    2014-12-01

    Full Text Available New wine grape flavored pink berry grape variety named “Radost Leonidov” breed at Athens Institute of Viticulture by P.Zamanidi, L.Troshin and P.Radchevskii in 2009 by crossing the new Moskhoragos Greek muscat variety with old European variety Traminer pink. According to morphological and biological characteristics, it can be assigned to Western European eco-geographical group of varieties. Strong growth of shoots (2,1-3,0 m. The extent of maturation of vines is very high (over the entire length, except for the top. Duration of production period from bud burst to harvest - 146-155 days. Productivity is high: 20-25 t / ha. The average weight of clusters is 260. Characterized by high winter hardiness, drought resistance and increased resistance to fungal diseases in comparison with the varieties of Vitis vinifera. Flower is hermaphrodite, fully developed stamens and gynoecium. Bunch is small, conical, sometimes winged, average density. Berry is small, spherical, pinkish in color, with a thick waxy coating. Peel of medium thickness, dense and durable. Pulp and juice with a strong varietal flavor, similar to the aroma of Traminer pink. Sugar content is very high: more than 24%. Cluster of the variety of Radost Leonidov at overripening is drying and stored on the bushes for a long time. The variety is intended for the production of dry white wines of excellent class, as well as highquality sparkling wines, dessert and sweet wines; suitable for the production of high-quality aromatic juices

  3. ACROPOLIS - NEWEST WINE WHITE BERRY AROMATIC GRAPE VARIETY

    Directory of Open Access Journals (Sweden)

    Zamanidi P. C.

    2014-03-01

    Full Text Available The newest aromatic wine white berry grape variety Acropolis was breeded by hybridization at the Athens Institute of Viticulture (Likovrisi, Greece by professors P.Zamanidi and L.Troshinym in 2006 by crossing the Greek variety Kidonitsa with European Riesling. According to the morphological and physiological characteristics it is related to the eco-geographical group of Black Sea. Strong growth of shoots (2,1-3,0 m. Degree of ripening vines is very high: over the entire length, except for the top. Length of production period 146-155 days. High yield 25-30 t / ha. Average weight of cluster is 360 g. Characterized by high resistance to cold, drought and increased resistance to fungal diseases in comparison with common varieties of Vitis vinifera L. Flower is androgynous. Bunch is medium, conical, medium density. Berry is medium, spherical, greenish-yellow color with a thick waxy coating. Cuticle of medium thickness, dense, durable. Pulp and juice are with pronounced varietal type taste of Riesling. Sugar content is very high: up to 24% more. Bunches of variety Acropolis continuously stored in the bushes. Variety is intended for manufacturing dry white wines of excellent grade and high-quality sparkling wines, dessert and sweet wines, suitable for production of high quality aromatic juices

  4. AGAPI - NEWEST WINE WHITE BERRY AROMATIC GRAPE VARIETY

    Directory of Open Access Journals (Sweden)

    Zamanidi P. C.

    2014-06-01

    Full Text Available Newest aromatic white berry wine grape variety Agapi was breeded by hybridization at the Athens Institute of Viticulture (Likovrisi, Greece by professors P.Zamanidi, L.Troshin and P.Radchevskiy in 2006 by crossing the Greek varieties Afiri white with central European variety Traminer pink. Strong growth of shoots (2,1-3,0 m. Level of ripening vines is very high: over the entire length except the top. Length of production period 146-155 days. Productivity is very high: 25-30 t / ha. Average weight of cluster 300 g. Characterized by a high resistance to cold, drought and increased resistance to fungal diseases compared to varieties of Vitis vinifera L. Flower is androgynous. Bunch is medium, conical, medium density. Berry is medium, short elliptical or spherical, greenish-yellow in color, with a thick waxy coating. Cuticle of medium thickness, dense, and durable. Pulp and juice are with pronounced varietal flavor, similar to the aroma of Traminer pink. The sugar content is very high, more than 24%. Clusters of Agapi variety regardless of autumn weather conditions persist for a long time in the bushes. Variety intended for the manufacturing dry white wines of excellent grade and high-quality sparkling wines, dessert and sweet wines; suitable for production of high quality fragrant juices

  5. RRR-α-tocopheryl succinate inhibits human gastric cancer SGC-7901 cell growth by inducing apoptosis and DNA synthesis arrest

    OpenAIRE

    Wu, Kun; ZHAO Yan; Liu, Bai-He; Li, Yao; Liu, Fang; Guo, Jian; Yu, Wei-Ping

    2002-01-01

    AIM: To investigate the effects of growth inhibition of human gastric cancer SGC-7901 cell with RRR-α-tocopheryl succinate (VES), a derivative of natural Vitamin E, via inducing apoptosis and DNA synthesis arrest.

  6. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  7. Investigating wild berries as a dietary approach to reducing the formation of advanced glycation endproducts: chemical correlates of in vitro antiglycation activity.

    Science.gov (United States)

    Harris, Cory S; Cuerrier, Alain; Lamont, Erin; Haddad, Pierre S; Arnason, John T; Bennett, Steffany A L; Johns, Timothy

    2014-03-01

    Evidence supports the health promoting benefits of berries, particularly with regard to the prevention and management of chronic diseases such cardio- and cerebrovascular disease, diabetes and Alzheimer's disease. Two related pathophysiological features common to many of these conditions are oxidative stress and the accumulation of advanced glycation endproducts (AGEs). Whereas antioxidant properties are well-established in several species of berries and are believed central to their protective mechanisms, few studies have investigated the effects of berries on AGE formation. Here, employing a series of complementary in vitro assays, we evaluated a collection of wild berry extracts for 1) inhibitory effects on fluorescent-AGE and Nε- (carboxymethyl)lysine-albumin adduct formation, 2) radical scavenging activity and 3) total phenolic and anthocyanin content. All samples reduced AGE formation in a concentration-dependent manner that correlated positively with each extract's total phenolic content and, to a lesser degree, total anthocyanin content. Inhibition of AGE formation was similarly related to radical scavenging activities. Adding antiglycation activity to the list of established functional properties ascribed to berries and their phenolic metabolites, our data provide further insight into the active compounds and protective mechanisms through which berry consumption may aid in the prevention and treatment of chronic diseases associated with AGE accumulation and toxicity. As widely available, safe and nutritious foods, berries represent a promising dietary intervention worthy of further investigation. PMID:24448675

  8. Sinefungin, a Natural Nucleoside Analogue of S-Adenosylmethionine, Inhibits Streptococcus pneumoniae Biofilm Growth

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Yadav

    2014-01-01

    Full Text Available Pneumococcal colonization and disease is often associated with biofilm formation, in which the bacteria exhibit elevated resistance both to antibiotics and to host defense systems, often resulting in infections that are persistent and difficult to treat. We evaluated the effect of sinefungin, a nucleoside analogue of S-adenosylmethionine, on pneumococcal in vitro biofilm formation and in vivo colonization. Sinefungin is bacteriostatic to pneumococci and significantly decreased biofilm growth and inhibited proliferation and structure of actively growing biofilms but did not alter growth or the matrix structure of established biofilms. Sinefungin significantly reduced pneumococcal colonization in rat middle ear. The quorum sensing molecule (autoinducer-2 production was significantly reduced by 92% in sinefungin treated samples. The luxS, pfs, and speE genes were downregulated in biofilms grown in the presence of sinefungin. This study shows that sinefungin inhibits pneumococcal biofilm growth in vitro and colonization in vivo, decreases AI-2 production, and downregulates luxS, pfs, and speE gene expressions. Therefore, the S-adenosylmethionine (SAM inhibitors could be used as lead compounds for the development of novel antibiofilm agents against pneumococci.

  9. Growth inhibition of cultured smooth muscle cells by corrosion products of 316 L stainless steel wire.

    Science.gov (United States)

    Shih, C C; Shih, C M; Chen, Y L; Su, Y Y; Shih, J S; Kwok, C F; Lin, S J

    2001-11-01

    The potential cytotoxicity on vascular smooth muscle cells of corrosion products from 316 L stainless steel, one of most popular biomaterials of intravascular stents, has not been highlighted. In this investigation, 316 L stainless steel wires were corroded in Dulbecco's modified eagle's medium with applied constant electrochemical breakdown voltage, and the supernatant and precipitates of corrosion products were prepared as culture media. The effects of different concentrations of corrosion products on the growth of rat aortic smooth muscle cells were conducted with the [3H]-thymidine uptake test and cell cycle sorter. Both the supernatant and precipitates of corrosion products were toxic to the primary culture of smooth muscle cells. The growth inhibition was correlated well with the increased nickel ions in the corrosion products when nickel concentration was above 11.7 ppm. The corrosion products also changed cell morphology and induced cell necrosis. The cell growth inhibition occurred at the G0/G1 to S transition phase. Similar to our recent study of nitinol stent wire, the present investigation also demonstrated the cytotoxicity of corrosion products of 316 L stainless steel stent wire on smooth muscle cells, which might affect the poststenting vascular response. PMID:11484182

  10. Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment.

    Science.gov (United States)

    Vail, Mary E; Murone, Carmel; Tan, April; Hii, Linda; Abebe, Degu; Janes, Peter W; Lee, Fook-Thean; Baer, Mark; Palath, Varghese; Bebbington, Christopher; Yarranton, Geoffrey; Llerena, Carmen; Garic, Slavisa; Abramson, David; Cartwright, Glenn; Scott, Andrew M; Lackmann, Martin

    2014-08-15

    Eph receptor tyrosine kinases are critical for cell-cell communication during normal and oncogenic tissue patterning and tumor growth. Somatic mutation profiles of several cancer genomes suggest EphA3 as a tumor suppressor, but its oncogenic expression pattern and role in tumorigenesis remain largely undefined. Here, we report unexpected EphA3 overexpression within the microenvironment of a range of human cancers and mouse tumor xenografts where its activation inhibits tumor growth. EphA3 is found on mouse bone marrow-derived cells with mesenchymal and myeloid phenotypes, and activation of EphA3(+)/CD90(+)/Sca1(+) mesenchymal/stromal cells with an EphA3 agonist leads to cell contraction, cell-cell segregation, and apoptosis. Treatment of mice with an agonistic α-EphA3 antibody inhibits tumor growth by severely disrupting the integrity and function of newly formed tumor stroma and microvasculature. Our data define EphA3 as a novel target for selective ablation of the tumor microenvironment and demonstrate the potential of EphA3 agonists for anticancer therapy. PMID:25125683

  11. Vitamin E reduces glucocorticoid-induced growth inhibition and lipid peroxidation in rats.

    Science.gov (United States)

    Ohtsuka, A; Ohtani, T; Horiguchi, H; Kojima, H; Hayashi, K

    1998-04-01

    This experiment was conducted to study the effects of vitamin E on growth inhibition and lipid peroxidation in rats treated with different levels of corticosterone (CTC). Rats (Sprague-Dawley strain, 5 weeks of age) were divided into two groups: control group receiving a basal diet containing 60 mg DL-alpha-tocopheryl acetate/kg diet, and vitamin E group receiving the same diet supplemented with 5,000 mg tocopherol. After 6 days, rats of both diet groups were further divided into three groups by dose levels of CTC treatment (0, 25, and 100 mg CTC/kg body weight/d). CTC was administered to the rats by subcutaneous injection for 4 d. Growth was dose-dependently inhibited by the CTC treatment. Feeding the vitamin E diet significantly (p GST) and superoxide dismutase (SOD) were significantly reduced by the CTC treatment in a dose-dependent manner in both dietary groups. Feeding vitamin E significantly (p GST activity. The SOD activity showed some tendency. The present results demonstrate the effectiveness of vitamin E in improving growth retardation in glucocorticoid-treated rats and suggest that reductions in increased lipid peroxidation due to CTC may be an important factor of the action of vitamin E. PMID:9675704

  12. Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L.) seedlings

    Indian Academy of Sciences (India)

    M N Alvim; F T Ramos; D C Oliveira; R M S Isaias; M G C França

    2012-12-01

    We correlated root growth inhibition with aluminium (Al3+) localization and toxicity symptoms in rice roots using seedlings of two genotypes (tolerant and sensitive) that were exposed to different AlCl3 concentrations. Al3+ localization was evaluated by hematoxylin in primary roots and by morin in cross-sections of the root tips. Neutral invertase enzyme activity and callose (1$\\to$3, -D-glucan) accumulation were observed and compared with Al3+ accumulation sites. Root growth was inhibited by Al3+ in a concentration-specific manner and proportional to the increase of hematoxylin staining, being more pronounced in the sensitive genotype. Morin staining showed the presence of Al3+ deep within the roots of the sensitive genotype, indicating that the metal was able to penetrate beyond the first few cell layers. In the tolerant genotype, Al3+ penetration was restricted to the first two cell layers. Ruptures in exodermis and epidermis layers by lateral root protrusions in both genotypes allowed Al3+ to enter into the roots. More intense activity of invertase in roots of the tolerant genotype was also observed, which could be related to greater root growth of this cultivar when submitted to Al3+ stress. Moreover, Al3+-induced callose accumulation was a late response occurring in the same areas where Al3+ was present.

  13. Aspirin inhibits colon cancer cell and tumor growth and downregulates specificity protein (Sp transcription factors.

    Directory of Open Access Journals (Sweden)

    Satya Pathi

    Full Text Available Acetylsalicylic acid (aspirin is highly effective for treating colon cancer patients postdiagnosis; however, the mechanisms of action of aspirin in colon cancer are not well defined. Aspirin and its major metabolite sodium salicylate induced apoptosis and decreased colon cancer cell growth and the sodium salt of aspirin also inhibited tumor growth in an athymic nude mouse xenograft model. Colon cancer cell growth inhibition was accompanied by downregulation of Sp1, Sp3 and Sp4 proteins and decreased expression of Sp-regulated gene products including bcl-2, survivin, VEGF, VEGFR1, cyclin D1, c-MET and p65 (NFκB. Moreover, we also showed by RNA interference that β-catenin, an important target of aspirin in some studies, is an Sp-regulated gene. Aspirin induced nuclear caspase-dependent cleavage of Sp1, Sp3 and Sp4 proteins and this response was related to sequestration of zinc ions since addition of zinc sulfate blocked aspirin-mediated apoptosis and repression of Sp proteins. The results demonstrate an important underlying mechanism of action of aspirin as an anticancer agent and, based on the rapid metabolism of aspirin to salicylate in humans and the high salicylate/aspirin ratios in serum, it is likely that the anticancer activity of aspirin is also due to the salicylate metabolite.

  14. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    International Nuclear Information System (INIS)

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice

  15. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  16. Activation of Notch1 signaling in stromal fibroblasts inhibits melanoma growth by upregulating WISP-1.

    Science.gov (United States)

    Shao, H; Cai, L; Grichnik, J M; Livingstone, A S; Velazquez, O C; Liu, Z-J

    2011-10-20

    The tumor microenvironment is emerging as an important target for cancer therapy. Fibroblasts (Fbs) within the tumor stroma are critically involved in promoting tumor growth and angiogenesis through secretion of soluble factors, synthesis of extracellular matrix and direct cell-cell interaction. In this work, we aim to alter the biological activity of stromal Fbs by modulating the Notch1 signaling pathway. We show that Fbs engineered to constitutively activate the Notch1 pathway significantly inhibit melanoma growth and tumor angiogenesis. We determine that the inhibitory effect of 'Notch-engineered' Fbs is mediated by increased secretion of Wnt-induced secreted protein-1 (WISP-1) as the effects of Notch1 activation in Fbs are reversed by shRNA-mediated blockade of WISP-1. When 'Notch-engineered' Fbs are co-grafted with melanoma cells in SCID mice, shRNA-mediated blockade of WISP-1 reverses the tumor-suppressive phenotype of the 'Notch-engineered' Fbs, significantly increases melanoma growth and tumor angiogenesis. Consistent with these findings, supplement of recombinant WISP-1 protein inhibits melanoma cell growth in vitro. In addition, WISP-1 is modestly expressed in melanoma-activated Fbs but highly expressed in inactivated Fbs. Evaluation of human melanoma skin biopsies indicates that expression of WISP-1 is significantly lower in melanoma nests and surrounding areas filled with infiltrated immune cells than in the adjacent dermis unaffected by the melanoma. Overall, our study shows that constitutive activation of the Notch1 pathway confers Fbs with a suppressive phenotype to melanoma growth, partially through WISP-1. Thus, targeting tumor stromal Fbs by activating Notch signaling and/or increasing WISP-1 may represent a novel therapeutic approach to combat melanoma. PMID:21516124

  17. Parafibromin inhibits cancer cell growth and causes G1 phase arrest

    International Nuclear Information System (INIS)

    The HRPT2 (hereditary hyperparathyroidism type 2) tumor suppressor gene encodes a ubiquitously expressed 531 amino acid protein termed parafibromin. Inactivation of parafibromin predisposes one to the development of HPT-JT syndrome. To date, the role of parafibromin in tumorigenesis is largely unknown. Here, we report that parafibromin is a nuclear protein that possesses anti-proliferative properties. We show that overexpression of parafibromin inhibits colony formation and cellular proliferation, and induces cell cycle arrest in the G1 phase. Moreover, HPT-JT syndrome-derived mutations in HRPT2 behave in a dominant-negative manner by abolishing the ability of parafibromin to suppress cell proliferation. These findings suggest that parafibromin has a critical role in cell growth, and mutations in HRPT2 can directly inhibit this role

  18. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    OpenAIRE

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G.

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor gr...

  19. Antiaggregation potential of berry fractions against pairs of Streptococcus mutans with Fusobacterium nucleatum or Actinomyces naeslundii

    OpenAIRE

    Riihinen, Kaisu Ristiina; Ryynanen, Anu; Toivanen, Marko; Kononen, Eija; Torronen, Riitta; Tikkanen-Kaukanen, Carina

    2010-01-01

    Abstract Coaggregation is an interspecies adhesion process which is central to the development of dental plaque. Here we studied the antiaggregation effect and the composition of the soluble solids in the berry juice molecular size fractions [100 kDa fraction (FIII)] derived from apple, bilberry, blackcurrant, cloudberry, crowberry, and lingonberry. We investigated their ability to inhibit and reverse coaggregation of Streptococcus mutans with Fusobacterium nucleatum or Actinomyces...

  20. Lactose inhibits the growth of Rhizobium meliloti cells that contain an actively expressed Escherichia coli lactose operon.

    OpenAIRE

    Timblin, C R; Kahn, M L

    1984-01-01

    Expression of the Escherichia coli lactose operon in Rhizobium meliloti 104A14 made the cells sensitive to the addition of the beta-galactosides lactose, phenyl-beta-D-galactoside, and lactobionic acid. Growth stopped when the beta-galactoside was added and viability decreased modestly during the next few hours, but little cell lysis was observed and the cells appeared normal. Protein synthesis was not inhibited. Growth was inhibited only when beta-galactosidase expression was greater than 16...

  1. Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling

    OpenAIRE

    Sliva, D; Jedinak, A; Kawasaki, J.; Harvey, K; Slivova, V

    2008-01-01

    The antitumour activity of a medicinal mushroom Phellinus linteus (PL), through the stimulation of immune system or the induction of apoptosis, has been recently described. However, the molecular mechanisms responsible for the inhibition of invasive behaviour of cancer cells remain to be addressed. In the present study, we demonstrate that PL inhibits proliferation (anchorage-dependent growth) as well as colony formation (anchorage-independent growth) of highly invasive human breast cancer ce...

  2. Growth inhibition of bacterial isolates recovered from two types of Portuguese dry smoked sausages (chouriço)

    OpenAIRE

    Matos, T.J.S.; Bruno-Soares, A.; Jensen, B. B.; Barreto, A.S.; Hojberg, O.

    2008-01-01

    Potassium sorbate (PS), sodium benzoate (SB) and methyl p-hydroxybenzoate (MHB) were investigated as surface treatments for their ability to inhibit the growth of 18 isolates of spoilage and pathogenic bacteria from two types of Portuguese dry smoked sausages (Chouric o). MHB significantly inhibited the growth rate of 12 of the isolates (p < 0.05) whereas no effect was observed for four isolates of lactic acid bacteria, identified as Enterococcus faecium, Pediococcus acidilactici ...

  3. Minocycline inhibits the production of the precursor form of nerve growth factor by retinal microglial cells

    Institute of Scientific and Technical Information of China (English)

    Xiaochun Yang; Xuanchu Duan

    2013-01-01

    A rat model of acute ocular hypertension was established by enhancing the perfusion of balanced salt solution in the anterior chamber of the right eye. Minocycline (90 mg/kg) was administered intraperitoneally into rats immediately after the operation for 3 consecutive days. Immunofluorescence, western blot assay and PCR detection revealed that the expression of the precursor form of nerve growth factor, nerve growth factor and the p75 neurotrophin receptor, and the mRNA expression of nerve growth factor and the p75 neurotrophin receptor, increased after acute ocular hypertension. The number of double-labeled CD11B- and precursor form of nerve growth factor-positive cells, glial fibrillary acidic protein- and p75 neurotrophin receptor-positive cells, glial fibrillary acidic protein- and caspase-3-positive cells in the retina markedly increased after acute ocular hypertension. The above-described expression decreased after minocycline treatment. These results suggested that minocycline inhibited the increased expression of the precursor form of nerve growth factor in microglia, the p75 neurotrophin receptor in astroglia, and protected cells from apoptosis.

  4. Effect of tumor suppressor in lung cancer-1 on growth inhibition of MG63 cell line

    Institute of Scientific and Technical Information of China (English)

    Li Qin; Yang Lin; Wenjian Chen; Wentao Zhu

    2013-01-01

    Objective: The aim of this study was to establish the osteosarcoma cell sublines which stably expressing tumor suppressor in lung cancer-1 (TSLC1) gene and evaluate its effect on growth inhibition of human osteosarcoma cell line MG63. Methods: The recombinant plasmid pCI-TSLC1 was stably transfected into MG63 cells with Lipofectamine 2000. The positive clones were developed by selection by G418. Biological characteristics of one of the 6 cell lines which highly expressing TSLC1, namely, the M8T were studied. Cell growth was analyzed with MTT assay. 2 × 107 cells suspended in 0.2 mL phosphate buffered saline (PBS) were injected into the two flanks of 5-6-week-old female BALB/C nu/nu athymic nude mice. The volumes of subcutaneous of tumor growth were evaluated and calculated by the formula V= Length × Width × Height × 0.5 once a week. Results: The M8T cell subline which stably expressing TSLC1 was characterized by Western blot. The genetic stability and purity of M8T cells were stable. TSLC1 significantly suppressed the growth of M8T cells in vitro. Moreover, the tumorigenicity of M8T cells was suppressed in vivo. Conclusion: The osteosarcoma cell sublines M8T which stably expressing TSLC1 had been successfully established. The ability of growth and metastasis of M8T was significantly suppressed both in vitro and in vivo.

  5. MiR-214 inhibits cell growth in hepatocellular carcinoma through suppression of β-catenin

    International Nuclear Information System (INIS)

    Highlights: ► miR-214 is frequently downregulated in human HCC cell lines and tissues. ► miR-214 overexpression inhibits HCC cell growth in vitro and in vivo. ► miR-214 directly targets β-catenin 3′-UTR in HCC cells. ► miR-214 regulates β-catenin downstream signaling molecules. -- Abstract: Mounting evidence has shown that microRNAs (miRNAs) are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. Recent profile studies of miRNA expression have documented a deregulation of miRNA (miR-214) in hepatocellular carcinoma (HCC). However, its potential functions and underlying mechanisms in hepatocarcinogenesis remain largely unknown. Here, we confirmed that miR-214 is significantly downregulated in HCC cells and specimens. Ectopic overexpression of miR-214 inhibited proliferation of HCC cells in vitro and tumorigenicity in vivo. Further studies revealed that miR-214 could directly target the 3′-untranslated region (3′-UTR) of β-catenin mRNA and suppress its protein expression. Similar to the restoring miR-214 expression, β-catenin downregulation inhibited cell growth, whereas restoring the β-catenin expression abolished the function of miR-214. Moreover, miR-214-mediated reduction of β-catenin resulted in suppression of several downstream genes including c-Myc, cyclinD1, TCF-1, and LEF-1. These findings indicate that miR-214 serves as tumor suppressor and plays substantial roles in inhibiting the tumorigenesis of HCC through suppression of β-catenin. Given these, miR-214 may serve as a useful prognostic or therapeutic target for treatment of HCC.

  6. MiR-214 inhibits cell growth in hepatocellular carcinoma through suppression of {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun [Liver Diseases Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Chen, Ji [Department of Gastrointestinal Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai (China); Li, Feng [Department of Pathology, Fujian Provincial Hospital, Fuzhou (China); Lin, Yanting [Liver Diseases Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zhang, Xiaoping; Lv, Zhongwei [Department of Interventional Therapy, Shanghai 10th People' s Hospital, School of Medicine, Tongji University, Shanghai (China); Jiang, Jiaji, E-mail: jiang_jjcn@yahoo.com.cn [Liver Diseases Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer miR-214 is frequently downregulated in human HCC cell lines and tissues. Black-Right-Pointing-Pointer miR-214 overexpression inhibits HCC cell growth in vitro and in vivo. Black-Right-Pointing-Pointer miR-214 directly targets {beta}-catenin 3 Prime -UTR in HCC cells. Black-Right-Pointing-Pointer miR-214 regulates {beta}-catenin downstream signaling molecules. -- Abstract: Mounting evidence has shown that microRNAs (miRNAs) are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. Recent profile studies of miRNA expression have documented a deregulation of miRNA (miR-214) in hepatocellular carcinoma (HCC). However, its potential functions and underlying mechanisms in hepatocarcinogenesis remain largely unknown. Here, we confirmed that miR-214 is significantly downregulated in HCC cells and specimens. Ectopic overexpression of miR-214 inhibited proliferation of HCC cells in vitro and tumorigenicity in vivo. Further studies revealed that miR-214 could directly target the 3 Prime -untranslated region (3 Prime -UTR) of {beta}-catenin mRNA and suppress its protein expression. Similar to the restoring miR-214 expression, {beta}-catenin downregulation inhibited cell growth, whereas restoring the {beta}-catenin expression abolished the function of miR-214. Moreover, miR-214-mediated reduction of {beta}-catenin resulted in suppression of several downstream genes including c-Myc, cyclinD1, TCF-1, and LEF-1. These findings indicate that miR-214 serves as tumor suppressor and plays substantial roles in inhibiting the tumorigenesis of HCC through suppression of {beta}-catenin. Given these, miR-214 may serve as a useful prognostic or therapeutic target for treatment of HCC.

  7. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression.

    Science.gov (United States)

    Yang, H; Pellegrini, L; Napolitano, A; Giorgi, C; Jube, S; Preti, A; Jennings, C J; De Marchis, F; Flores, E G; Larson, D; Pagano, I; Tanji, M; Powers, A; Kanodia, S; Gaudino, G; Pastorino, S; Pass, H I; Pinton, P; Bianchi, M E; Carbone, M

    2015-01-01

    High-mobility group box 1 (HMGB1) is an inflammatory molecule that has a critical role in the initiation and progression of malignant mesothelioma (MM). Aspirin (acetylsalicylic acid, ASA) is the most widely used nonsteroidal anti-inflammatory drug that reduces the incidence, metastatic potential and mortality of many inflammation-induced cancers. We hypothesized that ASA may exert anticancer properties in MM by abrogating the carcinogenic effects of HMGB1. Using HMGB1-secreting and -non-secreting human MM cell lines, we determined whether aspirin inhibited the hallmarks of HMGB1-induced MM cell growth in vitro and in vivo. Our data demonstrated that ASA and its metabolite, salicylic acid (SA), inhibit motility, migration, invasion and anchorage-independent colony formation of MM cells via a novel HMGB1-mediated mechanism. ASA/SA, at serum concentrations comparable to those achieved in humans taking therapeutic doses of aspirin, and BoxA, a specific inhibitor of HMGB1, markedly reduced MM growth in xenograft mice and significantly improved survival of treated animals. The effects of ASA and BoxA were cyclooxygenase-2 independent and were not additive, consistent with both acting via inhibition of HMGB1 activity. Our findings provide a rationale for the well documented, yet poorly understood antitumorigenic activity of aspirin, which we show proceeds via HMGB1 inhibition. Moreover, the use of BoxA appears to allow a more efficient HMGB1 targeting while eluding the known gastrointestinal side effects of ASA. Our findings are directly relevant to MM. Given the emerging importance of HMGB1 and its tumor-promoting functions in many cancer types, and of aspirin in cancer prevention and therapy, our investigation is poised to provide broadly applicable information. PMID:26068794

  8. Partial characterisation of peptides inhibiting Listeria growth in two Alpine cheeses

    OpenAIRE

    Nguyen Thi, Phuong; Dupas, Coralie; Adt, Isabelle; Degraeve, Pascal; Ragon, Mélanie; Missaoui, May-Farah; Novelli, Enrico; Segato, Severino; Phan The, Dong; Oulahal, Nadia

    2013-01-01

    International audience Listeria monocytogenes, agent of food-borne listeriosis, is a major concern in dairy industry. The aim of this study was to assess the occurrence of peptides inhibiting Listeria spp. growth in two traditional Alpine pressed-curd cheeses: Emmental de Savoie and Asiago d’Allevo, and to get further insights regarding the characteristics of these peptides. Water-soluble extracts of these two cheeses were ultrafiltered onto 10,000-g.mol−1 cut-off filters to remove protein...

  9. Isolation of bacteria producing chitinase and inhibiting growth of Rhizoctonia solani

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Five bacteria strains with higher chitinase activity were isolated by using a technique of enriched cell wall of R. solani. All of them showed inhibiting effect on the growth of R. solani. Being cultured 3 d, strain CH-1 showed higher chitinase activity on the chitin plate. The diameter of the transparent circle reached 8.7 mm (4 replications) . In the antagonistic test to R. solani in PDA plate, the circle was 18.1 mm. It was also observed that the antagonistic ability of some strains was not consistent with the chitinase activity (Table 1). It may be connected with the secretion of chitinase at different culture situations.

  10. Fusarium Graminearum Growth Inhibition Due to Glucose Starvation Caused by Osthol

    OpenAIRE

    Yongjian Fan; Fei Wang; Wei Zhou; Shouguo Shen; Zhiqi Shi

    2008-01-01

    The effects of osthol, a plant coumarin, on morphology, sugar uptake and cell wall components of Fusarium graminearum were examined in vitro by electron microscopy, 14C-labelling and enzyme activity detection. The results revealed that osthol could inhibit the hypha growth of F. graminearum by decreasing hyphal absorption to reducing sugar. After treatment with 100 μg·mL-1 osthol for 24 h, many hyphal fragments of F. graminearum appeared. Microscopy observation showed that the cell wall...

  11. Recombinant interleukin-6 inhibits the growth of rat mesangial cells in culture.

    OpenAIRE

    Ikeda, M; Ikeda, U; Ohara, T; Kusano, E; Kano, S

    1992-01-01

    Murine recombinant interleukin-6 (IL-6) inhibited [3H]thymidine uptake by cultured rat mesangial cells in a dose-dependent manner in the presence of 0.5% fetal bovine serum (FBS). The inhibitory effect of IL-6 on the growth of mesangial cells was also confirmed by a change in cell numbers. In the presence of increased concentrations of FBS (5% or 10%), the effect of IL-6 was not prominent. IL-6 showed no effects on intracellular Ca2+ levels of mesangial cells. IL-6 gene expression was rapidly...

  12. Bioactivity of Benthic and Picoplanktonic Estuarine Cyanobacteria on Growth of Photoautotrophs: Inhibition versus Stimulation

    Directory of Open Access Journals (Sweden)

    Viviana R. Lopes

    2011-05-01

    Full Text Available Understanding potential biochemical interactions and effects among cyanobacteria and other organisms is one of the main keys to a better knowledge of microbial population structuring and dynamics. In this study, the effects of cyanobacteria from benthos and plankton of estuaries on other cyanobacteria and green algae growth were evaluated. To understand how the estuarine cyanobacteria might influence the dynamics of phytoplankton, experiments were carried out with the freshwater species Microcystis aeruginosa and Chlorella sp., and the marine Synechocystis salina and Nannochloropsis sp. exposed to aqueous and organic (70% methanol crude extracts of cyanobacteria for 96 h. The most pronounced effect observed was the growth stimulation. Growth inhibition was also observed for S. salina and M. aeruginosa target-species at the highest and lowest concentrations of cyanobacterial extracts. The methanolic crude extract of Phormidium cf. chalybeum LEGE06078 was effective against S. salina growth in a concentration-dependent manner after 96 h-exposure. All of the cyanobacterial isolates showed some bioactivity on the target-species growth, i.e., inhibitory or stimulating effects. These results indicate that the analyzed cyanobacterial isolates can potentially contribute to blooms’ proliferation of other cyanobacteria and to the abnormal growth of green algae disturbing the dynamic of estuarine phytoplankton communities. Since estuaries are transitional ecosystems, the benthic and picoplanktonic estuarine cyanobacteria can change both freshwater and marine phytoplankton succession, competition and bloom formation. Furthermore, a potential biotechnological application of these isolates as a tool to control cyanobacteria and microalgae proliferation can be feasible. This work is the first on the subject of growth responses of photoautotrophs to cyanobacteria from Atlantic estuarine environments.

  13. Optimizing cyanobacteria growth conditions in a sealed environment to enable chemical inhibition tests with volatile chemicals.

    Science.gov (United States)

    Johnson, Tylor J; Zahler, Jacob D; Baldwin, Emily L; Zhou, Ruanbao; Gibbons, William R

    2016-07-01

    Cyanobacteria are currently being engineered to photosynthetically produce next-generation biofuels and high-value chemicals. Many of these chemicals are highly toxic to cyanobacteria, thus strains with increased tolerance need to be developed. The volatility of these chemicals may necessitate that experiments be conducted in a sealed environment to maintain chemical concentrations. Therefore, carbon sources such as NaHCO3 must be used for supporting cyanobacterial growth instead of CO2 sparging. The primary goal of this study was to determine the optimal initial concentration of NaHCO3 for use in growth trials, as well as if daily supplementation of NaHCO3 would allow for increased growth. The secondary goal was to determine the most accurate method to assess growth of Anabaena sp. PCC 7120 in a sealed environment with low biomass titers and small sample volumes. An initial concentration of 0.5g/L NaHCO3 was found to be optimal for cyanobacteria growth, and fed-batch additions of NaHCO3 marginally improved growth. A separate study determined that a sealed test tube environment is necessary to maintain stable titers of volatile chemicals in solution. This study also showed that a SYTO® 9 fluorescence-based assay for cell viability was superior for monitoring filamentous cyanobacterial growth compared to absorbance, chlorophyll α (chl a) content, and biomass content due to its accuracy, small sampling size (100μL), and high throughput capabilities. Therefore, in future chemical inhibition trials, it is recommended that 0.5g/L NaHCO3 is used as the carbon source, and that culture viability is monitored via the SYTO® 9 fluorescence-based assay that requires minimum sample size. PMID:27196637

  14. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  15. Allelopathy in two species of Chenopodium -inhibition of germination and seedling growth of certain weeds

    Directory of Open Access Journals (Sweden)

    Subhash C. Datta

    2014-02-01

    Full Text Available The activity of washed leaf and inflorescence material of Chenopodium ambrosioides and C. murale, decaying leaves and inflorescences, and field soils collected beneath Chenopodium plants were examined in terms of the inhibition of seed germination and seedling growth of five weeds, viz. Abutilon indicum, Cassia sophera var. purpurea, C. tora, Evolvulus numularius and Tephrosia hamiltonii. The allelopathic pattern varied in each of the two test species and this depended on the type of test matter. However, the germination as well as the root and hypocotyl growth of A. indicum and E. nummularius were more hampered by phytotoxins or inhibitors from Chenopodium than were the other weeds. Since the leaf and inflorescence of Chenopodium formed the source of inhibitors, the respective plant-parts from the two species were chemically analysed and the presence of three terpenes (p-cymene, ascaridole and aritazone from C. ambrosioides and an organic acid (oxalic acid from C. murale were implicated in the allelopathic effect.

  16. BMP10 inhibited the growth and migration of gastric cancer cells.

    Science.gov (United States)

    Lei, Haiming; Wang, Jian; Lu, Peihua; Si, Xinghua; Han, Koulan; Ruan, Tingyan; Lu, Junjie

    2016-03-01

    Bone morphogenetic protein 10 (BMP10), a novel member of BMP family, has been identified as an important regulator for angiogenesis. Dysregulation of BMP has been observed in several cancer types. However, its roles in gastric cancer (GC) remain unknown. In this study, the expression of BMP10 was found to be down-regulated in GC samples. Forced expression of BMP10 in GC cells inhibited its growth and migration, while knocking down the expression of BMP10 in GC cells promoted cell growth, migration, and metastasis. BMP10 was shown to negatively regulated beta-catenin/TCF signaling by up-regulating Axin protein level. Taken together, the present study revealed the suppressive function of BMP10 in gastric cancer. PMID:26419594

  17. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature.

    Science.gov (United States)

    Sills, A K; Williams, J I; Tyler, B M; Epstein, D S; Sipos, E P; Davis, J D; McLane, M P; Pitchford, S; Cheshire, K; Gannon, F H; Kinney, W A; Chao, T L; Donowitz, M; Laterra, J; Zasloff, M; Brem, H

    1998-07-01

    The novel aminosterol, squalamine, inhibits angiogenesis and tumor growth in multiple animal models. This effect is mediated, at least in part, by blocking mitogen-induced proliferation and migration of endothelial cells, thus preventing neovascularization of the tumor. Squalamine has no observable effect on unstimulated endothelial cells, is not directly cytotoxic to tumor cells, does not alter mitogen production by tumor cells, and has no obvious effects on the growth of newborn vertebrates. Squalamine was also found to have remarkable effects on the primitive vascular bed of the chick chorioallantoic membrane, which has striking similarities to tumor capillaries. Squalamine may thus be well suited for treatment of tumors and other diseases characterized by neovascularization in humans. PMID:9661892

  18. Knockdown of the Placental Growth Factor Gene Inhibits Laser Induced Choroidal Neovascularization in a Murine Model

    Directory of Open Access Journals (Sweden)

    Ramin Nourinia

    2013-01-01

    Full Text Available Purpose: To evaluate the effect of placental growth factor (PlGF gene knockdown in a murine model of laser-induced choroidal neovascularization. Methods: Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. Results: No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Conclusion: Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  19. New class of additives to inhibit tree growth in solid extruded cable insulation

    Energy Technology Data Exchange (ETDEWEB)

    Devins, J C; Rzad, S J; Reed, C W; Bartosh, D K; Stines, T W

    1976-03-01

    There is now substantial evidence that in many dielectric failures of solid polyolefinic and other polymeric materials the final disruption may be preceded by the long-time progressive development of a three-dimensional pattern of irregular, sometimes (though not always) carbonized hollow channels diverging from a central stem, and that the ultimate failure follows one of these channels. These minute channels are referred to as ''trees'' and the phenomenon as ''treeing.'' Research conducted from May to Sept. 1975 on techniques for evaluating tree growth and on the development of additives to inhibit tree growth in solid extruded polymeric insulation for electric cables is reported. (LCL)

  20. GROWTH INHIBITION OF HUMAN LARYNGEAL CANCER CELL WITH THE ADENOVIRUS-MEDIATED p53 GENE

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; HAN De-min; WANG Wen-ge; WU Zu-ze; ZHANG Wei

    1999-01-01

    Objective: In most laryngeal cancers, the function of p53 gene is down regulated. To explore the potential use of p53 in gene therapy of laryngeal cancer, by introducing wild-type p53 into laryngeal cancer cell line via a recombinant adenoviral vector, Ad5CMV-p53 and analyzing its effects on cell and tumor growth. Methods: A human laryngeal cancer cell line Hep-2 was used.Recombinant cytomegalovirus-promoted adenoviruses containing human wild-type p53 cDNA was transiently introduced into Hep-2 line. The growth suppression of the Hep-2 cells and established s.c. squamous carcinoma model was examined. The p53 protein expression was detected using immunohistochemical analysis. Results: The transduction efficiencies of Hep-2 cell line were 100% at a multiplicity of 100 or greater. The p53 protein expression peaked on day 2 after infection and lasted far 5 days. In vitro growth assays revealed cell death following Ad5CMV-p53 infected. In vivo studies, Ad5CMV-p53 inhibited the tumorigenicity of Hep-2 cell, and in nude mice with established s.c. squamous carcinoma nodules showed that tumor volumes were significantly reduced in mice that received peritumoral infiltration of Ad5CMV-p53. Conclusion: Adenovirus-mediated antitumor therapy carrying the p53 gene is an efficient method to inhibit laryngeal cancer growth. Transfection of laryngeal cancer cells with the wild-type p53 gene via Ad5CMV-p53 is a potential novel approach to the therapy of laryngeal cancer.

  1. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chu SH

    2012-07-01

    Full Text Available Sheng-Hua Chu,1 Dong-Fu Feng,1 Yan-Bin Ma,1 Zhi-Qiang Li21Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, ChinaAbstract: Hydroxyapatite nanoparticles (nano-HAPs have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU.Keywords: glioma, hydroxyapatite nanoparticles, growth mechanism

  2. Simple Rain-Shelter Cultivation Prolongs Accumulation Period of Anthocyanins in Wine Grape Berries

    Directory of Open Access Journals (Sweden)

    Xiao-Xi Li

    2014-09-01

    Full Text Available Simple rain-shelter cultivation is normally applied during the grape growth season in continental monsoon climates aiming to reduce the occurrence of diseases caused by excessive rainfall. However, whether or not this cultivation practice affects the composition and concentration of phenolic compounds in wine grapes remains unclear. The objective of this study was to investigate the effect of rain-shelter cultivation on the accumulation of anthocyanins in wine grapes (Vitis vinifera L. Cabernet Sauvignon grown in eastern China. The results showed that rain-shelter cultivation, compared with the open-field, extended the period of rapid accumulation of sugar, increased the soluble solid content in the grape berries, and delayed the senescence of the green leaves at harvest. The concentrations of most anthocyanins were significantly enhanced in the rain-shelter cultivated grapes, and their content increases were closely correlated with the accumulation of sugar. However, the compositions of anthocyanins in the berries were not altered. Correspondingly, the expressions of VvF3'H, VvF3'5'H, and VvUFGT were greatly up-regulated and this rising trend appeared to continue until berry maturation. These results suggested that rain-shelter cultivation might help to improve the quality of wine grape berries by prolonging the life of functional leaves and hence increasing the assimilation products.

  3. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China); Chiu, Chien-Chih [Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Su, Chun-Li [Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan (China); Chen, Kwun-Min [Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan (China); Fang, Kang, E-mail: kangfang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China)

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  4. Development of a murine mycobacterial growth inhibition assay for evaluating vaccines against Mycobacterium tuberculosis.

    Science.gov (United States)

    Parra, Marcela; Yang, Amy L; Lim, JaeHyun; Kolibab, Kristopher; Derrick, Steven; Cadieux, Nathalie; Perera, Liyanage P; Jacobs, William R; Brennan, Michael; Morris, Sheldon L

    2009-07-01

    The development and characterization of new tuberculosis (TB) vaccines has been impeded by the lack of reproducible and reliable in vitro assays for measuring vaccine activity. In this study, we developed a murine in vitro mycobacterial growth inhibition assay for evaluating TB vaccines that directly assesses the capacity of immune splenocytes to control the growth of Mycobacterium tuberculosis within infected macrophages. Using this in vitro assay, protective immune responses induced by immunization with five different types of TB vaccine preparations (Mycobacterium bovis BCG, an attenuated M. tuberculosis mutant strain, a DNA vaccine, a modified vaccinia virus strain Ankara [MVA] construct expressing four TB antigens, and a TB fusion protein formulated in adjuvant) can be detected. Importantly, the levels of vaccine-induced mycobacterial growth-inhibitory responses seen in vitro after 1 week of coculture correlated with the protective immune responses detected in vivo at 28 days postchallenge in a mouse model of pulmonary tuberculosis. In addition, similar patterns of cytokine expression were evoked at day 7 of the in vitro culture by immune splenocytes taken from animals immunized with the different TB vaccines. Among the consistently upregulated cytokines detected in the immune cocultures are gamma interferon, growth differentiation factor 15, interleukin-21 (IL-21), IL-27, and tumor necrosis factor alpha. Overall, we have developed an in vitro functional assay that may be useful for screening and comparing new TB vaccine preparations, investigating vaccine-induced protective mechanisms, and assessing manufacturing issues, including product potency and stability. PMID:19458207

  5. Inhibition of Cell Growth and Telomerase Activity in Osteosarcoma Cells by DN-hTERT

    Institute of Scientific and Technical Information of China (English)

    XU Tao; RAO Yaojian; ZHU Wentao; GUO Fengjin

    2006-01-01

    In order to study the effects of dominant negative human telomerase reverse transcriptase (DN-hTERT) on cell growth and telomerase activity in osteosarcoma cell line MG63, MG63 cells were transfected with DN-hTERT-IRES2-EGFP9 (DN) or IRES2-EGF (I, blank vector) with lipofectamine 2000. The stably transfected cells were selected with G-418. Cell growth properties were examined under a fluorescence microscope. The hTERT mRNA expression was detected by reverse transcription-polymerase chain reaction (RT-PCR). Telomerase activities were measured by TRAP-ELISE. The tumorigenicity was studied with tumor xenografts by subcutaneous injection of cancer cells into nude mice. The results showed that cell growth was suppressed in MG63 cells transfected with DN-hTERT. The hTERT mRNA was increased in N-hTERT transfected-MG63 cells (MG63/DN). The telomerase activity was 2.45±0.11 in MG63/DN cells, while 3.40±0.12 in the cells transfected with blank vector (MG63/I), (P<0.05); DN-hTERT-expressing clones did not form tumors in 2 weeks, but the ratio of tumorigenesis was 30 % in nude mice bearing MG63/I (P<0.01). It was concluded that DN-hTERT could specifically inhibit the cell growth and telomerase activity in MG63 cells.

  6. Enhanced mitochondrial glutamine anaplerosis suppresses pancreatic cancer growth through autophagy inhibition.

    Science.gov (United States)

    Jeong, Seung Min; Hwang, Sunsook; Park, Kyungsoo; Yang, Seungyeon; Seong, Rho Hyun

    2016-01-01

    Cancer cells use precursors derived from tricarboxylic acid (TCA) cycle to support their unlimited growth. However, continuous export of TCA cycle intermediates results in the defect of mitochondrial integrity. Mitochondria glutamine metabolism plays an essential role for the maintenance of mitochondrial functions and its biosynthetic roles by refilling the mitochondrial carbon pool. Here we report that human pancreatic ductal adenocarcinoma (PDAC) cells have a distinct dependence on mitochondrial glutamine metabolism. Whereas glutamine flux into mitochondria contributes to proliferation of most cancer cells, enhanced glutamine anaplerosis results in a pronounced suppression of PDAC growth. A cell membrane permeable α-ketoglutarate analog or overexpression of glutamate dehydrogenase lead to decreased proliferation and increased apoptotic cell death in PDAC cells but not other cancer cells. We found that enhanced glutamine anaplerosis inhibits autophagy, required for tumorigenic growth of PDAC, by activating mammalian TORC1. Together, our results reveal that glutamine anaplerosis is a crucial regulator of growth and survival of PDAC cells, which may provide novel therapeutic approaches to treat these cancers. PMID:27477484

  7. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    International Nuclear Information System (INIS)

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment

  8. The microbial ecology of wine grape berries.

    Science.gov (United States)

    Barata, A; Malfeito-Ferreira, M; Loureiro, V

    2012-02-15

    Grapes have a complex microbial ecology including filamentous fungi, yeasts and bacteria with different physiological characteristics and effects upon wine production. Some species are only found in grapes, such as parasitic fungi and environmental bacteria, while others have the ability to survive and grow in wines, constituting the wine microbial consortium. This consortium covers yeast species, lactic acid bacteria and acetic acid bacteria. The proportion of these microorganisms depends on the grape ripening stage and on the availability of nutrients. Grape berries are susceptible to fungal parasites until véraison after which the microbiota of truly intact berries is similar to that of plant leaves, which is dominated by basidiomycetous yeasts (e.g. Cryptococcus spp., Rhodotorula spp. Sporobolomyces spp.) and the yeast-like fungus Aureobasidium pullulans. The cuticle of visually intact berries may bear microfissures and softens with ripening, increasing nutrient availability and explaining the possible dominance by the oxidative or weakly fermentative ascomycetous populations (e.g. Candida spp., Hanseniaspora spp., Metschnikowia spp., Pichia spp.) approaching harvest time. When grape skin is clearly damaged, the availability of high sugar concentrations on the berry surface favours the increase of ascomycetes with higher fermentative activity like Pichia spp. and Zygoascus hellenicus, including dangerous wine spoilage yeasts (e.g. Zygosaccharomyces spp., Torulaspora spp.), and of acetic acid bacteria (e.g. Gluconobacter spp., Acetobacter spp.). The sugar fermenting species Saccharomyces cerevisiae is rarely found on unblemished berries, being favoured by grape damage. Lactic acid bacteria are minor partners of grape microbiota and while being the typical agent of malolactic fermentation, Oenococcus oeni has been seldom isolated from grapes in the vineyard. Environmental ubiquitous bacteria of the genus Enterobacter spp., Enterococcus spp., Bacillus spp

  9. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival

    Science.gov (United States)

    Vajkoczy, Peter; Knyazev, Pjotr; Kunkel, Andrea; Capelle, Hans-Holger; Behrndt, Sandra; von Tengg-Kobligk, Hendrik; Kiessling, Fabian; Eichelsbacher, Uta; Essig, Marco; Read, Tracy-Ann; Erber, Ralf; Ullrich, Axel

    2006-01-01

    Malignant gliomas remain incurable brain tumors because of their diffuse-invasive growth. So far, the genetic and molecular events underlying gliomagenesis are poorly understood. In this study, we have identified the receptor tyrosine kinase Axl as a mediator of glioma growth and invasion. We demonstrate that Axl and its ligand Gas6 are overexpressed in human glioma cell lines and that Axl is activated under baseline conditions. Furthermore, Axl is expressed at high levels in human malignant glioma. Inhibition of Axl signaling by overexpression of a dominant-negative receptor mutant (AXL-DN) suppressed experimental gliomagenesis (growth inhibition >85%, P 72 days). A detailed analysis of the distinct hallmarks of glioma pathology, such as cell proliferation, migration, and invasion and tumor angiogenesis, revealed that inhibition of Axl signaling interfered with cell proliferation (inhibition 30% versus AXL-WT), glioma cell migration (inhibition 90% versus mock and AXL-WT, P < 0.05), and invasion (inhibition 62% and 79% versus mock and AXL-WT, respectively; P < 0.05). This study describes the identification, functional manipulation, in vitro and in vivo validation, and preclinical therapeutic inhibition of a target receptor tyrosine kinase mediating glioma growth and invasion. Our findings implicate Axl in gliomagenesis and validate it as a promising target for the development of approaches toward a therapy of these highly aggressive but, as yet, therapy-refractory, tumors. PMID:16585512

  10. Phellinus linteus extract induces autophagy and synergizes with 5-fluorouracil to inhibit breast cancer cell growth.

    Science.gov (United States)

    Lee, Wen-Ying; Hsu, Keng-Fu; Chiang, Tai-An; Chen, Chee-Jen

    2015-01-01

    Phellinus linteus (PL) is a medicinal mushroom due to its several biological properties, including anticancer activity. However, the mechanisms of its anticancer effect remain to be elucidated. We evaluated the inhibitory effects of the ethanolic extract from the PL combined with 5-FU on MDA-MB-231 breast cancer cell line and to determine the mechanism of cell death. Individually, PL extract and 5-FU significantly inhibited the proliferation of MDA-MB-231 cells in a dose-dependent manner. PL extract (30 mg/mL) in combination with 5-FU (10 μg/mL) synergistically inhibited MDA-MB-231 cells by 1.8-fold. PL did not induce apoptosis, as demonstrated by the DNA fragmentation assay, the sub-G1 population, and staining with annexin V-FITC and propidium iodide. The exposure of MDA-MB-231 cells to PL extracts resulted in several confirmed characteristics of autophagy, including the appearance of autophagic vacuoles revealed by monodansylcadaverine staining, the formation of acidic vesicular organelles, autophagosome membrane association of microtubule-associated protein light chain 3 (LC3) characterized by cleavage of LC3 and its punctuate redistribution, and ultrastructural observation of autophagic vacuoles by transmission electron microscopy. We concluded that PL extracts synergized with low doses of 5-FU to inhibit triple-negative breast cancer cell growth and demonstrated that PL extract can induce autophagy-related cell death. PMID:25622112

  11. SNS-032 Prevents Tumor Cell-Induced Angiogenesis By Inhibiting Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    M. Aktar Ali

    2007-05-01

    Full Text Available Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs and human glioblastoma cells (U87MG. SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.

  12. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine

    Directory of Open Access Journals (Sweden)

    Jorge Mansur Medina

    2015-02-01

    Full Text Available Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L., which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic, a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT, which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.

  13. Growth Inhibition and Membrane Permeabilization of Candida lusitaniae Using Varied Pulse Shape Electroporation

    Directory of Open Access Journals (Sweden)

    V. Novickij

    2015-01-01

    Full Text Available Candida lusitaniae is an opportunistic yeast pathogen, which can readily develop resistance to antifungal compounds and result in a complex long-term treatment. The efficient treatment is difficult since structure and metabolic properties of the fungal cells are similar to those of eukaryotic host. One of the potential methods to improve the inhibition rate or the cell permeability to inhibitors is the application of electroporation. In this work we investigated the dynamics of the growth inhibition and membrane permeabilization of C. lusitaniae by utilizing the various pulse shape and duration electric field pulses. Our results indicated that single electroporation procedure using 8 kV/cm electric field may result in up to 51±5% inhibition rate. Also it has been experimentally shown that the electroporation pulse shape may influence the inhibitory effect; however, the amplitude of the electric field and the pulse energy remain the most important parameters for definition of the treatment outcome. The dynamics of the cell membrane permeabilization in the 2–8 kV/cm electric field were overviewed.

  14. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram

    Science.gov (United States)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Mao, Shirui; Li, Yaping

    2014-03-01

    Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.

  15. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  16. Inhibition of human lung adenocarcinoma growth using survivint34a by low-dose systematic administration

    Indian Academy of Sciences (India)

    Yan Shan; Chunting Wang; Li Yang; Li Juan Chen; Hong Xin Deng; Han Shuo Yang; Zhimian Li; Zhiyong Li; Li Pan; Fei Leng; Yuquan Wei

    2010-06-01

    Anti-apoptosis plays an important role in tumour formation and development. Survivin is a member of the inhibitor of apoptosis (IAP) family, which is a target for anti-cancer drug exploitation was replaced as development. We investigated the role of the homo dominant-negative mutant Survivin-T34A in suppressing human lung adenocarcinomas (A549). The anti-tumour activity of HSurvivinT34A plasmid was evaluated in the A549 cell line and nude mice bearing A549 subcutaneous tumours. Low-dose systemic administration was continuously used. The HSurvivinT34A plasmid (5 g/one) complexed with a cationic liposome (DOTAP/Chol) significantly inhibited tumour growth in our model. We observed microvessel density degradation by CD31 immunohistochemistry and apoptotic cell increase by TUNEL assay, PI staining and flow cytometric analysis in the treated group. The present findings suggest that the HSurvivinT34A plasmid complexed with a cationic liposome may provide an effective approach to inhibit the growth of human lung adenocarcinomas in vitro and in vivo.

  17. Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro

    International Nuclear Information System (INIS)

    Highlights: ► Cat S is highly expressed in HCC cells with high metastatic potential. ► Knockdown of Cat S inhibits growth and invasion of HCC cells. ► Knockdown of Cat S inhibits HCC-associated angiogenesis. ► Cat S might be a potential target for HCC therapy. -- Abstract: Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCC cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.

  18. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue

    Indian Academy of Sciences (India)

    Lílian S Peloi; Rafael R S Soares; Carlos E G Biondo; Vagner R Souza; Noboru Hioka; Elza Kimura

    2008-06-01

    The aim of this study was to propose the use of red light-emitting diode (LED) as an alternative light source for methylene blue (MB) photosensitizing effect in photodynamic therapy (PDT). Its effectiveness was tested against Staphylococcus aureus (ATCC 26923), Escherichia coli (ATCC 26922), Candida albicans (ATCC 90028) and Artemia salina. The maximum absorption of the LED lamps was at a wavelength of 663 nm, at intensities of 2, 4, 6 and 12 J.cm–2 for 10, 20, 30 and 60 min of exposure, respectively. Assays with and without LED exposure were carried out in plates containing MB at concentrations of 7 to 140.8 M for microorganisms and 13.35 to 668.5 M for microorganisms or microcrustaceans. The LED exposure induced more than 93.05%, 93.7% and 93.33% of growth inhibition for concentrations of 42.2 M for S. aureus (D-value=12.05 min) and 35.2 M for E. coli (D-value=11.51 min) and C. albicans (D-value=12.18 min), respectively after 20 min of exposure. LED exposure for 1 h increased the cytotoxic effect of MB against A. salina from 27% to 75%. Red LED is a promising light device for PDT that can effectively inhibit bacteria, yeast and microcrustacean growth.

  19. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  20. Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Qi; Wang, Xuedi; Zhang, Hanguang; Li, Chuanwei [Department of Hepatobiliary and Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021 (China); Fan, Junhua [Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021 (China); Xu, Jing, E-mail: jxuapr@yahoo.com.cn [Department of Hepatobiliary and Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021 (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Cat S is highly expressed in HCC cells with high metastatic potential. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits growth and invasion of HCC cells. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits HCC-associated angiogenesis. Black-Right-Pointing-Pointer Cat S might be a potential target for HCC therapy. -- Abstract: Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCC cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.

  1. Adenovirus-delivered wwox inhibited lung cancer growth in vivo in a mouse model.

    Science.gov (United States)

    Zhou, Y; Shou, F; Zhang, H; You, Q

    2016-01-01

    Lung cancer is the most prevalent and deadly malignancy worldwide. This study investigated the possibility of inhibiting lung cancer in vivo with adenovirus-delivered WW domain-containing oxidoreductase (wwox). The lung cancer model was established by inoculating A549 lung cancer cells into the pleural space of nude mice. The control or wwox adenovirus was injected into the pleural space 7 days after cell inoculation and 14 days after first injection. The tumor number and burdens were measured 2 weeks after second virus injection. The carcinoembryonic antigen (CEA) and alpha-feto protein (AFP) levels in pleural effusion were analyzed by enzyme-linked immunosorbent assay. Apoptosis, proliferation and angiogenesis of tumor cells were assessed by terminal deoxinucleotidyl transferase-mediated dUTP-fluorescein nick end labeling assay, proliferating cell nuclear antigen (PCNA) and CD31 staining, respectively. Ectopic wwox significantly reduced both the number and size of lung tumors accompanied by substantially lower CEA and AFP levels in pleural effusion. The expression levels of Bcl2, Bcl-xL, vascular endothelial growth factor, PCNA-positive and CD31-positive cells in the tumors were significantly decreased, whereas levels of p21 and p73 and apoptotic cells markedly increased in mice receiving the wwox virus. These data demonstrated that wwox delivered by adenovirus was able to inhibit the growth of lung cancer in vivo, indicating the potential of using wwox as a gene therapy agent for lung cancer. PMID:26516139

  2. Growth inhibition of BEL-7404 human hepatoma cells by expression of mutant telomerase reverse transcriptase.

    Science.gov (United States)

    Zhang, Rugang; Wang, Xingwang; Guo, Lixia; Xie, Hong

    2002-01-10

    Human hepatocellular carcinoma (HCC) is one of the most common malignancies in Asia and Africa. Human telomerase reverse transcriptase (hTERT) is expressed in HCC but absent in normal human liver cells, which is consistent with the expression pattern of telomerase. In the present study, expression of a dominant-negative form of hTERT (DN-hTERT) resulted in inhibition of telomerase activity and decreased mean telomeric length of BEL-7404 human hepatoma cells, whereas expression of wild-type hTERT (WT-hTERT) and control vector had no such effects. Cell growth was inhibited by this mutant (DN-hTERT), which was consistent with the changes in telomerase level. Flattened large cells were found in late generations with the DN-hTERT treatment. When mean telomeric length of DN-hTERT-transfected cells reached a critical length (about 1.7 kb), apoptosis was induced. Tumorigenicity of DN-hTERT-expressing cells was eliminated in vivo. These data indicated that hTERT was essential for the growth of hepatoma cells. hTERT can also be used as an important target for anti-HCC drug screening. PMID:11774261

  3. Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail Tien-Hsien Liquid

    Directory of Open Access Journals (Sweden)

    Sun Andy

    2010-04-01

    Full Text Available Abstract Background Advanced cancer is a multifactorial disease that demands treatments targeting multiple cellular pathways. Chinese herbal cocktail which contains various phytochemicals may target multiple dys-regulated pathways in cancer cells and thus may provide an alternative/complementary way to treat cancers. Previously we reported that the Chinese herbal cocktail Tien-Hsien Liguid (THL can specifically induce apoptosis in various cancer cells and have immuno-modulating activity. In this study, we further evaluated the anti-metastatic, anti-angiogenic and anti-tumor activities of THL with a series of in vitro and in vivo experiments. Methods The migration and invasion of cancer cells and endothelial cells was determined by Boyden chamber transwell assays. The effect of THL on pulmonary metastasis was done by injecting CT-26 colon cancer cells intravenously to syngenic mice. The in vitro and in vivo microvessel formation was determined by the tube formation assay and the Matrigel plug assay, respectively. The in vivo anti-tumor effect of THL was determined by a human MDA-MB-231 breast cancer xenograft model. The expression of metalloproteinase (MMP-2, MMP-9, and urokinase plasminogen activator (uPA was measured by gelatin zymography. The expression of HIF-1α and the phosphorylation of ERK1/2 were determined by Western blot. Results THL inhibited the migration and invasion ability of various cancer cells in vitro, decreased the secretion of MMP-2, MMP-9, and uPA and the activity of ERK1/2 in cancer cells, and suppressed pulmonary metastasis of CT-26 cancer cells in syngenic mice. Moreover, THL inhibited the migration, invasion, and tube formation of endothelial cells in vitro, decreased the secretion of MMP-2 and uPA in endothelial cells, and suppressed neovascularization in Matrigel plugs in mice. Besides its inhibitory effect on endothelial cells, THL inhibited hypoxia-induced HIF-1α and vascular endothelial growth factor-A expression

  4. Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail Tien-Hsien Liquid

    International Nuclear Information System (INIS)

    Advanced cancer is a multifactorial disease that demands treatments targeting multiple cellular pathways. Chinese herbal cocktail which contains various phytochemicals may target multiple dys-regulated pathways in cancer cells and thus may provide an alternative/complementary way to treat cancers. Previously we reported that the Chinese herbal cocktail Tien-Hsien Liguid (THL) can specifically induce apoptosis in various cancer cells and have immuno-modulating activity. In this study, we further evaluated the anti-metastatic, anti-angiogenic and anti-tumor activities of THL with a series of in vitro and in vivo experiments. The migration and invasion of cancer cells and endothelial cells was determined by Boyden chamber transwell assays. The effect of THL on pulmonary metastasis was done by injecting CT-26 colon cancer cells intravenously to syngenic mice. The in vitro and in vivo microvessel formation was determined by the tube formation assay and the Matrigel plug assay, respectively. The in vivo anti-tumor effect of THL was determined by a human MDA-MB-231 breast cancer xenograft model. The expression of metalloproteinase (MMP)-2, MMP-9, and urokinase plasminogen activator (uPA) was measured by gelatin zymography. The expression of HIF-1α and the phosphorylation of ERK1/2 were determined by Western blot. THL inhibited the migration and invasion ability of various cancer cells in vitro, decreased the secretion of MMP-2, MMP-9, and uPA and the activity of ERK1/2 in cancer cells, and suppressed pulmonary metastasis of CT-26 cancer cells in syngenic mice. Moreover, THL inhibited the migration, invasion, and tube formation of endothelial cells in vitro, decreased the secretion of MMP-2 and uPA in endothelial cells, and suppressed neovascularization in Matrigel plugs in mice. Besides its inhibitory effect on endothelial cells, THL inhibited hypoxia-induced HIF-1α and vascular endothelial growth factor-A expression in cancer cells. Finally, our results show that THL

  5. Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo

    International Nuclear Information System (INIS)

    Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery, whole brain and spine irradiation, and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. To test the importance of NFκB to medulloblastoma cell growth, the effects of multiple drugs that inhibit NFκB, pyrrolidine dithiocarbamate, diethyldithiocarbamate, sulfasalazine, curcumin and bortezomib, were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells, xenograft flank tumors, and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB, IκB, was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. We report high constitutive activity of the canonical NFκB pathway, as seen by Western analysis of the NFκB subunit p65, in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though, conversely, the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally, expression of a dominant negative form of the endogenous inhibitor of NFκB, dnIκB, resulted in poor xenograft tumor growth, with average tumor volumes 40% smaller than controls. These data collectively

  6. Growth inhibition of human prostate cells in vitro by novel inhibitors of androgen synthesis.

    Science.gov (United States)

    Klus, G T; Nakamura, J; Li, J S; Ling, Y Z; Son, C; Kemppainen, J A; Wilson, E M; Brodie, A M

    1996-11-01

    The long-standing strategy for the treatment of metastatic prostate cancer has been to reduce androgenic stimulation of tumor growth by removal of the testes, the primary site of testosterone synthesis. However, a low level of androgenic stimulation may continue, even after castration, by the conversion of adrenal androgens to 5alpha-dihydrotestosterone (DHT) in the prostate tumor cells. Two important enzymes of the androgen biosynthetic pathway are 17alpha-hydroxylase/C17,20-lyase, which regulates an early step in the synthesis of testosterone and other androgens in both the testes and adrenal glands, and 5alpha-reductase, which converts testosterone to the more potent androgen, DHT, in the prostate. We have identified new inhibitors of these enzymes that may be of use in achieving a more complete ablation of androgens in the treatment of metastatic prostate cancer. Three derivatives of androstene were shown to inhibit 17alpha-hydroxylase/C17,20-lyase with potencies 2-20-fold greater than that of ketoconazole, a previously established inhibitor of this enzyme. Derivatives of pregnane and pregnene displayed activities against 5alpha-reductase that were comparable to that of N-(1,1-dimethyl-ethyl)-3-oxo-4-aza-5alpha-androst-1-ene-17beta-car boxamide. All of the 5alpha-reductase inhibitors were able to at least partially inhibit the mitogenic effect of testosterone in either histocultures of human benign prostatic hypertrophic tissue or in cultures of the LNCaP human prostatic tumor cell line. For these compounds, it appears that this inhibition can be attributed to a reduction of DHT synthesis in these cultures, because no inhibitory effect was observed in DHT-treated cultures, and none of the compounds had a cytotoxic effect. Surprisingly, one of the inhibitors of 17alpha-hydroxylase/C17,20-lyase, 17beta-(4-imidazolyl)-5-pregnen-3beta-ol, was also able to inhibit the mitogenic effect of testosterone in both the histoculture and cell culture assays and had an effect

  7. A chrysin derivative suppresses skin cancer growth by inhibiting cyclin-dependent kinases.

    Science.gov (United States)

    Liu, Haidan; Liu, Kangdong; Huang, Zunnan; Park, Chan-Mi; Thimmegowda, N R; Jang, Jae-Hyuk; Ryoo, In-Ja; He, Long; Kim, Sun-Ok; Oi, Naomi; Lee, Ki Won; Soung, Nak-Kyun; Bode, Ann M; Yang, Yifeng; Zhou, Xinmin; Erikson, Raymond L; Ahn, Jong-Seog; Hwang, Joonsung; Kim, Kyoon Eon; Dong, Zigang; Kim, Bo-Yeon

    2013-09-01

    Chrysin (5,7-dihydroxyflavone), a natural flavonoid widely distributed in plants, reportedly has chemopreventive properties against various cancers. However, the anticancer activity of chrysin observed in in vivo studies has been disappointing. Here, we report that a chrysin derivative, referred to as compound 69407, more strongly inhibited EGF-induced neoplastic transformation of JB6 P(+) cells compared with chrysin. It attenuated cell cycle progression of EGF-stimulated cells at the G1 phase and inhibited the G1/S transition. It caused loss of retinoblastoma phosphorylation at both Ser-795 and Ser-807/811, the preferred sites phosphorylated by Cdk4/6 and Cdk2, respectively. It also suppressed anchorage-dependent and -independent growth of A431 human epidermoid carcinoma cells. Compound 69407 reduced tumor growth in the A431 mouse xenograft model and retinoblastoma phosphorylation at Ser-795 and Ser-807/811. Immunoprecipitation kinase assay results showed that compound 69407 attenuated endogenous Cdk4 and Cdk2 kinase activities in EGF-stimulated JB6 P(+) cells. Pulldown and in vitro kinase assay results indicated that compound 69407 directly binds with Cdk2 and Cdk4 in an ATP-independent manner and inhibited their kinase activities. A binding model between compound 69407 and a crystal structure of Cdk2 predicted that compound 69407 was located inside the Cdk2 allosteric binding site. The binding was further verified by a point mutation binding assay. Overall results indicated that compound 69407 is an ATP-noncompetitive cyclin-dependent kinase inhibitor with anti-tumor effects, which acts by binding inside the Cdk2 allosteric pocket. This study provides new insights for creating a general pharmacophore model to design and develop novel ATP-noncompetitive agents with chemopreventive or chemotherapeutic potency. PMID:23888052

  8. Desacetyl nimbinene inhibits breast cancer growth and metastasis through reactive oxygen species mediated mechanisms.

    Science.gov (United States)

    Arumugam, Arunkumar; Subramani, Ramadevi; Nandy, Sushmita; Powell, Sara; Velazquez, Marissa; Orozco, Alexis; Galvez, Adriana; Lakshmanaswamy, Rajkumar

    2016-05-01

    Accumulation of reactive oxygen species (ROS) has been implicated in induction of apoptosis and regulation of key signaling molecules in cancer cells. Phytochemicals are potent source of anticancer drugs as wells as potential inducers of ROS. Neem (Azadirachta indica) is a medicinal plant used for the treatment of various diseases. The main objective of this study is to investigate the anticancer effect of desacetyl nimbinene (DAN; an active ingredient of neem) against breast cancer. Normal and breast cancer cell lines were used for the study. The effect of DAN on cell proliferation, apoptosis, ROS generation, migration, and invasion was analyzed. Antioxidant enzymes superoxide dismutase (SOD)1 and SOD2 were overexpressed to test the effect of DAN-induced ROS generation on breast cancer growth. Key survival and apoptotic protein markers were analyzed to validate the anticancer effect of DAN. Our data demonstrated that DAN inhibited the growth of breast cancer cells by inducing ROS generation. Further investigations revealed that DAN treatment lead to the loss of mitochondrial membrane potential resulting in mitochondria-dependent apoptotic cell death. Increased phosphorylation of c-Jun-N-terminal kinase (JNK) and reduced phosphorylation of p38 were also observed in response to DAN treatment. Inhibition of ROS production by overexpressing antioxidant enzymes SOD1 and SOD2 reduced the DAN-induced cytotoxicity. Additionally, DAN significantly inhibited migration and invasion of MDA-MB-231 breast cancer cells. Overall, our data suggest that DAN exerts its anticancer effect on breast cancer by induction of mitochondria-mediated apoptosis mediated by ROS accumulation. PMID:26637227

  9. Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis.

    Science.gov (United States)

    Qi, Cuiling; Zhou, Qin; Li, Bin; Yang, Yang; Cao, Liu; Ye, Yuxiang; Li, Jiangchao; Ding, Yi; Wang, Huiping; Wang, Jintao; He, Xiaodong; Zhang, Qianqian; Lan, Tian; Lee, Kenneth Ka Ho; Li, Weidong; Song, Xiaoyu; Zhou, Jia; Yang, Xuesong; Wang, Lijing

    2014-10-30

    Angiogenesis is involved in the development, progression and metastasis of various human cancers. Herein, we report the discovery of glipizide, a widely used drug for type 2 diabetes mellitus, as a promising anticancer agent through the inhibition of tumor angiogenesis. By high-throughput screening (HTS) of an FDA approved drug library utilizing our in vivo chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, glipizide has been identified to significantly inhibit blood vessel formation and development. Moreover, glipizide was found to suppress tumor angiogenesis, tumor growth and metastasis using xenograft tumor and MMTV-PyMT transgenic mouse models. We further revealed that the anticancer capability of glipizide is not attributed to its antiproliferative effects, which are not significant against various human cancer cell lines. To investigate whether its anticancer efficacy is associated with the glucose level alteration induced by glipizide application, glimepiride, another medium to long-acting sulfonylurea antidiabetic drug in the same class, was employed for the comparison studies in the same fashion. Interestingly, glimepiride has demonstrated no significant impact on the tumor growth and metastasis, indicating that the anticancer effects of glipizide is not ascribed to its antidiabetic properties. Furthermore, glipizide suppresses endothelial cell migration and the formation of tubular structures, thereby inhibiting angiogenesis by up-regulating the expression of natriuretic peptide receptor A. These findings uncover a novel mechanism of glipizide as a potential cancer therapy, and also for the first time, provide direct evidence to support that treatment with glipizide may reduce the cancer risk for diabetic patients. PMID:25294818

  10. Tazarotene-induced gene 1 inhibits prostaglandin E2-stimulated HCT116 colon cancer cell growth

    Directory of Open Access Journals (Sweden)

    Tsai Fu-Ming

    2011-11-01

    Full Text Available Abstract Background The tazarotene-induced gene 1 (TIG1 is a putative tumor suppressor gene. We have recently demonstrated both TIG1A and TIG1B isoforms inhibited cell growth and induced the expression of G protein-coupled receptor kinase 5 (GRK5 in colon cancer cells. Because elevated prostaglandin E2 (PGE2 signaling plays a significant role in colorectal carcinogenesis, the objective of this study was to explore the effect of TIG1 on PGE2-induced cellular proliferation and signaling in colon cancer cells. Methods HCT116 cells as well as TIG1A and TIG1B stable cells established from HCT116 colon cancer cells using the GeneSwitch system were used. TIG1 isoform expression was induced by mifepristone treatment in stable cells. Cell growth was determined using the WST-1 cell proliferation assay. Activation of β-catenin/TCF and cyclic adenosine monophosphate (cAMP/CREB signaling pathways were determined using luciferase reporter assays. Expression and subcellular distribution of β-catenin were analyzed using Western blot and confocal microscope. Levels of cAMP were measured using an enzyme immunoassay. RNA interference was used to examine the effects of TIG1- and GRK5-mediated changes. Results PGE2-stimulated cell growth was reduced in inducible TIG1A- and TIG1B-stable HCT116 cells. GRK5 expression was upregulated by both TIG1A and TIG1B isoforms, and its expression suppressed PGE2-stimulated HCT116 cell growth. GRK5, TIG1A, and TIG1B expression significantly inhibited PGE2-stimulated β-catenin/TCF and cAMP signaling pathway reporters and cAMP. Also, PGE2-stimulated nuclear localization of β-catenin was inhibited by expression of TIG1A and TIG1B, which was ameliorated by both TIG1 and GRK5 siRNAs. Conclusions TIG1 suppressed PGE2-stimulated Wnt and cAMP signaling pathways in colon cancer cells through GRK5.

  11. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Sylvie, E-mail: lamy.sylvie@uqam.ca; Ouanouki, Amira; Béliveau, Richard; Desrosiers, Richard R.

    2014-03-10

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  12. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  13. The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth

    Directory of Open Access Journals (Sweden)

    Bellou Sofia

    2012-05-01

    Full Text Available Abstract Background Increased consumption of plant-based diets has been linked to the presence of certain phytochemicals, including polyphenols such as flavonoids. Several of these compounds exert their protective effect via inhibition of tumor angiogenesis. Identification of additional phytochemicals with potential antiangiogenic activity is important not only for understanding the mechanism of the preventive effect, but also for developing novel therapeutic interventions. Results In an attempt to identify phytochemicals contributing to the well-documented preventive effect of plant-based diets on cancer incidence and mortality, we have screened a set of hitherto untested phytoestrogen metabolites concerning their anti-angiogenic effect, using endothelial cell proliferation as an end point. Here, we show that a novel phytoestrogen, 6-methoxyequol (6-ME, inhibited VEGF-induced proliferation of human umbilical vein endothelial cells (HUVE cells, whereas VEGF-induced migration and survival of HUVE cells remained unaffected. In addition, 6-ME inhibited FGF-2-induced proliferation of bovine brain capillary endothelial (BBCE cells. In line with its role in cell proliferation, 6-ME inhibited VEGF-induced phosphorylation of ERK1/2 MAPK, the key cascade responsible for VEGF-induced proliferation of endothelial cells. In this context, 6-ME inhibited in a dose dependent manner the phosphorylation of MEK1/2, the only known upstream activator of ERK1/2. 6-ME did not alter VEGF-induced phosphorylation of p38 MAPK or AKT, compatible with the lack of effect on VEGF-induced migration and survival of endothelial cells. Peri-tumor injection of 6-ME in A-431 xenograft tumors resulted in reduced tumor growth with suppressed neovasularization compared to vehicle controls (P  Conclusions 6-ME inhibits VEGF- and FGF2-induced proliferation of ECs by targeting the phosphorylation of MEK1/2 and it downstream substrate ERK1/2, both key components of the mitogenic MAPK

  14. Quality Control of Wild Berries Honey Syrup

    Directory of Open Access Journals (Sweden)

    Laura Stan

    2013-11-01

    Full Text Available This paper presents the quality control parameters of wild berries honey syrup . The product was created in laboratory (wild berries: honey, 1:4 w/w and there were no changes recorded in overall quality over 6 months preservation at 1-2°C. Basic quality parameters of the product were evaluated: humidity, pH, acidity, hydroxymethylfurfural, diastase, total sugars and ascorbic acid. Methods developed by Internantional Honey Commission and Romanian Food Quality Standards were applied during this study. The product presented qood quality criteria and it was highly appreciated by consumers who tasted it. This study presents a valuable method to preserve fresh widberries in honey over a long period of time. The economical value of this experiment resides in making these fruits available outside the harvesting season.

  15. Control of virus diseases of berry crops.

    Science.gov (United States)

    Martin, Robert R; Tzanetakis, Ioannis E

    2015-01-01

    Virus control in berry crops starts with the development of plants free of targeted pathogens, usually viruses, viroids, phytoplasmas, and systemic bacteria, through a combination of testing and therapy. These then become the top-tier plants in certification programs and are the source from which all certified plants are produced, usually after multiple cycles of propagation. In certification schemes, efforts are made to produce plants free of the targeted pathogens to provide plants of high health status to berry growers. This is achieved using a systems approach to manage virus vectors. Once planted in fruit production fields, virus control shifts to disease control where efforts are focused on controlling viruses or virus complexes that result in disease. In fruiting fields, infection with a virus that does not cause disease is of little concern to growers. Virus control is based on the use of resistance and tolerance, vector management, and isolation. PMID:25591882

  16. Sorafenib inhibits tumor growth and vascularization of rhabdomyosarcoma cells by blocking IGF-1R-mediated signaling

    OpenAIRE

    Maruwge, Wessen; D’Arcy, Pádraig; Folin, Annika; Brnjic, Slavica; Wejde, Johan; Davis, Anthony; Erlandsson, Fredrik; Bergh, Jonas; Brodin, Bertha

    2008-01-01

    The growth of many soft tissue sarcomas is dependent on aberrant growth factor signaling, which promotes their proliferation and motility. With this in mind, we evaluated the effect of sorafenib, a receptor tyrosine kinase inhibitor, on cell growth and apoptosis in sarcoma cell lines of various histological subtypes. We found that sorafenib effectively inhibited cell proliferation in rhabdomyosarcoma, synovial sarcoma and Ewing’s sarcoma with IC50 values

  17. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation.

    Science.gov (United States)

    Shahzad, Muhammad; Millhouse, Emma; Culshaw, Shauna; Edwards, Christine A; Ramage, Gordon; Combet, Emilie

    2015-03-01

    Periodontitis (PD) is a chronic infectious disease mediated by bacteria in the oral cavity. (Poly)phenols (PPs), ubiquitous in plant foods, possess antimicrobial activities and may be useful in the prevention and management of periodontitis. The objective of this study was to test the antibacterial effects of selected PPs on periodontal pathogens, on both planktonic and biofilm modes of growth. Selected PPs (n = 48) were screened against Streptococcus mitis (S. mitis), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis). The antibacterial potential of each compound was evaluated in terms of planktonic minimum inhibitory concentration (PMIC) and planktonic minimum bactericidal concentration (PMBC) using standardized broth microdilution assays. The most active PPs were further tested for their effect on mono-species and multi-species biofilms using a colorimetric resazurin-based viability assay and scanning electron microscopy. Of the 48 PPs tested, 43 showed effective inhibition of planktonic growth of one or more test strains, of which curcumin was the most potent (PMIC range = 7.8-62.5 μg mL(-1)), followed by pyrogallol (PMIC range = 2.4-2500 μg mL(-1)), pyrocatechol (MIC range = 4.9-312.5 μg mL(-1)) and quercetin (PMIC range = 31.2-500 μg mL(-1)). At this concentration, adhesion of curcumin and quercetin to the substrate also inhibited adhesion of S. mitis, and biofilm formation and maturation. While both curcumin and quercetin were able to alter architecture of mature multi-species biofilms, only curcumin-treated biofilms displayed a significantly reduced metabolic activity. Overall, PPs possess antibacterial activities against periodontopathic bacteria in both planktonic and biofilm modes of growth. Further cellular and in vivo studies are necessary to confirm their beneficial activities and potential use in the prevention and or treatment of periodontal

  18. Hiwi knockdown inhibits the growth of lung cancer in nude mice.

    Science.gov (United States)

    Liang, Dong; Dong, Min; Hu, Lin-Jie; Fang, Ze-Hui; Xu, Xia; Shi, En-Hui; Yang, Yi-Ju

    2013-01-01

    Hiwi, a human homologue of the Piwi family, plays an important role in stem cell self-renewal and is overexpressed in various human tumors. This study aimed to determine whether an RNA interference-based strategy to suppress Hiwi expression could inhibit tumor growth in a xenograft mouse model. A rare population of SSCloAldebr cells was isolated and identified as lung cancer stem cells in our previous study. Plasmids containing U6 promoter-driven shRNAs against Hiwi or control plasmids were successfully established. The xenograft tumor model was generated by subcutaneously inoculating with lung cancer stem cell SSCloAldebr cells. After the tumor size reached about 8 mm in diameter, shRNA plasmids were injected into the mice via the tail vein three times a week for two weeks, then xenograft tumor growth was assessed. In nude mice, intravenously delivery of Hiwi shRNA plasmids significantly inhibited tumor growth compared to treatment with control scrambled shRNA plasmids or the vehicle PBS. No mice died during the experiment and no adverse events were observed in mice administered the plasmids. Moreover, delivery of Hiwi shRNA plasmids resulted in a significant suppressed expression of Hiwi and ALDH-1 in xenograft tumor samples, based on immunohistochemical analysis. Thus, shRNA-mediated Hiwi gene silencing in lung cancer stem cells by an effective in vivo gene delivery strategy appeared to be an effective therapeutic approach for lung cancer, and may provide some useful clues for RNAi gene therapy in solid cancers. PMID:23621188

  19. Small interference RNA targeting tissue factor inhibits human lung adenocarcinoma growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Wang Jianing

    2011-05-01

    Full Text Available Abstract Background The human coagulation trigger tissue factor (TF is overexpressed in several types of cancer and involved in tumor growth, vascularization, and metastasis. To explore the role of TF in biological processes of lung adenocarcinoma, we used RNA interference (RNAi technology to silence TF in a lung adenocarcinoma cell line A549 with high-level expression of TF and evaluate its antitumor effects in vitro and in vivo. Methods The specific small interfering RNA (siRNA designed for targeting human TF was transfected into A549 cells. The expression of TF was detected by reverse transcription-PCR and Western blot. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The metastatic potential of A549 cells was determined by wound healing, the mobility and Matrigel invasion assays. Expressions of PI3K/Akt, Erk1/2, VEGF and MMP-2/-9 in transfected cells were detected by Western blot. In vivo, the effect of TF-siRNA on the growth of A549 lung adenocarcinoma xenografts in nude mice was investigated. Results TF -siRNA significantly reduced the expression of TF in the mRNA and protein levels. The down-regulation of TF in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis in dose-dependent manner. Erk MAPK, PI3K/Akt pathways as well as VEGF and MMP-2/-9 expressions were inhibited in TF-siRNA transfected cells. Moreover, intratumoral injection of siRNA targeting TF suppressed the tumor growth of A549 cells in vivo model of lung adenocarcinoma. Conclusions Down-regulation of TF using siRNA could provide a potential approach for gene therapy against lung adenocarcinoma, and the antitumor effects may be associated with inhibition of Erk MAPK, PI3K/Akt pathways.

  20. Coffee Berry Borer Resistance in Coffee Genotypes

    OpenAIRE

    Gustavo Hiroshi Sera; Tumoru Sera; Dhalton Shiguer Ito; Claudionor Ribeiro Filho; Amador Villacorta; Fabio Seidi Kanayama1; Clayton Ribeiro Alegre; Leandro Del Grossi

    2010-01-01

    The aim of this study was to evaluate the coffee germplasm of the Paraná Agronomic Institute (IAPAR) for resistance to the coffee-berry-borer. Preliminary field evaluation was performed in August 2004 and the fruits of less damaged genotypes in the field were evaluated under controlled condition with obligated and free choice experiments established in a randomized complete design with three replications. The genotypes were evaluated fifteen days after infestation with one borer per fruit in ...

  1. Development of Liquid Cadmium Cathode Structure for the Inhibition of Uranium Dendrite Growth

    International Nuclear Information System (INIS)

    The LCC (Liquid Cadmium Cathode) structure to be developed for inhibiting the formation and growth of the uranium dendrite has been known as a key part in the electrowinning process for the simultaneous recovering of uranium and TRU (TRans Uranium) elements from spent fuels. A zinc-gallium (Zn-Ga) experimental system which is able to be functional in aqueous condition and normal temperature has been set up to observe the formation and growth phenomena of the metal dendrites on liquid cathode. The growth of the zinc dendrites on the gallium cathode and the performance of the existing stirrer type and pounder type cathode structure were observed. Although the mechanical strength of the dendrites appeared to be weak in the electrolyte and easily crashed by the various cathode structures, it was difficult to effectively submerge the dendrite into the bottom of the liquid cathode. Based on the results of the aqueous phase experiments, a lab-scale electrowinning experimental apparatus which are applicable to the development of LCC structure for the electrowinning process was established and the performance tests of the different types of LCC structure were conducted to prohibit the uranium dendrite growth on LCC surface. The experimental results of the stirrer type LCC structures have shown that they could not effectively remove the uranium dendrites growing at the inner side of the LCC crucible and the performances of the paddle and harrow type LCC structure were similar. Therefore a mesh type LCC structure was developed to push down the uranium dendrites to the bottom of the LCC crucible growing on the LCC surface and at the inner side of the crucible. From the experimental results for the performance test of the mesh type LCC structure, the uranium was recovered over 5 wt% in cadmium without the growth of uranium dendrites. After completion of the experiments, solid precipitates of the bottom of the LCC crucible were identified as an intermetallic compound (UCd11) by

  2. Dexamethasone and zinc in combination inhibit the anchorage-independent growth of S-91 Cloudman murine melanoma

    International Nuclear Information System (INIS)

    Zinc inhibited the colony formation of Cloudman S-91 murine melanoma cells in a dose dependent manner with an ID50 of 3.4 μg/ml. Total inhibition of the melanoma colony-forming units occurred at a zinc concentration of 4.42 μg/ml. In the presence of dexamethasone the ID50 for zinc inhibition was reduced by 49% and total inhibition of anchorage-independent growth occurred at the achievable in vivo zinc concentration of 3.0 μg/ml. Dexamethasone and zinc in combination effected a greater than additive inhibition of the murine melanoma colony-forming units. Statistical evaluation of these results showed that zinc and dexamethasone interacted synergistically to inhibit the formation of murine melanoma colonies. 29 references, 1 figure, 1 table

  3. Adenovirus-mediated expression of SSAT inhibits colorectal cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui SUN; Bin LIU; Ya-pei YANG; Chun-xiao XU; Yun-fei YAN; Wei WANG; Xian-xi LIU

    2008-01-01

    Aim: To construct a recombinant adenovirus that can express human spermidine/ spermine N1-acetyltransferase (SSAT) and detect its inhibitory effect on colorectal cancer cell growth in vitro. Methods: A 516 bp eDNA of SSAT was amplified and cloned into a pGL3-hTERT plasmid. The pGL3-hTERT-SSAT recombinant was digested, and the small fragment was cloned into the shuttle vector pAdTrack. The pAdTrack-hTERT-SSAT plasmids were recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the HEK293 packaging cells (transformed human embryonic kidney cells) after they were lin-earized by PacI. The process of adenovirus packaging and amplification was monitored by green fluorescent protein (GFP) expression. The SSAT protein levels were determined by Western blotting, and the intracellular polyamine con-tent was detected by reverse-phase high performance liquid chromatography. The MTS (3-(4, 5-dimethylthiaol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(-4-sulfophenyl)-2H-tetrazolium, inner salt) and colony-forming assays were used to analyze the gene transduction efficiency and effect on the growth of HT-29 and LoVo cells. A viable cell count was used to determine the cell growth with or without exogenous polyamines. Results: The GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting results demonstrated that Ad-hTERT-SSAT could increase the expres-sion of SSAT, and consequently, spermidine and spermine were reduced to low levels. The MTS and colony-forming assay results showed that HT-29 and LoVo cell growth were significantly inhibited, and the inhibitory effect could be partially reversed by exogenous spermidine and spermine. Conclusion: The successfully constructed recombinant adenovirus Ad-hTERT-SSAT could accelerate polyamine catabolism and inhibit the colorectal cell growth in vitro. It also has therapeutic potential in the treatment of colorectal cancer.

  4. Oviposition preference and larval performance of Epiphyas postvittana (Lepidoptera: Tortricidae) on Botrytis cinerea (Helotiales: Sclerotiniaceae) infected berries of Vitis vinifera (Vitales: Vitaceae).

    Science.gov (United States)

    Rizvi, Syed Z M; Raman, Anantanarayanan; Wheatley, Warwick M; Cook, Geoffrey

    2016-04-01

    In this paper we tested the behavior of gravid Epiphyas postvittana in selecting the most-appropriate site for oviposition thus benefitting offspring performance. Our hypothesis was built on Jaenike's preference-performance hypothesis (also referred to as the "mother-knows-the-best" hypothesis). To test this, we used the interacting Epiphyas postvittana, its host Vitis vinifera, and the pathogenic microbe Botrytis cinerea system. Populations of E. postvittana and B. cinerea often exist concurrently on V. vinifera in Australasia and their interaction and mutual influence are currently being explored, although the suggestion presently is that the relationship between E. postvittana and B. cinerea is mutualistic. We tested the effect of volatiles from B. cinerea-infected berries and uninfected (control) berries of V. vinifera on the oviposition behavior of E. postvittana. We also characterized the effects of B. cinerea infection on the berries of V. vinifera on the growth and development of E. postvittana. Contrary to the preference-performance hypothesis, oviposition choices made by gravid E. postvittana did not result in the best offspring survival, development, and performance. The preference for oviposition by E. postvittana was strongly influenced by the olfactory and tactile cues. She laid fewer eggs on B. cinerea-infected berries compared to uninfected berries of V. vinifera. The larvae of E. postvittana showed no preference to uninfected berries of V. vinifera. The larvae fed on B. cinerea-infected berries of V. vinifera showing greater survival rate, shorter time to pupation, greater pupal mass, and on becoming adults they laid more numbers of eggs than the larvae that were enabled to feed on uninfected berries. The larvae of E. postvittana transport the conidia of B. cinerea and transmit grey-mould disease to uninfected berries of V. vinifera. PMID:25420720

  5. Real-space Berry phases: Skyrmion soccer (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Everschor-Sitte, Karin, E-mail: karin@physics.utexas.edu; Sitte, Matthias [The University of Texas at Austin, Department of Physics, 2515 Speedway, Austin, Texas 78712 (United States)

    2014-05-07

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  6. TSC22D2 interacts with PKM2 and inhibits cell growth in colorectal cancer.

    Science.gov (United States)

    Liang, Fang; Li, Qiao; Li, Xiayu; Li, Zheng; Gong, Zhaojian; Deng, Hao; Xiang, Bo; Zhou, Ming; Li, Xiaoling; Li, Guiyuan; Zeng, Zhaoyang; Xiong, Wei

    2016-09-01

    We previously identified TSC22D2 (transforming growth factor β-stimulated clone 22 domain family, member 2) as a novel cancer-associated gene in a rare multi-cancer family. However, its role in tumor development remains completely unknown. In this study, we found that TSC22D2 was significantly downregulated in colorectal cancer (CRC) and that TSC22D2 overexpression inhibited cell growth. Using a co-immunoprecipitation (co-IP) assay combined with mass spectrometry analysis to identify TSC22D2-interacting proteins, we demonstrated that TSC22D2 interacts with pyruvate kinase isoform M2 (PKM2). These findings were confirmed by the results of immunoprecipitation and immunofluorescence assays. Moreover, overexpression of TSC22D2 reduced the level of nuclear PKM2 and suppressed cyclin D1 expression. Collectively, our study reveals a growth suppressor function of TSC22D2 that is at least partially dependent on the TSC22D2-PKM2-cyclinD1 regulatory axis. In addition, our data provide important clues that might contribute to future studies evaluating the role of TSC22D2. PMID:27573352

  7. Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Caihong Zhou

    2013-02-01

    Full Text Available TTRAP is a multi-functional protein that is involved in multipleaspects of cellular functions including cell proliferation,apoptosis and the repair of DNA damage. Here, we demonstratedthat the lentivirus-mediated overexpression of TTRAPsignificantly inhibited cell growth and induced apoptosis inosteosarcoma cells. The ectopic TTRAP suppressed the growthand colony formation capacity of two osteosarcoma cell lines,U2OS and Saos-2. Cell apoptosis was induced in U2OS cellsand the cell cycle was arrested at G2/M phase in Saos-2 cells.Exogenous expression of TTRAP in serum-starved U2OS andSaos-2 cells induced an increase in caspase-3/-7 activity and adecrease in cyclin B1 expression. In comparison with wild-typeTTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesteraseactivity of TTRAP, in particular TTRAPE152A, showed decreasedinhibitory activity on cell growth. These results may aid inclarifying the physiological functions of TTRAP, especially itsroles in the regulation of cell growth and tumorigenesis. [BMBReports 2013; 46(2: 113-118

  8. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  9. Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers.

    Science.gov (United States)

    de Sousa, Natanael Teixeira Alves; Gomes, Rosana Caetano; Santos, Marcos Ferracioli; Brandino, Hugo Evangelista; Martinez, Roberto; de Jesus Guirro, Rinaldo Roberto

    2016-04-01

    Low-level laser therapy (LLLT) is used in chronic wounds due to its healing effects. However, bacterial species may colonize these wounds and the optimal parameters for effective bacterial inhibition are not clear. The aim of this study was to analyze the effect of LLLT on bacterial growth in vitro. Bacterial strains including Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were suspended in saline solution at a concentration of 10(3) cells/ml and exposed to laser irradiation at wavelengths of 660, 830, and 904 nm at fluences of 0 (control), 3, 6, 12, 18, and 24 J/cm(2). An aliquot of the irradiated suspension was spread on the surface of petri plates and incubated at 37 °C for quantification of colony-forming unit after 24, 48, and 72 h. Laser irradiation inhibited the growth of S. aureus at all wavelengths and fluences higher than 12 J/cm(2), showing a strong correlation between increase in fluence and bacterial inhibition. However, for P. aeruginosa, LLLT inhibited growth at all wavelengths only at a fluence of 24 J/cm(2). E. coli had similar growth inhibition at a wavelength of 830 nm at fluences of 3, 6, 12, and 24 J/cm(2). At wavelengths of 660 and 904 nm, growth inhibition was only observed at fluences of 12 and 18 J/cm(2), respectively. LLLT inhibited bacterial growth at all wavelengths, for a maximum of 72 h after irradiation, indicating a correlation between bacterial species, fluence, and wavelength. PMID:26886585

  10. Mechanisms of neuroblastoma cell growth inhibition by CARP-1 functional mimetics.

    Directory of Open Access Journals (Sweden)

    Magesh Muthu

    Full Text Available Neuroblastomas (NBs are a clinically heterogeneous group of extra cranial pediatric tumors. Patients with high-risk, metastatic NBs have a long-term survival rate of below 40%, and are often resistant to current therapeutic modalities. Due to toxic side effects associated with radiation and chemotherapies, development of new agents is warranted to overcome resistance and effectively treat this disease in clinic. CARP-1 functional mimetics (CFMs are an emerging class of small molecule compounds that inhibit growth of diverse cancer cell types. Here we investigated NB inhibitory potential of CFMs and the molecular mechanisms involved. CFM-1, -4, and -5 inhibited NB cell growth, in vitro, independent of their p53 and MYCN status. CFM-4 and -5 induced apoptosis in NB cells in part by activating pro-apoptotic stress-activated kinases (SAPKs p38 and JNK, stimulating CARP-1 expression and cleavage of PARP1, while promoting loss of the oncogenes C and N-myc as well as mitotic cyclin B1. Treatments of NB cells with CFM-4 or -5 also resulted in loss of Inhibitory κB (IκB α and β proteins. Micro-RNA profiling revealed upregulation of XIAP-targeting miR513a-3p in CFM-4-treated NB, mesothelioma, and breast cancer cells. Moreover, exposure of NB and breast cancer cells to CFM-4 or -5 resulted in diminished expression of anti-apoptotic XIAP1, cIAP1, and Survivin proteins. Expression of anti-miR513a-5p or miR513a-5p mimic, however, interfered with or enhanced, respectively, the breast cancer cell growth inhibition by CFM-4. CFMs also impacted biological properties of the NB cells by blocking their abilities to migrate, form colonies in suspension, and invade through the matrix-coated membranes. Our studies indicate anti-NB properties of CFM-4 and 5, and suggest that these CFMs and/or their future analogs have potential as anti-NB agents.

  11. Citrus-derived oil inhibits Staphylococcus aureus growth and alters its interactions with bovine mammary cells.

    Science.gov (United States)

    Federman, C; Joo, J; Almario, J A; Salaheen, S; Biswas, D

    2016-05-01

    This experiment examined the effects of cold-pressed, terpeneless citrus-derived oil (CDO) on growth of Staphylococcus aureus, which a major cause of contagious bovine mastitis, and invasion of bovine mammary cells (MAC-T). To determine minimum inhibitory concentration, we used the broth dilution method, using CDO concentrations range from 0.0125 to 0.4% with 2-fold dilutions. Growth inhibition was examined by adding 0.00, 0.05, 0.025, 0.0125, and 0.00625% CDO to 10(5) cfu/mL S. aureus in nutrient broth and enumerating colonies after serial dilution. In a 96-well plate, S. aureus (10(7) cfu/mL) was allowed to form a biofilm, treated with 0, 0.025, 0.5, or 1% CDO, and then was measured using a spectrophotometer. Cytotoxic effect on immortalized MAC-T cells was also examined at various concentrations of CDO using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We observed that the minimum inhibitory concentration of CDO to inhibit the growth of S. aureus in vitro was 0.025% CDO. A time kill curve for CDO action on S. aureus over 4h was generated. The CDO completely eliminated S. aureus after 3h of incubation at a concentration of 0.25%, or after 2h of incubation at concentrations of 0.05%. It was also observed that CDO had no effect on preformed biofilms except at a concentration of 0.05%, in which a significant reduction in the measured absorbance was noted. In addition, the association and invasion of S. aureus to MAC-T cells were significantly inhibited after 1h of treatment with CDO. Citrus-derived oil was also able to increase cellular proliferation of MAC-T cells at concentrations up 0.05% and had no effect at a concentration of 0.1% after 1 h. Our data suggests that CDO should be considered for further research as a preventive and therapeutic against bovine mastitis. PMID:26947297

  12. Proanthocyanidins inhibit in vitro and in vivo growth of human non-small cell lung cancer cells by inhibiting the prostaglandin E(2) and prostaglandin E(2) receptors.

    Science.gov (United States)

    Sharma, Som D; Meeran, Syed M; Katiyar, Santosh K

    2010-03-01

    Overexpression of cyclooxygenase-2 (COX-2) and prostaglandins (PG) is linked to a wide variety of human cancers. Here, we assessed whether the chemotherapeutic effect of grape seed proanthocyanidins (GSP) on non-small cell lung cancer (NSCLC) cells is mediated through the inhibition of COX-2 and PGE(2)/PGE(2) receptor expression. The effects of GSPs on human NSCLC cell lines in terms of proliferation, apoptosis, and expression of COX-2, PGE(2), and PGE(2) receptors were determined using Western blotting, fluorescence-activated cell sorting analysis, and reverse transcription-PCR. In vitro treatment of NSCLC cells (A549, H1299, H460, H226, and H157) with GSPs resulted in significant growth inhibition and induction of apoptosis, which were associated with the inhibitory effects of GSPs on the overexpression of COX-2, PGE(2), and PGE(2) receptors (EP1 and EP4) in these cells. Treatment of cells with indomethacin, a pan-COX inhibitor, or transient transfection of cells with COX-2 small interfering RNA, also inhibited cell growth and induced cell death. The effects of a GSP-supplemented AIN76A control diet fed to nude mice bearing tumor xenografts on the expression of COX-2, PGE(2), and PGE(2) receptors in the xenografts were also evaluated. The growth-inhibitory effect of dietary GSPs (0.5%, w/w) on the NSCLC xenograft tumors was associated with the inhibition of COX-2, PGE(2), and PGE(2) receptors (EP1, EP3, and EP4) in tumors. This preclinical study provides evidence that the chemotherapeutic effect of GSPs on lung cancer cells in vitro and in vivo is mediated, at least in part, through the inhibition of COX-2 expression and subsequently the inhibition of PGE(2) and PGE(2) receptors. PMID:20145019

  13. A 2d in vivo approach to study photosynthesis in grape berry

    OpenAIRE

    Breia, Richard; Vieira, S.; Silva, J. Marques da; Serôdio, J.; Gerós, H.; Cunha, Ana

    2011-01-01

    Is argued that fruit photosynthesis serves mainly as a respiratory CO2 refixation mechanism [1] but its contribution to growth and metabolism, localization and dynamics during fruit development are poorly known. Unlike the leaves, fruit volume imposes a constraint to photosynthesis by limiting light penetration. However, the patterns of chlorophyll distribution are apparently independent of a light intensity gradient. Microscopic observations of transversal slices of green stage grape berries...

  14. Neuroprotective effects of berry fruits on neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Selvaraju Subash; Musthafa Mohamed Essa; Samir Al-Adawi; Mushtaq A.Memon; hTamilarasan Manivasagam; Mohammed Akbar

    2014-01-01

    Recent clinical research has demonstrated that berry fruits can prevent age-related neurodegen-erative diseases and improve motor and cognitive functions. The berry fruits are also capable of modulating signaling pathways involved in inflammation, cell survival, neurotransmission and enhancing neuroplasticity. The neuroprotective effects of berry fruits on neurodegenerative diseases are related to phytochemicals such as anthocyanin, caffeic acid, catechin, quercetin, kae-mpferol and tannin. In this review, we made an attempt to clearly describe the beneifcial effects of various types of berries as promising neuroprotective agents.

  15. Three elaborations on Berry's connection, curvature and phase

    International Nuclear Information System (INIS)

    The authors discuss how symmetries and conservation laws are affected when Barry's phase occurs in a quantum system: symmetry transformations of coordinates have to be supplemented by gauge transformations of Berry's connection, and consequently constants of motion acquire terms beyond the familiar kinematical ones. They show how symmetries of a problem determine Berry's connection, curvature and, once a specific path is chosen, the phase as well. Moreover, higher order corrections are also fixed. They demonstrate that in some instances Berry's curvature and phase can be removed by a globally well-defined, time-dependent canonical transformation. Finally, the authors describe how field theories anomalies may be viewed as manifestations of Berry's phase

  16. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  17. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    International Nuclear Information System (INIS)

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway

  18. Antioxidants and bioactivities of free, esterified and insoluble-bound phenolics from berry seed meals.

    Science.gov (United States)

    Ayoub, Maha; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2016-04-15

    Phenolic compounds present in the free, soluble ester and insoluble-bound forms of blackberry, black raspberry and blueberry were identified and quantified using high-performance liquid chromatography-diode array detection-electrospray ionisation multistage mass spectrometry. The total phenolics, scavenging activity against hydroxyl and peroxyl radicals, the reducing power and chelating capacity were, in general, in the decreasing order of blackberry>black raspberry>blueberry. Amongst fractions, the order was insoluble-bound>esterified>free. These trends were the same as those found against copper-induced LDL-cholesterol oxidation and supercoiled plasmid DNA strand breakage inhibition induced by both peroxyl and hydroxyl radicals. Extracts were found to contain various levels of phenolic compounds that were specific to each berry seed meal type. Berry seed meals should be considered as a good source of phenolics with potential health benefits. Their full exploitation may be helpful for the food industry and consumers. PMID:26616944

  19. Targeting the Transforming Growth Factor-β pathway inhibits human basal-like breast cancer metastasis

    Directory of Open Access Journals (Sweden)

    Biswas Swati

    2010-05-01

    Full Text Available Abstract Background Transforming Growth Factor β (TGF-β plays an important role in tumor invasion and metastasis. We set out to investigate the possible clinical utility of TGF-β antagonists in a human metastatic basal-like breast cancer model. We examined the effects of two types of the TGF-β pathway antagonists (1D11, a mouse monoclonal pan-TGF-β neutralizing antibody and LY2109761, a chemical inhibitor of TGF-β type I and II receptor kinases on sublines of basal cell-like MDA-MB-231 human breast carcinoma cells that preferentially metastasize to lungs (4175TR, 4173 or bones (SCP2TR, SCP25TR, 2860TR, 3847TR. Results Both 1D11 and LY2109761 effectively blocked TGF-β-induced phosphorylation of receptor-associated Smads in all MDA-MB-231 subclones in vitro. Moreover, both antagonists inhibited TGF-β stimulated in vitro migration and invasiveness of MDA-MB-231 subclones, indicating that these processes are partly driven by TGF-β. In addition, both antagonists significantly reduced the metastatic burden to either lungs or bones in vivo, seemingly independently of intrinsic differences between the individual tumor cell clones. Besides inhibiting metastasis in a tumor cell autonomous manner, the TGF-β antagonists inhibited angiogenesis associated with lung metastases and osteoclast number and activity associated with lytic bone metastases. In aggregate, these studies support the notion that TGF-β plays an important role in both bone-and lung metastases of basal-like breast cancer, and that inhibiting TGF-β signaling results in a therapeutic effect independently of the tissue-tropism of the metastatic cells. Targeting the TGF-β pathway holds promise as a novel therapeutic approach for metastatic basal-like breast cancer. Conclusions In aggregate, these studies support the notion that TGF-β plays an important role in both bone-and lung metastases of basal-like breast cancer, and that inhibiting TGF-β signaling results in a therapeutic

  20. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  1. IN-VITRO GROWTH CHARACTERISTICS OF COMMERCIAL PROBIOTIC STRAINS AND THEIR POTENTIAL FOR INHIBITION OF CLOSTRIDIUM DIFFICILE AND CLOSTRDIDUM PERFRINGENS

    DEFF Research Database (Denmark)

    Schoster, Angelika; Kokotovic, Branko; Permin, Anders;

    Probiotics have gained importance in human and veterinary medicine to prevent enteric disease. Little information is available on commercial probiotic strains regarding their growth characteristics and inhibition of equine enteric pathogens such as Clostridium difficile and Clostridium perfringens...... under aerobic conditions was assessed. To evaluate inhibition of C. difficile and C. perfringens sterile supernatant of the probiotic culture was added to BHI inoculated with a standard C. difficile or C. perfringens suspension. Growth was measured spectrophotometrically at 0 and 24h and compared to the...... control (C. difficile or C. perfringens suspension in BHI). At pH 4 12% of strains showed >50% growth and 24% were unable to grow, however did survive. At pH 2 none of the tested strains grew or survived. Eighty eight percent showed >75% growth in 0.15% bile, 60% showed >75% growth in 0.3% bile. Ninety...

  2. BerryMeat - New market perspectives using herbs and berries in organic meat products. What has been achieved?

    OpenAIRE

    Hansen, Flemming; Jensen, Martin; Grevsen, Kai; Fenger, Morten

    2014-01-01

    The overall objective of the project was to increase the portfolio of organic meat products for the consumer, by supplying new products preserved by organic grown herbs and berries. The consumers will benefit from a growing range of new, attractive, organic meat products, the Danish producers of organic meat products will benefit form a growing market and the producers of organic herbs and berries will experience an increasing demand for organic grown herbs and berries. The project has bee...

  3. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    Science.gov (United States)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  4. Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma

    Directory of Open Access Journals (Sweden)

    Gagliardi Franco

    2004-01-01

    Full Text Available Abstract Background The aim of this work was to investigate in vitro the putative role of EGR-1 in the growth of glioma cells. EGR-1 expression was examined during the early passages in vitro of 17 primary cell lines grown from 3 grade III and from 14 grade IV malignant astrocytoma explants. The explanted tumors were genetically characterized at the p53, MDM2 and INK4a/ARF loci, and fibronectin expression and growth characteristics were examined. A recombinant adenovirus overexpressing EGR-1 was tested in the primary cell lines. Results Low levels of EGR-1 protein were found in all primary cultures examined, with lower values present in grade IV tumors and in cultures carrying wild-type copies of p53 gene. The levels of EGR-1 protein were significantly correlated to the amount of intracellular fibronectin, but only in tumors carrying wild-type copies of the p53 gene (R = 0,78, p = 0.0082. Duplication time, plating efficiency, colony formation in agarose, and contact inhibition were also altered in the p53 mutated tumor cultures compared to those carrying wild-type p53. Growth arrest was achieved in both types of tumor within 1–2 weeks following infection with a recombinant adenovirus overexpressing EGR-1 but not with the control adenovirus. Conclusions Suppression of EGR-1 is a common event in gliomas and in most cases this is achieved through down-regulation of gene expression. Expression of EGR-1 by recombinant adenovirus infection almost completely abolishes the growth of tumor cells in vitro, regardless of the mutational status of the p53 gene.

  5. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway

    Science.gov (United States)

    Zhang, Nannan; Liu, Shichang; Wang, Ning; Deng, Senyi; Song, Linjiang; Wu, Qinjie; Liu, Lei; Su, Weijun; Wei, Yuquan; Xie, Yongmei; Gong, Changyang

    2015-01-01

    JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in

  6. Enhanced non-vitreous cryopreservation of immortalized and primary cells by ice-growth inhibiting polymers.

    Science.gov (United States)

    Deller, Robert C; Pessin, Jeffrey E; Vatish, Manu; Mitchell, Daniel A; Gibson, Matthew I

    2016-07-21

    Cell cryopreservation is an essential tool in modern biotechnology and medicine. The ability to freeze, store and distribute materials underpins basic cell biology and enables storage of donor cells needed for transplantation and regenerative medicine. However, many cell types do not survive freezing and the current state-of-the-art involves the addition of significant amounts of organic solvents as cryoprotectants, which themselves can be cytotoxic, or simply interfere with assays. A key cause of cell death in cryopreservation is ice recrystallization (growth), which primarily occurs during thawing. Here it is demonstrated that the addition of ice recrystalization inhibiting polymers to solutions containing low (non vitrifying) concentrations of DMSO enhance cell recovery rates by up to 75%. Cell functionality is also demonstrated using a placental cell line, and enhanced cryopreservation of primary rat hepatocytes is additionally shown. The crucial role of the polymers architecture (chain length) is shown, with shorter polymers being more effective than longer ones. PMID:27152370

  7. Flavonoid glycosides from Hosta longipes, their inhibition on NO production, and nerve growth factor inductive effects

    International Nuclear Information System (INIS)

    An extended phytochemical investigation of the leaves of Hosta longipes identified the new flavonoid glycoside, kaempferol-3-O-β-D-glucopyranosyl-(1→2)- [6'-O-acetyl-β-D-glucopyranoside]-7-O-β-D-glucopyranoside and five known flavonoid derivatives. The structures of two compounds were revealed by extensive NMR methods (1H and 13C NMR, 1H-1H COSY, HMQC and HMBC) and chemical hydrolysis. NMR data of one of them are published for the first time. Bioactivities of six compounds revealed that five strongly inhibited the production of nitric oxide (NO) with IC50 values of 11.56-15.97 μm in lipopolysaccharide (LPS)-stimulated BV-2 cells without cell toxicity. Two compounds showed moderate induction of secretion of nerve growth factor (NGF) in C6 glioma cells (124.70 ± 7.71% and 117.02 ± 3.60%, respectively). (author)

  8. OER and RBE of high energy neutron beams for growth inhibition in Vicia faba

    International Nuclear Information System (INIS)

    The radiobiologic characteristics of 15 MeV neutrons produced by the d+T reaction at the TNO of Rijswijk and of neutrons produced by the d(50)+Be and p(75)+Be reactions at the cyclotron Cyclone of Louvain-la-Neuve were compared. Growth inhibition in Vicia faba bean roots was used as biologic system. An OER value of 1.5+-0.1 was obtained for the neutron beams compared. The RBE of 15 MeV, d(50)+Be and p(75)+Be neutrons was found equal to 3.4 +- 0.2, 3.2 +- 0.2 and 2.9 +- 0.3, respectively, relative to gamma rays, for a total (n+γ) absorbed dose of 0.6 Gy. (Auth.)

  9. RBE and OER values of negative pion beams from growth inhibition of Vicia Faba roots

    International Nuclear Information System (INIS)

    Two pion beams of different momentum width have been used to expose meristems of Vicia Faba roots under aerobic and hypoxic conditions. The measurements of the resulting 10 days growth inhibition after exposures at various locations on the pion beam axes have been made and RBE and OER values evaluated for 50% effects compared to 60Co γ-rays. The results have been related to the fractional doses from star products defined by telescope measurements of stopped pions along the same beams. It has been found that the RBE value increases with the fractional 'star dose' up to a maximum after which the RBE decreases. The OER values, however, were found to decrease with increasing 'star dose' fraction rather rapidly after which it was found to be independent of the 'star dose' contribution. (orig.)

  10. A Novel Potent Oral Series of VEGFR2 Inhibitors Abrogate Tumor Growth by Inhibiting Angiogenesis.

    Science.gov (United States)

    Bold, Guido; Schnell, Christian; Furet, Pascal; McSheehy, Paul; Brüggen, Josef; Mestan, Jürgen; Manley, Paul W; Drückes, Peter; Burglin, Marion; Dürler, Ursula; Loretan, Jacqueline; Reuter, Robert; Wartmann, Markus; Theuer, Andreas; Bauer-Probst, Beatrice; Martiny-Baron, Georg; Allegrini, Peter; Goepfert, Arnaud; Wood, Jeanette; Littlewood-Evans, Amanda

    2016-01-14

    This paper describes the identification of 6-(pyrimidin-4-yloxy)-naphthalene-1-carboxamides as a new class of potent and selective human vascular endothelial growth factor receptor 2 (VEGFR2) tyrosine kinase inhibitors. In biochemical and cellular assays, the compounds exhibit single-digit nanomolar potency toward VEGFR2. Compounds of this series show good exposure in rodents when dosed orally. They potently inhibit VEGF-driven angiogenesis in a chamber model and rodent tumor models at daily doses of less than 3 mg/kg by targeting the tumor vasculature as demonstrated by ELISA for TIE-2 in lysates or by immunohistochemical analysis. This novel series of compounds shows a potential for the treatment of solid tumors and other diseases where angiogenesis plays an important role. PMID:26629594

  11. Changes in glycosidase activities during galactoglucomannan oligosaccharide inhibition of auxin induced growth.

    Science.gov (United States)

    Bilisics, Ladislav; Vojtassák, Jozef; Capek, Peter; Kollárová, Karin; Lisková, Desana

    2004-07-01

    The inhibition of 2,4-D-induced elongation growth by galactoglucomannan oligosaccharides (GGMOs) in pea stem segments (Pisum sativum L. cv. Tyrkys) after 18 h of incubation results in changes of extracellular, intracellular and cell wall glycosidase activities (beta-D-glucosidase, beta-D-mannosidase, beta-D-galactosidase, beta-D-xylosidase, alpha-D-galactosidase, and alpha-L-arabinosidase). GGMOs lowered the glycosidase activities in the extracellular fraction, while in the cell wall fractions their activities were markedly increased. The intracellular enzyme alpha-d-galactosidase increased while the beta-d-galactosidase decreased in activity in response to the GGMO treatment. Extracellular enzymes showed low values of activities in comparison with intracellular and cell wall glycosidases. It is evident that GGMOs can alter auxin induced elongation and glycosidase activities in different compartments of the cell, however, the mode and site of their action remains unclear. PMID:15279996

  12. Fibroblast growth factor 7 inhibits cholesterol 7{alpha}-hydroxylase gene expression in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhichao [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Yu, Xuemei [Department of Endocrinology, Fengxian Central Hospital, Shanghai (China); Wu, Weibin; Jia, Dongwei; Chen, Yinle; Ji, Lingling; Liu, Xijun; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Yintao [Institute of Endocrinology and Diabetology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai (China); Yang, Lili [Department of Endocrinology, Fengxian Central Hospital, Shanghai (China); Ruan, Yuanyuan; Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Ren, Shifang, E-mail: renshifang@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Songwen, E-mail: songwenzhang@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer FGF7 strongly and rapidly down-regulates the expression of CYP7A1 in hepatocytes. Black-Right-Pointing-Pointer FGF7 suppresses the expression of CYP7A1 via FGFR2 and downstream JNK activation. Black-Right-Pointing-Pointer Blocking FGF7 abrogates HSC-induced inhibition of CYP7A1 expression in hepatocytes. -- Abstract: Cholesterol 7{alpha}-hydroxylase (CYP7A1) is the initial and rate-limiting enzyme for bile acid synthesis. Transcription of the CYP7A1 gene is regulated by bile acids, nuclear receptors and cytokines. Fibroblast growth factor 7 (FGF7) secreted from activated hepatic stellate cells (HSC) during chronic liver fibrosis regulates hepatocyte survival and liver regeneration. In the carbon tetrachloride (CCl{sub 4})-induced fibrotic mouse liver, we demonstrated that the expression of CYP7A1 was largely decreased while the expression of FGF7 was significantly increased. We further demonstrated that FGF7 inhibited CYP7A1 gene expression in hepatocytes. Knockdown study by short interfering RNA, kinase inhibition and phosphorylation assays revealed that the suppression of CYP7A1 expression by FGF7 was mediated by FGFR2 and its downstream JNK signaling cascade. The FGF7 neutralizing antibody restored CYP7A1 expression in Hep3B cells treated with conditioned medium from HSC. In summary, the data suggest that FGF7 is a novel regulator of CYP7A1 expression in hepatocytes and may prevent hepatocytes from accumulating toxic bile acids during liver injury and fibrosis.

  13. ML264, A Novel Small-Molecule Compound That Potently Inhibits Growth of Colorectal Cancer.

    Science.gov (United States)

    Ruiz de Sabando, Ainara; Wang, Chao; He, Yuanjun; García-Barros, Mónica; Kim, Julie; Shroyer, Kenneth R; Bannister, Thomas D; Yang, Vincent W; Bialkowska, Agnieszka B

    2016-01-01

    Colorectal cancer is one of the leading causes of cancer mortality in Western civilization. Studies have shown that colorectal cancer arises as a consequence of the modification of genes that regulate important cellular functions. Deregulation of the WNT and RAS/MAPK/PI3K signaling pathways has been shown to be important in the early stages of colorectal cancer development and progression. Krüppel-like factor 5 (KLF5) is a transcription factor that is highly expressed in the proliferating intestinal crypt epithelial cells. Previously, we showed that KLF5 is a mediator of RAS/MAPK and WNT signaling pathways under homeostatic conditions and that it promotes their tumorigenic functions during the development and progression of intestinal adenomas. Recently, using an ultrahigh-throughput screening approach we identified a number of novel small molecules that have the potential to provide therapeutic benefits for colorectal cancer by targeting KLF5 expression. In the current study, we show that an improved analogue of one of these screening hits, ML264, potently inhibits proliferation of colorectal cancer cells in vitro through modifications of the cell-cycle profile. Moreover, in an established xenograft mouse model of colon cancer, we demonstrate that ML264 efficiently inhibits growth of the tumor within 5 days of treatment. We show that this effect is caused by a significant reduction in proliferation and that ML264 potently inhibits the expression of KLF5 and EGR1, a transcriptional activator of KLF5. These findings demonstrate that ML264, or an analogue, may hold a promise as a novel therapeutic agent to curb the development and progression of colorectal cancer. PMID:26621868

  14. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth.

    Science.gov (United States)

    Hojman, Pernille; Dethlefsen, Christine; Brandt, Claus; Hansen, Jakob; Pedersen, Line; Pedersen, Bente Klarlund

    2011-09-01

    Regular physical activity protects against the development of breast and colon cancer, since it reduces the risk of developing these by 25-30%. During exercise, humoral factors are released from the working muscles for endocrinal signaling to other organs. We hypothesized that these myokines mediate some of the inhibitory effects of exercise on mammary cancer cell proliferation. Serum and muscles were collected from mice after an exercise bout. Incubation with exercise-conditioned serum inhibited MCF-7 cell proliferation by 52% and increased caspase activity by 54%. A similar increase in caspase activity was found after incubation of MCF-7 cells with conditioned media from electrically stimulated myotubes. PCR array analysis (CAPM-0838E; SABiosciences) revealed that seven genes were upregulated in the muscles after exercise, and of these oncostatin M (OSM) proved to inhibit MCF-7 proliferation by 42%, increase caspase activity by 46%, and induce apoptosis. Blocking OSM signaling with anti-OSM antibodies reduced the induction of caspase activity by 51%. To verify that OSM was a myokine, we showed that it was significantly upregulated in serum and in three muscles, tibialis cranialis, gastronemius, and soleus, after an exercise bout. In contrast, OSM expression remained unchanged in subcutaneous and visceral adipose tissue, liver, and spleen (mononuclear cells). We conclude that postexercise serum inhibits mammary cancer cell proliferation and induces apoptosis of these cells. We suggest that one or more myokines secreted from working muscles may be mediating this effect and that OSM is a possible candidate. These findings emphasize that role of physical activity in cancer treatment, showing a direct link between exercise-induced humoral factors and decreased tumor cell growth. PMID:21653222

  15. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Anna Murzyn

    Full Text Available Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and

  16. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    International Nuclear Information System (INIS)

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling

  17. Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells.

    Science.gov (United States)

    Kavitha, C V; Nambiar, Mridula; Ananda Kumar, C S; Choudhary, Bibha; Muniyappa, K; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C

    2009-02-01

    Hydantoin derivatives possess a variety of biochemical and pharmacological properties and consequently are used to treat many human diseases. However, there are only few studies focusing on their potential as cancer therapeutic agents. In the present study, we have examined anticancer properties of two novel spirohydantoin compounds, 8-(3,4-difluorobenzyl)-1'-(pent-4-enyl)-8-azaspiro[bicyclo[3.2.1] octane-3,4'-imidazolidine]-2',5'-dione (DFH) and 8-(3,4-dichlorobenzyl)-1'-(pent-4-enyl)-8-azaspiro[bicyclo[3.2.1]octane-3,4'-imidazolidine]-2',5'-dione (DCH). Both the compounds exhibited dose- and time-dependent cytotoxic effect on human leukemic cell lines, K562, Reh, CEM and 8E5. Incorporation of tritiated thymidine ([(3)H] thymidine) in conjunction with cell cycle analysis suggested that DFH and DCH inhibited the growth of leukemic cells. Downregulation of PCNA and p-histone H3 further confirm that the growth inhibition could be at the level of DNA replication. Flow cytometric analysis indicated the accumulation of cells at subG1 phase suggesting induction of apoptosis, which was further confirmed and quantified both by fluorescence-activated cell sorting (FACS) and confocal microscopy following annexin V-FITC/propidium iodide (PI) staining. Mechanistically, our data support the induction of apoptosis by activation of the mitochondrial pathway. Results supporting such a model include, elevated levels of p53, and BAD, decreased level of BCL2, activation and cleavage of caspase 9, activation of procaspase 3, poly (ADP-ribosyl) polymerase (PARP) cleavage, downregulation of Ku70, Ku80 and DNA fragmentation. Based on these results we discuss the mechanism of apoptosis induced by DFH and its implications in leukemia therapy. PMID:19014909

  18. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth.

    Science.gov (United States)

    Dittmar, Ashley J; Drozda, Allison A; Blader, Ira J

    2016-01-01

    The urgent need to develop new antimicrobial therapies has spawned the development of repurposing screens in which well-studied drugs and other types of compounds are tested for potential off-label uses. As a proof-of-principle screen to identify compounds effective against Toxoplasma gondii, we screened a collection of 1,120 compounds for the ability to significantly reduce Toxoplasma replication. A total of 94 compounds blocked parasite replication with 50% inhibitory concentrations of drug impacted both parasite invasion and replication but did so independently of inhibition of dopamine or other neurotransmitter receptor signaling. Tamoxifen, which is an established inhibitor of the estrogen receptor, also reduced parasite invasion and replication. Even though Toxoplasma can activate the estrogen receptor, tamoxifen inhibits parasite growth independently of this transcription factor. Tamoxifen is also a potent inducer of autophagy, and we find that the drug stimulates recruitment of the autophagy marker light chain 3-green fluorescent protein onto the membrane of the vacuolar compartment in which the parasite resides and replicates. In contrast to other antiparasitic drugs, including pimozide, tamoxifen treatment of infected cells leads to a time-dependent elimination of intracellular parasites. Taken together, these data suggest that tamoxifen restricts Toxoplasma growth by inducing xenophagy or autophagic destruction of this obligate intracellular parasite. IMPORTANCE There is an urgent need to develop new therapies to treat microbial infections, and the repurposing of well-characterized compounds is emerging as one approach to achieving this goal. Using the protozoan parasite Toxoplasma gondii, we screened a library of 1,120 compounds and identified several compounds with significant antiparasitic activities. Among these were pimozide and tamoxifen, which are well-characterized drugs prescribed to treat patients with psychiatric disorders and breast cancer

  19. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  20. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR.

    Directory of Open Access Journals (Sweden)

    Takeshi Chiyomaru

    Full Text Available OBJECTIVE: Genistein is a soy isoflavone that has antitumor activity both in vitro and in vivo. It has been shown that genistein inhibits many type of cancers including prostate cancer (PCa by regulating several cell signaling pathways and microRNAs (miRNAs. Recent studies suggest that the long non-coding RNAs (lncRNAs are also involved in many cellular processes. At present there are no reports about the relationship between gensitein, miRNAs and lncRNAs. In this study, we focused on miRNAs, lncRNA that are regulated by genistein and investigated their functional role in PCa. METHOD: Microarray (SurePrint G3 Human GE 8×60K was used for expression profiling of genistein treated and control PCa cells (PC3 and DU145. Functional assay (cell proliferation, migration, invasion, apoptosis and cell cycle assays were performed with the PCa cell lines, PC3 and DU145. Both in vitro and in vivo (nude mouse models were used for growth assays. Luciferase reporter assays were used for binding of miR-34a to HOTAIR. RESULTS: LncRNA profiling showed that HOTAIR was highly regulated by genistein and its expression was higher in castration-resistant PCa cell lines than in normal prostate cells. Knockdown (siRNA of HOTAIR decreased PCa cell proliferation, migration and invasion and induced apoptosis and cell cycle arrest. miR-34a was also up-regulated by genistein and may directly target HOTAIR in both PC3 and DU145 PCa cells. CONCLUSIONS: Our results indicated that genistein inhibited PCa cell growth through down-regulation of oncogenic HOTAIR that is also targeted by tumor suppressor miR-34a. These findings enhance understanding of how genistein regulates lncRNA HOTAIR and miR-34a in PCa.

  1. Growth Inhibition of Colletotrichum gloeosporioides by Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis and Pseudomonas fluorescens

    Directory of Open Access Journals (Sweden)

    Febrilia Nur ‘Aini

    2015-11-01

    Full Text Available Colletotrichum  gloeosporioides is  a  disease  which  can  cause  significant yield  loss  of  cocoa.  The  objective  of  this  research  is  to  investigate  the  abilityof  antagonist  microbes,  Trichoderma  harzianum,  Trichoderma  koningii,  Bacillus subtilis  and Pseudomonas  fluorescens  in  controlling  gloeosporioides  biologically  in  laboratorium  condition.  The  experiment  was  carried  out  in  Crop  Protection  Laboratory,  Indonesian  Coffee  and  Cocoa  Research  Institute.  Results of  this  research  showed  that  antagonist  fungi,  T.  harzianum,  T.  koningii,  had  a stronger  ability  in  inhibiting  growth  of  C.  gloeosporioides about  83%  compared  to  the  ability  of  antagonist  bacteria,  B.  subtilis  and P.  fluorescens,  only about  49%. Key words: Growth  inhibition,  Colletotrichum  gloeosporioides,  Trichoderma  harzianum, Trichoderma koningii,  Bacillus subtilis, Pseudomonas fluorescens.

  2. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    Directory of Open Access Journals (Sweden)

    Chen Jie

    2012-10-01

    Full Text Available Abstract Background Secreted protein acidic and rich in cysteine (SPARC, a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. Methods In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. Results SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. Conclusion SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.

  3. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    International Nuclear Information System (INIS)

    Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis

  4. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, Friedhelm, E-mail: Friedhelm.Bladt@merckgroup.com; Friese-Hamim, Manja; Ihling, Christian; Wilm, Claudia; Blaukat, Andree [EMD Serono, and Merck Serono Research and Development, Merck KGaA, Darmstadt 64293 (Germany)

    2014-08-19

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling.

  5. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Directory of Open Access Journals (Sweden)

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  6. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells.

    Science.gov (United States)

    Yang, Feng-Qiang; Wang, Ji-Jiao; Yan, Jia-Sheng; Huang, Jian-Hua; Li, Wei; Che, Jian-Ping; Wang, Guang-Chun; Liu, Min; Zheng, Jun-Hua

    2014-01-01

    Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties and may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including renal cancer still unknown. MiR-26a induces cell growth, cell cycle and cell apoptosis progression via direct targeting of Bcl-2, clyclin D1 and PTEN in cancer cells. In the present study, we used 786-O human renal cancer cell lines to study the effects and mechanisms of metformin. Metformin treatment inhibited RCC cells proliferation by increasing expression of miR-26a in 786-O cells (P metformin. Also over-expression of miR-26a can inhibited cell proliferation by down-regulating Bcl-2, cyclin D1 and up-regulating PTEN expression. Therefore, these data for the first time provide novel evidence for a mechanism that the anticancer activities of metformin are due to upregulation of miR-26a and affect its downstream target gene. PMID:25419360

  7. Imatinib and Dasatinib Inhibit Hemangiosarcoma and Implicate PDGFR-β and Src in Tumor Growth.

    Science.gov (United States)

    Dickerson, Erin B; Marley, Kevin; Edris, Wade; Tyner, Jeffrey W; Schalk, Vidya; Macdonald, Valerie; Loriaux, Marc; Druker, Brian J; Helfand, Stuart C

    2013-04-01

    Hemangiosarcoma, a natural model of human angiosarcoma, is an aggressive vascular tumor diagnosed commonly in dogs. The documented expression of several receptor tyrosine kinases (RTKs) by these tumors makes them attractive targets for therapeutic intervention using tyrosine kinase inhibitors (TKIs). However, we possess limited knowledge of the effects of TKIs on hemangiosarcoma as well as other soft tissue sarcomas. We report here on the use of the TKIs imatinib and dasatinib in canine hemangiosarcoma and their effects on platelet-derived growth factor receptor β (PDGFR-β) and Src inhibition. Both TKIs reduced cell viability, but dasatinib was markedly more potent in this regard, mediating cytotoxic effects orders of magnitude greater than imatinib. Dasatinib also inhibited the phosphorylation of the shared PDGFR-β target at a concentration approximately 1000 times less than that needed by imatinib and effectively blocked Src phosphorylation. Both inhibitors augmented the response to doxorubicin, suggesting that clinical responses likely will be improved using both drugs in combination; however, dasatinib was significantly (P dog with spontaneously occurring hemangiosarcoma established that clinically achievable doses of dasatinib may be realized in dogs and provides a means to investigate the effect of TKIs on soft tissue sarcomas in a large animal model. PMID:23544168

  8. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  9. Effect of Sterols Isolated from Myrtillocactus geometrizans on Growth Inhibition of Colon and Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mario Augusto Bolaños-Carrillo

    2015-01-01

    Full Text Available Objective. To explore the effect of peniocerol and macdougallin on HCT-15 and MCF-7 cells proliferation, cell cycle, apoptosis, and PARP cleavage. Methods. HCT-15 and MCF-7 cells were treated with various concentrations of peniocerol and macdougallin (10–80 μM during 24 or 48 h. Crystal Violet Assay was used to evaluate the inhibition effect. Cell cycle regulation was examined by a propidium iodide method. Cell apoptosis was detected through both Annexin–V FLUOS/PI double-labeled cytometry assays and Western blot was applied to assess PARP cleavage. Results. Peniocerol and macdougallin induced growth inhibition and apoptosis in vitro in a time- and dose-dependent manner. Moreover, peniocerol and macdougallin induced arrest of cell cycle-dependent manner and increased the proportion of cells in G0/G1 phase. PARP cleavage in HCT-15 and MCF-7 cells was induced by treatment with peniocerol and macdougallin after 36 hours. Conclusions. Our results showed that the mechanism of cytotoxicity displayed by peniocerol and macdougallin is related to cell cycle arrest and apoptosis in both cell lines. This is a significant observation because it helps to understand the way some oxysterols isolated from Myrtillocactus geometrizans develop their biological activities against cancer cells.

  10. Andrographolide suppress tumor growth by inhibiting TLR4/NF-κB signaling activation in insulinoma.

    Science.gov (United States)

    Zhang, Qian-Qian; Ding, Yi; Lei, Yan; Qi, Cui-Ling; He, Xiao-Dong; Lan, Tian; Li, Jiang-Chao; Gong, Ping; Yang, Xuesong; Geng, Jian-Guo; Wang, Li-Jing

    2014-01-01

    Insulinomas are rare tumors, and approximately 10% of insulinomas are malignant. Accumulating evidence has implicated that we still lack effective therapy to treat the patients who are diagnosed with rare malignant insulinoma. Previous studies have reported that Andrographolide (Andro) could inhibit cell cycle progression, reduce cell invasion and induce cell apoptosis in many common cancer cells. However, the effects of andro are cell type-dependent. So we emplored the β-TC-6 cells and the RIP1-Tag2 transgenic mouse model of endogenously growing insulinoma model to elucidate the possible anti-cancer effect of Andro on insulinoma, an uncommon type of malignant cancers in this study. Our experiments revealed that Andro significantly inhibited tumor growth at both the early-stage and the advanced-stage of insulinoma through targeting the TLR4/NF-κB signaling pathway. This work initially provides the evidence that the TLR4/NF-κB signaling pathway might be vital as a potential therapeutic target, and also indispensable in Andro-mediated anti-cancer effect in insulinoma. PMID:24719558

  11. Macelignan inhibits bee pathogenic fungi Ascophaera apis growth through HOG1 pathway

    Directory of Open Access Journals (Sweden)

    Y.K. Shin

    2016-01-01

    Full Text Available Ascosphaera apis is a bee pathogen that causes bee larvae infection disease, to which treatment is not yet well investigated. The aim of this study was to investigate antifungal susceptibility in vitro against A. apis and to identify a new antifungal agent for this pathogen through minimal inhibitory concentration (MIC assay and western blot analysis. Macelignan had 1.56 and 3.125 μg/mL MIC against A. apis after 24 and 48 h, respectively, exhibiting the strongest growth inhibition against A. apis among the tested compounds (corosolic acid, dehydrocostus lactone, loganic acid, tracheloside, fangchinoline and emodin-8-O-β-D-glucopyranoside. Furthermore, macelignan showed a narrow-ranged spectrum against various fungal strains without any mammalian cell cytotoxicity. In spite of miconazole having powerful broad-ranged anti-fungal activity including A. apis, it demonstrated strong cytotoxicity. Therefore, even if macelignan alone was effective as an antifungal agent to treat A. apis, combined treatment with miconazole was more useful to overcome toxicity, drug resistance occurrence and cost effectiveness. Finally, HOG1 was revealed as a target molecule of macelignan in the anti-A. apis activity by inhibiting phosphorylation using S. cerevisiae as a model system. Based on our results, macelignan, a food-grade antimicrobial compound, would be an effective antifungal agent against A. apis infection in bees.

  12. Melatonin inhibits the expression of vascular endothelial growth factor in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Dong Lv; Pei-Lin Cui; Shi-Wei Yao; You-Qing Xu; Zhao-Xu Yang

    2012-01-01

    Objective:To investigate the effects of melatonin on cellular proliferation and endogenous vascular endothelial growth factor (VEGF) expression in pancreatic carcinoma cells (PANC-1).Methods:PANC-1 cells were cultured for this study.The secreted VEGF concentration in the culture medium was determined using ELISA method,VEGF production in the tumor cells was detected by immunocytochemistry,and VEGF mRNA expression was determined by RT-PCR.Results:Higher melatonin concentrations significantly inhibited cellular proliferation,with 1 mmol/L concentration exhibiting the highest inhibitory effect (P<0.01).VEGF concentrations in the cell culture supernatants and intra-cellules were all significantly reduced after melatonin (1 mmol/L) incubation (P<0.05).VEGF mRNA expression decreased markedly in a time-dependent manner during the observation period (P<0.05).Conclusions:High melatonin concentrations markedly inhibited the proliferation of pancreatic carcinoma cells.The endogenous VEGF expression was also suppressed by melatonin incubation.

  13. Type-1-cytokines synergize with oncogene inhibition to induce tumor growth arrest

    Science.gov (United States)

    Acquavella, Nicolas; Clever, David; Yu, Zhiya; Roelke-Parker, Melody; Palmer, Douglas C.; Xi, Liqiang; Pflicke, Holger; Ji, Yun; Gros, Alena; Hanada, Ken-ichi; Goldlust, Ian S.; Mehta, Gautam U.; Klebanoff, Christopher A.; Crompton, Joseph G.; Sukumar, Madhusudhanan; Morrow, James J.; Franco, Zulmarie; Gattinoni, Luca; Liu, Hui; Wang, Ena; Marincola, Francesco; Stroncek, David F.; Lee, Chyi-Chia R.; Raffeld, Mark; Bosenberg, Marcus W.; Roychoudhuri, Rahul; Restifo, Nicholas P.

    2014-01-01

    Both targeted inhibition of oncogenic driver mutations and immune-based therapies show efficacy in treatment of patients with metastatic cancer but responses can be either short-lived or incompletely effective. Oncogene inhibition can augment the efficacy of immune-based therapy but mechanisms by which these two interventions might cooperate are incompletely resolved. Using a novel transplantable BRAFV600E-mutant murine melanoma model (SB-3123), we explore potential mechanisms of synergy between the selective BRAFV600E inhibitor vemurafenib and adoptive cell transfer (ACT)-based immunotherapy. We found that vemurafenib cooperated with ACT to delay melanoma progression without significantly affecting tumor infiltration or effector function of endogenous or adoptively transferred CD8+ T cells as previously observed. Instead, we found that the T-cell cytokines IFNγ and TNFα synergized with vemurafenib to induce cell-cycle arrest of tumor cells in vitro. This combinatorial effect was recapitulated in human melanoma-derived cell lines and was restricted to cancers bearing a BRAFV600E-mutation. Molecular profiling of treated SB-3123 indicated that the provision of vemurafenib promoted the sensitization of SB-3123 to the anti-proliferative effects of T-cell effector cytokines. The unexpected finding that immune cytokines synergize with oncogene inhibitors to induce growth arrest have major implications for understanding cancer biology at the intersection of oncogenic and immune signaling and provides a basis for design of combinatorial therapeutic approaches for patients with metastatic cancer. PMID:25358764

  14. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers.

    Science.gov (United States)

    Li, Jiang; Liu, Yunguo; Zhang, Pingyang; Zeng, Guangming; Cai, Xiaoxi; Liu, Shaobo; Yin, Yicheng; Hu, Xinjiang; Hu, Xi; Tan, Xiaofei

    2016-05-01

    Aquatic macrophytes are considered to be promising in controlling harmful cyanobacterial blooms. In this research, an aqueous extract of Sagittaria trifolia tubers was prepared to study its inhibitory effect on Microcystis aeruginosa in the laboratory. Several physiological indices of M. aeruginosa, in response to the environmental stress, were analyzed. Results showed that S. trifolia tuber aqueous extract significantly inhibited the growth of M. aeruginosa in a concentration-dependent way. The highest inhibition rate reached 90% after 6 day treatment. The Chlorophyll-a concentration of M. aeruginosa cells decreased from 343.1 to 314.2μg/L in the treatment group. The activities of superoxide dismutase and peroxidase and the content of reduced glutathione in M. aeruginosa cells initially increased as a response to the oxidative stress posed by S. trifolia tuber aqueous extract, but then decreased as time prolonged. The lipid peroxidation damage of the cyanobacterial cell membranes was reflected by the malondialdehyde level, which was notably higher in the treatment group compared with the controls. It was concluded that the oxidative damage of M. aeruginosa induced by S. trifolia tuber aqueous extract might be one of the mechanisms for the inhibitory effects. PMID:27155407

  15. Antisense oligodeoxynucleotide inhibits vascular endothelial growth factor expression in U937 foam cells

    Institute of Scientific and Technical Information of China (English)

    YANGPeng-Yuan; RUIYao-Cheng; JINYou-Xin; LITie-Jun; QIUYan; ZHANGLi; WANGJie-Song

    2003-01-01

    AIM:To study the expression of vascular endothelial growth factor (VEGF) induced by oxidized low density liprotein (ox-LDL) and the inhibitory effects of antisense oligodeoxynucleotide (asODN) on the levels of VEGF protein and mRNA in the U937 foam cells. METHODS: U937 cells were incubated with ox-LDL 80 mg/L for 48h, then ,the foam cells were treated with asODN (0,5,10, and 20μmol/L). The VEGF concentration in the media was determined by ELISA. The VEGF protein expression level in cells was measured by immuohistochemistry; the positive ratio detected by a morphometrical analysis system was used as the amount of the VEGF expression level. The VEGF mRNA level was examined by Northern blotting. RESULTS: After U937 cells were incubated with ox-LDL, VEGF expression level increased greatly both in the cells and in the media. asODN markeldy inhibited the increase of VEGF. After treatment with asODN 20μmol/L, the VEGF protein concentration in the media decreased by 45.0%, the VEGF positive ratio detected by immuohistochemistry in cells decreased by 64.9%, and the VEGF mRNA level decreased by 47.1%. CONCLUSION: The expression of VEGF in U937 foam cells was strong. asODN inhibited VEGF expression significantly in U937 foam cells in vitro.

  16. Inhibition of Epidermal Growth Factor Receptor Improves Myelination and Attenuates Tissue Damage of Spinal Cord Injury.

    Science.gov (United States)

    Zhang, Si; Ju, Peijun; Tjandra, Editha; Yeap, Yeeshan; Owlanj, Hamed; Feng, Zhiwei

    2016-10-01

    Preventing demyelination and promoting remyelination of denuded axons are promising therapeutic strategies for spinal cord injury (SCI). Epidermal growth factor receptor (EGFR) inhibition was reported to benefit the neural functional recovery and the axon regeneration after SCI. However, its role in de- and remyelination of axons in injured spinal cord is unclear. In the present study, we evaluated the effects of EGFR inhibitor, PD168393 (PD), on the myelination in mouse contusive SCI model. We found that expression of myelin basic protein (MBP) in the injured spinal cords of PD treated mice was remarkably elevated. The density of glial precursor cells and oligodendrocytes (OLs) was increased and the cell apoptosis in lesions was attenuated after PD168393 treatment. Moreover, PD168393 treatment reduced both the numbers of OX42 + microglial cells and glial fibrillary acidic protein + astrocytes in damaged area of spinal cords. We thus conclude that the therapeutic effects of EGFR inhibition after SCI involves facilitating remyelination of the injured spinal cord, increasing of oligodendrocyte precursor cells and OLs, as well as suppressing the activation of astrocytes and microglia/macrophages. PMID:26883518

  17. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth

    OpenAIRE

    Zindel, S.; Kaman, W.E.; Frols, S.; Pfeifer, F; Peters, A.; Hays, J.P.; Fuchsbauer, H.-L.

    2013-01-01

    A novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus anthracis, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio cholerae was completely inhibited by 10 μM SPI. At this concentration of SPI, no cytotoxicity was observed. We conclude that SPI inhibits bacte...

  18. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    OpenAIRE

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    BACKGROUND: Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activati...

  19. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhuang

    Full Text Available Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  20. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline

    OpenAIRE

    Pulvino, Mary; Chen, Luojing; Oleksyn, David; Li, Jing; Compitello, George; Rossi, Randy; Spence, Stephen; Balakrishnan, Vijaya; Jordan, Craig; Poligone, Brian; Casulo, Carla; Burack, Richard; Shapiro, Joel L.; Bernstein, Steven; Friedberg, Jonathan W.

    2015-01-01

    In searching for small-molecule compounds that inhibit proliferation and survival of diffuse large B-cell lymphoma (DLBCL) cells and may, therefore, be exploited as potential therapeutic agents for this disease, we identified the commonly used and well-tolerated antibiotic doxycycline as a strong candidate. Here, we demonstrate that doxycycline inhibits the growth of DLBCL cells both in vitro and in mouse xenograft models. In addition, we show that doxycycline accumulates in DLBCL cells to hi...

  1. Curcumin synergistically augments bcr/abl phosphorethieate antisense oligonucleotides to inhibit growth of chronic myelogenous leukemia cells

    Institute of Scientific and Technical Information of China (English)

    Kun-zhong ZHANG; Jian-hua XU; Xiu-wang HUANG; Li-xian WU; Yu SU; Yuan-zhong CHEN

    2007-01-01

    Aim: To investigate the growth inhibition effect of the combination of bcr/abl phosphorothioate antisense oligonucleotides (PS-ASODN) and curcumin (cur), and the possible mechanisms of cur on the chronic myelogenous leukemia cell line K562. Methods: The K562 cell line was used as a P210bcr/abl-positive cell model in vitro and was exposed to different concentrations of PS-ASODN (0-20 μmol/L), cur (0-20 μmol/L), or a combination of both. Growth inhibition and apoptosis of K562 cells were assessed by MTT assay and AO/EB fluorescent staining, respec-tively. The expression levels of P210bct/abl, NF-κB and heat shock protein 90 (Hsp90) were assessed by Western blot. Results: Exposure to cur (5-20 μmol/L) and PS-ASODN (5-20 μmol/L) resulted in a synergistic inhibitory effect on cell growth.Growth inhibition was associated with the inhibition of the proliferation and in-duction of apoptosis. Western blot analysis showed that the drugs synergisti-cally downregulated the level of P210bcr/abl and NF-κB. Cur downregulated Hsp90,whereas no synergism was observed when cur was combined with PS-ASODN.Conclusion: PS-ASODN and cur exhibited a synergistic inhibitory effect on the cell growth of K562. The synergistic growth inhibition was mediated through different mechanisms that involved the inhibition of P210bcr/abl.

  2. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Huarong Huang

    Full Text Available α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer.

  3. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF - opioid growth factor receptor (OGFr axis

    Directory of Open Access Journals (Sweden)

    Donahue Renee N

    2009-10-01

    Full Text Available Abstract Background Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC is considered more malignant than papillary thyroid carcinoma (PTC, and anaplastic thyroid cancer (ATC is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met5]-enkephalin and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Methods Utilizing human ATC (KAT-18, PTC (KTC-1, and FTC (WRO 82-1 cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX, and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC and WRO 82-1 (FTC tumor cells. Results OGF and OGFr were present in KAT-18 cells. Concentrations of 10-6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival

  4. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7α-hydroxylase gene expression

    OpenAIRE

    Song, Kwang-Hoon; Li, Tiangang; Owsley, Erika; Strom, Stephen; Chiang, John Y. L.

    2009-01-01

    Mouse fibroblast growth factor 15 (FGF15) and human ortholog FGF19 have been identified as the bile acid-induced intestinal factors that mediate bile acid feedback inhibition of cholesterol 7α-hydroxylase gene transcription in mouse liver. The mechanism underlying FGF15/FGF19 inhibition of bile acid synthesis in hepatocytes remains unclear. Chenodeoxycholic acid (CDCA) and a farnesoid X receptor (FXR)-specific agonist GW4064 strongly induced FGF19 but inhibited CYP7A1 mRNA levels in primary h...

  5. Wild mushrooms Clitocybe alexandri and Lepista inversa: in vitro antioxidant activity and growth inhibition of human tumour cell lines.

    Science.gov (United States)

    Vaz, Josiana A; Heleno, Sandrina A; Martins, Anabela; Almeida, Gabriela M; Vasconcelos, M Helena; Ferreira, Isabel C F R

    2010-10-01

    The in vitro antioxidant and growth inhibitory activity of extracts obtained from two Portuguese wild mushrooms (Clitocybe alexandri and Lepista inversa) was studied in human tumour cell lines. The extracts were phenolic (methanolic and ethanolic) and polysaccharidic (boiling water). The antioxidant activity assays included evaluation of radical-scavenging capacity, reducing power and inhibition of lipid peroxidation measured in liposome solutions. Extract-induced cell growth inhibition was measured in four different tumour cell lines (lung, breast, colon and gastric cancer) using the SRB assay. The polysaccharidic extract of L. inversa was the most potent as antioxidant (EC(50)mushrooms are promising sources of bioactive compounds. PMID:20647028

  6. Metformin inhibits pancreatic cancer cell and tumor growth and downregulates Sp transcription factors.

    Science.gov (United States)

    Nair, Vijayalekshmi; Pathi, Satya; Jutooru, Indira; Sreevalsan, Sandeep; Basha, Riyaz; Abdelrahim, Maen; Samudio, Ismael; Safe, Stephen

    2013-12-01

    Metformin is a widely used antidiabetic drug, and epidemiology studies for pancreatic and other cancers indicate that metformin exhibits both chemopreventive and chemotherapeutic activities. Several metformin-induced responses and genes are similar to those observed after knockdown of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 by RNA interference, and we hypothesized that the mechanism of action of metformin in pancreatic cancer cells was due, in part, to downregulation of Sp transcription factors. Treatment of Panc1, L3.6pL and Panc28 pancreatic cancer cells with metformin downregulated Sp1, Sp3 and Sp4 proteins and several pro-oncogenic Sp-regulated genes including bcl-2, survivin, cyclin D1, vascular endothelial growth factor and its receptor, and fatty acid synthase. Metformin induced proteasome-dependent degradation of Sps in L3.6pL and Panc28 cells, whereas in Panc1 cells metformin decreased microRNA-27a and induced the Sp repressor, ZBTB10, and disruption of miR-27a:ZBTB10 by metformin was phosphatase dependent. Metformin also inhibited pancreatic tumor growth and downregulated Sp1, Sp3 and Sp4 in tumors in an orthotopic model where L3.6pL cells were injected directly into the pancreas. The results demonstrate for the first time that the anticancer activities of metformin are also due, in part, to downregulation of Sp transcription factors and Sp-regulated genes. PMID:23803693

  7. Inhibition of bacterial growth by different mixtures of propofol and thiopentone

    Directory of Open Access Journals (Sweden)

    K.E. Joubert

    2005-06-01

    Full Text Available Propofol is, as a result of its formulation, an ideal bacterial and yeast culture medium. An outbreak of sepsis in humans and an increase in wound infections in dogs has been ascribed to the use of propofol. It has been previously reported that a 1:1 mixture of propofol and thiopentone has bactericidal properties. This study was undertaken to determine if further serial mixtures of propofol and thiopentone maintained the bactericidal properties. Mixtures of 1:1 (solution A, 5:1 (solution B, 10:1 (solution C, 50:1 (solution D and 100:1 (solution E of 1 % propofol to 2.5 % thiopentone, 2.5 % thiopentone (solution T, 1 % propofol (solution P and saline (solution S were prepared and inoculated with between 105 and 106 colony-forming units of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. A sample was withdrawn from each solution at 0, 1, 6, 12, 48 and 120 hours after inoculation and a bacterial count was performed. This study showed that thiopentone and solution A behaved in similar fashion by inhibiting bacterial growth and was bactericidal after 48 hours. Solution B was not bactericidal against S. aureus and C. albicans. Propofol and solutions D and E all supported growth of all the organisms tested. These data indicate that mixtures of propofol and thiopentone at a ratio less than 1:1 do not maintain the bactericidal properties.

  8. Hypoestoxide inhibits tumor growth in the mouse CT26 colon tumor model

    Institute of Scientific and Technical Information of China (English)

    Emmanuel A Ojo-Amaize; Howard B Cottam; Olusola A Oyemade; Joseph I Okogun; Emeka J Nchekwube

    2007-01-01

    AIM: To evaluate the effect of the natural diterpenoid,hypoestoxide (HE) on the growth of established colon cancer in mice.METHODS: The CT26.WT mouse colon carcinoma cell line was grown and expanded in vitro. Following the expansion, BALB/c mice were inoculated s.c. with viable tumor cells. After the tumors had established and developed to about 80-90 mm3, the mice were started on chemotherapy by oral administration of HE, 5-fluorouracil (5-FU) or combination.RESULTS: The antiangiogenic HE has previously been shown to inhibit the growth of melanoma in the B16F1tumor model in C57BL/6 mice. Our results demonstrate that mean volume of tumors in mice treated with oral HE as a single agent or in combination with 5-FU, were significantly smaller (> 60%) than those in vehicle control mice (471.2 mm3 vs 1542.8 mm3, P < 0.01).The significant reductions in tumor burden resulted in pronounced mean survival times (MST) and increased life spans (ILS) in the treated mice.CONCLUSION: These results indicate that HE is an effective chemotherapeutic agent for colorectal cancer in mice and that HE may be used alone or in combination with 5-FU.

  9. Experimental study on He- Ne laser irradiation to inhibit scar fibroblast growth in culture

    Institute of Scientific and Technical Information of China (English)

    舒彬; 吴宗耀; 郝林林; 曾登芬; 冯光锐; 林永辉

    2002-01-01

    To explore the inhibitory effect of He-Ne laser irradiation on fibroblast growth of hypertrophic scars in culture. Methods: He-Ne laser with wavelength of 632.8 nm,power density of 50 mW/cm2 and doses of 3 J/cm2,30 J/cm2, 90 J/cm2 and 180 J/cm2 was used to irradiate human scar fibroblasts in culture 1, 3 and 5 times respectively, and then the cell count and cell cycle analysis were done. Results: Repeated irradiation with He-Ne laser at dose of 180 J/cm2 three and five times led to an evident decrease in total cell number compared with that of the control group and there was a significant difference ( P <0.05). The cell cycle analysis showed after three and five times of irradiation with 180 J/cm2 He-Ne laser the cell number in S-phase decreased from 51% to 20% and 14% respectively, the cell number in G0/G1 phase increased from 28% to 55% and 60% respectively, and the cell percentage in Sub-G1 phase was 6.7% and 9.8% respectively. Conclusions: Repeated irradiation with 180 J/cm2 He-Ne laser can inhibit scar fibroblasts growth in culture.It may be that He-Ne laser irradiation causes cell stagnation in G0/G1 phase and apoptosis.

  10. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials

    DEFF Research Database (Denmark)

    Mayer, Philipp; Nyholm, Niels; Verbruggen, Eric M. J.;

    2000-01-01

    concentrations of the volatile fraction of kerosene decreased by 99% in the open test, by 77% in the closed flask test with headspace, and by 16% in the filled closed bottle test. Algal growth inhibition was observed at much lower additions of kerosene in the new test design because of the improved maintenance...... test container. A simple filled closed bottle test with low algal densities and bicarbonate enrichment is described here as an approach to minimize the loss of test material from solution. The algal medium was enriched with 300 mg NaHCO3/L, the pH was adjusted to 7.0 by addition of HCl, and the...... resulting dissolved CO2 concentration supported maximum algal growth rates without pH drift for algal densities up to 4 mg dry weight/L. Two-day toxicity tests with kerosene were performed with this new test design and compared with an open bottle test and with a closed bottle test with headspace. Exposure...

  11. The biofilm inhibitor Carolacton inhibits planktonic growth of virulent pneumococci via a conserved target.

    Science.gov (United States)

    Donner, Jannik; Reck, Michael; Bergmann, Simone; Kirschning, Andreas; Müller, Rolf; Wagner-Döbler, Irene

    2016-01-01

    New antibacterial compounds, preferentially exploiting novel cellular targets, are urgently needed to fight the increasing resistance of pathogens against conventional antibiotics. Here we demonstrate that Carolacton, a myxobacterial secondary metabolite previously shown to damage Streptococcus mutans biofilms, inhibits planktonic growth of Streptococcus pneumoniae TIGR4 and multidrug-resistant clinical isolates of serotype 19A at nanomolar concentrations. A Carolacton diastereomer is inactive in both streptococci, indicating a highly specific interaction with a conserved cellular target. S. mutans requires the eukaryotic-like serine/threonine protein kinase PknB and the cysteine metabolism regulator CysR for susceptibility to Carolacton, whereas their homologues are not needed in S. pneumoniae, suggesting a specific function for S. mutans biofilms only. A bactericidal effect of Carolacton was observed for S. pneumoniae TIGR4, with a reduction of cell numbers by 3 log units. The clinical pneumonia isolate Sp49 showed immediate growth arrest and cell lysis, suggesting a bacteriolytic effect of Carolacton. Carolacton treatment caused a reduction in membrane potential, but not membrane integrity, and transcriptome analysis revealed compensatory reactions of the cell. Our data show that Carolacton might have potential for treating pneumococcal infections. PMID:27404808

  12. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    Science.gov (United States)

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight. PMID:24077735

  13. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Medulloblastoma is the most common brain tumor in children, and its prognosis is worse than for many other common pediatric cancers. Survivors undergoing treatment suffer from serious therapy-related side effects. Thus, it is imperative to identify safer, effective treatments for medulloblastoma. In this study we evaluated the anti-cancer potential of curcumin in medulloblastoma by testing its ability to induce apoptosis and inhibit tumor growth in vitro and in vivo using established medulloblastoma models. Using cultured medulloblastoma cells, tumor xenografts, and the Smo/Smo transgenic medulloblastoma mouse model, the antitumor effects of curcumin were tested in vitro and in vivo. Curcumin induced apoptosis and cell cycle arrest at the G2/M phase in medulloblastoma cells. These effects were accompanied by reduced histone deacetylase (HDAC) 4 expression and activity and increased tubulin acetylation, ultimately leading to mitotic catastrophe. In in vivo medulloblastoma xenografts, curcumin reduced tumor growth and significantly increased survival in the Smo/Smo transgenic medulloblastoma mouse model. The in vitro and in vivo data suggest that curcumin has the potential to be developed as a therapeutic agent for medulloblastoma

  14. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Olson James M

    2011-04-01

    Full Text Available Abstract Background Medulloblastoma is the most common brain tumor in children, and its prognosis is worse than for many other common pediatric cancers. Survivors undergoing treatment suffer from serious therapy-related side effects. Thus, it is imperative to identify safer, effective treatments for medulloblastoma. In this study we evaluated the anti-cancer potential of curcumin in medulloblastoma by testing its ability to induce apoptosis and inhibit tumor growth in vitro and in vivo using established medulloblastoma models. Methods Using cultured medulloblastoma cells, tumor xenografts, and the Smo/Smo transgenic medulloblastoma mouse model, the antitumor effects of curcumin were tested in vitro and in vivo. Results Curcumin induced apoptosis and cell cycle arrest at the G2/M phase in medulloblastoma cells. These effects were accompanied by reduced histone deacetylase (HDAC 4 expression and activity and increased tubulin acetylation, ultimately leading to mitotic catastrophe. In in vivo medulloblastoma xenografts, curcumin reduced tumor growth and significantly increased survival in the Smo/Smo transgenic medulloblastoma mouse model. Conclusions The in vitro and in vivo data suggest that curcumin has the potential to be developed as a therapeutic agent for medulloblastoma.

  15. Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells.

    Science.gov (United States)

    Wu, Tiancong; Liu, Wen; Guo, Wenjie; Zhu, Xixu

    2016-07-01

    In this study, we investigated the antitumor activity of Silymarin in a mouse model of colon cancer xenograft of Lewis lung cancer (LLC) cells. Silymarin significantly suppressed tumor growth and induced apoptosis of cells in tumor tissues at a dose of 25 and 50mg/kg. Silymarin treatment enhanced the infiltration and function of CD8(+) T cells. In the meantime, Silymarin decreased the level of IL-10 while elevated the level of IL-2 and IFN-γ in the serum of tumor-bearing mice. Finally, Silymarin reduced the proportion of myeloid-derived suppressor cells (MDSC) in the tumor tissue and also the mRNA expressions of inducible nitric oxide synthases-2 (iNOS2), arginase-1 (Arg-1) and MMP9, which indicated that the function of MDSC in tumor tissues were suppressed. Altogether, our data here showed that Silymarin inhibited the MDSC and promoted the infiltration and function of CD8(+) T cells thus suppressed the growth of LLC xenografts, which provides evidence for the possible use of Silymarin against lung cancer. PMID:27261626

  16. Selective Lymphocyte Activation and Inhibition of In Vitro Tumor Cell Growth by Novel Morphinans

    Directory of Open Access Journals (Sweden)

    Ricardo Gomez-Flores

    2006-01-01

    Full Text Available Opioids can suppress immune functions and increase susceptibility to developing cancer and infectious diseases. Recently, novel opioid compounds have been synthesized that lack immunosuppressive effects. We evaluated the effects of morphinans with substituted pyrimidine (methyl, phenyl, hydroxy, and amino groups and pyrazole groups on in vitro rat thymic lymphocyte and splenic macrophage functions, and tumor cell growth. We observed that morphinans with methyl, phenyl, hydroxy, amino, and pyrazole groups at concentrations from 10-10M to 10-5M plus Con A (2.5 µg/ml significantly (P < 0.01 induced 2- to 2.9-, 2.3- to 6.4-, 2.4- to 3.4-, 2.6- to 3.4-, and 2.6- to 3.2-fold increases respectively in thymic lymphoproliferation compared with Con A alone; this effect was reversed by naloxone. Macrophage nitric oxide production was not altered by morphinans. In addition, we observed that all tested morphinans were associated with significant (P < 0.01 in vitro tumor cell growth inhibition of J774A (18-41%, L929 (12-36%, L5178 (9-15% cell lines in a dose-dependent manner, at doses ranging from 10-11M to 10-5M. Morphinans may be applied in clinical situations where immunosuppression is undesirable.

  17. Bithionol inhibits ovarian cancer cell growth In Vitro - studies on mechanism(s) of action

    International Nuclear Information System (INIS)

    Drug resistance is a cause of ovarian cancer recurrence and low overall survival rates. There is a need for more effective treatment approaches because the development of new drug is expensive and time consuming. Alternatively, the concept of ‘drug repurposing’ is promising. We focused on Bithionol (BT), a clinically approved anti-parasitic drug as an anti-ovarian cancer drug. BT has previously been shown to inhibit solid tumor growth in several preclinical cancer models. A better understanding of the anti-tumor effects and mechanism(s) of action of BT in ovarian cancer cells is essential for further exploring its therapeutic potential against ovarian cancer. The cytotoxic effects of BT against a panel of ovarian cancer cell lines were determined by Presto Blue cell viability assay. Markers of apoptosis such as caspases 3/7, cPARP induction, nuclear condensation and mitochondrial transmembrane depolarization were assessed using microscopic, FACS and immunoblotting methods. Mechanism(s) of action of BT such as cell cycle arrest, reactive oxygen species (ROS) generation, autotaxin (ATX) inhibition and effects on MAPK and NF-kB signalling were determined by FACS analysis, immunoblotting and colorimetric methods. BT caused dose dependent cytotoxicity against all ovarian cancer cell lines tested with IC50 values ranging from 19 μM – 60 μM. Cisplatin-resistant variants of A2780 and IGROV-1 have shown almost similar IC50 values compared to their sensitive counterparts. Apoptotic cell death was shown by expression of caspases 3/7, cPARP, loss of mitochondrial potential, nuclear condensation, and up-regulation of p38 and reduced expression of pAkt, pNF-κB, pIκBα, XIAP, bcl-2 and bcl-xl. BT treatment resulted in cell cycle arrest at G1/M phase and increased ROS generation. Treatment with ascorbic acid resulted in partial restoration of cell viability. In addition, dose and time dependent inhibition of ATX was observed. BT exhibits cytotoxic effects on various

  18. Quercetin enhances the effects of 5-fluorouracil-mediated growth inhibition and apoptosis of esophageal cancer cells by inhibiting NF-κB

    OpenAIRE

    CHUANG-XIN, LU; WEN-YU, WANG; Yao, Cui; Xiao-yan, Li; Yun, Zhou

    2012-01-01

    Despite its limited success, 5-fluorouracil (5-FU) remains the primary chemotherapy agent for the treatment of esophageal cancer. Quercetin has been demonstrated to inhibit the growth of transformed cells. The present study was conducted to examine whether quercetin combined with conventional chemotherapeutic agents would improve the therapeutic strategy for esophageal cancer. In this study, an MTT assay was used to determine the effects of quercetin on the proliferation of EC9706 and Eca109 ...

  19. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Jun-Min He; Xiao-Ling Bai; Rui-Bin Wang; Bing Cao; Xiao-Ping She [School of Life Sciences, Shaanxi Normal Univ., Xi' an (China)

    2007-10-15

    The role of nitric oxide (NO) in the ultraviolet-B radiation (UV-B)-induced reduction of in vitro pollen germination and tube growth of Paulownia tomentosa Steud. was studied. Results showed that exposure of the pollen to 0.4 and 0.8 W m{sup -2} UV-B radiation for 2 h resulted in not only the reduction of pollen germination and tube growth but also the enhancement of NO synthase (NOS, EC 1.14.13.39) activity and NO production in pollen grain and tube. Also, exogenous NO donors sodium nitroprusside and S-nitrosoglutathione inhibited both pollen germination and tube growth in a dose-dependence manner. NOS inhibitor NG-nitro-L-Arg-methyl eater (L-NAME) and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) not only largely prevented the NO generation but also partly reversed the UV-B-inhibited pollen germination and tube growth. These results indicate that UV-B radiation inhibits pollen germination and tube growth partly via promoting NO production in pollen grain and tube by a NOS-like enzyme. Additionally, a guanylyl cyclase inhibitor 6-anilino-5, 8-quinolinequinone (LY-83583) prevented both the UV-B- and NO donors-inhibited pollen germination and tube growth, suggesting that the NO function is mediated by cyclic guanosine 5'-monophosphate. However, the effects of c-PTIO, L-NAME and LY-83583 on the UV-B-inhibited pollen germination and tube growth were only partial, suggesting that there are NO-independent pathways in UV-B signal networks. (au)

  20. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro.

    Science.gov (United States)

    He, Jun-Min; Bai, Xiao-Ling; Wang, Rui-Bin; Cao, Bing; She, Xiao-Ping

    2007-10-01

    The role of nitric oxide (NO) in the ultraviolet-B radiation (UV-B)-induced reduction of in vitro pollen germination and tube growth of Paulownia tomentosa Steud. was studied. Results showed that exposure of the pollen to 0.4 and 0.8 W m(-2) UV-B radiation for 2 h resulted in not only the reduction of pollen germination and tube growth but also the enhancement of NO synthase (NOS, EC 1.14.13.39) activity and NO production in pollen grain and tube. Also, exogenous NO donors sodium nitroprusside and S-nitrosoglutathione inhibited both pollen germination and tube growth in a dose-dependence manner. NOS inhibitor N(G)-nitro-l-Arg-methyl eater (l-NAME) and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) not only largely prevented the NO generation but also partly reversed the UV-B-inhibited pollen germination and tube growth. These results indicate that UV-B radiation inhibits pollen germination and tube growth partly via promoting NO production in pollen grain and tube by a NOS-like enzyme. Additionally, a guanylyl cyclase inhibitor 6-anilino-5,8-quinolinequinone (LY-83583) prevented both the UV-B- and NO donors-inhibited pollen germination and tube growth, suggesting that the NO function is mediated by cyclic guanosine 5'-monophosphate. However, the effects of c-PTIO, l-NAME and LY-83583 on the UV-B-inhibited pollen germination and tube growth were only partial, suggesting that there are NO-independent pathways in UV-B signal networks. PMID:18251898

  1. The Politics of Thinking About China: 1. Mary Berry on China. 2. Shanker Versus Berry

    Science.gov (United States)

    Berry, Mary; Shanker, Albert

    1978-01-01

    Mary Berry's speech suggesting that America had much to learn from Chinese education prompted a sharply critical letter from Albert Shanker, head of the American Federation of Teachers. Parts of the speech and the subsequent exchange with Shanker are reprinted here. (LBH)

  2. AAV-mediated human PEDF inhibits tumor growth and metastasis in murine colorectal peritoneal carcinomatosis model

    International Nuclear Information System (INIS)

    Angiogenesis plays an important role in tumor growth and metastasis, therefore antiangiogenic therapy was widely investigated as a promising approach for cancer therapy. Recently, pigment epithelium-derived factor (PEDF) has been shown to be the most potent inhibitor of angiogenesis. Adeno-associated virus (AAV) vectors have been intensively studied due to their wide tropisms, nonpathogenicity, and long-term transgene expression in vivo. The objective of this work was to evaluate the ability of AAV-mediated human PEDF (hPEDF) as a potent tumor suppressor and a potential candidate for cancer gene therapy. Recombinant AAV2 encoding hPEDF (rAAV2-hPEDF) was constructed and produced, and then was assigned for in vitro and in vivo experiments. Conditioned medium from cells infected with rAAV2-hPEDF was used for cell proliferation and tube formation tests of human umbilical vein endothelial cells (HUVECs). Subsequently, colorectal peritoneal carcinomatosis (CRPC) mouse model was established and treated with rAAV2-hPEDF. Therapeutic efficacy of rAAV2-hPEDF were investigated, including tumor growth and metastasis, survival time, microvessel density (MVD) and apoptosis index of tumor tissues, and hPEDF levels in serum and ascites. rAAV2-hPEDF was successfully constructed, and transmission electron microscope (TEM) showed that rAAV2-hPEDF particles were non-enveloped icosahedral shape with a diameter of approximately 20 nm. rAAV2-hPEDF-infected cells expressed hPEDF protein, and the conditioned medium from infected cells inhibited proliferation and tube-formation of HUVECs in vitro. Furthermore, in CRPC mouse model, rAAV2-hPEDF significantly suppressed tumor growth and metastasis, and prolonged survival time of treated mice. Immunofluorescence studies indicated that rAAV2-hPEDF could inhibit angiogenesis and induce apoptosis in tumor tissues. Besides, hPEDF levels in serum and ascites of rAAV2-hPEDF-treated mice were significant higher than those in rAAV2-null or normal

  3. AAV-mediated human PEDF inhibits tumor growth and metastasis in murine colorectal peritoneal carcinomatosis model

    Directory of Open Access Journals (Sweden)

    Wu Qin Jie

    2012-03-01

    Full Text Available Abstract Background Angiogenesis plays an important role in tumor growth and metastasis, therefore antiangiogenic therapy was widely investigated as a promising approach for cancer therapy. Recently, pigment epithelium-derived factor (PEDF has been shown to be the most potent inhibitor of angiogenesis. Adeno-associated virus (AAV vectors have been intensively studied due to their wide tropisms, nonpathogenicity, and long-term transgene expression in vivo. The objective of this work was to evaluate the ability of AAV-mediated human PEDF (hPEDF as a potent tumor suppressor and a potential candidate for cancer gene therapy. Methods Recombinant AAV2 encoding hPEDF (rAAV2-hPEDF was constructed and produced, and then was assigned for in vitro and in vivo experiments. Conditioned medium from cells infected with rAAV2-hPEDF was used for cell proliferation and tube formation tests of human umbilical vein endothelial cells (HUVECs. Subsequently, colorectal peritoneal carcinomatosis (CRPC mouse model was established and treated with rAAV2-hPEDF. Therapeutic efficacy of rAAV2-hPEDF were investigated, including tumor growth and metastasis, survival time, microvessel density (MVD and apoptosis index of tumor tissues, and hPEDF levels in serum and ascites. Results rAAV2-hPEDF was successfully constructed, and transmission electron microscope (TEM showed that rAAV2-hPEDF particles were non-enveloped icosahedral shape with a diameter of approximately 20 nm. rAAV2-hPEDF-infected cells expressed hPEDF protein, and the conditioned medium from infected cells inhibited proliferation and tube-formation of HUVECs in vitro. Furthermore, in CRPC mouse model, rAAV2-hPEDF significantly suppressed tumor growth and metastasis, and prolonged survival time of treated mice. Immunofluorescence studies indicated that rAAV2-hPEDF could inhibit angiogenesis and induce apoptosis in tumor tissues. Besides, hPEDF levels in serum and ascites of rAAV2-hPEDF-treated mice were significant

  4. Lactobacillus brevis-based bioingredient inhibits Aspergillus niger growth on pan bread

    Directory of Open Access Journals (Sweden)

    Mariaelena Di Biase

    2014-11-01

    Full Text Available Bread shelf life is generally compromised by fungi mainly belonging to Aspergillus and Penicillium genera, which colonise the surface of the product within few days from the production. The aim of this study was to select a Lactobacillus brevis-based bioingredient (LbBio able to inhibit the growth of Aspergillus niger ITEM5132 on pan bread in order to prolong its shelf life. Four LbBio formulations, obtained by growing a selected L. brevis strain in a flour-based medium containing different carbon sources or acid precursors (fructose, LbBio1; fructose and maltose, LbBio2; α-chetoglutaric acid, LbBio3; short-chain fructooligosaccharides, LbBio4, were evaluated for their content of organic acids (lactic, acetic, propionic, phenyllactic, 4-hydroxy-phenyllactic, valeric, isovaleric acids. The LbBio formulations were applied in yeast-leavened bread during bread-making trials and the resulting products were inoculated after baking with A. niger spore’s suspension and the fungal growth was monitored during storage (25°C for 6 days. The formulation showing the highest inhibitory activity was separated by ultra-filtration method, and whole and fractions obtained were evaluated for their in vitro activity. The fraction showing the highest activity was further separated by gel-filtration and the resulting products were investigated for their protein content and in vitro inhibition. The results from the bread-making trials performed using different formulations of LbBio showed a delay in fungal growth (1 day respect to the bread not containing the bioingredient (control or including calcium propionate (0.3% w/w. The formulation LbBio2, prepared with fructose and maltose 1% (w/vol, contained the highest amount of total organic acids, including phenyllactic and hydroxyl-phenyllactic acids, and reduced the visual spoilage of bread. This formulation was separated by ultra-filtration and fractions containing metabolites with molecular weight higher than 30 k

  5. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling.

    Science.gov (United States)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li; Jiaojie, Zhou; Xiaoyi, Yan; Xiujun, Cai

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. PMID:26102035

  6. Inhibition of system L (LAT1/CD98hc) reduces the growth of cultured human breast cancer cells.

    Science.gov (United States)

    Shennan, David B; Thomson, Jean

    2008-10-01

    It has been suggested that system L (LAT1/CD98hc) is up-regulated in cancer cells, including breast tumour cells, and is therefore a promising molecular target to inhibit or limit tumour cell growth. In view of this, we have examined the effect of BCH and other inhibitors of system L on the growth of MCF-7, ZR-75-1 and MDA-MB-231 cells. Treating cells with BCH markedly inhibited the metabolism of WST-1 in a dose-dependent fashion. Similarly, melphalan and D-leucine inhibited the growth of cultured breast cancer cells whereas MeAIB, an inhibitor of system A, was without effect. The effects of BCH and melphalan on cell growth were non-additive suggesting that both compounds were acting at a single locus. The results indicate that system L is required to maintain MCF-7, ZR-75-1 and MDA-MB-231 cell growth and support the notion that LAT1/CD98hc may be a suitable target to inhibit breast cancer progression. PMID:18813831

  7. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    Energy Technology Data Exchange (ETDEWEB)

    Djeu, J.Y.; Parapanios, A.; Halkias, D.; Friedman, H.

    1986-03-05

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr at 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10..mu..g/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4..mu..g/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated.

  8. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    International Nuclear Information System (INIS)

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr at 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10μg/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4μg/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated

  9. Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera 'Cabernet Sauvignon' berries during véraison.

    Science.gov (United States)

    Xu, Fan; Xi, Zhu-Mei; Zhang, Hui; Zhang, Cheng-Jun; Zhang, Zhen-Wen

    2015-09-01

    Sugar unloading in grape berries is a crucial step in the long-distance transport of carbohydrates from grapevine leaves to berries. Brassinosteroids (BRs) mediate many physiological processes in plants including carbohydrate metabolism. Here, 'Cabernet Sauvignon' (Vitis vinifera L.) grape berries cultivated in clay loam fields were treated with an exogenous BR (24-epibrassinolide; EBR), a BR synthesis inhibitor (brassinazole; Brz), Brz + EBR (sprayed with EBR 24 h after a Brz treatment), and deionized water (control) at the onset of véraison. The EBR treatment sharply increased the soluble sugars content in the berries, but decreased it in the skins. The EBR and Brz + EBR treatments significantly promoted the activities of both invertases (acidic and neutral) and sucrose synthase (sucrolytic) at various stages of ripening. The mRNA levels of genes encoding sucrose metabolic invertase (VvcwINV), and monosaccharide (VvHT3, 4, 5 and 6) and disaccharide (VvSUC12 and 27) transporters were increased by the EBR and/or Brz + EBR treatments. Generally, the effects of the Brz treatment on the measured targets contrasted with the effects of the EBR treatments. The EBR and Brz treatments inhibited the biosynthesis of the endogenous BRs 6-deoxocastastarone and castasterone. Both EBR and Brz + EBR treatments increased the brassinolide contents, down-regulated the expression of genes encoding BRs biosynthetic enzymes BRASSINOSTEROID-6-OXIDASE and DWARF1, (VvBR6OX1 and VvDWF1) and induced BR receptor gene BRASSINOSTEROID INSENSITIVE 1 (VvBRI1) expression in deseeded berries. Together, these results show that BRs are involved in controlling sugar unloading in grape berries during véraison. PMID:26113159

  10. Insulin-like growth factor binding protein-2 mediates the inhibition of DNA synthesis by transforming growth factor-beta in mink lung epithelial cells.

    Science.gov (United States)

    Dong, Feng; Wu, Hai-Bin; Hong, Jiang; Rechler, Matthew M

    2002-01-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) has been proposed to mediate the growth inhibitory effects of transforming growth factor (TGF)-beta in breast and prostate cancer cells. Both TGF-beta and exogenous IGFBP-3 inhibit DNA synthesis in Mv1 mink lung epithelial cells (CCL64). The present study asks whether IGFBPs synthesized by CCL64 cells mediate growth inhibition by TGF-beta. CCL64 cells synthesize and secrete a single 34-kDa IGFBP that was identified as IGFBP-2 by immunoprecipitation and immunodepletion. Recombinant bovine IGFBP-2 inhibited CCL64 DNA synthesis in serum-free media in an IGF-independent manner. Coincubation with Leu(60)-IGF-I, an IGF-I analog that binds to IGFBPs with higher affinity than to IGF-I receptors, decreased the inhibition by bIGFBP-2. Leu(60)-IGF-I also decreased the inhibition of CCL64 DNA synthesis by TGF-beta by up to 70%, whereas Long-R3-IGF-I, an IGF-I analog with higher affinity for IGF-I receptors than for IGFBPs, did not decrease inhibition, suggesting that the effect of Leu(60)-IGF-I resulted from its forming complexes with endogenous IGFBPs. Leu(60)-IGF-I did not decrease TGF-beta stimulation of a Smad3-dependent reporter gene. Following incubation of intact CCL64 cells with bIGFBP-2 at 0 degrees C, bIGFBP-2 was recovered in membrane fractions; membrane association was abolished by coincubation with Leu(60)-IGF-I. If exogenous and secreted IGFBP-2 must bind to CCL64 cells to inhibit DNA synthesis, Leu(60)-IGF-I might reduce the inhibition of DNA synthesis by bIGFBP-2 or TGF-beta by inhibiting the association of IGFBP-2 in the media with CCL64 cells. Since TGF-beta does not increase IGFBP-2 abundance, we propose that TGF-beta sensitizes CCL64 cells to the latent growth inhibitory activity of endogenous IGFBP-2 by potentiating an intracellular IGFBP-2 signaling pathway or by promoting the association of secreted IGFBP-2 with the plasma membrane. PMID:11807812

  11. Tryptanthrin induces growth inhibition and neuronal differentiation in the human neuroblastoma LA-N-1 cells.

    Science.gov (United States)

    Liao, Xuemei; Leung, Kwok Nam

    2013-04-25

    Neuroblastoma is one of the most common extracranial solid cancers found in young children. The prognosis of neuroblastoma patients in advanced stages having N-myc amplification remains poor despite intensive multimodal therapy. Agents that trigger neuroblastoma cells to undergo cellular differentiation and thereby stop proliferation have attracted considerable interest as an alternative therapy. Tryptanthrin (12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants known as Banlangen. It has been shown to possess various biological activities, such as anti-microbial, anti-inflammatory and anti-tumor activities. However, its effects and mechanism(s) of action on human neuroblastoma cells remain poorly understood. Therefore, the objective of this study is to investigate the effects of tryptanthrin on the growth and differentiation of human neuroblastoma LA-N-1 cells with N-myc amplification. Our results show that tryptanthrin inhibited the growth of the human neuroblastoma cells in a dose- and time-dependent manner. Mechanistic studies indicated that tryptanthrin induced cell cycle arrest of the human neuroblastoma LA-N-1 cells at the G0/G1 phase. Tryptanthrin also induced neuronal differentiation of LA-N-1 cells, as assessed by morphological criteria, enhancement of acetylcholine esterase activity and up-regulation of various differentiation markers. Moreover, tryptanthrin treatment led to the significant reduction of N-myc expression in LA-N-1 cells while siRNA directed against N-myc induced morphological differentiation of LA-N-1 cells. These results, when taken together, suggest that tryptanthrin suppressed the growth and induced neuronal differentiation in the human neuroblastoma LA-N-1 cells and might be exploited as a potential therapeutic candidate for the treatment of high-risk neuroblastomas with N-myc-amplification. PMID:23500671

  12. SL-01, an oral gemcitabine derivative, inhibited human cancer growth more potently than gemcitabine

    International Nuclear Information System (INIS)

    SL-01, an oral gemcitabine derivative, was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl)pyrazine-2-carbonyl at the N4-position on the cytidine ring of gemcitabine. Our goal in this study was to evaluate the efficacy of SL-01 on the growth of human cancers with gemcitabine as control. Experiments were performed on human non-small cell lung cancer NCI-H460 and colon cancer HCT-116 both in vitro and in vivo. In vitro assays, SL-01 significantly inhibited the growth of cancer cells as determined by the 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Further studies indicated that SL-01 induced the cancer cells to apoptosis showing chromatin condensation and externalization of phosphatidylserine. In in vivo studies, we evaluated the efficacy of SL-01 in nude mice bearing human cancer xenografts. SL-01 effectively delayed the growth of NCI-H460 and HCT-116 without significant loss of body weight. Molecular analysis indicated that the high efficacy of SL-01 was associated with its ability to induce apoptosis as evidenced by increase of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining cells, activation of caspase-9, caspase-3 and cleaved poly ADP-ribose polymerase (PARP) in tumor tissues. SL-01 also increased Bax/Bcl-2 ratio in cancer cells. These biological activities of SL-01 were more potential than that of gemcitabine. Based on these in vitro and in vivo results, SL-01 is proposed as a potent oral anticancer agent that may supplant the use of gemcitabine in the clinic. -- Highlights: ► An oral gemcitabine derivative SL-01 was synthesized. ► The effects of SL-01 were evaluated and its efficacy was compared with gemcitabine. ► The biological activities of SL-01 were more potent than that of gemcitabine. ► SL-01 could replace gemcitabine for clinical use.

  13. Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer.

    Science.gov (United States)

    Brown, Wells S; Tan, Li; Smith, Andrew; Gray, Nathanael S; Wendt, Michael K

    2016-09-01

    Therapeutic targeting of late-stage breast cancer is limited by an inadequate understanding of how tumor cell signaling evolves during metastatic progression and by the currently available small molecule inhibitors capable of targeting these processes. Herein, we demonstrate that both β3 integrin and fibroblast growth factor receptor-1 (FGFR1) are part of an epithelial-mesenchymal transition (EMT) program that is required to facilitate metastatic outgrowth in response to fibroblast growth factor-2 (FGF2). Mechanistically, β3 integrin physically disrupts an interaction between FGFR1 and E-cadherin, leading to a dramatic redistribution of FGFR1 subcellular localization, enhanced FGF2 signaling and increased three-dimensional (3D) outgrowth of metastatic breast cancer cells. This ability of β3 integrin to drive FGFR signaling requires the enzymatic activity of focal adhesion kinase (FAK). Consistent with these mechanistic data, we demonstrate that FGFR, β3 integrin, and FAK constitute a molecular signature capable of predicting decreased survival of patients with the basal-like subtype of breast cancer. Importantly, covalent targeting of a conserved cysteine in the P-loop of FGFR1-4 with our newly developed small molecule, FIIN-4, more effectively blocks 3D metastatic outgrowth as compared with currently available FGFR inhibitors. In vivo application of FIIN-4 potently inhibited the growth of metastatic, patient-derived breast cancer xenografts and murine-derived metastases growing within the pulmonary microenvironment. Overall, the current studies demonstrate that FGFR1 works in concert with other EMT effector molecules to drive aberrant downstream signaling, and that these events can be effectively targeted using our novel therapeutics for the treatment of the most aggressive forms of breast cancer. Mol Cancer Ther; 15(9); 2096-106. ©2016 AACR. PMID:27371729

  14. SL-01, an oral gemcitabine derivative, inhibited human cancer growth more potently than gemcitabine

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cuirong; Yue, Bin; Liu, Huiping; Sun, Cuicui [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China); Li, Wenbao, E-mail: wbli@sanlugen.com [Sanlugen PharmaTech, Rm. 506, No. 2766 Yingxiu Road, Jinan 250101 (China); Qu, Xianjun, E-mail: qxj@sdu.edu.cn [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China)

    2012-08-01

    SL-01, an oral gemcitabine derivative, was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl)pyrazine-2-carbonyl at the N4-position on the cytidine ring of gemcitabine. Our goal in this study was to evaluate the efficacy of SL-01 on the growth of human cancers with gemcitabine as control. Experiments were performed on human non-small cell lung cancer NCI-H460 and colon cancer HCT-116 both in vitro and in vivo. In vitro assays, SL-01 significantly inhibited the growth of cancer cells as determined by the 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Further studies indicated that SL-01 induced the cancer cells to apoptosis showing chromatin condensation and externalization of phosphatidylserine. In in vivo studies, we evaluated the efficacy of SL-01 in nude mice bearing human cancer xenografts. SL-01 effectively delayed the growth of NCI-H460 and HCT-116 without significant loss of body weight. Molecular analysis indicated that the high efficacy of SL-01 was associated with its ability to induce apoptosis as evidenced by increase of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining cells, activation of caspase-9, caspase-3 and cleaved poly ADP-ribose polymerase (PARP) in tumor tissues. SL-01 also increased Bax/Bcl-2 ratio in cancer cells. These biological activities of SL-01 were more potential than that of gemcitabine. Based on these in vitro and in vivo results, SL-01 is proposed as a potent oral anticancer agent that may supplant the use of gemcitabine in the clinic. -- Highlights: ► An oral gemcitabine derivative SL-01 was synthesized. ► The effects of SL-01 were evaluated and its efficacy was compared with gemcitabine. ► The biological activities of SL-01 were more potent than that of gemcitabine. ► SL-01 could replace gemcitabine for clinical use.

  15. The inhibition of angiogenesis and tumor growth by denbinobin is associated with the blocking of insulin-like growth factor-1 receptor signaling.

    Science.gov (United States)

    Tsai, An-Chi; Pan, Shiow-Lin; Lai, Chin-Yu; Wang, Chih-Ya; Chen, Chien-Chih; Shen, Chien-Chang; Teng, Che-Ming

    2011-07-01

    Denbinobin, which is a phenanthraquinone derivative present in the stems of Ephemerantha lonchophylla, has been demonstrated to display antitumor activity. Recent reports suggest that the enhanced activity of insulin-like growth factor-1 receptor (IGF-1R) is closely associated with tumor angiogenesis and growth. This study aims at investigating the roles of denbinobin in suppressing these effects and at further elucidating the underlying molecular mechanisms. In the present study, we used an in vivo xenograft model antitumor and the Matrigel implant assays to show that denbinobin suppresses lung adenocarcinoma A549 growth and microvessel formation. Additionally, crystal violet and capillary-like tube formation assays indicated that denbinobin selectively inhibits insulin-like growth factor-1 (IGF-1)-induced proliferation (GI50=1.3×10⁻⁸ M) and tube formation of human umbilical vascular endothelial cells (HUVECs) without influencing the effect of epidermal growth factor; vascular endothelial growth factor and basic fibroblast growth factor. Furthermore, denbinobin inhibited the IGF-1-induced migration of HUVECs in a concentration-dependent fashion. Western blotting and immunoprecipitation demonstrated that denbinobin causes more efficient inhibition of IGF-1-induced activation of IGF-1R and its downstream signaling targets, including , extracellular signal-regulated kinase, Akt, mTOR, p70S6K, 4EBP and cyclin D1. All of our results provide evidences that denbinobin suppresses the activation of IGF-1R and its downstream signaling pathway, which leads to the inhibition of angiogenesis. Our findings suggest that denbinobin may be a novel IGF-1R kinase inhibitor and has potential therapeutic abilities for angiogenesis-related diseases such as cancer. PMID:20951021

  16. Total Saponin from Root of Actinidia valvata Dunn Inhibits Hepatoma 22 Growth and Metastasis In Vivo by Suppression Angiogenesis

    Directory of Open Access Journals (Sweden)

    Guo-Yin Zheng

    2012-01-01

    Full Text Available The root of Actinidia valvata dunn has been widely used in the treatment of hepatocellular carcinoma (HCC, proved to be beneficial for a longer and better life in China. In present work, total saponin from root of Actinidia valvata Dunn (TSAVD was extracted, and its effects on hepatoma H22-based mouse in vivo were observed. Primarily transplanted hypodermal hepatoma H22-based mice were used to observe TSAVD effect on tumor growth. The microvessel density (MVD, vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF are characterized factors of angiogenesis, which were compared between TSAVD-treated and control groups. Antimetastasis effect on experimental pulmonary metastasis hepatoma mice was also observed in the study. The results demonstrated that TSAVD can effectively inhibit HCC growth and metastasis in vivo, inhibit the formation of microvessel, downregulate expressions of VEGF and bFGF, and retrain angiogenesis of hepatoma 22 which could be one of the reasons.

  17. Coffee Berry Borer, Hypothenemus hampei (Ferrari) (Colecptera: Curculiondae: Scolytinae)

    Science.gov (United States)

    The coffee berry borer is the most devastating pest of coffee throughout the world. Eggs are deposited inside coffee berries, and insects feed on the coffee seed, severely reducing yields. Conventional chemical control is a very limited option, and there has been a concerted effort to develop biolo...

  18. Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation.

    Science.gov (United States)

    Patel, Dipa; Bassi, Rajiv; Hooper, Andrea; Prewett, Marie; Hicklin, Daniel J; Kang, Xiaoqiang

    2009-01-01

    Human carcinomas frequently express one or more members of the epidermal growth factor receptor family. Two family members, epidermal growth factor receptor (EGFR) and c-erbB2/neu (HER2), homodimerize or heterodimerize upon activation with ligand and trigger potent mechanisms of cellular proliferation, differentiation and migration. In this study, we examined the effect of the anti-EGFR monoclonal antibody Erbitux (cetuximab) on human tumor cells expressing both EGFR and HER2. Investigation of the effect of cetuximab on the activation of EGFR-EGFR, EGFR-HER2 and HER2-HER2 homodimers and heterodimers was conducted using the NCI-N87 human gastric carcinoma cell line. Treatment of NCI-N87 cells with cetuximab completely inhibited formation of EGFR-EGFR homodimers and EGFR-HER2 heterodimers. Activation of HER2-HER2 homodimers was not appreciably stimulated by exogenous ligand and was not inhibited by cetuximab treatment. Furthermore, cetuximab inhibited EGF-induced EGFR and HER2 phosphorylation in CAL27, NCI-H226 and NCI-N87 cells. The activation of downstream signaling molecules such as AKT, MAPK and STAT-3 were also inhibited by cetuximab in these cells. To examine the effect of cetuximab on the growth of tumors in vivo, athymic mice bearing established NCI-N87 or CAL27 xenografts were treated with cetuximab (1 mg, i.p., q3d). The growth of NCI-N87 and CAL27 tumors was significantly inhibited with cetuximab therapy compared to the control groups (p<0.0001 in both cases). In the CAL27 xenograft model, tumor growth inhibition by cetuximab treatment was similar to that by cetuximab and trastuzumab combination treatment. Immunohistological analysis of cetuximab-treated tumors showed a decrease in EGFR-HER2 signaling and reduced tumor cell proliferation. These results suggest that cetuximab may be useful in the treatment of carcinomas co-expressing EGFR and HER2. PMID:19082474

  19. Inhibition of C. difficile and C. perfringens by commercial and potential probiotic strains and their in-vitro growth characteristics

    OpenAIRE

    Schoster, A; Kokotovic, Branko; Permin, A.; Dedenroth, D.; Guardabassi, L.

    2012-01-01

    Probiotics have gained importance in human and veterinary medicine to prevent and treat clostridial associated enteric disease. Little information is available on commercially produced potential probiotic bacterial strains regarding their inhibition of C. difficile and C. perfringens and their growth characteristics. The objective of this study was to determine the inhibitory effect of commercial and potential probiotic on C. difficile and C. perfringens and assess their growth characteristic...

  20. Novel Role for Albumin in Innate Immunity: Serum Albumin Inhibits the Growth of Blastomyces dermatitidis Yeast Form In Vitro

    OpenAIRE

    Giles, Steven; Czuprynski, Charles

    2003-01-01

    In this study we found that serum inhibitory activity against Blastomyces dermatitidis was principally mediated by albumin. This was confirmed in experiments using albumin from several mammalian species. Analbuminemic rat serum did not inhibit B. dermatitidis growth in vivo; however, the addition of albumin restored inhibitory activity. Inhibitory activity does not require albumin domain III and appears to involve binding of a low-molecular-weight yeast-derived growth factor.

  1. Gradient Nonlinear Pancharatnam-Berry Metasurfaces

    CERN Document Server

    Tymchenko, Mykhailo; Lee, Jongwon; Nookala, Nishant; Belkin, Mikhail A; Alù, Andrea

    2015-01-01

    We apply the Pancharatnam-Berry phase approach to plasmonic metasurfaces loaded by highly nonlinear multi-quantum well substrates, establishing a platform to control the nonlinear wavefront at will based on giant localized nonlinear effects. We apply this approach to design flat nonlinear metasurfaces for efficient second-harmonic radiation, including beam steering, focusing, and polarization manipulation. Our findings open a new direction for nonlinear optics, in which phase matching issues are relaxed, and an unprecedented level of local wavefront control is achieved over thin devices with giant nonlinear responses.

  2. Gradient Nonlinear Pancharatnam-Berry Metasurfaces

    Science.gov (United States)

    Tymchenko, Mykhailo; Gomez-Diaz, J. Sebastian; Lee, Jongwon; Nookala, Nishant; Belkin, Mikhail A.; Alù, Andrea

    2015-11-01

    We apply the Pancharatnam-Berry phase approach to plasmonic metasurfaces loaded by highly nonlinear multiquantum-well substrates, establishing a platform to control the nonlinear wave front at will based on giant localized nonlinear effects. We apply this approach to design flat nonlinear metasurfaces for efficient second-harmonic radiation, including beam steering, focusing, and polarization manipulation. Our findings open a new direction for nonlinear optics, in which phase matching issues are relaxed, and an unprecedented level of local wave front control is achieved over thin devices with giant nonlinear responses.

  3. Berry phase transition in twisted bilayer graphene

    Science.gov (United States)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  4. Inhibition of Fusarium graminearum growth in flour gel cultures by hexane-soluble compounds from oat (Avena sativa L.) flour.

    Science.gov (United States)

    Doehlert, Douglas C; Rayas-Duarte, Patricia; McMullen, Michael S

    2011-12-01

    Fusarium head blight, incited by the fungus Fusarium graminearum, primarily affects wheat (Triticum aestivum) and barley (Hordeum vulgarum), while oat (Avena sativa) appears to be more resistant. Although this has generally been attributed to the open panicle of oats, we hypothesized that a chemical component of oats might contribute to this resistance. To test this hypothesis, we created culture media made of wheat, barley, and oat flour gels (6 g of flour in 20 ml of water, gelled by autoclaving) and inoculated these with plugs of F. graminearum from actively growing cultures. Fusarium growth was measured from the diameter of the fungal plaque. Plaque diameter was significantly smaller on oat flour cultures than on wheat or barley cultures after 40 to 80 h of growth. Ergosterol concentration was also significantly lower in oat cultures than in wheat cultures after growth. A hexane extract from oats added to wheat flour also inhibited Fusarium growth, and Fusarium grew better on hexane-defatted oat flour. The growth of Fusarium on oat flour was significantly and negatively affected by the oil concentration in the oat, in a linear relationship. A hexane-soluble chemical in oat flour appears to inhibit Fusarium growth and might contribute to oat's resistance to Fusarium head blight. Oxygenated fatty acids, including hydroxy, dihydroxy, and epoxy fatty acids, were identified in the hexane extracts and are likely candidates for causing the inhibition. PMID:22186063

  5. Identification of self-growth-inhibiting compounds lauric acid and 7-(Z)-tetradecenoic acid from Helicobacter pylori.

    Science.gov (United States)

    Yamashita, Shinpei; Igarashi, Masayuki; Hayashi, Chigusa; Shitara, Tetsuo; Nomoto, Akio; Mizote, Tomoko; Shibasaki, Masakatsu

    2015-06-01

    Helicobacter pylori growth medium is usually supplemented with horse serum (HS) or FCS. However, cyclodextrin derivatives or activated charcoal can replace serum. In this study, we purified self-growth-inhibiting (SGI) compounds from H. pylori growth medium. The compounds were recovered from porous resin, Diaion HP-20, which was added to the H. pylori growth medium instead of known supplements. These SGI compounds were also identified from 2,6-di-O-methyl-β-cyclodextrin, which was supplemented in a pleuropneumonia-like organisms broth. The growth-inhibiting compounds were identified as lauric acid (LA) and 7-(Z)-tetradecenoic acid [7-(Z)-TDA]. Although several fatty acids had been identified in H. pylori, these specific compounds were not previously found in this species. However, we confirmed that these fatty acids were universally present in the cultivation medium of the H. pylori strains examined in this study. A live/dead assay carried out without HS indicated that these compounds were bacteriostatic; however, no significant growth-inhibiting effect was observed against other tested bacterial species that constituted the indigenous bacterial flora. These findings suggested that LA and 7-(Z)-TDA might play important roles in the survival of H. pylori in human stomach epithelial cells. PMID:25767109

  6. Rapamycin Inhibits Lymphatic Endothelial Cell Tube Formation by Downregulating Vascular Endothelial Growth Factor Receptor 3 Protein Expression

    Directory of Open Access Journals (Sweden)

    Yan Luo

    2012-03-01

    Full Text Available Mammalian target of rapamycin (mTOR controls lymphangiogenesis. However, the underlying mechanism is not clear. Here we show that rapamycin suppressed insulin-like growth factor 1 (IGF-1- or fetal bovine serum (FBS-stimulated lymphatic endothelial cell (LEC tube formation, an in vitro model of lymphangiogenesis. Expression of a rapamycin-resistant and kinase-active mTOR (S2035T, mTOR-T, but not a rapamycin-resistant and kinase-dead mTOR (S2035T/D2357E, mTOR-TE, conferred resistance to rapamycin inhibition of LEC tube formation, suggesting that rapamycin inhibition of LEC tube formation is mTOR kinase activity dependent. Also, rapamycin inhibited proliferation and motility in the LECs. Furthermore, we found that rapamycin inhibited protein expression of VEGF receptor 3 (VEGFR-3 by inhibiting protein synthesis and promoting protein degradation of VEGFR-3 in the cells. Down-regulation of VEGFR-3 mimicked the effect of rapamycin, inhibiting IGF-1- or FBS-stimulated tube formation, whereas over-expression of VEGFR-3 conferred high resistance to rapamycin inhibition of LEC tube formation. The results indicate that rapamycin inhibits LEC tube formation at least in part by downregulating VEGFR-3 protein expression.

  7. Emodin Inhibits Breast Cancer Growth by Blocking the Tumor-Promoting Feedforward Loop between Cancer Cells and Macrophages.

    Science.gov (United States)

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-08-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR. PMID:27196773

  8. In-vitro growth characteristics of commercial probiotic strains and their potential for inhibition of Clostridium difficile and Clostridium perfringens

    DEFF Research Database (Denmark)

    Schoster, A.; Kokotovic, Branko; Permin, A.;

    2012-01-01

    . To study growth characteristics of 17 commercial probiotic strains (Lactobacilli n=16, Bifidobacteria n=1) MRS broth was adjusted to pH 2 or 4 or supplemented with 0.15% or 0.3% bile. Growth was measured at 0 and 24h and compared spectrophotometrically to control growth in standard MRS broth. Growth...... under aerobic conditions was assessed. To evaluate inhibition of C. difficile and C. perfringens sterile supernatant of the probiotic culture was added to BHI inoculated with a standard C. difficile or C. perfringens suspension. Growth was measured spectrophotometrically at 0 and 24h and compared to the......-four percent grew under aerobic conditions. Ninety-four percent of strains were inhibitory (0-20% growth compared to control) against C. difficile and 76% were inhibitory against C. perfringens. Sixty percent of the tested strains showed favourable in-vitro characteristics for use as potential equine...

  9. The tumor suppressor gene RBM5 inhibits lung adenocarcinoma cell growth and induces apoptosis

    Directory of Open Access Journals (Sweden)

    Shao Chen

    2012-08-01

    Full Text Available Abstract Background The loss of tumor suppressor gene (TSG function is a critical step in the pathogenesis of human lung cancer. RBM5 (RNA-binding motif protein 5, also named H37/LUCA-15 gene from chromosome 3p21.3 demonstrated tumor suppressor activity. However, the role of RBM5 played in the occurrence and development of lung cancer is still not well understood. Method Paired non-tumor and tumor tissues were obtained from 30 adenocarcinomas. The expression of RBM5 mRNA and protein was examined by RT-PCR and Western blot. A549 cell line was used to determine the apoptotic function of RBM5 in vitro. A549 cells were transiently transfected with pcDNA3.1-RBM5. AnnexinV analysis was performed by flow cytometry. Expression of Bcl-2, cleaved caspase-3, caspase-9 and PAPP proteins in A549 lung cancer cells and the A549 xenograft BALB/c nude mice model was determined by Western blot. Tumor suppressor activity of RBM5 was also examined in the A549 xenograft model treated with pcDNA3.1-RBM5 plasmid carried by attenuated Salmonella typhi Ty21a. Result The expression of RBM5 mRNA and protein was decreased significantly in adenocarcinoma tissues compared to that in the non-tumor tissues. In addition, as compared to the vector control, a significant growth inhibition of A549 lung cancer cells was observed when transfected with pcDNA3.1-RBM5 as determined by cell proliferation assay. We also found that overexpression of RBM5 induced both early and late apoptosis in A549 cells using AnnexinV/PI staining as determined by flow cytometry. Furthermore, the expression of Bcl-2 protein was decreased, whereas the expression of cleaved caspase-3, caspase-9 and PARP proteins was significantly increased in the RBM5 transfected cells; similarly, expression of decreased Bcl-2 and increased cleaved caspase-3 proteins was also examined in the A549 xenograft model. More importantly, we showed that accumulative and stable overexpression of RBM5 in the A549 xenograft BALB

  10. ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Rui BAI; Zhong SHI; Jia-wei ZHANG; Dan LI; Yong-liang ZHU; Shu ZHENG

    2012-01-01

    Background and objective:ST13,is the gene encoding the HSP70 interacting protein (HIP).Previous research has shown that ST13 mRNA and protein levels are down-regulated in colorectal cancer (CRC) tissues compared with adjacent normal tissues.This study aims at the role of ST13 in the proliferation and migration of CRC cells.Methods:The transcript level of ST13 in different CRC cell lines was evaluated by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR).ST13-overexpressed and ST13-knockdown CRC cells were constructed respectively by lentiviral transduction,followed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay,plate colony formation,cell-cycle analysis,and migration assays to evaluate the influence of ST13 on proliferation and migration in vitro.Moreover,a mouse xenograft study was performed to test in vivo tumorigenicity of ST13-knockdown CRC cells.Results:Lentivirus-mediated overexpression of ST13 in CRC cells inhibited cell proliferation,colony formation,and cell migration in vitro.In contrast,down-regulation of ST13 by lentiviralbased short hairpin RNA (shRNA) interference in CRC cells significantly increased cell proliferation and cloning efficiency in vitro.In addition,down-regulation of ST13 expression significantly increased the tumorigenicity of CRC cells in vivo.Conclusions:ST13 gene is a proliferation regulator that inhibits tumor growth in CRC and may affect cell migration.

  11. Cis-hydroxyproline-induced inhibition of pancreatic cancer cell growth is mediated by endoplasmic reticulum stress

    Institute of Scientific and Technical Information of China (English)

    Christoph Mueller; Joerg Emmrich; Robert Jaster; Dagmar Braun; Stefan Liebe; Gisela Sparmann

    2006-01-01

    AIM: To investigate the biological effects of cishydroxyproline (CHP) on the rat pancreatic carcinoma cell line DSL6A, and to examine the underlying molecular mechanisms.METHODS: The effect of CHP on DSL6A cell proliferation was assessed by using BrdU incorporation. The expression of focal adhesion kinase (FAK) was characterized by Western blotting and immunofluorescence.Induction of endoplasmic reticulum (ER) stress was investigated by using RT-PCR and Western blotting for the glucose-related protein-78 (GRP78) and growth arrest and DNA inducible gene (GADD153). Cell viability was determined through measuring the metabolic activity based on the reduction potential of DSL6A cells. Apoptosis was analyzed by detection of caspase-3 activation and cleavage of poly(ADP-ribose) polymerase (PARP) as well as DNA laddering.RESULTS: In addition to inhibition of proliferation,incubation with CHP induced proteolytic cleavage of FAK and a delocalisation of the enzyme from focal adhesions,followed by a loss of cell adherence. Simultaneously,we could show an increased expression of GRP78 and GADD153, indicating a CHP-mediated activation of the ER stress cascade in the DSL6A cell line. Prolonged incubation of DSL6A cells with CHP finally resulted in apoptotic cell death. Beside L-proline, the inhibition of intracellular proteolysis by addition of a broad spectrum protease inhibitor could abolish the effects of CHP on cellular functions and the molecular processes. In contrast, impeding the activity of apoptosis-executing caspases had no influence on CHP-mediated cell damage.CONCLUSION: Our data suggest that the initiation of ER stress machinery by CHP leads to an activation of intracellular proteolytic processes, including caspaseindependent FAK degradation, resulting in damaging pancreatic carcinoma cells.

  12. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth.

    Directory of Open Access Journals (Sweden)

    Roeland M H Merks

    Full Text Available Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully formed blood vessels organize into a vessel network (vasculogenesis, or by sprouting or splitting of existing blood vessels (angiogenesis. Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier-Graner-Hogeweg model (also called Cellular Potts Model simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller-Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally observed VE-cadherin-mediated contact inhibition of chemotaxis in the simulation causes randomly distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface-normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. Both mechanisms would also apply if force transmission through the extracellular matrix rather than chemical signaling mediated cell-cell interactions. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.

  13. Signaling pathways involved in the inhibition of epidermal growth factor receptor by erlotinib in hepatocellular cancer

    Institute of Scientific and Technical Information of China (English)

    Alexander Huether; Michael H(o)pfner; Andreas P Sutter; Viola Baradari; Detlef Schuppan; Hans Scherübl

    2006-01-01

    AIM: To examine the underlying mechanisms of erlotinib-induced growth inhibition in hepatocellular carcinoma (HCC).METHODS: Erlotinib-induced alterations in gene expression were evaluated using cDNA array technology;changes in protein expression and/or protein activation due to erlotinib treatment as well as IGF-1-induced EGFR transactivation were investigated using Western blotting. RESULTS: Erlotinib treatment inhibited the mitogen activated protein (MAP)-kinase pathway and signal transducer of activation and transcription (STAT)mediated signaling which led to an altered expression of apoptosis and cell cycle regulating genes as demonstrated by cDNA array technology. Overexpression of proapoptotic factors like caspases and gadds associated with a down-regulation of antiapoptoticfactors like Bcl-2, Bcl-XL or jun D accounted for erlotinib's potency to induce apoptosis. Downregulation of cell cycle regulators promoting the G1/S-transition and overexpression of cyclin-dependent kinase inhibitors and gadds contributed to the induction of a G1/Go-arrest in response to erlotinib. Furthermore, we displayed the transactivation of EGFR-mediated signaling by the IGF-1-receptor and showed erlotinib's inhibitory effects on the receptor-receptor cross talk. CONCLUSION: Our study sheds light on the understanding of the mechanisms of action of EGFR-TKinhibition in HCC-cells and thus might facilitate the design of combination therapies that act additively or synergistically. Moreover, our data on the pathways responding to erlotinib treatment could be helpful in predicting the responsiveness of tumors to EGFR-TKIs in the future.

  14. Growth inhibition of high-intensity focused ultrasound on hepatic cancer in vivo

    Institute of Scientific and Technical Information of China (English)

    Xiu-Jie Wang; Shu-Lan Yuan; Yan-Rong Lu; Jie Zhang; Bo-Tao Liu; Wen-Fu Zeng; Yue-Ming He; Yu-Rui Fu

    2005-01-01

    AIM: To investigate the damaging effect of high-intensity focused ultrasound (HIFU) on cancer cells and the inhibitory effect on tumor growth.METHODS: Murine H22 hepatic cancer cells were treated with HIFU at the same intensity for different lengths of time and at different intensities for the same length of timein vitro, the dead cancer cells were determined by trypan blue staining. Two groups of cancer cells treated with HIFU at the lowest and highest intensity were inoculated into mice. Tumor masses were removed and weighed after 2 wk, tumor growth in each group was confirmed pathologically.RESULTS: The death rate of cancer cells treated with HIFU at 1 000 W/cm2 for 0.5, 1, 2, 4, 8, and 12 s was 3.11±1.21%, 13.37±2.56%, 38.84±3.68%, 47.22±5.76%,87.55±7.32%, and 94.33±8.11%, respectively. A positive relationship between the death rates of cancer ceils and the length of HIFU treatment time was found (r = 0.96,P<0.01). The death rate of cancer cells treated with HIFU at the intensity of 100, 200, 400, 600, 800, and 1 000 W/cm2 for 8 s was 26.31±3.26%, 31.00±3.87%, 41.97±5.86%,72.23±8.12%, 94.90±8.67%, and 99.30±9.18%,respectively. A positive relationship between the death rates of cancer cells and the intensities of HIFU treatment was confirmed (r = 0.98, P<0.01). The cancer cells treated with HIFU at 1 000 W/cm2 for 8 s were inoculated into mice ex vivo. The tumor inhibitory rate was 90.35%compared to the control (P<0.01). In the experimental group inoculated with the cancer cells treated with HIFU at 1 000 W/cm2 for 0.5 s, the tumor inhibitory rate was 22.9% (P<0.01). By pathological examination, tumor growth was confirmed in 8 out of 14 mice (57.14%, 8/14)inoculated with the cancer cells treated with HIFU at 1 000 W/cm2 for 8 s, which was significantly lower than that in the control (100%, 15/15, P<0.05).CONCLUSION: HIFU is effective on killing or damage of H22 hepatic cancer cellsin vitro and on inhibiting tumor growth in mice ex vivo.

  15. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    International Nuclear Information System (INIS)

    Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. Therefore, we reasoned that endostatin-lidamycin (ES-LDM) fusion proteins upon energizing with enediyne chromophore may obtain the combined capability targeting tumor vasculature and tumor cell by respective ES and LDM moiety. In this study, we designed and obtained two new endostatin-based fusion proteins, endostatin-LDP (ES-LDP) and LDP-endostatin (LDP-ES). In vitro, the antiangiogenic effect of fusion proteins was determined by the wound healing assay and tube formation assay and the cytotoxicity of their enediyne-energized analogs was evaluated by CCK-8 assay. Tissue microarray was used to analyze the binding affinity of LDP, ES or ES-LDP with specimens of human lung tissue and lung tumor. The in vivo efficacy of the fusion proteins was evaluated with human lung carcinoma PG-BE1 xenograft and the experimental metastasis model of 4T1-luc breast cancer. ES-LDP and LDP-ES disrupted the formation of endothelial tube structures and inhibited endothelial cell migration. Evidently, ES-LDP accumulated in the tumor and suppressed tumor growth and metastasis. ES-LDP and ES show higher binding capability than LDP to lung carcinoma; in addition, ES-LDP and ES share similar binding capability. Furthermore, the enediyne-energized fusion protein ES-LDP-AE demonstrated significant efficacy against lung carcinoma xenograft in athymic mice. The ES-based fusion protein therapy provides some fundamental information for further drug development. Targeting both tumor vasculature and tumor cells by endostatin

  16. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Grassi Rici Rose

    2012-02-01

    Full Text Available Abstract Background The bone morphogenetic proteins (BMPs belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p

  17. Inhibition of prostate cancer growth using doxorubicin assisted by ultrasound-targeted nanobubble destruction.

    Science.gov (United States)

    Fan, Xiaozhou; Wang, Luofu; Guo, Yanli; Xiong, Xingyu; Zhu, Lianhua; Fang, Kejing

    2016-01-01

    Ultrasound (US)-targeted microbubble destruction has been widely used as an effective drug-delivery system. However, nanobubbles (NBs) have better stability and stronger penetration than microbubbles, and drug delivery assisted by US-targeted NB destruction (UTND) still needs to be investigated. Our aim was to investigate the effect of doxorubicin (DOX) on the inhibition of prostate cancer growth under UTND. Contrast-enhanced US imaging of transplanted PC3 prostate cancer in mice showed that under a combination of 1 W/cm(2) US power and a 100 Hz intermittent pulse with a "5 seconds on, 5 seconds off" mode, NBs with an average size of (485.7±33) nm were effectively destroyed within 15 minutes in the tumor location. PC3 cells and 20 tumor-bearing mice were divided into four groups: a DOX group, a DOX + NB group, a DOX + US group, and a DOX + NB + US group. The cell growth-inhibition rate and DOX concentration of xenografts in the DOX + NB + US group were highest. Based on another control group and these four groups, another 25 tumor-bearing mice were used to observe the treatment effect of nine DOX injections under UTND. The xenografts in the DOX + NB + US group decreased more obviously and had more cellular apoptosis than other groups. Finally, electron microscopy was used to estimate the cavitation effect of NBs under US irradiation in the control group, NB group, US group, and NB + US group. The results of scanning electron microscopy showed that PC3 cells in the DOX + NB + US group had more holes and significantly increased cell-surface folds. Meanwhile, transmission electric microscopy confirmed that more lanthanum nitrate particles entered the parenchymal cells in xenografts in the NB + US group compared with the other groups. This study suggested that UTND technology could be an effective method to promote drugs to function in US-irradiated sites, and the underlying mechanism may be associated with a cavitation effect. PMID:27536100

  18. Treatment of metastatic colorectal carcinomas by systemic inhibition of vascular endothelial growth factor signaling in mice

    Institute of Scientific and Technical Information of China (English)

    Volker Schmitz; Miroslaw Kornek; Tobias Hilbert; Christian Dzienisowicz; Esther Raskopf; Christian Rabe; Tilman Sauerbruch; Cheng Qian; Wolfgang H Caselmann

    2005-01-01

    AIM: Tumor angiogenesis has been shown to be promoted by vascular endothelial growth factor (VEGF) via stimulating endothelial cell proliferation, migration, and survival.Blockade of VEGF signaling by different means has been demonstrated to result in reduced tumor growth and suppression of tumor angiogenesis in distinct tumor entities.Here, we tested a recombinant adenovirus, AdsFlt1-3,that encodes an antagonistically acting fragment of the VEGF receptor 1 (Flt-1), for systemic antitumor effects in pre-established subcutaneous CRC tumors in mice.METHODS: Murine colorectal carcinoma cells (CT26) were inoculated subcutaneously into Balb/c mice forin vivo studies. Tumor size and survival were determined. 293cell line was used for propagation of the adenoviral vectors.Human lung cancer line 4549 and human umbilical vein endothelial cells were transfected forin vitro experiments.RESULTS: Infection of tumor cells with AdsFlt1-3 resulted in protein secretion into cell supernatant, demonstrating correct vector function. As expected, the secreted sFlt1-3 protein had no direct effect on CT26 tumor cell proliferation in vitro, but endothelial cell function was inhibited by about 46% as compared to the AdLacZ control in a tube formation assay. When AdsFlt1-3 (5×109 PFU/animal) was applied to tumor bearing mice, we found a tumor inhibition by 72% at d 12 after treatment initiation. In spite of these antitumoral effects, the survival time was not improved.According to reduced intratumoral microvessel density in AdsFlt1-3-treated mice, the antitumor mechanism can be attributed to angiostatic vector effects. We did not detect increased systemic VEGF levels after AdsFlt1-3 treatment and liver toxicity was low as judged by serum alanine aminotransferase determination.CONCLUSION: In this study we confirmed the value of a systemic administration of AdsFlt1-3 to block VEGF signaling as antitumor therapy in an experimental metastatic colorectal carcinoma model in mice.

  19. Isomalto oligosaccharide sulfate inhibits tumor growth and metastasis of hepatocellular carcinoma in nude mice

    International Nuclear Information System (INIS)

    Hepatocellular carcinoma (HCC) usually has a dismal prognosis because of its limited response to current pharmacotherapy and high metastatic rate. Sulfated oligosaccharide has been confirmed as having potent antitumor activities against solid tumors. Here, we explored the preclinical effects and molecular mechanisms of isomalto oligosaccharide sulfate (IMOS), another novel sulfated oligosaccharide, in HCC cell lines and a xenograft model. The effects of IMOS on HCC proliferation, apoptosis, adhesion, migration, and invasiveness in vitro were assessed by cell counting, flow cytometry, adhesion, wound healing, and transwell assays, respectively. The roles of IMOS on HCC growth and metastasis in xenograft models were evaluated by tumor volumes and fluorescent signals. Total and phosphorylated protein levels of AKT, ERK, and JNK as well as total levels of c-MET were detected by Western blotting. IMOS-regulated genes were screened by quantitative reverse-transcription PCR (qRT-PCR) array in HCCLM3-red fluorescent protein (RFP) xenograft tissues and then confirmed by qRT-PCR in HepG2 and Hep3B cells. IMOS markedly inhibited cell proliferation and induced cell apoptosis of HCCLM3, HepG2, and Bel-7402 cells and also significantly suppressed cell adhesion, migration, and invasion of HCCLM3 in vitro. At doses of 60 and 90 mg/kg/d, IMOS displayed robust inhibitory effects on HCC growth and metastasis without obvious side effects in vivo. The levels of pERK, tERK, and pJNK as well as c-MET were significantly down-regulated after treatment with 16 mg/mL IMOS. No obvious changes were found in the levels of pAkt, tAkt, and tJNK. Ten differentially expressed genes were screened from HCCLM3-RFP xenograft tissues after treatment with IMOS at a dose of 90 mg/kg/d. Similar gene expression profiles were confirmed in HepG2 and Hep3B cells after treatment with 16 mg/mL IMOS. IMOS is a potential anti-HCC candidate through inhibition of ERK and JNK signaling independent of p53 and worth

  20. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    Science.gov (United States)

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  1. Growth inhibiting effects of antisense eukaryotic expression vector of proliferating cell nuclear antigen gene on human bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    童强松; 曾甫清; 林晨; 赵军; 鲁功成

    2003-01-01

    Objective To explore the growth inhibiting effects on human bladder cancer by antisense RNA targeting the proliferating cell nuclear antigen (PCNA) gene. Methods The eukaryotic expression vector for antisense PCNA cDNA was constructed and transferred into a bladder cancer EJ cell line. The PCNA expression in the cancer cells was detected by RT-PCR and Western blotting assays. The in vitro proliferation activities of the transferred cells were observed by growth curve, tetrazolium bromide (MTT) colorimetry, tritiated thymidine (3H-TdR)incorporation, flow cytometry and clone formation testing, while its in vivo anti-tumor effects were detected on nude mice allograft models.Results After the antisense vector, pLAPSN, was transferred, cellular PCNA expression was inhibited at both protein and mRNA levels. The growth rates of EJ cells were reduced from 27.91% to 62.07% (P<0.01), with an inhibition of DNA synthesis rate by 52.31% (P<0.01). Transferred cells were blocked at G0/G1 phases in cell-cycle assay, with the clone formation ability decreased by 50.81% (P<0.01). The in vivo carcinogenic abilities of the transferred cancer cells were decreased by 54.23% (P<0.05). Conclusions Antisense PCNA gene transfer could inhibit the growth of bladder cancer cells in vitro and in vivo, which provided an ideal strategy for gene therapy of human cancers.

  2. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth and cancer xenografts in C57BL/6 mice

    Science.gov (United States)

    Data indicate that methylselenol is a critical selenium (Se) metabolite for anticancer activity in vivo but its role in colon cancer prevention remains to be characterized. This study tested the hypothesis that methylselenol inhibits the growth of colon cancer cells and tumors. We found that submicr...

  3. [Phosphinic analog of methionine inhibits growth of leucosis cell L1210 and transforms to phosphinic analog of S-adenosylmethionine].

    Science.gov (United States)

    Khomutov, R M; Zhukov, Iu N; Khomutov, A R; Khurs, E N; Kramer, D L; Miller, J T; Porter, C W

    2000-09-01

    A phosphinic analogue of methionine bearing a phosphinic H(OH)(O)P fragment in place of the carboxyl group inhibited the growth of the L1210 cells and was intracellularly transformed to the phosphinic analogue of S-adenosylmethionine. PMID:11036532

  4. Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli--an in vitro study

    DEFF Research Database (Denmark)

    Hasslöf, Pamela; Hedberg, Maria; Twetman, Svante;

    2010-01-01

    Probiotic bacteria are suggested to play a role in the maintenance of oral health. Such health promoting bacteria are added to different commercial probiotic products. The aim of the study was to investigate the ability of a selection of lactobacilli strains, used in commercially available probio...... probiotic products, to inhibit growth of oral mutans streptococci and C. albicans in vitro....

  5. Inhibition of Gas Hydrate Nucleation and Growth: Efficacy of an Antifreeze Protein from the Longhorn BeetleRhagium mordax

    DEFF Research Database (Denmark)

    Perfeldt, Christine Malmos; Chua, Pei Cheng; Daraboina, Nagu;

    2014-01-01

    Antifreeze proteins (AFPs) are characterized by their ability to protect organisms from subfreezing temperatures by preventing tiny ice crystals in solution from growing as the solution is cooled below its freezing temperature. This inhibition of ice growth is called antifreeze activity, and in...... particular, certain insect AFPs show very high antifreeze activity. Recent studies have shown AFPs to be promising candidates as green and environmentally benign inhibitors for gas hydrate formation. Here we show that an insect antifreeze protein from the longhorn beetle, Rhagium mordax (RmAFP1), the most...... potent protein yet found for freezing inhibition, can inhibit methane hydrates as effectively as the synthetic polymeric inhibitor polyvinylpyrrolidone (PVP). In high pressure rocking cell experiments, onset hydrate nucleation temperatures and growth profiles showed repeatable results. RmAFP1 clearly...

  6. Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1{beta} secretion

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Lixia Z.; Liu, Weimin; Luo, Yuchun; Okamoto, Miyako; Qu, Dovina; Dunn, Jeffrey H. [Department of Dermatology, University of Colorado School of Medicine, Aurora, CO 80045 (United States); Fujita, Mayumi, E-mail: mayumi.fujita@ucdenver.edu [Department of Dermatology, University of Colorado School of Medicine, Aurora, CO 80045 (United States); Denver Veterans Affairs Medical Center, Denver, CO 80220 (United States)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EGCG inhibits melanoma cell growth at physiological doses (0.1-1 {mu}M). Black-Right-Pointing-Pointer EGCG inhibits melanoma cell growth via inflammasomes and IL-1{beta} suppression. Black-Right-Pointing-Pointer Inflammasomes and IL-1{beta} could be potential targets for future melanoma therapeutics. -- Abstract: Epigallocatechin-3-gallate (EGCG), the major polyphenolic component of green tea, has been demonstrated to possess anti-inflammatory, antioxidant, anti-mutagenic and anti-carcinogenic properties. The anti-melanoma effect of EGCG has been previously suggested, but no clear mechanism of action has been established. In this study, we demonstrated that EGCG inhibits melanoma cell growth at physiological doses (0.1-1 {mu}M). In the search for mechanisms of EGCG-mediated melanoma cell suppression, we found that NF-{kappa}B was inhibited, and that reduced NF-{kappa}B activity was associated with decreased IL-1{beta} secretion from melanoma cells. Since inflammasomes are involved in IL-1{beta} secretion, we investigated whether IL-1{beta} suppression was mediated by inflammasomes, and found that EGCG treatment led to downregulation of the inflammasome component, NLRP1, and reduced caspase-1 activation. Furthermore, silencing the expression of NLRP1 abolished EGCG-induced inhibition of tumor cell proliferation both in vitro and in vivo, suggesting a key role of inflammasomes in EGCG efficacy. This paper provides a novel mechanism for EGCG-induced melanoma inhibition: inflammasome downregulation {yields} decreased IL-1{beta} secretion {yields} decreased NF-{kappa}B activities {yields} decreased cell growth. In addition, it suggests inflammasomes and IL-1{beta} could be potential targets for future melanoma therapeutics.

  7. Steviol reduces MDCK Cyst formation and growth by inhibiting CFTR channel activity and promoting proteasome-mediated CFTR degradation.

    Directory of Open Access Journals (Sweden)

    Chaowalit Yuajit

    Full Text Available Cyst enlargement in polycystic kidney disease (PKD involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h with steviol (100 microM also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h with steviol (100 microM markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.

  8. Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1β secretion

    International Nuclear Information System (INIS)

    Highlights: ► EGCG inhibits melanoma cell growth at physiological doses (0.1–1 μM). ► EGCG inhibits melanoma cell growth via inflammasomes and IL-1β suppression. ► Inflammasomes and IL-1β could be potential targets for future melanoma therapeutics. -- Abstract: Epigallocatechin-3-gallate (EGCG), the major polyphenolic component of green tea, has been demonstrated to possess anti-inflammatory, antioxidant, anti-mutagenic and anti-carcinogenic properties. The anti-melanoma effect of EGCG has been previously suggested, but no clear mechanism of action has been established. In this study, we demonstrated that EGCG inhibits melanoma cell growth at physiological doses (0.1–1 μM). In the search for mechanisms of EGCG-mediated melanoma cell suppression, we found that NF-κB was inhibited, and that reduced NF-κB activity was associated with decreased IL-1β secretion from melanoma cells. Since inflammasomes are involved in IL-1β secretion, we investigated whether IL-1β suppression was mediated by inflammasomes, and found that EGCG treatment led to downregulation of the inflammasome component, NLRP1, and reduced caspase-1 activation. Furthermore, silencing the expression of NLRP1 abolished EGCG-induced inhibition of tumor cell proliferation both in vitro and in vivo, suggesting a key role of inflammasomes in EGCG efficacy. This paper provides a novel mechanism for EGCG-induced melanoma inhibition: inflammasome downregulation → decreased IL-1β secretion → decreased NF-κB activities → decreased cell growth. In addition, it suggests inflammasomes and IL-1β could be potential targets for future melanoma therapeutics.

  9. Transfection of promyelocytic leukemia in retrovirus vector inhibits growth of human bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    Lei LI; Da-lin HE

    2005-01-01

    Aim: To construct a recombinant retrovirus vector carrying human promyelocytic leukemia (PML) cDNA and identify its expression and biology role in bladder cancer UM-UC-2 cells for future gene therapy. Methods: PML full-length cDNA was inserted into the EcoR I and BamHI site of pLXSN vector containing the long terminal repeat (LTR) promoter. The vector was identified by restriction enzyme digestion and then transfected into PA317 packaging cell line by calcium phosphate coprecipitation. PML cDNA was detected by polymerase chain reaction (PCR) and the protein was identified by laser confocal microscopy and Western blot in bladder cancer cells, respectively. The morphology was observed by inverted phase contrast microscope, and MTT assay determined growth curve of the bladder cancer cells. Results: Restriction enzyme digestion proved that a 2.1kb PML cDNA was inserted into the pLXSN vector. PCR assay demonstrated that 304 bp fragments were found in UM-UC-2/pLPMLSN transfects. Laser confocal microscopy showed speck dots fluorescence in the UM-UC-2/pLPMLSN nucleus.A 90 kD specific brand was found by Western blot. MTT assay demonstrated the UM-UC-2/pLPMLSN bladder cancer growth inhibition. Conclusion: The retrovirus pLPMLSN vector was successfully constructed and could generate high effective expression of human PML in bladder cancer cell UM-UC-2, suggesting that PML recombinant retrovirus have potential utility in the gene therapy for bladder cancer.

  10. Inhibition of epidermal growth factor signaling by the cardiac glycoside ouabain in medulloblastoma.

    Science.gov (United States)

    Wolle, Daniel; Lee, Seung Joon; Li, Zhiqin; Litan, Alisa; Barwe, Sonali P; Langhans, Sigrid A

    2014-10-01

    Epidermal growth factor (EGF) signaling regulates cell growth, proliferation, and differentiation. Upon receptor binding, EGF triggers cascades of downstream signaling, including the MAPK and phosphoinositide-3-kinase (PI3K)/Akt signaling pathways. Aberrant expression/activation of EGFR is found in multiple human cancers, including medulloblastoma, the most prevalent pediatric brain cancer, and often has been associated with metastasis, poor prognosis, and resistance to chemotherapy. Na,K-ATPase is an ion pump well known for its role in intracellular ion homeostasis. Recent studies showed that Na,K-ATPase also functions as a signaling platform and revealed a role in EGFR, MAPK, and PI3K signaling. While both EGFR and Na,K-ATPase seem to modulate similar signaling pathways, cardiac glycosides that are steroid-like inhibitors of Na,K-ATPase, exhibit antiproliferative and proapoptotic properties in cancer cells. Thus, we sought to better understand the relationship between EGF and cardiac glycoside signaling. Here, we show that in medulloblastoma cells, both EGF and ouabain activate Erk1/2 and PI3K/Akt signaling. Nevertheless, in medulloblastoma cells ouabain did not transactivate EGFR as has been reported in various other cell lines. Indeed, ouabain inhibited EGF-induced Erk1/2 and Akt activation and, moreover, prevented EGF-induced formation of actin stress fibers and cell motility, probably by activating a stress signaling response. Na,K-ATPase has been proposed to act as a signaling scaffold and our studies suggest that in medulloblastoma cells Na,K-ATPase might act as a check point to integrate EGF-associated signaling pathways. Thus, Na,K-ATPase might serve as a valid target to develop novel therapeutic approaches in tumors with aberrant activation of the EGFR signaling cascades. PMID:25052069

  11. Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens

    Science.gov (United States)

    Casalà, Carla; Briansó, Ferran; Castrejón, Nerea; Rodríguez, Eva; Suñol, Mariona; Carcaboso, Angel M.; Lavarino, Cinzia; Mora, Jaume; de Torres, Carmen

    2016-01-01

    The calcium–sensing receptor is a G protein-coupled receptor that exerts cell-type specific functions in numerous tissues and some cancers. We have previously reported that this receptor exhibits tumor suppressor properties in neuroblastoma. We have now assessed cinacalcet, an allosteric activator of the CaSR approved for clinical use, as targeted therapy for this developmental tumor using neuroblastoma cell lines and patient-derived xenografts (PDX) with different MYCN and TP53 status. In vitro, acute exposure to cinacalcet induced endoplasmic reticulum stress coupled to apoptosis via ATF4-CHOP-TRB3 in CaSR-positive, MYCN-amplified cells. Both phenotypes were partially abrogated by phospholipase C inhibitor U73122. Prolonged in vitro treatment also promoted dose- and time-dependent apoptosis in CaSR-positive, MYCN-amplified cells and, irrespective of MYCN status, differentiation in surviving cells. Cinacalcet significantly inhibited tumor growth in MYCN-amplified xenografts and reduced that of MYCN-non amplified PDX. Morphology assessment showed fibrosis in MYCN-amplified xenografts exposed to the drug. Microarrays analyses revealed up-regulation of cancer-testis antigens (CTAs) in cinacalcet-treated MYCN-amplified tumors. These were predominantly CTAs encoded by genes mapping on chromosome X, which are the most immunogenic. Other modulated genes upon prolonged exposure to cinacalcet were involved in differentiation, cell cycle exit, microenvironment remodeling and calcium signaling pathways. CTAs were up-regulated in PDX and in vitro models as well. Moreover, progressive increase of CaSR expression upon cinacalcet treatment was seen both in vitro and in vivo. In summary, cinacalcet reduces neuroblastoma tumor growth and up-regulates CTAs. This effect represents a therapeutic opportunity and provides surrogate circulating markers of neuroblastoma response to this treatment. PMID:26893368

  12. Mechanical Stimulus Inhibits the Growth of a Bone Tissue Model Cultured In Vitro

    Institute of Scientific and Technical Information of China (English)

    Zong-ming Wan; Lu Liu; Jian-yu Li; Rui-xin Li; Yong Guo; Hao Li; Jian-ming Zhang; Xi-zheng Zhang

    2013-01-01

    Objectives To construct the cancellous bone explant model and a method of culturing these bone tissues in vitro, and to investigate the effect of mechanical load on growth of cancellous bone tissue in vitro. Methods Cancellous bone were extracted from rabbit femoral head and cut into 1-mm-thick and 8-mm-diameter slices under sterile conditions. HE staining and scanning electron microscopy were employed to identify the histomorphology of the model after being cultured with a new dynamic load and circulating perfusion bioreactor system for 0, 3, 5, and 7 days, respectively. We built a three-dimensional model using microCT and analyzed the loading effects using finite element analysis. The model was subjected to mechanical load of 1000, 2000, 3000, and 4000μεrespectively for 30 minutes per day. After 5 days of continuous stimuli, the activities of alkaline phosphatase (AKP) and tartrate-resistant acid phosphatase (TRAP) were detected. Apoptosis was analyzed by DNA ladder detection and caspase-3/8/9 activity detection. Results After being cultured for 3, 5, and 7 days, the bone explant model grew well. HE staining showed the apparent nucleus in cells at the each indicated time, and electron microscope revealed the living cells in the bone tissue. The activities of AKP and TRAP in the bone explant model under mechanical load of 3000 and 4000μεwere significantly lower than those in the unstressed bone tissues (all P Conclusions The cancellous bone explant model extracted from the rabbit femoral head could be alive at least for 7 days in the dynamic load and circulating perfusion bioreactor system, however, pathological mechanical load could affect the bone tissue growth by apoptosis in vitro. The differentiation of osteoblasts and osteoclasts might be inhibited after the model is stimulated by mechanical load of 3000 and 4000με.

  13. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    International Nuclear Information System (INIS)

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b+ Gr-1+ MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b+Gr-1+ MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  14. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2012-04-01

    Full Text Available Rene Hernandez-Delgadillo1, Donaji Velasco-Arias2, David Diaz2, Katiushka Arevalo-Niño1, Marianela Garza-Enriquez1, Myriam A De la Garza-Ramos1, Claudio Cabral-Romero11Instituto de Biotecnologia, Centro de Investigacion y Desarrollo en Ciencias de la Salud, CIDICS, Facultad de Odontologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Nuevo Leon, 2Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Distrito Federal, MexicoBackground and methods: Despite continuous efforts, the